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CHAPTER 1 Introduction

Post-processing is an important technique in scientific computing, where it is necessary to

draw some useful information that have physical meanings such as velocity, flux, stress,

etc., from the primary results of the computing. These quantities of interest usually involve

derivatives of the primary data. This type of post-processing methods are called recovery

techniques. Typical recovery techniques include gradient recovery and Hessian recovery.

As for gradient recovery, it is extensive studied in the literature. Most of them are based

on averaging methods [19, 63], local or global projections [12, 52, 90], or local least square

fittings [58, 79, 107, 110, 111, 112]. However, all the methods above are only limited to C0

finite element methods. According to [4], a good recovery operator should satisfy consistency

condition, localization condition, and boundedness and linearity condition. For conforming

elements, it is well known that polynomial preserving recovery (PPR) [107] satisfies all the

above conditions. Unfortunately, there is no such type gradient recovery for the Crouzeix-

Raviart element in the literature. To bridge the gap, we propose and analyze a gradient

recovery method for the Crouzeix-Raviart element in this work.

Hessian matrix is particularly significant in adaptive mesh design, since it can indicate the

direction where the function changes the most and guide us to construct anisotropic meshes

to cope with the anisotropic properties of the solution of the underlying partial differential

equation [59]. It also plays an important role in finite element approximation of second order

non-variational elliptic problems [65], numerical solution of some fully nonlinear equations

such as Monge-Ampère equation [66, 83], and designing nonlocal finite element technique

[45]. There have been some works in literature on this subject. In 1998, Lakhany-Whiteman
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used a simple averaging method twice at edge centers of the regular uniform triangular mesh

to produce a superconvergent Hessian [64]. Later, some other reseachers such as Agouzal

et al.[2], Bank et al.[13] and Ovall [88] also studied Hessian recovery. Comparsion studies

of existing Hessian recovery techniques can be found in Vallet et al. [94] and Picasso et al.

[89]. However, there is no systematic theory guaranteeing convergence under general circum-

stances. Moreover, there are certain technical difficulties in obtaining rigorous convergence

proof for meshes other than the regular pattern triangular mesh. In a very recent work,

Kamenski-Huang argued that it is not necessary to have very accurate or even convergent

Hessian in order to obtain a good mesh [61]. Our goal is not targeted on the direction of

adaptive mesh refinement; instead, we emphasize on obtaining accurate Hessian matrices via

recovery techniques. We propose an effective Hessian recovery method and establish a solid

theoretical analysis for such method.

The applications of recovery techniques include adaptive finite element methods and

eigenvalue problems. In this work, we discuss the application of the proposed gradient recov-

ery for the Crouzeix-Raviart element into adaptive nonconforming finite element method.

Also, we apply the polynomial preserving recovery into efficient eigenvalue computation to

propose several superconvergent two-grid schemes and multilevel adaptive methods for ellip-

tic eigenvalue problems.

The rest of this dissertation is organized as follows:

Chapter 2 begins with introducing some basic notation of Soboleve spaces and model

problems. Then we review some preliminary knowledges of finite element methods and their

approximations of the model problems.

Chapter 3 focuses on recovery of the first order derivative for the Crouzeix-Raviart ele-
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ment. In this chapter, we propose and analyze a gradient recovery method for the Crouzeix-

Raviart element. The proposed method is proved to preserving quadratic polynomials and

to be a bounded linear operator. Its application in adaptive nonconforming finite element is

also discussed. This chapter is based on our published paper [49].

Chapter 4 is devoted to recovery of the second order derivative of Lagrange element of

arbitrary order. A new Hessian recovery strategy is proposed and its mathematical theory

is established. This chapter is based on our submitted paper [50].

Chapter 5 concentrates on application of recovery technique. In partial, we employ poly-

nomial preserving recovery to design some fast and efficient algorithms for eigenvalue prob-

lems. Our new algorithms compare favorably with some existing algorithms and enjoy su-

perconvergence property. This chapter is based on our submitted paper [51].
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CHAPTER 2 Preliminaries

2.1 Sobolev spaces

In this work, we assume Ω ⊂ R2 is a bounded polygonal domain with Lipschitz continuous

boundary ∂Ω. Let
´

Ω
f(z)dz denote the Lebesgue integral [1, 25, 35] for some Lebegue

measure function f on the domain Ω. For 1 ≤ p ≤ ∞, let

‖f‖p,Ω =

(ˆ
Ω

|f(z)|pdz
)1/p

,

and for the case p =∞,

‖f‖0,∞,Ω = ess sup{|f(z) : z ∈ Ω}.

Define the Lebesgue spaces

Lp(Ω) = {f : ‖f‖p,Ω <∞}.

A multi-index is a 2-tuple of non-negative integers αi, i = 1, 2. The length of α of is given

by

|α| =
2∑
i=1

αi.

