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CHAPTER 1 INTRODUCTION 

Depression and Antidepressants 

Depression is a serious medical illness that is characterized by deep, persistent feelings 

of sadness, worthlessness and general loss of interest and pleasure in everyday activities 

(anhedonia). It manifests itself throughout many aspects of life, often causing sleep disturbances, 

concentration deficits, chronic fatigue, and changes in appetite and weight. Depression is also a 

very common condition, affecting approximately 8% of teenagers and adults in the United States 

(Pratt and Brody, 2014). It also represents a substantial financial burden. According to Greenberg 

et al. (2003), this illness cost the United States an estimated 83.1 billion dollars in 2000, which is 

a significant increase from the 43.7 billion estimated to have been spent in 1990. Unfortunately, 

depression is often accompanied by suicidal ideation, making suicide the 10th leading cause of 

death in the United States in 2013 (Kochanek et al., 2014).  

Fortunately, there are a number of effective antidepressant medications. Whereas the 

increasing prevalence of depression remains a matter of debate, the ever enhancing popularity 

of antidepressants is undeniable. According to the National Center for Health (2014), these 

medications are used by an estimated 11% of American adults, which is more than a four-fold 

increase from 1988-1994 to 2007-2010. Antidepressants are the third most common class of 

prescription drug used by adolescents (12-19 years of age) and the most common class used by 

adults (20-59 years of age) in the United States (Gu et al., 2010). This is not an insignificant feat, 

and warrants further elaboration.  

History of Antidepressant Treatments- TCAs and MAOIs 

While mood enhancing therapies can likely be traced back to the beginning of human 

existence, the history of modern depression pharmacotherapies began in the late 19th century 

with two classes of agents, the Tricyclic Antidepressants (TCAs) and the Monoamine Oxidase 

Inhibitors (MAOIs), whose antidepressant properties were discovered simply by chance. 
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TCAs are iminobenzylic derivatives. The first phenothiazine (which would serve as the 

basis for subsequent synthesis of iminodibenzyl in 1899) was created in 1883 by the German 

scientist Heinrich Bernthsen (reviewed in Lopez-Munoz, 2009). At the time, he was experimenting 

with dyes for use in the textile industry. However, a larger pharmacological role was not 

recognized until the 1940’s when phenothiazine-based antihistamines were discovered to cause 

pronounced sedative effects (reviewed in Pletscher, 1991). This led scientists at the Swiss 

company J.R. Geigy AG to begin work synthesizing derivatives of iminodibenzyl in an attempt to 

create a compound with sedative and/or hypnotic effects that would be useful in ‘calming’ the 

symptoms of psychiatric patients (reviewed in Lopez-Munoz and Alamo, 2009)  At least in rodent 

models, a number of these derivatives showed promise. One of these agents, G-22150, was sent 

to clinician Roland Kuhn to investigate its potential use as a hypnotic. Kuhn found the compound 

to be unreliable for inducing sleep, but observed a positive effect on the mood of some patients 

(reviewed in Kuhn, 1958). It was forgotten about until 1952, when a related phenothiazine, 

chlorpromazine, was found to have antipsychotic effects (reviewed in Pletscher, 1991). Due to 

issues with tolerance of agent G-22150, Kuhn was sent a different compound, agent G-22355, to 

test its efficacy for treating psychosis. Although it actually made many of the schizophrenic 

patients worse, Kuhn noticed that it improved the mood of three patients that were also diagnosed 

with depression. Another 37 depressed patients were given agent G-22355, and its 

antidepressant properties were confirmed (reviewed in Kuhn, 1958). Although these findings were 

initially perceived with skepticism, agent G-22355 (imipramine) was put on the Swiss market in 

1957 as Tofranil and entered the U.S. market in 1959 where it quickly became the drug of choice 

for depression (reviewed in Pletscher, 1991). 

MAOIs represent the second class of antidepressant medication to enter the scene. These 

hydrazine compounds initially became of interest to clinicians in 1951 when they were discovered 

to have antitubercular properties by two independent American groups, led by Herbert Fox 

(Hoffmann-La Roche Laboratories) and Harry Yale (Squibb Institute for Medical Research) 



3 

 

(reviewed in Lopez-Munoz and Alamo, 2009). As such a treatment was in high demand, clinical 

trials for isoniazid and iproniazid were carried out at New York State Hospitals almost 

immediately.  While both drugs were shown to be efficacious (so much so that isoniazid remains 

a standard treatment of tuberculosis), the safety profile of isoniazid was significantly better than 

that of iproniazid. Therefore, iproniazid was largely abandoned for its application for tuberculosis. 

However, it was not discarded just yet. Physicians carrying out the trials at Sea View Hospital 

noted that, compared to patients treated with isoniazid, those given iproniazid exhibited CNS 

stimulating psychological effects including significantly greater vitality and enhanced social 

activity (Crane, 1956). These observations led Nathan Kline to begin clinical trials assessing the 

mood-enhancing ability of iproniazid in patients without tuberculosis. In the first trial, iproniazid 

was reported to significantly improve the mood of approximately 70% of the subjects (reviewed in 

Kline, 1958). With such positive results, the interest and investigation of iproniazid as an 

antidepressant grew. Just one year following the conclusion of this trial, iproniazid (marketed only 

for the treatment of tuberculosis under the trade name Marsilid) had already become widely 

utilized for its antidepressant properties (reviewed in Lopez-Munoz and Alamo, 2009; Pletscher, 

1991).  

The MAOIs and TCAs were efficacious for a majority of depressed patients. However, 

they had a number of serious side effects. For MAOIs these included the risk of jaundice, 

nephrotoxicity, and hypertensive crisis. In fact, a number of MAOIs had to be withdrawn from the 

market in the 1960’s for this reason (reviewed in Pletscher, 1991). TCAs also suffered from safety 

and tolerability issues due to their nonselective actions on a variety of neurotransmitter systems 

and low therapeutic index (reviewed in Ferguson, 2001). This fueled the search for the 

mechanism of action of antidepressants in order to create drugs with safer and more tolerable 

profiles. 
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Search for the Mechanism of Action of Antidepressants 

 It did not take long before the direct target of MAOIs and TCAs were discovered. In 1952 

Zeller and Barsky demonstrated in vivo that iproniazid inhibited an enzyme, monoamine oxidase 

(MAO), which was found to be responsible for breaking down central norepinephrine (NE), 

dopamine (DA) and serotonin (5-HT) (Shore et al., 1957a; Blaschko, 1952). This suggested that 

MAOIs acted to increase the levels of these chemicals in brain tissue (Shore and Brodie, 1958). 

TCAs were found to inhibit NE, DA and 5-HT reuptake in central neurons (Glowinski and Axelrod 

1964; Carlsson et al., 1968).  It was thought that inhibiting reuptake increased the ‘free’ forms of 

the chemicals to enhance each of the neuromodulatory systems. Since all three compounds were 

known to have psychological roles, modulation by TCAs or MAOIs could theoretically underlie the 

clinical efficacy of these drugs. Zoning in on one of them, if singularly responsible, could potentially 

pave the way for development of a medication that retained the antidepressant properties but had 

a reduced risk of off-target side effects.  

Research at the time was largely centered on the reserpine model of depression. 

Reserpine was discovered to induce sedation and anhedonia (in addition to other peripheral 

effects) in laboratory animals (Pletscher et al., 1955), and to cause depression-like symptoms in 

some ‘at risk’ patients who were taking it for hypertension (reviewed in Bunney and Davis, 1965). 

Because these behavioral effects in animals were reported to be blocked by all effective MAOIs 

and TCAs, the reserpine model became a prime tool for screening new potential antidepressants 

and for investigating the mechanism of action of these medications (reviewed in Bunney and 

Davis, 1965). 

The next step was to determine the neuromodulator responsible for blocking reserpine’s 

effects. All three chemicals were depleted by acute reserpine administration (Shore et al., 1957b; 

Glowinski et al., 1966). Moreover, the return of NE, DA, and 5-HT to typical brain tissue levels 

coincided with the recovery from ‘depression’ (Shore et al., 1957b; Glowinski et al., 1966). 

Administration of MAOIs and TCAs prior to reserpine, in addition to blocking the behavioral 



5 

 

effects, also prevented or attenuated central NE, DA and 5-HT depletion (Shore et al., 1957a; 

Brodie and Shore, 1957). However, there were a number of observations that pointed to NE and 

DA as key components of the reserpine model of depression. In laboratory animals for example, 

administration of α-methyl-tyrosine (to block NE and DA synthesis) was reported to cause 

reserpine-like sedation (Spector et al., 1965). Similarly, administration of the DA and NE precursor 

3,4-dihydroxyphenylalanine, but not the 5-HT precursor 5-hydroxytryptophan, was observed to 

transiently reverse the behavioral and physical ‘depression’ induced by reserpine (Carlsson et al., 

1957). This contributed to the catecholamine hypothesis of depression (Schildkraut, 1965; 

Bunney and Davis, 1965), which posited that depression was associated with deficiency of 

catecholamines (particularly NE) whereas “elation” was associated with an excess. Similarly, it 

was thought that drugs that depleted or inactivated central NE caused depression, while 

medications that increased or potentiated NE produced behavioral stimulation and were clinically 

effective antidepressants (Schildkraut, 1965). In light of these reports, pharmaceutical companies 

focused on developing NE-potentiating compounds as prospective antidepressant agents.  

Development of SSRIs 

 However, this rationale did not last for long. In the 1960’s physician Paul Kielholz noted 

that TCAs, while structurally similar and generally thought to be functionally interchangeable, 

seemed to have slightly different effects on a patient’s motivation, mood, and cognition, which he 

thought should be factors that should be considered for treating individual patients (reviewed in 

Healy, 2000). Carlsson was the first to link Kielholz’s observations to alterations in discrete 

neurotransmitter systems, and suggested that selectively enhancing the 5-HT system may retain 

the mood-enhancing therapeutic benefits of antidepressants while avoiding some of the 

undesirable side effects. This led Carlsson, Corrodi, and Berndtsson at Astra pharmaceuticals to 

begin work on developing such a drug. They used an antihistamine to synthesize zimelidine which 

was patented in 1972, put through clinical trials by 1980, and reached the European market by 

1982 (reviewed by Healy, 2006). However, soon after it was reported to have caused a serious 



6 

 

neurological disorder in a few patients and was removed almost immediately. Nevertheless, the 

rationale, proven efficacy, and decreased risk of the ‘typical’ TCA and MAOI-associated side 

effects made this an attractive new route for investigation. 

The scene shifted as pharmaceutical companies began actively seeking compounds that 

selectively targeted the 5-HT system. This is precisely how fluoxetine came to be (reviewed by 

Healy, 2006). In the early 1970’s Bryan Molloy of Eli Lilly was in the process of synthesizing new 

NE-targeting potential antidepressants using an antihistamine as a starting point. The derivatives 

were then screened for their ability to inhibit reuptake of NE using rat brain synaptosomes. 

Although the compounds that failed to display selective NE properties were not of particular 

interest to Eli Lilly, it was proper practice that they be investigated further. Of note, one of these 

compounds, LY-110140, was found to have remarkable selectivity for 5-HT reuptake (Wong et 

al., 1975). At this same time the search for 5-HT-targeted antidepressants began, suddenly 

making LY-110140 a very attractive potential agent. Although LY-110140 failed the reserpine 

‘gold standard’ test for antidepressant activity, additional testing was continued. In 1975 it was 

named fluoxetine, and after demonstrations of its antidepressant efficacy in clinical populations it 

was approved by the FDA and marketed as Prozac (reviewed in Healy, 2006). Other 5-HT-

targeted antidepressants entered the market in the next few years. These included citalopram 

(Celexa), escitalopram (Lexapro), sertraline (Zoloft), and paroxetine (Paxil). Notably, it was not 

until 1992 that the term ‘Selective serotonin reuptake inhibitor’ (SSRI), which was created to 

promote sales of Paxil, became used to classify this new group of drugs (reviewed in Healy, 

2006). SSRIs quickly became the class of antidepressant medications that was most widely 

prescribed by physicians (Lieberman, 2003). 

Serotonin Hypothesis of Depression 

The success of SSRIs clearly suggested that the 5-HT system, despite lacking a role in 

the reserpine-induced sedation, could be targeted to resolve depression in some individuals. Of 

course, with time it became more apparent that the reserpine model, whose behavioral effects 
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were based on NE and DA depletion, was not an entirely accurate portrayal of depression in 

humans. Some drugs that were predicted to be antidepressants were discovered to have no 

therapeutic benefits and other clinically effective drugs, such as fluoxetine, did not pass the 

reserpine-based test.  

It is important to note that a 5-HT hypothesis of depression was not a new idea, but had 

been proposed back in 1967 by Alec Coppen and in 1969 by Lapin and Oxenkrug. In addition to 

the demonstrated alterations in the 5-HT system by antidepressants, additional support for this 

theory came from reports that linked low central 5-HT or a hypofunctioning of the 5-HT system to 

depression. However, it is notable that there was skepticism for this idea relatively early on. 

Instead, it was generally accepted that just because increasing 5-HT relieves depressive 

symptoms, it does not necessarily mean that there was low 5-HT to begin with, or that low 5-HT 

caused the depression (de Montigny, 1981). Nevertheless, the importance of 5-HT in the efficacy 

of antidepressant treatments was becoming ever more apparent, with three major findings that 

highlighted the role of the 5-HT system in the clinical benefits of these medications.  

Involvement of the Serotonin System in the Therapeutic Effects of Antidepressants 

The first of these came from a group led by Coppen. It had previously been demonstrated 

in rodents that administration of an MAOI along with the 5-HT precursor L-tryptophan caused 

elevations in brain 5-HT more than the MAOI alone (Hess and Doepfner, 1961). Building off this, 

Coppen and colleagues found that L-tryptophan significantly potentiated the efficacy of the MAOI 

tranylcypromine in a clinically depressed population (Coppen et al., 1963).  

The second important discovery was made in the mid 1970’s by a group consisting of 

Shopsin, Gershon, Goldstein, and Friedman. They found that depressed patients currently in 

remission with either a TCA (imipramine) or MAOI (tranylcypromine) relapsed if they were given 

the 5-HT synthesis inhibitor p-chlorophenylalanine, but not if they were given the NE and DA 

synthesis inhibitor α-methylparatyrosine (Shopsin et al., 1975; Shopsin et al., 1976). The same 

group also found that p-chlorophenylalanine (but not α-methylparatyrosine), by depleting brain 5-
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HT, prevented the effects of imipramine and tranylcypromine on the 5-HT system in rodents 

(Friedman et al., 1974; Friedman et al., 1976).  

The third important finding was reported by Delgado and colleagues. It had been 

previously shown that dietary restriction of the essential amino acid (and 5-HT precursor), L-

tryptophan, or ingestion of a tryptophan-free amino acid drink caused depletion of plasma 

tryptophan, CSF tryptophan, and reductions in brain tryptophan and 5-HT in laboratory animals 

(Young et al., 1989; Moja et al., 1989). Based on the demonstration that these manipulations also 

resulted in reductions in plasma tryptophan in humans (Delgado et al., 1989; Young et al., 1985), 

the group investigated whether tryptophan depletion in MAOI, TCA and SSRI-remitted patients 

would cause relapse. Using a double-blind, placebo controlled, crossover design they found that 

a majority of patients exhibited depressive symptoms, the severity of which were correlated with 

the extent of plasma free tryptophan depletion (Delgado et al., 1990). The depression subsided 

once the patients returned to their normal diets (and continued taking their antidepressant 

medication). Together, these studies suggested that an enhancement of 5-HT neurotransmission 

was likely an important part of the mechanism of action and maintenance of the therapeutic effect 

of these drugs.  

