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CHAPTER 1 INTRODUCTION

Machine learning as a field is defined to be the set of computational algorithms that

improve their performance by assimilating data. Since modern computation and storage

becomes cheap at a very fast rate, both knowledge discovery in scientific endeavors and

developing cost effective solutions in industry, increasingly rely on machine learning. As

such, the field as a whole has found applications in many diverse disciplines from robotics and

communication in engineering to economics and finance, and also biology and medicine.

It should not come as a surprise that many popular methods in use today have completely

different origins. Modern machine learning methods usually find their roots in statistics,

optimization and computer science. In some instances the same method can be analyzed and

interpreted from different views. Despite this heterogeneity, different methods can be divided

into standard tasks, such as supervised, unsupervised, semi-supervised and reinforcement

learning.

Supervised learning is the setting where the available data is provided with predetermined

outcomes, and the goal is to learn the best model that can predict the outcome in some

measurable sense. When the outcome is discrete, the task is known as classification, and

when it is continuous the task is called regression. Due to it’s usefulness, this setting is

the most studied task in machine learning and prevalent in many domains such as speech,

vision and text. Unsupervised learning is the setting where the data is provided without any

labels, and the goal is to organize the data in groups or find some structure in it. Clustering,

density estimation and community detection are instances of this setting. Semi-supervised

learning as the name implies is when the data is partially labeled, and unlabeled data is

usually much more abundant than labeled data. Finally, reinforcement learning or credit

assignment problem is the setting where the agent receives delayed reward or punishment

for any action, and the goal is to learn a policy that maximizes the reward.

Although machine learning as a field can be formalized as methods trying to solve certain
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standard tasks, applying these tasks on datasets from different fields comes with certain

caveats, and sometimes is fraught with challenges. In this thesis, we develop general proce-

dures and novel solutions, dealing with practical problems that arise when modeling biological

and medical data.

Cost sensitive learning is an important area of research in machine learning which ad-

dresses the widespread and practical problem of dealing with different costs during the learn-

ing and deployment of classification algorithms. There are various ways to assign costs to the

learning algorithms. To name a few misclassification costs and data acquisition costs are two

fundamental notions of cost assignment. In many applications such as credit fraud detec-

tion, network intrusion and specifically medical diagnosis domains, prior class distributions

are highly skewed, which makes the training examples very much unbalanced. Combining

this with uneven misclassification costs renders standard machine learning approaches use-

less in learning an acceptable decision function. In Chapter 2 we experimentally show the

benefits and shortcomings of various methods that convert cost blind learning algorithms to

cost sensitive ones. The empirical results are produced using controlled experiments with

large amounts of data to ensure validity.

Using the results and best practices found for cost sensitive learning, we design and

develop a machine learning approach to ontology mapping. Due to the nature of ontology

mapping problem and the human in the loop requirement, the ontology mapping framework

should consider different costs involved. Although machine learning techniques have been

used earlier in many semantic integration approaches, dependence on precision recall curves

to preset the weights and thresholds of the learning systems has been a serious bottleneck.

By recasting the mapping problem to a classification problem we try to automate this step

and develop a robust and extendable meta learning algorithm. The implication is that we can

now extend the same method to map the ontology pairs with different similarity measures

which might not be specialized for the specific domain, yet obtain results comparable to the

state of the art mapping algorithms that exploit machine learning methods. Interestingly we
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see that as the similarity measures are diluted, our approach performs significantly better

for unbalanced classes. We test our approach using several similarity measures and two

real world ontologies, and the test results we discuss validate our claim. We also present a

discussion on the benefits of the proposed meta learning algorithm.

Next, we present a novel approach to deal with uncertainty in classification when costs

are unknown or otherwise hard to assign. Support Vector Machines (SVM) are considered to

be among the most successful approaches for classification. However prediction of instances

near the decision boundary depends more on the specific parameter selection or noise in data,

rather than a clear difference in features. In many applications such as medical diagnosis,

these regions should be labeled as uncertain rather than assigned to any particular class.

Furthermore, instances may belong to novel disease subtypes that are not from any previ-

ously known class. In such applications, declining to make a prediction could be beneficial

when more powerful but expensive tests are available. In Chapter 4, we focus on finding

the regions in which there is a high uncertainty in predictions. A natural way for determin-

ing these regions when related costs are known is using posterior probabilities. However,

in practice, the true costs are rarely available, and large margin classifiers do not compute

posterior probabilities. This makes it difficult to combine the cost with the posterior and

identify the uncertain regions. Previous methods have shown that thresholding SVM output

can be effective, however they are limited by the requirement of a predefined extended cost

function, i.e. an a priori definition for the misclassification and rejection costs, which is even

harder to define in practice. The original contribution of this part is an approach for auto-

matically finding uncertain regions without the need to pre-define relative misclassification

and rejection costs. We develop a novel approach for optimal selection of the threshold and

show its successful application on three biological and medical datasets.

The last part of this thesis provides novel solutions for handling high dimensional data

usually found in biological and medical experiments. Technological advances have revolution-

ized data collection and processing. Although high-dimensional data is ubiquitously found
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in many disciplines, current life science research almost always involves high-dimensional ge-

nomics/proteomics data. The“omics”data provide a wealth of information and have changed

the research landscape in biology and medicine.

However, these data are plagued with noise, redundancy and collinearity, which makes

the discovery process very difficult and costly. Any method that can accurately detect

irrelevant and noisy variables in omics data would be highly valuable. In Chapter 5, we

present Robust Feature Selection (RFS), a randomized feature selection approach dedicated

to low-sample high-dimensional data. RFS combines an embedded feature selection method

with a randomization procedure for stability.

Recent advances in sparse recovery and estimation methods have provided efficient and

asymptotically consistent feature selection algorithms. However, these methods lack finite

sample error control due to instability. Furthermore, the chances of correct recovery di-

minish with more collinearity among features. To overcome these difficulties, RFS uses a

randomization procedure to provide an accurate and stable feature selection method. We

thoroughly evaluate RFS by comparing it to a number of popular univariate and multivariate

feature selection methods and show marked prediction accuracy improvement of a diagnostic

signature, while preserving a good stability.
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CHAPTER 2 COST SENSITIVE LEARN-
ING AND THE CLASS IMBALANCE PROB-
LEM

Numerous learning algorithms have been developed since the appearance of modern com-

putation. Learning algorithms can be defined as programs that improve their performance

according to one or more criteria through assimilation of data/experience. Classification is

a branch of learning algorithms that tries to classify a set of instances into a finite set of

discrete categories. Classification algorithms are usually designed to optimize a certain loss

function and in most cases this loss function is their expected number of errors. However,

in real world application scenarios misclassification errors are rarely of equal cost. To make

things a little worse, it is usually the case that costly errors happens to be on classes which

we have little information to work with. That is, errors made upon the classes that we

have few training examples are usually the costly ones. In the machine learning commu-

nity, the first problem is called cost sensitive learning, and the second one is called the class

imbalance problem. There are many types of costs that can be associated to learning and

deployment of a particular algorithm [106]. Misclassification cost, data acquisition cost, ac-

tive learning cost and computation cost are to name a few, however, our focus in this paper

is only on misclassification cost. For other work related to different types of cost please refer

to [105, 121, 69].

2.1 Introduction

In this work we review different ways of developing cost sensitive classifiers and how

much these approaches are influenced by the class imbalance problem. Unless the prior class

distributions are not highly skewed, the class imbalance problem is not always a problem per

se, since some learning algorithms do consider the prior class distributions in their learning
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process [120]. However, combining this with asymmetric misclassification costs can make a

classifier completely useless [70].

Whenever there is sufficient credence to define costs, they are dealt with using three basic

approaches. The first approach uses Bayes risk theory to minimize the expected cost [27, 121].

In this approach a classifier is trained to output class conditional probability estimates, which

is coupled with the cost to define decision boundaries with minimum expected cost. The ad-

vantage of this approach is that costs need not be known at the training time. Thus, we can

come up with different decisions simply by changing the cost matrix at deployment time.

However, for this to happen, we need to have accurate conditional probability estimates,

which are usually harder to obtain than the classification or discriminant function. Proba-

bility Estimation Trees and Lazy Option Trees [71], Bagging [17], and Calibrating [83, 122]

are among the few methods to obtain accurate probability estimates. The second approach

is that of making specific classifiers cost sensitive. Cost sensitive versions of Naive Bayes,

Decision Trees [64, 15, 103], Support Vector Machines [47] and Neural Networks [49] fall

into this category. The third approach is algorithm independent, where it alters the distri-

bution of the training examples either by reweighting each instance or by resampling the

whole training set. Some algorithm specific approaches fall into this category as well. The

simplest case is random oversampling of the minority class and/or random undersampling

of the majority class [72]. Experiments done with decision trees show that random over-

sampling usually defeats the validation process and thus makes the model overfit the data,

but random undersampling helps improve the correct classification rate to some extent [30].

To help overcome the problem of creating independent samples from the altered distribu-

tion while still avoiding overfitting, instead of bootstrapping, rejection sampling methods

has been successfully used and also further improved by bagging several trained models over

the resampled data. This method is known as Costing [123]. There are also variants of

resampling that make informed oversampling by employing k-nearest neighbors as a local

estimator combined with random undersampling [20]. This method proves successful in var-
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ious cases, however sometimes over-generalizes the minority class especially when the data

contains a fair amount of outliers. Some attempts have been made to solve this problem

by identifying the so called noise and borderline regions of the space to generate synthetic

samples [53].

In the rest of Chapter 2, we compare direct cost sensitive classifiers to wrapper approaches

in terms of their success in handling different levels of imbalanced data and asymmetric

costs. As proven in [4], theoretically we can use a technique called Data Space Expansion

to convert any multiclass classification problem to its binary counterpart. Although this

would be practical for multi-class problems with few classes, methods that consider large

number of classes is beyond the scope of this work. Thus, from now on without loss of

generality, we will only consider binary classification problems, i.e. classification problems

with only two classes. First we discuss the basics of cost matrices and selecting the base rate.

Then we go on to describing some of the resampling and reweighting approaches. Finally we

compare these methods experimentally by applying them to several well-known classification

algorithms. The large amounts of data and cross validation over a wide range of parameter

settings ensure good confidence in the reported results.

2.2 Basics of Cost Sensitive Learning

We formally define a cost sensitive learning algorithm, one that minimizes the expected

cost. Costs can be modeled in three major ways; namely, example independent cost, example

dependent cost [121] and attribute acquisition cost [69]. The first two methods model mis-

classification cost while the latter models data acquisition cost. Example dependent costs are

useful when misclassifying different examples of the same class would incur different costs.

This is only possible in rare cases, such as credit card fraud detection or gathering dona-

tion through mail solicitation, when the actual case dependent cost or benefit can be easily

obtained. The more widely used cost model that is also used in this paper is the example
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independent misclassification cost, which we call misclassification cost or simply cost from

now. In binary classification problems misclassification cost can be defined by a cost matrix

C, as in Table 2.1. The extension of the cost matrix to multiclass problems is trivial.

Table 2.1: Cost Matrix For Binary Classification Task

Actual Negative Actual Positive
Predicted Negative C(0, 0) or True Negative (TN) C(0, 1) or False Negative (FN)
Predicted Positive C(1, 0) or False Positive (FP) C(1, 1) or True Positive (TP)

Let the confusion matrix H of a classifier be as in Table 2.2.

Table 2.2: Confusion Matrix of a Binary Classifier

Actual Negative Actual Positive
Predicted Negative tn fn
Predicted Positive fp tp

Then the performance of this classifier can be calculated from the expected loss, which

is the sum of the Hadamaard (element-wise) product of the cost matrix by the confusion

matrix divided by the total sample size,

C •H∑
i,j Hi,j

=
tn · C(0, 0) + fp · C(1, 0) + fn · C(0, 1) + tp · C(1, 1)

tn+ fp+ fn+ tp
(2.1)

Now suppose the algorithm classifies according to the estimated conditional probabilities

P (j|x) , where j is the class and x is the attribute vector. Then according to the mini-

mum Bayes risk theory, the decision boundary with respect to the expected risk R(i,x) =∑
j P (j|x)C(i, j), should be

P (−1|x) · C(1, 0) + P (1|x) · C(1, 1) ≤ P (−1|x) · C(0, 0) + P (1|x) · C(0, 1) (2.2)

which is equivalent to

P (−1|x) · (C(1, 0)− C(0, 0)) ≤ P (1|x) · (C(0, 1)− C(1, 1)) (2.3)
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Therefore adding a constant to a column of the cost matrix will not modify the optimal

decision boundary. Accordingly, we simplify the cost matrix from now on such that all the

elements except the main diagonal become zero. Although this cost matrix has two degrees

of freedom, as far as the decision boundary is concerned, it only has one degree of freedom,

since the fact that “the total sum of class conditional probabilities has to sum up to 1”,

adds another constraint. Thus, effectively the optimal p∗ threshold that makes the decision

boundary is given by

p∗ =
C(1, 0)

C(1, 0) + C(0, 1)
(2.4)

In cost blind classifiers that misclassification costs are all equal, p∗ is inherently set to

0.5. Thus a simple way to correct for different cost matrices is changing the threshold to the

optimal base rate 2.4. Although threshold correction is a simple way of making classifiers cost

sensitive, it is only effective if the classifier can estimate conditional probabilities accurately.

However, this is not the case for many well-known classifiers. Classic decision trees and

support vector machines can only output a class number and ranking respectively which is

sufficient for classification but not for probability estimation. One way to account for this

problem is threshold correction by empirical evaluation and cross validation [92]. We will

discuss other approaches to handling this problem next.

For the comparison of various learning algorithms, we use the Area Under the ROC Curve

(AUC) as our performance measure. AUC can be calculated using Equation 2.5 for a binary

classifier. In this equation ri is the rank of ith positive example based on its probability

or score belonging to the positive class sorted in ascending order, and n+ and n− are the

number of positive and negative training samples respectively.

ˆAUC =

∑
i ri − n+(n+ + 1)/2

n−n+

(2.5)

There are several intuitive reasons for choosing AUC over other performance measures

such as accuracy, precision, recall and F1 [56]. For example, AUC has increased sensitivity
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in Analysis of Variance (ANOVA) tests, is independent of the decision threshold, and thus

invariant to a priori class probability distributions [16]. The AUC measure is effectively

equivalent to the nonparametric Wilcoxon-Mann-Whitney statistic [54]. We also note that

expected loss (2.1) is a good performance measure when we have the actual true cost, which

is rarely the case. In other words, the expected loss shows the performance of the classifier

for a specific operating point (cost matrix and prior class distribution), as compared to AUC

which shows the aggregate performance over the entire range of operating points on the ROC

curve.

2.3 Wrapper Approaches to Cost Sensitive Learning

As previously mentioned, some learning algorithms do not produce accurate probability

estimates although they do provide a discriminant function. Wrapper approaches to cost

sensitive learning try to make cost blind classifiers cost sensitive, without manipulating the

learning algorithm itself. It has been shown that we can achieve the desired base rate by

rebalancing the input to the training algorithm, in proportion to the cost matrix [35, 123].

This is basically achieved either by resampling or reweighting the training data. If the base

algorithm can handle instance weights, reweighting is always preferred to resampling, since

it does not lose any information. Resampling or reweighting is always done according to the

optimal base rate, thus the ratio of positive instances to negative instances is in proportion

to (∝),

#positivenew
#negativenew

∝ P (1)C ′(0, 1)

P (−1)C ′(1, 0)
(2.6)

where P (−1) and P (1) are the prior distribution of the positive and negative examples of

the training data and C ′ is the simplified cost matrix.

