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CHAPTER 1 

INTRODUCTION 

Diabetes 

Diabetes Mellitus is a chronic condition in which the pancreatic beta cells are rendered 

incapable of generating adequate insulin to meet the metabolic demands or when the tissues 

are unable to efficiently utilize the synthesized insulin due to increasing insulin resistance [1]. 

The overall outcome of either of these conditions is a systemic increase in the levels of glucose 

circulating in the bloodstream, leading to hyperglycemia. Diabetes is associated with major 

complications such as, nephropathy, retinopathy, neuropathy, cardiac diseases and even 

premature death. According to the International Diabetes Federation [IDF] the worldwide 

incidence of diabetes in 2012 was 371 million and has since then risen unabatedly to 387 million 

in 2014 [with 46% undiagnosed cases]. The reports predict a drastic escalation of this number 

to 592 million by 2035. Growing along with the diabetes prevalence is the healthcare 

expenditure on diabetes, which was $612 billion for the year 2014 alone. Table 1-1 and Figure 

1-1 depict the prevalence of diabetes in various geographical regions across the globe along 

with the respective percentage of undiagnosed cases. 
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Table 1-1: International Diabetes Federation estimates of worldwide prevalence of Diabetes 
[2014]. [http://www.idf.org/diabetesatlas] 

 

 

International Diabetes Federation 2014 estimates of worldwide prevalence of 
Diabetes 

REGION PEOPLE LIVING 
WITH 

DIABETES 

PERCENT 
PREVALENCE

UNDIAGNOSED 
CASES 

North America and 
Caribbean (NAC) 

39 Million 11.4% 27.1% 

South and Central 
America (SACA) 

25 Million 8.1% 27.4% 

Europe (EUR) 52 Million 7.9% 33.1% 

Middle East and North 
Africa (MENA) 

37 Million 9.7% 48.6% 

Africa (AFR) 22 Million 5.1% 62.5% 

South-East Asia (SEA) 75 Million 8.3% 52.8% 

Western Pacific (WP) 138 Million 8.5% 53.6% 
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Figure 1-1: Worldwide incidence of Diabetes and projected increase of the disease by 2035 
International Diabetes Federation estimates 2014. [http://www.idf.org/diabetesatlas] 

Type 1 Diabetes Mellitus [T1DM] and Type 2 Diabetes Mellitus [T2DM] are the 2 major forms of 

diabetes. 

T1DM: Previously called as juvenile onset diabetes, T1DM occurs early on in the 

developmental stages during childhood or adolescence, and is a result of autoimmune-mediated 

death of the beta cells of the islets of Langerhans. This results in a severe deficiency in the 

synthesis and secretion of insulin by the pancreas. Genetic predisposition as well as 

environmental factors could trigger the immune system to cause beta cell death in this form of 

the disease. Patients with T1DM require daily doses of insulin for glucose homeostasis. 

T2DM:  T2DM is now a global health crisis and approximately 90% of cases of diabetes 

fall under this class making it the most common form of diabetes. It is characterized by insulin 

resistance manifested by target tissues [adipose, muscle], which the beta cells initially try to 

2012 2014 2035

IDF estimates of Diabetes incidence
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compensate for by synthesizing additional amounts of insulin [hyperinsulinemia]. However, as 

the disease progresses, the beta cells are unable to cope with the rapidly rising blood glucose 

levels and in due course, a decline in the secretion of insulin by the islet beta cells is observed, 

followed by absolute insulin deficiency, hyperglycemia and onset of diabetes. 

Pancreatic islets 

The islets of Langerhans derive their name from the German pathologist Dr. Paul 

Langerhans, who discovered this hormone-producing cluster of cells in the year 1869. The islets 

are found in the pancreas, located in the abdominal cavity posterior to the stomach. Typically a 

normal adult pancreas contains approximately a million islets. Each islet shows a well organized 

structure made up of 3 main types of cells: alpha [15-20%], beta [~65–80%] and delta [~3-10%] 

cells which secrete glucagon, insulin and somatostatin, respectively. Besides these, the islets 

also contain small number of pancreatic polypeptide [PP] cells which produce pancreatic 

polypeptide and Epsilon cells that secrete ghrelin [2, 3]. 

Figure 1-2: Pancreatic islets obtained from normal male, 8 week old, Sprague Dawley rats 
observed under light microscope. [The above image is a representative preparation that were 
used in my studies]  
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Fundamental role of beta cells in insulin secretion and maintenance of glucose 

homeostasis  

Under physiological conditions, a balance between the levels of glucose circulating in the 

blood and the amount of glucose that the cells need for energy is tightly regulated, thus maintaining 

glucose homeostasis. A balanced production and secretion of hormones by the islet cells is 

essential towards maintaining optimum levels of glucose in the blood. After a meal, as the level 

of glucose in blood circulation ascends, the beta cells respond by secreting insulin. This 

facilitates the uptake of glucose by the muscle and adipose cells, thereby bringing the blood glucose 

levels back to a normal level. On the other hand, when blood glucose levels are low, the alpha cells 

release glucagon. This hormone exerts its stimulatory action on the liver, inducing the release of 

stored glucose from glycogen, and in doing so; glucose homeostasis is re-established [4]. 

The process of insulin secretion is very tightly regulated and involves a few key steps.  

1. An increase in the blood glucose levels causes the uptake of glucose molecules by 

the GLUT-2 transporters located on the beta cells. 

2. The internalized glucose undergoes metabolism generating high amounts of ATP 

in the process.  

3. As the ATP/ADP ratio in the cell increases, it causes the closing of the ATP 

sensitive K+ channels, resulting in membrane depolarization.  

4. Following this, the voltage dependent Ca++ channels open up leading to influx of 

Ca++ ions into the cell. 

5. Ca++ promotes the movement of insulin-laden secretory granules towards the 

plasma membrane where they fuse and release the insulin [5]. 
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Factors that impair insulin release into the bloodstream cause a reduction in glucose uptake by the 

insulin-sensitive muscle and adipose tissues, which leads to increased levels of glucose circulating 

in the blood or hyperglycemia, a hallmark of T2DM.   

Pathogenesis of T2DM 

Beta cell dysfunction and insulin resistance are the 2 major contributing factors to the 

pathogenesis of T2DM. However, a lot remains to be understood in regard to the exact 

mechanisms that the beta cells undergo during these events. Insulin secretion by the beta cell 

occurs in a biphasic fashion; with the first phase burst occurring within 5-10 minutes of glucose 

ingestion, with the release of insulin from the granules docked at the membrane, followed by a 

steady second phase, which involves the mobilization of the insulin granules from the reserve 

pool in the cell towards the plasma membrane for exocytosis [6]. Insulin release is considered 

as a direct measure of beta cell function and any impairment in either phase of insulin secretion, 

chiefly the first phase, may be the earliest evidence of an individual’s progression towards 

T2DM.  Assessment of insulin secretion as a function for beta cell performance is most 

commonly done by measurement of fasting plasma insulin concentrations, HOMA-B index 

[fasting insulin to fasting glucose ratios], plasma C-peptide concentrations, acute insulin 

response [7, 8]. Insulin resistance is manifested by impairment in uptake of glucose by the 

insulin sensitive tissues [muscle and adipose] and could be a result of genetic and 

environmental factors, diet-induced obesity, inflammatory cytokines or cellular stress signaling.  

There has been considerable deliberation over the specific contribution of beta cell failure and 

insulin resistance and sequence of occurrence of either of these events towards the progression 

of T2DM.  However, the two events are not mutually exclusive and there exists a feedback 

communication between them [7]. The beta cell tries to play a compensatory role under 

conditions of insulin resistance, and as T2DM progresses the exhausted beta cell is unable to 
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cope with the increasing metabolic demands, culminating in beta cell dysfunction/damage. 

Therefore, most of the therapeutic modalities for T2DM involve treatments to improve insulin 

resistance and/or beta cell survival and function. 

 

Figure 1-3: Pathogenesis of T2DM. [http://t2ddb.ibab.ac.in/t2ddb_desc.shtml]  

Genetic Factors Environmental Factors

Poor diet, sedentary lifestyle, obesityPrimary beta‐cell defects

Impaired insulin secretion Peripheral tissue insulin resistance

Inadequate glucose utilization

Hyperglycemia

Beta‐cell dysfunction/damage

Type‐2 diabetes

Insulin deficiency
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Animal models of T2DM 

Generally, animal models of T2DM display obesity and manifest insulin resistance 

and/or beta cell dysfunction. Table 1-2 enlists the most common animal models used in T2DM 

research along with the method of induction and basic features [9, 10 and 11]. 

Model T2DM induction method Features 

Lep ob/ob mice 

[Obese] 

 

Spontaneous mutation in ob 

gene coding for the protein leptin 

Leptin deficiency 

Exhibit rapid weight gain ~2 

weeks 

Obesity induced hyperglycemia 

Develop hyperinsulinemia and 

insulin resistance in 3-4 weeks 

Lepr db/db mice 

[Obese] 

 

Autosomal recessive mutation in 

Leptin receptor gene- Lepr  

Leptin receptor deficient 

Hyperinsulinemia and insulin 

resistant [~2 weeks] 

Obesity [~3-4 weeks]  

Hyperglycemia [~4-8 weeks] due 

to beta cell failure 

Short life span 
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Zucker Diabetic 

Fatty [ZDF] rat 

[Obese] 

 

Point mutation in Leptin receptor 

gene- Lepr  

Obesity  [~4 weeks]induced 

hyperglycemia [~7 weeks] 

Hyperinsulinemia followed by 

decrease in insulin levels 

Diabetes develops at  ~8-10 

weeks 

Kuo Kondo [KK] 

mice  

Mildly obese  polygenic model of 

T2DM and obesity 

Obesity induced hyperglycemia 

Severe hyperinsulinemia and 

insulin resistance in muscle and 

adipose tissue 

High fat feeding 

[C57BL/6] mice 

Diet/Nutrition induced obesity Obesity induced hyperglycemia 

Hyperinsulinemia 

Weight gain linked to insulin 

resistance 

Glucose intolerance due to beta 

cell insufficiency 

Goto-Kakizaki [GK] 

rat 

Non-obese Defective glucose induced insulin 

secretion 
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Hyperglycemia caused by loss of 

beta cell function   

Akita mice 

[Ins2Akita]  

Mutation in insulin gene-

Ins2,causing misfolding of insulin 

in the ER resulting in beta cell 

damage/death  

Pancreatic beta cell damage due 

to ER stress 

Table 1-2: Key features of most common animal models of T2DM 

Nuclear lamins 

 The nucleus of a cell is surrounded by a protective bilayer; comprised of the inner 

nuclear membrane [INM] and the outer nuclear membrane [ONM], which are collectively called 

the nuclear envelope [NE]. The globular form of the nucleus is held together by a network of 

filaments on the inner surface of the INM that provide mechanical support and maintain nuclear 

integrity [12]. This network of filaments is known as the nuclear lamina and the major proteins of 

the lamina are the nuclear lamins which are type V intermediate filaments [IF]. The lamin protein 

network in the nucleus is situated on the inner [nucleoplasm facing] side of the INM, in close 

proximity to the outer fringes of chromatin [13]. In addition to being important elements of the 

nuclear architecture, the nuclear lamins play an essential role in critical functions of the nucleus, 

such as nucleoplasmic organization of chromatin, DNA replication and damage repair [14, 15, 

and 16].  

 The lamin protein family is classified on the basis of the gene responsible for encoding of 

that particular lamin. Therefore, in humans, lamin A and C which are formed by alternative 
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splicing of the gene LMNA are placed in the same class [Type A] along with scarce isoforms, 

A∆10 and C2, whereas lamin B1 and B2/B3, which are encoded by the genes LMNB1 and 

LMNB2 respectively, are Type B lamins. Type A lamins are expressed in differentiated cells, 

have neutral isoelectric points whereas, at least one of the type B lamins is expressed in every 

cell irrespective of differentiation status, have acidic isoelectric points, and during mitosis tend to 

remain associated with the nuclear membrane [17-19].  

 Depicted in Figure 1-4 is the biochemical structure of the lamins proteins. All lamins 

have the typical structure of IF proteins, with a central α-helical “rod domain” having a non-α-

helical N-terminal ‘‘head’’ and C-terminal ‘‘tail’ [called as immunoglobulin, Ig-like β-fold domain] 

on either ends. A nuclear localization sequence [NLS] segment, which facilitates nuclear 

targeting of lamins, consists of a lysine residue, followed by three other basic residues [K or R]; 

and lies in between the central rod domain and Ig-like β fold. Furthermore, all lamins except 

mammalian and drosophila lamin C [Figure 1-4] possess a C-terminal Ras-like CAAX-box motif 

composed of a cysteine [C], two aliphatic amino acid residues [AA], and any amino acid residue 

[X], and are subjected to a complex series of post-translational modifications, including 

prenylation [incorporation of C15 or C20 carbon metabolites derived from the cholesterol 

biosynthesis pathway], proteolytic cleaving and carboxylmethylation [20].  
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Figure 1-4: Protein structure of lamins. [Modified from Burke et al., Ref. 21] 
 
Functions of nuclear lamina in cellular physiology and nuclear processes: 

1) Mechanical Support:  

 A number of early studies have described lamins as structures comparable to IFs which 

are insoluble in non ionic detergents [22-24]. Further studies involving mutational analyses of 

nuclear lamina proteins [lamins A, C and B1] by Lammerding and associates demonstrated a 

decrease in nuclear rigidity in cells devoid of lamins A and C exhibiting frailty of the nucleus, 

A C

B

B1 B2

LMNA gene 
(alternative splicing  )

LMNB1 
gene

LMNB2 
gene

586/620Central Rod Domain NLS IG like -foldHead Domain
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which leads to increased cell death induced by mechanical stress. Lamin B1-deficient cells 

however, did not display aberrant nuclear mechanics, even though appearance of nuclear blebs 

increased significantly [25]. Another rheological study conducted on lamin B 1 filaments 

demonstrates that these filaments exhibit tough elasticity when exposed to shear stress and the 

disintegration of the nuclear envelope would entail mechanical stress as well as biochemical 

alterations of lamin B1 [26]. These studies highlight the importance of lamins A and C in 

maintaining the mechanical stiffness of nuclei, and lamin B1 towards preserving nuclear 

integrity. 

2) Chromatin Organization: 

 At the molecular level, lamins bind to regions of the chromatin via chromatin binding 

proteins or by direct interaction. It has been shown that lamins form attachments with histones, 

DNA and chromatin-associated protein apart from directly associating with Lamin B receptors 

[LBR]. An earlier study conducted by Taniura and colleagues has identified chromatin binding 

sites on the tail region of lamins C, B1 and B2 [27]. The transcriptionally silent heterochromatin 

is localized near the periphery of nuclei of most cells and lamins mediate the attachment of 

chromatin to the nuclear envelope. Studies conducted in LMNA knockout mice have shown that 

localization of the heterochromatin is completely lost from the nuclear periphery especially in 

fibroblasts and myocytes [28, 29]. Similar phenotypical abnormalities have been noted in 

fibroblasts of patients with Hutchinson–Gilford progeria syndrome [HGPS] — a clinical disorder 

caused by mutations in the LMNA gene [30].  
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3) DNA replication: 

 An increasing body of evidence suggests that lamins play a key role in regulating the 

complex DNA replication process. One such study by Moir et al. demonstrated, in 3T3 cells 

exposed to BrDU and stained with proliferating cell nuclear antigen [PCNA], that lamin B1 

localizes at the replication foci with BrDU and the replication factor PCNA in replication sites 

during “S phase”, suggesting the potential role of lamins in replication [31]. Most of the evidence 

showing the association of lamin and replication process is based on studies carried out in vitro 

in Xenopus egg interphase nuclei extracts. Xenopus eggs when immunodepleted with XLB3, a 

major lamin in this species, or when transfected with a dominant-negative N-terminally deleted 

mutant of lamin B1, exhibited a reduction in DNA replication [32-34]. Evidence for the 

importance of lamins in transcription is shown in studies with N-terminally deleted lamins, which 

disrupts the head-to-tail assembly of lamin dimers and the subsequent formation of lamin 

filament structures. This N-terminally deleted mutant of lamins, when inserted in Xenopus 

embryos, bring about dissociation of the lamina which then leads to a decrease in RNA 

polymerase II activity, which is directly involved in the process of transcription [35].  

Processing of pre-lamins for the formation of mature lamin filaments 

Post-Translational Modification  

 Post translational modifications [PTMs] are a series of steps implicated in the priming and 

processing of proteins and play a vital role in enhancing the functional range of the protein. 

They involve covalent addition of certain functional groups [phosphorylation, methylation, 

prenylation etc.], enzymatic cleavage of regulatory subunits or degradation of entire proteins 

[ubiquitination] and influence major facets of cell physiology and pathology. Identifying and 

understanding PTMs is critical in the study of cell biology and disease preclusion and therapy.  
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Figure 1-5: PTM steps involved in processing of nuclear lamins. [Modified from Burke et al., Ref. 