The weak partial derivative Dαv, see [1, 25, 35], is then defined as

Dαv =

(
∂

∂x

)α1
(
∂

∂y

)α2

.

Also, Dku with |α| = k is the vector of all partial derivatives of order k. Let W k,p(Ω) = {v :
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Dαv ∈ Lp(Ω), |α| ≤ k} be the classical Sobolev spaces with norms

‖v‖k,p,Ω =

∑
|α|≤k

ˆ
Ω

|Dαv(z)|pdz

 1
p

, 1 ≤ p <∞,

‖v‖k,∞,Ω = ess sup
|α|≤k,z∈Ω

|Dαv(z)|, p =∞;

and seminorms

|v|k,p,Ω =

∑
|α|=k

ˆ
Ω

|Dαv(z)|pdz

 1
p

, 1 ≤ p <∞,

|v|k,∞,Ω = ess sup
|α|=k,z∈Ω

|Dαv(z)|, p =∞.

When p = 2, let Hk(Ω) = W k,2(Ω) and the index p is omitted in their corresponding norms

and seminorms.

For any positive integer n, we say a vector function ~v = (v1, v2, · · · , vn)T ∈ W k,p(Ω)n

provided that vi ∈ W k,p(Ω) for i = 1, 2, · · · , n. Its norm is defined as

‖~v‖k,p,Ω =

(
n∑
i=1

‖vi‖pk,p,Ω

) 1
p

, 1 ≤ p <∞,

‖~v‖k,∞,Ω = ess sup
|α|≤k,z∈Ω,1≤i≤n

|Dαvi(z)|, p =∞;

and similarly the seminorm of ~v is defined as

|~v|k,p,Ω =

(
n∑
i=1

|vi|pk,p,Ω

) 1
p

, 1 ≤ p <∞,

|~v|k,∞,Ω = ess sup
|α|=k,z∈Ω,1≤i≤n

|Dαvi(z)|, p =∞.
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The subscript p is omitted in case of p = 2.

For a subdomain A of Ω, let Pm(A) be the space of polynomials of degree less than or

equal to m over A and nm be the dimension of Pm(A) with nm = 1
2
(m+1)(m+2). Similarly,

we use W k,p(A) to denote the restriction of classical Sobolev space on A with norm ‖ · ‖k,p,A

and seminorm | · |k,p,A. When p = 2, we simply denote Hk(A) = W k,2(A) and the subscript

p is omitted.

Throughout this article, the letter C or c, with or without subscript, denotes a generic

constant which is independent of h and may not be the same at each occurrence. To simplify

notation, we denote x ≤ Cy by x . y.

2.2 Model problems and their variation problems

In the work, we consider both second order elliptic equation and Stokes equation.

2.2.1 Elliptic equation

Our first model problem will be the following homogeneous elliptic equation

 −∇(D∇u) + cu = f, in Ω,

u = 0, on ∂Ω;
(2.1)

where D is a 2× 2 symmetric positive definite matrix and c as well as f are scalars.

The variational form is to find u ∈ H1
0 (Ω) such that

B(u, v) = L(v), ∀v ∈ H1
0 (Ω). (2.2)
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where

B(u, v) =

ˆ
Ω

[(D∇u)∇v + cuv]dz,

L(v) =

ˆ
Ω

fvdz.

We assume that D and f in L∞(Ω). In addition, assume there exist two constant c and c

such that 0 < c ≤ c(z) ≤ c < ∞. Then it is to check that the bilinear form B and linear

functional L satisfies the following three conditions:

1. B is continuous, i.e.

B(u, v) . ||u||1,Ω||v||1,Ω, ∀u, v ∈ H1
0 (Ω);

2. B is coercive, i.e.

||u||21,Ω . B(u, u), ∀u ∈ H1
0 (Ω);

3. L is continuous, i.e.

|L(v)| . ||v||1,Ω, ∀v ∈ H1
0 (Ω).

According to Lax-Milgram Lemma [25, 35], variational problem (2.2) has an unique solution.

Furthermore, the above conditions 1 and 2 implies B is an inner production on H1
0 (Ω). Define

the energy norm as ||| · |||Ω =
√
B(·, ·) . Then ||| · |||Ω and || · ||1,Ω are two equivalent norms

in H1
0 (Ω).
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2.2.2 Stokes equation

Our second model problem is the following Stokes equation


−∆~u+∇p = ~f, in Ω,

div~u = 0, in Ω,

~u = 0, on ∂Ω;

(2.3)

which describes the motion of an incompressible viscous fluid in Ω [17, 41]. Here ~u : Ω→ R2

is the velocity field and p : Ω→ R is the pressure.