Since this ratio is only a proportion, it can be achieved by undersampling the majority

class, oversampling the minority class or a combination of both. Previous work [30, 123]

has shown that undersampling almost always outperforms oversampling in decision trees.
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Learning decision trees involves a process known as pruning [37], which stops the growth

of the tree somewhere along the path (pre-pruning) or eliminates the leaf nodes of the tree

after full growth (post-pruning). In either case, these methods need a validation set which

is chosen from the training set; therefore oversampling the minority class creates a biased

training sample (with many identical samples in the validation and training set) that defeats

the internal validation process when pruning the decision tree. To overcome this problem

Zadrozny [123] proposed the so called Costing method, which is a rejection sampling method

that effectively keeps all samples of the minority class and undersamples the majority class.

By bagging several trees learned through resamplings of this form, they develop a very strong

cost sensitive wrapper.

If sampling is done deterministically, there is always the danger of injecting bias from

the sampling process; therefore random sampling is usually preferred. However, there are

methods which introduce synthetic data through a deterministic clustering process. Syn-

thetic Minority Oversampling Technique (SMOTE) [20] is one such method that creates new

synthetic samples along the k-nearest neighbor lines adjoining each example of the minor-

ity class, and also undersamples the majority class randomly. This method has also been

successful to some extent in situations where the training set is highly unbalanced.

2.4 Specifics of the Covered Algorithms

With all the various methods of making classifiers cost sensitive, selecting the right ap-

proach can be a tedious task. In order to find which combination works, we empirically study

the performance of the most common combinations through controlled experiments. As dis-

cussed before, minimum Bayes risk, reweighting, resampling and smoting are the four major

wrapper based approaches. In this work we have employed Costing [123] as the sampling

method of choice, which according to previous studies has been the most successful.

The first base learning algorithm is the simple Naive Bayes (NB) classifier. NB esti-
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mates conditional probabilities for each class from sufficient statistics of the input data as

follows,

P̂ (y|x) =
P̂ (y)P̂ (x|y)

P̂ (x)
=
P̂ (y)

∏k
i=1 P̂ (xi|y)∏k

i=1 P̂ (xi)
(2.7)

Therefore, it can easily handle instance weights by summing up the weight fractions instead

of whole numbers when gathering the sufficient statistics. Accordingly, four variations of

cost sensitive NB can be imagined: NB with Bayes risk, NB with Smoting, NB with Costing

and NB with cost proportionate weighting.

Average One Dependence Estimators (AODE) are a class of generative classifiers pro-

posed by Webb [117]. Naive Bayes has been widely popular in classification because it is

simple and efficient. It delivers optimal classification when the estimation of the class con-

ditional probabilities which it relies upon are accurate and the constraints of its simplifying

attribute independence assumption truly hold. Although some violations of the attribute in-

dependence assumption can be tolerated [28], the accuracy deteriorates as more dependency

is introduced. There is an increasing body of work, developing techniques to retain Naive

Bayes’ simplicity and efficiency while alleviating the problems of the attribute independence

assumption [61].

AODE is an efficient technique that utilizes a weaker attribute independence assump-

tion than Naive Bayes, thereby improving prediction accuracy without undue computational

overhead, making it suitable for rapid online applications. In AODE, an aggregate of one-

dependence classifiers are learned and the prediction is produced by averaging the predictions

of all these qualified one-dependence classifiers. For simplicity, a one-dependence classifier

is first built for each attribute, in which the attribute is set to be the parent of all other at-

tributes. Then, AODE directly averages the aggregate, consisting of many special Tree Aug-

mented Naive Bayes’ [45]. AODE classifies an instance using the following equation,

argmax
y

 ∑
i:1≤i≤n∧F (xi)≥m

P̂ (y, xi)
n∏
j=1

P̂ (xj|y, xi)

 (2.8)
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F (xi) enumerates the number of training examples which have the value xi. This function

is used to enforce the limit m placed on the support needed in order to accept a conditional

probability estimate. The estimation error can be expected to fade towards the mean when

the estimates are unbiased. If there are no attributes with support greater than m, AODE

would be equivalent to Naive Bayes. AODEsr [125] is AODE with subsumption resolution

which entails Lazy Elimination, i.e. it eliminates highly related features during classification

without the computational overheads in wrapper feature selection methods.

As for the decision trees, there are many different variations of decision tree induction

algorithms. However, the most practical one is Quinlan’s C4.5 method [85]. Decision trees

can also easily handle instance weighting the same way Naive Bayes’ can, since they also

induce trees from sufficient statistics of data. Thus, we have four variations of decision

trees as well. Previous studies [84] have shown that unpruned decision trees yield more

accurate probability estimates. Since here we are rather interested in probability estimates

when computing expected cost with Bayes risk, we have chosen unpruned decision trees with

Laplace smoothing (or the so called C4.4/Probability Estimation Trees (PET)) as the base

algorithm for Costing. This combination works best since unpruned decision trees yield high

variance low bias classifiers, and Costing which is a Bagging approach mainly dampens the

variance. The rest of the approaches use the standard C4.5 method.

Standard Support Vector Machines (SVM) do not estimate class conditional probabilities.

Thus in order to use SVMs as the base algorithm there are two natural extensions. Either use

reweighting and employ the rank score for classification directly, or use calibrated probability

outputs of SVM scores combined with minimum Bayes risk threshold. For the first case we

can use the cost proportionate weights of each training example to vary the importance ci
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of each slack variable ξi in SVMs ordinary formulation as in

min
ξi,w,b

1
2
wᵀw + C

∑n
i=1 ciξi

s.t yi (w
ᵀxi + b) ≥ 1− ξi , i = 1, · · · , n

ξi ≥ 0.

(2.9)

where h(x) = sign (wᵀx + b) is the decision function and
∑n

i=1 ciξi is an upper bound on the

total loss.

In the second case we have used Platt’s scaling [83] to obtain accurate probability estimates

from SVM ranking scores. The SVMs use an RBF kernel optimized by a 3 level deep grid

search over the complexity range of C = 2−22∼7 and gamma range of γ = 2−10∼3.

To have a fair comparison of the range of algorithms, we also included another highly

successful classification method which is the boosting approach. We used Adaboost [41] to

create an ensemble of unpruned decision trees (C4.4). Three fold internal cross validations

were performed to choose the optimal number of iterations (10∼1000). We also used Logit-

boost [42] with decision stumps trained up to 2000 iterations and internal cross validation

to find the optimal number of iterations. All the cross validations were stratified and prior

instance weights were set in proportion to their cost. In the next section we discuss the

experimental setup and data sets.

2.5 Empirical Results

To obtain low variance estimates of the performance measure, we have performed a 10 fold

stratified cross validation over 24 data sets from the UCI Machine Learning Repository [7].

Multi-class and continuous class data sets were discretized and converted to binary classifi-

cation problems. For a fair comparison, all data sets were discretized by the same supervised

MDL method [39] and binarized according to the Condition column of Table 2.3 in a pre-

processing step. The details of the data sets are shown in Table 2.3. As can be seen from
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Figure 2.1: Scatter plot of data set minority weight ratio versus sample size.

the scatter plot of Figure 2.1, the data sets were chosen such that the weight ratio of the

minority class over the majority class would cover the range of possible weights. A weight

ratio of 1 means that the two classes have equal sample sizes and costs. For each data set

the cost of misclassifying the minority class is set equal to the sample size for the majority

class and vice versa. Thus, misclassifying the minority class would be relatively more costly

than the majority class. We believe that assigning only one cost matrix to each data set

should be enough when performance is computed using AUC, since AUC does not depend

on prior class distributions and costs. Nevertheless we also compared the algorithms based

on average misclassification cost, to see how well each method performs when optimizing for

a single operating point.

Table 2.4 shows the ranking of each algorithm based on win/loss counts as measured by a

two tailed t-test over AUC at 0.05 significance rate. Similarly, Table 2.5 shows another rank-

ing based on win/loss counts of average misclassification cost as computed in Equation (2.1),

also by a two tailed t-test at 0.05 significance rate.
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Table 2.3: Detailed description of datasets.

Row Data Set Condition Sample
Size

Minority
Ratio

Attributes

1 abalone0 Age ≤ 4 4177 0.018 8
2 abalone1 Age ≤ 5 4177 0.0474 8
3 abalone2 Age ≤ 6 4177 0.1201 8
4 abalone3 Age>12 4177 0.1989 8
5 abalone4 Age>13 4177 0.1329 8
6 abalone5 Age>14 4177 0.0955 8
7 abalone6 Age>15 4177 0.0666 8
8 abalone7 Age>16 4177 0.0487 8
9 abalone8 Age>17 4177 0.0337 8

10 abalone9 Age>18 4177 0.023 8
11 abalone10 Age>19 4180 0.0158 8
12 adult 32561 0.3172 14
13 mushroom 8124 0.9306 21
14 covertype0 Ponderosa Pine

vs Cotton-
wood/Willow

38481 0.0769 54

15 german 1000 0.4286 20
16 ionosphere 351 0.56 34
17 pima

Indians
diabetes

768 0.536 8

18 satellite0 2 vs 7 1515 0.4624 36
19 satellite1 1 vs 3 2010 0.898 36
20 satellite2 4 vs 7 1414 0.407 36
21 satellite3 5 vs 7 1455 0.3844 36
22 satellite4 3 vs 7 2020 0.9461 36
23 wisc diag

breast
cancer

569 0.5938 30

24 wisc prog
breast
cancer

198 0.3113 33



17

Table 2.4: Win/Loss ranking ordered by first column based on AUC as performance measure.

Win-Loss Win Loss Algorithm
223 227 4 AODEsr with cost proportionate weighting
202 214 12 AODE with cost proportionate weighting
152 190 38 Naive Bayes with cost proportionate weighting
150 188 38 Costing 100 Naive Bayes
138 163 25 Costing 100 unpruned J48 trees
53 129 76 Adaboost: up to 1000 unpruned J48 trees with cost pro-

portionate weighting
31 95 64 Logitboost: up to 2000 Stumps with Cross Validation

-62 57 119 SVM: 3 level deep grid search with RBF kernel γ =
2−10∼3, C = 2−22∼7, Platt’s Scaling and Bayes Risk

-99 71 170 5-NN SMOTED Naive Bayes with Bayes Risk
-126 32 158 Multi Layer Perceptrons with cost proportionate weight-

ing
-128 31 159 J48 tree with cost proportionate weighting
-131 54 185 Naive Bayes with Bayes Risk
-140 18 158 SVM: 3 level deep grid search with RBF kernel γ =

2−10∼3, C = 2−22∼7 and cost proportionate weighting
-155 24 179 5-NN SMOTED J48 tree with Bayes Risk
-195 8 203 J48 tree with Bayes Risk

Table 2.5: Win/Loss ranking ordered by first column based on average loss as performance measure.

Win-Loss Win Loss Algorithm
268 273 5 SVM: 3 level deep grid search with RBF kernel γ =

2−10∼3, C = 2−22∼7 and cost proportionate weighting
259 263 4 SVM: 3 level deep grid search with RBF kernel γ =

2−10∼3, C = 2−22∼7, Platt’s Scaling and Bayes Risk
38 78 40 Logitboost: up to 2000 Stumps with Cross Validation
30 78 48 AODEsr with cost proportionate weighting
21 72 51 Costing 100 unpruned J48 trees
19 71 52 AODE with cost proportionate weighting
16 68 52 Multi Layer Perceptrons with cost proportionate weight-

ing
8 58 50 Adaboost: up to 1000 unpruned J48 trees with cost pro-

portionate weighting
1 60 59 J48 tree with cost proportionate waiting

-6 60 66 J48 tree with Bayes Risk
-39 52 91 5-NN SMOTED J48 tree with Bayes Risk

-137 14 151 Costing 100 Naive Bayes
-145 13 158 Naive Bayes with Bayes Risk
-148 11 159 Naive Bayes with cost proportionate weighting
-185 6 191 5-NN SMOTED Naive Bayes with Bayes Risk
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By comparing Tables 2.4 and 2.5 we can see that there is a distinctively different pattern

of ranking between the two measures. The family of Bayesian approaches, such as Naive

Bayes and AODE, significantly outperform SVM and boosting in AUC, however, the situ-

ation is reversed when ranking is based on average loss. These results might seem a little

surprising and hard to explain at first sight, but the a closer inspection suggests the following

explanation.

There is an apparent tradeoff between a general decision function which is optimized over

all possible costs and prior distributions (conditional probability), and a decision function

which is optimized for a single operating point pivoted on a cost matrix and prior class

distribution (classification/discriminant function).

The results of Table 2.5 shows that the classical SVM and boosting approaches, which

have been previously proven highly successful in classification, can be tailored to different

operating points. However, since we might not always know the exact operating point in our

application, which is usually the case, it is beneficial to develop an algorithm that could find

the optimal decision over a range of operating points. That is, in some applications, neither

of the two extreme cases in Table 2.4 and 2.5 is a good choice. For example the P-norm

Ranking [88] approach is one such technique that concentrates on accurate ranking of the

top portion of the list.

2.6 Comparison of Multiple Classifiers

To delve a little deeper and gain some insight into the properties of each algorithm, we

employ a statistical hypothesis testing approach that is more precise in terms of power and

replicability for classifier performance measures, rather than the win/loss counts based on

t-tests usually found in the literature. The stringent battery of tests which follows would

reveal the true performance and significance of each algorithm.

When comparing multiple classifiers, two concerns need to be addressed. Firstly, how
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accurate can the performance measures be estimated? Meaning that, how robust are our

estimates of the performance measures in the face of variability of the original data generation

process? The second question is, how accurate and powerful are the comparisons being made?

In other words, can we compute the significance of differences in the computed performance

measures (AUC, expected loss, and etc.)?

Clearly, these two concerns are not independent. The lower the quality of our estimates

of the performance, the less power we would have when testing significance.

These concerns have been addressed by Demšar [25], where he suggested using the Fried-

man test [43, 44] and its post-hoc Nemenyi tests [80], instead of win/loss counts based on

paired t-tests. Friedman test is a non-parametric form of ANOVA with repeated measures

as opposed to ranksum test which is a non-parametric form of ANOVA where there are no

repeated measurements or correlation among test subjects.

The problem with using win/loss counts based on t-tests is two folds. Firstly, one cannot

compute the significance of differences in “win-loss” that is usually measured. Secondly, it

assumes that any difference in the performance less than the critical value at α percentile as

measured by a t-test is non-significant. That is, whether we compare two algorithms 10 times

or a 1000 times, the result would be insignificant when the difference is less than a certain

amount, even if one algorithm always outperforms the other, which is totally absurd.

The reason Friedman test was chosen over ANOVA with repeated measures is that

ANOVA assumes normarlity and sphericity of the distribution of the test subjects. Although

the normality assumption is usually overlooked by statisticians, the sphericity assumption

can seriously hurt the power and replicability of the test and especially the post-hoc t-tests.

The performance measures calculated for classifiers, such as AUC and expected loss, adhere

neither to normality nor sphericity assumptions. This is especially true when facing asym-

metric loss functions and unbalanced prior distributions, which happens to be the case in

cost sensitive settings.

Let rji be the rank of the j-th of k algorithms on the i-th of N data sets. The Friedman
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test compares the average ranks of algorithms, Rj = 1
N

∑
i r
j
i . Under the null-hypothesis,

which states that all the algorithms are equivalent and so their ranks Rj should be equal,

the Friedman statistic

χ2
F =

12N

(k(k + 1))

[∑
j

R2
j −

k(k + 1)2

4

]
(2.10)

is distributed according to χ2
F with k − 1 degrees of freedom, when N and k are big enough

(as a rule of a thumb, N > 10 and k > 5). For a smaller number of algorithms and data

sets, exact critical values have been computed [93, 124]. Iman and Davenport [57] showed

that Friedman’s χ2
F is undesirably conservative and derived a better statistic

FF =
(N − 1)χ2

F

N(K − 1)− χ2
F

(2.11)

which is distributed according to the F -distribution with k − 1 and (k − 1)(N − 1) degrees

of freedom. This is the statistic used in the current study. If the null-hypothesis is rejected,

we can proceed with a post-hoc Nemenyi test similar to the Tukey test for ANOVA, which is

used to compare all classifiers to each other. The performance of two classifiers is significantly

different if the corresponding average ranks differ by at least the critical difference

CD = qα

√
k(k + 1)

6N
(2.12)

where critical values qα are based on the Studentized range statistic divided by
√

2.