21] 

 Small molecular weight G-proteins, the ϒ subunits of trimeric G-proteins and nuclear 

lamins which possess the unique C-terminal amino acid sequences “CAAX motif” are ideal 

candidates for PTMs and serve as targets for isoprenylation and carboxymethylation. 

Isoprenylation is the enzyme-mediated addition of either 15 carbon farnesyl group or 20 carbon 

geranylgeranyl group at the C-terminal cysteine of the protein [36, 37].  
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 Lamins A, B1 and B2, which are initially translated in the form of pre-lamins, possess the 

C-terminal CAAX motif which marks the proteins for farnesylation of the cysteine residue [21]. 

Lamins require additional PTMs at CAAX box in order to be converted to their mature form. 

Soon after their synthesis, lamins are subjected to a multistep PTM process, in the following 

order: initial farnesylation by the enzyme farnesyltransferase [FTase], endoproteolytic cleavage 

of C-terminal -AAX amino acids by Ras converting enzyme 1 [Rce-1] or Zinc metallopeptidase 

[ZMPSTE24] and finally carboxymethylation by isoprenylcysteine carboxyl methyltransferase 

[ICMT] [38, 39]. B type lamins are permanently farnesylated and carboxymethylated while 

prelamin A undergoes an additional step of removal of 15 amino acids at the C-terminal by 

ZMPSTE24 to generate mature lamin A which lacks the modifications at the C-terminal. This 

step is unique to lamin A. Lamin C on the other hand, does not possess the CAAX motif and 

hence is not farnesylated or modified [21, 39, and 40].  

 Farnesylation:  

  The major purpose of these lipid post-translational modifications of lamins is directing 

them towards the membrane for protein-membrane interactions or protein-protein interactions 

for nuclear envelope assembly, which begins with the insertion of a 15 carbon farnesyl group at 

the C-terminal cysteine and is an irreversible modification [36]. Farnesyl pyrophosphate is a 

metabolite derived during the synthesis of cholesterol from mevalonate. The presence of CAAX 

motif at C-terminal of lamins marks them as target proteins for FTase-catalyzed farnesylation. 

FTase incorporates this 15 carbon derivative of mevalonate into the C-terminal cysteine residue 

which has been shown to increase the hydrophobicity of the proteins and results in membrane 

targeting [20]. A recent study by Jung and colleagues has highlighted the role of farnesylation of 

lamin B in neuronal development. They have developed knock-in mice expressing non-

farnesylated versions of lamin B1 and lamin B2. In this study, the non-farnesylated lamin B1 
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expressing mice died due to neuronal abnormalities since the chromatin could not be retained 

within the nuclear lamina during the process of neuronal migration [41]. 

 Endoproteolytic cleavage: 

 Endoproteolytic cleavage involves the shortening of the C-terminal by severing the last 3 

amino acids of the CAAX motif by either Rce-1 or ZMPSTE24, and the subsequent removal of 

the last 15 amino acids by ZMPSTE24 in the case of prelamin A producing mature lamin A [42]. 

Rce-1 is a type II CAAX prenyl endopeptidase with a wide specificity, processing all 

farnesylated and geranylgeranylated CAAX proteins while ZMPSTE24 is a type I CAAX 

processing enzyme and has a specific role in processing of prelamin A [43, 44]. These are 

integral membrane proteins that reside in the ER and INM. Recently, Manolaridis and 

associates have reported the crystal structure of an Rce-1 homologue from Methanococcus 

maripaludis, which has specificity for farnesylated peptides similar to that shown by eukaryotic 

Rce-1 [38].  

 Carboxymethylation: 

 The next step in the PTM of lamins is the addition of carboxymethyl group to farnesyl 

cysteine of CAAX box by ICMT, a prenyl-protein specific methyltransferase of the ER. Initial 

studies from our laboratory have characterized the carboxylmethylation of lamin by vapor phase 

equilibration assay using either [3H] S-adenosyl methionine in cell lysates or [3H]-methionine in 

intact cells. The initial observation characterized a protein in the molecular range of 65-70 kDa 

was carboxymethylated. Further, studies were carried out by immunoprecipitating the lysates or 

intact beta cells after incubating with [3H] S-adenosyl methionine or [3H]-methionine using anti-

lamin B antibody suggested that the methylated protein was lamin B [45].  



18 

 

 

 

 Although farnesylation of lamins is involved in increasing their hydrophobicity and driving 

them towards the nuclear membrane, both endoproteolytic cleavage and carboxymethylation 

play an essential role in the proper formation of the nuclear lamina as shown in a recent study 

by Maske et al. They have demonstrated that absence of endoproteolysis or carboxymethylation 

in the C-terminal of lamins would lead to distorted nuclear lamina [46]. 

 B type lamins are permanently farnesylated and carboxymethylated while prelamin A 

undergoes an additional endoproteolytic cleavage step and finally converts into mature lamin A 

[21]. Recently we have also shown in INS-1 832/13 cells that ICMT produces an increase in 

activity of a small molecular weight GTP binding protein, Rac1, which is essential for the 

assembly of NOX2. NOX2 holoenzyme assembly mediates the production of reactive oxygen 

species [ROS], which is necessary for GSIS [47].  

Nuclear lamina assembly and disassembly  

 Nuclear lamina assembly is a dynamic process that begins after the sister chromatids are 

formed during anaphase and in final stages of mitosis, especially telophase. The nuclear 

envelope [NE] and its associated structures start to reassemble around the separated sister 

chromosomes to form functional daughter nuclei. Nuclear reassembly is characterized at 

molecular level based on a tightly regulated sequence of protein interactions, which occur in the 

following order: [i] targeting of individual nucleoskeletal proteins to the chromosomal surface, [ii] 

membrane recruitment and fusion, [iii] assembly of nuclear pore complexes [NPCs], [iv] 

transport of the bulk of lamins into the nucleus through newly formed NPCs, and [v] formation of 

the nuclear lamina and, at the early G1 phase, the chromatin becomes fully enclosed by an 

intact NE. As the nucleus enlarges by import of nuclear proteins through NPCs, the NE expands 

and the chromatin becomes fully de-condensed. Being intermediate filament proteins, lamins 



19 

 

 

 

assemble together to form the nuclear lamina meshwork that remains connected during 

interphase, but disassembles during mitosis [48, 49]. 

 

Figure 1-6: Assembly and disassembly of the nuclear lamina. [Modified from Davidson et al. 
Ref. 50 and THE CELL, Third Edition Ref. 51]. 
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 Lamins [both A and B type] can self assemble into parallel coiled homodimers  and 

further associate to form head-to-tail molecular strings that are formed by electrostatic 

interactions between the overlapping ends of successive coiled-coil domains.  In the initial stage 

of lamina organization, two individual lamin monomers associate by winding around each other 

to form parallel coiled-coil structures. The structure of the central α-helical rod domain facilitates 

this dimer formation with the C-termini projecting out as globular heads. In conditions that favor 

lamina assembly, the dimers connect to form polymers by forming longitudinal head-to-tail links. 

These polymers subsequently form filaments by lateral association and finally emerge as 

paracrystals [52, 53].  

 Nuclear lamina disassembly occurs during mitosis as well as during apoptosis with 

several biochemical similarities in lamin filament dissociation occurring during both these 

processes [54, 55]. A key feature of apoptosis is reduction in nuclear size and chromatin 

condensation followed by chromatin fragmentation; during this process lamin proteins are 

cleaved by the cysteine-dependent aspartate-directed proteases, namely; caspases [56]; and 

this has been proposed as the main mechanism for lamina disassembly. For this to happen, 

prior phosphorylation by lamin kinases [e.g., protein kinases] is essential for the relaxation of 

lamin proteins for the access of caspases, followed by lamin disassembly. Activation of lamin 

kinases [protein kinase C-δ and protein Kinase C-βII] requires prior cleavage of the 

holoenzyme, to release C-terminal catalytic domain, by caspases [57, 58]. Recently, Cross et 

al. demonstrated that protein kinase C-δ gets activated by caspase 3, and translocates to the 

nuclear compartment and colocalizes with lamin B during apoptosis and inhibition of PKC-δ 

delayed caspase 3-mediated proteolysis of lamin B [59].  Furthermore, Eitel and associates 

have reported that kinase-negative PKC-δ mutant decreased free fatty acid-induced lamin B 

disassembly and cell death in pancreatic beta cells [60]. The nuclear lamins were one of the 

first proteins identified as caspase targets. The aspartic acid 230 of lamin A located [61] in the 
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2B region of the central rod domain, a highly conserved region in all known IF proteins is critical 

for polymerization and is recognized as caspase cleavage site. Each caspase has a distinct 

type of lamin as a substrate, which possesses a unique recognition sequence for the protease, 

despite the fact that the aspartic acid 230 residue is the target site for caspase cleavage in 

human lamins A and B1. Rao and colleagues have demonstrated that HeLa cells which are 

transfected with caspase-uncleavable mutants of lamins, displayed an impediment in the 

advancement of shrinkage process of the nucleus, and a slowdown in chromatin condensation 

and cell death [62].  

Diseases due to genetic mutations and improper processing of lamins 

  Most of the disease related mutations in lamins originate in the LMNA gene [e.g., 

Emery-Dreifuss muscular dystrophy, dilated cardiomyopathy, Hutchinson-Gilford Progeria 

Syndrome etc.] along with few others [Adult onset autosomal dominant leukodystrophy and 

Pelger-Huet anomaly], occurring due to mutations in the lamin B1 [LMNB1] gene and lamin B 

receptor [LBR] gene [63]. Enlisted in the table below are some of the major disorders 

associated with lamin protein family [also called ‘laminopathies’], the mutated genes and the 

phenotypical characteristics of the diseases [64-79]. 

Disease Lamin involved Mutation gene Clinical Phenotype 

Emery-Dreifuss 

Muscular 

Dystrophy 

Lamin A/C LMNA  Affects mainly skeletal and 

cardiac muscles 

 Phenotypical signs appear by 
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age 10 

 Joint deformities [contractures] 

at elbows and Achille’s tendon 

 Rigidity in spine and neck 

 Increasing muscle weakness 

and wasting 

 Most patients have cardiac 

complications by adulthood  

Restrictive 

Dermopathy 

Accumulation of 

farnesylated 

prelamin A 

ZMPSTE24  Lethal congenital skin condition 

 Intrauterine growth retardation 

 Tightening/rigidity of skin 

[especially of face and around 

the mouth] 

 Respiratory insufficiency 

 Most infants do not live long due 

to pulmonary problems 

Hutchinson-

Gilford Progeria 

Lamin A 

[accumulation of 

LMNA  Physical appearance is normal 

at birth 
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Syndrome. 

 

aberrant form of 

prelamin A 

‘progerin’] 

 Premature and accelerated 

aging 

 Reduction/absence of 

subcutaneous fat 

 Alopecia 

 Hearing loss 

 Most do not live beyond 13-14 

yrs 

 Death usually occurs due to 

cardiovascular diseases 

Dunnigan-type 

familial partial 

lipodystrophy 

[FPLD]  

Lamin A/C LMNA  Phenotypical appearance of the 

disease occurs during 

adolescence  

 Progressive loss of fat from 

limbs and trunk 

 Glucose intolerance 

 Hyperinsulinemia 

 Insulin resistance 
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  T2DM 

Adult Onset 

autosomal 

dominant 

leukodystrophy 

Lamin B1 

[Increased 

expression] 

LMNB1  Phenotype is similar to chronic 

progressive multiple sclerosis 

 Progressive neurological 

disorder 

 Autonomic dysfunction, e.g., low 

blood pressure, incontinence, 

blurred vision 

Charcot-Marie 

tooth disease, 

axonal Type 2B1 

Lamin A/C LMNA  Symptoms begin in late 

childhood/early adulthood  

 Progressive loss of muscle 

tissue and sensation 

 Mild sensory loss 

 Wasting and weakness of lower 

limbs 

Pelger-Huet 

anomaly 

Lamin B receptor LBR  Benign blood disorder 

[hyposegmentation of nucleus of 

WBCs/neutrophils] 
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 Mild skeletal malformation 

Dilated 

Cardiomyopathy 

Lamin A/C LMNA  Affects mainly cardiac muscle, 

skeletal muscle is minimally 

affected 

 Progressive ventricular dilation 

 Impaired systolic function 

 Pulmonary edema 

 

Table 1-3: Clinical features of laminopathies.  

Nuclear Lamins in beta cell and T2DM 

Beta cell damage is characterized by specific changes in the morphology of the cell. The 

cell undergoes shrinkage, blebbing [bulges in the plasma membrane], nuclear fragmentation 

and chromatin condensation. Degradation of lamins leads to the breakdown of nuclear lamina 

which is a preliminary stage of apoptosis as this is followed by DNA degradation and chromatin 

condensation [80].  It is well established that beta cell dysfunction and failure are characteristic 

features of Type 1 and 2 diabetes. Therefore, it is necessary to study the intracellular events 

that the pancreatic beta cell undergoes, and understanding of such events will aid in searching 

for a possible drug target for the management and/or prevention of the disease. So far, not 

much is known regarding the role of lamins in the etiology of diabetes, apart from some 

genome-wide association studies [GWAS]. GWAS typically focus on associations between 
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single-nucleotide polymorphisms [SNPs] and major diseases by comparing the genetic 

materials from normal and diseased state individuals. LMNA gene mutations are responsible for 

multiple clinically relevant disorders, such as Dunnigan-type familial partial lipodystrophy 

[FPLD]. Individuals with this disease display a characteristic loss of subcutaneous fat, insulin 

resistance, glucose intolerance, hypertension in addition to other phenotypical changes 

observed in metabolic syndrome. Hegele and associates were the first research group to 

discover that a cause of Dunnigan-type lipodystrophy, a body fat disorder which leads to 

diabetes, is mutation in LMNA gene in the chromosome 1q21.22 [81]. 

Role of caspases in nuclear lamin degradation  

The caspase family is one of the most important factors in the apoptotic pathway. Many 

proteins in the cell, including a large number of structural proteins, are cleaved by activated 

caspases which culminates in apoptosis of the cell. The caspase 8, 9 and 10 are initiator 

caspases whereas caspase 3, 6 and 7 are effector caspases. The initiator caspases cleave and 

activate the effector caspases leading to cell death [82]. These caspases exist in the form of 

inactive zymogens [also referred to as pro-caspases], which are activated by the process of 

cleavage by other upstream proteases or by auto- or trans-activation [83]. In the recent years a 

variety of substrates of caspases have been recognized [e.g., PARP, PKC-δ, nuclear lamins]. 

Caspase-dependent degradation of nuclear lamins has been identified as a precursor to nuclear 

lamina disassembly [56].  
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Glucotoxicity and the beta cell 

Figure 1-7: Acute and chronic effects of various glucose concentrations on the beta cell. 
[Modified from Bensallem et al. 2012, Ref. 84] 

A constant glucose overload on the beta cell causes reduced expression of Glut2, 

preproinsulin, Pdx-1, diminished glucose sensitivity and impairment in its basic function of 

insulin secretion and eventually beta cell damage [84, 85]. Figure 1-8 shows the effect of 

glucotoxicity on beta cell function and survival. Several intracellular signaling events have been 

identified as causal to high glucose-induced metabolic dysregulation of the islet. The most 

commonly studied are endoplasmic reticulum [ER] and oxidative stress. It has been suggested 

that both oxidative and ER stress lead to mitochondrial dysfunction, cytochrome C release, and 

caspase activation [86]. Recently, a multifunctional sorting protein, PACS-2 [phosphor-acidic 

cluster sorting protein 2], which controls the ER-mitochondria axis has been identified [87]. 

Despite this growing body of evidence, very little is known in the context of the islet beta cells on 

potential detrimental effects of glucotoxic conditions on ER, mitochondria, caspase activation 

and associated degradation of their respective substrate proteins. 
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On the basis of the above literature review, the central objective of my thesis work is to 

study the mechanisms involved in beta cell dysfunction in diabetes and to elucidate the role of 

ER-mitochondrial axis in initiating the activation of executioner caspases which leads to nuclear 

lamina disassembly in insulin-secreting INS-1 832/13 cells exposed to acute and/or long-term 

incubation conditions. In addition, I propose to extend these in vitro studies to islets obtained 

from animal models of obesity and T2DM [e.g., Zucker Diabetic Fatty - ZDF rat]. 

Based on this objective, I proposed to test the hypotheses that: [i] Exposure of 

pancreatic beta cells to glucotoxic conditions induces ER stress which causes caspase-

mediated lamin A & B degradation culminating in beta cell dysfunction; [ii] cross-talk between 

ER and mitochondria cause mitochondrial dysfunction leading to caspase activation and lamin 

degradation; and [iii] ER stress inhibitors and calcium channel blockers protect the pancreatic 

beta cell from glucotoxicity. A simplified working model based on these hypotheses has been 

depicted in Figure 1-8. 