Notably, in addition to the traditional classes of antidepressants described above, there 

have been reports that support an essential role for the 5-HT system in a variety of other 

antidepressant-promoting drugs and treatments. These include the combined serotonin-

norepinephrine reuptake inhibitors (SNRIs), ketamine (Gigliucci et al., 2013), deep brain 

stimulation (Hamani et al., 2010), and even electroconvulsive therapy (reviewed in de Montigny, 

1981). From these observations it is thought that a vast majority of antidepressant treatments 

exert their clinical effects directly or indirectly by enhancing 5-HT neurotransmission.  

Mechanism of Action of Antidepressants, Revisited 

There are a number of important points about the current status of the available 

antidepressants. First, despite the name, SSRIs do not have a ‘clean’ profile. Whereas they are 
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generally better tolerated and thus provide enhanced compliance compared to the original TCAs 

and MAOIs (reviewed in Goldstein and Goodnick, 1998), they put patients at risk for  a number of 

side effects that include (but are not limited to) nausea, sexual dysfunction, sleep dysfunction, 

changes in appetite and weight gain, headache, agitation, and drowsiness (Ferguson, 2001). 

While the benefits outweigh the risks for many patients, this may not always be the case. 

Secondly, despite their more selective action on the 5-HT system, SSRIs are likely no more 

efficacious than the other available therapeutics for the treatment of depression (Rickels and 

Schweizer, 1990). Collectively, an estimated 30% of patients remain unresponsive to all currently 

available pharmacotherapies (Little, 2009). Finally, it is puzzling as to why the clinical benefits of 

antidepressants such as SSRIs take weeks to emerge, since the biochemical effects (reuptake 

blockade) occur almost immediately (Wong et al., 1975). Taken together, these gaps reflect the 

fact that we still lack a clear understanding of both the etiology of depression and how 

antidepressant medications exert their therapeutic effects. Nevertheless, since these drugs are 

clearly efficacious for a number of individuals, they offer a starting point for which to continue the 

investigation into this disease.  

In the current work we chose to use the classic SSRI fluoxetine. Because of its direct 

actions on SERT, it makes sense to study the mechanism of action of fluoxetine and other SSRIs 

in the region of the brain with the highest density of SERT, the dorsal raphe nucleus (DRN) (Hrdina 

and Vu, 1993). The DRN is also responsible for providing the majority of 5-HT to the forebrain 

(Jacobs and Azmitia, 1992), thereby making it a prime target for SSRI research. 

Autoreceptor Desensitization Hypothesis 

 So what is responsible for the therapeutic effects of antidepressants? Regarding SSRIs, 

one prominent theory emerged in the late 1980’s (Blier et al., 1987). This “autoreceptor 

desensitization theory” posits that in order for SSRIs to increase 5-HT neurotransmission and thus 

enhance mood, 5-HT1A somatodendritic autoreceptors must first become desensitized. The delay 
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in the clinical effects of SSRIs was thereby attributed to the time it took for a reduction in the 5-

HT1A autoreceptor-mediated signaling to occur.  

This theory was founded on a property of 5-HT neurons termed autoinhibition, or the ability 

of cells to negatively regulate their activity by responding to their own neurotransmitter (Carlsson, 

1975). Evidence for autoinhibition of serotonergic cells began with in vivo studies. It was 

discovered that administration of agents that increased synaptic availability of endogenous 5-HT 

(such as TCAs, MAOIs or L-tryptophan) caused suppression of the characteristic pacemaker-like 

firing of putative 5-HT neurons (Aghajanian, 1972; Aghajanian et al., 1970; Sheard et al., 1972). 

Because this effect could be induced by localized microiontophoretic application of 5-HT receptor 

agonists into the raphe nuclei, the ‘autoreceptors’ mediating the response were also likely to be 

located in the nuclei (Haigler and Aghajanian, 1974). Finally, electrical stimulation of the raphe in 

in vitro slices to elicit spikes (Pan and Williams, 1989) or stimulation of the ascending 5-HT fibers 

in vivo to cause antidromic spikes in the raphe (Wang and Aghajanian, 1977) both caused 

transient inhibitory responses of presumed serotonergic neurons. Together, these findings led to 

the general view that 5-HT autoreceptors located in the raphe were activated under physiological 

conditions by endogenously released 5-HT and were responsible for negatively regulating the 

firing rate of serotonergic neurons.  

With advancements in pharmacological tools it was discovered that these autoreceptors 

were G protein-coupled receptors of the 5-HT1 family (Willliams et al., 1988) (later subclassified 

as the 1A subtype) that signal through their associated G protein of the Gi/Go class. Notably, 

because they were found to be localized to the soma and dendrites of 5-HT neurons they are 

generally referred to as 5-HT1A somatodendritic autoreceptors (Riad et al., 2000). Once activated, 

it was demonstrated that the βϒ subunits of the G protein opened potassium channels (of the 

Kir3/GIRK subfamily) (Kofuji et al., 1995), thereby causing a transient hyperpolarization by 

allowing potassium to flow out of the cell (Williams et al., 1988; Penington et al., 1993). This 
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provided an explanation as to how localized endogenous release of 5-HT could cause a transitory 

suppression of 5-HT cell firing.  

With this in mind, according to the autoreceptor desensitization theory (Fig. 1) acute 

exposure to SSRIs would produce a buildup of extracellular 5-HT in the DRN, leading to the 

activation of these autoreceptors and a suppression of the pacemaker-like firing of 5-HT neurons. 

This would result in a reduction of 5-HT output, thereby preventing the enhancement of 5-HT 

signaling deemed essential for the antidepressant effects of SSRIs. With prolonged administration 

in rodents there was observed to be a progressive recovery in the firing rate which returned to 

baseline levels by 14 days (Blier and de Montigny, 1983). It was thereby proposed that a 

desensitization of the somatodendritic 5-HT1A autoreceptors was an essential prerequisite for 

SSRIs to enhance 5-HT neurotransmission and elicit their therapeutic effect (Blier et al., 1987).  

 

 

 

Goal of the Current Work 

Despite its broad acceptance, there has been inconsistent support for this autoreceptor 

desensitization hypothesis over the years (Le Poul et al., 1995; Hervas et al., 2001; O’Conner 

Figure 1. Effects of SSRI administration on the 

activity of 5-HT neurons in the DRN according to 

the autoreceptor desensitization theory. Under 

control conditions (top), 5-HT neurons are thought to 

exhibit a pacemaker-like firing pattern. 5-HT released 

from a spike can be taken back up into the presynaptic 

cleft by the serotonin transporter, SERT. Acute SSRI 

exposure (middle) prevents the reuptake of 5-HT. It 

was hypothesized that elevated extracellular 5-HT in 

the DRN activates 5-HT1A somatodendritic 

autoreceptors (not shown) to cause a reduction in 

firing. According to the autoreceptor desensitization 

theory, with prolonged SSRI treatment these 

autoreceptors exert less inhibitory control, thus 

allowing a resumption of firing. Combined with 

continued reuptake blockade, this results in 

enhancement of 5-HT neurotransmission (bottom). 
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and Kruk, 1994; Davidson and Stamford, 1998; reviewed in Hjorth et al., 2000). A clear 

understanding of this phenomenon has largely been prevented due to a lack of available tools 

that permit direct assessment of the functional state of the 5-HT1A autoreceptor following chronic 

SSRI treatment. Fortunately, recent expansion of our optical sensor toolbox and advancements 

in genetic targeting strategies have provided the means to fill in the missing gaps. Therefore, the 

goal of the present work was to re-examine the theory that chronic SSRI treatment causes 

desensitization of 5-HT1A somatodendritic autoreceptors.  

The key to our experiments was the use of genetically modified mice that express the 

light-sensitive protein Channelrhodopsin (ChR) selectively in 5-HT neurons in our slice 

preparation. This optogenetic approach permits unambiguous identification of 5-HT neurons, 

allows precise temporal control of serotonergic cell activity, and facilitates the release of 5-HT and 

subsequent activation of somatodendritic autoreceptors. Thus the 5-HT1AR Ilight signal is a direct 

readout of autoreceptor function. Three mice models were tested for this purpose and found to 

be potentially useful. However, one model (“SERT-Cre X Ai32” mice) was found to have 

particularly robust ChR expression and was therefore utilized in the current work. These mice 

were treated for two weeks with fluoxetine (Prozac) (10mg/kg/day) or a 5% dextrose solution via 

a subcutaneously-implanted osmotic minipump.  Electrophysiological whole-cell recordings were 

then carried out on DRN 5-HT neurons maintained in brainstem slices. Collectively, this novel 

application of optogenetics provided a way to directly assess autoreceptor function in order to lay 

to rest the controversy of whether or not there is a functional reduction in the 5-HT autoinhibitory 

signal following chronic SSRI treatment. 
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CHAPTER 2 RESULTS 

Use of Optogenetics to Selectively Evoke 5-HT1A Autoreceptor-mediated Autoinhibition 

Despite their demonstrated efficacy and widespread use, we still lack a clear 

understanding of how antidepressants such as the SSRIs exert their therapeutic effect. One 

prominent theory holds that a gradual, adaptive reduction in the sensitivity of somatodendritic 5-

HT1A autoreceptors is a critical component in the mechanism of action of SSRIs (Blier et al., 1987). 

The characteristic delay in the onset of the antidepressant effects was thus attributed to the time 

needed for these autoreceptors to desensitize (Blier et al., 1987). This autoreceptor 

desensitization hypothesis quickly became a platform for rational drug design. However, there 

has been inconsistent support for this idea over the years, thereby calling for reexamination of 

the functional status of the autoreceptor following prolonged SSRI treatment. Methodological 

limitations have made testing of autoreceptor function difficult by electrophysiological means, and 

are likely responsible for the inconsistent reports. 

There are two main challenges faced by electrophysiologists in this regard. The first 

involves the identification of 5-HT neurons. Due to the financial and temporal burden of post hoc 

analysis, electrophysiologists generally relied on the ‘classical features’ of serotonergic cells that 

include biphasic action potentials, responsiveness to 5-HT and LSD, and slow, regular pattern of 

discharge (Aghajanian and Vandermaelen, 1982; Vandermaelen and Aghajanian, 1983). 

However, there is evidence that these criteria are not sufficient for distinguishing between 5-HT 

neurons and other cells present in serotonergic nuclei such as the DRN (Kirby et al., 2003; Beck 

et al., 2004; Schweimer and Ungless, 2010). A second challenge involves the manipulation of 5-

HT1A somatodendritic autoreceptors. The currently available 5-HT1A receptor-targeted drugs 

cannot selectively distinguish between 5-HT1A presynaptic autoreceptors and postsynaptic 

heteroreceptors or between 5-HT1A receptors present on serotonergic versus non-serotonergic 

cells within the raphe (Beck et al., 2004), which makes examination of somatodendritic 

autoreceptor signaling in the absence of perturbations by local or distal feedback circuitry 
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problematic. It is also difficult to achieve pharmacologically-induced receptor-mediated responses 

on a timescale similar to that occurring under physiological conditions. Alternatively, electrical 

field stimulation can be used to activate the autoreceptors by endogenously released 5-HT, 

thereby preserving more of the spatial and temporal aspects of physiological signaling (Yoshimura 

and Higashi, 1985; Williams et al., 1988; Pan et al., 1989). However, the elaborate standardization 

required to adequately compare autoreceptor-mediated responses of individual cells from 

electrical stimulation has largely prevented its application for electrophysiological examination of 

5-HT1AR signaling following chronic SSRI treatment.  

Importantly, recent advancements in genetic targeting strategies and optical stimulation 

techniques have provided the tools necessary to overcome many of these previous challenges 

and potentially allow us to gain unmatched insight into autoreceptor function in response to 

prolonged SSRI administration. To this end, we took advantage of the light-sensitive ion channel, 

Channelrhodopsin (ChR) (Boyden et al., 2005). By selectively targeting ChR to 5-HT neurons, we 

reasoned it would be possible to combine the temporal control afforded by light stimulation with 

the real time cellular level insight provided by whole-cell electrophysiological recordings to 

achieve a direct readout of autoreceptor function.  

Three genetically modified mice models were tested for this purpose (Fig. 2). The first was 

a BAC transgenic mouse that expressed ChR under the control of the tryptophan hydroxylase 2 

(TPH2) promoter elements (“TpH2-ChR”) (Zhao et al., 2011). Previous characterization revealed 

moderate ChR2-EYFP expression in the DRN that was restricted to cells that were TPH2 positive, 

suggesting no ectopic expression of ChR-EYFP (Zhao et al., 2011). The second and third used 

the serotonin transporter (SERT) or the Pet1 transcription factor promoter/enhancer to drive 

expression of Cre recombinase (Gong et al., 2007, and Scott et al., 2005, respectively). In order 

to express ChR in 5-HT neurons these transgenic mice were crossed with a conditional ChR 

knock-in mouse (containing a loxP-STOP-loxP-ChR-EYFP expression cassette) (Madisen et al.,  
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2012) to produce “SERT-Cre X Ai32” and “Pet1-Cre X Ai32” offspring. Selective targeting of Cre 

recombinase to serotonin neurons using Pet1 promoter/enhancer regions has previously been 

demonstrated (Scott et al., 2005). To test whether the serotonin transporter promoter would also 

be useful in this regard, we crossed a SERT-Cre mouse with an “Ai3” reporter mouse (Madisen 

et al., 2010). As shown in figure 3, qualitative assessment of brainstem slices revealed extensive 

Figure 2. Genetically modified mice models for the selective targeting of the light-gated 

ion channel, ChR, to serotonergic neurons in our preparation. The “TpH2-ChR” transgenic 

mouse (top) utilized the tryptophan hydroxylase 2 promoter elements to direct expression of 

the ChR2-EYFP fusion construct to 5-HT cells. Alternatively, Cre recombinase driver mice 

(SERT-Cre or Pet1-Cre; bottom) were crossed with a conditional ChR knock-in mouse (Ai32; 

middle) to allow excision of the loxP-flanked STOP cassette and expression of ChR2-EYFP in 

5-HT neurons. (BAC: bacterial artificial chromosome; ChR2(H134R): ChR2 variant; BGHpA: 

bovine grown hormone polyadenylation signal; WPRE: woodchuck hepatitis virus 

posttranscriptional regulatory element.) (Refer to methods for additional mouse information.) 
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co-localization of Cre recombinase activity with SERT and TPH2, without any apparent ectopic 

expression. Therefore, all three mice models provided a means to selectively target ChR to 5-HT 

neurons in our preparation. 

 

To investigate the utility of each targeting strategy for our current purpose, we conducted 

recordings of 5-HT neurons from the ventromedial region of the DRN (vmDRN) in brainstem slices 

from each of the mice. In voltage clamp, brief flashes (5 ms) of blue light (455-490 nm) produced 

robust ChR-mediated currents (Fig. 4A). Importantly, the presence of ChR-mediated currents 

thereby provided the means to unambiguously confirm the serotonergic identity of a patched cell, 

and do so in a relatively simple manner.  