Using the described statistical testing procedure, we conducted the same comparisons of

different cost sensitive approaches on 24 datasets. The results are shown in Figures 2.2 and 2.3

for 1-AUC, and in Figures 2.4 and 2.5 for average loss, as performance measures respec-

tively.
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Figure 2.3: Different methods sorted from top to bottom according to average rank on 1-AUC, and datasets
from left to right according average difficulty (average 1-AUC over all methods).
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critical difference computed using Equation (2.12).
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Figure 2.5: Different methods sorted from top to bottom according to average rank on expected loss, and
datasets from left to right according average difficulty (average 1-AUC over all methods).

2.7 Conclusion

In many practical problems in the machine learning domain, such as advertisement and

digital marketing (click through rate prediction), credit assignment, network intrusion and

medical diagnosis, the cost or utility of different actions vary significantly. In such problems,

it is vital to take advantage of the information about different costs when learning the decision

function. There is an inherent tradeoff between learning the conditional probability over the

complete range and learning a binary decision function that outputs two values.

This tradeoff is made apparent from the experiments conducted in Sections 2.5 and 2.6.

The results show that maximum margin methods such as SVM and Boosting excel at learning

a binary decision function, while Bayesian methods are better at predicting probabilities.

Depending on the problem domain and whether information about various costs exist, one

should take appropriate choices for the base learning method and its cost sensitive extension

to achieve optimal results.
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CHAPTER 3 AN EXTENDABLE META-LEARNING
ALGORITHM FOR ONTOLOGY MAPPING∗

3.1 Introduction

As means of communication grows with the growth of the web and the technologies

provide abundance of tools for creating a wealth of information, the problem of information

dissemination and reconciliation worsens far more rapidly than the problems faced in creating

the knowledge in the first place. This issue is prominently recognized at the advent of

Semantic Web, and therefrom the problem of information integration, which has been a

subject of intense research for more than a couple of decades, still lies at the heart of the

present day research.

On the Semantic Web, the information at the highest level is provided through ontologies,

and inevitably the same problems of heterogeneous data sources that arose with the web

surfaced again. In this chapter we try to tackle a specific problem in ontology mapping, a

part of information integration, which is not addressed in the current literature.

A large body of work in ontology integration, including ontology mapping and ontology

merging, has focused on developing algorithms and heuristics [94] to mitigate the burden of

aligning large ontologies manually. However, in many cases, the exact place where machine

learning can play a key role is intermixed with heuristics of defining and fine tuning various

thresholds [107], or several layers of learning [26], that along the way, has made deploying

this technique rather difficult. In this chapter we strive to develop a framework to push the

heuristic parts of the ontology mapping problem exactly where it belongs, i.e. in defining the

similarity measures and not in the learning paradigm, and propose a simple yet extendible

∗This chapter has been published in [91].
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framework that is comparable to the state of the art techniques, i.e. can easily be improved

as better similarity measures are developed and still be comparable.

There are several advantages in using such an approach. One is that the current tech-

niques of machine learning can be used to automatically learn the parameters, and hence

no threshold setting or fine tuning interventions would be necessary on the part of the user.

The other is that the total outcome would solely depend on how well the similarity measures

are defined and the data sets are prepared. Of course, one could argue that the latter ben-

efit is a disadvantage, since creating informative similarity measures can be a challenge for

many domains. However, handcrafting ad hoc learning methods that work well for a set of

specific similarity measures in each specific ontology alignment problem would not make the

original problem any easier. Therefore, if we put the effort on defining informative similarity

measures, this framework can utilize the information therein in a coherent manner, by only

plugging in the measure. The implication would be that, since no further improvement could

be done automatically based on the available training data and defined similarity measures,

we can turn our attention to creating better similarity measures. Furthermore, when the

class distributions are highly unbalanced, as in the ontology mapping problem, it turns out

that our approach has better precision recall curves.

In this work, we address the problem of ontology mapping, which specifically is, find-

ing corresponding entities in pairs of ontologies that appear to be an approximate match.

Broadly speaking, an ontology is a set of axioms used to formally define concepts and rela-

tions that exist in a certain domain and assert information about individuals in that domain.

From this definition three emphasized keywords can be extracted that can be informative

for comparison of two ontologies. In the rest of the chapter we lay out the foundation of

the machine learning paradigm for ontology mapping in the hope of addressing the auto-

matic threshold selection. Therefore, this work is not trying to develop any novel similarity

measures as it might be highly dependent to each domain.
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3.2 The Web Ontology Language (OWL)

In this section we give a short review of how ontologies are represented on the web by

introducing the current de facto standard (OWL), and present a pair of ontologies as an

example to depict the information that can be extracted from this domain in order to build

the similarity measures.

The sole purpose of ontologies is to make unstructured information embedded in docu-

ments machine understandable. The latest advancement in ontology representation is OWL

which can be used to explicitly define entities in terms of vocabularies and the relationships

between those entities. This representation of entities and their interrelationships is called an

ontology. OWL is more a expressive language than XML, RDF and RDF-S and thus better

capable of representing machine readable content. For a detailed overview of the language

readers are referred to [3].

From a modeling and semantic point of view, OWL shares a strong correspondence with

Description Logics borrowing many logical constructs from it. OWL comes in three increas-

ingly expressive sub-languages or “species”, OWL-Lite, OWL-DL and OWL-Full.

OWL-Lite: The reason behind OWL Lite is to support users that require a hierarchy of

entities with simple constraints. These expressivity limitations ensure that it provides

a minimal useful subset of language features, which are relatively straightforward for

tool developers to support.

OWL-DL: OWL-DL supports those users who want the maximum expressiveness of the

language without losing decidability. It includes all the OWL language specifications,

but they can only be used under certain restrictions.

OWL-Full: OWL-Full has the same vocabulary as OWL DL but it allows the free, un-

restricted use of RDF constructs (e.g., classes can be instances). OWL-Full is thus

identical in syntax to OWL-DL with an extended semantics of RDF, but is undecid-
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able.

We will be using OWL-DL constructs to be able to include similarity measures that exploit

inference capabilities of OWL representation from each ontology in finite time (decidability).

As previously stated, there are three broad categories of entities that can be extracted from

an ontology, namely the concepts, the relations (properties) and the instances, also known

as individuals. To elaborate on the definition and meaning of these entities we introduce

an example adapted from [26]. In Figure 3.1 two computer science department ontologies

are shown from two universities with different taxonomies. As can be seen from this figure,

entities like People, Courses and Staff refer to classes which are concepts in the corresponding

ontologies. The lines between each class represent the relations among classes, such as Faculty

and Staff which are related to People in Figure 3.1(a). Lastly, entities like “R. Cook” and

“K. Burn” are instances of class Associate Professor in the ontology.

The two CS departments represent two ontologies created by different people, and there-

fore, although they describe a similar domain, some entities do not match precisely. For ex-

ample Assistant Professor in “CS Dept US” is equivalent to Lecturer in “CS Dept Australia”,

and also some entities do not appear in the same hierarchical relation, such as “UnderGrad

Courses” and “Grad Courses” which directly appear under “CS Dept US”, but if they were to

exist in “CS Dept Australia” they would have come under “Courses” in Figure 3.1(b).

3.3 Machine Learning Approach to Ontology Mapping

To motivate the use of machine learning approaches to ontology mapping, let us refor-

mulate the mapping problem in terms of a classification problem [31] in which we want

to have a machine which classifies the input patterns into different classes. In this section

we will formally describe supervised learning, an area that specifically addresses this prob-

lem, and present the current best method suitable for handling ontology mapping problem

requirements.
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Lecturer Senior
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(b)

Figure 3.1: A Computer Science Department Ontology
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3.3.1 Formulating Ontology Mapping as a Supervised Learning
Problem

Supervised learning is a machine learning technique for creating a discriminant function

from a set of training data. The training data consists of pairs of input vectors, and desired

outputs. The output of the function can be a continuous value (called regression), or a

discrete class label of the input vector (called classification). The task of the supervised

learner is to predict the value of the function for any valid input object after having seen a

number of training examples (i.e. pairs of input and desired output). To achieve this, the

learner has to generalize from the presented data to unseen situations in a “reasonable” way

(i.e. with low variance and bias).

There are two broad categories of classifiers. The generative classifiers learn a model of

the joint probability distribution, P (x, y), of the inputs x and the label y and make their

predictions by using Bayes rule to calculate P (y|x), and then picking the most likely label

y. Discriminative classifiers, on the other hand, model the posterior P (y|x) directly, or learn

a direct map from the inputs x to class labels. Contrary to the widely held belief that

the discriminative classifiers are almost always to be preferred, there can be two distinct

regimes of performance as the training size is increased. Previous studies [81] show that,

while discriminative learning has a lower asymptotic error, a generative classifier may also

approach its (higher) asymptotic error much faster. Because of this property and noting

that creating training examples for the ontology mapping problem is a tedious task (usually

there are not many examples available), we opted for the generative classifier models. There

are also various other benefits which will be discussed in Section 3.3.3.

To formulate the ontology mapping problem as a supervised learning task we have to

define the input vector x and output class variable y. The input vector x can be defined

as a set of similarity measures computed from the information extracted from the pair of

ontologies. The class label y can be true if the two compared entities are actually the same,

and false otherwise. The similarity scores and the approximate string matching techniques
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employed to compute the similarity measures are described in Section 3.4. In the next

subsection the proposed classifier is described.

3.3.2 Average One Dependence Estimators (AODE)

Average one dependence estimators are a class of generative classifiers [117]. To under-

stand the internal workings of this algorithm, first we have to describe the Naive Bayes

(NB) Classifier and the extensions of this algorithm. Naive Bayes has been widely used

in classification due to its simplicity, and effectiveness. It delivers optimal classification

when the estimation of the class conditional probabilities on which it relies are accurate and

the constraints of its simplifying attribute independence assumption truly hold. Although

some violations of the attribute independence assumption can be tolerated [29], the accuracy

deteriorates as more dependency is introduced, and there is an increasing body of work devel-

oping techniques to retain Naive Bayes’ desirable simplicity and efficiency while alleviating

the problems of the attribute independence assumption [61].

Previous Studies [115] show that Lazy Bayesian Rules (LBR) [126] has demonstrated ac-

curacy comparable to boosting decision trees [127], and Super Parent Tree Augmented Naive

Bayes (SP-TAN) [63] has comparable accuracy to Lazy Bayesian Rules, both of which are

statistically superior to Naive Bayes. However, these two techniques have high computa-

tional overheads, SP-TAN having high computational complexity at training time and Lazy

Bayesian Rules having high computational complexity at classification time. Since we are

interested in a scalable and extendible method, they do not serve our purpose. However,

Average One Dependence Estimator is an efficient technique that utilizes a weaker attribute

independence assumption than Naive Bayes, thereby improving prediction accuracy without

undue computational overheads, making it suitable for rapid online applications. We first

describe Naive Bayes and subsequently describe Average One Dependence Estimator.

Let x = {x1 . . . , xn} be an example from a training set, where xi is the value of the ith

similarity measure. We want to predict the class y ∈ c1, . . . , ck from this set. If we had the
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true distribution P (y|x) we could optimally predict y by selecting argmax
y

P (y,x). However

since P (y|x) is not available, we try to estimate it based on the training set. This estimate

is usually denoted by P̂ (y|x).

One way to estimate P̂ (y|x) is from P (y,x), since by definition,

P (y|x) = P (y,x)/P (x) (3.1)

∝ P (y,x) (3.2)

Therefore, argmax
y

P (y|x) = argmax
y

P (y,x). Now if we ever need P (y|x) we can always use

Equation 3.3 to calculate this value,

P (y,x)

P (x)
≈ P̂ (y,x)∑k

i=1 P̂ (ci,x)
(3.3)

This is because P (x) =
∑k

i=1 P̂ (ci,x). However, since we are only interested in predicting

the class y, we only need P̂ (y,x).

When the training sample is small, as in our case, or the number of similarity measures

is large, the frequency of which any event x happens would be very small and therefore

P̂ (y,x) would not be a reliable estimate of P (y,x). However, there is no way to eliminate

this problem considering this model and the data we have, and in practice, only a minor

adjustment such as Laplace correction can be made. That is, a constant number is added

to every event not occurred in order to have a non zero probability. Also, another way of

overcoming this problem is by changing the model and assuming independency among all

similarity measures. This make our base estimates to be from P̂ (y, x) instead of P̂ (y,x),

which is more likely to occur in our training set.

Using the product rule of probabilities we have the following.

P̂ (x|y) =
n∏
i=1

P̂ (xi|y) (3.4)
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where P̂ (xi|y) = P̂ (y, xi)/P̂ (y), and P̂ (y) is the prior probability of any class y = ci. This

technique is widely known as the Naive Bayes assumption. Therefore Naive Bayes classifies

by selecting

arg maxy

(
P̂ (y)

n∏
i=1

P̂ (xi|y)

)
(3.5)

where P̂ (y) and P̂ (xi|y) are estimates of the respective probabilities derived from the fre-

quency of their respective arguments in the training sample, with possible corrections such

as the Laplace estimate.

One of the recent works on improving Naive Bayes is Average One-Dependence Esti-

mators, or simply AODE [117]. In Average One Dependence Estimators, an aggregate of

one-dependence classifiers are learned and the prediction is produced by averaging the pre-

dictions of all these qualified one-dependence classifiers. For simplicity, a one-dependence

classifier is firstly built for each attribute, in which the attribute is set to be the parent of all

other attributes. Then, Average One Dependence Estimator directly averages the aggregate

consisting of many special tree augmented Naive Bayes. Average One Dependence Estimator

classifies an instance using the following equation.

arg maxy

 ∑
i:1≤i≤n∧F (xi)≥m

P̂ (y, xi)
n∏
j=1

P̂ (xj|y, xi)

 (3.6)

where F (xi) enumerates the number of training examples which have the value xi, which is

used to enforce the limit m placed on the support needed to accept a conditional probability

estimate. If ¬∃i : 1 ≤ i ≤ n ∧ F (xi) ≥ m, AODE would be equivalent to Naive Bayes. In

the current work we used m = 30 suggested by [117].

3.3.3 Properties of Average One Dependence Estimators

Having described this method we will discuss the properties of Average One Dependence

Estimator algorithm compared to other previous best approaches and the implications of
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employing this algorithm for ontology mapping. Compared to Lazy Bayesian Rules and

SP-TAN, the two previous best approaches, Average One Dependence Estimator is very

efficient. Looking into Lazy Bayesian Rules and SP-TAN, one can recognize that computa-

tional cost of these two algorithms can mostly be attributed to model selection and probability

estimation.

Lazy Bayesian Rules adopts learning at classification time. For each x = {x1, . . . , xn}

to be classified, a set of the similarity measures W , is selected, and the remaining features

are assumed to be independent given W and y. Thus, every measure depends both on the

class and the measures chosen for inclusion in W . W is heuristically selected in order to

minimize error on the training sample. Thus, the computational effort is high when there is

huge number of examples.

In contrast to Lazy Bayesian Rules, Tree Augmented Naive Bayes and SP-TAN allow

every similarity measure xi to depend upon the class and at most one other measure, p(xi),

called the parent of xi. The parent function p(.) is learned at training time. Conditional

mutual information is employed in Tree Augmented Naive Bayes [115] to select the parent

function. A naive heuristic method that minimizes error on training samples is used in

SP-TAN [63]. At training time both Tree Augmented Naive Bayes and SP-TAN generate a

three-dimensional table of probability estimates for each measure-value, conditioned by each

other measure-value and each class.

