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CHAPTER 1 

INTRODUCTION 

1.1 SOFT MATTER 

            Soft condensed matter or soft matter is a subfield of condensed matter physics consists of 

matter that are neither simple liquids nor crystalline solids. Many materials that are used in 

everyday life are soft matters such as - glues, paints, soaps, rubber etc. Variety of food we 

consume for example milk, mayonnaise, ketchup etc., can also be classified as soft matter. 

Human body primarily consists of soft materials such as blood, nucleic acids, proteins and 

polysaccharides. Soft materials also include colloidal dispersions, polymer melts and solutions, 

amphiphiles and liquid crystals.
1,2

 The common similarity for all soft matter is that they all have 

intermediate length scale between atomic sizes (> 0.1 nm) and macroscopic scales (< 10 μm) 

which is also known as mesoscopic dimensions. Even though soft materials are larger than 

atomic sizes they are still small enough to possess thermal fluctuations caused by Brownian 

motion.
2,3

 Soft matter can self-assemble. Many complex structures arise spontaneously in soft 

matter systems due to the rich phase behavior caused by subtle balances of energy and entropy.
2
 

The size and connectivity of the molecules in soft materials lead to strikingly new rheological 

properties. The mechanical response to shear stress is different for solid and liquid materials. If 

shear is applied to solids, solids resist deformation. On the other hand, liquids flow under shear. 

Soft materials exhibit a combination of time-dependent elastic and viscous response which is 

termed as viscoelastic behavior. If shear is applied for short time scale the response of 

viscoelastic material will be elastic. If shear is applied for a longer time than relaxation time, τ, 

the corresponding response will be a viscous one. The characteristic time scale, τ, for a 

viscoelastic system depends on the material. An example of viscoelastic material is “silly putty” 

which is a rubbery polymer and exhibits both types of mechanical response. 



2 
 

 

A brief description of the major classes of soft matter is discussed below: 

           Colloidal dispersions are heterogeneous systems in which particles (dimensions < 10 μm) 

of solids or droplet of liquids are evenly dispersed in a continuous medium. Examples of colloids 

are paints, inks, mayonnaise, biological fluids such as blood and milk. Colloidal dispersions have 

large surface-to-volume ratio because of their small size which means that with this high area of 

interface associated with a substantial amount of interfacial energy. Instead of this large energy, 

colloidal dispersions are characterized by their stability, that prevent the particles to combine and 

form larger aggregates in order to reduce the interfacial energy. The Brownian motion for 

smaller colloidal particles is particularly important as the gravitational force is subsides with 

decreasing size. If the thermal fluctuations of the colloidal particles overcome the gravitational 

force, then colloids remains dispersed in liquid. If colloidal particles come into contact, they 

could stick together irreversibly and larger assemblies of particles will be formed. This process is 

known as aggregation. Aggregation can be avoided by changing the forces acting between 

particles, which are normally attractive. By modifying the surfaces of colloidal particles, by 

exploiting electrostatic charge, or by attaching polymer chains to the particles it is possible to 

change the forces between them from attractive to repulsive.  

           Liquid crystals are soft materials that have degree of ordering intermediate between the 

molecular disorder of the liquid and the regular structure of a three dimensional crystal.
2
 Unlike 

other soft materials liquid crystals have long-range orientational order which is possible if the 

molecules are anisotropic in shape such as rod-like or disc-like. The individual molecules that 

comprise a liquid crystal are commonly referred to as mesogen. Even for small temperature 

changes liquid crystals typically undergo multiple phase transitions. The most disordered liquid 

crystalline phase is the nematic phase. In nematic phase the molecules do not have any positional 
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order but they are oriented about a particular direction, called the director. Different nematic 

phases can occur in a system where the system is composed of chiral molecules, in which the 

molecule differs from its own mirror image. In these systems the neighbouring molecules have a 

slight tendency to align at a slight angle to one another, which leads the director to form a helix in 

space. These nematic phases are known as chiral nematics or more commonly cholesterics. The 

more ordered liquid crystal phase is known as smectic phase in which the molecules have 

orientational order as well as long-range positional order in one dimension. Liquid crystal phases 

with two-dimensional positional order can be formed by disc-like molecules which is termed as 

columnar (or discotic) phase. 

           Surfactant molecules or amphiphiles are another category of soft materials which have 

hydrophobic and hydrophilic components. If these molecules are immersed in liquids, they 

arrange themselves to form higher order structures such as micelles, which may be spherical or 

cylindrical in shape, bilayers or vesicles. These ordered structures allow the hydrophilic ends 

contact with the surrounding aqueous solution, while simultaneously limiting the interaction of 

the solution with the hydrophobic tails. Amphiphiles are relatively smaller molecules, but long 

polymer can also display the same behavior if they are composed of two or more chemically 

different blocks covalently attached together. Examples of amphiphiles include soaps and 

synthetic detergents which have a single hydrocarbon chain. Another very important category of 

amphiphiles have two hydrocarbon chains attached to its hydrophilic head groups, known as 

phospholipids. The phospholipids are major components of biological membranes. Different 

classes of soft matter are presented in Fig 1.1.1: 
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FIGURE 1.1.1: (a) colloidal particles, (b) liquid crystal, (c) amphiphiles, (d) polymer. 

           My research focus in soft matter is mainly on polymeric systems, which will be discussed 

below in detail.  

1.2 POLYMERS 

           “Poly” means many and “mer” means part. Polymers are giant molecules made up of 

many small, simple repeating chemical units known as monomers. Monomers are connected to 

each other by covalent bonds and can be arranged in a variety of different architecture. The 

process in which monomers are covalently bonded together to form polymer is known as 

polymerization. The number of monomers, N, is called the degree of polymerization. Polymer 

properties vary with their degree of polymerization, microstructure and architecture. Molecular 

weight, Mw, of a polymer is the product of the degree of polymerization, N, and mass of each 

monomer unit (Mmon).
4
 

                                                                     Mw = NMmon 1.2.1 

           Polymers can be either synthetic or biological in origin. For example plastics such as 

polystyrene and polyethylene are synthetic polymers and protein, nucleic acid such as DNA and 

polysaccharides are biopolymers. Polymers have varieties of different properties that arise from 

the different chemistry that makes them up. They also have numerous universal physical 



5 
 

 

properties such as, all of them are long, string-like molecules. The most fascinating property of 

polymers is that two molecules of a polymer cannot cross each other, which in turn leads to the 

effect of entanglement that produces dramatic viscoelastic effects in polymer melts and 

solutions.
2
 

            Depending on the arrangement of monomers in polymer chain, polymers can have 

different architecture such as linear or branched. Linear polymers are completely characterized 

by the degree of polymerization N. Example of a synthetic linear polymer is high-density 

polyethylene. Branched polymers, which possess side chains along with the main chain can be 

both synthetic and natural. One example of a branched polymer is low density polyethylene 

which contains many branches. A macroscopic volume network can be created if more and more 

branch points are introduced to a polymer system. Such networks include vulcanized rubber and 

cured epoxy resins.
2
 Polymers can be classified as linear, ring, star-branched, H-branched, 

ladder, comb, dendrimer, randomly branched etc. (Fig. 1.2.1), depending on the arrangement of 

monomers in polymer chain. Dendrimers are three-dimensional polymer structures, which 

branch outwards from a common center; hence, the density of monomer units increases when 

moving closer to the center of the dendrimer.  
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FIGURE 1.2.1: Examples of polymer architectures: linear, ring, star-branched, H-branched, 

comb, ladder, dendrimer, and randomely-branched.  

           Polymer microstructure, which is determined by the organization of monomers along the 

fixed chain plays important role in polymer’s physical and chemical properties. Depending on 

the different type of monomers in a polymer, polymer can be classified as homo and 

heteropolymers. Homopolymers contain only one type of monomer while heteropolymers have 

more than one type of monomers. Copolymer is a heteropolymer, which has two different repeat 

units and they can exhibit different microstructures based on the sequence of monomers, 

including: block, random, alternating and graft copolymer (Fig. 1.2.2). If the two repeat units 

arranged in blocks, they are called block copolymers which can be diblock if they contain two 

blocks or triblock if they contain three blocks. Graft copolymers are produced by grafting chains 

on to the main backbone of polymer in which the side chain have different composition or 

configuration than the main chain. By grafting chains of polybutadiene on to a polystyrene 

backbone, a high-impact polystyrene (HIPS) can be produced in which the polystyrene gives the 

material strength, but the rubbery polybutadiene chains give it resilience to make it less brittle. 
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Sequenced copolymers are special class of copolymers in which synthesis of molecules produces 

only certain kind of arrangements that possesses specific properties and structure
2
 such as DNA 

and proteins. Random polymers are opposite of sequenced copolymers where all arrangements of 

repeating unit are possible.  

 

FIGURE 1.2.2: (a) alternating copolymer, (b) random copolymer, (c) block copolymer, and (d) 

graft copolymer. 

           Depending on the arrangements of atoms in a linear polymer chain, it can have different 

configurations. A given configuration can have different conformations. The conformations of 

polymer chain depends on the spatial structure of a polymer determined by the relative locations 

of its monomers in space that arise from the rotation of monomers about a single bonds. On the 

contrary, configuration of polymer is fixed by the chemical bonding of the molecule and it is 

necessary to break the chemical bond to achieve a different configuration of polymer. Some 

characteristics of polymer such as microstructure, architecture, degree of polymerization and 

chemical composition are fixed during polymerization. These characteristics of polymer cannot 

be changed without breaking covalent bonds. However, after polymerization, a polymer 

(a)

(b)

(c) (d)
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molecule can adopt many different conformations, which depends on the orientation of 

monomers with respect to each other.  

           Conformation of polymer depends on the rotation about the bonds that make up the 

polymer backbone. For example, conformation of polymer chain can depends on the quality of 

the solvent in which it is dissolved. In dilute solution, the conformation of a polymer chains 

depends on the interaction between chain segments and solvent molecules.
3
 Solvents can be 

divided in three categories: good, bad, and theta solvent. In good solvent, the solvent-monomer 

interaction is favored over the monomer-monomer interaction. Thus in good solvent, the polymer 

chain expands from its unperturbed (ideal) dimensions to maximize the number of polymer 

segment-solvent contacts and the polymer adopts a swollen coil conformation. In poor solvent 

the chain contracts to minimize interactions with solvent which means monomer-monomer 

interaction is favored in poor solvent. The polymer chains adopts a compact globule 

conformation in the presence of poor solvent. To counterbalance this effect the chain has a 

tendency to expand in order to reduce unfavorable segment-segment polymer interactions, which 

is known as excluded volume effect. The concept of excluded volume effect in polymer science 

refers that one part of a long polymer chain cannot occupy the space that is already occupied by 

another part of the same polymer chain. If these two effects are perfectly balanced then the 

polymer molecule will adopt unperturbed dimensions (random coil conformation) and this 

solvent is called theta solvent.
3
    Depending on the solvent, theta conditions are attained at the 

theta temperature as the solvent quality depends on temperature (higher temperature yield better 

quality). 

           According to Flory
4
, the root mean square end-to-end distance of a chain in a good 

solvent is given by: 



9 
 

 

                                                                     
 

      1.2.2 

where N is degree of polymerization and ν is an exponent known as Flory exponent. The value of 

ν = 3/5 for good solvent as the coil expanded compared to the Gaussian chain in good solvent. 

The exact value of Flory exponent, ν is actually 0.588 instead of 3/5 in good solvent. In theta 

solvent, for unperturbed chain ν  = 1/2 and in case of poor solvent ν = 1/3. The value of Flory 

exponent in poor solvent implies that the attractive polymer-polymer interactions dominated the 

repulsive excluded volume effect and thus the chain collapses and forms a compact globule.
2
 The 

solvent molecules can change the excluded volume for a polymer coil. The expansion factor, α, 

which is the ratio of perturbed and unperturbed dimensions has value α = 1 for theta or ideal 

solvent where the excluded volume is zero. In case of good solvent or Gaussian chain α > 1, 

whereas in a poor solvent α < 1.
3
 

           There are two types of polymeric liquids: polymer solutions and polymer melts. Polymer 

solutions can be obtained by dissolving polymer in solvent. Polymer melt is a bulk liquid state 

formed by macromolecules in the absence of a solvent, which means polymer melts are neat 

polymeric liquid above their glass transition and melting temperatures. Depending on 

concentration of polymer, polymer solutions can be divided into three classes: dilute, semidilute 

and concentrated solutions (Fig. 1.2.3). In polymer solutions, interaction between 

macromolecules strongly depends on concentration.  In dilute solutions, the molecules are well 

separated and there is no significant interaction between them. Thus each molecule in a dilute 

solution can be considered as isolated chain. However, as the concentration is increased and 

reaches a particular concentration, the coils start to overlap. This concentration is termed as 

overlap concentration, c
*
, where the coils are just in contact. The alternative measurement of 

concentration, c (g/ml) is volume fraction, ϕ (percentage by volume, vol%), where ϕ = 1 in the 
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absence of solvent. The overlap volume fraction, ϕ
*
, is the ratio of the occupied volume of the 

polymer in the solution to the volume of the solution. The solution is called dilute below overlap 

volume fraction (ϕ < ϕ
*
) and semidilute above overlap volume fraction (ϕ > ϕ

*
). The properties 

of dilute solution are similar to pure solvent with slight modification due to the presence of 

polymer as the average distance between chains in dilute solutions is larger than their size. 

However, in semidilute solution presence of polymer controls most of the physical properties 

such as viscosity
4
 as the polymer coils overlap in this regime.   

      

FIGURE 1.2.3: Different concentration regimes of flexible polymers.  

            The correlation length, ξ, is one of the most important concepts in semidilute solutions, 

which is the average distance between monomers on one chain to the nearest monomer on 

another chain. Entanglement concentration, c
e
 (corresponding entanglement volume fraction, ϕ

e
) 

is an important crossover concentration for polymer solutions. At significantly higher 

concentration than ϕ
e
, there is a strong overlap with neighboring chains, which lead to 

entanglement that greatly slows down the motion of polymers. A scaling representation of 

different concentration regions of polymer solutions is presented in Fig. 1.2.4: 

 



11 
 

 

            

FIGURE 1.2.4: Different concentration regions of polymeric solution. 

           My research work is focused on studying polymer solution and colloidal particle mixture 

using anisotropic gold nanorods. In simple liquids, the translational diffusion coefficient, DT of 

isolated spherical particles is given by the well known Stock-Einestein (SE) relation:  

   
   

      
 1.2.3 

where kB is Boltzmann constant, T is absolute temperature, η is solvent viscosity, Ro is the radius 

of the spherical particles. The rotational diffusion coefficient, DR of spherical particle can be 

given by Einstein–Smoluchowski relation:  

   
   

     
  1.2.4  

where 8πη  
  

is the rotational frictional drag coefficient for a sphere of radius Ro. SE prediction 

is applicable for large particles in a solvent of much smaller molecules that acts as a continuum. 

Thus there are only two length scales involved in SE relation: size of probe particles and size of 

solvent molecules. In ternary mixtures, where, polymer, solvent, and probe particles are present, 

various length scales are involved depending on polymer concentration, size of probe particles, 

and polymer radius of gyration. The applicability of these relations become complicated in this 

situation. 
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           Many biopolymers and macromolecules have anisotropic shape and their hydrodynamic 

properties such as translational and rotational dynamics depend on their shape. For anisotropic 

rod, both translational and rotational diffusion coefficients depend on their size (length, L and 

diameter, d) as well as aspect ratio (AR) which is the ratio of length to diameter of rod (L/d). 

There are three theoretical models to study translational and rotational diffusion coefficients of 

rod: hydrodynamic stick theory (HS theory),
5
 Tirado and Garcia de la Torre’s relations (TT 

theory)
6-8

 and Broersma’s relations.
9,10

 The theories predict the following translational diffusion 

coefficients DT: 

Stick Theory: 

                                                                       = 
   

     
         1.2.5 

where,    
   

    
        ,      

   

    
         

Tirado and Garcia de la Torre: 

            
   

    
             1.2.6 

where,              
 

 
    

  

  
 

Broersma’s Relations: 

                                                  
   

    
                     1.2.7 

where,              

              
       

      
      

    

and               
      

      
     

    

           The theoretical predictions for the rotational diffusion constant by these three theories are 

as follows: 

Stick Theory: 
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 1.2.8 

where,    
  ,          

 
              

 
   

    
   

     and                 

Tirado and Garcia de la Torre:  

   
    

    
    

 

 
     1.2.9 

where,              
 

 
     

  

  
 

Broersma’s Relations:  

   
    

    
      1.2.10 

where,             and          
     

      
      

    

           TT theory and HS theory are valid for all aspect ratios of rods, whereas Broersma’s 

relation is appropriate for long rods of aspect ratios > 3.5. TT theory that takes into account a 

rod-like shape instead of a prolate ellipsoid is more appropriate for our investigations which 

contains gold nanorods with aspect ratio   3.5. 

1.3 SIGNIFICANCE OF RESEARCH 

           Investigation of transport properties of metallic nanoparticles in synthetic and biopolymer 

is relevant for many interdisciplinary fields such as material sciences and nanobioengineering. 

Gold nanorods, specifically, have received a great deal of attention due to their unusual 

photophysical properties and their potential application in microelectronics and biomedical 

fields, such as sensing, imaging, delivery agents for drug and genes and localized hyperthermia. 

For instance, gold nanorods can be aligned into arrays in polymer film which can be used as 

optical filters, making them potential candidates for liquid crystalline displays (LCDs). 
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           Gold nanorods are excellent candidates for biological sensing because the absorbance 

band of gold nanorods changes with the refractive index of local medium,
11

 which is useful for 

extremely accurate sensing. In addition, plasmon-resonant gold nanorods are highly effective at 

transducing NIR light into heat and are promising for the selective thermal destruction of 

cancerous tissues based on localized hyperthermia.
12,13

 So, it is important to study their dynamics 

in physiological environments as well as their interaction and conjugation with cytoplasmic 

fluids. Polymer solutions can imitate such crowded system and provide useful information about 

dynamics of anisotropic particles in complex fluids and biological systems. Effects of gold 

nanorods on cell viability via killing cancer cells is shown in Fig 1.3.1: 

                 

FIGURE 1.3.1: Trafficking of AuNRs in cancer cells.
14

 

           In this thesis we have investigated three important topics related to dynamics of 

nanoparticles in soft matter systems. First, investigation deals with how different length scales of 

a polymer solution affect the dynamics of anisotropic nanoparticles. Conjugation and interaction 

of anisotropic nanoparticles at the surface of biopolymers like proteins will be the second 

component of this thesis. The final section of this thesis involves the study of the effect of caging 
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on translational and rotational dynamics of anisotropic nanoparticles. Here, attention will be paid 

to solutions of rod/sphere mixture. 