To determine which of the three models would provide the greatest optical control of 5-HT 

neurons we compared the amplitude of the ChR-mediated currents between the groups.  These 

currents were largest in the SERT-Cre X Ai32 (521.3 ± 22.7 pA) mice compared to the Pet1-Cre 

X Ai32 (485.2 ± 45.3 pA) or TpH2-ChR (186.9 ± 109.9 pA) mice (in agreement with earlier reports 

(Zhao et al., 2011)) (Fig. 4B). In light of these findings, we chose to proceed using just the SERT-

Figure 3. Use of the SERT promoter to 

target Cre recombinase to 5-HT 

neurons in brainstem slices. Coronal 

brainstem slices from a SERT-Cre X Ai3 

reporter mouse reveal co-localization of 

the serotonin transporter (SERT; Alexa 

Fluor® 568) or tryptophan hydroxylase 2 

(TPH2; Cy™3) with Cre recombinase 

activity (as detected by EYFP expression; 

DyLight™488) in the DRN. 
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Cre X Ai32 mouse. Further characterization revealed that under current clamp conditions, the 

light-stimulated ChR-mediated depolarization was sufficient to produce a spike, and do so in a 

consistent manner (Fig. 4C). In summary, selective and robust expression of ChR in 5-HT 

neurons in the SERT-Cre X Ai32 mouse allowed identification of 5-HT neurons and permitted 

reliable control of serotonergic cell activity. 

 

 

 

 

 

 

 

We next studied whether optical stimulation of ChR-expressing serotonergic neurons in 

SERT-Cre X Ai32 mice could evoke the phenomenon of autoinhibition. In voltage clamp, light 

flashes often resulted in a transient outward current (Fig. 5A). In current clamp, this was observed 

as a pronounced inhibitory afterpotential (Fig. 5B) capable of causing temporary silencing of 

neuronal activity. Application of the selective 5-HT1A receptor antagonist WAY100635 (1 µM) 

resulted in complete suppression of this light-evoked current (Fig. 5A, 7/7 cells tested), indicating 

that the 5-HT1A autoreceptor was mediating the response. Across cells, slices and mice, this 5-

HT1A autoreceptor-mediated current (“5-HT1AR Ilight”) was found to be maximally activated with 3 

flashes of light (5 ms, 50 ms apart; Fig. 5C). Importantly, this optogenetic approach therefore 

Figure 4. Characterization of ChR in 5-HT cells of SERT-Cre X Ai32, Pet1-Cre X Ai32 and 

TpH2-ChR mice models. A. A brief (5 ms) flash of blue light (~5 milliWatts (mW) full field; 

indicated by a blue circle) caused the appearance of an inward ChR-mediated current in a 

ChR-expressing 5-HT cell from a SERT-Cre X Ai32 mouse. B. Light-evoked ChR-mediated 

currents were largest in SERT-Cre X Ai32 mice (531.3 ± 22.7 pA; 82 cells, 19 mice) compared 

to Pet1-Cre X Ai32 (485.2 ± 45.3 pA; 13 cells, 5 mice) or TpH2-ChR (186.9 ± 109.9 pA; 8 cells, 

2 mice) animals. (Data are presented as mean ± SEM). C. In a ChR-expressing serotonergic 

neuron from a SERT-Cre X Ai32 mouse, repeated light stimulation triggered ChR-mediated 

currents (bottom) that provided reliable control over 5-HT neuronal activity (top). 
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facilitated direct cell-to-cell comparison of the response without the need for additional 

standardization methodologies. The autoreceptor-mediated current response was observed to 

remain stable for 30 minutes or more (Fig. 5D, n = 4 cells), thereby potentially providing a within-

cell comparison of drug-induced alterations in the autoinhibitory signal. Having demonstrated the 

utility of this optogenetic strategy to provide dependable control over the phenomenon of 

autoinhibition, we next sought to apply this approach to directly assess changes in autoreceptor 

sensitivity following prolonged SSRI administration.  

 

 

 

 

 

 

 

 

 

 

Figure 5. Genetically modified SERT-Cre X Ai32 mice permit optical stimulation-

mediated control over the phenomenon of autoinhibition. A. Brief flashes of light evoked 

the appearance of ChR-mediated inward currents followed by a transient outward current (left). 

In the same cell, blockade of this response with bath application of the selective 5-HT1AR 

antagonist WAY100635 (1 µM) indicates that the current is mediated by 5-HT1A autoreceptors 

(right). B. In current clamp, light stimulation caused a 5-HT1AR-mediated hyperpolarization that 

was sufficient to cause temporary silencing of neuronal activity (induced by a 50 pA current 

injection). C. Experimentation with stimulation parameters revealed that three flashes of light 

(50 ms apart at ~5 mW full field) was sufficient to achieve 99 ± 0.97% of the maximal 5-HT1AR 

Ilight response. The responses of a single cell to 1, 3 and 5 flashes of light are shown in the 

inset (black trace is from 3 flashes). D. The 5-HT1AR Ilight response of a 5-HT neuron remained 

stable over time, as illustrated by the amplitude of the response (crosses) evoked every 2 

minutes from 3 flashes of light given 50 ms apart (~1.3 mW full field). Overlaid traces are from 

the first (black trace) and last (gray trace) response of the cell in the experiment (scale bar is 

25 pA by 1 sec). Note: for illustration purposes ChR-mediated currents were truncated.  
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Effects of Chronic Fluoxetine Treatment on Autoreceptor-mediated Currents 

SERT-Cre X Ai32 mice ~5 weeks of age were treated with the classic SSRI fluoxetine (10 

mg/kg/day) or a 5% dextrose solution (sham) for 14 days via subcutaneously implanted osmotic 

pumps. This treatment regimen was chosen because it has been shown to alleviate depression-

like symptoms in rodent models of anhedonia (Machado et al., 2012) and induce suppression of 

serotonin cell firing that recovered by 14 days (Czachura and Rasmussen, 2000). In the current 

work we found that it provided blood levels of fluoxetine and its major active metabolite 

norfluoxetine of 355.9 ± 100.25 ng/mL (mean ± SD, 5 mice) that were comparable to human 

therapeutic levels (50-500 ng/mL). Based on reported values for SERT binding affinity and 5-HT 

uptake inhibition (~1 nM and ~10 nM, respectively; Owens et al., 2001), the estimated 1 µM 

fluoxetine achieved with this treatment should be sufficient to near maximally block 5-HT reuptake 

in the current experiments. At the conclusion of treatment, the mice were sacrificed and whole-

cell electrophysiological recordings were performed on identified 5-HT neurons of the vmDRN.  

Four parameters of the autoreceptor signal were quantified to facilitate comparison across 

treatment groups: the amplitude (pA), rise time (ms), half-decay (ms) and charge transfer  

(pAxs) (see methods). Non-treated and sham treated littermates were not significantly different 

from one another in terms of the ChR-mediated currents (521.3 ± 22.7 pA (82 cells, 19 mice) and 

527.6 ± 19.4 pA (54 cells, 9 mice), p = 0.91; student’s t-test) or any of the autoreceptor-mediated 

responses (Fig. 6; 5-HT1AR Ilight amplitude (p = 0.28), rise time (p = 0.70), half-decay (p = 0.31), 

and charge transfer (p = 0.64); student’s t-test). Therefore, data from the two groups were pooled 

to enhance statistical power. 
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As illustrated in figure 7, chronic fluoxetine treatment resulted in drastic alterations of 5-

HT1AR Ilight characteristics. Compared to controls, the amplitude of the autoreceptor signal was 

significantly decreased (59.4 ± 4.7 pA to 30.5 ± 2.5 pA, p = 1.77E-6; student’s t-test). There was 

also a prolongation of the response, as indicated by a significant increase in the rise time (190.4 

± 3.7 ms to 288.1 ± 9.5 ms, p = 6.27E-22; student’s t-test) and half-decay (422.4 ± 12.7 ms to 

1167.7 ± 52.2 ms, p = 2.34E-38; student’s t-test). Despite the smaller amplitude, the longer 

timecourse resulted in an overall enhancement of total charge transfer (43.2 ± 3.8 pAxs to 58.2 ± 

5.6 pAxs, p = 0.022; student’s t-test). As illustrated in figure 7C, the strength of the relationship 

between 5-HT1AR Ilight amplitude and charge transfer was found to be significantly influenced by 

Figure 6. The 5-HT1AR Ilight response characteristics of 5-HT neurons from non-treated 

and sham treated SERT-Cre X Ai32 mice were not significantly different from one 

another. Data are presented as mean ± SEM. Student’s t-test was used for statistical analysis. 

Data were obtained from a total of 9 sham treated mice and 19 non-treated mice.  
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chronic treatment (p < 0.001, moderated regression analysis). To summarize, autoreceptor-

mediated currents of chronic fluoxetine treated mice were smaller in amplitude but longer in 

duration, thereby resulting in an overall increase in the total charge transfer.  Because the net 

response was not significantly reduced, but actually increased from prolonged fluoxetine 

exposure, the data are therefore not consistent with the autoreceptor desensitization hypothesis.  

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Chronic fluoxetine treatment induces alterations in the 5-HT1A autoreceptor-

mediated response.  A. Representative traces from cells of control and chronic fluoxetine-

treated mice. B. Quantitative analysis of the autoreceptor-mediated response by comparison 

of amplitude, rise time, half-decay and charge transfer. Data are presented as mean ± SEM. 

Statistical analysis was performed with student’s t-test. * = p < 0.05, *** = p < 0.01. C. Scatter 

plot of the total charge transfer (pAxs) versus the 5-HT1AR Ilight amplitude (pA) of individual cells 

from chronically treated mice (stars; 98 cells) and control mice (circles; 136 cells). Lines of 

best fit were included to emphasize the strong relationship between the two variables for 

control (R2 = 0.95, p < 0.001) and chronic fluoxetine treatment (R2 = 0.86, p < 0.001). 

Moderated regression analysis revealed a highly significant (p < 0.001) effect of treatment on 

the strength of this relationship. C, inset. To better illustrate the impact of the prolonged 

timecourse and enhanced charge transfer on the autoreceptor-mediated response, traces from 

cells of control and chronic treated mice with similar amplitude are overlaid (scale bar is 25 pA 

by 1 sec). Data were obtained from a total of 28 control and 16 chronic fluoxetine treated mice.  
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Although the net effect from chronic treatment was an enhancement of the autoreceptor 

response, because of the reduction in peak amplitude it was plausible that there was mild 

desensitization of the autoreceptor. In order to further investigate this possibility we turned to a 

different experimental approach.  

5-HT Dose Response Analysis 

To this end, we tested for autoreceptor sensitivity changes in chronic fluoxetine treated 

mice by constructing 5-HT dose response curves. To account for any changes in 5-HT reuptake 

(due to residual fluoxetine or adaptive changes in SERT expression or function) the experiments 

were performed in the presence of fluoxetine (1 µM) (see methods). Our laboratory has found this 

approach capable of providing reproducible responses within a cell over repeated 5-HT 

applications (Fig. 8A) and moreover, in our testing conditions, allowing for selective assessment 

of 5-HT1AR function (Fig. 8B). Data were fit to the Hill equation and cells across treatment groups 

were compared on the basis of the maximal current response (Imax) and the concentration of 5-

HT (µM) necessary to produce a half-maximal response (EC50). If there was desensitization of 

the 5-HT1AR, one would expect to see a significant decrease in the Imax and increase in the EC50. 

However, as shown in figure 8C-F, the chronic treatment group (Imax = 52 ± 6.2 pA; EC50 = 2.1 ± 

0.4 µM) did not differ from the control group in either parameter (Imax = 57.3 ± 6 pA (p = 0.56); 

EC50 = 2.8 ± 0.8 µM (p = 0.53) (student’s t-test)). Therefore, in agreement with the optical 

stimulation experiments, pharmacological assessment revealed no evidence of autoreceptor 

desensitization from chronic treatment. Collectively, our data provide support for the idea that the 

5-HT1A somatodendritic autoreceptor-mediated signal, despite being altered, is actually preserved 

following two weeks of fluoxetine administration.  
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Figure 8. 5-HT concentration response curves conducted in the presence of bath 

fluoxetine (1 µM) do not indicate a change in 5-HT1A autoreceptor sensitivity following 

chronic fluoxetine treatment. Repeated bath application of 5-HT (3 µM and 30 µM) produced 

consistent responses (A) that were mediated through the 5-HT1A receptor, as demonstrated 

by blockade of the response by application of the selective 5-HT1A receptor antagonist, 

WAY100635 (1 µM) (B). Example 5-HT dose response data from a control cell (C1 and C2) 

and a chronic fluoxetine treated cell (D1 and D2) obtained in the presence of bath fluoxetine (1 

µM). Data were fit to the Hill equation and the Imax and EC50 results were compared between 

the two groups. The Imax (maximal 5-HT1AR-mediated response amplitude) (E) and EC50 

(concentration of 5-HT in µM needed to obtain 50% of the maximal response) (F) of 5-HT 

neurons from chronic fluoxetine treated mice were not significantly different from those of 

controls (p = 0.56 and p = 0.53, respectively; student’s t-test).  
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So if a desensitization of the autoreceptor was not causing the reduction in 5-HT1AR Ilight, 

what else could be responsible? Interestingly, a previous study utilizing whole-cell recordings 

coupled with electrical stimulation to evoke 5-HT release noticed that acute bath-applied 

fluoxetine caused a reduction of the autoreceptor-mediated response amplitude and prolongation 

of the signal (Pan et al., 1989). The similarity between the previously observed effects of acute 

exposure (Pan et al., 1989) and those from chronic treatment in the current work (see Fig. 7) 

raised the possibility that simply impairing 5-HT clearance could account for the chronic treatment-

like responses. Therefore we next tested whether acute fluoxetine would cause similar effects on 

5-HT1AR Ilight in treatment naïve mice in our experimental conditions.  

Effects of Acute Fluoxetine  

To this end, fluoxetine (1 µM) was bath-applied to slices derived from non-treated 

littermate controls. A minimum of 20 minutes of exposure was utilized to ensure the drug had fully 

penetrated the slice and the response had reached steady state (unreported observation). As 

shown in figure 9, the amplitude (28 ± 5.7 pA), rise time (326.8 ± 23.3 ms), half-decay (1223.7 ± 

195.2 ms) and charge transfer (60.7 ± 13.1 pAxs) from acute exposure were not significantly 

different from the corresponding values of chronic treatment (p = 0.97, p = 0.08, p = 0.84, p = 

0.98, respectively; one-way ANOVA with post hoc Tukey). Moreover, all measurements trended 

towards and/or reached significance in regards to controls (5-HT1AR Ilight amplitude (p = 0.006), 

rise time (p < 0.001), half-decay (p < 0.001), charge transfer (p = 0.30); one-way ANOVA with 

post hoc Tukey). As shown in figure 9B, the strength of the relationship between 5-HT1AR Ilight 

amplitude and charge transfer of individual cells acutely exposed to fluoxetine closely resembled 

that of chronic treatment (p = 0.22, moderated regression analysis) and was significantly different 

from that of control cells (p < 0.001, moderated regression analysis). Therefore, in agreement 

with earlier reports (Pan et al., 1989), acute fluoxetine exposure to treatment naïve mice resulted 

in an autoreceptor-mediated signal with a smaller peak amplitude but longer timecourse. 

Importantly, these alterations from acute exposure resembled those of chronic treatment. 
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Together, the data suggest that simply a reduction in 5-HT reuptake, instead of a chronic 

adaptation in autoreceptor sensitivity, could potentially account for the chronic treatment-like 

effects on the autoreceptor-mediated response.  