Unlike Lazy Bayesian Rules, where it has to choose the similarity measure set W , and

SP-TAN, where it has to select p(.), Average One Dependence Estimator has no model

selection, except for choosing all one dependence estimators having a sufficient support set.

Also, unlike Lazy Bayesian Rules, where the probability estimates are generated on the fly

in the classification phase, Average One Dependence Estimator and SP-TAN compute the

estimates at training time via the three dimensional probability tables, thus making it very

efficient both at training and classification time.

The other major implication of using Average One Dependence Estimator is that it can
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readily be incorporated in an incremental learning setup. This means that if the current

training examples are not sufficient for a reasonable estimate of the probability tables, they

can be later incorporated when they become available, and the probability tables re-estimated

accordingly to reflect the adjustments needed to utilize the information contained in the

recently included examples. Therefore, the effect would be that we can build a system

for mass collaboration of users to contribute in identifying matching concepts and add the

examples as they become available. This will have a major impact on the current efforts

of using machine learning approaches for online ontology mapping, since the shortage of

training examples is the first and foremost difficulty in applying machine learning techniques

in such applications.

3.4 Creating Training Examples

By far the most crucial factor in developing a successful classifier is having ample inde-

pendent identically distributed training data with informative similarity measures. The first

step towards creating informative similarity measures is to understand the nature of the data

being categorized.

Since developing informative similarity measures depend highly on both the representation

and domain of the ontology pair, the best thing would be to use a widely employed language

for representation and a set of similarity measures that work well for a group of domains. For

the representation part, we have already discussed the OWL ontology language, and in this

work we only consider expressive languages up to OWL-DL variant (species). Thus, we would

be able to compute logical similarity measures through reasoning along with other semantic

and syntactic similarity measures, without compromising decidability. However, one should

note that the semantic and syntactic similarity measures are usually highly dependent on

the ontology domain. Hence, we want to use a meta-learner model robust enough to be able

to handle inconsistent similarity measures.
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As previously mentioned, in the ontology mapping problem there are three key entities

that inform us about the nature of an ontology, namely classes, relations and instances. Thus,

obviously there are three categories of similarity measures which can be defined to quantify

the similarity for each pair of classes: comparing the classes, comparing the relations of a

pair of classes, and comparing the instances of a pair of classes. To further elaborate on this

issue, we will describe one similarity measure for each category.

The most straight forward way of comparing two classes is to compare their names. There

is always, however, the difficulty of two classes referring to the same entity with different

names. There are two ways to approach this problem; one is to consider the similarity in

the semantic space, and the other in the syntactic space, the former being comparing words

in terms of being synonymous in a controlled vocabulary domain and the latter comparing

words in terms of approximate string matching. In this work, the second method is adopted

and some of the popular approximate string matching algorithms are discussed later in this

section.

In its most general form, an ontology can be represented as a directed acyclic graph. That

is, the classes in an ontology are brought together by a set of relations. Thus, one way to

compare the similarity of two classes is to compare their relations in their corresponding

ontologies, such as the parents, children and siblings of a class. The similarity measure used

in this work is the path of classes required to traverse from the root to reach the considered

class.

For the last category of similarity measures, instances can be compared in various ways.

Each class has a set of instances and therefore to quantify the similarity of two classes, one

could compare the set of instances for each class. Comparing two sets of instances can be

approximate or exact itself, however, since our contribution as described in the introduction

is not developing new similarity measures, we have only applied exact similarity functions

for set comparisons using the Jaccard coefficient, described later in this section. In the rest

of this section we will note some of the approximate string matching algorithms, widely
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employed in the literature and describe the ones used in this work.

The Levenshtein distance [66] is a string similarity metric to measure the edit distance.

The Levenshtein distance between two strings is given by the minimum number of operations

needed to transform one string into the other, where an operation is an insertion, deletion,

or substitution of a single character. It can be considered a generalization of the Ham-

ming distance, which is used for strings of the same length and only considers substitution

edits.

The Monge-Elkan [77] distance is a variant of the Gotoh distance which is an extension

of the Smith-Waterman algorithm with affine gap costs. It is calculated based on the sum

of best matching atomic substring of the compared strings with the following formula

match(A,B) =
1

|A|

|A|∑
i=1

max
|B|
j=1match(Ai, Bj) (3.7)

The Jaro distance [60] takes into account typical spelling deviations. Briefly, for two strings

s and t, let s′ be the characters in s that are “common with” t, and let t′ be the characters

in t that are “common with” s; roughly speaking, a character a in s is “in common” with t if

the same character a appears in about the same place in t. Let Ts′,t′ measure the number of

transpositions of characters in s′ relative to t′. The Jaro similarity metric for s and t is

Jaro(s, t) =
1

3

(
|s′|
|s|

+
|t′|
|t|

+
|s′| − Ts′,t′

2|s′|

)
(3.8)

This approach has since been expanded to a slightly modified approach called Jaro-Winkler.

This extension modifies the weights of poorly matching pairs (s, t) that share a common

prefix. The output score is simply adjusted as follows

JW (s, t) = J(s, t) + (prefixlen× prefixscale× (1− J(s, t)) (3.9)

where prefixlen is the length of the common prefix at the start of string, and prefixscale is a
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constant scaling factor for how much the score is adjusted upwards for having common pre-

fix’s. This adjustment gives more favorable ratings to strings that match from the beginning

for a set prefix length.

Previous studies [22] show that although Monge-Elkan distance gives the best results,

the Jaro-Winkler’s distance metric achieves comparable results but is an order of magnitude

faster. Thus we adopted the Jaro-Winkler score as our string similarity metric.

Set comparisons of two set of instances of each class is calculated with the Jaccard co-

efficient. The Jaccard coefficient of two sets A and B is computed using the following

formula,

Jaccard(A,B) =

(
|A ∩B|
|A ∪B|

)
(3.10)

3.5 Generating the Final Mapping

From the previous step we have generated the pairwise similarity measures of two concepts

for each pair of concepts in two ontologies. Thus, we have a matrix of similarity measures and

from this matrix we have to generate a mapping between the ontologies. Before explaining

our method we have to clarify a few points.

From another view point [26] the similarity measures defined in the previous section can be

classified into intrinsic and extrinsic measures, instead of concepts, relations and instances.

Intrinsic similarity measures are the measures computed solely from the information obtained

from the class itself, such as the name or content (instances), and extrinsic similarity measures

are measures computed from any other information we have about the classes, such as its

relation to other classes in the ontology structure.

To create a similarity score of two classes we have used both intrinsic and extrinsic simi-

larity measures as discussed in the previous section. Therefore, in our approach, the single

best similarity score is sufficient for generating the final mapping. Since we don’t have any

other information to include in the classification process, any random tie breaking scheme
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seems reasonable to resolve the conflicting scores.

Another approach [26] to this problem, however, is to discard any extrinsic similarity mea-

sure in computing the similarity score and include it later to resolve the conflicting scores,

and generate an improved mapping. The relaxation labeling method which has been applied

successfully to similar matching problems in computer vision, natural language processing,

and hypertext classification have been used for this purpose [26]. Relaxation labeling first

computes the similarity scores solely based on the intrinsic features and later uses the ex-

trinsic features in an iterative local optimization method, by changing label assignments to

graph nodes until reaching a local optimum.

We argue that each approach has its own benefits and short comings and to gain a better

understanding of the properties of each method, further study is required. For example, it

seems that relaxation labeling can improve the final mapping for ontologies which extrinsic

attributes play a more prominent role; this approach, however, cannot be employed in an

incremental setup and would suffer from inconsistent scores. It is also very hard to define a

good stopping criteria for relaxation labeling algorithms.

3.6 Experimental Results

In order to evaluate the proposed classification scheme, we have employed several open

source software. Swoop is a hyper-media based ontology editor developed at MINDSWAP

that allows creating and browsing OWL ontologies [62]. In our implementation, Pellet was

used for ontology reasoning [95]. Pellet is an open source reasoner written in Java.

Our experimental method employed ontologies that are based on a pair of real world

ontologies. The reported work is from two ontologies developed by separate organizations

and separate goals. One ontology is from Karlsruhe [2], and is used in the Ontoweb portal. It

defines terms used in bibliographic items and a university organization. The other ontology

is from INRIA [1], and has been designed by Antoine Zimmermann based on the BibTeX in
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OWL ontology and the Bibliographic XML DTD. Its goal is to easily gather various RDF

items. These items are usually BibTeX entries found on the web, which are transformed

into RDF according to this ontology. The actual hierarchy of this ontology contains classes,

which are subclasses of several other classes. The two ontologies have 24 corresponding

classes. Figure 3.2(b) shows the characteristics of the ontologies in more details.

As described previously in Section 3.4, we have defined three similarity measures with

which the scoring and matching is carried out. The name similarity compares the name of

two classes by Jaro-Winkler’s approximate string distance metric. The content similarity

measures the similarity of the set of individuals of two classes using the Jaccard coefficient.

The path similarity concatenates the name of classes traversed from root to the compared

class and measures their Jaro-Winkler’s distance.

To emphasize the discussion in Section 3.5, we note that the first two similarity measures

are of intrinsic type and the last one is an extrinsic measure. These measures are only a

sample of what can be realized and for each specific domain different similarity measures

might prove useful.

One of the important considerations here is that, since the similarity measures will hardly

ever convey the true semantic similarity of the underlying concepts, there would always be

false positives and false negatives in our predictions. Thus, to make a correct mapping a

human would always be needed in the mapping loop. However, the effort put into correcting

a false positive is far less than the false negative by the human expert, since if an ontology has

n concepts, the human expert would have to look into at most O(n) possibilities to correct

a false positive. However, for a false negative there are O(n2) possibilities to consider.

To evaluate the utility of using Average One Dependence Estimator, we have consid-

ered diluting the similarity score by adding the most uninformative similarity measures, i.e.

uniform random numbers, incrementally. We tested our proposed method using a ten-fold

stratified cross validation scheme. Figure 3.2(b) shows the Area Under the Precision Recall

Curve (AUPRC) for each setting. The “norand” setting corresponds to the test in which no
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Figure 3.2: (a) Area Under the Precision Recall Curve (AUPRC). (b) Detailed description of two ontologies.
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Figure 3.3: (a) Precision of three classification methods. (b) Recall of three classification methods.

random number has been added, and “rand1” through “rand5” are the settings where 1 to 5

extra random similarity measures has been added. The three bars represent three classifi-

cation methods, Average One Dependence Estimator, logistic regression and C4.5 decision

trees. Figure 3.3 shows the precision (a) and recall (b) for the same experiments. As can be

seen, the AUPRC for Average One Dependence Estimator, which is a more accurate measure

for evaluation, is consistently higher than other methods. Furthermore, as more inconsistent

similarity measures are added, we can see less false negatives with Average One Dependence

Estimator than other methods.



41

3.7 Conclusion

We have described a novel machine learning approach to ontology mapping. By discussing

the notions of similarity, we have explained some of the common similarity measures used

in the literature. In a sense, all the similarity measures can be divided into intrinsic and

extrinsic measures. From an information theoretic point of view, all the similarity measures

may contain valuable or contradictory information about the similarity of the concepts.

By employing a probabilistic machine learning paradigm we assimilated all the valuable

information and discarded the contradictions that lead to a single robust similarity score.

The coherent way of integrating the similarity measures through a meta learning approach

made it possible for us to propose a framework that is easily extendable. Furthermore, there

is no need for precision recall curves to set the weights and thresholds of the system as this

step is automated by recasting the ontology mapping problem to a classification problem.

Since the similarity measures may not convey the true semantic similarity of concepts, there

is always contradictory information among the measures. By diluting the measures and

increasingly adding the most uninformative measures we tried to simulate this phenomenon

and assess the goodness of this approach. As the results show, the meta learning algorithm

is clearly superior than the other methods. This result is especially interesting since the

training examples are highly unbalanced.
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CHAPTER 4 AUTOMATIC DETECTION
OF UNCERTAIN REGIONS IN SUPPORT
VECTOR MACHINES

4.1 Introduction

In real-world classification problems, there is significant amount of uncertainty due to

noise, insufficient data, and specific training and testing protocols. In many applications,

such as clinical diagnosis, it is beneficial to explicitly recognize this uncertainty instead

of trusting the classifier output and ignoring the problem altogether. Classification with

rejection option is ideal in two scenarios:

i. For applications where test instances might be from novel classes not seen in any previ-

ous training data. For example, in microarray data where the patients gene expression

profile might be from a new previously unknown cancer subtype.

ii. For applications where there are a series of increasingly more accurate but also more

expensive tests to categorize instances belonging to a set of classes. The primary tests

have a low cost, but produce features with low power in separating the classes, while

the more complex tests would have more discriminatory power by producing better

features with higher cost.

These types of setups are common in medical diagnosis. Here, the cost can be expressed not

only in terms of the financial aspect but also on how invasive the test is. Obtaining a saliva

or a blood sample is less costly than a biopsy. To minimize the overall cost and identify novel

samples, we improve the classification of the primary classifier by introducing uncertainty.

At each level, any instance that is declared uncertain requires a more powerful test.

The need for having a rejection option in classification problems has been previously

recognized by us and others [21, 55, 78, 104, 112, 48, 10, 119, 50, 118]. However, an im-

portant limitation is the need to explicitly define the cost for misclassification and cost for
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rejection. For most applications, coming up with exact definitions of the different costs

is non-trivial, which is why classification methods with rejection option are not commonly

used. In this work, we developed a procedure capable of automatically computing a rea-

sonable data-dependent rejection threshold in lack of any further information. At the same

time, this approach is flexible enough to let the user fine tune the threshold, in case expert

domain specific knowledge about the related costs is available. Another benefit of using this

method is that the additional computation required to set the threshold does not change

the computational complexity of training a single SVM. This feature makes the approach

appealing in applications that involve large data sets.

Section 4.2 is a brief introduction to support vector machines, the necessary transforma-

tions required to obtain calibrated posterior probabilities and existing work on classifying

with rejection. In section 4.3 we describe how the uncertainty regions can be obtained using

both posterior probability and geometric margin, and we introduce the method to automat-

ically choose the uncertainty threshold. Section 4.4 contains experimental results on both

artificial and real datasets, while the conclusions are drawn in Section 4.5.

4.2 Background

Support Vector Machines (SVMs) [14, 23] are widely used and are considered to be one

of the most powerful learning algorithms in data mining. The goal of a SVM is to find a

separating hyperplane that is located as far as possible from all training examples. The

prediction output of SVM is not probabilitistic, and hence additional steps are required to

obtain calibrated conditional probabilities.

4.2.1 Support Vector Machines

Consider the set X = {x1,x2, · · · ,xn} where xi ∈ Rm is an m dimensional vector. A

hyperplane is defined by fw,b(x) = wᵀx + b where wᵀx denotes the dot product of the two
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column vectors w and x. Consider the set of labels Y = {y1, y2, · · · , yn} where yi ∈ {−1,+1}.

In this set each yi corresponds to the label of xi. The classifier sign (fw,b(x)) will directly

classify x into {−1,+1}. SVMs find the slope w and offset b of this hyperplane for a set of

linearly separable cases by solving the following constrained optimization problem,

min
w,b

1
2
||w||2

s.t yi (w
ᵀxi + b) ≥ 1, i = 1, · · · , n.

(4.1)

When the training set S = {X ,Y} is not linearly separable, we relax the constraints by

allowing to ignore some constraints for a penalty. This would result in the following 1-norm

soft margin SVM formulation,

min
ξi,w,b

1
2
||w||2 + C

∑n
i=1 ξi

s.t yi (w
ᵀxi + b) ≥ 1− ξi , i = 1, · · · , n

ξi ≥ 0.