           This dissertation is organized as follows. Chapter 2 will provide background information 

relevant to the thesis with some previous work pertinent to the projects. Chapter 3 outlines the 

experimental techniques used in the research projects. Specifically fluorescence correlation 

spectroscopy (FCS) employed to measure translational and rotational diffusion coefficient of 

anisotropic gold nanorods is described. Chapter 4-6 include the experimental results of my 

research. Particularly, the Chapter 4 covers the investigation of the effects of different polymer 

lengths on the translational and rotational diffusion of anisotropic nanoparticles in semidilute and 

entangled polymer solutions. Chapter 5 covers the conjugation and interaction of gold nanorods 

in protein solutions and Chapter 6 focuses on the translational and rotational diffusion of 

nanorods within a rod/sphere mixture. Chapter 7 will comprise the research project performed in 

collaboration with my colleague Dr. Kohli and will provide a glimpse of my future plans. 
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CHAPTER 2 

BACKGROUND 

2.1 INTRODUCTION 

           The investigation of nanoparticle dynamics in complex polymeric fluids such as polymer 

solutions and melts is important in several interdisciplinary fields. For example, these studies are 

important in soft matter physics and nanotechnology for proper interpretation of microrheology
15

 

experiments and development of novel composite systems that contain nanosized inclusions.
16

 A 

lot of theoretical, experimental and computational studies have been done so far on probe 

diffusion in synthetic polymer. The following sections 2.1.1, 2.1.2 and 2.1.3 of this chapter will 

cover the theoretical, experimental and computational studies most relevant to this research and 

will provide necessary background in Chapter 4. 

2.1.1 PREVIOUS THEORETICAL WORK 

           Theoretical studies developed so far considered mostly spherical particles. Cai et al.
17

 

described that probe diffusion in polymeric systems can be divided in two classes. The first class 

of theories was based on hydrodynamic interaction between particles and polymers
18

, while the 

second class considered the polymer solutions as ‘porous’ system and the theory was based on 

the concept of ‘obstruction effect’.
19-21

  

           With hydrodynamic theory in dilute polymer solutions with probe size 2Ro greater than 

the polymer chain size 2Rg (Rg is the radius of gyration), the chains are considered as ‘hard 

spheres’. These ‘hard spheres’ have size equal to their hydrodynamic radii and the diffusing 

probes experience hydrodynamic interaction with these effective hard spheres in dilute polymer 

solutions. Within semidilute polymer solutions, the polymers are modeled as fixed friction 

centers of monomer beads
18

 and due to this fixed monomer beads the hydrodynamic drag 
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experienced by the probe is screened at a length scale of the order of correlation length. In 

hydrodynamic theory the relaxation of polymer matrix is not considered. According to this 

theory the dependence of diffusion coefficient on probe size and polymer concentration obey a 

stretched exponential relation.  

           In the case of ‘obstruction effect’ theory, it was considered that the diffusion coefficient of 

probe particles will be linearly proportional to the fraction of relatively larger ‘pores’. The ‘pore 

size’ is characterized by a distribution of distances from an arbitrary point in the system to the 

nearest polymer. For higher polymer concentration, probe particles could no longer diffuse 

through ‘pores’ created by overlapped polymer. Depending on the concentration of solutions, 

polymer can exhibit different ‘pore size’ as they are flexible and coil shaped. Also, if the particle 

size is larger than the correlation length (obstacles) then the particles are not permanently 

hindered by obstacles as the polymer dynamics affects the spacing between the obstacles. 

           Brochard and de Gennes
22

 developed the scaling theory for probe diffusion in polymer 

solutions. They considered the concentrated polymer solution as a transient statistical network of 

mesh size, ξ (correlation length). The viscosity experienced by the probes follow a scaling form. 

They proposed that, if the probe size R0 < ξ the probe easily slip through the polymer mesh and 

only feels the solvent viscosity. In the opposite limit, i.e., if the probe size R0 >> ξ the particle 

should experience full solution viscosity or macroviscosity, which means that ξ can be 

considered as crossover length for the viscosity experienced by the probe particles. Many 

theoretical studies were done on the functional form for viscosity dependence on probe size and 

concentration of polymer solutions.
18,22-24
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           To describe the dynamics of rigid probe particles, Phillies
23

 demonstrated a hydrodynamic 

model. In this model the concentration dependence of diffusion coefficient is fitted to a stretched 

exponential relation, known as Phillies equation: 

 

  
            2.1.1 

where D0 is the diffusion coefficient in pure solvent, ν is a scaling parameter and β is a function 

of the probe size R0. It was observed experimentally that for a wide range of polymer molecular 

weight      
  and       

    . Phillies generalized a simple scaling equation for the probes in 

polymer solutions as: 

   
 

  
            

 
  
    2.1.2 

where Mw is molecular weight of polymer and ν, γ, δ are scaling coefficients. Theoretically, γ = 0 

and δ = 1 for probe diffusion in open-coil polymer solutions, but these values are substantially 

inconsistent with experimental findings γ = 0.8 ± 0.1, δ = 0.2. The experimental value of ν = 0.5 

– 1.0. If the probe size (Ro) is of the same order of the correlation length ξ, the diffusion will be 

dominated by the fluctuation of the mesh size and according to scaling analysis the diffusion 

coefficient can be written as follows: 

 

  
         

  

 
 
 

  2.1.3 

where      
 

   
      and if we assume that δ = 1 as in the theory then the Eq. (2.1.3) can be 

written as a stretched exponential function of polymer concentration and the value ν = 0.75. 

Stretched exponential relation considers that there is no significant change in the nature of 

polymer motion in dilute or semidilute concentration regime, which is contrary to the predictions 

of scaling models for polymer self diffusion. In dilute polymer solutions, the scaling theories 

predict that single chains diffuse as isolated hydrodynamic ellipsoids as the distance between 
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polymer chains is much larger compared to the polymer radius of gyration Rg. The polymer 

chains overlap in semidilute concentration. In this regime, polymer dynamics were assumed to 

be controlled by chain "reptation", which means polymer chains move parallel to their own 

backbones. Phillies model considered that the hydrodynamic interactions are the dominant chain-

chain interactions and this model does not consider reptation of polymer. It was assumed in 

Phillies model that interaction between pair of polymer chains was unaffected by the presence of 

intervening polymers. 

           Cukier
18

 suggested a hydrodynamic model for Brownian diffusion of probes in semidilute 

concentration regimes by considering the screening effect: 

               2.1.4 

where, κ is the hydrodynamic screening length that depends on polymer concentration c (g/ml) 

and      
 
  . All the theories based on hydrodynamic interactions show exponential (or stretched 

exponential) dependence of probe diffusion coefficient on concentration of polymer. A recent 

scaling theory developed by Cai et al.
17

 suggested a power law dependence of diffusion 

coefficient by considering coupling between particle motion and polymer dynamics. This theory 

extended the scaling theory for particle mobility in polymer liquids (both solutions and melts) 

which was developed by the Brochard-Wyart and de Gennes.
22

 They considered three different 

cases for particle diffusion in polymer solutions. The diffusion will vary depending on the 

particle diameter d, correlation length, ξ and the tube diameter, a, which represents the 

topological confining effect of entanglements on a chain.  

           (a) Small size particles: The particle size is considered as small when b < d < ξ, where b is 

the length of Kuhn segment and the relation between b and ξ is given by: 

       
          2.1.5 
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where ν is the Flory exponent that depends on the solvent quality. Mobility of small particles 

does not affect strongly in the presence of polymer and their diffusion coefficient mainly 

depends on solvent viscosity, ηs: 

   
   

   
 2.1.6 

                                                               i.e.        

           (b) Intermediate size particles: The particle size in the range ξ < d < a is defined as 

intermediate size and the motion of the particles in this size range is not affected by the 

entanglements of polymer chains, but is affected by the polymer dynamics. For intermediate size 

particles there are three regimes for the mean-square-displacement: at short time scale, t <    the 

motion of such particles is diffusive and particles feel local solution viscosity comparable to the 

solvent.    is known as the relaxation time of correlation blob with size ξ, and the expression for 

   is given by: 

   
   

 

   
 2.1.7 

At intermediate time scales,        , where     is the relaxation time of a polymer section 

with size comparable to particle size, d the motion of the particles is subdiffusive. The effective 

diffusion coefficient of these particles decreases with time and can be written as:    

                 
   

        
 2.1.8 

where     (t) is the effective viscosity. The effective viscosity is the time dependent viscosity of 

a polymer solution that contains polymers of size equal to chain section size and this viscosity is 

higher than the solvent viscosity. The relation between effective viscosity and solvent viscosity is 

given by the following equation: 

           
 

  
 
 
   2.1.9 
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           At longer time scales, t >    the motion of the intermediate size particles is diffusive. The 

effective viscosity felt by the particles is proportional to the number of correlated blobs in a 

chain section with size on the order of particle diameter and can be expressed as: 

        
 

 
   2.1.10 

The corresponding terminal diffusion coefficient can be written as: 

         
   

         
 

    
 

    
 2.1.11 

i.e.        

           (c) Large particles: The particles with size larger than entanglement length, d > a are 

defined as large particles and the motion of such particles at time scales shorter than the 

relaxation time t <    follows the same time-dependence as intermediate size particles. The 

relaxation time of an entanglement strand,    is the time when the arrest of particle motion 

occurs: 

      
 

 
   2.1.12 

           The large particles are trapped by entanglements at time scale t >    and in order to move 

further the probe particles have to wait for the polymer liquid to relax during reptation time     . 

The probe particles slightly larger than the tube diameter d   a do not have to wait for the whole 

polymer liquid to relax. In this case, the particles can diffuse by hopping between neighboring 

entanglement cages.
25

 The terminal diffusion coefficient of very large probe particles d   a is 

determined by bulk viscosity, η of polymer liquids. At time scales shorter than     , large 

particles d > a are trapped by entanglement and the diffusion coefficient for large probe particles 

due to chain reptation can be written as: 

     
   

  
 2.1.13 
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                                                                i.e.          

 

 

FIGURE 2.1.1: (i) Terminal particle diffusion coefficient Dt as a function of particles size d in 

entangled polymer solutions. (ii) Normalized terminal diffusion coefficient as a function of 

polymer concentration in entangled athermal polymer solutions.
17

 

           It is easier to vary concentration of polymer rather than size of particles systematically in 

many experiments. Correlation length, ξ(ϕ) and tube diameter a(ϕ) are two concentration-

dependent length scales. Cai et al.
17

 divided the concentration into three regimes by two cross-

over solution concentrations ϕ
 
ξ  and  ϕ

 
 
: I, II and III. If the volume fraction is below ϕ

 
ξ
 i.e. ϕ < 

ϕ
 
ξ
 (II) the diffusion coefficient of particles is then concentration independent and is determined 

by the solvent viscosity,   . The probe particles feel segmental motions of polymer at volume 

fraction above ϕ
 
ξ
 (regime II). In this regime the diffusion coefficient of particles decreases with 

solution volume fraction as a power of -1.52 for athermal solvent (Fig. 2.1.1). In athermal 

solvent, Flory exponent, ν is independent of temperature and monomer-monomer contact is 

(i) (ii)
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energetically indistinguishable from monomer-solvent contact. For large size particles (d > a), 

the probe particles are expected to feel full solution viscosity above ϕ
 
 
 (regime III) . The 

terminal diffusion coefficient of probe particles in this regime decreases with solution volume 

fraction as power -3.93 for athermal solvent (Fig 2.1.1) .  

2.1.2 COMPUTATIONAL STUDIES 

           Lui et al.
26

 have used molecular dynamics (MD) simulations to investigate the diffusion 

of nanoparticles in polymer melts. The dependence of size, concentration, mass of probe 

particles, polymer chain length, and polymer-particle interaction on the diffusion of particles in 

polymer melts were studied. They observed that the radius of gyration of polymer chain is the 

most significant factor in determining the validity of Stokes-Einstein (SE) relation for particles 

diffusion. The SE relation can predict the diffusion correctly in polymer melts, when the particle 

size is larger than the radius of gyration of polymer chain. In contrast, when the particle size is 

smaller than the radius of gyration, the particle diffusion is related to nanoviscosity rather than 

macroviscosity. Furthermore, in this regime, particle diffusion is independent of the chain length 

or molecular weight of the polymer, but dependent on the particle mass. By increasing the chain 

length gradually, they have observed that the transition process of the particle experiencing 

macroviscosity to nanoviscosity. 

           Kremer et al.
27

 had performed an extensive molecular dynamics (MD) simulation and 

reported that SE diffusion coefficient gradually approximates the MD data with the increase in 

Ro/Rg, and becomes same as the ratio approaches unity. Furthermore, for lower Ro/Rg, the SE 

prediction deviates from MD simulations and is an order magnitude lower than the simulations. 

They argued that macroviscosity of polymer is related to chain relaxation as small nanoparticles, 

do not necessarily have to wait for chain relaxation for diffusion. That is why small nanoparticles 
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experiences nanoviscosity rather than macroviscosity. As the ratio Ro/Rg increases with the 

increases of nanoparticles size, Ro, if the solvent behaved as a continuum on the length scale of 

chain size, Rg, which leads to the bigger particles to experience macroviscosity. They also 

investigated the dependence of diffusion coefficient on hydrodynamic radius of probe particles. 

In the regime Ro/Rg < 1, it was observed that the diffusion coefficient of  nanoparticles decreases 

with the increase in particle’s hydrodynamic radius as power of -3, which contradicts the SE 

prediction. They have suggested that for small probe particles, the friction between particle and 

polymer was caused by the monomer rubbing the probe particle surface. The friction due to this 

rubbing is proportional to particle surface, resulting in local viscosity scaling as   
 . 

           Ganesan et al.
28

 proposed a continuum model for the dynamics of particles in polymer 

matrices. They presented analytical and computer simulation for the mobility of particles and the 

viscosity of suspension in case of unentangled polymer melts. For probe particles of size greater 

than the correlation length and smaller or comparable to the polymer radius of gyration, i.e., ξ   

Ro   Rg, they suggested that the polymer radius of gyration, Rg is the length scale controlling the 

transition from nanoviscosity to macroviscosity. For smaller Ro/Rg, they claimed that the 

presence of polymer chain entanglements was not necessary to observe reduction in viscosity. 

However, the entangled polymer systems showed a much stronger effect on viscosity reduction. 

2.1.3 PREVIOUS EXPERIMENTAL WORK 

           Along with the theoretical and computational studies, several experimental studies were 

done to understand the dynamics of particle in polymeric liquids, although most of the work was 

on spherical nanoparticles. Holyst et al.
29

 performed experiments to investigate the dynamics of 

nanoscopic probes such as dye molecule and proteins of different diameters (from 1.7 to 114 nm) 

in different molecular weight polymers. They used capillary electrophoresis and fluorescence 
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correlation spectroscopy techniques. Using polyethylene glycol (PEG) with molecular weight 

ranging from 6 to 20 kg/mol they showed that for Ro < Rg, the probe particles experienced 

nanoviscosity which was an order of magnitude smaller than the macroviscosity of polymer 

solution. The nanoviscosity can be expressed as: 

     

  
        

  

 
    2.1.14 

where    is the water viscosity, a and b are two constants close to unity. On the other hand, for 

Ro > Rg, macroviscosity experienced by the probe particles can be written as: 

      

  
        

  

 
    2.1.15 

They concluded that the crossover length scale is polymer radius of gyration, Rg, as suggested by 

MD simulations rather than correlation length ξ of polymer blob size assumed by the theoretical 

prediction.  

           Ye et al.
30

 reported deviation from SE relation while investigating the probe diffusion of 

small colloidal particles through a nonadsorbing polymer poly(ethylenepropylene) (PEP) 

solution. They conducted dynamic light scattering (DLS) and sedimentation experiments and 

argued that when the probe size was comparable to or smaller than the correlation length of the 

polymer solution, the particles experience a reduction of friction coefficient. 

           Kohli et al.
31

 investigated the length scale dependency on dynamics of gold nanoparticles 

in poly(ethylene glycol) (PEG) solutions. They used fluctuation correlation spectroscopy to 

measure the diffusion coefficient of gold nanoparticles as a function of particles size, polymer 

volume fraction and molecular weight. They argued that for Ro > Rg, the diffusion coefficients 

obtained from experiments were similar to those expected from SE relation. However, for 

particles Ro   Rg, the diffusion is faster than the value estimated from SE relation. They 

concluded that the ratio D/DSE increases with polymer concentration and as Ro/Rg becomes 
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smaller, where DSE is the diffusion coefficient given by the Stokes-Einstein (SE) relation using 

stick boundary condition: 

    
   

      
 2.1.16 

           For anisotropic particles, such as rods, the diffusion includes both translation and 

rotational motions. Translation occurs at longer time scale, while rotation of probe motion 

involves much faster time scale.
32

 The combination of both dynamics can yield significant 

information about spatially varying global and local properties of the polymer matrix. The 

information will be helpful for understanding the dynamics of many viruses (e.g. tobacco mosaic 

virus) and biopolymers (e.g. segments of DNA, polypeptide) which can be model as short 

cylinders or rods.
7,33

 This will be discussed further in Chapter 4. 

2.2 PREVIOUS WORK ON BIOPOLYMERS 

           The information in this section is the background relevant to Chapter 5 and Chapter 7. 