      

 Figure 9. (legend on next page) 
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However, it is notable that bath-applied fluoxetine does not fully recapitulate the conditions 

of chronic treatment. In order to more accurately test whether the 5-HT1AR Ilight alterations 

observed following 14 days of fluoxetine were due to a reduction in 5-HT clearance, we next 

explored whether subchronic fluoxetine administered via osmotic pump would produce similar 

results to those of bath fluoxetine and chronic treatment.  

Effects of Subchronic Fluoxetine Administration 

Mice were treated with fluoxetine for ~72 hours (71.3 ± 14 hours (mean ± SD), 5 mice) in 

a manner identical to that of chronic treatment. This timepoint was chosen because it has been 

shown to be premature for the emergence of physical adaptations previously associated with 

autoreceptor desensitization, such as the recovery of serotonin cell firing (Czachura and 

Rasmussen, 2000) or onset of the antidepressant effects in rodents (Dulawa et al., 2004), and 

therefore should provide insight as to whether simply blocking 5-HT reuptake produces chronic 

treatment-like effects on the 5-HT1AR Ilight signal. At the time of sacrifice, the blood levels of 

fluoxetine and its major active metabolite norfluoxetine were approximately half of those obtained 

under chronic conditions (173.1 ± 116.7 ng/mL (mean ± SD), 5 mice). Nevertheless, there were 

noticeable effects on the 5-HT1AR Ilight characteristics. As illustrated in figure 10A, the 5-HT1AR Ilight 

Figure 9. Bath application of fluoxetine (1 µM) produces 5-HT1AR Ilight characteristics in 

control cells that are similar to those of chronic fluoxetine treatment. A. The 5-HT1AR Ilight 

amplitude from acute fluoxetine was not different from chronic treatment (p = 0.97) but was 

significantly smaller than control conditions (p = 0.006). The rise time and half-decay were not 

different from their corresponding chronic treatment values (p = 0.08 and p = 0.84, 

respectively) but were significantly different from those of controls (p < 0.001 and p < 0.001). 

The charge transfer did not differ from chronic treatment (p = 0.98) or control (p = 0.30) values. 

Data are presented as mean ± SEM. Significance was assessed with one-way ANOVA and 

post hoc Tukey. * = p < 0.05, *** = p < 0.01. B. Scatter plot of the charge transfer (pAxs) versus 

the amplitude (pA) of the autoreceptor-mediated response for individual cells acutely exposed 

to fluoxetine (squares; 21 cells) revealed a strong correlation (R2 = 0.87, p < 0.001) between 

the two variables. The line of best fit is included to illustrate this point. The strength of this 

relationship for acute fluoxetine was not significantly different from that of chronic fluoxetine 

treatment (p = 0.22) but was significantly different from that of control conditions (p < 0.001, 

moderated regression analysis). 
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amplitude (39.3 ± 5.3 pA), rise time (272.1 ± 13.2 ms), half-decay (873 ± 69.5 ms) and charge 

transfer (54.4 ± 7.7 pAxs) trended towards their corresponding chronic treatment values (p = 0.50, 

p = 0.43, p < 0.001, p = 0.91, respectively; one-way ANOVA with post hoc Tukey). They were 

significantly different from their respective controls (amplitude (p = 0.02), rise time (p < 0.001), 

half-decay (p < 0.001)) with the exception of total charge transfer (p = 0.39) (one-way ANOVA 

with post hoc Tukey). Notably, the strength of the relationship between response amplitude and 

charge transfer of 5-HT cells from subchronic treated mice was intermediate between that of 

control and chronic fluoxetine treated mice (Fig. 10B, p < 0.001 compared to both control and 

chronic conditions; moderated regression analysis). As the drug blood levels were approximately 

half that of chronic treated mice, this suggests that the relationship may be mediated by the extent 

of 5-HT reuptake blockade. Consistent with the effects of acute fluoxetine, the effects of 

subchronic treatment on the autoreceptor-mediated response provide support for the idea that 

prolonging the extracellular lifetime of 5-HT may be sufficient to cause alterations in 5-HT1AR Ilight 

that are similar to those observed after 14 days of fluoxetine administration. Together, these data 

suggest that the reduction in the autoreceptor-mediated signal amplitude seen following 

prolonged SSRI treatment is not the result of a chronic adaption in the sensitivity of the 5-HT1A 

autoreceptor. Instead, the altered amplitude and kinetics of the response are likely due to a 

reduction in 5-HT clearance. 
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CHAPTER 3 DISCUSSION 

Figure 10. Effects of subchronic fluoxetine treatment on the 5-HT1A autoreceptor-

mediated signal. A. Comparison of the 5-HT1AR Ilight characteristics between control and ~72 

hours fluoxetine treatment (5 mice) revealed alterations in the amplitude (p = 0.02), rise time 

(p < 0.001), half-decay (p < 0.001) and charge transfer (p = 0.39) that trended towards their 

corresponding chronic treatment values. With the exception of half-decay (p < 0.001), 

subchronic treatment was not significantly different from chronic treatment in amplitude (p = 

0.50), rise time (p = 0.43) or charge transfer (p = 0.91). Data is presented as mean ± SEM. 

One-way ANOVA with post hoc Tukey was used for statistical analysis. B. A scatterplot of 

charge transfer (pAxs) versus amplitude (pA) for the individual subchronic treated cells 

(triangles; 45 cells) revealed a relationship between the two variables (R2 = 0.92, p < 0.001). 

The strength of this relationship was significantly influenced by subchronic treatment (p < 0.001 

compared to control) but, as expected from the sub-maximal drug blood levels, remained 

significantly different from that of chronic treatment (p < 0.001, moderated regression analysis). 
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Despite their widespread, ever-growing use, the mechanism of action of SSRI 

antidepressants remains only partially understood. One prominent theory posits that in order for 

these medications to elicit their therapeutic effect, 5-HT1A somatodendritic autoreceptors must 

become desensitized (Blier et al., 1987). Despite its general acceptance, there has been 

inconsistent support for the theory over the years. However, until now, direct assessment of 

autoreceptor sensitivity following prolonged SSRI exposure has been prevented due to 

methodological limitations. With advancements in genetic targeting strategies and expansion of 

our optical toolbox, the goal of the current work was to reinvestigate this theory. Using a novel 

application of optogenetics to directly assess vmDRN 5-HT1A somatodendritic autoreceptor 

function, we found, in contrast to the prevailing theory, that the autoreceptor-mediated signal is 

actually preserved following chronic fluoxetine treatment.  

Benefits of Optogenetics for Assessment of Autoinhibition  

The use of optogenetics, the targeting of light-sensitive proteins to cells to control their 

activity, has quickly become a popular neuroscience tool. It has been utilized to study neuronal 

circuitry (Pollak Dorocic et al., 2014), investigate signaling pathways (reviewed in McGregor et 

al., 2015), and deduce the role of selective neuronal populations on behavior (McDevitt et al., 

2014). It is the only currently available method of controlling a specific neuronal cell type within a 

heterogeneous region of the brain and/or brain tissue. It also allows temporally precise, 

synchronous control of a neuronal cell type in a population-wide manner. In the current work, we 

utilized genetically-modified mice (SERT-Cre X Ai32) that directed expression of the light-

sensitive cation channel, Channelrhodopsin (ChR) (Boyden et al., 2005) selectively to 

serotonergic neurons in our slice preparation using the serotonin transporter promoter. A variant 

of ChR (ChR2(H134R)) was chosen for this purpose as it has been shown to exhibit enhanced 

light sensitivity and thus provide larger photocurrents compared to the classic protein (Lin, 2011). 

Unlike some other light-sensitive constructs, additional compounds are not required for its activity, 

since its cofactor, all-trans retinal, is known to be present in the invertebrate brain at levels that 
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are sufficient for light transduction (Boyden et al., 2005). Light stimulation at the relatively low 

levels and frequency utilized in our experiments did not cause any noticeable harm to cells.  

Notably, this study represents the first application of optogenetics to examine autoinhibition of 

serotonergic neurons. This approach allowed us to overcome a number of limitations that have 

previously prevented direct assessment of 5-HT autoinhibition, and in particular, examination of 

5-HT1A autoreceptor sensitivity following chronic SSRI treatment.  

One of the major obstacles for the study of serotoninergic neurons is their identification. It 

has been known for many years that the dorsal raphe nucleus is a heterogeneous nucleus, 

containing not only 5-HT cells, but also glutamatergic, GABAergic, and dopaminergic cells 

(Jacobs and Azmitia, 1992; Kohler and Steinbusch, 1982). Therefore, electrophysiological criteria 

to facilitate the identification of 5-HT neurons were described relatively early on (Vandermaelen 

and Aghajanian, 1983; Aghajanian and Vandermaelen, 1982). These ‘classic’ serotonergic 

characteristics included: biphasic action potentials, responsiveness to 5-HT and LSD, and slow 

(0.5 to 2 spikes/sec), regular pattern of discharge. Although these criteria have been frequently 

utilized throughout the years, there has been mounting immunohistochemical evidence that they 

do not accurately discriminate between serotonergic and non-serotonergic neurons (Kirby et al., 

2003; Beck et al., 2004). Not only do many non-5-HT containing cells meet these criteria (Kirby 

et al., 2003), but because the DRN 5-HT population is much more heterogeneous than previously 

imagined, some 5-HT neurons do not meet the criteria (Schweimer and Ungless, 2010; reviewed 

in Andrade and Haj-Dahmane 2013). The genetic targeting strategy utilized in the current work 

allowed us to overcome this limitation and easily confirm the identity of a patched neuron as 

serotonergic by simply flashing light and looking for the presence of ChR-mediated currents (Fig. 

4). 

Another obstacle that has limited our insight into 5-HT1AR-mediated signaling and its 

potential alteration from SSRI treatment by electrophysiological means involves stimulation 

techniques. A common method of activating 5-HT1A autoreceptors in vivo has been systemic 
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administration of a 5-HT1AR agonist to an anesthetized rodent. However, due to the fact that no 

available pharmacological agent selectively distinguishes between the 5-HT1A somatodendritic 

and heteroreceptors, systemic administration activates not only the 5-HT1A somatodendritic 

autoreceptors but also 5-HT1AR’s located on GABAergic cells in the DRN (Beck et al., 2004) and 

5-HT1AR’s on postsynaptic forebrain targets, both of which directly or indirectly feed back to affect 

the activity of the recorded neuron (Challis et al., 2013; reviewed by Altieri et al., 2013). A common 

method for pharmacologically manipulating the autoreceptor in brain slices is through bath 

application. As is the case with systemic administration however, this also lacks the temporal 

precision necessary to stimulate the receptors on a physiologically relevant timescale, thereby 

preventing a complete understanding of the physiological response. Another notable in vivo and 

in vitro option is microiontophoresis, which allows brief (sub-second) application of an exogenous 

agonist to a localized brain region. Interestingly, although it has been adopted for the examination 

of autoreceptor sensitivity from chronic MAOI, TCA, and some SSRI treatments, to the best of our 

knowledge it has never been used to study DRN 5-HT1A somatodendritic autoreceptor sensitivity 

following chronic fluoxetine exposure.  

Until now, the only available stimulation technique that would cause release of 

endogenous 5-HT within the DRN, and do so on a subsecond timescale was electrical field 

stimulation in brain slices (Yoshimura and Higashi, 1985; Williams et al., 1988; Pan and Williams, 

1989; Pan et al., 1989). However, this technique had a number of limitations when it came to the 

study of SSRI effects on 5-HT1AR signaling. First, nonselective stimulation of the DRN caused 

release of not only 5-HT, but also GABA and glutamate, which have been shown to impact the 

readout of the 5-HT1AR-mediated signal (Pan et al., 1989). However, this could be overcome by 

addition of GABA and glutamate receptor antagonists to the extracellular solution. A more 

important limitation was the complex standardization required to adequately compare responses 

between cells both within slices and across slices. Because standardizing between cells of control 

and treated rodents was even more problematic, this issue largely prevented the application of 
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electrical stimulation for electrophysiological assessment of autoinhibitory signaling in response 

to chronic 5-HT reuptake blockade.  

The optogenetic methodologies implemented in the current work overcame these previous 

limitations. The use of light to selectively stimulate 5-HT cells in brain slices provides precise 

temporal, synchronous control of endogenous 5-HT release and selective activation of 5-HT1A 

autoreceptors (Fig. 5A). By its nature, light stimulation bypasses the need for standardization in 

our preparation since light penetrates the slice almost instantaneously to induce simultaneous 

release of 5-HT from cells irrespective of cell depth or distance from the light source. Coupled 

with electrophysiology this technique provided real time, cellular level insight into autoreceptor 

signaling. Moreover, with this approach the autoreceptor-mediated response from one cell could 

be continuously sampled over time (Fig. 5D). It also allowed multiple cells to be sampled from 

each mouse, thereby providing a more complete picture of the effects of SSRI treatment on the 

heterogeneous DRN 5-HT cell population (reviewed in Andrade and Haj-Dahmane, 2013). 

Collectively, the current optogenetic approach permitted, for the first time, a direct readout of 5-

HT1A autoreceptor signaling and allowed comparison of the signal between control and chronic 

fluoxetine treated mice.  

Major Findings  

The major finding of the current work is that the autoinhibitory signal mediated by 

somatodendritic 5-HT1A autoreceptors was preserved following prolonged 5-HT reuptake 

blockade. Support for this came from experiments utilizing genetically modified SERT-Cre X Ai32 

mice that targeted ChR to 5-HT neurons in our brainstem slice preparation (Fig. 3). Brief (5 ms) 

flashes of light was sufficient to selectively and reliably control the activity of serotonergic neurons 

(Fig. 4) and provide a direct readout of the 5-HT1A autoreceptor-mediated signal (Fig. 5). As shown 

in figure 7, compared to controls, chronic treatment with fluoxetine resulted in a reduction in the 

5-HT1AR Ilight amplitude but a dramatic increase in the duration, thereby causing a net 

enhancement in the autoreceptor-mediated signal as assessed by total charge transfer. In order 
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to clarify whether the reduction in amplitude was due to a chronic adaptation in the sensitivity of 

the autoreceptor, we conducted 5-HT dose response analysis on identified 5-HT cells from control 

and chronic treated mice. Importantly, the experiments were performed in the presence of bath 

fluoxetine to account for potential reductions in 5-HT reuptake due to residual 

fluoxetine/norfluoxetine or alterations in SERT function or expression. Importantly, neither the Imax 

or EC50 were different between the groups (Fig. 8). Collectively, the data suggested that the 

sensitivity of the 5-HT1A autoreceptor was not attenuated following chronic SSRI administration.  

Since it was previously reported that acute fluoxetine induced alterations in the 

autoreceptor-mediated signal that were similar to the observed changes from chronic fluoxetine 

in the current work, we next sought to explore whether simply a reduction in 5-HT reuptake—

instead of a chronic attenuation of autoreceptor function—could  account for these ‘chronic’ 

effects. Exposure to bath-applied fluoxetine (Fig. 9) or subchronic treatment (Fig. 10) produced 

5-HT1AR Ilight signals that were significantly smaller in amplitude and exhibited a significant 

prolongation of their timecourse compared to controls. Because of the similarity to chronic 

treatment responses, the results indicate that the effects from chronic treatment are unlikely to be 

the result of chronic adaptations, but appear to be due simply to a reduction in 5-HT clearance.  