(4.2)

4.2.2 Calibrating Probability Scores

After solving the optimization problem in Eq. 4.2, the sign (fw,b(x)) will be the predic-

tion output of the SVM. However, this is not a probabilistic output. In some applications,

having a high accuracy or a large area under the receiver operating characteristic (ROC)

is not enough, and it is important to obtain accurate probability estimates. Efforts have

been made to assess how well calibrated the output scores are for a given algorithm [24],

and to create transformations that re-scale the scores back into calibrated probability esti-

mates [122]. Two popular parametric and non-parametric approaches are Platt’s scaling [83]

and isotonic regression [86] respectively. A common feature of both methods is that the

resulting transformations are monotonically increasing functions, which is what would be

expected from such transformations.
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Predicting good probabilities is not an easy task, since in practice the true conditional

probability η(X) = PX,Y (Y = 1|X) is never known. However, one sanity check is the

requirement that the conditional probabilities be well calibrated. This means that for any

interval of probabilities [p1, p2], the probability of drawing a positive example given the

classifier predicts η̂(X) = P̂ (Y = 1|X) ∈ [p1, p2] should also be in [p1, p2]. Previous studies

have suggested that many classifiers, including naive Bayes and maximum margin methods,

do not predict well calibrated probabilities [122, 83]. It has been shown that naive Bayes

models that make simplistic assumptions about the probability structure push the posterior

towards 0 and 1, while maximum margin methods such as SVM and boosted trees push away

from the extreme probabilities [82]. In addition, it has been shown that Platt’s scaling is

effective for maximum margin methods, while it is less suited for naive Bayes [82]. Isotonic

regression is also effective, but is inferior for smaller datasets. Since the calibration process

requires internal cross validation, which makes the effective training data even smaller, Platt’s

scaling is preferred in SVM [82].

4.2.3 Classification with Rejection Option

Once the SVM optimization problem is solved (Eq. 4.2), the prediction of a test sample

is given by sign (fw,b(x)). Hence, considering the example in Fig. 4.1, once the decision

boundary is set between the two classes (crosses and circles), the two points A and B are

going to be predicted as crosses. However, one should be more confident that A is a cross in

comparison to B. Furthermore, the point C is more likely to be from none of the previously

known classes. The prediction of B and C can be highly influenced by noise, or choice of

training parameters. Currently, the output of classical SVM does not include any information

allowing the user to make the distinction between A and B. Even though, as presented in

previous section, the SVM output can be mapped to posterior probabilities, the question of

where to draw the boundary between confident and less confident still exists.

The first seminal work that considers a rejection option, and given the true conditional
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probability η(X), formulates the optimal rejection rule, is the work of Chow [21]. Since

then, rejection option has been considered for many probabilistic classifiers [55]. One of the

early works for increasing the reliability of SVMs by thresholding can be found in [78], which

computes an empirical distribution of the margin based on the training data and removes

the top α% of the margin closest to zero regardless of the label Y . Later applications of

thresholding have confirmed the effectiveness of this approach for including a rejection option

([104, 112]). However, how to choose an optimal threshold has not been clear. Since choosing

any threshold τ > 0 from the output of the hinge loss is not infinite sample consistent

(Classification-Caliberated) [9], the natural evolution was to develop surrogate convex loss

functions that replace the standard hinge loss used in SVM to support a rejection option [10,

119, 50, 118]. However all existing methods require an extended cost matrix, or equivalently,

require a threshold of the true conditional probability η(X), to be explicitly defined a priori.

Furthermore, these surrogate convex losses create twice as many constraints compared to the

standard hinge loss, and as such require more samples to reach the same level of precision.

Given that in most practical applications, coming up with an appropriate extended cost

matrix is not trivial, it is worthwhile to forego infinite sample consistency for an adaptive

threshold adjustment based on the empirical error.

4.3 Methods

All existing methods for building a classifier with a rejection option are limited by the

need to pre-define an extended cost matrix (both the cost for misclassification and the cost

for rejection). However, this process is not trivial and more often than not researchers in

biomedical fields will overlook these methods and use the classification algorithms that do

not require the definition of such a cost matrix. Our goal is to propose a method that will

automatically detect a data-dependent threshold for rejection.

We propose two approaches to detect uncertainty regions (i.e., regions where sample
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Figure 4.1: A simple example of a two dimensional binary classification problem. Once a hyperplane that
separates the crosses (+) from the circles (◦) is found, any new test example falling on the positive side of the
hyperplane will be classified as a cross, with no distinction made between points such as A and B. However,
this is undesirable since the prediction confidence of A should be greater than that of B. Furthermore, C is
likely to be from none of the two classes. A small change in the training protocol could alter slightly the
position of the hyperplane and B could in fact be classified as a circle. We propose for the prediction of this
type of examples to be marked as uncertain.

perdition will be rejected), one based on the geometric margin of the SVM and the other

based on a posterior probability. Independent of the method to define uncertain regions, we

propose an automatic method to detect the uncertainty threshold. These three approaches

are described in the following subsections.

4.3.1 Uncertainty using SVM margin

Given a set of training examples {(xi, yi)} the functional margin between the instance xi

and the decision boundary is defined as

γ̂i = yi (w
ᵀxi + b) = yifw,b(xi).

The confidence of the classifier’s prediction of sample xi is captured in the magnitude of

γ̂i. However, this margin is dependent on the training data set and therefore is usually

normalized. The normalization yields the geometric margin of xi defined as

γi = yi

((
w

||w||

)ᵀ

xi +
b

||w||

)
. (4.3)
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The geometric margin of the entire training set S is

γ = min
i=1,··· ,n

γi. (4.4)

Because the SVM maximal margin classifier is designed to maximize the geometric margin

of the training set (γ) we proposed in [112] that all the test points that have a geometric

margin smaller than γ to be considered as uncertain. Therefore, the uncertainty region is

defined as

U = {x ∈ Rm| |γx| < |γ|}.

This however imposes a hard threshold which does not permit to incorporate specific costs

for uncertainty or misclassification. We propose the addition of the threshold parameter τ

that can be used to input the different costs using

U = {x ∈ Rm| |γx| < τ · |γ|}.

The specific value of the threshold τ above will be computed by the method described in

Section 4.3.3 below.

4.3.2 Uncertainty using posterior probability

Since the output of SVM, fw,b(x), is not a probabilistic measure, one of the calibration

methods discussed in Section 4.2.2 can be used to obtain probabilistic scores. Subsequently,

the uncertainty areas can be defined using these probabilities. Here, we have opted for Platt’s

scaling since it is more efficient than the counterpart isotonic regression method [82]. Platt’s

scaling is a parametric calibration method which approximates the posterior probabilities by

fitting the output of the SVM to a sigmoidal function of the form

P (Y = 1|x) ≈ PA,B(f(x)) =
1

1 + exp(Af(x) +B)
,
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prediction
incorrect correct

uncertain a b
certain c d

Figure 4.2: To evaluate the effectiveness of using uncertainty we consider the contingency table between
correct/incorrect prediction and uncertain/certain label. For us, the true positives will be a which represents
the incorrect predictions that fall in the uncertainty regions. Hence, the precision, recall, and enrichment
are defined in terms of a.

where f(x) is the output of the classifier. The best parameter setting z∗ = (A∗, B∗) is

found by minimizing the following cross entropy score (with N+ positive and N− negative

examples)

min
z=(A,B)

F (z) = −
∑n

i=1 (ti log(pi) + (1− ti) log(1− pi))

for pi = PA,B(fi), and ti =


N++1
N++2

if yi = +1

1
N−+2

if yi = −1.

In our experiments, we used the Platt scaling [68] implementation available in the LIBSVM

package [19].

We define our uncertainty regions based on the class-dependent posterior probabilities.

Any sample with posterior probability bellow the threshold τ is uncertain,

U = {x ∈ Rm, y ∈ {−1,+1}| P (Y = y|x) < τ}.

The specific value of the threshold τ above will be computed by the method described in

Section 4.3.3 below.

4.3.3 Automatic detection of threshold

Both methods for defining uncertainty regions are dependent on the adequate selection

of the threshold τ . This threshold represents the trade-off between obtaining uncertain or

incorrectly classified samples, and is controlled by their respective costs. The problem we

address in this section is the automatic detection of the data-dependent threshold.



50

In the process of selecting a threshold, our goal is to eliminate as many incorrect exam-

ples as possible (by declaring them as uncertain) without eliminating any correct samples.

Hence, we define true positives as the incorrect samples that are in the uncertainty region

(Fig. 4.2). The precision, in this case, is defined as the percentage of examples in the un-

certain region that are incorrectly classified (Prec = a
a+b

). The recall is the percentage of

incorrectly classified examples in the uncertain regions as a fraction of the total incorrectly

classified (Rec = a
a+c

). Our goal is to simultaneously maximize the precision and recall. This

can be achieved by maximizing the F1 measure [109], which is the weighted harmonic mean

of precision and recall (F1 = 2·Prec·Rec
Prec+Rec

). We automatically choose the optimal threshold τ ,

as the threshold that achieves the best F1 measure over all possible threshold values deter-

minable by the training set. In case of any additional domain specific knowledge available

from an expert, the F1 measure can be generalized to Fβ = (1+β2)Prec·Rec
(β2Prec)+Rec

, which offers the

possibility of selecting a bias towards the precision or recall.

Another method for automatic selection of the threshold is to compute the enrichment

of the incorrect examples in the uncertainty region. This can be achieved using the Fisher’s

exact test [40]. The probability of obtaining the observed number of incorrect samples in

the uncertainty region just by chance follows a hypergeometric distribution

P (X = a) =

(
a+b
a

)(
c+d
c

)(
n
a+c

) =
(a+ b)!(c+ d)!(a+ c)!(b+ d)!

a!b!c!d!n!
,

where n = a + b + c + d. The probability of observing more than a incorrect examples in

the uncertainty region is P (X > a) = 1 −
∑a

i=0 P (X = i). By minimizing this measure,

we provide the uncertainty region that incorporates the most incorrect examples while also

preserving the largest number of correctly classified examples, and therefore the best choice

of threshold τ .

Regardless of the method used to automatically select the threshold, our framework deter-

mines uncertainty regions in the SVM prediction. We will refer to it as SVM with uncertainty
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or USVM.

4.4 Results

We show through controlled experiments with artificial data that our method can auto-

matically adapt to the inherent uncertainty in data. We further show that this approach

can be useful in reducing the error rate in real data sets. The amount of reduction depends

on how well SVM models the decision boundary and the dispersion of errors with respect

to the decision boundary. We show that our automatic selection of uncertainty threshold

successfully captures most of the errors while preserving the correct samples. These sets of

experiments are described in the next two sub-sections.

Artificial data

We used the artificial data to analyze the behavior of the uncertainty threshold under

different degrees of overlap between the classes. We used two types of artificial data sets. The

first type consists of two gaussians with the same standard deviation (σ) and various distances

between their two means ranging from 0.5σ to 3σ. Two examples of feature generation are

presented in Fig. 4.3(a) and Fig.4.3(b). This data set is called the twonorm data set. The

second type of artificial data sets is also made up of two gaussians with one mode completely

overlapping the other. This data set is called the ringnorm data set (Fig. 4.3(c)). For each

artificial data set we generate 500 samples equally divided in the two classes and trained an

L2 regularized hinge loss SVM model with an RBF kernel. The best parameters (γ∗, C∗)

were chosen using a grid search and five fold cross validation.

In addition to analyzing the performance, we also used the artificial data to show how

the uncertainty threshold is obtained both based on the F1 measure and Fisher’s score, and

to show the differences between computing the threshold on the geometric margin versus

the posterior probability. One example of computing the threshold on the twonorm data
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Figure 4.3: Class dependent distributions of each feature in the artificial data sets. Each feature is generated
from two normal distributions with the same standard deviation (σ) ((a) and (b)). We considered eleven
different distances between the means of the two distributions ranging from 0.5σ to 3σ. Two examples are
presented in (a) and (b) for the distance equal to σ and 3σ respectively. In (c) a different type of artificial data
set is considered, the ringnorm data set. In this case the standard deviations of the two normal distributions
are no longer identical, they are 1 and 2 respectively, and the distance between the means is 1/

√
d, where d

is the dimensionality of the data set (in our case equal to 2).
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Figure 4.4: Side-by-side comparison of uncertainty region detection using geometric margin (a)(c)(d) and
posterior probability (b)(e)(f) on the twonorm artificial data set with the distance between the means equal
to 0.5σ, where σ is the standard deviation. The solid lines are the decision boundaries based on the geometric
margin (a) and the posterior probability (b) respectively, while the shades represent the confidence of the
discriminant function. The circles are the examples from the training set, with the bold circles representing
the ones misclassified during training. The uncertainty thresholds are chosen as the maximum values in the
trade-off graphs (c) and (e) for Fisher, and (d) and (f) for F1. These optimal thresholds (τ) are marked
with vertical blue lines in the trade-off graphs and with dashed (Fisher) and dotted (F1) lines in (a) and (b).
The trade-off graphs represent the range of all possible values of Fisher and F1 respectively over the entire
training set. By choosing the maximum on these graphs we optimize the uncertainty region to contain the
most misclassified samples and the fewest correctly classified samples at the same time.
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Figure 4.5: Side-by-side comparison of uncertainty region detection using geometric margin (a) and posterior
probability (b) on the ringnorm artificial data set which contains two gaussians with one mode completely
overlapping the other. The circles represent examples from the training set, while the bold circles represent
the misclassified samples during training. The solid lines are the decision boundaries based on geometric
margin (a) and posterior probability (b) respectively, and the shades represent the confidence of the dis-
criminant function. The dashed (Fisher) and dotted (F1) lines are the automatically chosen thresholds (τ)
for the uncertainty region. The thresholds are chosen as the maximum values in the trade-off graphs (c)
and (e) for Fisher, and in the graphs (d) and (f) for F1. These maximum values are marked with vertical
blue lines in the trade-off graphs. The trade-off graphs represent the range of all possible values of Fisher
and F1 respectively over the entire training set. By choosing the maximum on these graphs we optimize the
uncertainty region to contain the most misclassified samples and the fewest correctly classified samples at
the same time.
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set is presented in Fig. 4.4 and for the ringnorm data set in Fig. 4.5. For each measure

we compute all possible values across the entire training set, 4.4(c)-4.4(f) and 4.5(c)-4.5(f),

and select the maximum value as the uncertainty threshold. For the Fisher exact test we

used the negative logarithm of the p-value and hence the maximum is the most significant

enrichment. These maximums are marked with vertical blue lines. Based on this example,

there is no clear difference between using geometric margin (4.4(a) and 4.5(a)) and posterior

probabilities (4.4(b) and 4.5(b)) to select the uncertainty threshold. However, in both cases

the F1 score (dotted lines) selects a more stringent threshold in comparison to the Fisher’s

exact test (dashed lines). Another difference between using the F1 score and the Fisher’s

score for selecting the uncertainty threshold is the ability to set a significance threshold.

This significance threshold (horizontal brown line in 4.5(c), 4.5(e), 4.4(c) and 4.4(f)) can be

used to decide if uncertainty is needed or not. If the maximum Fisher’s score is bellow this

significance threshold using uncertainty is not warranted.