Gold nanoparticles have diagnostic as well as therapeutic applications. For safe use of 

nanoparticles, it is important to understand how nanoparticles diffuse and interact with 

biomolecules in  biological fluids.
34-36

 For instance, recent studies have shown that nanoparticles 

commonly used for biological applications interact with blood plasma and can become coated 

with a number of biomolecules present in the medium.
37

 These biomolecules shield the 

nanoparticles by forming a protein ‘corona’, which in turns screens their original properties.
38

 

           Gold nanorods (AuNRs), which have large absorption cross section in near-infrared (NIR) 

are being widely used for drug delivery and localized hyperthermia for cancer therapeutics.
39

 

Nanorods have the ability to absorb lights of different wavelength due to surface plasmon 

resonance (SPR). The intensity and wavelength of SPR can be highly shape and size 

dependent.
40,41

 Gold nanorods display two separate SPR bands which correspond to their width 
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and aspect ratio due to their shape anisotropy. The two SPR bands are known as transverse 

(TSPR) and longitudinal surface plasmon resonance (LSPR) bands. The position of TSPR is just 

above 500 nm while the LSPR varies according to the nanorod’s aspect ratio. NIR has deeper 

penetration ability through tissues compared to the visible light, which can be exploited for in 

vivo imaging. AuNRs are usually synthesized in the presence cetyltrimethylammonium bromide 

(CTAB), which is used as the structure guiding agent as well as capping agent. CTAB binds 

strongly on the surface of nanorods and complete removal of CTAB leads to aggregation of 

AuNRs. The properties of AuNRs can alter if the CTAB structure around the rod is disturbed, 

and this could alter the penetration ability of AuNRs through tisues as well as interaction with 

cytoplasmic fluids and can induce toxicity. Thus, it is important to have better understanding of 

AuNRs and protein interaction/conjugation to scrutinize the biocompatibility of AuNRs for safe 

applications. 

           There are a large number of different proteins, among them serum albumin is the most 

abundant protein in blood which is responsible for about 80% of the colloidal osmotic 

pressure.
42,43

 Albumin acts as a carrier for fatty acids in the circulatory system
44

 as well as 

responsible for regulating the blood pH.
45

 Bovine serum albumin (BSA) has structural/functional 

similarity to human serum albumin (HSA) – almost 76% sequence homology.
46

 BSA is the most 

extensively used serum protein because of its similarities with HSA as well as low cost and wide 

availability.  Furthermore, BSA has nearly identical pH-dependent conformational transitions as 

HAS.
47

 BSA is a water-soluble protein with isoelectric point at 4.6 and its native (N) state is 

found in the pH range from 4.5 to 8. The N state of BSA can be approximated as an equilateral 

triangular prism with sides 8 nm and height 3 nm.
48

 In aqueous solution, the structure and 

behavior of BSA are dominated by multiple interactions, including electrostatic, hydrophobic, 
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hydrogen bonding, and van der Waals. Detailed information about adsorption and conformation 

of BSA onto Au nanoparticles are important for biological applications of Au nanoparticles. 

Also, after binding to Au nanoparticles BSA can undergo structural changes, which may affect 

its function and bioactivity as well as the reactivity, stability and transport properties of BSA- 

gold nanoparticle conjugate.  

           Rocker et al.
49

 analyzed the adsorption of human serum albumin (HSA) on polymer-

coated FePt and CdSe/ZnS nanoparticles (10-20 nm in diameter) and quantum dots by using 

fluorescence correlation spectroscopy (FCS). They concluded that HSA formed a monolayer at 

the surface of carboxy-functionalized negatively charged nanoparticles. The adsorption of 

protein was confirmed by  measuring the change in the particle radius ΔR = 3.3 nm and by a 

quantitative analysis. They demonstrated that the binding occurred with micromolar affinity 

which can be best described by an anti-cooperative binding model. 

           Medina et al.
50

 investigated the adsorption of bovine serum albumin (BSA) on citrate-

stabilized gold nanospheres using scattering correlation spectroscopy. They analyzed 

nanoparticle and protein interaction quantitatively by observing the diffusion parameters before 

and after protein adsorption. The change in diffusion coefficient was due to increase in 

hydrodynamic radius of nanoparticles corresponds to BSA monolayer formation. They 

demonstrated that the monolayer formation is independent of AuNPs size and the BSA 

monolayer retains its native charge. Furthermore, they demonstrated that the protein adsorption 

does not cause aggregation of AuNPs. 

           Kohli et al.
51

 studied the interaction of BSA with small sized (2.5-10 nm radius) tannic 

acid- stabilized gold nanoparticles. They monitored the change in Brownian diffusion of AuNPs 

by using fluorescence correlation spectroscopy (FCS) and concluded that the thickness of 
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adsorbed layer of BSA on AuNPs is independent of the NP size. They also concluded that 

adsorption is due to ligand exchange reaction between protein and AuNPs, rather than 

electrostatic attraction.  

           Chkakraborty et al.
52

 reported the interaction of BSA with gold nanospheres and 

nanorods. They concluded that the binding of AuNPs and BSA is exothermic in nature, while it 

is uniquely endothermic for gold nanorods (AuNRs) and BSA. Additionally, the interaction of 

AuNRs and BSA is entropy driven which is caused by release of large amount of water from the 

hydrophobic region of CTAB coated AuNRs. They also observed that the AuNRs form large 

aggregates on interaction with BSA, which could have adverse effect in the cellular uptake. 

           Systemic study of interaction and conjugation of gold nanoparticles and BSA would have 

potential application ranging from biophysics to drug delivery. The discussion about BSA and 

gold nanorod conjugate will be described in Chapter 5 and the investigation of BSA-gold 

nanospheres interaction will be discussed in Chapter 7. 

2.3 PREVIOUS WORK ON ROD/SPHERE MIXTURES 

2.3.1 THEORETICAL WORK 

           Particle motion through complex fluids is important in many commercial and natural 

processess, ranging from the drying of paints and inks to transport in living cells. The probe 

diffusion method, where a particle (the probe) is followed as it moves through a suspension of 

other particles (matrix), targets such behavior at a fundamental level.
53-55

 We have investigated a 

system, containing rods (probe) suspended in spherical colloidal particles (matrix). The 

rotational relaxation of rods in concentrated sphere suspensions is a subject of long-standing 

interest, both from theoretical and experimental point of view. The theoretical analysis is derived 

from a caging model for restricted rotational diffusion of rigid rods in an isotropic solution of 
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similar rods
56,57

 given by Doi-Edwards. According to the theory for a rod/sphere mixture the rod 

will be trapped by neighboring spheres and the rotational motion of the rod will be limited to a 

space between rods and nearest spheres. The rotational diffusion coefficient,   
   

 of a rod with 

length L and diameter d in a mixture of rod and sphere solution is given by: 

    
    

     

 
 2.2.1 

where t is the time required for a rod to displace in between the nearest spheres and during this 

time the rod rotation takes place with an angular displacement, Δθ. The expressions for t and Δθ 

are given by:      

  
  

  
 2.2.2 

   
  

 
 

  
 
  

 
 2.2.3 

where n is the number concentration of spheres and caging of rod is valid in the range      

    
       Ds is the translational self-diffusion coefficient of a sphere, Δs is an arc-length 

through which a rod rotates. This arc-length is approximately proportional to the average 

distance between spheres and is proportional to   
 
  . Equation (2.2.1) can be written as: 

  
    

  

   
 
  
 2.2.4 

By using Stokes law for dilute solutions Ds can be described as: 

     
   

   
 2.2.5 

where ηs is the solvent viscosity and R is the radius of spheres. Combining Eq. 2.2.4 and Eq. 

2.2..5 the diffusion coefficient can be expressed as: 

        
    

   

      
 
  
 2.2.6 

           For higher concentrations, self-diffusion coefficient of spheres Ds depends on the sphere 

concentration and is inversely proportional to the suspension viscosity η(ϕ). Finally, the 
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restricted rotational diffusion coefficient of a test rod in a finite concentration of spheres can be 

described as: 

        
    

   

        
 
  
 2.2.7 

The above argument is acceptable with the following restrictions: (a) the rods and spheres should 

have comparable size L  R, though the size of spheres must be somewhat smaller than the size 

of rods; (b) The concentration of spheres should be high enough for some caging to occur i.e. 

      
 
      but the concentration should not be so high that the spheres will overlap each 

other i.e.        .  

           The original Doi-Edwards (DE) theory predicts that the rotational motion of rods will be 

severely restricted in semidilute regime. DE theory gives the following expression for the 

concentration dependence of rotational diffusion coefficient: 

  
   
           2.2.8 

where Dr0 is the value of rotational diffusion coefficient in the infinite dilution limit and β is a 

numerical factor expected to be of the order of unity. However, experimental value of β falls in 

the range between 10
2
 and 10

4
, which is much larger than 1. 

           Odijik et al.
58,59

 have proposed the most insightful explanation of the discrepancies in DE 

theory by arguing that the caging effect becomes important when the confinement angle is 

smaller than the bending of rod which depends on its flexibility.  

           Keep and Pecora
60

 divided the concentration scale for rod/sphere mixture in several 

regimes: (a)         is considered as dilute concentration, where short-range interaction 

between rod and sphere can be ignored; (b)         , where Enskog-type binary collision 

theories for diffusion are valid; (c)           in this concentration range the rods are not 
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completely caged, the cages appears and disappears with time; (d)           , caging 

theories are reasonable in this concentration range and Doi-Edwards dependence valid for 

infinitely thin rigid rods. 

2.3.2 COMPUTATIONAL STUDIES 

           Simulations have in general agreed with the concentration and length dependences in DE 

theory. However, to agree quantitatively with theory they had to postulate a value of β of order 

1000. The “Brownian” simulation of Doi, Yamamoto and Kano
61

 confirms the DE theory, and 

was in agreement with tube theory and experimental results, which used electric birefringence 

and dynamic light scattering. From the simulation, it was found that at high concentrations, Dr is 

proportional to n
-2

, which is interpreted
 
on the basis of modified DE cage model.

62
 On the 

contrary, Fixman et al.
63

 by using Brownian simulation of rods with variable diameter, d, showed 

that the rotational coefficient of friction as well as diffusion coefficient is the same in the limit d 

→ 0. The simulations of rods obeying Newtonian dynamics by Frenkel and Maguire
64

 also 

confirmed DE scaling of rotational friction constant. However, their model deviates from DE 

theory at high concentrations. The rod can move along its length as well as perpendicular to its 

length. Frankel and Maguir model consider the concentration range         , that yields a 

divergence of the longitudinal diffusion coefficient of rod D║ at high concentrations, which along 

with other effects of elastic collisions can limit the equilibration of Δθ, the magnitude of angular 

rotation of rod.  

           Odell, Atkins and Keller
65

 used computer simulation to conclude that the caging of rods 

was not complete unless a significant concentration is reached, which is way above the DE 

prediction. According to them the diffusing rods were presented with an inhomogeneous maze of 

baffles and is not completely caged, there is always some route available for 180
0
 rotation of rod.  
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2.3.3 EXPERIMENTAL STUDIES 

           The simulations and the theoretical work mainly focused on simple models, which are, 

however, not very realistic for describing the rod-sphere system. The complexity arises from 

many degrees of freedom and multiple types of interactions among rods and spheres. 

Experimental investigations of modified DE theory by electric birefringence
66,67

 and depolarized 

light scattering
68

 have demonstrated considerable discrepancies both in the mechanism involved 

in DE theory and the concentration of the caging.  

           Lellig et al.
69

 used dynamic light scattering (DLS), fluorescence recovery after 

photobleaching (FRAP), and fluorescence correlation spectroscopy (FCS) methods to investigate 

the dynamics of rod-shaped tobacco mosaic virus (TMV) particles in a suspensions of highly 

charged colloidal spheres. FCS is sensitive to both translational and rotational motions, whereas 

both DLS and FRAP probes the diffusion at much larger length scales and only sensitive to 

translational motion. Their experimental data indicated a slowing down of the rotational motion 

of TMV rod with increasing structural order of the matrix spheres. 

           Cush et al.
33,70

 used depolarized dynamic light scattering to measure translational and 

rotational diffusion of TMV within extended and globular polymer solutions. They concluded 

that the apparent translational and rotational diffusion rates decreased with increasing in polymer 

concentration. Furthermore, they observed that the rotation is much more restrained than 

expected, while translational diffusion is faster than expected.  

            Koenderink et al.
71

 investigated the short-time rotational diffusion of colloidal silica 

tracer spheres in a suspension of rigid silica rods by using time-resolved phosphorescence 

anisotropy (TPA). The reduced short time rotational diffusion coefficient of charged tracer 

sphere was studied as a function of tracer radius, rod volume fraction and salt concentration. 
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They noticed that for a particular rod volume fraction, a larger tracer size and a small screening 

length appear to maximize hydrodynamic hindrance of tracer diffusion. Additionally, except for 

small tracer size and larger screening length, Stokes-Einstein-Debye (SED) scaling of the 

rotational diffusion coefficient as a function of inverse viscosity of the rod suspension matches 

well with experiments. 

           The most relevant experimental study related to our work was done by Phalakornkul et 

al.
72

 They performed transient electric birefringence (TEB) decay to study the rotation of rod-

like polymers in solutions with spherical particles. In addition, they studied the sphere collective 

diffusion coefficient as a function of sphere volume fraction. Furthermore, they  measured the 

rotational relaxation rate of rods in a suspension of spherical particles using several different 

lengths of rod-like polymers. The experimental results indicated that in the suspension of longer 

rods, the rotational relaxation rate decreases rapidly with the increase in sphere concentration. 

Moreover, in the suspension where the rods are shorter than the average sphere diameter, the rate 

of rotation changes slightly compared to rotation rate of rods in the same solvent. From the 

experiment, they also concluded that the viscosity of the sphere suspensions is not inversely 

proportional to the rotational diffusion coefficient as predicted by DE theory. 

           In semidilute concentration, which is our main interest, various types of molecular 

interactions have to be taken into account. The interactions involved in this region includes: (a) 

steric repulsion and van der Waals attraction between rods and sphere, and (b) the hydrodynamic 

interaction. Thus, the investigation of dynamics of rods in mixture of spheres in systematic 

manner remains challenging. The discussion will be continued in Chapter 6. 
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CHAPTER 3 

FLUORESCENCE CORRELATION SPECTROSCOPY 

3.1 INTRODUCTION 

            Fluorescence correlation spectroscopy (FCS) is an experimental technique to measure the 

dynamics of molecular process by observing spontaneous temporal-fluctuations in molecular 

position and number density. The fluctuations of fluorescence in the system can be due to 

Brownian motion such as translational and rotational diffusion, externally induced flow, 

chemical reactions, conformational fluctuations of biomolecules or some other processes.
73-76

      

FCS was first introduced by Magde et. al. in 1972 to measure the diffusion and binding of 

ethidium bromide onto double-stranded DNA.
75

 Thermally induced diffusion is one of the 

fundamental properties exhibited by molecules within the solutions and it is very important to 

measure diffusion coefficient precisely. The measurements of fluctuation in fluorescence 

intensity requires very small sample volumes, which were not feasible to achieve by other means 

such as dynamic light scattering (DLS), pulsed field gradient NMR, or size exclusion 

electrophoresis.
77-79

 High sample concentrations were used in  these studies which is far away 

from infinite dilution and all these devices suffered from poor signal to noise ratio. In contrast to 

the above techniques, the high sensitivity of FCS has been used to monitor diffusion, 

concentration, chemical biochemical interactions/reactions of fluorescent or fluorescently labeled 

molecules at nanomolar concentrations in solution. Some recent applications of FCS include 

investigation of biological systems, as the noninvasive nature of FCS allowed study of the living 

biological cells such as enzymatic reactions etc
76

. FCS monitors tiny fluctuations of fluorescence 

molecules (fluorophores) and provides single molecules sensitivity. The number of fluorescent 

molecules changes continuously as the molecules diffuse in and out of a laser focus that 
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maintains a constant volume. The autocorrelation function (ACF), G(τ) of fluctuation in 

fluorescence intensity, δF(t)              is given by: 

      
               

        3.1.1 

where τ represents time lag, < > denotes a time-average and F(t) is the observed fluorescence intensity. To 

acquire normalized ACF, it has been divide by the square of the average intensity. 

 

             

FIGURE 3.1.1: Fluctuation of fluorescence due to molecular motions and generation of 

autocorrelation function (ACF). 

           The ACF measures the self-similarity of a function with itself after a time lag (τ), which 

means autocorrelation measurements are sensitive only to signal variations within one channel 

(Fig. 3.1.1). On the contrary, in our experiments cross-correlation function (CCF) analysis was 

used, to compare the signals arising from two different channels, which is convenient to find 

common features in two independently measured signals. Cross-correlation functions arise due to 

temporally coordinated fluctuations in both channels (Fig. 3.1.2). The cross correlation function 

is defined as:  



37 
 

 

                          
                 

             
  3.1.2 

where i and j are two different measured signals of the fluorescent intensity. 

 

         

FIGURE 3.1.2: Fluctuation of fluorescence due to molecular motion and generation of cross-

correlation function (CCF). 

           To obtain meaningful data from the ACF or CCF, they need to be fitted with a particular 

model.
73

 The correlation functions provide information on the diffusion coefficient and 

fluorescent molecule concentration within the focal volume. 2D Gaussian, 3D Gaussian, and 

Gaussian-Lorentzian are three most common laser focus profiles used in FCS measurements. 

The dimensionality of the system under investigation, the nature of excitation, and the means by 

which the fluorophores move are required to consider, while developing the suitable model for 

the ACF. The model of autocorrelation curves for different kinds of particle motion is presented 

in Fig 3.1.3: 
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FIGURE 3.1.3: (a, b): Model autocorrelation curves for different kinds of particle motion: free 

diffusion in three dimensions (red), free diffusion in two dimensions, e.g., for membrane-bound 

molecules (yellow) and directed flow (Cyan).
80

 

3.2 EXPERIMENTAL SET-UP FOR FCS:  

           All FCS setup measures the fluctuations of fluorophores, however depending on the 

experiments of interest construction of a particular set-up can vary. A laser, which is the main 

component of FCS set-up, provides necessary energy to excite the fluorophores. The laser source 

can either have continuous light (one-photon excitation) or pulsed light (two-photon excitation) 

source. A schematic diagram of an FCS setup utilizing two-photon excitation is presented in Fig. 

3.2.1:   
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FIGURE 3.2.1: Two photon FCS set up for translational diffusion measurements. 