I worked towards testing these hypotheses by conducting experiments under the following three 

Specific Aims: 

Specific Aim 1: To study the effect of glucotoxicity induced ER stress on pancreatic beta cells. 

Specific Aim 2: To establish a role of ER-mitochondrial communication in beta cell 

dysfunction/death and to determine the effects ER stress inhibitors and calcium channel 

blockers on pancreatic beta cells. 

Specific Aim 3: To investigate potential abnormalities involved in ER stress and mitochondrial 

dysfunction in animal models of impaired insulin secretion, obesity and diabetes. 
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 Specific Aim 4: To study the consequences of inhibition of requisite post translational 

prenylation of lamins on the pancreatic beta cell. 

 

Figure 1-8: Proposed working model for ER-stress induced, caspase-mediated degradation of 
nuclear lamins under glucotoxic conditions in pancreatic beta cells. We propose that exposure 
of insulin-secreting cells to high glucose leads to increased ER stress leading to mitochondrial 
dysfunction [86, 87]. As a consequence, cytosolic caspase 3 and 6 are activated by the 
released cytochrome C from the dysregulated mitochondria. Activation of caspases leads to 
degradation of lamin A and B culminating in nuclear damage and altered distribution of 
degraded lamins into various subcellular compartments, leading to nuclear lamina disassembly. 
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CHAPTER 2 

MATERIALS AND METHODS 

2.1 Materials 

Chemicals: Glucose, nifedipine, thapsigargin, 4-phenylbutyric acid, simvastatin, triton X-

114 were obtained from Sigma Aldrich [St. Louis, MO]. Inhibitors of caspase 3 [Z-DEVD-FMK] 

and caspase 6 [Z-VEID-FMK] were from Enzo Lifesciences [Farmingdale, NY]. FTI-277 was 

purchased from Tocris Biosciences [Minneapolis, MN]. GGTI-2147 was obtained from 

Calbiochem-EMD Millipore [Billerica, MA] and Rottlerin was procured from Cayman Chemical 

Company [Ann Arbor, MI].  

Antibodies: Antisera directed against lamin A, caspase 3, cleaved caspase 3, cleaved 

caspase 6, CHOP, phospho-p44/42 ERK1/2 [Thr202/Tyr204] and total p44/42 ERK1/2 were 

obtained from Cell Signaling [Danvers, MA]. Antibody for lamin B, phospho-p38MAPK and total-

p38MAPK was from Santa Cruz Biotechnology [Santa Cruz, CA]. Antibody for ZMPSTE24 was 

procured from Abcam [Cambridge, MA]. Anti-β actin was purchased from Sigma Aldrich [St. 

Louis, MO]. Anti-mouse IgG and Anti-rabbit IgG conjugated to horseradish peroxidase were 

from GE Healthcare [UK]. Anti-goat IgG conjugated to horseradish peroxidase was obtained 

from Santa Cruz Biotechnology [Santa Cruz, CA]. 

Assay kits: ELISA kit [Rat insulin] was procured from American Laboratory Products Co 

[Windham, NH]. Metabolic cell viability assay kit [MTT] was purchased from Sigma Aldrich [St. 

Louis, MO]. ProteoExtract - Subcellular Proteome Extraction Kit was obtained from EMD 

Millipore [Billerica, MA]. 
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Animals: Male Sprague-Dawley rats were purchased from Harlan Laboratories [Oxford, 

MI]. Male Zucker Diabetic fatty [ZDF] and Zucker Lean Control [ZLC] rats were obtained from 

Charles River Laboratories [Wilmington, MA]. All animals were maintained in a 12 hrs light/dark 

cycle with free access to water and food. The ZDF and ZLC rats were fed the Purina Diet 5008. 

Blood glucose was measured by tail vein puncture using Freestyle lite glucometer [Abott 

Diabetes Care, Inc., Alameda, CA]. 

2.2 INS-1 832/13 cells, rat islets and human islets: Culture conditions 

 INS-1 832/13 cells: INS-1 832/13 cells were kindly made available by Dr. Chris 

Newgard, Duke University Medical Center, Durham, NC. The cells were cultured and 

maintained in RPMI-1640 medium prepared with 10% heat inactivated Fetal Bovine Serum 

[FBS]. The medium was supplemented with antibiotics [100 IU/ml penicillin and streptomycin], 

10 mM HEPES, 1mM sodium pyruvate and 50 μM 2-mercaptoethanol [pH 7.4]. Passages 53-61 

were used for the studies. Cells were exposed to low and high glucose [2.5 and 20 mM] or 

simvastatin/FTI-277/GGTI-2147 for time periods ranging from 0-48 hrs as indicated in each 

study. For the studies involving pharmacological inhibitors, cells were pre-incubated with the 

compounds for either 1 or 12 hrs as indicated for each study, and then further treated with low 

and high glucose in the continuous presence or absence of inhibitors. At the end of the 

incubation period, the cells were harvested and lysed in radio immunoprecipitation assay [RIPA] 

buffer containing protease inhibitor cocktail, 1 mM NaF, 1 mM PMSF and 1 mM Na3VO4.  

Isolation of islets: All animal protocols were utilized after prior assessment and 

obtaining consent of the Institutional Animal Care and Use Committee at Wayne State 

University. Islets from normal 6-8 week-old male Sprague–Dawley rats were isolated by the 

collagenase digestion method, wherein collagenase was injected into the common bile duct of 
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the euthanized animal. The pancreata were then excised and digested at 37°C followed by 

density gradient purification using Histopaque 1077, in order to separate out islets from 

pancreatic acinar tissue. After isolation, islets were cultured overnight in RPMI-1640 medium 

containing 10% heat-inactivated FBS supplemented with 100 IU/ ml penicillin and 100 IU/ml 

streptomycin, 1 mM sodium pyruvate and 10 mM HEPES [pH 7.4] and further incubated in the 

low [2.5 mM] and high glucose [20 mM].  At the end of the incubation islets were harvested and 

lysed in RIPA buffer.  

Human islets: Human islets [~90-95% purity] from two normal [38-year-old female and 

64-year-old male] and one diabetic [44-year-old male] donors and islet culture medium were 

procured from Prodo Laboratories, Inc. [Irvine, CA].  Following incubations in the presence of 

low [5.8 mM] or high [30 mM] glucose, normal human islets and T2D human islets were 

homogenized in RIPA buffer and used for Western blotting. 

2.3 Isolation of subcellular fractions 

 Extraction of cytosolic, membrane/organelle and nucleic protein fraction was carried out as 

per the manufacturer’s instructions using the ProteoExtract® Subcellular Proteome Extraction Kit. 

INS-1 832/13 cells were exposed to low and high glucose for 24 hrs. The cells were scraped and 

suspended in wash buffer and pelleted by centrifugation for 10 min at 200 g at 4°C. The pellet 

obtained was then resuspended in the extraction buffer-I and protease inhibitor cocktail provided in 

the kit. After incubation for 10 min at 4°C the cells were centrifuged for 10 min at 750 g, the 

supernatant obtained was the cytosolic fraction. The pellet was then resuspended in Extraction 

buffer-II and protease inhibitor cocktail and incubated for 30 min and then centrifuged for 10 min at 

5500 g. The supernatant thus obtained was the membrane/organelle fraction. Finally the pellet was 

resuspended in extraction buffer-III, protease inhibitor cocktail and benzonase, incubated for 10 min 
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at 4°C and centrifuged at 6800 g for 10 min. The supernatant obtained was the nucleic protein 

fraction.  

2.4 Subcellular phase partitioning using Triton X-114 

 INS-1 832/13 cells were incubated overnight in low glucose and 2.5% FBS and FTI-277 

[10 µM]. Cells were then treated with media containing low glucose [2.5 mM] in the absence and 

presence of FTI-277 [10 µM] for 24 hrs. Cell lysates were homogenized in a homogenization 

buffer [20 mM Tris-HCl, pH 7.5, 0.5 mM EGTA, 2 mM MgCl2 and protease inhibitor cocktail] and 

subjected to a single-step centrifugation at 100,000g for 60 min at 4°C in order to separate the 

cytosol [supernatant] and the membrane [pellet] fractions. The membrane fraction was then 

subjected to phase partitioning using Triton X-114, a non-ionic detergent. Triton X-114 exists as 

a homogenous solution at 0°C; however, as the temperature rises upto 20°C, it splits into 

aqueous and detergent phases. This property is taken advantage of during phase partitioning, 

by overlaying the sample on a 6% sucrose cushion containing 150 mM NaCl, 0.06% Triton X-

114 in 10 mM Tris-Hcl buffer [pH 7.4] and centrifugation at 300g for 3 minutes at room 

temperature; wherein, the hydrophilic proteins emerge in the aqueous phase while the 

amphiphilic, integral membrane proteins are found in the detergent phase [88].  

2.5 Akita cells 

 Akita cell line was provided by Prof. Sasanka Ramanadham, University of Alabama, 

Birmingham, AL. Akita and wild type cells were maintained in DMEM medium prepared with 

17.5% heat-inactivated FBS, with antibiotic preparation [100 IU/ml penicillin and streptomycin] 

and 2-mercaptoethanol. The cultured cells were harvested and lysed in RIPA buffer containing 

protease inhibitor cocktail, 1 mM NaF, 1 mM PMSF and 1 mM Na3VO4. 
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2.6 Western Blotting 

 Cell lysate proteins [30-50 µg loaded per lane] were subjected to SDS-Polyacrylamide 

gel electrophoresis and electro transferred onto a nitrocellulose membrane. The membranes 

were blocked with 5% non-fat dry milk in 10 mM Tris–HCl, pH 7.6, 1.5 M NaCl and 0.1% Tween 

20 [TBS-T] followed  by incubation with primary antibodies in TBS-T containing 5% BSA at room 

temperature for 1 hr and washed 5X for 5 min each with TBS-T. The membrane was then 

incubated with corresponding secondary antibodies conjugated to horseradish peroxidase 

[1:1000] in 5 % non-fat dry milk in TBS-T at room temperature for 1 hr. After washing the blots in 

TBS-T again, the signal for proteins on the blots was enhanced using 

electrochemiluminescence [ECL] and the images of the blots were developed using Kodak Pro 

Image 400 R [New Haven, CT]. To ensure uniform protein loading and efficient transfer onto the 

membrane, the blots were stripped and re-probed with antibody raised against β actin. Intensity 

of protein bands was quantified by using Carestream Molecular Imaging Software to measure 

the band density. Ratios of band densities of proteins of interest with β actin were calculated 

and expressed as fold change values. 

2.7 Measurement of lamin A and B degradation 

 Following treatment with low glucose [2.5 mM], high glucose [20 mM] or inhibitors [as 

indicated in the text], INS-1 832/13 cells, isolated rat or human islets were lysed in RIPA buffer 

supplemented with 1mM PMSF, 10 μg/mL leupeptin, 10 μg/mL aprotinin, 5 mM EGTA, 5 mM 

EDTA, 10 mM NaF and 1 mM sodium orthovanadate. The samples were clarified by incubating 

on ice for 15 min followed by centrifugation at 14000 rpm for 15 min. The supernatants were 

collected and subjected to a protein estimation assay using Pierce 660 nm protein assay 

reagent. Equal amounts of protein were loaded and separated by SDS-PAGE. Resolved 
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proteins were transferred onto nitrocellulose membrane and probed for lamin B or cleaved lamin 

A as indicated in text, followed by re-probing with β actin. Intensity of protein bands was 

quantified by using Carestream Molecular Imaging Software to measure the band density. 

Ratios of band densities of degraded lamin B and cleaved lamin A with β actin were calculated 

and expressed as fold change values in lamin A or B degradation. 

2.8 Activation of caspase 3 and 6 

 Cells treated with low and high glucose or other stimulants/inhibitors [as indicated in the 

text]. Lysate proteins were subjected to Western blotting. Activation of caspases was estimated 

by the appearance of the bands of cleaved [active] hydrolytic product at 17 and 18 kDa for 

caspase 3 and 6 respectively.  

2.9 Cell viability assay 

 INS-1 832/13 cells were cultured in 96-well plates and treated with low glucose [2.5 mM] 

in the absence or presence of Simvastatin or FTI-277 [10 µM]. After 24 hrs cell viability was 

assessed by using a colorimetric assay with MTT [tetrazolium salt] which measures the 

reduction of the tetrazolium salt into the purple formazan crystals at 570 nm. 

2.10 Insulin release studies 

 Insulin secretion experiments were performed in static incubation conditions. INS-1 

832/13 cells were incubated in the presence of low or high glucose. After 24 hrs, the cells were 

incubated with KRB buffer for 1 hr, prior to stimulation with low or high glucose for 45 min at 

37°C. Insulin secreted by the cells into the medium was detected and measured by ELISA.
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2.11 Cell morphology studies 

 Observation of cell morphology was carried out using an Olympus IX71 microscope. 

INS-1 832/13 cells, incubated overnight in RPMI containing low glucose and 2.5% FBS, were 

treated the following day with media containing low glucose [2.5 mM] alone and in the presence 

of diluent [DMSO], FTI-277 [10 µM] or Simvastatin [15 and 30 µM]. Changes in cell morphology 

were visualized by light microscopy after 24 hrs. 

2.12 Statistical analysis of experimental data 

 Data are represented as Mean ± SEM values. The statistical significance of the 

differences in values between the experimental conditions was established by either Student’s t-

test or ANOVA followed by SNK Post-Hoc test where appropriate.  P value < 0.05 was 

considered significant. 
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CHAPTER 3 

MITOCHONDRIAL DYSFUNCTION INDUCED BY GLUCOTOXIC AND DIABETIC 
CONDITIONS RESULTS IN CASPASE MEDIATED LAMIN DEGRADATION IN 

PANCREATIC BETA CELLS 

Portions of this work have been published [copies of the published manuscripts are appended] 
 
 Khadija S, Veluthakal R, Sidarala V, Kowluru A. Glucotoxic and diabetic conditions induce 

caspase 6-mediated degradation of nuclear lamin A in human islets, rodent islets and INS-1 

832/13 cells. Apoptosis. 2014; 19[12]:1691-701.  

 Syeda K, Mohammed AM, Arora DK, Kowluru A. Glucotoxic conditions induce endoplasmic 

reticulum stress to cause caspase 3 mediated lamin B degradation in pancreatic β-cells: 

protection by nifedipine. Biochem Pharmacol. 2013 1;86[9]:1338-46.  

 

The interior of the nuclear envelope is lined by the nuclear lamina which is composed of 

three proteins; lamins A, B and C. The A type lamins, which include lamins A and C, are 

products of alternative splicing of the same gene LMNA whereas lamin B is encoded by the 

LMNB1 gene [21]. These lamins are type V intermediate filament proteins and are lined up on 

the inner face of the inner nuclear membrane. The nuclear lamina is a fundamental part of major 

nuclear activities, namely mitosis, chromatin organization and in DNA replication. Lamins also 

play key functional roles in providing structural support, thereby contributing to the nuclear 

architecture [89]. Evidence in multiple cell types suggests significant alterations in nuclear 

structure and organization during apoptosis [62]. Some of these include accelerated 

degradation of nuclear lamins A, B and C by executioner caspases 3 and 6 leading to defective 

nuclear assembly and mistargeting of constituents of nuclear lamina to improper subcellular 

compartments [e.g., cytosol]. Degradation of lamins leads to the breakdown of nuclear lamina 
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which is a preliminary stage of apoptosis as this is followed by DNA degradation and chromatin 

condensation [80].  

Previous results from our laboratory indicated that IL-1β treatment causes an increase in 

lamin B degradation mediated by caspases [90]. In addition, a recent study highlighted the 

involvement of caspase 3 in the breakdown of the nuclear matrix by cleaving nuclear lamin B. It 

has been stated that this cleavage probably occurs by activation of caspase 3 directly or by 

other downstream proteases [91]. Recent evidence in PC12 and rat cortical cells also implicates 

cell apoptosis via caspase 3 activation and cleavage of lamin B under lipotoxic conditions 

induced by saturated fatty acids, such as palmitic acid [92].  

The overall objective of this study, therefore, is to investigate the role of caspases on the 

degradation of nuclear lamins, specifically lamin A and B in insulin secreting INS-1 832/13 cells, 

rodent and human islets under high glucose exposure. 

Exposure to glucotoxic conditions cause caspase 3-mediated degradation of lamin B in 

INS-1 832/13 cells 

At the outset, INS-1 832/13 cells were incubated with either low [2.5 mM] or high [20 

mM] glucose for 12, 24 and 48 hrs, and caspase 3 activation, as evidenced by the emergence 

of caspase 3 degradation fragment, was monitored by Western blotting, and the data were then 

quantified by densitometry. Data depicted in Figure 3-1 demonstrate a marked increase in 

caspase 3 activation as early as 12 hrs [1.8-fold; Panel A], which continued to increase as a 

function of time [2.2- and 2.6-fold increase at 24 and 48 hrs, respectively; Panels B and C]. 