Using the twonorm data set we estimated the variance of the uncertainty threshold by

generating 50 random data sets for each distance between the means. For each iteration

we trained a model, computed the threshold and recorded the amount of data reported

as uncertain during training. We used this data to determine the confidence intervals of

the uncertainty threshold when using the Fisher’s score in Fig. 4.6(a) and the F1 score

in Fig. 4.6(b). Both F1 and Fisher’s score capture the general monotonically decreasing

uncertainty in the data sets with the increase in the distance between the means, with the

F1 measure being more conservative and rejecting fewer samples. In addition, there is no

clear difference between selecting the uncertainty threshold on the geometric margin or the

posterior probability. Since exact misclassification and rejection costs can rarely be defined

explicitly, going through the extra step of calibrating posterior probabilities is not justified

for selecting the uncertainty threshold. We applied the same procedure for the ringnorm

data set (Fig. 4.6) and the same conclusions can be drawn: the F1 score is more conservative

and there is no difference in selecting uncertainty threshold between the geometric margin
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τ

(a)

τ

(b)

Figure 4.6: Variance of the uncertainty threshold chosen based on Fisher’s exact test (a) and F1 test (b). The
variance is assessed on the ringnorm data set (left graph of (a) and (b)) and on the twonorm data set (right
side (a) and (b)) with distance between the means ranging from 0.5σ to 3σ. Both F1 and Fisher’s exact
test capture the monotonically decreasing amount of uncertainty with the increase of the distance between
the means. The F1 measure is slight more conservative and rejects fewer samples. In addition, there is no
difference in selecting the threshold on the geometric margin (red curve) or the posterior probability (blue
curve).
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and posterior probability.

The goal of the SVM classification is to predict the class label as accurately as possible.

This implies the modeling of decision boundaries and not conditional probabilities. SVMs

achieve this by bypassing the conditional probabilities using the hinge loss, thus focusing on

predicting as accurately as possible near the decision boundary, while extreme points receive

less attention. Although calibration procedures try to correct this problem, it is at the

expense of further unwarranted computation. Since this region is where the most uncertainty

lies, the goal of USVM to quantify the confidence is more in line with the goal of classification

and the requirements of low complexity and sparsity than the goal of probabilistic prediction.

Essentially predicting accurate probabilities is a much harder problem than classification

itself, and sometimes it might not be worthwhile to predict the probabilities accurately in

the entire feature space. Our experiments suggest that calibration of SVM outputs leads

to comparable results near the decision boundary with further computational cost, which is

undesirable for a rejection option when costs are unknown.

Real data

We compared the performance of USVM with SVM on the MLL gene expression data [6]

for the first scenario and on three data sets from the UCI machine learning repository [7] for

the second scenario. Armstrong et al. [6] show that Acute lymphoblastic leukemias carrying

a chromosomal translocation involving the mixed-lineage leukemia gene (MLL, ALL1, HRX)

have different expression profiles from conventional acute lymphoblastic (ALL) and acute

myelogenous leukemias (AML). We use this data set to show that USVM can detect the

novel MLL subtype from the conventional ALL and AML. The second data set is the Pima

Indian diabetes data set (referred to as pima), which is a binary classification task with eight

features and 768 samples. The third data set is the large scale high-dimensional mnist digit

dataset [65]. It consists of 60,000 training and 10,000 testing samples of hand written digits.

There are ten classes with approximately equal number of instances in each class. Each
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instance is a 28 × 28 pixel image, thus 784 features in total. All images are centered, and

their scale and rotation normalized. The last example is the UCI Cardiotocography dataset

(CTG) which contains 2126 fetal cardiotocograms with 39 features. This dataset is specially

relevant for detecting uncertain samples, since the fetal state, which is to be classified, is

labeled as Normal, Pathologic and Suspect. Our premise is that by training only on the

Normal against Pathologic samples our method is able to identify during the prediction the

Suspect samples. For all data sets we use the RBF kernel and choose the bandwidth γ,

penalty C and the uncertainty threshold τ using cross-validation on the training set. The

model for pima is tested during cross-validation and the model for mnist tested on the test

set for mnist. We tested the model for CTG both during cross-validation and on the test set

that consists only of the Suspect samples.

The MLL data set contains gene expression profiles of three leukemia subtypes (ALL, AML

and MLL), each class containing (24, 28 and 20) samples respectively. The data from all

classes were normalized together using Robust Multiarray Average (RMA) [58] and probesets

with the same gene symbol were averaged or dropped when no symbol was available for a

total of 8655 genes. Subsequently, the MLL class was set aside for testing and USVM was

trained on samples containing ALL and AML groups. The training was performed on 11

genes selected using the Nearest Shrunken Centroid [102] method only on the training data.

From the 20 MLL test samples, 13 were rejected. To see where the 20 samples lie in this 11

dimensional feature space, we draw a scatter plot of the first two principal components in

Figure 4.7. As can be seen in this figure, the ALL (red diamonds) and AML (blue circles)

classes group together closely, while samples from the novel MLL subtype (orange, grey and

cyan circles) are further apart from the training groups. The grey circles are the rejected

samples which constitute 65% of the total novel subtype, while the orange and cyan circles

are classified as ALL and AML respectively.

On the pima data set, the uncertainty threshold is chosen such that the region of uncer-

tainty is highly error prone (40.37%) in comparison with the acceptance region (13.05%).



59

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 0 2 4

−
2

−
1

0
1

PC1

P
C
2

Figure 4.7: A scatter plot of the first two principal components of the MLL data set. The smaller symbols
of red diamonds and blue circles are the ALL and AML training data respectively. The bigger circles are
the MLL test data either predicted as ALL/AML (orange/cyan) or rejected (grey).

In terms of overall performance, USVM reduces the error rate by approximately 44% over

the standard SVM. The cost of this performance increase is the percentage of samples that

where declared uncertain - 35% of the test set. These results are summarized in Table 4.1.

In addition, in Fig. 4.8, we present the evolution of the USVM accuracy (solid curve) and

uncertainty percentage (dashed line) for all the possible thresholds on the geometric margin.

Based on this figure, it can be noticed that the selection of the threshold is subjective and

based on prior knowledge of the data set it can be chosen more or less stringent. However,

USVM automatically selects the threshold that achieves the best odds ratio of errors in the

uncertainty region.

The CTG dataset is particularly suitable for displaying the benefits of including uncer-

tainty in the SVM prediction since it contains samples that are labeled as uncertain (Suspect)

by expert physicians. We trained the classifier on Normal versus Pathological cases, and ex-

amine how it performs on the Suspects cases. Although during cross-validation both SVM

and USVM achieve very good error rates (1.3% and 0.3% respectively), when tested against

the Suspect cases USVM is able to identify 21.36% of them while SVM will always assign
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Table 4.1: The error rate of the SVM prediction is reduced by approximately 44% when using the F1

automatic method to compute the uncertainty threshold on the pima data set. This is achieved by discarding
the points in the uncertain region which is characterized by a higher error rate.

SVM USVM
Uncertainty region

error
rate

percentage
discarded

D vs. H 22.66% 13.05% 40.37% 35.16%

Table 4.2: Both SVM and USVM perform very well on the CTG dataset. Even though only a small
percentage of samples are declared uncertain, this margin of uncertainty identifies 21.36% of the Suspect
cases while SVM is unable to identify any.

SVM USVM
Uncertainty region

error
rate

percentage
discarded

P vs. N 1.3% 0.3% 41.67% 1.91%
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Figure 4.8: Evolution of the accuracy (solid curve) and uncertainty percentage (dashed curve) with the
increase in geometric margin. The vertical lines represent the standard geometric margin γ (brown) and
the optimal threshold chosen using the F1 score (blue). The standard SVM accuracy and uncertainty are
represented by the black points (77.30% and 0% respectively), while USVM accuracy and uncertainty by the
blue points (86.8% and 35% respectively).

them to Normal or Pathological. These results are summarized in Table 4.2.

For the mnist data set, we decomposed it into binary classification problems. We per-

formed the comparison for each digit against the rest. For each one of the ten classifiers,

USVM reduces the error rate by approximately half by only declaring on average 2% of the
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Figure 4.9: Sample of errors declared as uncertain by USVM on the mnist data set. Each row is the result of
the discrimination between digits 0 through 9 against all the remaining digits. The left side represent false
negatives (target digit samples that would have been missclassified without uncertainty) and the right side
are false positives (other digit samples that would have been missclassified without uncertainty). The empty
spaces are due to lack of more false negatives for classes 0 and 4.

test data to be uncertain (Table 4.3). This is achieved by choosing the uncertainty region

such that it is highly error prone. For example, for the digit 8, 75% of the samples in the

uncertainty region are errors. We present in Fig. 4.9 a set of samples that where declared

uncertain by USVM. Each row represents one of the ten digit classifiers with the left side

containing false negatives and the right side false positives.

4.5 Conclusion

The widely used SVM classifiers essentially make guesses for those points of the input

space situated very close to the decision boundary. In spite of the fact that these guesses are

well-informed and shown to minimize the error in lack of any additional information [111],

in applications where refusing to classify an instance due to uncertainty would cost less than

incorrect classification, it is important to identify regions of feature space that predictions are

highly uncertain. The uncertain regions can also aid in predicting novel classes, such as new
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Table 4.3: For all the class specific models on the mnist data set the error rates of the SVM predictions
are approximately halved when using F1 automatic method to compute the uncertainty threshold. Note the
high percentage of errors discarded by using the uncertainty region.

SVM USVM
Uncertainty region

error
rate

percentage
discarded

0 vs. ALL 0.81% 0.33% 59.26% 0.82%
1 vs. ALL 0.45% 0.12% 35.48% 0.93%
2 vs. ALL 1.66% 0.84% 57.75% 1.44%
3 vs. ALL 1.93% 0.82% 47.01% 2.39%
4 vs. ALL 1.69% 1.01% 55.28% 1.25%
5 vs. ALL 2.01% 0.93% 34.82% 3.19%
6 vs. ALL 1.01% 0.56% 60.81% 0.75%
7 vs. ALL 1.81% 0.78% 47.47% 2.21%
8 vs. ALL 3.18% 1.71% 75.65% 1.99%
9 vs. ALL 3.11% 1.71% 44.51% 3.29%

cancer subtypes, unbeknownst to the classifier at training time. Due to the nature of this

problem, there is an inherent tradeoff between rejection and incorrect classification which

leads to a curve similar to the ROC curve. We propose two measures to automatically select

a reasonable data dependent threshold for rejection. This can alleviate the user from ignoring

uncertainties that commonly occur in practical applications with noisy data. The simulations

and experiments show that selecting the uncertainty threshold based on the geometric margin

is equally accurate compared to selection based on calibrated probability scores. Therefore

the extra effort needed to compute calibrated probability scores is unwarranted.
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CHAPTER 5 LEARNING A ROBUST DI-
AGNOSTIC SIGNATURE FROM LOW-SAMPLE
HIGH-DIMENSIONAL DATA

5.1 Introduction

Every day we are capable of gathering and storing more and more data. This is especially

true in bioinformatics, where high-throughput experiments produce a massive number of

features for every sample. Traditional methods of regression and classification have not

been able to keep up with this growth in number of features. As a result, there is great

interest in finding feature selection/ranking approaches that identify and remove irrelevant

features [51, 18, 98].

The ultimate goal of a diagnostic model is to predict well on unseen (test) data. However,

due to the nature of gene expression data that has orders of magnitude more features than

samples, applying classification methods directly, without feature selection, can result in poor

prediction performance. As such, many feature selection methods have been proposed to re-

move or reduce the impact of irrelevant features [89]. Based on the interconnection of feature

selection and classification methods, feature selection approaches have been historically di-

vided into filter and wrapper methods. Filter approaches score each feature individually,

while wrapper approaches score feature subsets according to their predictive performance

through a classifier. Wrapper approaches become computationally prohibitive very quickly

with increasing number of features, since the search space of the power set is exponential

in the size of the feature set. Therefore, wrapper methods are approximated with a greedy

search over heuristically ranked feature sets. A third category of approaches, known as em-

bedded feature selection, has emerged recently, which sidesteps this problem by relaxing the

combinatorial discrete problem to a continuous convex optimization, thereby performing fea-

ture selection and classification at the same time. In embedded approaches, the regularizer
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component of the classifier, which controls the complexity of the model, is designed to favor

sparse models.

Many advances in sparse learning and approximation, both in theory and methodology,

have made it possible for embedded approaches to solve high-dimensional problems effi-

ciently [101, 38, 128, 129, 114]. These approaches attempt to directly identify important

features and classify the samples at the same time. This is achieved by using an l1-norm

component, when formulating the penalty. When x ∈ Rn is a vector space, the l1-norm of

x is defined as ‖x‖1 =
∑

i |xi|. Unlike the smooth l2-norm ‖x‖22 =
∑

i x
2
i , which is used

for example in ridge regression, the l1-norm is non-smooth at zero. This enforces many

of the small coefficients to become exactly zero, and therefore be removed from the model

altogether.

Under certain regularity conditions, the l1-penalty exactly recovers the correct feature set.

These conditions typically limit the number of non-zero coefficients, and pairwise correlations

between features [113]. When there is high pairwise correlation, the elastic net penalty groups

correlated variables together, and uses the strength of the group to reduce the noise [129, 114].

However, the l1 component of the elastic net penalty makes this method unstable. It has

been shown that resampling methods can improve the stability of the l1 penalized methods,

providing consistent feature selection under weaker conditions [8, 73, 90].

In this paper, we combine a sparse classifier and a randomization procedure, to learn a ro-

bust diagnostic signature from gene expression data. The base classifier, which uses the elas-

tic net penalty, is the so called Hybrid Huberized Support Vector Machine (HHSVM) [114].

The randomization procedure, is the stability selection method [73], following the sampling

schedule of Shah and Samworth [90]. We refer to our combined method as Robust Feature

Selection (RFS). We compare RFS with a number of popular and state of the art feature

selection methods for low-sample high-dimensional datasets. These methods were chosen,

as they were used in a recent comprehensive comparison [98] and an international competi-

tion [99].
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We compare RFS with a family of dependence maximization approaches that include many

popular univariate and multivariate feature selection methods as a special case. This family

takes advantage of the Hilbert-Schmidt Independence Criterion to compute the dependence

between the response and input [98]. It includes Pearson Correlation, mean difference and

variations such as t and moderated t-statistic [97], the Centroid method [11], etc., as well

as SVM RFE [52], along with the Nearest Shrunken Centroid method [102]. SVM RFE is a

popular feature selection approach for high-dimensional data and the Centroid method is the

best performing feature selection method, as reported in a recent comprehensive review [98]

(see Table 3 and 4). We compare RFS to a variation of the Centroid method, which is the

combination of moderated t-test [97] and fold change. This method was the overall winner

of the Improver Diagnostics Signature Challenge [74]. Finally, we also compare RFS with

the base HHSVM classifier.

We compare the above methods methods on 13 datasets collected from the Improver

Challenge and other publicly available microarray datasets. We show through extensive

comparisons that RFS significantly outperforms previously known methods in predictive

accuracy, while improving the stability of selected features at the same time.

We start by describing the Improver Diagnostics Signature Challenge in Section 5.2. In

Section 5.3, we describe the required preprocessing steps for gene expression data, namely

sample selection, quality control and normalization. In Section 5.4, we describe the state of

the art methods of feature selection and classification in gene expression data, which have

been quite successful, as demonstrated by the winning team in the Improver Challenge. Then

we elaborate on our Robust Feature Selection (RFS) method. In Section 5.6, we describe the

scoring metrics used in the Improver Challenge and empirically evaluate RFS, and conclude

in Section 5.7.



66

5.2 Improver Challenge

Industrial Methodology for PROcess VErification in Research (IMPROVER), is a joint

project of IBM Research and Philip Morris International R&D [74, 76]. The aim of this

project is to assess the extent and effectiveness of systems biology approaches in industrial

settings. The hope is envisioning a future where these methods replace the empirical long-

term but trustworthy clinical trials. The first phase of this project, named the diagnostics

signature challenge, ended in Oct. 2012 [100]. The purpose was to validate the effectiveness

of computational models that classify clinical samples based on transcriptomics data, by

crowdsourcing the problem through an international competition [75, 99].