           In two-photon excitation the laser is pulsed at high frequency and the fluorophores within 

the excitation volume absorb two photons (Fig. 3.2.2). The absorption of two photon is a quasi-

simultaneous (within 10
-16

 seconds) process and the excitation process requires the absorption of 

two photons with about double wavelength required for the actual transition.
81

 The photon flux 

should be extremely high for such three particles event to happen. The probability of absorbing 

two photons per excitation is proportional to the square of the excitation energy and the light 

intensity decreases quadratically with the increase of distance from the focal plane.
73

 The laser  
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FIGURE 3.2.2: Diagram of two photon excitation. 

excites a tiny volume in the immediate vicinity of the objective focal spot because of the above 

two factors. Thus smaller excitation volume is attained without the use of pinholes in case of two 

photon excitation. On the contrary, a one photon absorption set-up requires the introduction of a 

pinhole at the image plane, which excites all fluorophores that lie within the double cone above 

and below the focal spot. Thus two-photon excitation is more suitable for biological samples that 

are relatively more sensitive to photo damage.
81

  

           The necessary energy to excite fluorophores is provided by an infrared femtosecond Ti-

sapphire laser (Mai Tai-Spectra physics) with 800 nm wavelength, 120 fs pulse width and 80 

MHz repetition rate. A Zeiss inverted microscope (Axiovert S200TV, Carl Zeiss) served as the 

operational platform for the experiment. After passing through a neutral density filter (NDF), to 

adjust the power of the laser beam for specific experiment, the light is then passeed through a 

beam expander. The beam expander, which consists of two achromatic lenses separated by a 

distance equal to the sum of their focal lengths expands small laser beam ( ~ 2 mm). The laser 

Excitation Emission
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beam then reflects off a dichroic mirror, which is made of a special multilayer dielectric coating. 

The dichroic mirror reflects wavelength above a certain value (transition wavelength) and 

transmits under the same value. The transition wavelength should match with the fluorophores 

used in the experiment. The laser light is then collected by a high numerical aperture (N.A. = 

1.25, 100x) objective. The objective excites a very small volume (~ 1 fL) inside the sample. If a 

fluorophore passes through the focal volume, it absorbs two photons and emits one photon. The 

emitted light follows the same route – first collected by the objective and then passes through the 

dichroic mirror. Finally, the fluorescent light is collected by a photomultiplier tube (PMT) 

detector, which has single photon sensitivity (Hamamatsu). A short pulse filter is introduced in 

between dichroic mirror and PMT to stop any leakage or scattered light from entering the PMT.  

          An integrated data acquisition system (ISS, IL) was used to record and analyze the 

fluctuations of fluorescent molecules in real time. The acquisition frequency can be controlled by 

a computer software. The software calculates and updates the autocorrelation function or cross-

correlation function during the experiment. The ACF is then analyzed using suitable model to 

extract important information about the dynamics of the sample under investigation. The cross -

correlation experiments involved two PMT’s with single-photon sensitivity. To study 

nanosphere’s dynamics, where only translational diffusion is involved, a beam splitter is placed 

between short pass filter and detectors. For anisotropic particles, rotational diffusion 

measurements require a polarized signal, which can arise from their shape anisotropy. In this 

case a polarized beam splitter is placed before the detectors to obtain polarization resolved 

signal. 
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3.3 FCS THEORY 

           FCS measures the fluctuations in the fluorescence emission to investigate the molecular 

dynamics. The light source is focused tightly onto the sample, which excites a small volume (~ 

femtoliter) in the solution. If the fluorescent molecules move into the focus volume, they absorb 

energy and emit fluorescent light, which is then collected by the PMT detector. The fluctuations 

in the fluorescence intensity, δF(t) is given by, 

                                                                         3.1.3 

where F(t) is fluorescent intensity and  F(t)  is the average value of fluorescent intensity.  

If only one fluorescent species is present then fluorescent intensity is given by the following 

equation in terms of the spatial profile of the excitation light E(r):  

                                                                            3.1.4 

where k is a constant, Q is a product of absorptivity, fluorescence quantum efficiency, and the 

detection efficiency of the optical system and C(r,t) is the dye concentration at position r and 

time t. Then the Eq. (3.1.3) can be written as:  

                          3.1.5 

where δC(r,t) is the change in fluorescent particle concentration and is given by, 

                    3.1.6 

       
              

        3.1.7 

     
                                   

             
 3.1.8 

The spatial intensity profile of the excitation light E(r) for the 3D Gaussian model with two-

photon excitation is given by: 

                                                           
        

  
  

   

  
    3.1.9 

For Brownian diffusion the fluctuation of fluorescent concentration, δC(r,t) is related to the 

diffusion coefficient, D by Fick’s second law:  
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            3.1.10 

The solution of above equation is given by:  

             
   

     
       

  

   
  3.1.11 

Assuming the sample is stationary, for translational diffusion in two dimensions the following 

relation will be valid: 

                             
   

     
       

       

   
  3.1.12 

The translational diffusion coefficient of spherical particles is given by Stokes-Einstein equation: 

                                                                 
   

     
 3.1.13 

where kB is the Boltzmann constant, T is absolute temperature of the ambient, η is the viscosity 

of the surrounding fluid and RH is the hydrodynamic radius of the particle. The diffusion of  the 

particles as well as the average size for spherical particles can be determined by correlating the 

change in concentration of particles through the sample volume. Substituting Eq. (3.1.12) in Eq. 

(3.1.8): 

      
   

     
      

 
 

   
   

  
     

   

  
 

 
    

   
   

  
     

   

  
 

 3.1.14 

  

where ω0 is the beam waist, z0 is the beam height, and the density of fluorescent particle is: 

    
 

        
 

   

     
       

 3.1.15 

and the excitation volume V is: 

  
     

   

  
 3.1.16 

The average number of molecules within the excitation volume is given by 

         
 

       
 3.1.17 
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If both diffusion and flow Vf  are present together, then for one species the autocorrelation 

function is given as below: 

                     
    

   
   

  
     

   

  
 

     
           

 

  
      

   

  
     

   

  
 

  3.1.18 
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CHAPTER 4 

DYNAMICS OF ANISOTROPIC PARTTICLES IN SYNTHEIC POLYMER 

SOLUTIONS 

 

4.1 TRANSLATIONAL AND ROTATIONAL DIFFUSIONS OF NANORODS WITHIN 

SEMIDILUTE AND ENTANGLED POLYMER SOLUTIONS 

 

The following material was originally published in Macromolecules (2014).
82

  

           Understanding the diffusion of nanoparticles (NPs) in synthetic and biopolymer medium 

is important in fields as diverse as materials science
83,84

 to nanobioengineering
85

. At the 

fundamental level, the research helps us to test various polymer theories and simulations, 

especially the effects of hydrodynamic forces, polymer segmental motion, and topological 

constraints on the NP transport properties.
17,86,87

 From the application perspective, NPs are 

increasingly being used as drug and gene therapy vectors. The polymeric particles or liposomes 

have higher loading capacity, but they are of significantly larger in size (> 100 nm) and require 

labeling for visualization.
88

 In contrast, intrinsically luminescent particles, such as quantum dots 

(QDs) or metallic NPs offer advantages of high photostability, brightness, and greater control 

over their size and shape at the length scale of 2-100 nm.
89

 In addition, the use of smaller 

particles is advantageous in certain therapeutic applications, such as in many diseases, where the 

pore size of the physiological barrier that the particles must penetrate to reach their target is 

significantly reduced.
90

 

           We are interested in studying the Brownian motion of gold nanorods in synthetic polymer 

poly(ethylene) glycol (PEG) solutions. Gold nanoparticles (AuNPs) of size less than 40 nm were 

shown to transfect cells easily either through non-specific or receptor-mediated endocytosis.
91

 

Compared to gold nanospheres, gold nanorods (AuNRs) have the advantage that their localized 

surface plasmon resonance (LSPR) can be tuned by changing the aspect ratio 
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(length/diameter).
92-94

 AuNRs having a moderate aspect ratio of ~3-4, which is used in this 

study, has LSPR at the near infrared (NIR) wavelength (~800 nm) as shown in Fig. 4.1.1. 

Because of deeper penetration ability of NIR through tissues compared to visible light, this opens 

up the possibility of in vivo imaging. But before many of the potentials of AuNRs could be 

realized, we need a better understanding of their interaction and transport through dense 

macromolecular network.  

                       

FIGURE 4.1.1:  UV-vis spectra of AuNR in water (open circle) with two distinct peaks at 790 

nm and 510 nm. The peak at 790 nm depends upon the aspect ratio of the rod. 

           For anisotropic objects, such as rods, the transport includes both translation and rotation. 

Translation involves probe motion at longer time scale, while rotation occurs at much faster time 

scale.
32

 The combination of both can provide information about spatially varying global and 

local properties of the matrix. Moreover, many viruses (e.g, tobacco mosaic virus) and 

biopolymers, such as segments of DNA or polypeptide can be modeled as short cylinders.
7,33
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However, little is understood about their dynamics both theoretically and experimentally in 

macromolecular solutions.
95,96

 The results presented here provide insight by using a model 

polymer system in conjunction with novel experimental technique with needed sensitivity as well 

as spatial and temporal resolution. We identified situations where the continuum hydrodynamic 

breaks down completely and instead microscopic friction solely determines the particle transport.    

4.2 EXPERIMENTAL SECTION 

           We used a model polymer system, polyethylene glycol (PEG) prepared with different 

concentrations in deionized water. The advantage of this system is that the porosity of the 

network and the entanglement length scale can be tuned from a few nm to few tens of nm by 

changing the volume fraction of PEG (Table 4.3.1). PEG samples of three different molecular 

weights 5 kg/mol (Mw/Mn = 1.08), 35 kg/mol (Mw/Mn = 1.15), 150 kg/mol (Mw/Mn = 1.2) were 

purchased from Polymer Sources, Inc and gold nanorods were obtained from Sigma-Aldrich, 

Inc. The particle length, L and diameter d were determined to be 60 nm and 17 nm respectively, 

including the organic coating giving an aspect ratio of 3.5. The concentration of the gold 

particles and cetyltrimethylammonium bromide (CTAB) were 2 nM and < 0.1 wt% in the stock 

solution, which was diluted about a thousand times to prepare the solution used in our 

experiment. Many different concentrations of PEG with volume fraction, =0-0.32 in water-NR 

mixture as solvent were prepared.  

           We used the method of multiphoton fluctuation correlation spectroscopy (MP-FCS), 

which is particularly useful because it uses ultra dilute particle concentration ( nM or less). This 

eliminates possible complications arising from particle aggregation or change of polymer 

microstructure due to particles acting as a cross-linker. FCS outperforms the sensitivity of 

dynamic light scattering (DLS) experiments by few orders of magnitude and in contrast to DLS 
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experiments, scattering of the host media does not significantly complicate the experiment or its 

interpretation. Compared to conventional, single-photon excitation techniques, a number of 

significant advantages popularized two-photon or multi-photon spectroscopy. Their nonlinear 

nature of excitation when combined with a high numerical aperture (N.A) objective, limits signal 

generation to a tiny focal volume of on the order of 0.1 femtoliter. This significantly reduces 

background noise. Previously, we have shown that high luminescence efficiency of AuNPs upon 

multi-photon excitation can be used to probe their dynamics.
31

 FCS is generally used to study the 

translational diffusion coefficient (DT). The rotational diffusion (DR) measurement of small 

molecules, such as dyes by FCS is problematic as the relevant time scale ( ns) overlaps with 

triplet state kinetics.
32

 For colloidal particles, rotational measurement requires an optically 

polarized signal, which can arise from their shape anisotropy. It had been demonstrated that gold 

nanorods behave like a dipole with absorption and emission occurring parallel to the major 

axis.
97,98

 The rotational motion occurs at much smaller time (~ few s) and sufficiently separated 

from translational motion (~few ms) so that both of them can be separated with little ambiguity. 

           To perform MP-FCS, we used a custom-built setup that utilized a Ti-Sapphire laser (Mai 

Tai, Spectra-Physics) at wavelength of 800 nm with pulse width of 100 femtoseconds at a 

repetition rate of 80 MHz. FCS measures the fluctuation of photon counts in very small volumes 

(~10
-15

 L) created by a diffraction limited laser focus with a high numerical aperture (N.A=1.25) 

oil-immersion objective. The emission is collected through the same objective and detected with 

two single photon counting modules (Hamamatsu, Inc). For polarization resolved experiments, a 

polarized beam splitter (Thorlabs, Inc) was placed before the detectors. By calculating the cross-

correlation function, G() of the intensity fluctuation and by choosing a suitable model, the rates 

of the dynamic processes are obtained.
31,32

 The temperature during the experiment was the room 
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temperature (23 
0
C). It is known that photothermal conversion by metallic NPs such as gold can 

generate local higher temperature, which can increase the particle mobility. Therefore, the laser 

power was kept below 1 mW and control experiments were performed to confirm that there is no 

systematic change of diffusion coefficients with power. In addition, we note that the two-photon 

excitation requires much lower average power compared to one-photon experiments.
98

  

4.3 RESULTS AND DISCUSSION 

           A representative correlation function collected with linearly polarized excitation light and 

unpolarized detected light is shown in Fig 4.3.1. Using the convention used in Ref [32] we refer 

this correlation function as GXNP. Experiments were also performed with [XXX] and [XXY] 

configurations, where the first letter denotes the excitation polarization and the next two letters 

represent detected polarizations. Z is the propagation direction of the incident light. We did not 

observe significant difference with respect to the measured rotational diffusion coefficients, 

though the amplitude of the rotational correlation function changes depending upon the incident 

and detected polarization states. Some experiments were also performed with circularly polarized 

excitation light by using a quarter-wave plate in the beam path, which results in autocorrelation 

functions with only the translational component. This was done to confirm that results were 

consistent with the curves when both components are present.  
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FIGURE 4.3.1: Autocorrelation function showing both the rotational and translational diffusion 

of the nanorods in water collected by using polarized MP-FCS. The solid line is fitting with the 

models described in the text giving DR= 33556  540 s
-1

 and DT= 14.7  0.3 m
2
/s. The 

measured DR corresponds to rotation perpendicular to the long axis of the rod and DT is the 

center-of-mass diffusion of the rod averaged over all orientations. (Inset) Transmission Electron 

Micrograph of gold colloids deposited on carbon film magnified 100 000x. A JEOL 2010 TEM 

with a LaB6 filament working at 200kV was employed to capture the image. The length and 

diameter of 150 such particles are shown, which gave the average L56 nm and d13 nm. The 

corresponding histograms are shown in Fig. 4.5.1. 
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           The autocorrelation function in Fig. 4.3.1, G() clearly showed two stage decays with the 

slower component at milliseconds time scale corresponds to the translational diffusion and the 

faster component at microseconds time scale is the rotational diffusion. As the translation and 

rotation are well separated in time scales, we used:  

                                                   

)
8

(1)
8

(1

)0(
)(

2

0

2

0 z

DD

G
G

TT

tran









    4.1.1 

                                                       and, )6(exp)(  Rrot DRG   4.1.2 

to fit the functions, which gives DT and DR, respectively.
31,32 ,97,98

 Here, ωo is the half-width of the 

laser focus (ωo  0.4 m) and zo is the half-height of the laser focus (zo  2 m) determined by a 

calibration experiment. As the size of the laser focus is much larger than the particle size and all 

relevant polymer length scales (Table 4.3.1), FCS measured the center of mass diffusion of the 

nanorods. The amplitude of the translation correlation function, Gtran() depends upon the 

average number of the  particles within the laser focus. The amplitude of the rotational 

correlation function, Grot() depends upon the polarization state of the excitation and emitted 

light as well as on the aspect ratio of the particle.  
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TABLE 4.3.1: Important parameters  

PEG Molecular weight,  Mw 5 kg/mol 35 kg/mol 150 kg/mol 

Radius of Gyration 

Rg = 0.02 Mw 
0.58

 (nm) 

2.8 8.6 20 

Volume fraction  range 

 

0.058 - 0.32 0.0037 – 0.32 0.003-0.14 

Overlap volume fraction 


*
 =  Mw /(4/3* ρ *π*Rg

3
*NA) 

( ρPEG = 1.126 g/ml) 

0.08 0.02 0.0067 

Entanglement concentration 

e = (Me/Mw)
0.76

 

(Me = 2 kg/mol for PEG)
4
 

 

N.A. 0.12 0.04 

Correlation Length 

ξ() ≈ Rg (/*)
 -0.76 

(nm) 

 

 

1 – 3.6 1 – 31 2- 34 

Tube diameter 

dt() ≈ dt(1)  
-0.76

 ( nm) 

dt(1) = 4 nm
4
 

 

N. A. 9.5 – 20 17.5 – 46 

 

TABLE 4.3.2: Two crossover volume fractions ϕ
ξ
 and ϕ

d
 for AuNRs in PEG 

AuNR effective radius Ro 

(nm) 

1.32

o

g*ξ

2R

R











   

-1.32

od

a(1)

2R








  

14.7 for translation 0.004 0.07 

17 for rotation 0.003 0.06 
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TABLE 4.3.3: Theoretical and experimental diffusion coefficients of NRs in water 

Diffusion 

coefficient 

Experiment HS 

theory 

(no 

CTAB) 

HS 

theory 

(CTAB) 

TT 

theory 

(no 

CTAB) 

TT 

theory 

(CTAB) 

BR 

theory 

(no 

CTAB) 

BR 

theory 

(CTAB) 

 

DR (s
-1

) 33930 53283 29975 64002 34193 55310 N.A. 

DT (m
2
/s 14.6 15.1 10.49 20.2 15.4 15.8 N.A. 

 

           Transmission electron microscopy (TEM) image of the nanorods was shown in Fig. 4.3.1 

inset and the corresponding histograms of the length (L) and diameter (d) were plotted in Fig. 