Let V = H1
0 (Ω)2 and M = L2

0(Ω) = {q ∈ L2(Ω) :
´

Ω
qdx = 0}. Then the variational

formulation of (2.3) reads as: Find (~u, p) ∈ V ×M such that

 a(~u,~v)+ b(~v, p) = (~f,~v), ∀~v ∈ V,

b(~u, q) = 0, ∀q ∈M ;
(2.4)

where

a(~v, ~w) =

ˆ
Ω

∇~v : ∇~wdz, ∀~v ∈ V,

b(~v, q) =

ˆ
Ω

div~v qdz ∀q ∈M ;

with ∇~v : ∇~w =
∑2

i=1
∂vi
∂xj

∂wi

∂xj
.

Suppose ~f ∈ L2(Ω)2, then it easy to see that |(~f,~v)| ≤ ‖~f‖0,Ω‖~v‖1,Ω for any ~v ∈ V . In

addition, one can prove the following coercive condition

‖v‖1,Ω . a(~v,~v) ∀~v ∈ V, (2.5)
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and Babuska-Brezzi condition (or inf-sup condition) [18, 26, 36]

inf
q∈M

sup
~v∈V

(div~v, q)

||~v||1,Ω||q||0,Ω
≥ C. (2.6)

Thus, the variational problem (2.4) exists an unique solution (~u, p).

2.3 Finite element spaces

The finite element methods solve variational problems associated with boundary value prob-

lem on some finite dimensional spaces, which are called the finite element spaces. To construct

a finite element space, first, a triangulation Th is established on Ω̄; second, we define a finite

element on element T for each T ∈ Th. According to [35], a finite element in R2 is a triple

(T, P,Σ) where

1. T is a close subset of R2 with non empty interior and Lipschitz-continuous boundary;

2. P is a space of real-valued functions defined over the set T ;

3. Σ is a finite set of linearly independent linear forms which is P -unisolvent defined over

the space P . Those linear forms are called degrees of freedom.

There are many different finite elements. In this work, we concentrate on C0 Lagrange

elements and the Crouzeix-Raviart element.

2.3.1 Finite Element meshes

A finite element mesh (or triangulation ) Th is a partition of Ω into finitely many subdomains,

called elements. Elements can be triangles or quadrilaterals. In this work, we restrict our
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discussion on conforming meshes consisting of simplexs, i.e. triangles. Here, a conforming

mesh means that the intersection of any two elements is empty, a common vertex, or a

common edge.

For any T ∈ Th, let hT denote the diameter of T and ρT denote the supremum of the

diameter of the spheres inscribed in T . The mesh size of Th is denoted by h = max{hT : T ∈

Th}. We say Th is regular if there exists a constant σ such that

hT
ρT
≤ σ, ∀T ∈ Th.

In the sequel, we always assume mesh Th is regular.

A mesh Th is called quasi-uniform mesh if there exists a constant ν ≥ 0 such that

h

hT
≤ ν, ∀T ∈ Th.

A very important type of quasi-uniform mesh is uniform mesh. Uniform mesh plays an im-

portant role in superconvergence analysis [32, 71, 109]. Meshes can also be categorized as

structured or unstructured. Structured meshes have a uniform topological structure that

unstructured meshes lack. In this work, we shall consider both structured meshes and un-

structured meshes.
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(a) Linear element (b) Quadratic element

Figure 1: C0 Lagrange element

2.3.2 C0 Lagrange Elements

For any T ∈ T, let aj, 1 ≤ j ≤ 3, be the vertices of T . For any r > 0, let

Σr(T ) =

{
x =

3∑
j=1

λjaj;
3∑
j=1

λj = 1, λj ∈ {0,
1

r
, . . . , ,

r − 1

r
, 1}, 1 ≤ j ≤ 3

}
.

Then the C0 Lagrange element of degree r is defined as (T,Pr(T ),Σr(T )). Typical examples

of C0 Lagrange elements include linear element and quadratic element, see Fig 1. For linear

element, degrees of freedom only contains vertices. However, for quadratic element, degrees

of freedom includes both vertices and edge centers.

The C0 finite element space of order r associated with mesh Th is defined as

Sh,r = {v ∈ C(Ω̄) : v|T ∈ Pr(T ),∀T ∈ Th}.

Note that the choice of Σr(T ) guarantees the continuity of v across the boundaries of elements
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in Th. Let Nh denote the the set of all mesh nodes. Then for any function v ∈ Sh,r, it can be

written as

v =
∑
z∈Nh

v(z)φz

where φz is called the nodes shape function associated with z is defined by

φz(z
′) =

 1 ifz′ = z;

0 ifz′ ∈ Nh \ {z}.

It is easy to see that the set {φz : z ∈ Nh} forms a basis of Sh,r, which is called nodal basis.

Let Ih : C(Ω̄)→ Sh,r denote the standard Lagrange interpolation operator, i.e.

Ihu =
∑
z∈Nh

u(z)φz, (2.7)

for any u ∈ C(Ω̄).