Challenge participants were asked to provide predictive diagnostic signatures on four

disease areas: Psoriasis, Multiple Sclerosis (MS), Chronic Obstructive Pulmonary Disease

(COPD) and Lung Cancer. Fifty four teams participated from around the globe, most of

which submitted results to all sub-challenges.

The IBM scoring team suggested several scoring and aggregation criteria to an outside

scoring panel and after several iterations the outside panel selected the final performance

metrics. However, only general guidelines where given to the participants and the final

metrics where not divulged. All team names where anonymized by the intermediary IBM

team executing the scoring process from the outside scoring review panel. The details of the

scoring and aggregation metrics are discussed in Section 5.6.

The unlabeled test samples were provided by the organizers, however, training samples

were to be found from public databases such as the Genomic Expression Omnibus (GEO) [32]

or any private/proprietary databases by the participants. Due to this, data selection and

preprocessing became an important factor in establishing a wining strategy.

To reduce different sources of heterogeneity and noise, and focus only on feature selection

and classification algorithms, we use the same datasets and preprocessing methodology of the

overall winning team. The preprocessed and normalized data from the Improver Challenge
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were kindly provided to us by the winners of the diagnostics signature challenge [100]. The

overall main theme that made the winning strategy was to keep the data selection, methods

and models as simple as possible in every step. For example, two of the models had only

two genes. In the rest of this paper we describe the methods used by the winning team and

compare it to our RFS method for feature selection and classification. We further evaluate

this method on several external datasets.

5.3 Preprocessing Microarray Data

The first step in any microarray experiment after hybridization is preprocessing. Although

often ignored and treated as a black box, due to many sources of heterogeneity and noise,

careful preprocessing can make a huge difference in the end results. Since training data

was not provided by the organizers, there is an extra pre-step of selecting the training data

from public genomic expression databases, such as GEO and Array Express. The suggested

training datasets were from different labs, microarray platforms and batches. To reduce

variability that is not due to biological effects, only datasets that were from the same platform

as test data were chosen when possible. All test data were from single channel Affymetrix

arrays.

Preprocessing of microarray data consists of the four steps of image quantification, back-

ground correction, normalization and summarization. Although the process is divided into

these four steps and are performed in that order, they are interconnected in that any error

from one step propagates to the next. Image quantification is usually performed by propri-

etary software from the chip makers, however, there are numerous methods for the other

steps proposed in the literature that improve upon the proprietary software. A comparison

of these methods [59] revealed that background correction has the most influence on the end

results, and that methods that consider the interconnection of these steps are superior to

the ones that consider them in isolation.
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One of the widely used methods that incorporates all these steps is the Robust Multi-

array Average (RMA) developed by [58]. Background correction is usually performed by

correcting for background noise and processing effects, adjusting for cross hybridization and

correcting the range of the expression values. In RMA, mismatch probes (MM) that are

intended to measure the cross hybridization effect are ignored and deemed unreliable [79],

and the observed target is assumed to be the sum of an exponential signal and a Gaussian

background noise.

The purpose of normalization, the next step in the pipeline, is to reduce variability due

to non-biological effects, such as experiments performed in different labs, conditions and

batches. A comparison of normalization methods for high density oligonucleotide arrays can

be found in [13]. RMA uses quantile normalization [13] for this step of the process. In

summarization, the final step, multiple probes of each probeset are combined to produce an

expression value. RMA uses the median polish algorithm [36] to robustly fit the expression

values based on a multi-array model.

When the samples are from different platforms, the standard RMA can no longer be used.

In this situation, all datasets that are from the same platform are normalized separately us-

ing RMA, followed by mapping probesets to genes (Enterez IDs), averaging over many to one

mappings and dropping probesets with no Enterez ID mappings while keeping only genes

present in both platforms. Finally all sample are normalized together using quantile nor-

malization [13] to remove batch effects. In all datasets from the challenge, after normalizing

with RMA, MAS5.0 [5] detection calls were used to drop probesets that were not reliable in

a reasonable (25%) number of samples.

5.4 Feature Selection and Classification

Similar to the No Free Lunch argument about the lack of existence of an optimal classifier

for all conceivable datasets, the same argument is true for an optimal feature selection
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method. However, we are interested in methods that typically perform better on average

for certain high-dimensional datasets, which can be assessed empirically. A generalization of

many feature selection methods that subsumes filter and wrapper approaches such as Pearson

Correlation, the Centroid [11], moderated t-test [97], SVM RFE [52] and Nearest Shrunken

Centroid [102], along with a comprehensive comparison of the popular approaches can be

found in [98]. In this framework, feature selection which is a combinatorial optimization task,

is converted to a greedy procedure, optimizing the Hilbert-Schmidt Independence Criterion

(HSIC). The basic premise here is that good features should be highly dependent on the

labels. Based on this study which includes 28 microarray datasets, the Centroid method,

also known as absolute fold change when expression values are log-transformed, has the

overall best performance in both binary and multiclass problems.

Let x ∈ Rn,p be a matrix of n samples and p features, and y ∈ {+1,−1}n a vector of

labels. The Centroid method [11] uses νj = x̄j+− x̄j− as the score for feature j, where j+ and

j− are index sets over the positive j+ = {(j, i)|yi = +1}, and negative j− = {(j, i)|yi = −1}

samples, and features are selected according to the absolute value |νj|. When x is the log

expression value, this quantity is also known as absolute fold change.

The moderated t-test [97] uses an empirical Bayes approach to attenuate the normal-

ization of each feature. Compared to the t-test, moderated-t estimates the distribution of

variance, by pooling the variances across all features. This distribution is subsequently used

to normalize the variance of all features. If s̄j = (
s2
j+

m+
+

s2
j−

m−
)
1
2 is the t-statistic, where m and

s are the empirical mean and standard deviation, the moderated t-test is

s̃j =
ms̄2j +m0s̄

2
0

m+m0

, (5.1)

where s̄j is the t-statistic and s̄0 and m0 are the hyperparameters for the prior distribution
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on s̄j, which are estimated using information from all dimensions

m0 = 2Γ′−1
(

1
d

∑d
j=1 (zj − z̄)2 − Γ′

(
m
2

))
,

s̄20 = exp
(
z̄ − Γ

(
m
2

)
+ Γ

(
m0

2

)
− ln

(
m0

2

)) (5.2)

where Γ (·) is the gamma function, ′ denotes derivative, zj = ln
(
s̄2j
)

and z̄ = 1
d

∑d
j=1 zj.

The winners of the Improver Challenge used a combination of moderated t-test and Cen-

troid methods for feature selection, along with Linear Discriminant Analysis [46] as the

classification approach. They first reduced the feature set using the moderated t-test to

all features having a p-value less than 0.005, and subsequently sorted them by decreasing

absolute fold change value. Starting from top 2 features up to 10∼20 depending on the

dataset, they went down the list one feature at a time and chose the set with maximum

tAUROC of the classifier, where tAUROC = mean(AUROC)/sd(AUROC) computed over

five-folds.

5.5 Robust Feature Selection

As opposed to the described filter methods we employ an embedded approach. The

Hybrid Huberized SVM [114] is a sparse classifier specifically designed for high-dimensional

low-sample datasets. To understand the differences that makes HHSVM a suitable classifier,

we start with the familiar SVM [14] optimization criterion. When x is a column vector

sample and y ∈ {+1,−1} is the label, SVM minimizes the risk function,

min
β0,β

n∑
i=1

[
1− yi

(
β0 + xTi β

)]
+

+
λ

2
||β||22, (5.3)

where the loss function (1 − ·)+ = max(1 − ·, 0) is called the hinge loss and the regularizer

is the l2-norm of the coefficients β. The HHSVM changes the regularizer to a mixture of l1
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and l2-norms known as the elastic net penalty [129],

λ1||β||1 + λ2||β||22, (5.4)

and the loss function to huberized hinge loss [87]

φ(yf) =


0, for yf > 1,

(1− yf)2/2δ, for 1− δ < yf ≤ 1,

1− yf − δ/2, for yf ≤ 1− δ,

(5.5)

where δ > 0 is a prespecified constant. These changes result in the following HHSVM

optimization criterion,

min
β0,β

n∑
i=1

φ
(
yi
(
β0 + xTi β

))
+ λ1||β||1 + λ2||β||22. (5.6)

The elastic net regularizer encourages a combination of sparsity through the l1-norm (λ1)

and grouping of correlated features through the l2-norm (λ2), while the huberized hinge loss

enables faster computation by smoothing the hinge loss to make it always differentiable.

Furthermore, a pathwise [33] method is used to solve (5.6) for every possible value of the

regularization parameter λ1. As such, the entire solution path of λ1 is found for the same

cost of solving this model for a single λ1.

Although sparse classifiers with lasso and elastic net penalties are asymptotically consis-

tent, they are sensitive to the regularization parameters in finite sample settings [8]. The

stability selection method [73] is a general randomization procedure via subsampling to sta-

bilize approximation of discrete structures, such as feature selection and inverse covariance

estimation. Stability selection, provides a stronger guarantee for consistent feature selection

under weaker conditions, than what is provided by the original sparse penalties, with finite

sample error control. We compute an individual selection probability for each one of the fea-
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tures using repeated subsampling of 50 percent without replacement according to [90]. The

probability is computed based on the number of times the respective feature was selected in

the trained model. The final classifier is trained on top k ranking features, where the rank

is based on the selection probability.

Note that one should refrain from using linear kernel SVM on the reduced set of features,

since SVM approximates the risk using only the support vectors, and discards most of the

already small amount of available samples. Although we use Linear Discriminant Analysis

(LDA) for the final classifier, using logistic regression would yield similar results.

5.6 Results

We compare the prediction performance and stability of the diagnostic signature found

using RFS with HHSVM, Pearson Correlation (PC), moderated t-test and absolute fold

change combination (mtfc), SVM RFE and Nearest Shrunken Centroid (NSC) on 13 mi-

croarray datasets. All datasets were chosen to be binary classification tasks, so that the final

results would be comparable. For every dataset, the top k ranking features are computed

for all methods, where k ≤ 20. An LDA classifier is trained on the same folds where feature

selection is performed, and tested on the hold-out set using 10 fold cross-validation, for every

k-feature model (k ≤ 20). Subsequently, various performance measures were computed on

the hold-out set.

In this section, we first describe the performance metrics used in the Improver Challenge,

and then present comparison of methods and aggregated results. In order to have a more

accurate comparison, instead of the suggested train/test split of the Improver Challenge

datasets, we combine all the data and perform cross-validation. Since no single metric can

capture all the subtleties of a prediction task, three non-redundant metrics were chosen by

the Improver Challenge scoring panel. The three performance criteria are Belief Confusion

Metric (BCM) or otherwise known as Balanced Accuracy (BAL), Correct Class Enrichment
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Metric (CCEM) and Area Under the Precision Recall Curve (AUPRC).

Consider S to be the classifier subject belief matrix and sij the classifier belief that subject

i is in class j. If νkj =
∑

i sij where i is over all subjects in class k, then the normalized

BCM is the normalized difference between the ideal confusion matrix (Target) and subject

belief matrix, which for two classes is defined as,

BCM = 1−
2∑
i=1

(1− νii/Ni)/2, (5.7)

where Ni is the number of subjects in class i. Correct Class Enrichment Metric (CCEM)

estimates the enrichment of correctly assigned classes and is defined as

CCEM =
∑
i∈CC

sia(i) −
∑
i∈IC

sia(i), (5.8)

where CC and IC are correctly and incorrectly classified samples, and a(i) is the class

assigned to subject i according to the maximum belief for that subject. CCEM is bounded

by −N ≤ CCEM ≤ N and thus normalized using CCEMnor = (CCEM/N + 1)/2 where N

is the number of subjects. AUPRC and its close relative, Area Under the Receiver Operating

Curve (AUC), estimate the probability that a positive sample is ranked above a negative

sample. The main difference between AUPRC and the other two measures is that for a correct

ranking, AUPRC does not care how far apart the pair of positive and negative samples are,

whereas in BCM and CCEM, this distance is considered in the metric.

RFS is compared with five competing feature selection methods on 13 datasets as de-

scribed in Table 5.1. The number of samples and features reported reflect the processed

data, and not the original datasets. In addition to the three aforementioned metrics, we

compute the AUC, Matthews Correlation Coefficient (MCC) and Accuracy using ten fold

cross-validation.

For a close visual inspection, we include the pairwise comparison of RFS to HHSVM,

which is the base classifier, and to moderated-t/fold-change, which is the winner of the
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Table 5.1: Detailed description of datasets.

item ref. type pos. neg. total features

1 GSE15471 Pancreatic Cancer 35 35 70 19944
2 GSE18842 Non-Small Cell Lung Cancer 44 44 88 19944
3 GSE19188 Non-Small Cell Lung Cancer 62 91 153 19944
4 GSE8671 Colorectal Cancer 32 32 64 19944
5 GSE9348 Colorectal Cancer 12 70 82 19944
6 GSE9476 Acute Myeloid Leukemia 37 26 63 12495
7 [67] Head and Neck Cancer 100 100 200 1148
8 [110] Breast Cancer 62 53 115 24481
9 [108] Breast Cancer 194 100 294 24453

10 [116] Breast Cancer 193 93 286 12495
11 [12] Lung Cancer 10 86 96 5299
12 [75] Chronic Obstructive Pulmonary Disease 82 46 128 12655
13 [75] Psoriasis 120 118 238 13261

Improver Challenge, on four performance measures in Figures 5.1(a) and 5.1(b) respectively.

In Figure 5.1, each color and symbol combination represents a dataset, and each point is

the average performance scatter of a k-feature model for two methods based on 10 fold cross

validation. Every point above the diagonal line shows better performance on the metric in

favor of the RFS feature selection. We can see from this figure that most points lie above

the line in favor of RFS compared to both methods on all measures. SVM RFE exhibits

high variance in performance, which is expected based on previous comparisons [98]. To

summarize the prediction performances for all the datasets and methods, we follow [98] and

present the empirical error rate with one difference. Instead of fixing the number of features

to 10, we choose the best k-feature model (k ≤ 20) for which the average of AUPRC, BCM

and CCEM is maximized.

In Table 5.2, we report the empirical error of each model, and the feature size of the model

that maximizes the average score. When evaluating the performance of a feature selection

method, it is important that the selected feature list performs consistently well overall, rather

than be the best in some cases and perform horribly on others. As such, the `2 distance is

used, in order to penalize methods with higher variance, i.e. performing well on few datasets
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and poorly on others. The final row of this table is the `2 distance of each method from the

overall minimum achieved error, among all methods per dataset, denoted in the last column.

This table shows that RFS has a superior overall performance with the `2 distance of 7.5,

while the error rate of NSC, which is the next best method, is 12.0, based on the `2 distance

of empirical error rates.

Table 5.2: Empirical error rate computed using 10 fold cross-validation for each feature selection method
(lower values indicate better performance and values in boldface represent the minimum for each data
set/row). “mtfc” is moderated-t/fold-change, PC is Pearson Correlation, NSC is Nearest Shrunken Centroid,
SVM RFE is SVM Recursive Feature Elimination, HHSVM is Hybrid Huberized SVM and RFS is the
proposed Robust Feature Selection method. The last two rows are the `1 and `2 distances of the average
cross-validation error of each method from the overall minimum achieved error rate of all methods per
dataset, which is shown in the last column. The proposed method (RFS) achieves the lowest overall error
across all datasets.