4.5.1. We determined that L=56  11 nm and d= 13  3 nm. The gold nanorods are coated with 

an organic ligand, cetyltrimethylammonium bromide (CTAB), which is needed for their 

anisotropic growth and prevents particle aggregation. From the closest separation among the rods 

we estimated that that the thickness of the CTAB layer is 2 nm, which is comparable to the 

reported value of ~1-3 nm.
97

 A perfect bilayer of CTAB would correspond to  4 nm, therefore, 

the coating on the NRs used in our experiments is formed by a monolayer of CTAB. The 

concentration of CTAB in the polymer solution was estimated to be about 10
-3

 wt%, which is 

much less than the polymer concentration. Therefore, we expect that the presence of the CTAB 

in the solution does not significantly affects the results presented here. In a recent experiment, it 

was shown that the measured translation diffusion coefficient could depend upon the wavelength 

used for excitation due to the anisotropy presented by the parallel and perpendicular 

components.
93

 The effect is more pronounced near the LSPR frequency of 800 nm, which is far 

from our excitation wavelength due to the two-photon nature of our set-up. The excitation in our 
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experiments is closer to the transverse SPR mode. The transverse mode is much less sensitive to 

the diffusional anisotropy and variation of particle size, aspect ratio, etc. Therefore, the 

complications arising from interpretation of the autocorrelation function can be avoided. There 

are three commonly used theories for rod diffusion in a neat solvent: hydrodynamic stick (HS) 

theory, Tirado and Garcia de la Torre’s (TT) theory, and Broersma’s relation (BR). All of them 

give relationships of the form: DT  L
-1

 ln (L/d) and DR  L
-3

 ln (L/d).
32,33

 We determined that 

TT theory is most suitable for our NRs because it is valid for short cylinders, and hence we used 

it for all calculations. As shown in Table 4.3.3, DT is closer to the theoretical estimate, though DR 

deviates significantly. The limitations of the theories in accurately predicting DT and DR have 

been noted before.
32,98

  

           The theories, mentioned above, used Stokes-Einstein (SE) relation with stick boundary 

condition, which is valid if a large solute molecule diffuses in a medium composed of much 

smaller solvent molecules. A rod can move parallel to the long-axis (D‖) or perpendicular to it 

(D) and hydrodynamically a ratio of D‖/D=2 is expected.
22

 If polymers are present in the 

medium microscopic friction can play much more significant role, as recent theories and 

simulations have predicted.
86,99

 To understand this, it is useful to classify a polymer solution in 

few categories depending upon the concentration.
17,100

 For dilute concentration of polymer, 

where the concentration is below certain threshold overlap concentration (
*
), the chains are 

essentially isolated with no interactions among themselves. In the semi-dilute situation, 
*
 < 

 
< 


e
, where 

e
 is the entanglement concentration,

 
the macromolecules begin to overlap, but there is 

no effective entanglement. In the concentrated region ( > 
e
), which extends up to melt ( = 1), 

if the chains are long enough they can entangle. Two new length scales are introduced depending 
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upon polymer concentration.
4
 The first is correlation length, ξ() in the semi-dilute region, 

defined as the average distance from a monomer on one chain to the nearest monomer on another 

chain. The second is entanglement length or tube diameter dt() for  > 
e
. The crossover volume 

fractions between different regimes, 
*
, 

e
 and the length scales, ξ(), dt() can be estimated 

using scaling theory as shown in Table 4.3.1.  

           Theoretic studies developed so far considered mostly spherical particles. de Gennes and 

his coworkers had proposed that in situations, sphere radius Ro << (), the particles slip easily 

through the polymer mesh and only feel the solvent viscosity (o). In the opposite limit, they feel 

the macroscopic viscosity of the solution (b). In the transition region, the particles feel the local 

viscosity (c) such that o < c() < b. It has been argued that the local viscosity is governed by 

a scaling function, which depends upon the polymer concentration only through correlation 

length and independent of polymer molecular weight. Various hydrodynamic theories have been 

developed to describe the dependence of the scaling function, c(Ro/).
18,23 ,101

  

           In Figure 4.3.2, we have shown measured DT () and DR () as a function of  for three 

different molecular weights, 5 kg/mol (5K), 35 kg/mol (35K), 150 kg/mol (150K). The 5K 

polymer is too short for entanglement, though 35K and 150K can entangle at high enough 

volume fractions,  > 
e
. The two crossover concentrations, 

*
 and 

e 
were also shown in Fig. 

4.3.2. The solid line is fitting with the hydrodynamic model, which treats the polymer mesh as 

statistical network and assumed that the hydrodynamic interaction between the particles and 

polymer dominates over topological constraints for all concentrations. The Phillies model 

provided an empirical equation of a stretched exponential function for diffusion:  

                                                                   D ~ exp (-

)  4.1.3 
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where  and  are phenomenological parameters.
23

 Cuckier argued that hydrodynamic 

interaction is screened at the correlation length scale, which yields  = 0.76.
18

 In Fig. 4.3.2, the 

fitting with this model was shown for all three molecular weights. The comparison indicated that 

in 5K solution, the hydrodynamic theory predicts the diffusion of the nanorods very well for all 

polymer concentrations. Within 35K and 150K solutions, the diffusion of NRs cannot be 

predicted by Cuckier model in particular at concentrations above 
e
. In this situation, the particle 

diffusion is much faster compared to the prediction of the model. 
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FIGURE 4.3.2: Translation (top) and rotation (bottom) diffusion coefficients as a function of 

polymer volume fraction. The data has been normalized with respect to the diffusion coefficients 

in water. The solid lines show fits according to Cuckier model. The caption indicates the 

polymer molecular weight.  The crossover volume fractions (* and 
e
) are also shown.

 
The data 

indicates that diffusion of nanorods is faster compared to hydrodynamic prediction for higher 

molecular weights. 

           For a rod-like object in polymer melt,  the scaling analysis has shown that friction force 

along the long axis of the rod (“easy” direction) can be very different compared to perpendicular 
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to it (“hard” direction).
22

 For dt < d the ratio D‖/DL/d 3-4 for the NRs used in this study 

(L60 nm, d  17 nm with CTAB coating).  For situations, when d < dt, the ratio D‖/D  

ba/1dt, where ‘a’ is the size of a monomer and 1 is the viscosity of the polymer liquid 

consisting of monomers only. For typical values of these parameters, the diffusion anisotropy 

can be extremely large. Our experiments are sensitive only to rotation perpendicular to the long 

axis as the rotation along the major axis of the rod does not change the directions of absorption 

and emission diploes. The rotation occurs at the time scale of few s in water as shown in Fig. 

4.3.1. The translation diffusion involves the center-of-mass motion and it takes about a ~ms for 

the particles to cross the laser focal volume. Therefore, translation averages over a thousand 

rotations and our experiments cannot distinguish between diffusions along the long axis of the 

rods or perpendicular to it (Fig. 4.3.1 inset). Therefore, in the following we used an effective 

sphere approximation for the rods and compare the results with the theories developed for 

nanospheres. In addition, the aspect ratio of the particles used in our experiment is moderate (3) 

so that this approximation is acceptable. 

           From the measured translational and rotational diffusion coefficients in water, DT0=14.6 

m
2
/s and DR0=33556 s

-1
, we determined that effective hydrodynamic radii for the particles Ro  

16 nm. The diffusion coefficient is slightly higher for rotation compared to translation (Table 

4.3.3) because the differences in friction coefficients (ζ), which for translation is given by, ζT = 

6bRo and for rotation, ζR= 8bRo
3
 using stick boundary condition.

32
 The diffusion coefficient 

is related to friction coefficient via well-known Einstein relation:  

                                                                      D=kBT/ζ  4.1.4 

where kB is the Boltzmann constant, T is the absolute temperature. The approximation helps us 

to analyze our data beyond hydrodynamic models.  
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           For 5K polymer, the size of the chain has been estimated as Rg  3 nm and the correlation 

length, ξ() is varied between 1-4 nm in the measured concentration range. Therefore, the 

particle is bigger compared to all length scales in the matrix and the effect of the polymer is to 

simply increase the viscous drag. Both rotation and translational diffusions are determined by 

hydrodynamic contribution and microscopic friction plays negligible role. To understand the 

deviation for longer chains, we need to use more sophisticated theories that have been developed 

in the recent years. Cai, et. al. have developed a scaling theory, which considered the roles of 

segmental motion and entanglement dynamics on nanosphere mobility.
17

 Their theory is 

applicable in both polymer solutions and melt. The scaling theory considered three different size 

regimes all of which depend upon the particle size: (i) Below a certain volume fraction, 
ξ  
 


*
(Rg/2Ro)

1.32
,  the probe does not feel the presence of the polymer and diffusion is determined 

by the solvent viscosity (o). (ii) For 
ξ
 <  < 

d
, the segmental motion of the chains affect the 

sphere motion, and D  ξ
2
  

-1.52
. The crossover volume fraction, 

d 
 (2Ro/d(1))

-1.32
, where 

d(1) is the entanglement tube diameter in the melt and (iii) for  > 
d
, the particles are trapped. 

The probe motion is determined by the reptation time scale of the surrounding polymer chains, 

which gives D  
-3.93

. In Fig. 4.3.3, we showed the crossover concentrations, 
ξ
, 

d
 and the 

corresponding power laws in log-log plot. One issue of the scaling theory is that transition 

regions are not sharply defined and it cannot provide numerical prefactors. In spite of these 

limitations, we found good agreement with our assumptions. 
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FIGURE 4.3.3: In log-log plot, the comparison of D() with scaling theory (Ref.17) is shown. 

The scaling predictions are solid line. The open symbols are translational diffusion and filled 

symbols are rotational diffusion. The two crossover volume fractions, 
ξ 

and
 


d
 are also shown 

by the dashed lines. All the relevant parameters are listed in Table 4.3.2. The data for 5K was not 

plotted as they agree with hydrodynamic theory.   

           However, some differences were also observed. In the intermediate size regime, 
ξ
 <  < 


d
, the diffusion coefficient is expected to be independent of polymer molecular weight and 

determined by the local viscosity of a polymer liquid with chain size equal to the particle 

diameter. In our experiments, a clear dependence of D on the molecular weight was observed 

with D35K > D150K. This is because for 35K polymer, Ro > Rg and in this situation the polymers 

feel the full solution viscosity (b). Also, according to the theory, in the large size regime:  > 
d
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the Brownian diffusion is expected to be governed by the full solution viscosity, b ~ Mw
3
.
17

 This 

would indicate, D35K/D150K =80, however, the analysis of our data indicated the ratio to be 

smaller.    

           An understanding of these discrepancies required comparison of the solution viscosity 

(b)  with the nanoviscosity, c () determined from measured diffusion coefficients. We used 

Tirado and Garcia de la Torre’s (TT) theory with stick boundary condition to calculate c.
32

 

Using slip boundary condition will decrease c () by a factor of ⅔ although will not change 

qualitatively any conclusion. A multiplication factor to the TT theory has been applied so that at 

c(0) = 0.9 cP is obtained, which is the viscosity of water at the room temperature. The bulk 

viscosity information of PEG-water solutions at different volume fractions and PEG molecular 

weights were obtained from the rheology data.
102

 From Fig. 4.3.4, we concluded that both 

translation and rotation of the rod experience similar nanoviscosity.  
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FIGURE 4.3.4: The nanoviscosity, c () is compared with the bulk viscosity, b () for three 

different molecular weights as a function of polymer volume fraction, . Both translation and 

rotation are governed by the same nanoviscosity for the AuNR studied. The solid symbols are 

rotational and open symbols are translational nanoviscosity. The solid line is the bulk viscosity. 

In 5K and 35K PEG solutions, c () b (), but deviations were observed in 150K solution.        
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FIGURE 4.3.5: Shows the relevant length scales for the three different systems. The scale is in 

nm. 

           In both 5K and 35K solutions the rods experience the macroviscosity for all 

concentrations. A difference of factor of ~2 in the ratio c/b can originate from the uncertainties 

in determining the bulk viscosity. But in 150K solution the particles experience a much smaller 

nanoviscosity and the ratio c/b increases with increasing . This is consistent with our earlier 

results of nanosphere diffusion in polymer solutions
31

 and experiments of Holyst et. al.
102

, who 

used various sized proteins and dye molecules in polymer solutions. Those results were 

interpreted as the radius of gyration (Rg) of the chain being the crossover length scale from 

nanoviscosity to macroviscosity.
31,102

 We estimated that for NRs, Ro/Rg=5-6 for 5K, Ro/Rg = 1.5-

2 for 35K, Ro/Rg = 0.5-1 for 150K. Therefore, if Rg is the crossover length scale, then nanorods in 

5K and 35K solution will experience very close to the bulk viscosity, while in 150K it will 

experience a smaller nanoviscosity.  
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           Using force based microscopic theory Yamamoto et. al. have shown that for nanosphere 

diffusion c/b =1 would require the probe size, Ro > ³⁄₂ Rg in unentangled liquid and Ro > 3-5 dt 

for entangled liquids.
86

 According to this theory, D=DSE+Dm, where DSE is the hydrodynamic 

contribution determined by b and Dm is a microscopic contribution originating from 

nanoparticle-polymer forces and structural relaxation. Their theory is applicable for melts, and 

therefore it ignores the transient pore-like structures in semi-dilute solutions. But recent 

microrheology experiments in DNA solutions had confirmed the cross-over length scale in 

entangled solution.
103

 Those experiments were performed at a fixed concentration of DNA and 

the effect of length scale was inferred by changing DNA molecular weights.  A comparison of 

microscopic theory with our results in Fig. 4.3.4 showed that in unentangled polymer the 

crossover length scale ~ Rg is confirmed. In entangled solution the situation is more interesting. 

In 35K, tube diameter (dt) was varied from ~10-20 nm in our experiments, so Ro/dt() ≈ 1-1.6 

and c/b =1 is obeyed closely.  However, in 150K solutions, the tube diameter dt() ~18-46 nm, 

which gives Ro/dt ≈ 0.4-1 and deviation from b was observed. These features are consistent with 

the microscopic theory. The theory predicts that as the concentration is increased in the 

entangled regime, the ratio c/b should decrease as the tube diameter dt  
-0.76

. It is expected 

that at high enough concentrations of polymer as Ro/dt is increased much beyond 1, eventually 

c/b should approach unity. At present, we could not confirm this prediction because the NP 

dynamics becomes extremely slow to be measured by MP-FCS.  

           Egorov had used mode coupling theory (MCT) to study NP diffusion in both solutions 

and melts.
99

 The results, which were confirmed with molecular dynamics (MD) simulations for 

shorter chains also demonstrated the importance of the microscopic diffusion, Dm. The results 

showed that at a fixed polymer volume fraction and for Ro/Rg < 1, the microscopic friction can 
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completely dominate over the hydrodynamic friction. However, for Ro/Rg > 1, the hydrodynamic 

term will dominate. The theory also predicts a larger contribution of the microscopic term at a 

higher polymer concentration for fixed Ro/Rg. The theory did not explicitly consider the effect of 

chain entanglement and the solvent is implicit. Even though, it can qualitatively explain some 

features of Fig. 4.3.4. The deviation from c/b=1 for the rods in 150K, where Ro/Rg < 1 is much 

stronger at higher concentrations, where Dm determines the total diffusion. MCT theory also 

predicts that for higher molecular weight polymer, the deviation from hydrodynamics start at 

even lower volume fraction. This is also observed for both 35K and 150K solutions. A more 

quantitative understanding of our results, however, will require expansion of these theories to 

more realistic polymer solutions or large scale computer simulations.  

4.4 CONCLUSIONS 

           We showed that polarized MP-FCS can be used to determine both translation and 

rotational diffusions of nanorods in a polymer matrix. We have used an effective sphere model 

for the NRs to compare our results with the available theories. Within measurement 

uncertainties, both translation and rotation of the rod experience the same frictional force.  Our 

results showed that the scaling theory, which takes into account the polymer segmental motion 

and entanglement dynamics, can explain some features of our experiments. For longer chains, 

deviation from continuum hydrodynamics was observed. This showed the importance of 

microscopic friction in determining the particle dynamics. The results presented here shed light 

on the dependence of this friction force on polymer molecular weight and volume fraction. This 

will stimulate development of more sophisticated theories as well as simulations with aim 

towards better understanding of the transport behavior of asymmetric shaped particles in 

complex fluids.  
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4.5 SUPPORTING INFORMATION: 

 

FIGURE 4.5.1: (a) TEM image of AuNPs deposited on carbon film magnified 800000×.JEOL-

2010 FasTEM Transmission Electron Microscope (TEM) with a LaB6 filament working at 200 
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kV was employed for imaging.  (b)The histograms of length (L) and diameter (d) of the 

nanorods. The analysis gives L=56  11 nm and d=13  3 nm.  
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CHAPTER 5 

       DYNAMICS OF ANISOTROPIC PARTICLES IN BIOPOLYMER SOLUTIONS 

5.1 CONJUGATION OF GOLD NANORODS WITH BOVINE SERUM ALBUMIN 

PROTEIN  

The following material was originally published in Journal of Physical Chemistry C (2014).
104

 

Anisotropic shaped particles are being widely used for applications ranging from self-

assembly
105

 to drug delivery.
106

 The gold nanorods (AuNRs), in particular, have received a lot of 

attention because of their unique photo-physical properties.
93,94,106

 We are interested here to 

understand the interaction of AuNR with protein solutions. The motivation for this study is that 

these particles have found numerous biomedical applications, such as sensing, imaging, delivery 

agents for drugs or genes, and localized hyperthermia for cancer therapy.
91,92,107

 They are 

biocompatible and non-toxic, giving them advantages compared to semiconductor quantum 

dots.
32

 One specific benefit for using rod-shaped gold particles, instead of spheres is that 

localized surface plasmon resonance (LSPR) frequency can be tuned by changing the aspect ratio 

(length/diameter).
92  In particular, AuNRs with an aspect ratio  3-4 showed a longitudinal LSPR 

near the infrared region (~800 nm), which has higher penetration depth through tissues (Fig. 

4.1.1). 

           For the safe applications of NRs, as well as other nanostructures, their interaction with 

various proteins needs to be understood. Due to the large surface-to-volume ratio, even a small 

amount of NP provides a large area for protein binding. As soon as NPs are exposed to biological 

fluids, they become coated with various proteins, which form a surrounding layer called ‘protein 

corona’.
50,108

 The protein corona shields the original surface of the NP and consequently, the 

interaction of the corona with other biofluids governs many properties of NP-based drug delivery 
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systems.
49,52

 If the protein retains its native conformation, it can facilitate cellular uptake. But if 

the structure of the protein molecules in the corona is modified, it could potentially give rise to 

toxicity effect. As a model protein we used bovine serum albumin (BSA), which is similar in 

composition and structure to human serum albumin (HSA).
109

 This protein is abundant in the 

circulatory system and constitutes the majority of the plasma fluid in variety of organisms.
52

 The 

NP-protein interaction and the characteristics of the protein corona depend upon size, shape, and 

surface chemistry of the particles. The interaction of BSA with differently functionalized gold 

nanospheres (AuNS),
50,51,109

 quantum dots (QDs),
49

 and FePt NP
49

 was studied before. Recent 

research, however, have shown that protein corona composition, cellular uptake as well as 

toxicity of anisotropic particles can be very different compared to spherical particles,
108,110-112

 

This needs to be properly understood for safe applications of NPs possessing different shapes.   