Furthermore, we noticed a marked increase in the degradation of lamin B under these 

conditions [Figure 3-1]. For example the fold increase in lamin B degradation represented 1.6-

fold at 12 hrs [Panel A], 1.8-fold at 24 hrs [Panel B] and 2.3-fold at 48 hrs [Panel C]. Panels D 
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and E depict combined data from multiple experiments. Together, data in Figure 3-1 suggest 

activation of caspase 3 and degradation of lamin B under glucotoxic conditions. It should be 

noted that the observed effects of glucose on caspase 3 activation and lamin B degradation are 

not due to osmotic effects of glucose since incubation of these cells with mannitol [20 mM], used 

as an osmotic control, did not elicit any effects on caspase 3 activation and lamin B degradation 

under these conditions [n = 2 experiments; additional data not shown].  
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Figure 3-1: Exposure of INS-1 832/13 cells to glucotoxic conditions results in caspase 3 
activation and lamin B degradation. INS-1 832/13 cells were incubated in the presence of low 
[2.5 mM] or high [20 mM] glucose for 12 hrs [Panel A], 24 hrs [Panel B], and 48 hrs [Panel C], 
and protein lysates [~50 μg] were resolved by SDS-PAGE and transferred to a nitrocellulose 
membrane. Cleaved caspase 3 and lamin B antibodies were used to probe the membrane and 
immune complexes were identified using ECL. To ensure equal protein loading, the same 
membranes were reprobed with antisera against β-actin. Band-intensity of proteins was 
quantified by densitometry. T-test was used to measure the statistical significance of the 
differences in values between the control and experimental conditions. Data in Panel D and E 
represent mean ± SEM from three to four independent experiments and expressed as fold 
change in caspase 3 activation and lamin B degradation. *P < 0.05 vs. 2.5 mM glucose. 

Caspase 6 activation and cleavage of lamin A in INS-1 832/13 cells treated with high 

glucose 

Further, we wanted to examine if exposure of INS-1 832/13 cells to glucotoxic conditions 

would result in activation of caspase 6 and associated degradation of lamin A. Data in Figure 3-

2 [Panel A] represent a Western blot from one of these experiments, which indicates a 

significant increase in caspase 6 activity in high glucose-treated cells as evidenced by 

emergence of a cleaved 18 kDa biologically active peptide of caspase 6. Furthermore, we 

noticed a corresponding increase in the abundance of a 28 kDa lamin A degradation product in 

lysates derived from cells exposed to high glucose. Panels B and C depict data accumulated 

from multiple experiments.  
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Figure 3-2: Caspase 6 activation and lamin A cleavage in INS-1 832/13 cells treated with high 
glucose. INS-1 832/13 cells were incubated in the presence of low or high glucose for 24 hrs. 
Caspase 6 activation and lamin A cleavage were determined by Western blotting. Protein 
lysates [~40 µg] were loaded onto SDS-Polyacrylamide gels and transferred onto a 
nitrocellulose membrane. Antibodies against cleaved caspase 6 and cleaved lamin A were 
utilized to probe the membrane and immune complexes were identified using ECL detection kit 
[Panel A]. After stripping the membranes, they were re-probed with β-actin antibody to ensure 
uniform loading of proteins. Band-intensity of proteins was evaluated by densitometry. Data 
represent mean ± SEM from three independent experiments and expressed as fold change in 
caspase 6 [Panel B] and lamin A cleavage [Panel C]. *P < 0.05 vs. 2.5 mM glucose. 
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Chronic glucose exposure significantly impairs GSIS in INS-1 832/13 cells 

Several lines of evidence suggest that exposure of pancreatic beta cells to 

hyperglycemic conditions leads to the onset of metabolic stress, loss in glucose-stimulated 

insulin secretion [GSIS] and cell demise. Therefore, in the next set of studies, we quantified 

effects of high glucose exposure [20 mM; 24 hrs] on GSIS using the INS-1 832/13 cell line. Data 

in Figure 3-3 indicate a significant increase [~ 2 fold] in basal secretion from these cells 

following exposure to glucotoxic conditions; [bar 1 vs. 3]. In addition, insulin secretion elicited by 

stimulatory glucose concentrations decreased significantly in these cells exposed to glucotoxic 

conditions [bar 2 vs. 4]. These data indicate significant impairment in GSIS in INS-1 832/13 cells 

after 24 hrs of incubation in media containing high glucose. 

 
Figure 3-3: Glucotoxic conditions attenuate GSIS in INS-1 832/13 beta cells. INS-1 832/13 cells 
were cultured in the presence of low and high [2.5 and 20 mM] glucose. After 24 hrs they were 
stimulated with low or high glucose for 45 min. Amount of Insulin released into the culture 
medium was evaluated by ELISA [see Methods-section 2.7 for additional details]. The data are 
expressed as insulin release [ng/ml] and are means ± SEM from three independent 
experiments. *P < 0.05 vs. 2.5 mM glucose under 24 hrs low glucose treatment; **P < 0.05 vs. 
20 mM glucose under 24 hrs low glucose treatment. 
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Glucotoxic conditions induce caspase 3 and 6 activation and subsequent degradation of 

lamin A and B in normal rat islets 

Based on the above observations and our findings on caspase 3 and 6 activation and 

lamin A and B degradation under glucotoxic conditions, we repeated these studies in primary rat 

islets to further validate the observed effects of glucotoxicity on caspase activation and lamin 

degradation. Data depicted in Figure 3-4 indicate an increase in caspase 3 and 6 activation 

followed by a corresponding increase in lamin A and B degradation under these conditions 

[Figure 3-4; Panels A and D]. Panels B,C and E,F display data combined from multiple 

experiments.   
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Figure 3-4: Treatment of normal rat islets with high glucose results in caspase 3 and 6 activation 
and hydrolytic cleavage of downstream substrates: lamins A and B. Rat islets were incubated in 
the presence of low [2.5 mM] and high glucose [20 mM] for 24 hrs. Approximately 40 µg protein 
lysates from each condition were resolved by SDS-PAGE and the degree of abundance of 
cleaved caspase 3 and lamin B [Panel A] and cleaved caspase 6 and lamin A [Panel D] were 
determined by Western blot analysis. The loading control used was β-actin. Quantitation of 
caspase activation and lamin degradation were carried out by densitometry. Data represent 
mean ± SEM from three independent experiments and are expressed as fold change in cleaved 
caspase 3 [Panel B], degraded lamin B [Panel C], cleaved caspase 6 [Panel E] and cleaved 
lamin A [Panel F].  *P < 0.05 vs. 2.5 mM glucose. 
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Increased activation of caspases and associated degradation of lamins are also 

demonstrable in human islets treated with high glucose 

As a logical extension of the above studies, we quantified caspase activation and lamin 

degradation in islets obtained from human donors. We noticed a 1.9-fold increase in caspase 3 

activation and 2-fold increase in lamin B degradation; likewise we also observed a 2.17-fold and 

a 1.69-fold increase in active caspase 6 and cleaved lamin A respectively in human islet 

preparations incubated with high glucose [30 mM; 24 hrs; Figure 3-5; Panels A-D]. These data 

further support our observations in INS-1 832/13 cells, suggesting that a similar mechanism of 

beta cell death may be operable in primary islets [rat and human] [Figure 3-1 and 3-2]. 

 

Figure 3-5: Glucotoxic conditions promote caspase 3 and 6 activation and nuclear lamina 
breakdown in normal human islets treated with high glucose. Normal human islets were 
incubated in the presence of low [5.8 mM] and high glucose [30 mM] for 24 hrs as described in 
the text. 25 µg Lysate proteins were loaded onto SDS-Polyacrylamide gels and then transferred 
to nitrocellulose membranes. The membranes were probed for cleaved caspases 3 and 6, and 
lamin A and B and immune complexes were identified using ECL detection kit. To ensure equal 
protein loading, the same membrane was re-probed using antibody for β-actin. Human islet data 
were accrued from a single batch of islet preparation.  
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Evidence for expression of ZMPSTE24 [a zinc metallopeptidase responsible for 

endoproteolytic cleavage of pre-lamin A to mature lamin A] in INS-1 832/13 cells and 

human islets 

 Mature lamin A is synthesized as prelamin A, the precursor form, which subsequently 

undergoes post-translational modifications, including farnesylation and carboxylmethylation. The 

modified form of prelamin A is subsequently cleaved by the enzyme ZMPSTE24, a zinc 

metallopeptidase, which detaches 15 amino acids from the carboxyl end, thereby releasing 

mature lamin A [39]. Earlier studies from our laboratory have demonstrated carboxylmethylation 

of lamins in islet beta cells [45]. Therefore, in the last set of studies we asked if ZMPSTE24 is 

expressed in the islet beta cells, and whether glucotoxic conditions affect the expression of this 

peptidase. Data depicted in Figure 3-6 provide evidence for the expression of ZMPSTE24 in 

INS-1 832/13 cells [Panel A] and human islets [Panel C]. Furthermore, we noticed no significant 

effects of glucotoxic conditions on the expression of this protein in the two cell types studied 

[Panel A–C], suggesting that proteolytic processing of lamin A may not be affected under 

glucotoxic conditions. 
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Figure 3-6: ZMPSTE 24 is expressed in INS-1 832/13 cells and normal human islets. Lack of 
effects of high glucose exposure on the expression of ZMPSTE 24. INS-1 832/13 cells were 
incubated in the presence of low [2.5 mM] or high [20 mM] glucose. After 24 hrs protein lysates 
were resolved by SDSPAGE and transferred to a nitrocellulose membrane. Panel A shows a 
representative blot from three studies. Intensity of protein bands was quantified by densitometry 
and data represent mean ± SEM from three independent experiments and are expressed as 
fold change in ZMPSTE 24 [Panel B]. NS not significant vs. 2.5 mM glucose. Normal human 
islets were incubated in the presence of low [5.8 mM] and high glucose [30 mM] for 24 hrs [as in 
Figure 3-5]. 25 µg of islet lysate proteins were loaded onto a SDS-Polyacrylamide gel and 
transferred to a nitrocellulose membrane. The membranes were probed with Antisera against 
ZMPSTE 24 and the protein was detected using ECL kit. To ensure equal protein loading, the 
membranes were probed for β actin. A blot from a single human islet preparation is shown in 
Panel C. 
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Alterations in the subcellular distribution of cleaved caspase 3 and lamin B in INS-1 

832/13 cells exposed to glucotoxic conditions 

In these studies, we determined potential alterations, if any, in the subcellular 

localization of active caspase 3 fragment and lamin B degradation products in INS-1 832/13 

cells following exposure to glucotoxic conditions. To determine this, INS-1 832/13 cells were 

incubated for 24 hrs with low or high glucose [2.5 or 20 mM]. Individual subcellular fractions, 

namely the cytosolic fraction [fraction F1], membrane/organelle protein fraction [fraction F2] and 

the pure nucleic protein fraction [fraction F3] were isolated using a ProteoExtract subcellular 

proteome extraction kit [Materials and Methods- Section 2.3]. At the outset, we determined 

subcellular distribution of native caspase [pro-caspase] and lamin B in INS-1 832/13 lysates. 

Data depicted in Figure 3-7 [Panel A], as expected, suggest that native lamin B and pro-

caspase are localized predominantly in the nuclear [F3] and cytosolic [F1] fractions, 

respectively. However, glucotoxic conditions caused significant alterations in the subcellular 

distribution of biologically active [cleaved] caspase 3 and degraded lamin B [Figure 3-7; Panel 

B]. For example, we noticed significant accumulation of degraded lamin B in cytosolic [F1] and 

membrane/ organelle protein [F2] fractions under high glucose-treatment conditions. 

Interestingly, we also noticed significant accumulation of cleaved caspase 3 in these fractions. 

Together, these observations demonstrate abnormal distribution of lamin B under glucotoxic 

conditions further suggestive of disassembly of nuclear structure under these conditions. 
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Figure 3-7: Exposure to high glucose results in altered subcellular distribution of caspase 3 and 
degraded product of lamin B in INS-1 832/13 cells. INS-1 832/13 cells were subjected to 
subcellular fractionation using ProteoExtract Subcellular Proteome Extraction Kit at basal level 
[Panel A] and after treatment with low [2.5 mM] and high [20 mM] glucose for 24 hrs [Panel B]. 
20–30 μg of lysate proteins were loaded onto a SDS-Polyacrylamide gel and transferred to a 
nitrocellulose membrane. Lamin B, pro-caspase [Panel A] and cleaved caspase 3 and degraded 
lamin B [Panel B] were detected using antibodies against each protein. Data are representative 
of two experiments with identical results. 

Increased activation of caspases and associated degradation of lamins are also 

demonstrable in diabetic rat islets and in islets from human donors with type 2 diabetes 

 As an extension to the above studies, we quantified caspase 3 and 6 activity and lamin 

A and B degradation in islets derived from the ZDF rat, a known animal model for T2D and in 

islets obtained from human donors with Type 2 diabetes. Islets from age-matched ZLC rats 

were used as controls in these studies. Data in Figure 3-8 represent a Western blot study 

demonstrating a significant increase in the activation of caspase 3 and degradation of lamin B 
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[Panel A] and activation of caspase 6 [Panel D] and cleavage of lamin A [Panel E]  in islets from 

the ZDF rat compared to the ZLC rat islets. Pooled data in islets from multiple ZLC and ZDF rats 

are given in Panels B, C, F and G. Compatible with our findings above, we also noticed a 

marked increase in lamin A and B degradation in islets from a human donor with T2DM along 

with activation of caspases depicted in Figure 3-9 [Panel A and B]. T2D human islets studies 

were performed using single islet preparation. 

  ZLC 
Mean ± SEM

ZDF 
Mean ± SEM 

Body Weight [g] 275 ± 8 365 ± 7 

Blood Glucose [mg/dl] 80 ± 12 276 ± 37 

Table 3-1: Body weights and blood glucose levels of ZLC and ZDF rats measured at the time of 
sacrifice.  
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Figure 3-8: Activation of caspase and lamin degradation are observed in islets obtained from 
ZDF rats. Islets isolated from ZDF and ZLC rats by collagenase digestion method were lysed 
using RIPA buffer. Lysate proteins [40 µg] were resolved by SDS-PAGE and the abundance of 
cleaved caspase 3 and 6 and lamin A and B were determined by Western blotting.  To assess 
equal protein loading, the membrane was probed for β-actin. Representative blots from three to 
four ZLC and ZDF islet preparations are shown in Panel A, D and E. Intensity of protein bands 
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was quantified by densitometry and data represent mean ± SEM from three to four islet 
preparations and are expressed as fold change in cleaved caspase 3 [Panel B], degraded lamin 
B [Panel C], cleaved caspase 6 [Panel F] and lamin A [Panel G]. *P < 0.05 vs. ZLC 

 
Figure 3-9: Caspase 3 and 6 activation and lamin A and B degradation in diabetic human islets. 
Islets obtained from normal and diabetic individuals were lysed using RIPA buffer. Proteins from 
cell lysates were separated by gel electrophoresis and transferred to a nitrocellulose membrane. 
Cleaved caspase 3 and 6, and lamin A and B and β-actin antibodies were used to probe the 
same membrane after stripping. Human islet data from normal and diabetic individuals were 
accrued from a single batch of islet preparation. 
 
Collectively, data shown in Figures 3-1 to 3-9 can be summarized as follows: 

 Glucotoxic conditions promote the activation of executioner caspases 3 and 6, which 

leads to the degradation of their downstream targets, the nuclear lamins A and B in INS-

1 832/13 cells, normal rodent and human islets. 

 Evidence of the expression of ZMPSTE24, a lamin A processing enzyme, was seen in 

INS-1 832/13 cells and human islets. 
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 Under conditions of high glucose exposure, a significant impairment in the insulin 

secretion capacity of the beta cells was observed. 

 Significant alterations in the subcellular distribution of lamin B were observed under 

glucotoxic conditions. 

 Islets obtained from the ZDF rat, a model for T2D and islets from T2D human donors 

also exhibit similar effects on activation of caspases and proteolytic cleavage of lamins.
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CHAPTER 4 

IDENTIFICATION OF DOWNSTREAM SIGNALING EVENTS INVOLVED IN 
GLUCOTOXICITY INDUCED ENDOPLASMIC RETICULUM [ER] STRESS LEADING 

TO DYSFUNCTION IN PANCREATIC BETA CELLS 

Portions of this work have been published [copies of the published manuscripts are appended] 
 
 Khadija S, Veluthakal R, Sidarala V, Kowluru A. Glucotoxic and diabetic conditions induce 

caspase 6-mediated degradation of nuclear lamin A in human islets, rodent islets and INS-1 

832/13 cells. Apoptosis. 2014; 19[12]:1691-701.  