Potential Limitations of the Current Approach  

There is a notable potential limitation with this approach. The ChR-mediated currents were 

significantly smaller in the chronic (450.99 ± 15.57 pA, 98 cells) and subchronic (408.53 ± 27.27 

pA, 45 cells) fluoxetine treatment groups compared to controls (529.80 ± 15.64 pA, 136 cells; p = 

0.007 and p = 0.001, one-way ANOVA with post hoc Tukey). The chronic and subchronic 

treatment ChR-mediated amplitudes were not significantly different from one another (p = 0.668, 

one-way ANOVA with post hoc Tukey). It is currently unclear as to why the currents were reduced. 

One explanation could be that there is a decrease in ChR expression. At the level of transcription, 

the general consensus is that fluoxetine does not result in an attenuation of SERT expression 

(and thus would not alter transcription of Cre recombinase) (Hrdina and Vu, 1993; Koed and 
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Linnet, 1997; Neumaier et al., 1996; Le Poul et al., 2000). It would also be unlikely that fluoxetine 

treatment would influence the accessibility of the Rosa26 locus that the conditional ChR 

expression cassette was inserted. Moreover, the time for changes in transcription to have an 

impact on protein levels makes it unlikely that an alteration in transcription could underlie the 

observed changes for the subchronic conditions.  Alternatively, Cre recombinase expression 

(driven by the SERT promoter) may be reduced by fluoxetine’s reported indirect actions on SERT 

translation, as mediated by microRNAs (Baudry et al., 2010). However, if there was a significant 

decrease in Cre recombinase transcription or translation, this would likely result in an all-or-

nothing pattern of ChR expression instead of the modest decrease in ChR-mediated currents that 

were observed. To resolve this in a simple manner, future studies could utilize techniques such 

as in situ hybridization and immunohistochemistry to test for changes in ChR mRNA or protein 

levels.  

Instead of an alteration in ChR expression, it may be possible that fluoxetine produced 

modifications in the properties of 5-HT neurons that could reduce the impact of light stimulation 

on the amplitude of the ChR currents. However, we did not find any difference in the resting 

membrane potential between control (-77.32 ± 0.64 mV, 136 cells) and chronic (-76.28 ± 0.77 

mV, 98 cells; p = 0.835, one-way ANOVA post hoc Tukey) or subchronic treatment conditions (-

78.96 ± 1.15 mV, 45 cells; p = 0.711, one-way ANOVA post hoc Tukey). Although speculative, 

fluoxetine may influence the internalization or recycling of ChR from the membrane. Detailed 

characterization of the ChR-mediated current amplitude from repeated stimulation between 

treatment and control groups may provide clarification. Alternatively, immunoelectron microscopy 

of immunogold labeled ChR could also be useful in this regard.  

Despite the significant reduction in amplitude, it is important to note that these ChR-

mediated currents were still well above the estimated threshold that would be necessary to induce 

a spike. Nevertheless, even if the 5-HT1AR Ilight readout from fluoxetine administration was partially 

hindered by the efficacy of optical stimulation, it would only strengthen our conclusion that 
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prolonged fluoxetine treatment does not cause autoreceptor desensitization, since the 5-HT1A 

autoreceptor-mediated signal in the chronic treatment group reported in the current work would 

therefore be an underestimate of the ‘actual’ autoreceptor-mediated response.  

Previous Reports that Cast Doubt on the Autoreceptor Desensitization Hypothesis  

In agreement with the current work, there have been other reports that cast doubt on the 

hypothesis that chronic SSRI exposure causes a reduction in 5-HT1A somatodendritic 

autoreceptor-mediated signaling. For example, following prolonged fluoxetine treatment, 

biochemical studies have failed to find reductions in 5-HT1A R mRNA in the DRN (Hervas et al., 

2001), alterations in the density of binding sites, modifications of the binding parameters, or 

changes in the proportion of the autoreceptor present in its high affinity, G protein-coupled state 

(Castro et al., 2003; Le Poul et al., 2000; Le Poul et al., 1995; Hervas et al, 2001; Hensler, 2002). 

Studies employing in vivo microdialysis or fast scanning cyclic voltammetry to assess the 

functional status of the autoreceptor have also failed to consistently demonstrate an attenuation 

of autoreceptor-mediated control over 5-HT release following chronic SSRI treatment (O’Connor 

and Kruk, 1994; Davidson and Stamford, 1998; reviewed by Hjorth et al., 2000). Together, these 

reports provide sufficient support to call into question the validity of the autoreceptor 

desensitization hypothesis.  

Previous Reports that Chronic Fluoxetine Treatment Causes 5-HT1A Autoreceptor 
Desensitization 
 

Although the current approach is the first to allow direct assessment of the autoreceptor-

mediated signal and thus permit unmatched insight into its potential regulation by SSRI treatment, 

it was initially puzzling that the conclusions from a majority of other electrophysiological studies 

were in opposition to our current findings. However, these disparities can be largely reconciled 

after consideration of a number of important factors. In addition to those discussed above (i.e. 

potential misidentification of ‘5-HT’ cells), there are a few additional points that deserve mention.  
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Evidence for desensitization stemmed from two lines of electrophysiological observations. 

First, acute SSRI exposure caused a suppression of 5-HT cell firing, which recovered slowly over 

a two week period (de Montigny et al., 1984). Because it was thought that 5-HT1A somatodendritic 

autoreceptors normally act to regulate the basal firing rate of 5-HT neurons, it was logical that a 

reduction in their inhibitory signaling was critical for the resumption of neuronal activity (reviewed 

in Blier, 2001). However, as recently reviewed by our group (Andrade et al., 2015), the evidence 

to support the idea that 5-HT1A autoreceptors act to homeostatically regulate the pacemaker-like 

firing of serotonergic neurons is inconsistent and possibly insufficient. There are a number of 

alternative roles for 5-HT1A autoreceptors, including synchronizing neuronal networks (Andrade 

et al., 2015) or functioning as sensors to prevent excessive local 5-HT elevations (Adell et al., 

2002).  With this view, many alternate factors could account for the recovery in firing observed to 

occur following prolonged 5-HT reuptake blockade. For instance, since glutamatergic and 

noradrenergic inputs are known to provide excitatory drive to 5-HT cells (Baraban and 

Aghajanian, 1980; reviewed in Altieri et al., 2013), it is conceivable that they exert an enhanced 

influence over the course of treatment. It is also possible that there are adaptations in the intrinsic 

properties of serotonergic cells, or changes in various components of intracellular signaling 

cascades and/or in neurotrophic factor signaling from chronic SSRI treatment (reviewed in Duman 

et al., 1997) that contribute to the recovery of firing. Collectively, in our view the use of 5-HT cell 

firing as a direct indicator of 5-HT1A autoreceptor function may not be entirely justified.  

The second line of electrophysiological support for the hypothesis originated from studies 

examining the functional status of the autoreceptor using pharmacological agents. For example, 

following two weeks of SSRI treatment, it was reported that agonist administration had less of an 

effect on suppressing the firing of presumed 5-HT cells compared to cells of treatment-naïve 

rodents (Blier et al., 1998). This was therefore attributed to a desensitization of the autoreceptor. 

But once again, firing is by no means a direct readout of the functional state of the autoreceptor. 

As described above, a number of factors that influence serotonergic firing—especially potentially 
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following chronic fluoxetine treatment—may override the contribution of the 5-HT1A R. If this were 

true, then the observed dampened ability of 5-HT1A R agonists to reduce the firing of putative 5-

HT cells following chronic treatment may in fact occur, but do so independently of any actual 

change in autoreceptor sensitivity. To summarize, the almost exclusive reliance on firing rate as 

a readout of autoreceptor function by electrophysiologists may have led to the possibly unfounded 

conclusion that chronic SSRI treatment resulted in a desensitization of 5-HT somatodendritic  

autoreceptors.   

Previous Reports of the Effects of Acute and Subchronic Fluoxetine on the 5-HT1A 
Autoreceptor-mediated Signal 
 

So if others observed ‘autoreceptor desensitization’ from chronic treatment of fluoxetine, 

then why did they not see a similar ‘desensitization’ from acute or subchronic fluoxetine 

administration? Concerning acute exposure, Pan and colleagues (1989) (using electrical field 

stimulation to induce endogenous 5-HT release on a timescale comparable to that of physiologic 

conditions) did report the amplitude reduction, they just did not call it desensitization. Interestingly, 

to the best of our knowledge, no other electrophysiological studies used acute fluoxetine when 

comparing their control group to chronic fluoxetine treatment to assess autoreceptor sensitivity. It 

would have been interesting to see what they would have concluded had they done so.   

In terms of subchronic treatment, in vivo electrophysiological studies (with one exception) 

did not test for alterations in autoreceptor sensitivity at earlier (<14 days) timepoints, presumably 

because there were so few active cells and their only readout of autoinhibition was firing 

suppression. Notably, there was one group that did assess autoreceptor sensitivity from fluoxetine 

treatment, in vivo, at subchronic timepoints (Czachura and Rasmussen, 2000). Given the 

thoroughness of their work, it is puzzling why they performed statistical analysis using the 

treatment-naïve data as the control, as one of the subchronic timepoints would have been more 

appropriate. It would be interesting to know whether analysis of 14 days of treatment compared 

to 3 days of treatment would have led them to the same conclusion that there was significant 5-
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HT1AR desensitization solely following chronic administration. There is one more point that 

deserves mention. Being the only study to examine both the progressive recovery of firing and 

‘autoreceptor sensitivity’ (albeit indirectly from firing suppression) throughout the early stages of 

SSRI administration, it unintentionally provided evidence against the rationale that firing recovery 

is due to a reduction in autoreceptor function. Specifically, it was demonstrated that the basal 

firing rates of putative 5-HT cells had fully recovered by day 14 of fluoxetine treatment. However, 

the ‘blunted’ ability of an agonist to suppress firing at 14 days appears to be only half-maximal 

compared to the effect at 21 days of treatment. These inconsistencies therefore work against the 

argument of autoreceptor desensitization. 

In addition to the in vivo experiments described above, there was a second study that 

investigated the effects of subchronic SSRI treatment, this time conducted in in vitro brain slices 

(Le Poul et al., 1995). Consistent with the majority of chronic treatment reports, Le Poul and 

colleagues observed a reduced ability of a 5-HT1A receptor agonist to suppress the firing of 

presumed 5-HT neurons following 21 days of fluoxetine treatment.  However, this only occurred 

in ~60% of the sampled cells, whereas there were no obvious effects on the other ~40%. 

Moreover, when they compared the extent of this blunted response between ‘less responsive’ 

cells at 21 days of treatment to those after 3 days of treatment, they found no difference. Instead, 

they observed the percentage of sampled cells exhibiting a blunted response to slightly increase 

with the duration of treatment, from ~43% at day 3 to ~60% at day 21. Such a small increase 

could potentially be explained if, consistent with the current work, the drug had failed to reach 

steady state levels by 3 days of treatment (although there were no reports of drug blood levels by 

Le Poul and colleagues).  Collectively, the few times when the effects of acute or subchronic 

fluoxetine exposure were examined in the past, the results from such studies have not provided 

strong evidence to support the autoreceptor desensitization theory. 
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Potential Factors Contributing to the Alterations in 5-HT1AR Ilight  

We found that acute, subchronic, and chronic fluoxetine exposure caused a prolongation 

of the autoreceptor-mediated signal. This is consistent with other reports of the effect of acute 

fluoxetine on the lifetime of electrically-evoked 5-HT in the extracellular space (Roberts et al., 

2005; Bunin et al., 1998) and its effect on the 5-HT1AR-mediated response (Pan et al., 1989). As 

a competitive inhibitor of SERT, the enhanced 5-HT1AR signal rise time and half-decay have been 

attributed to the increased lifetime of 5-HT in the synaptic cleft, which potentially allows it to 

repeatedly activate receptors for a longer period of time and possibly travel further to act on more 

distally located receptors.  Therefore, a reduction of 5-HT clearance from the extracellular space 

was likely responsible for the alterations in 5-HT1AR Ilight observed in the current work. 

Of note, in terms of chronic treatment, this could potentially be due to an adaptation in 

SERT expression or function, or from the presence of residual fluoxetine and/or its active 

metabolite, norfluoxetine. As described above, the general consensus is that prolonged 

administration of fluoxetine does not reduce SERT expression, as assessed by in situ 

hybridization, Northern blot, competitive RT-PCR and autoradiography (Hrdina and Vu, 1993; 

Koed and Linnet, 1997; Neumaier et al., 1996; Gobbi et al., 1997; Le Poul et al., 2000).  Reports 

on the functional status of SERT following chronic fluoxetine treatment are less clear. Using 

electrical stimulation to evoke 5-HT release in brain slices, O’Connor and Kruk (1994) found no 

change in SERT function as determined by the absence of a prolongation of the extracellular 5-

HT signal in chronic treated rodents compared to controls. However, it should be noted that fast 

scanning cyclic voltammetry is limited to sampling bulk extrasynaptic overflow of 5-HT, and 

therefore may be restricted as to the data it can provide. Gobbi et al. (1997) also found the ability 

of SERT to take up [3H]5-HT into rat brain synaptosomes to be unaltered following 21 days of 

treatment with fluoxetine, supporting the idea that SERT function is not impacted under these 

conditions. On the other hand, Descarries and Riad (2012) observed an attenuation of SERT 

expression and function as assessed by electron microscopy of immunogold-labeled SERT. The 
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authors reported that acute fluoxetine had no effect on SERT internalization in control rats, but 

caused a 48% decrease in plasma membrane levels with a concurrent increase in the cytosolic 

levels of SERT in chronic fluoxetine treated rats. Because they also observed a reduction in the 

overall level of SERT, they suggested that chronic exposure resulted in internalization and 

subsequent degradation of the protein. Collectively, while it seems unlikely that there is a 

reduction in SERT expression, determination of the functional status of SERT warrants additional 

investigation. 

An alternative possible explanation for the prolongation of 5-HT1AR Ilight is that residual 

fluoxetine and norfluoxetine are present during experiments. Whereas it is well known that 

norfluoxetine levels in the brain and plasma in rodents require approximately 7 days for washout 

in vivo (Homberg et al., 2011; Gardier et al., 1994), less is known about its lifetime in slices. 

Although the acute and subchronic exposure experiments in the current work are consistent with 

the idea that residual drug is responsible for the alterations in 5-HT1AR Ilight, additional possibilities 

cannot be ruled out. For example, although it is speculative, dysregulation of the intracellular 

signaling components such as an impairment of RGS (regulator of G protein signaling) proteins 

could potentially play a role. In summary, while it is not currently clear whether chronic alterations 

in SERT or continued presence of fluoxetine and norfluoxetine were responsible, it is likely that 

the consequential attenuation of 5-HT clearance caused the increased timecourse of 5-HT1AR Ilight 

in 5-HT neurons exposed acutely, subchronically or chronically to fluoxetine. 

In addition to a prolongation of the 5-HT1AR Ilight, we also observed a reduction in the 

amplitude of the signal from fluoxetine. This was found by us and others (Pan et al., 1989; Le 

Poul et al., 1995) to occur at timepoints too premature for the emergence of neuroadaptive 

changes consistent with an attenuation of 5-HT1AR sensitivity as proposed by the autoreceptor 

desensitization theory. Therefore, an acute effect of fluoxetine must be responsible. One option 

is that fluoxetine itself is activating the autoreceptor, thereby partially masking the response of 

endogenous 5-HT released from light stimulation.  However, we find this to be an unlikely 
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possibility since a reduction in 5-HT1AR Ilight amplitude was also observed following bath 

application of the selective 5-HT reuptake inhibitor escitalopram (1 µM) (data not shown). 