We took advantage of the two-photon excitation of the metallic nanorods to measure the 

change of the diffusion coefficients in situ as a function of protein concentration. Due to their 

shape anisotropy both translational (DT) and rotational diffusion (DR) of the NR can be measured 

by using polarized optics. But the rotation diffusion is much more sensitive to protein adsorption 

compared to translation diffusion as DR ~ (1/L
3
) ln(L/d), while for DT ~ (1/L) ln(L/d), where L is 

the length and d is the diameter of the rod.
32

 We measured the increase of the hydrodynamic size 

of the particles as a result of BSA absorption and compared them with Langmuir and non-

cooperative binding models. In contrast to gold nanospheres, our results showed incomplete 

coverage of proteins on the nanorods. We believe that the results presented here will be 

important in fields ranging from biophysics to drug delivery, where surface interaction and 

diffusion of nanoscale objects in complex macromolecular fluids are important. 
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5.2 EXPERIMENTAL SECTION 

Bovine serum albumin (BSA) (fraction ≥ 96% lyophilized powder, Mw = 66463) was 

purchased from Sigma-Aldrich Inc. and used without further purification. 

Cetyltrimethylammonium bromide (CTAB) stabilized gold NRs was also obtained from Sigma-

Aldrich, Inc. The concentration of NRs in the solution was 2-3 nM, which was diluted by a 

thousand times to prepare the sample for p-FCS experiments. The protein powder was diluted 

using phosphate buffer (pH 7.0) as a solvent to prepare many different concentrations of BSA 

solutions (1 μM to 10 mM). A home-built cylindrical glass cell with the bottom plate made of 

borosilicate cover glass of thickness ~0.17 mm was used as a liquid cell. The cell was thoroughly 

cleaned using a base bath and rinsed with distilled water before use. An inverted microscope was 

used as an experimental platform and the cell was mounted at the mechanical stage attached with 

the microscope (Axiovert 200, Zeiss). Ti:sapphire laser (Mai Tai, Spectra-Physics) of near 

infrared light (wavelength 800 nm) with pulse-width of 150 femtoseconds at a repetition rate of 

80 MHz was focused on the sample through a high numerical aperture (N.A. = 1.25, 100x) oil 

immersion objective. The objective excites a tiny volume of ~10
-15 

L inside the sample. Emitted 

light was passed back through the same objective, transmitted by a dichroic mirror that transmits 

light of wavelength below 600 nm. This arrangement blocks scattered light from the particles, 

which can complicate interpretation of the diffusion data.
93

 Finally the emitted light was detected 

by two single photon counting modules (Hamamatsu, Inc.). A polarized beam splitter was placed 

before the detectors for polarization resolved experiments. A commercial integrated data 

acquisition system (ISS, IL) was used to record and analyze the output photon counts. The 

photon counts fluctuate as a function of time due to rotational diffusion and as the particles 

diffuse in and out of the laser focus. The fluctuation (F) of the NRs is quantitatively studied 
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through the autocorrelation function (ACF), G(τ) which is analyzed to determine the translational 

(DT) and rotational (DR) diffusion coefficients.
32

 Each correlation function was collected for 

about 10 min and a minimum of five different FCS trials were performed for each 

concentrations. To calibrate the focal volume we used a common dye Rhodamine 6G, whose 

diffusion coefficient of water is well known.
113

 We determined that the half-width (o) and half-

length (zo) of the focus are 0.4 m and 2 m, respectively. As the particle size is much smaller 

than the focal dimension, we can use point particle approximation to analyze FCS data. FCS has 

a great advantage of using extremely low particle concentrations of much less than a nanomolar, 

which are ~3-5 orders of magnitude smaller compared to common spectroscopy or dynamical 

methods. This helps to prevent particle aggregation during experiments, which simplifies 

analysis of the data and comparison with theoretical models.
51

 In addition, two-photon 

luminescence of gold NPs offer advantage of using very low laser power compared to scattering 

correlation spectroscopy or one-photon technique, which were used to study dynamics of 

metallic NPs in the recent years.
50,93

  

5.3 RESULTS AND DISCUSSION 

           The transmission electron microscopy (TEM) image of the rod was shown in Fig. 5.3.1 

inset. From 150 such particles, we determined that L=56  11 nm and d=13  3 nm (Fig. 4.5.1). 

To estimate the CTAB thickness, we used the minimum separation of the rods in a side-to-side 

arrangement. This yields approximately twice the thickness of CTAB layer, which we estimated 

to be  =2.2  0.4 nm. As the current theories of determining the length and the diameter of the 

rods from the measured translation and rotational diffusion coefficients are not very accurate, we 

feel that this is a better approach at this time. It also yields CTAB thickness, which is comparable 
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to the reported values between 1-3 nm.
52

 In Fig. 5.3.1, we showed the autocorrelation function 

(ACF) of CTAB functionalized AuNRs in buffer. We used a configuration of [YXY], where the 

first letter corresponds to excitation polarization and the next two letters correspond to detected 

polarization using the convention used in Ref. [32]. Z is the propagation direction of the incident 

light. The clear two-step decay in the ACF indicates the translation and rotation diffusion of the 

rods and the fitting gives DT13.4  0.5 m
2
/s and DR29574  433 s

-1
. The translational part of  

the correlation function, Gtran() and the rotational part, Grot(τ) were fitted with using:  
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to fit the functions, which gives DT and DR, respectively.
32
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FIGURE 5.3.1: The cross-correlation function with fitting showing both the translational and 

rotational diffusions of the gold nanorods in phosphate buffer of pH 7.0. (Inset) Transmission 

Electron Micrograph of gold colloids collected using a JEOL 2010 TEM. The length and 

diameter of 150 such particles are shown giving the average L56  4 nm and d 13  4 nm.  

           We used Tirado and Garcia de la Torre’s theory (TT) for rod diffusion in solvents, 

because it is valid for shorter cylinder, i.e., lower aspect ratio. The nanorods with the CTAB 

layer has average length, L60 nm and d17 nm. Using these values, TT theory gives DT=11 

m
2
/sand DR= 13792 s

-1
. The measured translational diffusion is in good agreement to the 

experimental value, but the rotational diffusion differs significantly. We believe that this is due 

to the limitation of these theories and note that similar discrepancy has been found before.
32

 In 

Figure 5.3.2 we have shown some representative ACFs within different BSA concentrations 

plotted versus logarithmic time lag (τ). The curves clearly showed the characteristic diffusion 

time for both translation and rotational motion increase with BSA concentration. This is due to 
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combined effects of protein adsorption on the NR surface and increase of the solution viscosity. 

To obtain better quality curves with BSA in solution, we first ran FCS experiments with higher 

sampling frequency (~5 MHz) to capture the rotational part of the correlation functions, which 

occurs at a shorter time scale. Thereafter, translation component was obtained by using lower 

sampling frequency (~10 kHz). In Fig. 5.3.2, we have shown the rotational and translation curves 

separately with the fitting. We also performed controlled experiments using circularly polarized 

light, where only the translation component present. This was compared with the translation 

diffusion coefficient measured by cross-correlation curves obtained using [YXY] configuration. 

These two measurements gave similar results giving confidence in the measurements. It is 

known that BSA can induce aggregation of nanoparticles above certain concentration.
52

 

Therefore we carefully examined the intensity vs. time, I(t) traces to find any signature of 

aggregation, such as longer, brighter peaks. But we did not observe any aggregation. One reason 

could be that concentration of NPs used in our experiments (~pM) is more than three orders of 

magnitude lower compared to previous studies. This reduces the chance of particle aggregation 

significantly. 
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FIGURE 5.3.2: The rotational (main figure) and translational (inset) cross-correlation curves are 

shown separately for different concentrations of BSA. The arrow indicates direction of 

increasing concentration. Not all concentrations are shown because of clarity. The fitting 

functions are described in the text. 

           Figure 5.3.2 summarizes the data and the fitting corresponds to a stretched exponential 

function:  

                                                             D=Doexp(-

)  5.1.3 

which is known as Phillies’ equation. It is widely used to empirically describe the diffusion of 

particles in semi-dilute polymer solutions.
31

 Here, Do is the diffusion coefficient in the low 

protein concentration,  is the concentration of BSA, β and υ are adjustable parameters, where, 0 

< υ < 1 is expected. The stretched exponential fitting gives υ = 0.97 for translational diffusion, 

and υ = 0.95 for rotational diffusion which are in marginal agreement with value close to 1.
23,100 

10
-6

10
-5

10
-4

10
-3

0.0

0.3

0.6

0.9

 

 

G
r
o

t(
)

(s)

10
-4

10
-3

10
-2

10
-1

10
0

0.0

0.3

0.6

0.9

1.2

 

 

G
tr

a
n
(

)

(s)

: 0 mM
: 3.4 mM
: 5.0 mM
: 6.7 mMX



76 
 

 

,114
 But as shown in Fig. 5.3.3 residual plots, the fitting deviates systematically from the data, 

therefore, Phillie’s fit is not appropriate to describe the anisotropic particle diffusion. Phillies 

equation is valid in the absence of interactions between the particle and the polymer, which is not 

the situation in the present study. We also noted that understanding diffusion of particles other 

than the spherical shapes in macromolecular solution is still a matter of theoretical challenge. But 

this is not the focus of the present work.  

    

FIGURE 5.3.3: Rotational (DR) and translational (DT) diffusion coefficients of the nanorods are 

shown as a function of BSA concentration (). The error bars correspond to a minimum of five 

independent trials. The fitting is according to stretched exponential function. (Inset) The residual 

showed that systematic deviation from the fitting at all concentrations.  

The conformation of BSA exhibits pH dependency with its native state (N) found 

between pH 4 and 8. The phosphate buffer (pH 7.0) used in our experiments thus corresponds to 
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the N state, which can be approximated as an equilateral prism with sides of 8 x 8 nm
2
 and height 

3 nm as determined by x-ray diffraction.
48

 The equivalent hydrodynamic radius is estimated to 

be 3.7 nm.
115

 To determine the thickness of adsorbed protein film onto nanospheres, one can 

directly use the Stokes-Einstein (SE) relation, which relates the diffusion coefficient with the 

hydrodynamic radius (Rh) of the sphere. Similar approach for rod-shaped particles is problematic 

as the analytical results are not very accurate, as mentioned earlier. But we may assume that the 

rotating rods behave hydrodynamically as spheres with an equivalent radius, Rh. As the 

translational diffusion time through the focus is much longer compared to rotational diffusion 

time, translation averages over thousands of rotations. Therefore, the difference between 

diffusion along the rod and perpendicular to it is not detectable. This assumption also helped us 

to compare the results with previous experiments of nanosphere interaction with BSA.  

Using this, we can use theoretical values of DT=kBT/6Rh and DR= kBT/8Rh
3 

to 

calculate Rh, where kB is the Boltzmann constant and T is the absolute temperature. We measured 

the viscosity () of the solution as a function of BSA concentration () in the relevant range 

using a falling ball viscometer and use it to determine Rh as a function of BSA concentration (Fig 

5.5.1). By assuming that the thickness (∆δR) of the BSA is same on all sides, the average change 

at saturation has been found to be ∆δR 2.30.3 nm for rotational diffusion and ∆δT  2.50.3 nm 

for translational diffusion as shown in Fig. 5.3.4. Both measurements, therefore, gave consistent 

results, which is reassuring and justify our assumption. The saturation happens at 1 mM 

concentration of BSA, which is comparable to the serum albumin concentration in human blood 

(0.75 mM).
50

 The measured ∆δT and ∆δR are significantly less compared to previous 

observations of BSA monolayer adsorption onto different nanospheres’ surfaces with thicknesses 

3.5-4 nm.
49-51

 Those results were interpreted by assuming that the protein retained its’ native 
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three dimensional structure with the triangular base seated on the top of the gold surface (Fig. 

5.3.4 inset).
50

 The lesser thickness of BSA on CTAB coated gold nanorods, therefore can be 

explained either by incomplete coverage and/or by the loss of native conformation of the protein.  

   

FIGURE 5.3.4: The change of the effective hydrodynamic radius of the particles obtained from 

rotational (main figure) and translational (inset a) diffusion measurements. The solid line is 

fitting according to anti-cooperative binding model and the dashed line corresponds to Langmuir 

fit. The BSA concentration  (g/mol) (Fig. 5.3.3) has been converted to  (M) by using the 

relation (g/mol) =  (M)*Mw*10
-9

, where Mw is BSA molecular weight. This was done to get 

the dissociation constant in the unit of M, which is traditionally done. The schematic showed 

the difference of BSA adsorption on nanospheres and nanorods. (Inset b) The dissociation 

constant is shown as a function of particle radii. The square is citrate stabilized AuNS
50
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are tannic acid stabilized AuNS,
51

 and the star is gold nanorods with an effective hydrodynamic 

radius and coated with CTAB. 

To determine the maximum number of BSA adsorbed, we used the concept of Rocker 

et.al., which expressed the hydrodynamic radii of protein-coated NRs as:        

                                             

 
3

max

)(1

1)0(])([
nD

hh

BSA

K

cN
RBSAR



   5.1.4 

where Nmax is the maximum number of bound proteins to the NR, KD represents dissociation 

constant, and n is the Hill coefficient, which measures the degree of binding cooperativity.
49

 The 

n=1 corresponds to Langmuir isotherm, where the adsorption of one protein does not influence 

the subsequent adsorption. In anti-cooperative binding model, where n < 1, previously adsorbed 

proteins sterically hinder subsequent adsorption. This would indicate repulsion between the free 

and bound BSA molecules as more sites get occupied, which would prevent formation of 

multilayer. The experimental data in Fig. 5.3.4 was fitted with this equation using Rh ([BSA]) 

from both translation and rotational motions. For rotational motion we obtained n = 0.63, Nmax= 

55, KD = 121 μM and for translational diffusion n = 0.71, Nmax= 59, KD = 127 μM. Again 

comparable values were obtained with both sets of measurements. The Langmuir isotherm is also 

shown, which gives somewhat lower quality fitting compared to ant-cooperative binding model. 

The cross-section of folded BSA is ~32 nm
2 

and the total surface area of the NR is 3660 nm
2
, 

which gives the theoretical value for the  maximum number of protein molecules absorbed is 

Nmax = 115. This is significantly higher compared to fitting estimate, but consistent with the 

observation of less than a monolayer coverage.  
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Previously, citrate stabilized
50

 or tannic acid stabilized
51 AuNS of different sizes were 

investigated. It was found that the thickness of the BSA layer was 3.5-4 nm, which indicated a 

complete coverage of the particle surface with a single layer of protein in its native state. The 

maximum number of BSA adsorbed, Nmax obtained from fitting also agreed very well with 

theoretical calculation based upon particle area. The ligand coating makes the particle surfaces 

negatively charged with carboxyl group (COO
-
) exposed outside. The isoelectric point of BSA is 

4.6, so BSA in phosphate buffer (pH 7.0) is overall negatively charged. But BSA can still bind to 

negatively charged surfaces. This is due to several positively charged lysine amino acids at the 

protein surface, which can interact electrostatically with anionic particles.
50

 In this scenario, 

there is no direct interaction between gold and BSA. An alternative ligand exchange mechanism 

has been suggested by Tsai et. al.
109

 It hypothesized that the coating might be displaced by the 

BSA upon adsorption and it interacts directly with gold through the thiol bond with the unpaired 

cysteine residue. This can explain the increasing dissociation constant (KD) with the increase of 

the particle size (Rh) as shown in Fig 5.3.4 inset (b) for gold nanospheres. The smaller 

nanoparticles will have better access to the sole surface amino acid compared to larger particle, 

indicating stronger interaction with the protein.   

In Fig. 5.3.4 inset (b) we have compared KD for nanospheres and the rod by assuming for 

latter an equivalent hydrodynamic sphere model. The data indicated that the interaction between 

the rod and BSA is much stronger (i.e. lower KD) compared to an equivalent sized sphere. 

Therefore, a different mechanism of interaction needs to be sought. In contrast to citrate or tannic 

acid stabilized particles, CTAB is a cationic surfactant with the trimethylammonium [N
+
(CH3)3] 

head group of the first monolayer faces the surface of particles and the absorbed second layer 
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extended outside with hydrophobic tails hidden inside.
52

 Therefore, both the shape of particle 

and the surface interaction can affect the protein layer structure.  

The adsorption of BSA on planar self-assembled monolayer terminated with various end 

groups were studied using quartz crystal microbalance (QCM) technique.
116

 The results showed 

that non-specific adsorption is highest on hydrophobic surfaces, followed by carboxyl (COO
-
) 

and amine (H3N
+
) group. A perfect bilayer of CTAB would expose the trimethyl amino group 

[N
+
(CH3)3] group at the surface. But such a layer would have a thickness of 4 nm, whereas our 

experiments have determined an average thickness of 2.2 nm. This indicates an imperfect 

bilayer surrounding the rods with many exposed hydrophobic tails. Therefore, hydrophobic 

interaction can play important role in the adsorption mechanism. The protein can unfold and the 

buried hydrophobic region can interact with the CTAB. In contrast to COO
- 
terminated particles, 

in this situation interaction with CTAB results in a loss of protein native structure giving a 

thickness of less than  3.5-4 nm. This interpretation is consistent with previous study by 

Chakraborty et. al., who also studied BSA interaction with CTAB coated AuNRs using 

absorption spectroscopy.
52

 They concluded that the interaction is entropy driven with release of 

significant amount of bound hydrated water molecules. In their experiments, a large number of 

particle aggregates were observed, which is driven by BSA adsorption. But we did not observe 

any trace of aggregates, which can be explained by the fact that the particle concentration in our 

experiments was about  1-2 pM, which is thousand times lower compared to previous 

experiments. Therefore, our results are consistent with entropy-driven hydrophobic interaction 

between BSA and CTAB coated AuNR, which denatures the protein.  
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However, our results could also be interpreted through a different scenario. It is possible 

that CTAB coating on the rods is patchy and heterogeneous in thickness. TEM measurements do 

not have the necessary resolution to identify and characterize such layer. Therefore, it is possible 

that coating consists of a mixed bilayer and monolayer of CTAB. In this situation, the exposed 

surface of the rods becomes positively charged which can interact electrostatically with 

negatively charged BSA in the buffer. This can also explain sub-monolayer coverage of BSA 

found in our experiments.  