 Syeda K, Mohammed AM, Arora DK, Kowluru A. Glucotoxic conditions induce endoplasmic 

reticulum stress to cause caspase 3 mediated lamin B degradation in pancreatic β-cells: 

protection by nifedipine. Biochem Pharmacol. 2013 1;86[9]:1338-46.  

 

Thapsigargin, a known inducer of ER stress, markedly increases caspase 3 activation 

and lamin B degradation in INS 1-832/13 cells 

 

Figure 4-1: Chemical Structure of Thapsigargin 

 Several lines of experimental evidence implicate ER stress as one of intermediate steps 

involved in glucotoxicity of the islet beta cell [93]. To determine if high glucose induces ER 

stress in our current experimental model, we quantified CHOP expression, an ER stress marker, 

in INS-1 832/13 cells exposed to low and high glucose conditions. Data depicted in Figure 4-2 
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[Panel A] demonstrate a significant increase in CHOP expression in cells exposed to glucotoxic 

conditions and a similar result was obtained with thapsigargin [Panel B]. To further assess if ER 

stress induces caspase 3 activation and lamin B degradation, we incubated INS-1 832/13 cells 

with thapsigargin and then quantitated caspase 3 activation and lamin B degradation in these 

cells. Data depicted in Figure 4-2, Panel E demonstrate significant increase in caspase 3 

activation in cells treated with thapsigargin as early as 2 hrs of incubation [3.4- fold; Figure 4-2 

Panels E and F]. Note that thapsigargin effects were maximal at 2 hrs since no further increase 

in caspase 3 activation was seen at 4 hrs [3.1-fold activation] and 6 hrs [3-fold activation; Panels 

E and F]. Under these conditions, we also noticed a significant increase in lamin B degradation 

induced by thapsigargin within 2 hrs [1.9-fold], which remain plateaued at 4 hrs [1.8- fold] and 6 

hrs [1.7-fold] as shown in Panels E and G. Together, our findings suggest ER stress as one of 

the mechanisms underlying glucose-mediated effects on caspase 3 activation and lamin B 

degradation. In the next set of studies, we further tested this hypothesis using a 

pharmacological approach. 
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Figure 4-2: Thapsigargin, a known inducer of ER stress, also promotes caspase 3 activation 
and lamin B degradation in INS-1 832/13 cells. Cells were incubated with low glucose [2.5 mM] 
or high glucose [20 mM] for 24 hrs. Expression of CHOP was determined in cell lysates by 
Western blotting [Panel A]. The same membranes were reprobed using antibody against β-
actin. Densitometry was used to measure CHOP expression. The statistical significance of the 
differences between the control and the experimental groups was determined by t-test. Panel C 
represents data from three independent experiments. *P < 0.05 vs. 2.5 mM glucose. Panel B: 
INS-1 832/13 cells were incubated with low glucose [2.5 mM] or thapsigargin [Tg; 0.25 μM for 6 
hrs]. Expression of CHOP was determined by Western blotting. Uniform protein loading was 
assessed by re-probing the same membrane with antiserum against β-actin. Quantification of 
CHOP expression was carried out by densitometry. The statistical significance of the differences 
in Mean ± SEM values between the control and the experimental groups was evaluated by 
student’s t-test. Data in panel D represent mean ± SEM from three independent experiments 
and expressed as fold change. *P < 0.05 vs. 2.5 mM glucose. Panel E: INS-1 832/13 cells were 
treated with low glucose [2.5 mM] or thapsigargin [Tg; 0.25 µM] for 2, 4 and 6 hrs as indicated in 

2 h         4 h        6 h

Degraded Lamin B 

Cleaved Caspase 3 

β‐actin

Lamin B

D

Glucose, 2.5mM     +           +           +           + 

Tg, 0.25μM     ‐ +      +          +  

E

F
o

ld
 C

h
an

g
e 

(C
le

av
ed

 C
as

p
as

e 
3/

A
ct

in
)

0

1

2

3

4 *
*

*

2 h         4 h        6 h

Glucose, 2.5mM         +           +            +           + 

Tg, 0.25μM    ‐ +             +          +  

F

F
o

ld
 C

h
an

g
e 

(D
eg

ra
d

ed
 L

am
in

 B
/A

ct
in

)

0

1

2

3

*
*

*

2 h         4 h        6 h

Glucose, 2.5mM   +           +            +           + 

Tg, 0.25μM    ‐ +             +          +  



59 

 

 

 

the figure. Lysate proteins were loaded onto a SDS-Polyacrylamide gel and electro-transferred 
onto a nitrocellulose membrane. The membrane was probed with antisera against cleaved 
caspase 3 and degraded lamin B. To ascertain uniform loading of proteins, the membrane was 
stripped and reprobed with antibody against β-actin. Quantification of caspase 3 activation and 
lamin B degradation were carried out by densitometry. Data in Panel E and F represent mean ± 
SEM from three independent experiments and expressed as fold change. *P < 0.05 vs. 2.5 mM 
glucose. 

Caspase 3 activation and Lamin B degradation observed in Akita beta cells: an ER stress 

mouse model 

The Akita mouse model has a spontaneous mutation in the Ins2 gene, which causes 

misfolding of the translated insulin in the endoplasmic reticulum. Therefore, Ins2Akita mice serve 

as a suitable model for ER stress in the beta cell, seen in diabetic conditions.  They develop 

insulin dependent diabetes, including hyperglycemia, hypoinsulinemia, polydipsia, and polyuria. 

We wanted to examine if the effects on caspase 3 and lamin B seen under glucotoxic conditions 

could be mimicked in cells obtained from Akita mice in order to decipher the role of ER stress in 

our model. Results acquired from a Western blot study, after running the lysates obtained from 

wild type [WT] and Akita cells, are depicted in Figure 4-3. We observed a higher level of active 

caspase 3 and degradation of lamin B in cells from the Akita mouse compared to the wild type. 
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Figure 4-3: Akita mouse cells show noticeable caspase 3 activation and lamin B degradation. 
Lysate proteins from Akita and WT cells were resolved by gel electrophoresis, and then electro-
transferred onto a nitrocellulose membrane. The abundance of cleaved caspase 3 and lamin B 
were determined by Western blotting.  Equal protein loading was ensured by reprobing the 
membrane with antibody against β-actin.  

 

4-Phenylbutyric acid [PBA], a known inhibitor of ER-stress, markedly attenuates glucose-

induced CHOP expression, caspase 3 activation and lamin B degradation 

 

Figure 4-4: Chemical Structure of PBA 

As a logical extension to the above studies, we attempted to establish a causal role for 

ER-stress in high glucose-induced caspase 3 activation and lamin B degradation. To 

accomplish this, we used PBA [Figure 4-4], a known inhibitor of ER-stress, on glucose-induced 

caspase 3 activation and lamin B degradation. We also quantified CHOP expression in these 

cells to affirm that PBA inhibits glucose-induced ER-stress under current experimental 
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conditions. Data depicted in Figure 4-5 demonstrate a significant increase in CHOP expression 

in glucose-treated cells. We also observed complete inhibition of glucose-induced CHOP 

expression by PBA [Figure 4-5, Panel A]. These data thus validate the use of PBA as an 

inhibitor of ER-stress in INS-1 832/13 cells. More importantly, we also noticed a complete 

inhibition of glucose-induced caspase 3 activation and lamin B degradation by PBA in these 

cells [Figure 4-5; Panel B]. Taken together, these data provide the first evidence that 

glucotoxicity promotes caspase 3 activation and lamin B degradation in an ER-stress sensitive 

fashion. 

 

Figure 4-5: PBA, a known inhibitor of ER-stress, markedly attenuates glucose-induced CHOP 
expression, caspase 3 activation and lamin B degradation in INS-1 832/13 cells. Cells were 
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incubated in the presence of low or high [2.5 or 20 mM] glucose for 24 hrs in the presence and 
absence of PBA [0.5 mM]. Approximately 40 μg protein lysates were loaded onto SDS-
Polyacrylamide gels and electro-transferred onto nitrocellulose membranes. The membranes 
were probed with antibodies against CHOP [Panel A], active caspase 3 and degraded lamin B 
[Panel B]. Uniform protein loading was assessed by reprobing the membranes antibody against 
β-actin. Intensity of protein bands was quantified by densitometry [Panels C-E]. Data represent 
mean ± SEM from three independent experiments and expressed as fold change in CHOP 
expression, caspase 3 activation and lamin B degradation. *P < 0.05 vs. 2.5 mM glucose 
without inhibitor, #P < 0.05 vs. 20 mM glucose without inhibitor. 

Nifedipine, a calcium channel blocker, inhibits glucose-induced caspase 3 activation and 

lamin B degradation in INS-1 832/13 cells 

 

Figure 4-6: Chemical Structure of Nifedipine 

We recently reported that calcium overload may represent one of the signaling 

mechanisms involved in caspase-3 activation under conditions of cellular apoptosis in isolated 

beta cells. For example, using etoposide, a known inducer of loss in metabolic viability in beta 

cells, we reported a marked increase in caspase 3 activity in INS-1 832/13 cells and normal rat 

islets. More importantly, we have been able to prevent etoposide-induced metabolic dysfunction 

in these cells by nifedipine [Figure 4-6], a known blocker of L-type calcium channel activation 

and calcium entry [93]. Furthermore, recent findings from the laboratory of Wang and 

associates [94] have also demonstrated significant protective effects of nifedipine against high 

glucose-induced ER stress and apoptosis. Therefore, as a logical extension to findings that we 
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reported above, we undertook a study to see if glucose-induced caspase 3 activation and lamin 

B degradation are prevented by nifedipine. Data presented in Figure 4-7, Panel A indicate a 

modest, but insignificant [1.2-fold] increase in caspase 3 activation in INS-1 832/13 cells 

incubated with nifedipine alone under basal conditions. No significant effects of nifedipine were 

demonstrable on lamin B degradation under these conditions. As shown above, high glucose-

treatment markedly enhanced caspase 3 activation [2.5- fold] and lamin B degradation [1.9-fold; 

Figure 4-7, Panels B and C]. Interestingly, co-provision of nifedipine with glucose markedly 

reduced high glucose-induced effects on caspase 3 activation [2.5-fold vs. 1.2- fold in the 

absence and presence of nifedipine, respectively]. In a manner akin to these findings, nifedipine 

also attenuated lamin B degradation induced by glucose [1.9-fold in the absence of nifedipine 

and 1.2-fold in its presence; Figure 4-7]. 
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Figure 4-7: Nifedipine, a calcium channel blocker, inhibits glucose-induced caspase 3 activation 
and lamin B degradation in INS-1 832/13 cells. Panel A: INS-1 832/13 cells were incubated with 
low glucose or high glucose [2.5 or 20 mM] for 24 hrs in the absence [diluent] or presence of 
nifedipine [10 μM]. Proteins obtained after cell lysis were resolved by gel electrophoresis and 
electro-transferred onto a nitrocellulose membrane. The membrane was probed with antibodies 
against cleaved caspase 3 and lamin B. To ensure uniformity in protein loading, the same 
membranes were re-probed with β-actin antibody. Band densities of caspase 3 activation and 
lamin B degradation were measure. Data represent mean ± SEM from three independent 
experiments and expressed as fold change [Panel B and C]. *P < 0.05 vs. 2.5 mM glucose 
without nifedipine and #P < 0.05 vs. 20 mM without nifedipine. 
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Z-DEVD-FMK, a known inhibitor of caspase 3, markedly attenuates high glucose-induced 

caspase 3 activation and lamin B degradation in INS-1 832/13 cells 

In vitro studies on beta cell lines utilizing caspase inhibitors have demonstrated that the 

caspase 2 inhibitor is effective in protecting the HIT-T15 beta cell line against an experimental 

model of cell death [95]. Furthermore, murine TC-1 cell lines transfected with human Fas were 

shown to be protected against Fas-induced beta cell apoptosis by the caspase 3 inhibitor Z-

Asp-Glu-Val-Asp-fluoromethyl ketone [96] and palmitate-induced beta cell apoptosis, could be 

prevented by executioner caspase 6 inhibitors [97]. The preferential recognition of different 

caspases for specific amino acid sequences on the substrate proteins has been taken 

advantage of in the development of specific peptide inhibitors. These caspase inhibitors are cell 

permeable and bind to the active site of the proteases and thereby obstruct the progression of 

apoptotic pathway downstream of caspase activation. In an attempt to investigate the 

dependency of lamin degradation on upstream caspase 3 activation, observed in glucotoxicity 

induced apoptotic signaling, we used a cell permeable peptide inhibitor, specific for caspase 3 

[Z-DEVD-FMK]. We measured lamin B degradation and caspase 3 activation in cells treated 

with low and high glucose conditions in the absence and presence of Z-DEVD-FMK. Data in 

Figure 4-8 Panel A show a marked inhibition of lamin B degradation and caspase 3 activation 

after treatment with the inhibitor. Panels B and C represent data collected from three to four 

experiments. 
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Figure 4-8: Z-DEVD-FMK, a known inhibitor of caspase 3, prevented high glucose induced 
caspase 3 activation and lamin B breakdown in INS-1 832/13 cells. INS-1 832/13 cells were 
preincubated with Z-DEVD-FMK [3μM] for 1 hr and further treated with low [2.5 mM; LG] or high 
[20 mM; HG] glucose in the presence and absence of Z-DEVD-FMK for 6 hrs. Caspase 3 
activation and lamin B degradation [Panel A] were determined by Western blotting. To ensure 
equal protein loading, the membranes were probed with β-actin antiserum. Data represent 
mean ± SEM from three to four independent experiments and expressed as fold change in 
caspase 3 and lamin B degradation [Panel B and C]. *P < 0.05 vs. 2.5 mM glucose in the 
absence of the inhibitor; # P < 0.05 vs. 20 mM glucose without inhibitor. NS: Not significant vs. 
2.5 mM glucose in the absence of the inhibitor. 
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Z-DEVD-FMK significantly reduces high glucose-induced activation of executioner 

caspase 6 and degradation of lamin A in INS-1 832/13 cells 

Evidence in different cell types suggests that event of caspase 3 activation in the 

caspase cascade is upstream to activation of caspase 6 [98], and/or both these executioner 

caspases are cleaved and thereby activated under conditions induced by apoptotic stimuli [99]. 

Therefore, in the next set of experiments, we examined if caspase 3 activation precedes 

caspase 6 activation in beta cells under the duress of glucotoxicity. To address this, we 

quantified caspase 6 activation in INS-1 832/13 cells under high glucose treatment conditions in 

the absence or presence of caspase 3 inhibitor [Z-DEVD-FMK]. Data shown in Figure 4-9 

[Panel A], demonstrate significant inhibition of glucose-induced caspase 6 activation following 

inhibition of caspase 3. Panel B includes data accumulated from multiple experiments. It should 

be noted that caspase 3 inhibitor also activated caspase 6 under low glucose incubation 

conditions. Furthermore, Z-DEVD-FMK significantly attenuated high glucose-induced lamin A 

degradation [Figure 4-9; Panel C], further supporting the notion that glucose-induced caspase 3 

activation might lie upstream to caspase 6 activation and lamin A degradation. Collectively, at 

least, based on our current and recently published findings [100], we conclude that executioner 

caspases [caspase 3 and 6] mediate nuclear lamin [A and B] degradation and chromatin 

condensation and collapse of nuclear envelope under conditions of glucotoxicity.  
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Figure 4-9: Z-DEVD-FMK, a known inhibitor of caspase 3, prevented high glucose induced 
caspase 6 activation and lamin A breakdown in INS-1 832/13 cells. INS-1 832/13 cells were 
preincubated with Z-DEVD-FMK [3μM] for 1 hr and further treated with low [2.5 mM] or high [20 
mM] glucose in the presence and absence of Z-DEVD-FMK for 6 hrs. Caspase 6 activation 
[Panel A] and lamin A cleavage [Panel C] were determined by Western blotting. To check equal 
protein loading, the membranes were probed for β-actin. Data represent mean ± SEM from 
three independent experiments and expressed as fold change in caspase 6 [Panel B] and lamin 
A cleavage [Panel D]. *P < 0.05 vs. 2.5 mM glucose in absence of inhibitor; # P < 0.05 vs. 20 
mM glucose without inhibitor. NS: Not significant vs. 2.5 mM glucose in absence of inhibitor. 
 