Dataset mtfc PC NSC SVM RFE HHSVM RFS Min

1 12.86 10.00 10.00 8.57 15.71 8.57 8.57
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 2.58 2.58 3.21 3.25 3.92 3.25 2.58
4 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00
6 7.86 3.33 1.67 0.00 1.43 3.10 0.00
7 41.00 31.00 28.00 30.50 27.50 22.50 22.50
8 23.41 22.65 14.85 26.97 17.35 17.58 14.85
9 36.46 35.77 34.39 37.10 32.03 34.78 32.03
10 45.18 40.27 43.78 47.25 43.78 40.59 40.27
11 5.00 0.00 0.00 1.00 1.00 0.00 0.00
12 26.03 22.76 25.77 22.63 25.71 18.85 18.85
13 2.52 0.42 0.43 0.42 0.42 0.42 0.42

`1 5.19 2.57 2.05 3.25 2.57 1.09 -
`2 26.06 14.82 12.01 18.98 13.16 7.50 -

We also analyze the stability of each feature selection approach by computing the selection

frequency of each feature among all the folds. Since 10-fold cross-validation is used, there

are 10 sets of ranked lists for any given model size k (k ≤ 20). In Table 5.3, we report the

optimal chosen model size m (Size) based on the combined average of the three performance

measures, the number of features in common in at least five folds s (Common), and the

stability of these sets of features s/m (Stability). The last row, which is the average of each
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statistic over all datasets, is a summary for each method. Table 5.3 shows that RFS is much

more stable than the base HHSVM classifier, and close to NSC (the most stable method),

while SVM RFE is the least stable among the considered methods. Note that if a method

chose the first 10 features regardless of the data, it will be extremely stable but terrible at

predictive accuracy. As such, although PC and NSC choose a more stable feature set, it does

not necessarily suggest better performance in terms of predictive accuracy. In essence, RFS

provides a principled approach to improve the stability and predictive accuracy at the same

time.

5.7 Conclusion

In this work, we present Robust Feature Selection (RFS), as a method to learn a stable

and accurate diagnostic signature from high-dimensional low-sample datasets. We compare

RFS with a number of popular and state of the art feature selection methods, which have

been previously successful, as reported in the literature [98, 52, 102], and an international

competition [99]. We show through extensive experiments that RFS significantly outperforms

all considered methods, in reducing the empirical error, while choosing sparse models at the

same time. The goal of personalized medicine is to discover refined groupings of heteroge-

neous diseases such as cancer. Leveraging transcriptomics data has tremendously influenced

and accelerated this process. However, in order to make personalized medicine possible, a

diagnostic/prognostic signature differentiating various groups, should not only be accurate,

but also stable enough to be reproducible in different settings [34]. Development of a stable

and accurate diagnostic signature is the first step towards this goal. The Robust Feature

Selection method tries to fill this gap by providing an improved diagnostic signature.
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Table 5.3: Stability of each feature selection method as shown by the average number of features in common
in at least five folds of the 10-fold cross-validation (higher stability values show improved stability). “Size”
is the optimal chosen model size, m, based on the average of AUPRC, BCM and CCEM. “Common” is the
number of features common in at least five folds, s. The stability column corresponds to “Common” divided
by “Size”, s/m (higher is better). The last row is the average of each statistic over all datasets. This table
shows that the proposed RFS method is much more stable than the base HHSVM classifier, mtfc, SVM RFE,
and its stability is close to NSC’s and PC’s, which are the most stable method. Although PC and NSC are
slightly more stable, the chosen feature sets are not as predictive as RFS.

mtfc PC NSC

Dataset Size Common Stability Size Common Stability Size Common Stability

1 6 5 0.83 3 3 1.00 2 2 1.00
2 11 11 1.00 12 11 0.92 13 11 0.85
3 19 20 1.05 14 13 0.93 14 13 0.93
4 10 9 0.90 2 2 1.00 3 3 1.00
5 18 17 0.94 2 2 1.00 2 2 1.00
6 20 14 0.70 17 16 0.94 4 3 0.75
7 15 1 0.07 6 6 1.00 6 5 0.83
8 16 12 0.75 18 16 0.89 20 18 0.90
9 19 16 0.84 13 9 0.69 15 16 1.07
10 2 1 0.50 18 15 0.83 17 15 0.88
11 11 9 0.82 1 1 1.00 3 3 1.00
12 11 8 0.73 8 8 1.00 20 21 1.05
13 16 16 1.00 6 6 1.00 20 20 1.00

Mean 13.38 10.69 0.78 9.23 8.31 0.94 10.69 10.15 0.94

SVM RFE HHSVM RFS

Dataset Size Common Stability Size Common Stability Size Common Stability
1 14 4 0.29 5 1 0.20 9 7 0.78
2 17 13 0.76 9 6 0.67 11 9 0.82
3 18 5 0.28 20 12 0.60 19 18 0.95
4 8 4 0.50 3 2 0.67 3 3 1.00
5 8 4 0.50 5 4 0.80 3 2 0.67
6 14 13 0.93 17 11 0.65 20 20 1.00
7 18 8 0.44 16 10 0.63 11 10 0.91
8 20 5 0.25 9 7 0.78 13 11 0.85
9 19 7 0.37 17 9 0.53 17 13 0.76
10 8 0 0.00 5 3 0.60 20 18 0.90
11 5 4 0.80 7 5 0.71 5 5 1.00
12 11 3 0.27 12 8 0.67 9 8 0.89
13 20 18 0.90 17 14 0.82 6 6 1.00

Mean 13.85 6.77 0.48 10.92 7.08 0.64 11.23 10.00 0.89
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Figure 5.1: Pairwise performance scatter plot of RFS compared to HHSVM (top) and moderated-t/fold-
change (bottom). Each color/symbol represents a dataset and each point is the average performance of a
k-feature model (k ≤ 20), based on 10 fold cross validation. ACC is accuracy, AUPRC is area under the
precision recall curve, BCM is belief confusion metric and CCEM is correct class enrichment metric. Every
point above the diagonal line shows better performance in favor of RFS with respect to the measure. The
3 numbers, a/b/c, on the top left corner of each plot, show the number of points “above/on/below” the
diagonal line.
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CHAPTER 6 CONCLUSIONS AND FUTURE
WORK

Machine learning approaches can be divided into standard tasks such as supervised, unsu-

pervised and semi-supervised learning. Due to its high impact and utility, the same concepts

have been employed in a wide variety of applications. However, applying standard machine

learning tasks in different domains and datasets comes with certain difficulties and requires

great effort in order to succeed. This work aims to provide solutions for some of the recurring

problems of machine learning in biology and medicine.

One of the major problems in classification of patient population is attributing costs to

different classes and imbalanced prior class distribution. In Chapter 2, we explore various

ways of developing cost sensitive classification. We emphasize the two distinct regimes in

classification methods, i.e., the ones that estimate posterior probability and the ones that

learn a discriminant function directly. This fundamental difference is the most important

aspect to consider when developing cost sensitive classifiers.

Next, we apply the best practices found in cost sensitive learning to ontology mapping.

Ontologies have been extensively used in biology and medicine. The Open Biological and

Biomedical Ontologies (OBO) [96] for example is a collaborative effort to developing and

maintaining useful ontologies. Since the number of mismatches grows in O(n2) when the

number of matches or concepts in a pair of ontologies is O(n), the training data is highly

skewed. Furthermore, due to the human intervention requirement to fix the errors, the cost

of false negatives is much lower than false positives. In Chapter 3, to make data integration

easier, we develop an automatic ontology mapping framework that learns the mapper while

taking these factors into account.

The ultimate goal of personalized medicine is the ability to identify specific disease mech-

anisms that may be at play in each patient, and provide a targeted individualized treatment.

A first step towards this was the introduction of treatments targeted at disease subtypes such
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as HER2+ breast tumors. Even though breast cancer subtypes are well understood, 20% of

the HER2 targeted treatments are ineffective, and many of the remaining 80% will eventually

become resistant. These failures may be avoided by refining our current understanding of dis-

ease subtypes. Therefore, identifying homogeneous disease subtypes and patient subgroups

is an intermediate step towards the ultimate goal of personalized medicine.

Chapter 4, deals with classifying patient subtypes from heterogeneous diseases. Support

Vector Machines are one of the most successful classifiers in use today. However, they are

unable to predict whether the samples are from completely new classes/distributions or too

close to the decision boundary to be considered reliable. We propose a solution based on

SVM to reject samples that do not belong to any class from the training data or are too

unreliable to be classified. We show through artificial data that our method captures most

of underlying uncertainty in classification. Furthermore, we validate the method by success-

fully applying it to Diabetes, Cardiotocography, MNIST and Leukemia datasets. For the

Diabetes, Cardiotocography and MNIST datasets the proposed method effectively reduces

false positives by discarding unreliable predictions, and for the Leukemia dataset, the method

rejects samples from the new class which were not present during training.

In Chapter 5, the last part of this thesis, we develop novel methods that handle data

typically found in biological experiments. In such experiments, data generated from high-

throughput technology are very high-dimensional, usually in the order of tens of thousands.

In addition, the number of samples that we can obtain are relatively low and in the order of

tens to hundreds. In this setting, standard and classical methods of hypothesis testing fails

due to very low power. Furthermore, many machine learning methods such as classification

and regression would be unreliable, and thus knowledge discovery from such experiments will

be very difficult.

We develop the Robust Feature Selection (RFS) as a novel method for classification in

high-dimensional low-sample datasets. RFS is a sparse classification method that utilizes

a randomization procedure for stability. RFS can learn an accurate and stable diagnostic
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signature from high-throughput experiments. We compare RFS with a number of popular

and state of the art feature selection methods and show through extensive experiments

significant improvement in both accuracy and stability of the selected features in comparison

to all considered methods.

Although the machine learning methods developed here alleviate some of the recurring

problems in bioinformatics, the challenges of the discipline are far from over. The techniques

described here finds subgroup of samples that are similar or subsets of genes that differenti-

ate the samples. As our understanding of the biology in life sciences further advances and

this knowledge is utilized for personalized medicine, so would the intricacy and abundance of

information to be considered when moving forward. For example, there are more information

available about the interaction among the genes and pathways of interest that regulate bio-

logical processes. Sparse structured methods could be employed to combine this information

with high-throughput experiments to refine the groupings and enhance the quality of our

predictions. Furthermore, sparse prediction methods such as the graphical lasso can be used

to find previously unknown interaction networks.
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[48] G. Fumera and F. Roli. Support vector machines with embedded reject option. In

Pattern Recognition with Support Vector Machines, 68–82. Springer, 2002.

[49] P. Geibel and F. Wysotzki. Perceptron based learning with example dependent and

noisy costs. In T. Fawcett and N. Mishra, editors, In Proceedings of the International

Conference on Machine Learning, 218–225. AAAI Press, 2003.

[50] Y. Grandvalet, A. Rakotomamonjy, J. Keshet, and S. Canu. Support vector machines

with a reject option. In Neural Information Processing Systems (NIPS), 537–544,

Vancouver, Canada, December 2008.

[51] I. Guyon and A. Elisseeff. An introduction to variable and feature selection. The

Journal of Machine Learning Research, 3:1157–1182, 2003.

[52] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification

using support vector machines. Machine learning, 46(1-3):389–422, 2002.

[53] H. Han, W. Wang, and B.-H. Mao. Borderline-SMOTE: A new over-sampling method

in imbalanced data sets learning. In D.-S. Huang, X.-P. Zhang, and G.-B. Huang, edi-

tors, ICIC (1), volume 3644 of Lecture Notes in Computer Science, 878–887. Springer,

2005.



87

[54] J. A. Hanley and B. J. McNeil. The meaning and use of the area under a receiver

operating characteristic (roc) curve. Radiology, 143(1):29–36, April 1982.

[55] R. Herbei and M. H. Wegkamp. Classification with reject option. Canadian Journal

of Statistics, 34(4):709–721, 2006.

[56] J. Huang and C. X. Ling. Using AUC and accuracy in evaluating learning algorithms.

IEEE Transactions on Knowledge and Data Engineering, 17(3):299–310, 2005.

[57] R. L. Iman and J. M. Davenport. Approximations of the critical region of the friedman

statistic. Communications in Statistics-Theory and Methods, 9(6):571–595, 1980.

[58] R. A. Irizarry, B. Hobbs, F. Collin, Y. D. Beazer-Barclay, K. J. Antonellis, U. Scherf,

and T. P. Speed. Exploration, Normalization, and Summaries of High Density Oligonu-

cleotide Array Probe Level Data. Biostatistics, 4(2):249–264, 2003.

[59] R. A. Irizarry, Z. Wu, and H. A. Jaffee. Comparison of affymetrix genechip expression

measures. Bioinformatics, 22(7):789–794, 2006.

[60] M. A. Jaro. Probabilistic linkage of large public health data files. Statistics in medicine,

14(5-7):491–498, 1995.

[61] L. Jiang, D. Wang, Z. Cai, and X. Yan. Survey of improving naive bayes for classifi-

cation. In R. Alhajj, H. Gao, X. Li, J. Li, and O. R. Zäıane, editors, Advanced Data
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Machine learning as a field is defined to be the set of computational algorithms that

improve their performance by assimilating data. As such, the field as a whole has found

applications in many diverse disciplines from robotics and communication in engineering to

economics and finance, and also biology and medicine. It should not come as a surprise

that many popular methods in use today have completely different origins. Despite this

heterogeneity, different methods can be divided into standard tasks, such as supervised,

unsupervised, semi-supervised and reinforcement learning.

Although machine learning as a field can be formalized as methods trying to solve certain

standard tasks, applying these tasks on datasets from different fields comes with certain

caveats, and sometimes is fraught with challenges. In this thesis, we develop general proce-

dures and novel solutions, dealing with practical problems that arise when modeling biological

and medical data.

Cost sensitive learning is an important area of research in machine learning which ad-

dresses the widespread and practical problem of dealing with different costs during the

learning and deployment of classification algorithms. In many applications such as credit

fraud detection, network intrusion and specifically medical diagnosis domains, prior class

distributions are highly skewed, which makes the training examples very much unbalanced.
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Combining this with uneven misclassification costs renders standard machine learning ap-

proaches useless in learning an acceptable decision function. We experimentally show the

benefits and shortcomings of various methods that convert cost blind learning algorithms to

cost sensitive ones. Using the results and best practices found for cost sensitive learning, we

design and develop a machine learning approach to ontology mapping.

Next, we present a novel approach to deal with uncertainty in classification when costs

are unknown or otherwise hard to assign. Support Vector Machines (SVM) are considered to

be among the most successful approaches for classification. However prediction of instances

near the decision boundary depends more on the specific parameter selection or noise in data,

rather than a clear difference in features. In many applications such as medical diagnosis,

these regions should be labeled as uncertain rather than assigned to any particular class.

Furthermore, instances may belong to novel disease subtypes that are not from any previously

known class. In such applications, declining to make a prediction could be beneficial when

more powerful but expensive tests are available. We develop a novel approach for optimal

selection of the threshold and show its successful application on three biological and medical

datasets.

The last part of this thesis provides novel solutions for handling high dimensional data.

Although high-dimensional data is ubiquitously found in many disciplines, current life science

research almost always involves high-dimensional genomics/proteomics data. The “omics”

data provide a wealth of information and have changed the research landscape in biology

and medicine. However, these data are plagued with noise, redundancy and collinearity,

which makes the discovery process very difficult and costly. Any method that can accurately

detect irrelevant and noisy variables in omics data would be highly valuable. We present

Robust Feature Selection (RFS), a randomized feature selection approach dedicated to low-

sample high-dimensional data. RFS combines an embedded feature selection method with a

randomization procedure for stability.

Recent advances in sparse recovery and estimation methods have provided efficient and
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asymptotically consistent feature selection algorithms. However, these methods lack finite

sample error control due to instability. Furthermore, the chances of correct recovery di-

minish with more collinearity among features. To overcome these difficulties, RFS uses a

randomization procedure to provide an accurate and stable feature selection method. We

thoroughly evaluate RFS by comparing it to a number of popular univariate and multivariate

feature selection methods and show marked prediction accuracy improvement of a diagnostic

signature, while preserving a good stability.
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