5.4 CONCLUSIONS 

In summary, we have demonstrated in situ evidence of BSA adsorption onto CTAB 

stabilized AuNRs by performing FCS experiments with single-particle sensitivity. The absorbed 

thickness reached saturation at 1 mM BSA concentration. The average change in thickness is 

2.4  0.3 nm which is less than if a BSA monolayer is formed around the particles. The 

estimated number of binding sites indicated surface coverage is about 50%. The results are 

significantly different compared to BSA adsorption on gold nanospheres, where the results could 

be interpreted in terms of a fully covered single layer of protein in its native conformation. From 

the observed data, we hypothesize that BSA interaction AuNR is determined by hydrophobic 

interaction, which results in loss of protein’s conformation. A future goal is to isolate the effects 

of surface interaction from the shape of the particles. The results will be important to understand 

how anisotropic particles interact with and internalized into cell, which has not yet been explored 

in detail and understood clearly. 
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5.5 SUPPORTING INFORMATION 

                             

FIGURE 5.5.1: Viscosity vs. volume fraction plot for BSA in buffer (pH 7.0). 
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CHAPTER 6 

DYNAMICS OF ANISOTROPIC PARTICLES IN SPHERE MIXTURE 

6.1 TRANSLATIONAL ANISOTROPY AND ROTATIONAL DIFFUSION OF GOLD 

NANORODS IN COLLOIDAL SPHERE SOLUTIONS. 

The following material was originally published in Langmuir (2015).
117

 

           The dynamics of non-spherical colloidal particles through complex fluids is a subject of 

great interest in diverse areas. For example, anisotropic particles such as gold nanorods (AuNRs) 

have shown promise to be used as diagnostic and therapeutic purposes.
106,118

 The bottom-up 

approach of fabricating nanostructures using self-assembly can make use of anisotropic building 

blocks, which can provide a wider range of possibilities. Understanding the dynamics of such 

objects is important as the thermal energy which dictates the motion of the particles is 

comparable to the interaction energy at the nanoscale in many situations. One common approach 

to study the dynamics is the probe diffusion method, where a particle (the probe) is monitored as 

it diffuses through a suspension of other particles (the matrix). Many combinations of probe and 

matrix had been studied using both hard (e.g., silica, gold, etc.) and soft (e.g., polymer, proteins, 

etc.) objects.
119-121

 Here, our interest is the study of gold nanorods within a matrix of Ludox 

spheres in the semi-dilute concentration regime, which is very relevant for the above mentioned 

applications.  

              The initial theoretical interest to study these systems originated in understanding the 

entanglement and caging in polymers, where rod-like molecules can behave as one of the model 

systems. Doi and Edwards (DE) provided the basis of understanding the dynamical behavior of 

rigid rods within semi-dilute or concentrated solutions of similar rods.
56,57,62

 In the semi-dilute 

solutions, cages are transient, appearing and disappearing with time. As a result, theoretically it 
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is a very challenging problem. DE theory considered the concentration range of 1 << nL
3
 << L/d, 

where n is the number concentration of the particles, which has unit (meter)
-3

, L & d are the 

length and diameter of the rod, respectively and both have unit meter, thus nL
3
 is a unit less 

quantity. Within a highly concentrated solution, they argued that the neighbors create a “cage” 

which surrounds the probe and completely restricts its rotational motion. The rotation can happen 

only after the cage is ‘dissolved’ due to the translational diffusion of the rod along its axis (DT‖). 

For ultrathin rods, L >> d, they derived
122

: 

                                                                          
      6.1.1 

where DR0 is the rotational diffusion coefficient in neat solvent and β is a numerical factor, whose 

value is predicted to be 1.  

           The subsequent experiments, however, showed significant discrepancies with the DE 

theory.
123-125

 By using rod-like polymers, poly--benzyl-L-glutamate (PBLG) the experiments 

have shown that rotational diffusion coefficient (DR) to be much higher so that β 1000 is needed 

to match with the DE theory.
124

 There is also a concentration off-set effect and the inverse-square 

dependence is not obtained until a much higher value of nL
3
. Eventually, sophisticated advances 

were made to refine the DE theory. According to Fixman,
63,126

 the rod rotation can be due to two 

mechanisms: cage renewal as described by the DE theory and slight transverse translation and 

rotation of both the caging particles and the confined rod. The model showed angular jump, 


2
, of the rods is proportional to n

-1/2
, which yielded DR~ n

-1
 and, thus in qualitative 

disagreement with DE theory. Keep and Pecora developed a geometric model,
60

 which argued 

that predicted DR ~ (nL
3
)
-2

 dependence will be obtained for nL
3 

> 500 and significant caging is 

not expected unless nL
3
 > 50. Farther improvements of the DE theories were made by 
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considering that only a part of the rod needs to be translated for cage renewal,
123,124

 smaller rods 

can relax away faster for a polydisperse system,
127

 etc.  

           We found only one experimental study on the diffusion of rod-like molecules within a 

sphere mixture. Phalakornkul et. al.
72

 have studied PBLG molecules of three different molecular 

weights of aspect ratios (L/d) varying 30-90. The experiments probed the bulk anisotropy of the 

sample using transient electric birefringence (TEB) decay method. The matrix consisted of silica 

spheres with diameter (2Ro)  124 nm with volume fractions between 0-0.08. For L > 2Ro they 

found that DR ~ L
-2.52 

and not according to scaling prediction of L
-4

. The diffusion is also 

decoupled from the matrix viscosity as DR decreased much faster compared to the increase of the 

matrix viscosity.  According to their analysis, the rotational relaxation of the rods is dominated 

by the collective diffusion of the spheres at the length scale of L, instead of the self-diffusion 

coefficient. It modified the concentration () dependence, showing that DR ~ 
-1 

instead of 
-2/3

. 

But, the shortest rod (L=68 nm) did not show any concentration dependence of DR, so the results 

are not conclusive. 

            TEB decay method, which they used had few issues. As it is a bulk technique, a high 

concentration of rods (10 rods/L
3
) is needed, so the caging can be affected by the spheres and by 

the rods as well. The method is also perturbative. As the silica particles are charged, the external 

electric field can affect the sphere motion and their ordering around the rods. The bending mode 

of the polymer can complicate interpretation of the data as Odjik
58,59

 have shown that even slight 

flexibility can have a drastic effect on the rod confinement. In addition, the measurements cannot 

provide the absolute values of the rotational diffusion coefficients, but give only the ratio 

DR/DR0. So a quantitative comparison with theories is not possible. 
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            In this study, we used gold nanorods (AuNRs), which is truly a rigid rod within a 

semidilute concentration of spheres using a non-perturbative optical technique of fluctuation 

correlation spectroscopy (FCS). By using polarized light, we were able to determine both the 

translational and rotational diffusion coefficients from the same experiment. We kept the rod 

concentration at nL
3
10

-7
 so that any correlations among them is negligible and true self-

diffusion coefficient is measured. The rod has an aspect ratio  4, which is at least an order of 

magnitude smaller compared to polymer molecules. The size of the crowding spheres is 

comparable to the dimensions of the rods and their concentration is varied up to volume fraction 

() of 0.3 or approximately 7 spheres/L
3
. These size and concentration regimes are appropriate 

for understanding the effects of crowding on rod diffusion in biological systems, where gold NRs 

with aspect ratio ~3-4 have shown promise for diagnostic and therapeutic applications.
128

 Our 

results will also be important for self-assembly of a mixture of spherical and non-spherical 

particles, where depletion interaction among the non-spherical particles due to the presence of 

similar sized spheres could create structures with anisotropic photonic or electrical properties.  

6.2 EXPERIMENTAL SECTION 

            Colloidal silica (Ludox TM-50, 50 wt% suspension in water) sphere was purchased from 

Sigma-Aldrich, Inc. Both dynamic light scattering (DLS) and transmission electron microscopy 

(TEM) measurements showed the diameter of the particles, 2Ro26 ± 3 nm (Fig. 6.5.1). The 

particles are negatively charged with a zeta-potential of -35 ± 5 mV. Cetyltrimethyl ammonium 

bromide (CTAB) stabilized AuNRs with length 60 nm and diameter 17 nm were also obtained 

from Sigma-Aldrich, Inc (Fig. 4.5.1). The concentration of NRs in the stock solution was  2-3 

nM, which was diluted thousand times to prepare the solution used in our experiments. Distilled 
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deionized water was used as a solvent for all experiments. Ludox solution with volume fraction  

= 0-0.3 and nanorods in water were prepared in a home built cylindrical glass cell with the top 

and bottom plate made with borosilicate cover glass of thickness ~0.17 mm. The cell was sealed 

to prevent evaporation during measurements. Freshly prepared samples were used in all 

experiments. The viscosity (b) of solutions as a function of volume fraction was measured using 

a falling ball viscometer (Fish-Schurman Corp., NY). All measurements were performed at 20 

0
C. 

           A major obstacle in determining the rod dynamics within a rod/sphere mixture is the 

strong scattering from the spheres, which can easily overwhelm the signal arising from rods. We 

took advantage of the two-photon excitation of the gold nanorods. Experiments were performed 

on a Zeiss inverted microscope (Axiovert S200TV, Carl Zeiss, Inc.) and the sample cell was 

placed on the mechanical stage attached with the microscope. Near-infrared light from a 

femtosecond Ti:sapphire laser (Mai Tai, Spectra Physics) of wavelength 800 nm with pulses of 

width 150 fs at a repetition rate of 80 MHz was focused through a long working distance oil 

immersion objective (100x, numerical aperture, N.A.=1.25) into the sample. The laser power was 

kept below 1 mW to avoid photothermal conversion, which can induce heating effect in sample. 

The fluctuations in photon counts as the gold NPs rotate and move into or out of the laser focus 

is detected by two single photon counting modulus (Hamamatsu, Inc.). A polarized beam splitter 

(Thorlabs, Inc.) is placed in front of the detectors. The digital output is recorded and analyzed by 

an integrated FCS data acquisition system (ISS, Champaign, IL). The cross-correlation function 

(CCF), G(τ) of the fluctuation is measured for ~10 mins. The CCF showed clear two stage 

decays well-separated in time indicating both translational and rotational diffusion of the rods 

(Fig. 6.2.1). We used:  
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 6.1.2 

                                            and,                      6.1.3 

to fit the CCFs, which give translation (DT) and rotation (DR) diffusion coefficients, 

respectively.
32,97

 Here, G(0) is the cross-correlation magnitude at time lag τ = 0 and is inversely 

proportional to the number of particles within the laser focus. The amplitude of the translational 

correlation function Gtran (τ) depends upon the average number of the particles within the laser 

focus. The amplitude of rotational correlation function Grot (τ) of the rod depends upon the aspect 

ratio as well as the excitation and detected polarization state. As the observation volume is a 

three dimensional Gaussian intensity profile, the 1/e
2
 radius is given by ω0, whereas it is z0 in the 

axial direction. The value of ω0  0.4 μm and z0  2 μm were determined through calibration 

experiments. Parak et al.
129

 have used a rough approximation for measuring the focus radius in 

solution which has different refractive index compared to the solution used for the calibration 

experiment. According to the approximation:              
      

      
 . In our experiment: ωwater 

= 0.4 μm, ηwater = 1.33 and ηludox = 1.45, which gives ωludox = 0.37.  The maximum error 

determining the beam width is about 7.5%. So, the change in D is ~15% as D ~ o
2
. The 

statistical deviation in measuring diffusion coefficient is around 20%. So the change in 

calibration volume can be neglected. 
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FIGURE 6.2.1:  Cross-correlation function, G() with fitting as described in the text showing 

both the translational and rotational diffusion of the gold nanorods in water (main figure). 

Rotational (inset bottom) and translational (inset top) cross-correlation curves were shown 

separately for different volume fractions of Ludox as indicated in the caption. The nanorods 

concentration was kept at about ~ 1 pM. The imperfect fit of the translation curves are described 

later.  

6.3. RESULTS AND DISCUSSION 

           Figure 6.2.1 shows a typical cross-correlation function of AuNRs in water. Following the 

convention used in Ref [32], we used a configuration of [YXY], where the first letter 

corresponds to excitation polarization and the next two letters correspond to detected 

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

-0.4

0.0

0.4

0.8

1.2

10
-7

10
-6

10
-5

10
-4

10
-3

0.0

0.4

0.8

1.2

10
-4

10
-3

10
-2

10
-1

10
0

0.0

0.4

0.8

1.2

 

 

G
(

)

(s)

: 0 

: 0.12

: 0.2

: 0.3

 

 

 

(s)

G
R
(

)

: 0 

: 0.12

: 0.2

: 0.3

 

 

 

(s)

G
T
(

)



91 
 

 

polarizations. Z is the propagation direction of the incident light. From the analysis as described 

earlier, we obtained DT0=14.6 m
2
/s and DR0=33556 s

-1
, where the subscript ‘0’ indicates that the 

measurements were performed in neat solvent. According to various theories of rod diffusion, DT 

 L
-1

 log (L/d) and DR  L
-3

 log (L/d),
32,33

 which indicates extreme sensitivity of DR on the length 

(L) of the rod. We used Tirado and Garcia de la Torre’s (TT) theory,
6,130

 which is most 

appropriate for shorter rods (i.e., low aspect ratio) to calculate the expected values for rod 

diffusion from the measured L and d respectively by using TEM. It gave DR0 17900-26000 s
-1

 

and DT014-16.5 m
2
/s depending upon the assumed thickness of the CTAB coating (~1-3 

nm).
52

 In the insets of Fig. 6.2.1 we showed CCFs for translational and rotational diffusion 

separately for few different concentrations of Ludox spheres. As shown, clearly the time-scale of 

diffusion increases with the increase of volume fraction consistent with the overall increase of 

the viscosity of the solution. 

6.3.1 TRANSLATIONAL DIFFUSION 

           A rod can translate along its axis (|| or ‘easy’ direction) or perpendicular to it ( or ‘hard’ 

direction). In neat solvent an isotropic diffusion is expected, i.e., DT||/DT=1,
22

 but diffusion 

anisotropy can be extremely large within a semidilute or concentrated solution.
82

 DE theory 

assumed an extreme situation, where diffusion along the ‘hard’ direction is completely quenched 

(DT0). Along the ‘easy’ direction, DT|| is unaffected by the presence of the other particles. 

Therefore, DT|| DT||0. These results, however, are strictly valid for ultrathin rods and within 

highly concentrated solution. The analysis of our data in neat solvent did not reveal any 

significant difference between fitting with one-component diffusion or two-component diffusion:  
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 6.1.4 

              
     

   
      

  
  

 
     

   
     

  
  

 6.1.5 

as shown in Fig. 6.3.1.1 inset. But, clearly one component fitting is not satisfactory with the 

increase of concentration as shown by the systematic variation of the residuals (Fig. 6.3.1.1). The 

CCF can be fitted very well with two-component diffusion, giving a fast (DT||) and slow 

component (DT).  

 

FIGURE 6.3.1.1: The imperfect fit with one-component translation diffusion coefficient is 

demonstrated. The solution is with Ludox volume fraction  0.3. The dashed line through the 

points is one component fit (DT ≈ 0.3 m
2
/s) and the solid line is two-component fit (DT‖  5 

m
2
/s and DT  0.1 m

2
/s). The corresponding residuals are shown in inset (a). Inset (b) showed 
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one-component (dashed) and two-component (solid) fit of correlation function with residuals in 

water, which showed no significant differences.  

           In Figure 6.3.1.2 (top) we plot the two components as a function of the Ludox volume 

fraction. Both DT and DT|| decreases strongly beyond a concentration of =0.1. Over the whole 

concentration regime, DT|| decreases by a factor of 10, while DT decreases by a factor of ~100. 

So both components of diffusion showed strong concentration dependence with the diffusion 

along the ‘hard’ direction affected more dramatically. The diffusion anisotropy, the ratio of the 

fast component to slow component (DT||/ DT) increased by a factor of ~10 as the volume fraction 

of the spheres is increased from 0 to ~7 spheres/L
3
. These results can be compared with 

Brownian dynamics simulation of rigid rods (aspect ratio =50) within a mixture of similar 

rods.
131

 For a concentration change between 5-50 rods/L
3
, observed DT|| decreases by about 20%, 

while DT decreases by a factor of ~5. Obviously, our results showed much significant 

dependence of DT|| and DT on volume fraction. The average value of translational diffusion 

coefficients, DTavg was calculated by fitting the CCF’s with  2D Gaussian model with two photon 

excitation:           
    

   
       

  
  

, these coefficients are comparable with theoretical value of 

average translational diffusion coefficients obtained from Stick theory:       
 

 
      

      (Fig. 6.5.3). 
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FIGURE 6.3.1.2: (Top) Translational diffusion coefficients along the ‘easy’ axis (DT‖ , open 

square) and ‘hard’ axis (DT , open circle) are plotted as a function of Ludox volume fraction (). 

The graph also showed the average translation diffusion coefficient of the rods (closed square). 

The solid and the dashed line have slopes of -2.0 and -2.7, respectively showing the different 

concentration dependence of DT‖ and DT. (Bottom) The viscosity () extracted from translation 

diffusion showed rod motion along the easy direction (open square) followed closely the bulk 

viscosity, b (closed star) while the motion along the ‘hard’ direction (open circle) followed 

much higher nanoviscosity. The nanoviscosity experienced by spherical gold NPs of the similar 
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size of the diameter of the rod also experienced the same nanoviscosity (open star) as in the 

‘easy’ direction.  

           We can determine the nanoviscosity which is also known as nanofriction, c() the 

particles experienced from the measured diffusion coefficients.
29,129

 We used TT theory as 

described earlier because it provided good agreement with the measured DT in the neat solvent. 