Z-VEID-FMK, a known inhibitor of caspase 6, markedly attenuates glucose-induced 

caspase 6 activation and breakdown of lamin A in INS-1 832/13 cells 

 We further investigated the effects of Z-VEID-FMK, a known inhibitor of caspase 6, on 

high glucose-induced caspase 6 activation and lamin A degradation in INS-1 832/13 cells. Data 

in Figure 4-10 [Panel A] represents a Western blot demonstrating directional inhibition of high 

glucose-induced activation of caspase 6 by its inhibitor. It should be noted that we consistently 

observed a modest increase in the caspase 6 activation in cells exposed to its inhibitor under 

low glucose conditions [Figure 4-10; Panel A]. However, data from multiple experiments 

indicated that this increase was not significant [Figure 4-10; Panel B].  Furthermore, Z-VEID-

FMK inhibited high glucose-induced degradation of lamin A under the conditions it inhibited 

caspase 6 [Figure 4-10; Panel C]; these findings provide support to the notion that caspase 6 

does play a contributory role, although not entirely, in the cleavage of lamin A in pancreatic beta 

cells under glucotoxic and diabetic conditions. Figure 4-10; Panel D displays data combined 

from multiple experiments. It should be noted that as in the case of caspase 6 activation, we 

noticed increase in lamin A degradation in INS-1 832/13 cells exposed to caspase 6 inhibitor 

under low glucose treatment conditions. Collectively, our findings implicate a contributory role of 

caspase 6 in lamin A degradation under glucotoxic conditions.  
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Figure 4-10: High glucose-induced caspase 6 activation and breakdown of lamin A cleavage 
were attenuated by Z-VEID-FMK, a specific inhibitor of caspase 6, in INS-1 832/13 cells 
INS-1 832/13 cells were preincubated with Z-VEID-FMK [3μM] for 1 hr and further treated with 
low [2.5 mM] or high [20 mM] glucose in the presence and absence of Z-VEID-FMK for 6 hrs.  
Caspase 6 activation and lamin A cleavage were determined by Western blotting. The 
membrane was probed for cleaved caspase 6 [Panel A] and cleaved lamin A [Panel C], and 
immune complexes were identified using ECL detection kit. To ensure equal protein loading, the 
membranes were probed for β actin. Data represent mean ± SEM from three independent 
experiments and expressed as fold change in caspase 6 [Panel B] and lamin A cleavage [Panel 
D]. *P < 0.05 vs. 2.5 mM glucose without inhibitor. NS: Not significant vs. 2.5 mM glucose 
without inhibitor. 
 

Studies using rottlerin, an inhibitor of PKC-δ, on the activation of caspase 3 and 

degradation of lamin B  

 Several studies have shown that in order for caspases to target the nuclear lamins for 

proteolytic degradation, phosphorylation of the lamin filaments by PKC-δ is required. In an 

attempt to gain deeper insight into this mechanism we tested the effects of rottlerin [5 and 10 

µM], an inhibitor of PKC-δ on lamin B under the duress of glucotoxicity. However we could not 

see an inhibitory effect of this compound on the degradation of lamin B in our experiment in 

INS-1 832/13 cells [Figure 4-11]. Further we also tested siRNA against PKC-δ but could not 

attain sufficiently high transfection efficiency even at 200 nm concentration of the siRNA [data 

not shown]. Since PKC-δ is one of 11 isoforms of the PKC family and has a number of splice 

variants [PKC-δI, PKC-δII] which could be pro-apoptotic or anti-apoptotic [101], it would be 

interesting to study each splice variant individually and identify the role of each distinct splice 

variant in the processing of lamins. 



72 

 

 

 

 

Figure 4-11: Rottlerin had no effect on high glucose induced activation of caspase 3 and lamin 
B degradation. INS-1 832/13 cells were preincubated with rottlerin [5 and 10 μM] for 1 hr and 
further treated with low [2.5 mM] or high [20 mM] glucose in the presence and absence of 
rottlerin for 6 hrs.  Activation of executioner caspase 3 and lamin B degradation were examined 
by Western blotting. To ensure equal protein loading, the membranes were probed for β-actin. 
Representative blots from 3 individual experiments are shown in the figure above. 
 

Results obtained from these studies can be summarized as follows: 

 Effects of glucotoxicity on CHOP expression are comparable to those of thapsigargin, a 

potent inducer of ER stress in many cell types. Thapsigargin treatment also induced 

caspase 3 activation and lamin B degradation, as seen under high glucose treatment, 

thereby implicating an ER stress mediated pathway. 

 PBA, an inhibitor of ER stress, markedly reduced glucose-induced CHOP expression, 

caspase 3 activation and lamin B degradation. 

 Blocking of membrane associated L-type calcium ion channels, with nifedipine, markedly 

attenuated high glucose-induced effects on the beta cell.  

 Z-DEVD-FMK, a specific inhibitor of caspase 3, inhibited high glucose-induced caspase 

3, 6 activation and proteolysis of lamin A, B and Z-VEID-FMK, which specifically inhibits 

caspase 6 activation blocked high glucose-induced caspase 6 activation and lamin A 

degradation.  
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CHAPTER 5 

CONSEQUENCES OF INHIBITION OF REQUISITE POST TRANSLATIONAL 
PRENYLATION OF LAMINS ON THE PANCREATIC BETA CELL 

 The nuclear lamins, in their original post transcription stage, are translated as native pre-

lamins, which further need to undergo a series of PTMs and are then processed into their 

mature form for localization into the nuclear membrane, protein interactions and performing their 

functions within the nucleus. Apart from other modifications [Figure 1-5], lamins undergo 

farnesylation at the cysteine residue of the C-terminal CAAX motif [21]. How then, does 

inhibition of prenylation of lamins affect nuclear envelope integrity? What would be the overall 

effects of inhibition of lamin farnesylation on the pancreatic beta cell? To address these 

questions, we made use of pharmacological inhibitors of protein prenylation. Firstly, we used 

simvastatin, which blocks the biosynthesis of mevalonic acid [MVA] and other key intermediates 

in the cholesterol biosynthesis pathway, namely: farnesyl pyrophosphate [FPP] and 

geranylgeranyl pyrophosphate [GGPP], that are involved in post translational prenylation of 

several proteins [Rho, Rab, Ras] [Figure 5-1]. Secondly, we used a farnesyl transferase 

inhibitor, FTI-277, which inhibits the catalytic addition of 15 carbon farnesyl moiety to target 

proteins [e.g., Ras, nuclear lamins]. In addition, we also tested the effects of GGTI-2147, which 

inhibits the enzyme geranylgeranyl transferase [GGTase I]. We examined the effects of these 

inhibitors on the activation of caspase 3, lamin B degradation and overall cell morphology and 

viability in INS-1 832/13 cells and rat islets. 
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Figure 5-1: The cholesterol biosynthesis pathway. The formation of cholesterol begins with 
acetyl CoA and acetoacetyl CoA generating 3-hydroxy 3 methylglutaryl CoA [HMG-CoA], 
followed by a series of steps catalyzed by several enzymes along with generation of a number 
of intermediate metabolites. HMG-CoA reductase, the rate limiting enzyme of this pathway, 
catalyses the synthesis of mevalonate. Simvastatin inhibits the enzyme HMG-CoA reductase, 
thus blocking the subsequent steps which lead to cholesterol biosynthesis. It also prevents the 
formation of metabolites of this pathway, namely: FPP and GGPP that are involved in post 
translational prenylation of several proteins [Rho, Rab, Ras etc.]. FTI-277, inhibits the farnesyl 
transferase enzyme which catalyses the addition of 15 carbon farnesyl moiety to target proteins 
[eg: Ras, nuclear lamins] while GGTI-2147 inhibits GGTase I, therefore blocking 
geranylgeranylation of Rac and Rho. 

 

Acetyl CoA + Acetoacetyl CoA

3‐Hydroxy‐3‐methylglutaryl CoA (HMG‐CoA)

Mevalonate

Isopentenyl‐PP (IPP)

Geranyl‐PP (GPP)

Farnesyl‐PP (FPP) Prenylation of Ras, Nuclear laminsGeranylgeranyl‐PP 
(GGPP)

Prenylation 
of Rac, Rho

HMG‐CoA Reductase

Squalene

Cholesterol

SIMVASTATIN

Prenylation 
of Rab

GGTI‐2147

FTase FTI‐277



75 

 

 

 

A] Studies on effects of Statins: 

INS-1 832/13 cells and rat islets treated with Simvastatin exhibit increased activation of 

caspase 3 and subsequent degradation of lamin B along with changes in cell 

morphology.  

 At the outset, we treated INS-1 832/13 cells, cultured in RPMI medium, with low glucose 

[2.5 mM] as control and low glucose with Simvastatin [15 μM] for 24 hrs and examined the 

effects of the treatment on caspase 3 and its downstream target lamin B. As shown in Figure 5-

2, Panel A, we observed an increase in cleaved caspase 3, which is an indicator of caspase 3 

activation, and a corresponding increase in the degraded product of lamin B. Pooled data from 3 

independent Western blotting studies, shown in Panels B and C, demonstrate a significant 

increase in band densities of cleaved caspase 3 and degraded lamin B. Along with these 

observations, we also noticed changes in morphology in cells incubated for 24 hrs with 

Simvastatin. Microscopic images in Panel C demonstrate the rounding up of cells treated with 

15 and 30 μM Simvastatin and no visible changes in morphology of cells incubated in media 

containing low glucose alone or with diluent [DMSO].  

 As a logical extension of these experiments we performed the above studies in primary 

cells from rat pancreatic islets. A representative blot from 2 such independent studies is 

depicted in Panel E, wherein islets obtained from normal Sprague Dawley, rats were exposed to 

low glucose in the absence and presence of Simvastatin [15 μM and 30 μM] for 24 hrs. We 

observed a similar increase in caspase 3 activation and lamin B degradation which support our 

observations in INS-1 832/13 cells. 
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Figure 5-2: Exposure of INS-1 832/13 cells, rat pancreatic islets to simvastatin results in 
caspase 3 activation and degradation of lamin B along with changes in cell morphology. 
(A) INS-1 832/13 cells were treated with RPMI media containing 2.5 mM glucose alone and with 
15 μM Simvastatin for 24 hrs. Proteins obtained after cell lysis were resolved by SDS-PAGE 
and electro-transferred onto a nitrocellulose membrane. Antibodies against cleaved caspase 3 
and lamin B were used to probe the membrane. Uniform protein loading was ensured by re-
probing the blots with antibody against β-actin. Student’s t-test was utilized to measure the 
statistical significance of the differences in values between the control and experimental 
conditions. Panel B and C represent mean ± SEM values and are expressed as fold change in 
caspase 3 activation [Panel B] and lamin B degradation [Panel C]. *P < 0.05 vs. 2.5 mM 
glucose. [D] INS-1 832/13 cells, incubated overnight in RPMI medium containing 2.5 mM 
glucose and 2.5% FBS, were treated the following day with media containing low glucose [2.5 
mM] alone and in the presence of diluent [DMSO] or simvastatin [15 μM and 30 μM] for 24 hrs. 
Changes in cell morphology were visualized by light microscopy. [E] Rat islets isolated by 
collagenase digestion method were incubated in media containing low glucose [2.5 mM] in the 
absence and presence of simvastatin [15 μM and 30 μM] for 24 hrs. Activation of executioner 
caspase 3 and lamin B degradation were evaluated by Western blotting. The membrane was re-
blotted with anti β-actin to ensure equal protein loading.  

 

Simvastatin promotes phosphorylation of p38 MAPK and reduces ERK1/2 

phosphorylation in INS-1 832/13 cells 

 In the next set of experiments we examined the effects of Simvastatin treatment on two 

mitogen activated protein kinases [MAPKs] namely, p38 and ERK1/2, both of which are 

regulated by various extracellular stress stimuli and play a critical role in the cell stress 

signaling/survival pathways.   INS-1 832/13 cells were exposed to low glucose [2.5 mM] in the 
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absence and presence of 15 μM simvastatin as described in the previous experiments. Under 

these conditions, we looked for the phosphorylation status of p38 using an antibody specific for 

phospho-p38 and observed a significant increase in the phosphorylated, active form of p38 

MAPK in comparison to the total protein [Figure 5-3 Panel A]. Besides, we also noted a marked 

decrease in ERK1/2 phosphorylation/activation using a monoclonal antibody, which recognizes 

the dual phosphorylation at Thr202 and Tyr204 of ERK1 and Thr185 and Tyr187 of ERK2, as 

shown in Figure 5-3 Panel C. Bar graphs in Panels B and D represents data pooled from 3 

independent experiments and represent fold change in the intensities of the phosphorylated 

protein bands vs. the intensity of total protein levels.  Under the same treatment conditions we 

assessed the metabolic cell viability and found a decrease [~12.4%] in viability with Simvastatin 

treatment [Panel E]. 
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Figure 5-3: Simvastatin treatment causes a marked increase in phosphorylation of p38 MAP 
Kinase and significantly decreases phosphorylation of phospho-p44/42 ERK1/2 and a reduction 
in cell viability. Lysates from INS-1 832/13 cells incubated in RPMI media containing 2.5 mM 
glucose alone and with 15 μM Simvastatin for 24 hrs were resolved by SDS-PAGE and 
transferred to nitrocellulose membranes by wet transfer. The blots were probed for 
phosphorylated p38MAPK and total p38MAPK, phospho-p44/42 ERK1/2 and total p44/42 
ERK1/2. Band densities were calculated by densitometry. Data provided in Panel B and D 
represent mean ± SEM and are expressed as fold change in p38 MAPK phosphorylation [Panel 
B] and p44/42 ERK1/2 phosphorylation [Panel D]. *P < 0.05 vs. 2.5 mM glucose. Panel E; INS-1 
832/13 cells were incubated in low glucose [2.5 mM] in the absence and presence of 
Simvastatin [15 µM]. After 24 hrs cell viability was assessed by the MTT assay. Data are 
represented as mean ± SEM values and are expressed as percent cell viability. *P < 0.05 vs. 
2.5 mM glucose. 
 
B] Studies on effects of FTIs: 

Inhibition of farnesylation with FTI-277 treatment of INS-1 832/13 cells has similar effects 

on lamins as Simvastatin 

 The above effects of simvastatin on lamins and caspases [Figure 5-2], could be due to 

the depletion of FPP and/or GGPP, thereby inhibiting requisite prenylation of key proteins. In 

order to identify the distinct role of geranylgeranylation and farnesylation, we conducted a few 

experiments using inhibitors of each post translational modification. FTI-277 is a specific 

inhibitor of the enzyme FTase, which catalyses the addition of the 15 carbon farnesyl moiety 

onto target proteins e.g., Ras, nuclear Lamins. Herein, we incubated INS-1 832/13 with low 

glucose [2.5 mM] alone and with FTI-277 [10µM] for 24 hrs. Results obtained from these studies 

demonstrated that reduction in the requisite farnesylation of lamin B by exposing cells to FTI-

277 promotes caspase 3 activation and degradation of lamin B [Fig 5-4 Panel A]. Panels B and 

C represent data obtained from three Western blotting experiments. Under the same treatment 

conditions with low glucose in the absence and presence of FTI-277, we performed phase 

partitioning assay using Triton X-114. Here we observed the appearance of the degraded 

fragment of lamin B in the hydrophobic fraction of the membrane component as well as in the 

cytosolic fraction [Panel D]. In addition we assessed the metabolic cell viability by measuring, 
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colorimetrically, the reduction of tetrazolium salt to formazan crystals and found a decrease 

[~12.4%] in viability under these treatment conditions [Panel F]. However these effects were not 

accompanied by any significant changes in cell morphology [Panel E] after 24 hrs of FTI-277 

treatment. 
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Figure 5-4: FTI-277 treatment results in caspase 3 mediated degradation of lamin B along with 
alterations in its subcellular distribution and reduction in cell viability. [A] INS-1 832/13 cells 
were incubated in media containing low glucose [2.5 mM] in the absence and presence of FTI-
277 [10 μM] for 24 hrs. Caspase 3 activation and lamin B degradation for each condition was 
determined by Western blotting. Equal protein loading was ensured by re-probing the 
membrane with anti β-actin. Data represent mean ± SEM from three independent experiments 
and are expressed as fold change in caspase 3 activation [Panel B] and lamin B degradation 
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[Panel C]. *P < 0.05 vs. 2.5 mM glucose. [D] Lysates from INS-1 832/13 cells treated with low 
glucose [2.5 mM] in the absence and presence of FTI-277 [10 µM] were subjected to a single-
step centrifugation to separate the supernatant cytosolic [Cyto] and the membrane-pellet [Mem] 
fractions followed by hydrophobic [HPB] and hydrophilic [HPL] phase partitioning with Triton X-
114 detergent. Proteins obtained after cell lysis were resolved by SDS-PAGE and electro-
transferred onto a nitrocellulose membrane. The membrane was probed for cleaved caspase 3 
and lamin B. [E] INS-1 832/13 cells were treated with media containing low glucose [2.5 mM; 
LG] alone and in the presence of diluent [LG+DMSO], FTI-277 [10 μM] for 24 hrs. Changes in 
cell morphology were visualized by light microscopy. [F] INS-1 832/13 cells were incubated in 
low glucose [2.5 mM] in the absence and presence of FTI-277 [10 µM]. After 24, hrs cell viability 
was assessed by the MTT assay. Data are represented as mean ± SEM values expressed as 
percent cell viability. *P < 0.05 vs. 2.5 mM glucose. 
 