Furthermore, the affinity of fluoxetine for the 5-HT1AR in rodents (~8.3 µM, Owens et al., 1997) 

suggests that the 1 µM used in our experiments would be unlikely to have a significant direct 

effect on the autoreceptor.  

A second possibility is that fluoxetine, by inhibiting 5-HT reuptake, is causing buildup of 

extracellular 5-HT in the slice that is sufficient to basally activate the 5-HT1A autoreceptors 

(Davidson and Stamford, 1995) and cause a reduction in the light-evoked response amplitude 

(Pan et al., 1989). Consistent with this idea, the onset and extent of 5-HT1AR Ilight amplitude 

reduction from acute escitalopram (1 µM) was observed to follow a similar timecourse as the 

onset and extent of a slowly developing WAY100635 (1 µM)-sensitive sustained outward current 

(data not shown). Whereas this is a plausible mechanism in vivo (since 5-HT neurons are 

intrinsically active and chronic treatment has been shown to cause ~6 fold increases in the DRN 

resting 5-HT levels (Rutter et al., 1994)), it is currently unclear whether there was elevated basal 

5-HT in our quiescent slice preparation. Therefore we cannot confirm that such ‘occlusion’ is 

responsible for the reduced amplitude of 5-HT1AR Ilight observed from acute, subchronic and 

chronic fluoxetine exposure in the current work. Future electrophysiological studies may be able 

to resolve this by comparing the effects of bath-applied WAY100635 on the baseline holding 

current of 5-HT cells from slices derived from control and fluoxetine treated mice.  

Possible Future Antidepressant Treatments  

In the present work we have found no evidence to support the theory that prolonged SSRI 

administration leads to 5-HT1A somatodendritic autoreceptor desensitization. If SSRIs such as 

fluoxetine do not alter 5-HT1A autoreceptor signaling, then pharmacologically targeting this 

receptor to limit its initial inhibitory influence over 5-HT neurotransmission with the goal of 

reducing the onset latency and/or enhancing the therapeutic efficacy would not be advantageous. 

In line with this idea, although early clinical trials for drugs such as pindolol reported positive 
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results (Zanardi et al., 1997), the findings have not been consistently replicated (Berman et al., 

1999). It was generally concluded that if this strategy provides benefits, they are modest at best. 

Although there are a few groups who continue on this path, many researchers have turned to new 

avenues of exploration. The findings of the current work may help with finalizing this transition.  

One promising new class of antidepressant agents stemmed from the observation that the 

anesthetic and ‘club drug’ ketamine exerted pronounced antidepressant effects when given at 

subanesthetic doses. Clinical trials confirmed these rumors, with patients (even some that were 

previously treatment-resistant) exhibiting rapid relief of depressive symptoms that lasted for up to 

seven days with a single dose (Zarate et al., 2006). Whereas the risk of psychotomimetic effects 

and potential for abuse makes ketamine far from an ideal solution, investigation of its mechanism 

of action has been beneficial. Notably, it has fueled the idea that targeting the neurotransmitter 

glutamate may be a potentially useful strategy for combating depression. This rationale has 

yielded a number of promising candidates, including Rapastinel (Naurex Inc.), NRX-1074 (Naurex 

Inc.), Esketamine (Johnson & Johnson) and CERC-301 (Cerecor Inc.). The antidepressant 

properties of these new agents are generally thought to result from their positive effects on 

neurotrophic factors and intracellular signaling pathways promoting synaptogenesis (reviewed in 

Duric and Duman, 2013). Whereas it is possible that ketamine and ketamine-like compounds 

exert these effects indirectly through the 5-HT system (as suggested by their reported 

dependence on 5-HT signaling; Gigliucci et al., 2013), there is support for the idea that ‘classic’ 

antidepressants may also have a previously overlooked impact on promoting neuronal plasticity 

(reviewed in Duman et al., 1997). With their fast onset, more tolerable side effect profile and 

potential for treating previously treatment-refractory cases, these newer ketamine-like drugs may 

be available in the future as monotherapy or as adjunctive therapy for traditional antidepressants 

to enhance therapeutic efficacy and provide quicker symptom relief.  
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Concluding Remarks 

In summary, the application of optogenetics to the study of autoinhibition provided 

unparalleled insight into the effects of chronic SSRI treatment on the 5-HT1A autoinhibitory signal. 

In contrast to the prominent autoreceptor desensitization theory, we found that prolonged 5-HT 

reuptake blockade resulted in an enhancement of the autoreceptor response. Therefore, our data 

suggest that instead of continuing the search for drugs targeting the 5-HT1A autoreceptor in an 

attempt to decrease the onset latency or enhance the efficacy of antidepressant medications, 

rational drug design may be more successful by exploring alternative avenues for potential 

therapeutics. 
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MATERIALS AND METHODS 

Animal Use 

All animal care and experimental procedures were approved by the Wayne State 

University animal investigation committee and are in accordance with the NIH’s Office of 

Laboratory Animal Welfare (OLAW) Public Health Service Policy on Humane Care and Use of 

Laboratory Animals.  The Wayne State University Institutional Animal Care and Use Committee 

(IACUC) is accredited by the Association for Assessment and Accreditation of Laboratory Animal 

Care International (AAALAC). The laboratory animal care and use program conforms to the 

National Research Council’s Guide for the Care and Use of Laboratory Animals, 8th Edition. 

Experiments were performed on 3 genetically modified mice models. The first was B6;SJL-

Tg(Tph2-COP4*H134R/EYFP)5Gfng/J (“TpH2-ChR” mice) (Jackson Laboratories stock number 

014555) (Zhao et al., 2011). The second, “SERT-Cre X Ai32” mice, were created by crossing a 

BAC transgenic mouse expressing Cre recombinase under the control of the serotonin transporter 

(SERT) promoter (Tg(Slc6a4-cre)ET33Gsat/Mmucd) (MMRRC stock number 017260-UCD) 

(Gong et al., 2007) with a conditional knock-in mouse (B6;129S-Gt(ROSA)26Sortm32.1(CAG-

COP4*H134R/EYFP)Hze ) (Jackson Laboratory stock number 012569) (Madisen et al.,  2012) containing  

a loxP-STOP-loxP-ChR(H134R)-EYFP expression cassette downstream of the CAG promoter 

inserted into the Rosa26 locus. Similarly, B6.Cg-Tg(Fev-cre)1Esd/J mice (Jackson Laboratory 

stock number 012712) (Scott et al., 2005) were crossed with the Ai32 reporter mice to produce 

“Pet1-Cre X Ai32” mice. For consistency purposes, only offspring that were heterozygous for the 

CAG-COP4*H134R/EYFP allele were utilized in the study. Mice were housed in the approved 

animal facility, which was maintained on a 12 hour light-dark cycle. Each cage was enriched with 

a hut and paper shavings. Food and water were available ad libitum. 

Treatment  

Mice were given 10 mg/kg/day (±)-Fluoxetine HCl (RTI International) or a 5% sterile 

dextrose solution for two weeks (‘chronic’ treatment) beginning at ~p35 (postnatal day 35). 
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Alternatively, mice used for ‘acute’ experiments began treatment at ~p42. Treatment was 

administered using an osmotic minipump (ALZET®, model 1002), which was prepared and 

implanted subcutaneously according to the procedure outlined by the ALZET® company. During 

pump preparation, expected weight gain was accounted for (1.5 g added to the starting weight of 

males and 0.75 g to that of females) to ensure the dose remained within the target range (between 

~11-9 mg/kg/day) throughout the two weeks. Carprofen (s.c, 5 mg/kg, dissolved in sterile 1x PBS) 

was given prior to the procedure and again 24 hours later. During surgery, anesthesia was 

induced and maintained using isofluorane (1-3% via inhalation). Following surgery, mice were 

housed individually under pre-surgical conditions.  

Testing Blood Levels of Fluoxetine/Norfluoxetine 

At the time of sacrifice, trunk blood was collected in a blood collection tube (BD 

Vacutainer® Serum Tube) and shipped overnight to AIT Laboratories (2265 Executive Drive, 

Indianapolis, IN 48462). To obtain the minimum 1mL required for testing, blood from two mice 

was typically pooled. AIT laboratories performed UHPLC-MS/MS on the whole-blood sample (test 

4150). Of note, pumps were checked at the time of sacrifice to ensure their contents were empty.  

Slice preparation  

Mice were sacrificed in accordance with the recommendations of the AVMA guidelines on 

euthanasia using isofluorane followed by decapitation. Slices were prepared essentially as 

described previously (McGregor et al., 2015). Briefly, the brain was removed and submerged in 

ice-cold Ringer’s solution containing (in mM): 119 ChCl, 2.5 KCl, 7 MgSO4, 0.5 CaCl2, 1 NaH2PO4, 

10 HEPES, and 22 glucose, bubbled to saturation with 95% O2/5% CO2. The posterior half of the 

brain was mounted onto a stage by application of cyanoacrylate glue and stabilized ventrally by 

a 2% agarose block. Coronal slices (300 μM thick) of the brainstem were prepared using a 

vibratome (Vibratome® Series 1000 Sectioning System). Slices were then transferred to a 

recovery chamber filled with pre-warmed (33°C) Ringer’s solution (containing (in mM): 119 NaCl, 

2.5 KCl, 1.3 MgSO4, 2.5 CaCl2, 1 NaH2PO4, 10 HEPES, and 22 glucose bubbled to saturation 
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with 95% O2/5% CO2) for at least one hour to allow for recovery. This solution was identical to 

that used for recordings (see below), both of which were supplemented with L-tryptophan (30 μM, 

Alfa Aesar®) to help preserve 5-HT synthesis and stores in the slice (Evans et al., 2008).  

Electrophysiological Recordings 

Slices were transferred to a recording chamber on the stage of an upright microscope 

(BX50WI, Olympus), where they were continuously perfused with Ringer’s solution maintained at 

~31°C and bubbled to saturation with 95% O2/5% CO2. Serotonin neurons of the ventromedial 

region of the DRN (vmDRN) were initially targeted by their location using differential interference 

contrast (DIC) imaging. The identity of a patched cell was confirmed by the presence of 

Channelrhodopsin (ChR)-mediated currents (see below).  

Whole-cell recordings were conducted using an EPC10 amplifier (HEKA Instruments) 

under the control of Patchmaster software (HEKA Instruments). Current and voltage were 

lowpass filtered at 1-5 kHz and sampled at 2-10 kHz. Recording pipettes were pulled from 

borosilicate glass (Sutter Instruments) using a horizontal Flaming/Brown micropipette puller 

(Sutter Instruments, model P-97). The pipettes were filled with a  potassium-based internal 

solution (composition in mM: 120 KMeSO4, 5 KCl, 5 NaCl, 0.02 EGTA, 10 HEPES, 1 MgCl2, 10 

myo-inositol, 10 Na2 phosphocreatine, 4 ATP Mg Salt, 0.3 GTP Na Salt, pH 7.4) and exhibited 

resistances ranging from  3-4.5 MΩ. Series resistance after breaking into the cell ranged from 5-

20 MΩ. Only cells with a resting membrane potential more hyperpolarized than -60 mV (without 

liquid junction potential (LJP) correction) were included. During recordings, any cells that exhibited 

unstable baselines or access resistances (Raccess) that deviated significantly from baseline were 

discarded. 

Characterization of 5-HT Neuron Properties  

The resting membrane potential (mV) was determined soon after breaking into a cell, once 

the voltage had become steady. Series resistance (MΩ) was assessed by injecting a 70 ms-long 

current pulse (-200 pA) and was subsequently compensated. During voltage clamp recordings, 
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cells were held at -60 mV and the Raccess (MΩ, taken as the current deviation from baseline in 

response to a brief (100 ms) hyperpolarizing pulse (-90 mV)) was continuously monitored.  

Light Stimulation and Characterization of the Response Parameters 

ChR was excited with brief (5 ms) flashes of blue light (455-490 nm). A high speed shutter 

(Model T132, UniBlitz®) under experimenter control via Patchmaster was utilized for this purpose.  

A mercury lamp (USH-102DH, USHIO) served as the light source. To ensure the output was 

stable, the light power at the microscope objective was checked approximately every 20 hours. 

The light was delivered through the 40X water-immersion objective to the entire visual field 

centered on a recorded cell. Full field intensity measured at the 40x microscope objective was ~5 

milliWatts (mW). 

The first stimulation of each patched cell (3 flashes given 50 ms apart) was used to report 

the peak amplitude of the ChR-mediated current (pA) and to characterize the 5-HT1AR Ilight 

responses, which were based on four parameters. The amplitude of the 5-HT1AR-mediated 

current (pA) was taken as the mean around the point at which the signal deviated maximally from 

baseline (mean of the 2 sec segment immediately preceding the light flashes). The rise time (ms) 

was the time from when the ChR-mediated current crossed baseline until the peak autoreceptor-

mediated current amplitude. The half-decay (ms) was the time it took for the autoreceptor-

mediated current to return to half of its maximal value (using the same ‘peak’ location used for 

rise time). The total charge transfer (pAxs) was the integral, or area under the curve, of the entire 

current response. Notably, when the amplitude was approximately 5 pA or less it was not possible 

to accurately determine the rise time or half-decay. In those cases the rise time and half-decay 

were not included in the analysis.  Of note, gender had no apparent effect on the 5-HT1AR Ilight 

amplitude, rise time, half-decay, or charge transfer in either control mice (p = 0.87, p = 0.19, p = 

0.29, p = 0.72, respectively; student’s t-test) or chronic fluoxetine treated mice (p = 0.20, p = 0.26, 

p = 0.87, p = 0.42, respectively; student’s t-test).  
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For experiments examining the effect of acute fluoxetine (Fig. 7), fluoxetine (1 µM, 

LY110140, Eli Lilly Company) was bath-applied for a minimum of 20 minutes before data were 

obtained. This was done to ensure that the drug had fully penetrated the slice. A concentration of 

1 µM should saturate SERT (Ki ~1-2 nM) (Owens et al., 2001; Cheetham et al., 1993) while 

avoiding off-target effects on receptors present in the brainstem slices, such as the 5-HT1AR (Ki 

~8,313 nM) (Owens et al., 1997). 

5-HT Dose Response Curves 

In voltage clamp, BHI was sampled for ~2 sec every 6 or 10 sec. 5-HT (serotonin creatinine 

sulfate monohydrate, Sigma® Life Science) was bath-applied at increasing increments of 

approximately half-log units. This was done in the presence of fluoxetine (1 µM). The results were 

fit to the Hill equation (y=Vmax((xn)/(kn + xn)) using Origin® (OriginLab Corporation) and the 

maximum current response (Imax) and the 5-HT concentration needed to produce a half-maximal 

response (EC50) were analyzed. Any cell whose BHI or Raccess deviated more than ~30% of the 

maximum current response was discarded. To facilitate data collection, Pet1-Cre X Ai32 mice 

were also utilized for these experiments. 

Immunohistochemistry 

Immunohistochemistry (Fig. 1) was performed on a SERT-Cre X Ai3 mouse. The “Ai3” 

mouse (B6.Cg-Gt(ROSA)26Sor tm3(CAG-EYFP)Hze/J) (Jackson Laboratory stock number 007903) 

(Madisen et al., 2010) contains the CAG-loxP-STOP-loxP-EYFP-WPRE-BGHpA expression 

cassette inserted into the Rosa26 locus.  The mouse was perfused with 4% paraformaldehyde 

and 50 micron slices were made with a vibratome (Vibratome® Series 1000 Sectioning System). 