Using this theory, we calculated c() experienced by the rods along the ‘easy’ and ‘hard’ 

directions. A small numerical factor is included in the analysis to match the nanoviscosity with 

the bulk water viscosity at =0 and to get isotropic diffusion in neat solvent. The comparison 

with the bulk viscosity, b() is shown in  6.3.1.2 (bottom). It is clear that the diffusion along the 

‘easy’ direction closely followed the bulk viscosity, while the nanoviscosity experienced by the 

rod in the ‘hard’ direction is much higher compared to the bulk viscosity. The diameter of the rod 

( 17 nm) is slightly smaller compared to the Ludox spheres size ( 26 nm). The motion along 

this direction, therefore, involves rearrangement of particles at the length scale of about 20 nm. 

To verify this statement, we conducted experiments with gold nanospheres (AuNS) of size ~20 

nm within the matrix of same Ludox spheres, which was used for nanorod experiments. Our 

results showed that the AuNS experience the nanoviscosity very close to the viscosity 

experienced by the AuNRs in the ‘easy’ direction, supporting this scenario. The long-time 

diffusion along the ‘hard’ direction, however, is much slower as observed in Fig. 6.3.1.2. The 

motion along this direction requires collective diffusion of few particles at the length scale of L. 

It depends both upon hydrodynamic and interparticle interaction. The hydrodynamic interaction 

generally slow down the particle mobility with increase of sphere concentration at most length 

scales. This is also manifested in the concentration dependence of nanoviscosity that we showed 

in Fig. 6.3.1.2. A power-law fitting indicated that for  > 0.1, DT‖ ~ 
-2 

and DT ~ 
-2.7

. The 
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significance of these exponents is not clear at present, but it supports the general picture that rod 

motion is affected by different mechanisms in ‘easy’ and ‘hard’ directions.  

6.3.2 ROTATIONAL DIFFUSION  

           The rotation of the rod along its’ own axis does not change the relative orientation of the 

absorption and emission dipoles. So, the experiments are sensitive only to the rotation 

perpendicular to the major axis and only one rotational diffusion coefficient is measured (DR). 

The measured diffusion coefficients as a function of sphere concentration is shown in Fig. 

6.3.2.1. The most appropriate for the theoretical analysis is the study by Pecora and Deutch,
132

 

who extended the DE theory to a semidilute solution of rod (probe)/sphere (matrix) mixture. In 

their simplified theory, which is an extension of DE theory, the rod is trapped by neighboring 

spheres and its rotational motion is limited to a space between the rod and the nearest spheres. It 

naturally gives DR ~ n
-⅔. 

 The restricted rotational diffusion of the confined rods is relaxed by the 

translation diffusion of the spheres away from the cage, giving the results: 

  
      

   

     
      

 
  
 6.1.6 

where kB is Boltzmann constant,  T is absolute temperature, ηb() is the solution viscosity, and Ro 

is the radius of a sphere. Their result is valid in the concentration range such that the sphere 

concentration is high enough to restrict the rod relaxation to 2π (Ln
1/3

)
 
> 1, but not so high that 

there is a notable overlap among the spheres, nRo
3
 < 1. This theory is also valid for a system 

where, Ro  L, so that the cage relaxation is dominated by the motion of the spheres.  

           We estimated that in our experiments 2π(Ln
1/3

)  3-6 and nRo
3 
 0.01-0.07, so we expect 

the caging idea should be valid. In our experiments, L  3Ro, so the rod rotation is dominated by 

the translational diffusion of the spheres away from the rod. A comparison with this theory is 
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shown in Fig. 6.3.2.1 with a numerical prefactor = 1, which showed a stronger dependence on  

and higher disagreement at lower concentration compared to the expectation from caging theory. 

The theory assumed that the rotational relaxation is dominated by the bulk viscosity of the 

matrix, which governs the self-diffusion of the spheres. A better agreement with theory is 

obtained if we assume that the translational diffusion of the rods along the ‘easy’ direction 

breaks up the cage. This is justified as this motion is the fastest as shown in Fig. 6.3.2.1 and will, 

therefore, be the most dominant mechanism of cage relaxation. Substituting the corresponding 

nanoviscosity gives a better agreement with the rotational diffusion.  

           The two lowest volume fractions still showed significant deviation from the theory. In 

fact, diffusion is found to be much slower compared to the expectation from either the bulk 

viscosity or nanoviscosity. For these two lowest concentrations studied, there are expected to be 

only 1-3 particles/L
3
 present. So caging is not expected to be significant. But we have not 

considered yet the ordering of the Ludox spheres around the rods. The spheres are negatively 

charged as the zeta-potential measurements showed. The bare gold nanorods are negatively 

charged as well, but there is a CTAB coating on the top of the particles, which formed during 

their synthesis. 
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FIGURE 6.3.2.1: The rotational diffusion coefficient vs. volume fraction of Ludox. The dashed 

line is fit with using Pecora-Deutch theory with bulk viscosity b (). The solid line is using the 

same theory, but with nanoviscosity that the rods experienced along the ‘easy’ direction (T‖). 

(Inset) Normalized diffusion coefficients and normalized bulk viscosity showing that both DT‖ 

(circles), DR (square) followed the bulk viscosity (), while DT (stars) decreased much sharply 

with respect to the volume fraction of Ludox.  

           It is believed that the coating consisted of a bilayer, which if perfect, will expose 

positively charged amino groups at the surface.
133

 Even if the bilayer is not perfect,
104

 it will 

have patches of positively charged regions with some exposed hydrophobic groups at the 

surface. The presence of positively charged regions can enhance the ordering of the spheres 

around the rods and increase the effective sphere density near the particles. Because of the local 

nature of the rotational motion, this might cause a slowdown of the rotational diffusion compared 
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to the expectation from caging theory. In spite of caging there is no aggregation between the 

spheres and rods because that would have caused much dramatic slowdown in diffusions (Fig. 

6.5.2 and Fig. 6.5.4). The Fig. 6.3.2.1 (inset) summarizes the data, which showed normalized 

plot of diffusion coefficients and viscosity vs. volume fraction. The ratio DT‖/ DT‖0 followed the 

same concentration dependence of normalized bulk viscosity, b0/b. The diffusion along the 

‘hard’ axis has stronger concentration dependence than the bulk viscosity, while the ratio DR/DR0 

can be best explained by considering that cage relaxation occurs through the rod motion along 

the ‘easy’ axis.  

6.4 CONCLUSIONS 

           We investigated a poorly understood problem of anisotropic particle diffusion within a 

mixture of spherical particles. This situation arises in diverse areas ranging from self-assembly to 

bioengineering. For anisotropic particles we used short gold nanorods of aspect ratio ~4 and two-

photon excitation to study their dynamics within a crowded solution of Ludox spheres. We found 

significant diffusional anisotropy for translational motion of the rod. Though the motion along 

the rod axis followed closely to the bulk viscosity, the motion perpendicular to the rod axis is 

significantly retarded. These features have been predicted for ultrathin rods both in theories and 

simulations. Our experimental results provided a direct quantitative test of these predictions. The 

rotation of the rods closely followed the modified Doi-Edward caging theory as developed by 

Pecora and Deutch, but by taking into the fastest relaxation mechanism that breaks the cage. 
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6.5 SUPPORTING INFORMATION   

                          

FIGURE 6.5.1: Size distribution of silica nanoparticle obtained from dynamic light scattering   

(DLS) measurement with a mean diameter 24 nm, and showed no sign of any agglomeration; 

Left inset: shows a representative TEM micrograph with 20 nm scale bar; Right inset: histogram 

of size distribution obtained from TEM with mean diameter of 26 ± 3 nm. The average size 

provided by the manufacturer was 22 nm. 
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FIGURE 6.5.2: UV-vis spectra of AuNR in water (open square) with two distinct peaks at 790 

nm and 510 nm. The peak at 790 nm depends upon the aspect ratio of the rod. UV-vis spectra for 

AuNR in Ludox (open circle) for the highest volume fraction of silica spheres with peak at 787 

nm.  
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Figure 6.5.3: The theoretical translational diffusion coefficients using Stick theory (open circle) 

and the experimental value of translational diffusion coefficients (open square) from the CCF 

fitted with 2D Gaussian model are plotted as a function of Ludox concentrations. 

 

 

0.0 0.1 0.2 0.3
10

-1

10
0

10
1



D
T
 (

m

2
/s

)

 

 



103 
 

 

                             

FIGURE 6.5.4: The rotational diffusion coefficients vs. volume fraction of Ludox. Experimental 

value of rotational diffusion coefficients were plotted as a function of ludox volume fractions 

(open circle). The dashed line (black) is fit using Pecora-Deutch theory with bulk viscosity b 

(), where we have considered that one monolayer of silica sphere will stick to rod surface due to 

electrostatic interaction i.e. L = 112 nm and d = 69 nm. 
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                                                                  CHAPTER 7 

DYNAMICS OF NANOSPHERES IN BIOPOLYER SOLUTIONS 

7.1 INTERACTION AND DIFFUSION OF GOLD NANOPARTICLES IN BOVINE 

SERUM ALBUMIN SOLUTIONS 

The following material was originally published in Applied Physics Letters (2013)
51

 that I have 

co-authored. 

           The following is the summery of the research publication, that I have co-authored. Gold 

nanoparticles posses the potential for therapeutic and diagnostic applications
89,134,135

 because of 

their non-toxicity, size-dependent properties, and their ability to be functionalized. The 

interaction of nanoparticles with biomolecules in complex biological fluids has attracted 

substantial attention.
34-36

 It has been proved experimentally that nanoparticles when exposed to 

protein can become coated by the protein forming a ‘corona’ that surrounds that nanoparticles 

and shield their original surface properties.
37

 As the affinity of a certain protein to bind to a 

nanoparticles surface is determined by the nanoparticles size, shape and surface chemistry,
52 ,136

 

it is important to study the interaction of protein with nanometer sized particles. For these 

research project bovine serum albumin (BSA) protein has been used as a model protein. Gold 

nanoparticles (AuNPs) with radius 2.5-10 nm were particularly chosen to study the interaction 

with BSA as the size range would be potentially useful in the areas ranging from biophysics and 

drug delivery.
37,135,137-139

  

           Fluorescence correlation spectroscopy measurements were conducted for tannic acid 

stabilized gold nanoparticles of radius 2.5, 5 and 10 nm in many different concentrations of BSA 

(0.1 μM to 10 mM) in a phosphate buffer (pH 7.0). A number of autocorrelation functions (ACF) 

were collected. Figure 7.1.1 shows a representative ACF’s collected by FCS for AuNP (R=2.5 
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nm) diffusing in different concentrations of BSA and plotted versus logarithmic time lag. The 

ACF’s were fitted with the following model:  
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where G(0) is the magnitude of the autocorrelation function at short time which is inversely 

proportional to the number of particles within the laser focus ω0 and z0 are the half-width and 

half-height of the laser focus. The value of ω0 and z0 are determined by calibration experiments.  

                    

FIGURE 7.1.1: Normalized autocorrelation curves for AuNP (R= 2.5 nm) diffusing in BSA 
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solution in phosphate buffer at various protein concentrations. Solid lines are fit to the curves 

using Eq. 7.1.2.  

           Transmission electron microscopy (TEM) measurements was done to confirm size of the 

NPs (Fig. 7.1.2). 

 

FIGURE 7.1.2: (a) TEM image of AuNPs deposited on carbon film magnified 800 000×. (b) A 

histogram obtained by measuring the diameters of AuNPs, where the average diameter measured 

is 4.7 ± 0.6 nm. 

                 Diffusion co-efficient (D) can be calculated from the ACF by using Eq. (7.1.1). Figure 

7.1.3 shows D as a function of protein concentration. The decrease in diffusion co-efficient for 

NPs with the increase in BSA concentration was observed which was expected form the theory. 

The diffusion data are fitted with Phillies equation of stretched exponential function: D/D0 = exp 

(-βc
ν
), where D0 is the diffusion co-efficient of the AuNP in the limit of low protein 

concentration, β and ν are adjustable parameters. The fitting was reasonably good and the value 

of exponent ν was close to 1 as expected.
23,100,114

  

(a) (b)
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TABLE 7.1.1: Translational diffusion coefficient (D) of AuNPs obtained by autocorrelation 

analysis, and hydrodynamic radius (Rh) calculated using SE relation in absence and presence of 

BSA  

AuNP 

Radius(nm) 

DAuNP 

(μm2/s) 

DAuNP+BSA 

(μm2/s) 

Rh AuNP 

(nm) 

RhAuNP+BSA 

(nm) 

2.5 87±3.5 26.0±0.8 2.51±0.1 5.59±0.2 

5 39±1.8 16.86±1.1 5.5±0.3 8.63±0.5 

10 21±0.6 10.4±0.5 10.4±0.3 13.9±0.7 
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FIGURE 7.1.3: Diffusion coefficient of R = 2.5 nm AuNPs as a function of protein 

concentration. The inset shows the measured diffusion for 5 and 10 nm AuNPs at higher 

concentrations of BSA. Also shown (stars) viscosity as a function of BSA concentration. 

          The hydrodynamic radius of NPs were calculated from the measured diffusion co-efficient 

using SE equation. The change in hydrodynamic radius was observed in the absence and 

presence of BSA. The average change in NP hydrodynamic radius for all concentrations is 

ΔR=3.8 0.5 nm which corresponds to BSA monolayer formation. In order to check for 

multilayer formation FCS measurements were done for higher BSA concentrations (0.8 mM – 10 

mM). But no multilayer formation was observed for three different size NPs which indicates that 

adsorption of BSA on AuNPs is size independent. The hydrodynamic radius of NP as a function 

of protein concentration can be expressed as follows from the concept of Rocker et al
49
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                                                     Rh  BSA  =Rh 0    1 
c Nmax

1  
KD
 BSA 

 
n

3
 7.1.3 

where KD is the dissociation constant which quantify the NP – protein interaction. Nmax is the 

maximum number of protein molecules adsorbed to the NP and n is the Hill co-efficient. The 

best fit yields KD = 78.6 9.5 μM, n = 0.63 0.03. The value of Hill coefficient is < 1 indicates 

anticooperative binding which demonstrates the absence of multilayer formation. The data are 

also fitted with Langmuir binding isotherm (n = 1) which indicates multilayer formation and the 

dissociative co-efficient for Langmuir fit is KD = 14.6 4.3. The maximum number of protein 

molecules adsorbed per 2.5 nm radius AuNP from the fit is Nmax = 8.4 1 which is reasonably 

good agreement with the theoretical value of Nmax = 8.5.  
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FIGURE 7.1.4: Hydrodynamic radii of NPs plotted as a function of BSA concentration. Red 

solid line represents fit of anti cooperative binding model, and blue dashed line shows 

comparison to Langmuir binding isotherm fitted to first and last 30 percent of data points. The 

conversion of concentration units is as follows [BSA]g/ml = [BSA]µM *Mw*10
-9

, where Mw is the 

molecular weight of BSA and is equal to 66,430 g/mol. The inset shows KD as a function of the 

hydrodynamic radius Rh. 

          The value of dissociation constant, KD increases with the increase in size of NPs implies 

stronger interaction between small NPs and BSA, which eventually indicates the adsorption of 

protein on NPS is due to Ligand exchange mechanism suggested by Tsai et al.
109

 rather than 

electrostatic interaction suggested by other groups.
116,140

  

          The adsorption of BSA protein monolayer on the small sized AuNPs was demonstrated in 

this project by performing FCS. Multilayer protein formation was not observed even for 

significant higher concentration of BSA. The adsorption was described by the anticooperative 

binding model. These results will be important in understanding the nanoparticle motion in 

complex fluids which will be eventually helpful in the areas of bio diagnostic and drug delivery. 
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CHAPTER 8 

CONCLUSIONS 

           The experiments comprising in my dissertation have focused on investigating the 

dynamics of anisotropic gold nanoparticles in polymeric and colloidal systems. Understanding 

the interaction of anisotropic nanoparticles with macromolecules (polymers, proteins, and 

colloids) has technological as well as biomedical interests such as developing high performance 

polymeric materials, nano-template surfaces, and effective drug delivery vehicles. For the 

investigations, fluorescence correlation spectroscopy (FCS) was performed, which can offer 

structural and dynamical information about these systems at shorter length scales. These 

experiments allowed us to report important observations in Chapters 4 – 6 and my collaborative 

work with Dr. Kohli in Chapter 7. 

           Nanoparticles are being widely used as drug carrier and therapeutic agents. In many cases, 

however, the particles have to cross the mucus gel, which can act as a formidable barrier to 

nanoparticles drug-delivery systems. Mucus is a slippery secretion produced from cells found in 

mucus glands, which act as a lubricant. This barrier is important for humans as well as animals 

as it protects vulnerable surfaces in the lung, intestinal, reproductive tissues, and eye from 

invasion by bacteria, viruses, allergens and irritants. However, the high viscoelasticity and 

adhesivity of mucus can cause problem for drug delivery. The mesh size of mucin fibers within 

mucus in   1μm, i.e. larger particles will have difficulty in penetrating mucus. But the pore size 

can decrease much farther in the various disease states, such as asthma, cystic fibrosis, etc. 

           Our current research involved using gold NPs of differnt sizes and shapes to investigate 

their penetration through reconstituted mucus gel. 
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ABSTRACT 

 

 

DYNAMICS OF ANISOTROPIC GOLD NANOPARTICLES IN SYNTHETIC AND 

BIOPOLYMER SOLUTIONS 
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           Soft matter is a subfield of condensed matter physics including systems such as polymers, 

colloids, amphiphiles and liquid crystals. Understanding their interaction and dynamics is 

essential for many interdisciplinary fields of study as well as important for technological 

advancements. We used gold nanorods (AuNRs) to investigate the length-scale dependent 

dynamics in semidilute polymer solutions, their conjugation and interaction with a protein 

bovine serum albumin (BSA), and the effect of shape anisotropy on the dynamics within a 

crowded solution of spheres. Multiphoton fluctuation correlation spectroscopy (MP-FCS) 

technique was used to investigate the translation and rotational diffusion of AuNRs. For polymer 

solutions, we determined the nanoviscosity experienced by the rods from the measured diffusion 

coefficient. Our results showed the importance of microscopic friction in determing the particle 

dynamics. In BSA solutions, we observed a submonolayer formation at the AuNRs surface, 

which indicates loss of protein native conformation. For rod – sphere mixture, our results 
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indicated significant diffusional anisotropy for translational motion, whereas the rotation of the 

rods closely followed the ‘caging theory’. 
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