C] Studies on effects of GGTIs: 

GGTI-2147, a geranylgeranyl transferase inhibitor does not exhibit an increase in the 

activation of caspases and degradation of lamins  

 As an extension of the above studies we wanted to study the effect of blocking 

geranylgeranylation on the integrity of the nuclear lamins. To this end, we exposed INS-1 

832/13 cells and primary rat pancreatic islets to GGTI-2147, a specific inhibitor of the enzyme 

GGTase I. A representative blot from 2 such independent studies is depicted in Figure 5-5, 

wherein islets obtained from normal Sprague Dawley rats were exposed to low glucose in the 

absence and presence of GGTI-2147 [10µM] for 24 hrs. Interestingly, blocking of 

geranylgeranylation had minimal effect on the integrity of lamin B and only a slight increase in 

the activation of caspase 3 which point out the possibility that farnesylation of lamins is essential 

for the stability and functioning of these nuclear proteins. 
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Figure 5-5: GGTI-2147 has minimal effects on the integrity of nuclear lamin B and caspase 3. 
INS-1 832/13 cells and rat islets [isolated by collagenase digestion method] were incubated in 
media containing low glucose [2.5 mM] in the absence and presence of GGTI-2147 [10 μM] for 
24 hrs. Western blotting was used to evaluate caspase 3 activation and lamin B degradation. 
The membranes were re-blotted with anti β-actin to ensure equal protein loading.  
 
 Data obtained from the above studies can be summarized as follows: 

 Inhibition of protein prenylation [farnesylation and geranylgeranylation] with simvastatin, 

induced significant alterations in mitochondrial and nuclear stability in pancreatic beta-

cells, as evidenced by activation of executioner caspase-3 and degradation of nuclear 

lamin B, which were also seen in primary rodent islets. 

 Simvastatin mediated blocking of prenylation also resulted in the activation of p38 

MAPK, a stress kinase, which we have recently implicated in islet dysfunction under 

conditions of glucotoxicity and diabetes [102]. In addition, we noticed a marked 

reduction in the phosphorylation of ERK1/2 in simvastatin treated INS-1 832/13 cells, an 

event necessary for G-protein activation, cytoskeletal organization and insulin secretion 

along with loss in cell viability. 

 Results obtained after testing specific inhibitors of FTase [FTI-277] and GGTase-1 

[GGTI-2147] suggest that simvastatin-mediated effects on degradation of lamin B are 
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more likely due to inhibition of farnesylation of lamins [a key step in the processing and 

intracellular localization of lamins] rather than blocking of geranylgeranylation. 
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CHAPTER 6 

DISCUSSION 

 Hyperglycemia in T2DM is a consequence of progressive increase in insulin resistance 

in the peripheral tissues [adipose, muscle] along with decreasing pancreatic beta cell function. 

Several studies indicate that pancreatic islet beta cells, when subjected to glucotoxic and 

lipotoxic environment or when exposed to proinflammatory cytokines [e.g., IL-1β, TNFα and 

IFNγ] exhibit metabolic dysfunction as a result of oxidative and endoplasmic reticulum stress 

[84, 103-105]. A number of potential mechanisms underlying chronic hyperglycemia-induced 

metabolic dysfunction have been put forward, among which oxidative stress as well as 

endoplasmic reticulum stress induced mitochondrial defects and subsequent downstream 

effects are most common [84, 106, 107]. Despite this existing evidence, the precise effects that 

the elevated glucose levels have on the nuclear component of the cell are relatively lesser 

known. Therefore, one of the primary objectives of my doctoral work was to gain mechanistic 

insights into the role of ER-mitochondria axis in the activation of executioner caspases and their 

downstream targets; the nuclear lamins [lamin A and B], in insulin-secreting cells under the 

duress of glucotoxic conditions and diabetes. 

 The nuclear lamins are type V intermediate filament proteins, which assemble in a 

mesh-like pattern, forming the lamina layer within the inner-nuclear membrane. Studies have 

shown that the ER stress-induced effects may have an impact on the integrity of other 

subcellular organelles, such as the mitochondria, resulting in loss of mitochondrial membrane 

permeability transition [MPT] and leakage of cytochrome C into the cytosol [108-111]. Under 

these conditions, executioner caspases [caspase 3 and 6] are activated which then cause the 

hydrolysis of proteins such as PARP, PKC-δ and nuclear lamins. Earlier reports from our own 

laboratory have exhibited a marked augmentation in the degraded product of lamin B as a result 
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of caspase 6 activation in cells subjected to proinflammatory cytokine, IL-1β, treatment. In 

addition there appeared to be an alteration in the distribution of lamin B within the nuclear 

compartment under these conditions [112]. 

 

Figure 6-1: Working model for high glucose-mediated, ER stress-induced beta cell 
damage/dysfunction via caspase 3 mediated degradation of lamin B in pancreatic beta cells. 
Our current findings suggest that glucose-induced metabolic dysfunction in these cells may, in 
part, be due to increase in ER stress. Our model also highlights potential cytoprotective effects 
of calcium channel blockers [e.g., nifedipine], ER stress inhibitors [e.g., PBA] and caspase 3 
and 6 inhibitors [e.g., Z-DEVD-FMK and Z-VEID-FMK respectively] against noxious effects of 
hyperglycemia as demonstrated in our study. 

 

Caspase 6 Inhibitor: 
Z‐VEID‐FMK

Caspase 3 Inhibitor: 
Z‐DEVD‐FMK

Ca2+ Channel Blocker: 
Nifedipine

ER Stress Inhibitor: PBA

High Glucose

ER Stress

Mitochondrial Damage

Nuclear Lamina Disassembly

Cell Damage/Dysfunction

Caspase 3 
Activation

Caspase 6 
Activation

Lamin A & B 
Degradation



88 

 

 

 

 In this context, we explored the effects of glucotoxic conditions on the activation status of 

executioner caspases and the integrity of the nuclear lamina in cells exposed to chronic 

hyperglycemic conditions. Herein, we conducted experiments on insulin secreting INS-1 832/13 

cells, normal rodent and human islets by incubating with high glucose concentrations [20 mM for 

INS-1 832/13 and rat islets and 30 mM for human islets] for 24 hrs.  Findings from our 

experiments in INS-1 832/13 cells indicated that high glucose conditions lead to an increase in 

the cleaved form of both caspases 3 and caspase 6, indicating the activation of these 

executioner caspases, which resulted in a corresponding increase in the degraded product of 

lamin A as well as lamin B. Similarly, studies by Kivinen and associates have implicated the 

involvement of caspase 3 in the proteolysis of Nuclear Mitotic apparatus [NuMA] protein and the 

nuclear lamins in MCF-7:WS8 human breast cancer cell line [91]. Another in vitro study 

demonstrates that PC12 cells exposed to palmitic acid [PA/BSA 2:1 molar ratio] showed a 

significant increase in caspase activity measured fluorimetrically which could be co-related to an 

increase in PARP and lamin B cleavage as seen by Western blotting [92]. In the context of 

lamin A, Mintzer et al. have demonstrated that active caspase 6 has specificity for lamin A. The 

study shows that proteolytic cleavage of recombinant lamin A [GST-lamin A] increases with an 

increasing concentrations of human active caspase 6. They also state that a modest increase in 

GST-lamin A cleavage does occur at higher concentrations of caspase 3 [113]. In order to 

validate our preliminary findings in INS-1 832/13 cells, we conducted experiments under similar 

incubation conditions in primary rodent islets and islets obtained from human donors. 

Interestingly, we observed an increase in the activation of caspases 3 and 6 accompanied by 

the proteolytic cleavage of the nuclear lamins in the islet cells in a manner akin to our 

observations in INS-1 832/13 cells. In the above experiments, our findings indicated no 

significant effect of high glucose treatment on the expression of ZMPSTE24, the metallo-
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proteolytic enzyme involved in post translational processing of lamin A, in INS-1 832/13 cells 

and human islets. However, prenylation of these proteins, under conditions of glucolipotoxicity, 

needs to be studied in islet cells in a systematic manner.  

 Having examined the effects of glucotoxicity on caspases and lamins in INS-1 832/13 

cells and islets, we next tested our hypothesis in islets derived from animal models of type 2 

diabetes, namely the Zucker diabetic fatty rats. ZDF rats exhibit obesity along with diabetes and 

are widely used for research on type 2 diabetes [T2D]. These rats develop obesity and insulin 

resistance at a young age, and then with aging, progressively develop hyperglycemia. This 

hyperglycemia is associated with impaired pancreatic beta cell function and loss of pancreatic 

beta cell mass. Earlier reports from our own laboratory have shown an increase in the 

generation of NOX-2 induced reactive oxygen species [ROS] in the ZDF model [103]. This 

study also demonstrated an increase phosphorylation of JNK 1/2, a type of mitogen activated 

protein kinases [MAPK] which respond to stress stimuli and a significant decrease in the 

phosphorylated form of ERK1/2, another MAPK which plays a role in the cell survival pathway. 

Finding an increase in the activated caspases and cleaved lamins in islets obtained from the 

ZDF rat model and type 2 diabetic humans, further affirmed our hypothesis. 

 Our next aim was to elucidate the effect of chronic high glucose exposure on beta cell 

function. Insulin release is one of the direct measures of beta cell function and any impairment 

in either phase of insulin secretion, chiefly first phase, may be the earliest evidence of an 

individual’s progression towards type 2 diabetes. Numerous lines of evidence indicate that 

metabolic stress due to hyperglycemic conditions leads to a decline in glucose stimulated insulin 

secretion in the pancreatic beta cells. Hence, in the next set of studies, we assessed the insulin 

secretion capacity of INS-1 832/13 cells under high glucose exposure. The amount of insulin 

released into the culture medium under static incubation conditions was assessed by ELISA and 
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measured spectrophotometrically. Herein, we detected an increase in insulin secretion by the 

beta cells on short term glucose stimulus. However, cells that were chronically exposed to high 

glucose concentrations exhibited a significant impairment in insulin secretion, indicating that 

chronic hyperglycemia has a detrimental effect on beta cell function and contributes to the 

progression of type 2 diabetes. 

 Our findings also revealed considerable modifications in the subcellular distribution of 

lamin B in INS-1 832/13 cells under conditions of exposure to high glucose. What then might be 

the mechanisms underlying abnormal distribution of lamin B that we observed in beta cells 

exposed to high glucose conditions? To address this question, we made use of pharmacological 

inhibitors of the ER stress-mediated mitochondrial damage pathway in order to establish the 

causal role of ER stress in the release of cytochrome c into the cytoplasm, the subsequent 

activation of caspases and loss of integrity of the nuclear lamina. Thapsigargin, a known inducer 

of ER stress in many cell types inhibits the sarcoplasmic/ ER calcium ATPase [SERCA] pump, 

which regulates the influx of calcium ions from the cytoplasm of the cell into the ER lumen. 

Induction of ER stress by thapsigargin as evidenced by the upregulation of CHOP expression 

also induced activation of caspases in the islet beta cell, along with an increase in lamin B 

degradation. Extant studies and data obtained in our study suggest that increased oxidative and 

ER stress leading to mitochondrial dysfunction could be a result of hyperglycemic conditions. As 

a consequence, executioner caspases in the cytoplasm are activated by cytochrome C released 

from the dysregulated mitochondria. Moreover, the significant inhibition by PBA of CHOP 

expression, caspase 3 activation and lamin B degradation, that were augmented under high 

glucose exposure, further strengthens the notion of the involvement of an ER mediated pathway 

in the beta cell under glucotoxic conditions. Lastly, our observations also support reports by 
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Tang et al. establishing clear roles for the oxidative stress-ER stress signaling axis in glucose-

induced beta cell dysfunction in vivo in rats [114] 

 Investigation of the association of intracellular calcium levels in this pathway, led to the 

suggestion that accumulation of cytosolic calcium plays a contributory role in regulation of 

glucose-induced effects on caspase 3 activation and lamin B degradation. Studies conducted by 

Wang et al. demonstrate the participation of intracellular calcium in ER stress pathway in the 

pancreatic beta cell. To this end they have uncovered the cytoprotective effects of nifedipine, a 

dihydropyridine calcium channel blocker via a decrease in the phosphorylation of eukaryotic 

initiation factor 2α [eIF2α], expression of CHOP and active caspase 3 [94]. Another 

phenylalkylamine calcium channel blocker, verapamil, has been utilized by Xu and colleagues, 

wherein they demonstrated the inhibitory effect of verapamil on increased expression of 

thioredoxin-interacting protein [TXNIP], which is upregulated in diabetic conditions and 

reestablished insulin secretion in vivo in 8 week old, leptin-deficient, type 2 diabetic BTBRob/ob 

mice. This background and our current findings further reinforce the idea that accumulation of 

calcium in the cytoplasm due to increased influx via the L-type calcium channels located on the 

cell membrane would eventually lead to mitochondrial damage due to calcium overload and 

further cause disruption of cellular function. Inhibitors of long lasting calcium channels [e.g., 

verapamil and nifedipine] seem to support the beta cells in defense against stress stimuli and 

enhance beta cell survival and function [93, 94, and 115]. Moreover, a recent study by Zhou et 

al. has demonstrated the protective effects of nifedipine-mediated inhibition of calcium channels 

in pancreatic beta [MIN6] cells and mouse islets treated with palmitic acid. Further they have 

also suggested the involvement of ER stress in lipotoxicity, evidenced by an increase in 

phosphorylation of eukaryotic initiation factor 2α [eIF2α] and expression of CHOP which were 

reversed by nifedipine [116]. Along these lines we put forward a working model that implicates 



92 

 

 

 

excessive influx and build up of cytosolic calcium as one of the causal factors leading to 

hyperglycemia-induced activation of caspase 3 and 6 and proteolytic degradation of lamins A 

and B. 

 The preferential detection of certain amino acid chain arrangements on the substrate 

proteins by individual caspases has been utilized in building up specific peptide inhibitors of 

these proteases. These peptide inhibitors of caspases readily permeate the cell membrane and 

bind to the catalytic sites on the caspases based on preferential sequence specificity and in 

doing so, impede the events downstream of caspase activation. In vitro studies by Huo et al. in 

the HIT-T15 beta cell line have shown that Z-VDVAD-FMK, a specific inhibitor of caspase 2 has 

a protective effect on the cells against detrimental effects of mycophenolic acid [MPA], thereby 

aiding their survival [95]. Furthermore, another study which utilized human Fas cDNA for 

transfection into murine βTC-1 cell lines demonstrated the involvement of caspase 3 in Fas- 

mediated death signaling pathway. In addition, on using Z-Asp-Glu-Val-Asp fluoromethyl ketone 

[Z-DEVD-FMK] a specific inhibitor of caspase 3, protected against Fas-induced cell death [96]. 

In a similar mouse model transfected with human Fas, a caspase 6 inhibitor was observed to 

exert protective effects against palmitic acid-induced effects on the cells [97]. Our own data 

obtained from studies using Z-DEVD-FMK and Z-VEID-FMK specific inhibitors of caspase 3 and 

caspase 6 activation respectively, in INS-1 832/13 cells points out the involvement of both these 

executioner caspases in the disassembly of the nuclear lamina via proteolytic cleavage and the 

reversal of these effects by the peptide inhibitors [117]. We recognize potential caveats in our 

studies involving the use of inhibitors of caspase 3 and caspase 6. While we were able to 

demonstrate their inhibitory effects on caspase activity and lamin degradation under high 

glucose conditions, thus confirming our hypothesis, we also observed that they exerted 

untoward effects on beta cells under low glucose conditions. Additional studies to test the 
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possibility that the addition of the chemical or peptide inhibitors to cells under basal conditions 

may trigger such a response would help in gaining further understanding of this observed 

phenomenon.  

Further to elucidate the role of post translational prenylation of nuclear lamins towards 

cell stability and function in our studies we utilized pharmacological inhibitors of prenylation such 

as, statins [simvastatin], FTIs and GGTIs. Statins belong to the cholesterol lowering class of 

drugs and are one of the most widely used drugs in the treatment of cardiovascular diseases. 