Slices were washed in PBST (PBS with Triton X) with agitation for 30 minutes and incubated 

overnight in PBST. They were left in (horse) blocking solution for 1 hour, followed by incubation 

with polyclonal Goat Anti-SERT (ST(C-20): sc-1458 Santa Cruz Biotechnology), polyclonal 

Chicken Anti-GFP (catalogue No. GFP-1020, Aves) or monoclonal Mouse Anti-Tryptophan 

hydroxylase (Clone WH-3 product No. T0678, Sigma®) overnight at 4°C. Slices were rinsed twice 
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in PBS, twice in PBST (30 minutes per wash), and incubated overnight with Alexa Fluor® 568-

conjugated Donkey Anti-Goat (Cat No. A11057 Invitrogen), DyLight™488-conjugated Goat Anti-

Chicken (Jackson ImmunoResearch, #102-485-155), or Cy™3-conjugated Goat Anti-Mouse 

(Jackson ImmunoResearch, #115-165-146) antibodies, respectively. The slices were then rinsed 

twice in PBS, twice with PBST (30 minutes per wash), and left overnight in ABC solution at 4°C, 

then washed twice in PBS and twice in PBST (30 minutes per wash). Fluorescence was visualized 

using an Olympus BX50WI confocal microscope.  

Data Analysis and Statistics 

In order to preserve biological variability of 5-HT neurons (reviewed in Andrade and Haj-

Dahmane, 2013) and thus the physiological relevance of the data, each cell was utilized as a 

datum point and all cells, even outliers, were included in our dataset. Although qualitative 

comparison of the ‘within-mouse’ variance to the ‘between-mice’ variability within a group 

suggested mouse-to-mouse variability was not a particularly influential factor, we nevertheless 

excluded data from mice where <3 data cells were obtained.  The average number of cells 

sampled per SERT-Cre X Ai32 mouse for 5-HT1A R Ilight analysis was ~4.3, 6, and 6.1 for the no 

treatment, sham treatment, and chronic fluoxetine treatment groups, respectively. 

Results are presented as mean ± SEM unless otherwise noted. Significance was 

assessed using a two-tailed student’s unpaired t-test, one-way ANOVA, or moderated regression 

analysis, as appropriate. Tukey was used for post-hoc analysis. A value of p < 0.05 was set to 

indicate statistical significance. Both SPSS® (IBM®) and Origin® (8.5, OriginLab Corporation) 

were used for statistical analysis. IgorPro (4.0.6.1, WaveMetrics, Inc) and CorelDRAW®12 (Corel 

Corporation) were used to prepare figures. 

 

 

 

 



50 

 

REFERENCES 

Adell A, Celada P, Abellan MT and Artigas F (2002) Origin and functional role of the extracellular serotonin 

in the midbrain raphe nuclei. Brain Res Brain Res Rev 39:154-180. 

Aghajanian GK (1972) Influence of drugs on the firing of serotonin-containing neurons in brain. Fed Proc 

31:91-96. 

Aghajanian GK, Graham AW and Sheard MH (1970) Serotonin-containing neurons in brain: depression of 

firing by monoamine oxidase inhibitors. Science 169:1100-1102. 

Aghajanian GK and Vandermaelen CP (1982) Intracellular identification of central noradrenergic and 

serotonergic neurons by a new double labeling procedure. J Neurosci 2:1786-1792. 

Altieri SC, Garcia-Garcia AL, Leonardo ED and Andrews AM (2013) Rethinking 5-HT1A receptors: emerging 

modes of inhibitory feedback of relevance to emotion-related behavior. ACS Chem Neurosci 4:72-

83. 

Andrade R and Haj-Dahmane S (2013) Serotonin neuron diversity in the dorsal raphe. ACS Chem Neurosci 

4:22-25. 

Andrade R, Huereca D, Lyons JG, Andrade EM and McGregor KM (2015) 5-HT1A Receptor-Mediated 

Autoinhibition and the Control of Serotonergic Cell Firing. ACS Chem Neurosci. 

Baraban JM and Aghajanian GK (1980) Suppression of firing activity of 5-HT neurons in the dorsal raphe 

by alpha-adrenoceptor antagonists. Neuropharmacology 19:355-363. 

Baudry A, Mouillet-Richard S, Schneider B, Launay JM and Kellermann O (2010) miR-16 targets the 

serotonin transporter: a new facet for adaptive responses to antidepressants. Science 329:1537-

1541. 

Beck SG, Pan YZ, Akanwa AC and Kirby LG (2004) Median and dorsal raphe neurons are not 

electrophysiologically identical. J Neurophysiol 91:994-1005. 



51 

 

Berman RM, Anand A, Cappiello A, Miller HL, Hu XS, Oren DA and Charney DS (1999) The use of pindolol 

with fluoxetine in the treatment of major depression: final results from a double-blind, placebo-

controlled trial. Biol Psychiatry 45:1170-1177. 

Blaschko H (1952) Amine oxidase and amine metabolism. Pharmacol Rev 4:415-458. 

Blier P (2001) Pharmacology of rapid-onset antidepressant treatment strategies. J Clin Psychiatry 62 Suppl 

15:12-17. 

Blier P and de Montigny C (1983) Electrophysiological investigations on the effect of repeated zimelidine 

administration on serotonergic neurotransmission in the rat. J Neurosci 3:1270-1278. 

Blier P, de Montigny C and Chaput Y (1987) Modifications of the serotonin system by antidepressant 

treatments: implications for the therapeutic response in major depression. J Clin 

Psychopharmacol 7:24s-35s. 

Blier P, Pineyro G, el Mansari M, Bergeron R and de Montigny C (1998) Role of somatodendritic 5-HT 

autoreceptors in modulating 5-HT neurotransmission. Ann N Y Acad Sci 861:204-216. 

Boyden ES, Zhang F, Bamberg E, Nagel G and Deisseroth K (2005) Millisecond-timescale, genetically 

targeted optical control of neural activity. Nat Neurosci 8:1263-1268. 

Brodie BB and Shore PA (1957) A concept for a role of serotonin and norepinephrine as chemical 

mediators in the brain. Ann N Y Acad Sci 66:631-642. 

Bunin MA, Prioleau C, Mailman RB and Wightman RM (1998) Release and uptake rates of 5-

hydroxytryptamine in the dorsal raphe and substantia nigra reticulata of the rat brain. J 

Neurochem 70:1077-1087. 

Bunney WE, Jr. and Davis JM (1965) Norepinephrine in depressive reactions. A review. Arch Gen Psychiatry 

13:483-494. 



52 

 

Carlsson A (1975) Receptor-mediated control of dopamine metabolism, in Pre-and postsynaptic receptors: 

proceedings of a study group held at the thirteenth annual meeting of the American College of 

Neuropsychopharmacology pp 49-65. 

Carlsson A, Fuxe K and Ungerstedt U (1968) The effect of imipramine on central 5-hydroxytryptamine 

neurons. J Pharm Pharmacol 20:150-151. 

Carlsson A, Lindqvist M and Magnusson T (1957) 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan 

as reserpine antagonists. Nature 180:1200. 

Castro M, Diaz A, del Olmo E and Pazos A (2003) Chronic fluoxetine induces opposite changes in G protein 

coupling at pre and postsynaptic 5-HT1A receptors in rat brain. Neuropharmacology 44:93-101. 

Challis C, Boulden J, Veerakumar A, Espallergues J, Vassoler FM, Pierce RC, Beck SG and Berton O (2013) 

Raphe GABAergic neurons mediate the acquisition of avoidance after social defeat. J Neurosci 

33:13978-13988, 13988a. 

Cheetham SC, Viggers JA, Slater NA, Heal DJ and Buckett WR (1993) [3H]paroxetine binding in rat frontal 

cortex strongly correlates with [3H]5-HT uptake: effect of administration of various 

antidepressant treatments. Neuropharmacology 32:737-743. 

Coppen A (1967) The biochemistry of affective disorders. Br J Psychiatry 113:1237-1264. 

Coppen A, Shaw DM and Farrell JP (1963) Potentiation of the antidepressive effect of a monoamine-

oxidase inhibitor by tryptophan. Lancet 1:79-81. 

Crane GE (1956) The psychiatric side-effects of iproniazid. Am J Psychiatry 112:494-501. 

Czachura JF and Rasmussen K (2000) Effects of acute and chronic administration of fluoxetine on the 

activity of serotonergic neurons in the dorsal raphe nucleus of the rat. Naunyn Schmiedebergs 

Arch Pharmacol 362:266-275. 

Davidson C and Stamford JA (1995) The effect of paroxetine on 5-HT efflux in the rat dorsal raphe nucleus 

is potentiated by both 5-HT1A and 5-HT1B/D receptor antagonists. Neurosci Lett 188:41-44. 



53 

 

Davidson C and Stamford JA (1998) Contrasting effects of chronic paroxetine on 5-HT1A control of dorsal 

raphe cell firing and 5-HT release. Neuroreport 9:2535-2538. 

de Montigny C (1981) Enhancement of the 5-HT neurotransmission by antidepressant treatments. J 

Physiol (Paris) 77:455-461. 

de Montigny C, Blier P and Chaput Y (1984) Electrophysiologically-identified serotonin receptors in the rat 

CNS. Effect of antidepressant treatment. Neuropharmacology 23:1511-1520. 

Delgado PL, Charney DS, Price LH, Aghajanian GK, Landis H and Heninger GR (1990) Serotonin function 

and the mechanism of antidepressant action. Reversal of antidepressant-induced remission by 

rapid depletion of plasma tryptophan. Arch Gen Psychiatry 47:411-418. 

Delgado PL, Charney DS, Price LH, Landis H and Heninger GR (1989) Neuroendocrine and behavioral effects 

of dietary tryptophan restriction in healthy subjects. Life Sci 45:2323-2332. 

Descarries L and Riad M (2012) Effects of the antidepressant fluoxetine on the subcellular localization of 

5-HT1A receptors and SERT. Philos Trans R Soc Lond B Biol Sci 367:2416-2425. 

Dulawa SC, Holick KA, Gundersen B and Hen R (2004) Effects of chronic fluoxetine in animal models of 

anxiety and depression. Neuropsychopharmacology 29:1321-1330. 

Duman RS, Heninger GR and Nestler EJ (1997) A molecular and cellular theory of depression. Arch Gen 

Psychiatry 54:597-606. 

Duric V and Duman RS (2013) Depression and treatment response: dynamic interplay of signaling 

pathways and altered neural processes. Cell Mol Life Sci 70:39-53. 

Evans AK, Reinders N, Ashford KA, Christie IN, Wakerley JB and Lowry CA (2008) Evidence for serotonin 

synthesis-dependent regulation of in vitro neuronal firing rates in the midbrain raphe complex. 

Eur J Pharmacol 590:136-149. 

Ferguson JM (2001) SSRI Antidepressant Medications: Adverse Effects and Tolerability. Prim Care 

Companion J Clin Psychiatry 3:22-27. 



54 

 

Friedman E, Shopsin B and Gershon S (1976) Effects of tranylcypromine on 5-HT uptake and its interaction 

with PCPA on rat brain 5-HT. Res Commun Chem Pathol Pharmacol 15:191-194. 

Friedman E, Shopsin B, Goldstein M and Gershon S (1974) Interactions of imipramine and synthesis 

inhibitors on biogenic amines. J Pharm Pharmacol 26:995-996. 

Gardier AM, Lepoul E, Trouvin JH, Chanut E, Dessalles MC and Jacquot C (1994) Changes in dopamine 

metabolism in rat forebrain regions after cessation of long-term fluoxetine treatment: 

relationship with brain concentrations of fluoxetine and norfluoxetine. Life Sci 54:Pl51-56. 

Gigliucci V, O'Dowd G, Casey S, Egan D, Gibney S and Harkin A (2013) Ketamine elicits sustained 

antidepressant-like activity via a serotonin-dependent mechanism. Psychopharmacology (Berl) 

228:157-166. 

Glowinski J and Axelrod J (1964) INHIBITION OF UPTAKE OF TRITIATED-NORADRENALINE IN THE INTACT 

RAT BRAIN BY IMIPRAMINE AND STRUCTURALLY RELATED COMPOUNDS. Nature 204:1318-1319. 

Glowinski J, Iversen LL and Axelrod J (1966) Storage and synthesis of norepinephrine in the reserpine-

treated rat brain. J Pharmacol Exp Ther 151:385-399. 

Gobbi M, Crespi D, Foddi MC, Fracasso C, Mancini L, Parotti L and Mennini T (1997) Effects of chronic 

treatment with fluoxetine and citalopram on 5-HT uptake, 5-HT1B autoreceptors, 5-HT3 and 5-

HT4 receptors in rats. Naunyn Schmiedebergs Arch Pharmacol 356:22-28. 

Goldstein BJ and Goodnick PJ (1998) Selective serotonin reuptake inhibitors in the treatment of affective 

disorders--III. Tolerability, safety and pharmacoeconomics. J Psychopharmacol 12:S55-87. 

Gong S, Doughty M, Harbaugh CR, Cummins A, Hatten ME, Heintz N and Gerfen CR (2007) Targeting Cre 

recombinase to specific neuron populations with bacterial artificial chromosome constructs. J 

Neurosci 27:9817-9823. 



55 

 

Greenberg PE, Kessler RC, Birnbaum HG, Leong SA, Lowe SW, Berglund PA and Corey-Lisle PK (2003) The 

economic burden of depression in the United States: how did it change between 1990 and 2000? 

J Clin Psychiatry 64:1465-1475. 

Gu Q, Dillon CF and Burt VL (2010) Prescription drug use continues to increase: U.S. prescription drug data 

for 2007-2008. NCHS Data Brief:1-8. 

Haigler HJ and Aghajanian GK (1974) Lysergic acid diethylamide and serotonin: a comparison of effects on 

serotonergic neurons and neurons receiving a serotonergic input. J Pharmacol Exp Ther 188:688-

699. 

Hamani C, Diwan M, Macedo CE, Brandao ML, Shumake J, Gonzalez-Lima F, Raymond R, Lozano AM, 

Fletcher PJ and Nobrega JN (2010) Antidepressant-like effects of medial prefrontal cortex deep 

brain stimulation in rats. Biol Psychiatry 67:117-124. 

Healy D (2000) The case for an individual approach to the treatment of depression. Journal of Clinical 

Psychiatry 61:18-23. 

Healy D (2006) Let them eat prozac, New York University Press, New York. 

Hensler JG (2002) Differential regulation of 5-HT1A receptor-G protein interactions in brain following 

chronic antidepressant administration. Neuropsychopharmacology 26:565-573. 

Hervas I, Vilaro MT, Romero L, Scorza MC, Mengod G and Artigas F (2001) Desensitization of 5-HT(1A) 

autoreceptors by a low chronic fluoxetine dose effect of the concurrent administration of WAY-

100635. Neuropsychopharmacology 24:11-20. 

Hess SM and Doepfner W (1961) Behavioral effects and brain amine content in rats. Arch Int Pharmacodyn 

Ther 134:89-99. 

Hjorth S, Bengtsson HJ, Kullberg A, Carlzon D, Peilot H and Auerbach SB (2000) Serotonin autoreceptor 

function and antidepressant drug action. J Psychopharmacol 14:177-185. 



56 

 

Homberg JR, Olivier JD, Blom T, Arentsen T, van Brunschot C, Schipper P, Korte-Bouws G, van Luijtelaar G 

and Reneman L (2011) Fluoxetine exerts age-dependent effects on behavior and amygdala 

neuroplasticity in the rat. PLoS One 6:e16646. 

Hrdina PD and Vu TB (1993) Chronic fluoxetine treatment upregulates 5-HT uptake sites and 5-HT2 

receptors in rat brain: an autoradiographic study. Synapse 14:324-331. 

Jacobs BL and Azmitia EC (1992) Structure and function of the brain serotonin system. Physiol Rev 72:165-

229. 

Kirby LG, Pernar L, Valentino RJ and Beck SG (2003) Distinguishing characteristics of serotonin and non-

serotonin-containing cells in the dorsal raphe nucleus: electrophysiological and 

immunohistochemical studies. Neuroscience 116:669-683. 

Kline NS (1958) Clinical experience with iproniazid (marsilid). J Clin Exp Psychopathol 19:72-78; discussion 

78-79. 

Kochanek KD, Murphy SL, Xu J and Arias E (2014) Mortality in the United States, 2013. NCHS Data Brief:1-

8. 

Koed K and Linnet K (1997) The serotonin transporter messenger RNA level in rat brain is not regulated 

by antidepressants. Biol Psychiatry 42:1177-1180. 

Kofuji P, Davidson N and Lester HA (1995) Evidence that neuronal G-protein-gated inwardly rectifying K+ 

channels are activated by G beta gamma subunits and function as heteromultimers. Proc Natl 

Acad Sci U S A 92:6542-6546. 

Kohler C and Steinbusch H (1982) Identification of serotonin and non-serotonin-containing neurons of the 

mid-brain raphe projecting to the entorhinal area and the hippocampal formation. A combined 

immunohistochemical and fluorescent retrograde tracing study in the rat brain. Neuroscience 

7:951-975. 



57 

 

Kuhn R (1958) The treatment of depressive states with G 22355 (imipramine hydrochloride). Am J 

Psychiatry 115:459-464. 

Lapin IP and Oxenkrug GF (1969) Intensification of the central serotoninergic processes as a possible 

determinant of the thymoleptic effect. Lancet 1:132-136. 

Le Poul E, Boni C, Hanoun N, Laporte AM, Laaris N, Chauveau J, Hamon M and Lanfumey L (2000) 

Differential adaptation of brain 5-HT1A and 5-HT1B receptors and 5-HT transporter in rats treated 

chronically with fluoxetine. Neuropharmacology 39:110-122. 

Le Poul E, Laaris N, Doucet E, Laporte AM, Hamon M and Lanfumey L (1995) Early desensitization of 

somato-dendritic 5-HT1A autoreceptors in rats treated with fluoxetine or paroxetine. Naunyn 

Schmiedebergs Arch Pharmacol 352:141-148. 

Lieberman J (2003) History of the use of antidepressants in primary care. Prim Care Companion J Clin 

Psychiatry 5:6-10. 

Lin JY (2011) A user's guide to channelrhodopsin variants: features, limitations and future developments. 

Exp Physiol 96:19-25. 

Little A (2009) Treatment-resistant depression. Am Fam Physician 80:167-172. 

Lopez-Munoz F and Alamo C (2009) Monoaminergic neurotransmission: the history of the discovery of 

antidepressants from 1950s until today. Curr Pharm Des 15:1563-1586. 

Machado DG, Cunha MP, Neis VB, Balen GO, Colla A, Grando J, Brocardo PS, Bettio LE, Capra JC and 

Rodrigues AL (2012) Fluoxetine reverses depressive-like behaviors and increases hippocampal 

acetylcholinesterase activity induced by olfactory bulbectomy. Pharmacol Biochem Behav 

103:220-229. 

Madisen L, Mao T, Koch H, Zhuo JM, Berenyi A, Fujisawa S, Hsu YW, Garcia AJ, 3rd, Gu X, Zanella S, Kidney 

J, Gu H, Mao Y, Hooks BM, Boyden ES, Buzsaki G, Ramirez JM, Jones AR, Svoboda K, Han X, Turner 



58 

 

EE and Zeng H (2012) A toolbox of Cre-dependent optogenetic transgenic mice for light-induced 

activation and silencing. Nat Neurosci 15:793-802. 

Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, Ng LL, Palmiter RD, Hawrylycz MJ, Jones 

AR, Lein ES and Zeng H (2010) A robust and high-throughput Cre reporting and characterization 

system for the whole mouse brain. Nat Neurosci 13:133-140. 

McDevitt RA, Tiran-Cappello A, Shen H, Balderas I, Britt JP, Marino RA, Chung SL, Richie CT, Harvey BK and 

Bonci A (2014) Serotonergic versus nonserotonergic dorsal raphe projection neurons: differential 

participation in reward circuitry. Cell Rep 8:1857-1869. 

McGregor K, Beïque J-C and Andrade R (2015) Organotypic Slices and Biolistic Transfection for the Study 

of Serotonin Receptor Function in CNS Neurons, in Serotonin Receptor Technologies (Blenau W 

and Baumann A eds) pp 39-56, Springer New York. 

Moja EA, Cipolla P, Castoldi D and Tofanetti O (1989) Dose-response decrease in plasma tryptophan and 

in brain tryptophan and serotonin after tryptophan-free amino acid mixtures in rats. Life Sci 

44:971-976. 

National Center for Health S (2014) Health, United States, in Health, United States, 2013: With Special 

Feature on Prescription Drugs, National Center for Health Statistics (US), Hyattsville (MD). 

Neumaier JF, Root DC and Hamblin MW (1996) Chronic fluoxetine reduces serotonin transporter mRNA 

and 5-HT1B mRNA in a sequential manner in the rat dorsal raphe nucleus. 

Neuropsychopharmacology 15:515-522. 

O'Connor JJ and Kruk ZL (1994) Effects of 21 days treatment with fluoxetine on stimulated endogenous 5-

hydroxytryptamine overflow in the rat dorsal raphe and suprachiasmatic nucleus studied using 

fast cyclic voltammetry in vitro. Brain Res 640:328-335. 

Owens MJ, Knight DL and Nemeroff CB (2001) Second-generation SSRIs: human monoamine transporter 

binding profile of escitalopram and R-fluoxetine. Biol Psychiatry 50:345-350. 



59 

 

Owens MJ, Morgan WN, Plott SJ and Nemeroff CB (1997) Neurotransmitter receptor and transporter 

binding profile of antidepressants and their metabolites. J Pharmacol Exp Ther 283:1305-1322. 

Pan ZZ, Colmers WF and Williams JT (1989) 5-HT-mediated synaptic potentials in the dorsal raphe nucleus: 

interactions with excitatory amino acid and GABA neurotransmission. J Neurophysiol 62:481-486. 

Pan ZZ and Williams JT (1989) Differential actions of cocaine and amphetamine on dorsal raphe neurons 

in vitro. J Pharmacol Exp Ther 251:56-62. 

Penington NJ, Kelly JS and Fox AP (1993) Whole-cell recordings of inwardly rectifying K+ currents activated 

by 5-HT1A receptors on dorsal raphe neurones of the adult rat. J Physiol 469:387-405. 

Pletscher A (1991) The discovery of antidepressants: a winding path. Experientia 47:4-8. 

Pletscher A, Shore PA and Brodie BB (1955) Serotonin release as a possible mechanism of reserpine action. 

Science 122:374-375. 

Pollak Dorocic I, Furth D, Xuan Y, Johansson Y, Pozzi L, Silberberg G, Carlen M and Meletis K (2014) A 

whole-brain atlas of inputs to serotonergic neurons of the dorsal and median raphe nuclei. Neuron 

83:663-678. 

Pratt LA and Brody DJ (2014) Depression in the U.S. household population, 2009-2012. NCHS Data Brief:1-

8. 

Riad M, Garcia S, Watkins KC, Jodoin N, Doucet E, Langlois X, el Mestikawy S, Hamon M and Descarries L 

(2000) Somatodendritic localization of 5-HT1A and preterminal axonal localization of 5-HT1B 

serotonin receptors in adult rat brain. J Comp Neurol 417:181-194. 

Rickels K and Schweizer E (1990) Clinical overview of serotonin reuptake inhibitors. J Clin Psychiatry 51 

Suppl B:9-12. 

Roberts C, Hagan JJ, Bartoszyk GD and Kew JN (2005) Effect of vilazodone on 5-HT efflux and re-uptake in 

the guinea-pig dorsal raphe nucleus. Eur J Pharmacol 517:59-63. 



60 

 

Rutter JJ, Gundlah C and Auerbach SB (1994) Increase in extracellular serotonin produced by uptake 

inhibitors is enhanced after chronic treatment with fluoxetine. Neurosci Lett 171:183-186. 

Schildkraut JJ (1965) The catecholamine hypothesis of affective disorders: a review of supporting 

evidence. Am J Psychiatry 122:509-522. 

Schweimer JV and Ungless MA (2010) Phasic responses in dorsal raphe serotonin neurons to noxious 

stimuli. Neuroscience 171:1209-1215. 

Scott MM, Wylie CJ, Lerch JK, Murphy R, Lobur K, Herlitze S, Jiang W, Conlon RA, Strowbridge BW and 

Deneris ES (2005) A genetic approach to access serotonin neurons for in vivo and in vitro studies. 

Proc Natl Acad Sci U S A 102:16472-16477. 

Sheard MH, Zolovick A and Aghajanian GK (1972) Rophe neurons: effect of tricyclic antidepressant drugs. 

Brain Res 43:690-694. 

Shopsin B, Friedman E and Gershon S (1976) Parachlorophenylalanine reversal of tranylcypromine effects 

in depressed patients. Arch Gen Psychiatry 33:811-819. 

Shopsin B, Gershon S, Goldstein M, Friedman E and Wilk S (1975) Use of synthesis inhibitors in defining a 

role for biogenic amines during imipramine treatment in depressed patients. Psychopharmacol 

Commun 1:239-249. 

Shore PA and Brodie BB (1958) Effect of iproniazid on brain levels of norepinephrine and serotonin. 

Science 127:704. 

Shore PA, Mead JA, Kuntzman RG, Spector S and Brodie BB (1957a) On the physiologic significance of 

monoamine oxidase in brain. Science 126:1063-1064. 

Shore PA, Pletscher A, Tomich EG, Carlsson A, Kuntzman R and Brodie BB (1957b) Role of brain serotonin 

in reserpine action. Ann N Y Acad Sci 66:609-615; discussion, 615-607. 



61 

 

Spector S, Sjoerdsma A and Udenfriend S (1965) BLOCKADE OF ENDOGENOUS NOREPINEPHRINE 

SYNTHESIS BY ALPHA-METHYL-TYROSINE, AN INHIBITOR OF TYROSINE HYDROXYLASE. J 

Pharmacol Exp Ther 147:86-95. 

Vandermaelen CP and Aghajanian GK (1983) Electrophysiological and pharmacological characterization of 

serotonergic dorsal raphe neurons recorded extracellularly and intracellularly in rat brain slices. 

Brain Res 289:109-119. 

Wang RY and Aghajanian GK (1977) Antidromically identified serotonergic neurons in the rat midbrain 

raphe: evidence for collateral inhibition. Brain Res 132:186-193. 

Williams JT, Colmers WF and Pan ZZ (1988) Voltage- and ligand-activated inwardly rectifying currents in 

dorsal raphe neurons in vitro. J Neurosci 8:3499-3506. 

Wong DT, Bymaster FP, Horng JS and Molloy BB (1975) A new selective inhibitor for uptake of serotonin 

into synaptosomes of rat brain: 3-(p-trifluoromethylphenoxy). N-methyl-3-phenylpropylamine. J 

Pharmacol Exp Ther 193:804-811. 

Yoshimura M and Higashi H (1985) 5-Hydroxytryptamine mediates inhibitory postsynaptic potentials in 

rat dorsal raphe neurons. Neurosci Lett 53:69-74. 

Young SN, Ervin FR, Pihl RO and Finn P (1989) Biochemical aspects of tryptophan depletion in primates. 

Psychopharmacology (Berl) 98:508-511. 

Young SN, Smith SE, Pihl RO and Ervin FR (1985) Tryptophan depletion causes a rapid lowering of mood in 

normal males. Psychopharmacology (Berl) 87:173-177. 

Zanardi R, Artigas F, Franchini L, Sforzini L, Gasperini M, Smeraldi E and Perez J (1997) How long should 

pindolol be associated with paroxetine to improve the antidepressant response? J Clin 

Psychopharmacol 17:446-450. 



62 

 

Zarate CA, Jr., Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, Charney DS and Manji HK 

(2006) A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major 

depression. Arch Gen Psychiatry 63:856-864. 

Zeller EA and Barsky J (1952) In vivo inhibition of liver and brain monoamine oxidase by 1-Isonicotinyl-2-

isopropyl hydrazine. Proc Soc Exp Biol Med 81:459-461. 

Zhao S, Ting JT, Atallah HE, Qiu L, Tan J, Gloss B, Augustine GJ, Deisseroth K, Luo M, Graybiel AM and Feng 

G (2011) Cell type-specific channelrhodopsin-2 transgenic mice for optogenetic dissection of 

neural circuitry function. Nat Methods 8:745-752. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



63 

 

ABSTRACT 

USING A NOVEL OPTOGENETIC APPROACH TO DIRECTLY ASSESS 5-HT1A 
SOMATODENDRITIC AUTORECEPTOR FUNCTION IN RESPONSE TO CHRONIC 

SELECTIVE SEROTONIN REUPTAKE INHIBITOR TREATMENT 

by 

KELLY MARIE MCGREGOR 

August 2015 

Advisor: Dr. Rodrigo Andrade 

Major: Pharmacology (Molecular Neuropharmacology) 

Degree: Doctor of Philosophy 

Antidepressant drugs are widely used but their mechanism of action remains only partially 

understood. One leading hypothesis holds that a key effect of chronic treatment with a Selective 

Serotonin Reuptake Inhibitor (SSRI) is loss of somatodendritic 5-HT1A receptor-mediated 

autoinhibition in serotonergic neurons of the dorsal raphe nucleus (DRN). However, technical 

limitations have prevented direct testing of this hypothesis. In the current study we took advantage 

of optogenetic strategies to assess the effects of the classic SSRI fluoxetine on 5-HT1A receptor-

mediated autoinhibition. We conducted these experiments in mice expressing the light-sensitive 

ion channel Channelrhodopsin (ChR) in 5-HT neurons to facilitate their unambiguous identification 

and achieve precise temporal control over endogenous 5-HT release and 5-HT1A autoreceptor 

activation. Whole-cell intracellular recordings of DRN 5-HT neurons in in vitro brainstem slices 

revealed that light-induced 5-HT1A autoreceptor-mediated currents in chronically treated mice (14 

days) were smaller in amplitude but longer in duration, thereby resulting in an overall greater 

charge transfer compared to controls. Consistent with this, 5-HT dose response curves 

constructed in the presence of bath fluoxetine also provided no evidence for a reduction in 

autoreceptor sensitivity. To test whether an attenuation of 5-HT clearance could potentially 

account for the alterations observed from chronic treatment, responses were compared to those 

obtained following acute or subchronic fluoxetine treatment (bath application or 3 days). In both 
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conditions the 5-HT1AR Ilight responses resembled those of chronic treatment and differed 

substantially from controls, suggesting that reduced 5-HT reuptake was likely to be a contributing 

factor. Collectively, instead of autoreceptor desensitization, our results suggest that the 5-HT1A 

autoreceptor-mediated signal is actually preserved after chronic SSRI treatment. 
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