The first ever statins isolated from the Penicillium species were compactin and mevastatin in the 

year 1976, followed by lovastatin in 1980. Subsequent studies revealed their property of 

inhibition of the HMG-CoA reductase enzyme and the associated blocking of cholesterol 

biosynthesis. However the most important benchmark in the discovery of statin molecules was 

in the year 1987; when Simvastatin, a semi-synthetic compound derived using the lovastatin 

parent structure was approved for use in humans.  In the following years several purely 

synthetic statin moieties were derived, namely; fluvastatin, atorvastatin, cerivastatin, with 

rosuvastatin and pitavastatin being the most recently developed in 2003 and 2009 respectively 

[118-121]. In 2001, cerivastatin was withdrawn from the market due to renal malfunction 

associated deaths that were reported in the post marketing surveys [122]. The basic 

mechanism of action is by inhibition of HMG-coA reductase in the cholesterol biosynthesis 

pathway [123]. The inhibition of the reductase enzyme blocks the production of mevalonic acid 

MVA which is a precursor to cholesterol. The primary effects of statins are inhibition of 

cholesterol synthesis and increasing LDL uptake [124, 125]. However, based on recent 

evidence from a number of studies, trials and meta analysis, the U.S. Food and Drug 

Administration [FDA] has approved important safety label changes for statins that indicate the 

association of statins with an increase in hemoglobin A1C and fasting glucose levels. Despite 
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these reports, the underlying molecular mechanisms of these effects of statins need to be 

further explored in the context of pancreatic beta cells and type 2 Diabetes. In addition to 

blocking cholesterol synthesis, statins also prevent the formation of intermediate metabolites of 

this pathway, namely: farnesyl pyrophosphate [FPP] and geranylgeranyl pyrophosphate [GGPP] 

that are involved in post translational prenylation of several proteins [Rho, Rab, Ras, lamins], 

thereby preventing post translational prenylation of these proteins. In this context, a variety of 

pharmacological inhibitors that interfere with the activities of the enzymes farnesyl transferase 

[FTase] and geranylgeranyltransferase [GGTase] have been developed. Figure 6-2 depicts the 

structures of a few inhibitors of prenylation, namely; simvastatin, farnesyl transferase inhibitor 

[FTI-277] and geranylgeranyltransferase inhibitor [GGTI-2147]. 

Figure 6-2: Chemical structures of inhibitors of protein prenylation 

 A recent study carried out by Ishikawa and associates reported that different statin 

molecules have differential effects on the insulin release by the beta cell. In this study they 

SIMVASTATIN

FTI‐277 GGTI‐2147
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utilized MIN6 cells to study beta cell function by measuring glucose stimulated insulin secretion 

in the cells post treatment with various statin drugs and demonstrated that decreasing 

hydrophobicity of the molecules enhances their capacity to impair insulin secretion in the cells. 

Therefore, the more lipophilic statins such as lovastain and simvastatin demonstrated a more 

pronounced effect [126]. Based on their studies with lovastatin in MIN6 beta cells, Tsuchiya et 

al. propose that statin-mediated inhibition of cholesterol biosynthesis pathway and thereby 

depletion of the intermediate metabolites such as mevalonate, squalene and geranylgeranyl 

pyrophosphate is a contributory factor towards the reduction in insulin content of the cell, as well 

as its capacity to efficiently secrete insulin [127]. Early studies by Metz et al. demonstrated that 

inhibition of PTM of GTP binding proteins brought about a decrease in the insulin secretion in 

intact rat islets. In this study, they also showed that lovastatin treatment of the islets caused a 

hindrance in their association with the membrane and markedly diminished glucose stimulated 

insulin secretion, which could be precluded by supplementing the culture media with mevalonic 

acid [128]. Several lines of evidence in other cell types implicates that inhibition of requisite 

post-translational modifications of lamins [A and B], including farnesylation and 

geranylgeranylation results in alterations in cell metabolism and can have detrimental effects on 

the cell. For example, using TAD-2 thyroid cell line Matola and associates reported that 

lovastatin, an inhibitor of protein farnesylation and geranylgeranylation, induces cell death by 

inducing mitochondrial dysfunction, cytochrome C release, caspase 3 activation and lamin B 

degradation [129]. Likewise, more recent studies by Chang et al. have demonstrated 

abnormalities in lamin A processing following inhibition of its farnesylation using FTIs and also 

GGTIs. They reported significant accumulation of unprocessed lamin A intracellularly [130].  

 In order to study the regulatory role of farnesylation in lamins, several studies utilizing 

farnesyltransferase inhibitors have been conducted. In one such study Adam et al.  reported an 
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increase in unprocessed lamin B2 and lamin A and a decrease in mature lamin B1 in human 

fibroblasts treated with FTIs [131]. Hutchinson-Gilford Progeria Syndrome [HGPS] is a rare 

premature aging disorder caused by point mutation G608G [GGC>GGT] within exon 11 of 

LMNA gene encoding A-type nuclear lamins. This mutation results in the expression of a 

truncated protein, progerin, deficient in 50 amino acids in the carboxyl-terminus of prelamin A, 

which still retains a farnesylated cysteine at its carboxyl terminus, a modification involved in 

HGPS pathogenesis. Previous studies in cellular and animal models of HGPS have 

demonstrated that FTI treatment improves abnormal nuclear morphology and phenotype [132]. 

Mallampalli et al. also demonstrated that FTI [rac-R115777] significantly improved abnormal 

nuclear morphology in HeLa cells [133] and also FTI-276 improved nuclear shape abnormalities 

in keratinocytes of transgenic mice expressing progerin in epidermis or a combination therapy of 

pravastatin and zoledronate by immunofluorescence microscopy [134]. In HGPS mouse model 

dose-dependent administration of the FTI tipifarnib [R115777, Zarnestra] significantly prevented 

loss of vascular smooth muscle cells in the large arteries and also delayed progression of 

cardiovascular disease [135]. In another study along these lines, R115777 a potent, orally 

active FTI, was recently investigated in a phase I dose-ranging study in patients with acute 

leukemias. R115777 dose dependently inhibited farnesylation of lamin A and HDJ-2 [136] 

suggesting further evaluation of this compound in clinical studies. In a recent clinical trial study 

in children prone to HGPS, 25 patients were subjected to a 2 year treatment with lonafarnib 

[FTI]. All subjects improved in one or more of the following: gaining additional weight, better 

hearing, improved bone structure and/or, most importantly increased flexibility of blood vessels. 

This study presented preliminary evidence that lonafarnib may improve the detrimental 

phenotypical changes associated with this disorder [137].  
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 Interestingly, significant effects on mitochondrial and nuclear stability indicated by 

increased activation of caspase 3 and degradation of lamin B were observed in our studies with 

simvastatin, which demonstrate the consequences of inhibition of post-translational prenylation 

in INS-1 832/13 cells as well as rat islets. In addition, we observed clear alterations in cell 

morphology [rounding], and a marked decrease in cell survival and GSIS. Moreover, a 

significant increase in the activation of p38 MAP Kinase, which has been implicated in 

hyperglycemia associated beta cell dysfunction, was observed along with a marked decrease in 

the phosphorylation of ERK 1/2 which plays a crucial role in cell survival and function. The 

effects of this lipophilic statin on caspase 3 and lamin B were mimicked by a specific inhibitor of 

farnesyl transferase, FTI-277. However GGTI-2147, which specifically inhibits 

geranylgeranyltransferase-I, could not produce the same effects as seen in INS-1 cells and rat 

islets. These observations point out the possibility that the caspase 3 activation and lamin B 

degradation effects are farnesylation dependent. However, whether this is a result of depletion 

of the substrate farnesyl pyrophosphate [FPP] or if it is due the inhibition of the enzyme FTase 

or a combination of the two needs to be further investigated. In this context, recent reports from 

our laboratory in insulin secreting cells have shown that the degradation of the regulatory 

subunit of FTase was caspase 3 mediated [93]. Also, evidence in other cell types indicated a 

caspase 3 dependent mechanism involved in the degradation of the common α subunit of 

FTase and GGTase [138].  

 In an attempt to identify the patho-mechanism of inhibition of prenylation using statins or 

farnesylation inhibitors Pelaia et al. have demonstrated in 2 lung cancer cell lines, namely 

CALU-1 [squamous cell line] and GLC-82 [adenocarcinoma cell line] that inhibition of 

prenylation with these agents caused a decrease in the phosphorylation of ERK 1/2 and showed 

detrimental effects on cell morphology, thereby implicating the Ras/Raf/MEK/ERK pathway 
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[139]. This observation was confirmed in glioma cell lines by Afshordel and associates wherein 

they inhibited prenylation with lovastatin and perillyl alcohol [140]. Bonifacio and colleagues 

have identified the AKT/mTOR pathway as a target for statin mediated detrimental effects in 

myotubes. 24 hr incubations of C2C12 myotubes with 10 – 50 µM concentrations of simvastatin 

and atorvastatin caused a decrease in AKT phosphorylation thereby inhibiting its activation. In 

addition they observed a parallel increase in the activation of caspases and the downstream 

cleavage of PARP. Comparable effects observed in mice skeletal muscles indicate that probing 

further into statin-mediated effects on the AKT/mTOR pathway would provide important leads in 

the identification of prospective therapeutic targets [141]. Collectively, these observations point 

out the significance of post translational modifications, specifically farnesylation in maintaining 

the function and integrity of the nuclear lamins. 
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CHAPTER 7 

CONCLUSION AND FUTURE DIRECTIONS 

 

 The overall goal of my Ph.D. project is to understand the cellular mechanisms involved 

in the pathology of islet beta cell dysfunction under conditions of chronic exposure to high 

glucose [glucotoxicity]. Salient features of my research work are:  

 Exposure of insulin-secreting pure beta cells [INS-1 832/13 cells], normal rodent islets 

and human islets to glucotoxic conditions results in the activation of executioner 

caspases 3 and 6, and subsequent degradation of their downstream target proteins, 

such as nuclear lamins A and B.  I also observed a significant inhibition of glucose-

stimulated insulin secretion under these conditions. 

 Glucotoxic conditions promoted significant alterations in the subcellular distribution of 

nuclear lamins [e.g., increased abundance in cytosol] suggesting the collapse of nuclear 

compartment under these conditions. 

 Specific inhibitors of caspase 3 and caspase 6 attenuated high glucose-induced caspase 

activation and lamin degradation. 

 Similar increases in the activation of executioner caspases and degradation of nuclear 

lamins A and B were seen in islets derived from the ZDF rat, a model for T2DM and 

islets from T2DM human donors. 

 In a manner akin to thapsigargin, a known inducer of ER stress, glucotoxic conditions 

also significantly increased ER stress as evidenced by increased expression of CHOP, a 

marker for ER stress. Moreover, exposure of beta cells to thapsigargin resulted in the 
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activation of executioner caspases and lamin degradation, thus suggesting that caspase 

activation and lamin degradation seen under the duress of high glucose may, in part, be 

due to increased ER stress. This is further confirmed by my observations that PBA, a 

known inhibitor of ER stress, markedly attenuated CHOP expression, caspase activation 

and lamin degradation in beta cells exposed to glucotoxic conditions.  

 Nifedipine, a known inhibitor of membrane-associated L-type calcium channels, also 

inhibited high glucose-induced caspase activation and lamin degradation; these findings 

suggest that increased levels of intracellular calcium in beta cells exposed to glucotoxic 

conditions could contribute to the mitochondrial [caspase activation] and nuclear [lamin 

degradation] defects.  

 Inhibition of protein [lamin] prenylation with simvastatin, a known inhibitor of 

farnesylation and geranylgeranylation, promoted mitochondrial and nuclear defects as 

evidenced by caspase activation and lamin degradation in INS-1 832/13 cells and 

normal rodent islets. More site-specific inhibitors of protein farnesylation [FTI-277] also 

caused caspase activation and lamin degradation suggesting potential involvement of a 

farnesylated protein in the induction of mitochondrial defects. It is also likely that 

inhibition of farnesylation of lamins by FTI-277 and simvastatin make lamins more 

vulnerable for degradation and nuclear collapse. My findings also suggested that 

inhibition of protein prenylation leads to increase in stress kinase [p38 kinase] and 

inhibition of ERK1/2, known for its cell survival roles. Collectively, these alterations in cell 

signaling pathways could promote intracellular stress and demise. 

 

 Based on the above findings, I conclude that chronic exposure of beta cells to 

hyperglycemic conditions leads to increased intracellular calcium levels [calcium overload] and 
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ER stress leading to loss in mitochondrial dysregulation, including loss in mitochondrial 

permeability pore transition, leakage of cytochrome C into cytosol and activation of executioner 

caspases. These events, in turn, lead to degradation of key cellular proteins, such as nuclear 

lamins, resulting in the collapse of nuclear compartment and accumulation of lamin degradation 

products in cytosolic compartment. Collectively, alterations in these cellular events lead to a loss 

in functional beta cell mass and onset of diabetes. I believe that my studies not only provided 

mechanistic insights into mitochondrial and nuclear dysfunction in beta cells under the duress of 

glucotoxic conditions, but they also provided fresh insights into potential beneficial 

[cytoprotective] effects of calcium channel blockers in the treatment of T2DM in humans. 

Future directions: 

 While my research work provided novel insights into islet dysfunction in diabetes, I 

believe that there are several knowledge gaps that need to be filled. Some of those are listed 

below. 

 

 First, we need to quantify the intracellular calcium levels in the beta cell following 

exposure to glucotoxic conditions. Data from calcium channel blockers are encouraging, but it is 

important to quantify the levels of calcium in cells treated without or with glucose and calcium 

channel blockers and correlate those with cellular indices of apoptosis. Further, we need to 

verify these in vitro findings in animal models of T2DM to see if administration of calcium 

channel blockers prevents/halts islet dysfunction and diabetes in these model systems. 

 

 Second, we need to investigate metabolic alterations in beta cells exposed to saturated 

fatty acids, such as palmitate [lipotoxic conditions] and, ideally, glucolipotoxic conditions. These 
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studies would provide additional insights into combined effects of glucose and lipids in inducing 

mitochondrial and nuclear defects. 

 

 Third, additional studies are needed to further asses the roles of post-translational 

farnesylation of lamins in maintaining the integrity of the nuclear envelop. This can be 

addressed first by in vitro approaches involving use of inhibitors of protein prenylation and 

siRNA-mediated knockdown of prenyltransferases. My studies have identified the lamin 

processing enzyme in the islet, and therefore, it is likely that lamins might undergo additional 

PTMs [carboxylmethylation] that might be requisite for maintaining the integrity of nuclear 

envelop. Very little is known with regard to alterations in these modification signaling events in 

the diabetic islet. 

 

 Lastly, LMNA mutations have been shown in human subjects with severe metabolic 

syndrome. More needs to be understood with regard to potential alterations in post-translational 

prenylation and phosphorylation of lamins as cause for pathology of metabolic disorders 

including obesity and T2DM.  
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Type 2 Diabetes [T2DM] is a chronic condition resulting from gradual failure of 

pancreatic beta cells to synthesize and secrete sufficient insulin to meet the metabolic demands 

and the inability of tissues [muscle, adipose and liver] to efficiently utilize the secreted insulin 

leading to an overall increase in blood glucose levels [hyperglycemia]. As indicated by recent 

estimates from the International Diabetes Federation, the prevalence of the disease in the year 

2014 has risen to a record 387 million worldwide. The main objective of my project was to study 

the mechanisms involved in pancreatic beta cell dysfunction in diabetes, specifically in 

elucidating the role of endoplasmic reticulum [ER] - mitochondria axis, executioner caspases 

and their target substrates; specifically nuclear lamins.  

Results obtained from our studies in pure beta cells [INS-1 832/13], primary rodent and 

human islets strongly suggest that glucotoxicity induced pancreatic beta cell damage involves 

the degradation of nuclear lamins A and B, via ER stress-mediated activation of executioner 

caspases 3 and 6. We confirmed this by employing pharmacological approaches [inhibitors of -

ER stress, -caspase activation and calcium channel activation] to gain mechanistic insights into 
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beta cell dysfunction under the duress of chronic hyperglycemia. Further, we were able to 

corroborate these findings in the ZDF rat, an animal model for T2DM and in islets obtained from 

human donors with T2DM. Also, our findings revealed significant attenuation of glucose-

stimulated insulin secretion [GSIS] in beta cells exposed to glucotoxic conditions suggesting 

cellular dysfunction under these conditions. Post-translational prenylation of lamins is important 

for their localization into the nuclear membrane, and subsequent interaction with other proteins. 

Our results indicate that inhibition of prenylation by simvastatin and a site-specific inhibitor of 

protein farnesylation [FTI-277], promoted mitochondrial and nuclear defects as evidenced by 

caspase activation and lamin degradation in INS-1 832/13 cells and normal rodent islets. Our 

findings also suggest that inhibition of protein prenylation leads to increase in stress kinase [p38 

kinase] and inhibition of ERK1/2, known for its cell survival roles. Collectively, these alterations 

in cell signaling pathways could promote intracellular stress and demise. 

 We hope that data accrued in these studies will provide fresh insights into the 

identification of the intracellular mechanisms involved in beta cell malfunction in nutrient 

overload and metabolic stress. These studies will also aid in the identification of potential drug 

targets for the management and/or prevention of diabetes. 
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