For piecewise defined function, [25, 33, 35] prove the following smooth result:

Theorem 2.1. Let Th be a mesh of Ω. Let k ≥ 1. Then a piecewise infinitely differentiable

function v : Ω̄→ R over the mesh Th belongs to Hk(Ω) if and only if v ∈ Ck−1(Ω).

Theorem 2.1 implies Sh,r ⊂ H1. In addition, let Sh,r0 = Sh,r ∩H1
0 (Ω). It means that the

finite element space Sh,r0 is a subspace of H1
0 where the model problem (2.1) is posed. For

this reason, the C0 Lagrange elements are often referred to as conforming elements.



13

2.3.3 The Crouzeix-Raviart element

For the conforming finite elements, it is assumed that the finite element spaces lie in the

function space in which the variational problem is posed. However, there are too many

limitation of conforming finite elements. For example, for fourth order elliptic differential

equations, conforming finite element require C1 elements, and this leads to extremely large

systems of equations. Thus, people try to relax the condition by not requiring finite element

spaces to be subspaces of corresponding function spaces. Those types of finite elements are

called nonconfomring elements.

In this work, we consider the simplest nonconforming element, i.e. the Crouzeix-Ravirat

element. It is also referred as the nonconforming P1 element. Differentiating from the con-

forming linear element, the degrees of freedom are on edge centers; see Fig 2.

Figure 2: The Crouzeix Raviart element

Let Th be a shape regular triangulation of Ω. Denote the set of all edges and edge centers

by Eh and Mh, respectively. For any edge e ∈ E, let M(e) be the middle point of edge e.
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Define the Crouzeix-Raviart finite element space as follows:

Xnc := {v ∈ L2(Ω) : v|T ∈ P1(T ) and v is continous at Mh} ,

Xnc
0 := {v ∈ Xnc : v(M(e)) = 0 for all e ∈ Eh ∩ ∂Ω} .

2.4 Finite element approximation of model problems

In the subsection, we firstly introduce the finite element approximation for second order

elliptic problem (2.2) using both C0 Lagrange elements and the Crouzeix-Raviart element.

Then we discretize the Stokes equation with stable nonconforming finite element.

2.4.1 Conforming finite element approximation of elliptic equation

The conforming finite element approximation of the model problem (2.2) is to find uh ∈ Sh,r0

such that

B(uh, vh) = L(vh), ∀vh ∈ Sh,r0 . (2.8)

Note that Sh,r0 is a subspace ofH1
0 (Ω). Then equations (2.2) and (2.8) implies the following

Theorem:

Theorem 2.2. ( Céa’s Lemma) There exist a constant C > 0, independent of the Sh,r0 ,

such that

||u− uh||1,Ω ≤ C inf
v∈Sh,r

0

‖u− v‖1,Ω.

Taking v as the Lagrange interpolation of u, see (2.7), we can get the following H1 error

estimate:

Theorem 2.3. If the solution u of (2.2) is in the space Hr+1(Ω) ∩H1
0 (Ω) and uh ∈ Sh,r0 is
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the solution of (2.8), then

‖u− uh‖1,Ω . hr|u|r+1,Ω.

Using the duality argument (or Nitsche’ Trick) [17, 25, 35], we can prove the following

L2 error estimate:

Theorem 2.4. Under the same hypothesis of Theorem 2.3, we have the following error

estimate:

‖u− uh‖0,Ω . hr+1|u|r+1,Ω.

Remark. Theorems 2.3 and 2.4 imply that the optimal convergence rate of L2 Error is

two, the optimal convergence rate of H1 is one and hence the optimal convergence rate

of piecewise H2 error is zero when we using linear element. It means an approximation of

second order derivatives using piecewise linear element should not converge. In chapter 4,

we will propose an effective post-processing method which can produce superconvergent or

even ultraconvergent Hessian matrix.

2.4.2 Nonconforming finite element approximation of elliptic equation

The nonconforming finite element approximation of (2.2) consists of finding uh ∈ Xnc
0 such

that

Bh(uh, vh) = (f, vh) ∀vh ∈ Xnc
0 , (2.9)

where

Bh(w, v) :=
∑
T∈Th

ˆ
T

(D∇w · ∇v + cuv)dx,



16

for all w, v ∈ Xnc. For a subdomain A of Ω, define the broken semi-norm on A as ||v||21,h,A :=∑
T∈Th∩A

|v|21,T . Using the second Strang Lemma [17, 25, 35], we can prove the following error

estimate

Theorem 2.5. If the solution u of (2.2) is in the space H2(Ω)∩H1
0 (Ω) and uh ∈ Xnc

0 is the

solution of (2.9), then

‖u− uh‖1,h,Ω . h|u|2,Ω.

Remark. Theorem 2.5 implies that the optimal convergence rate in discrete H1 norm is

1. In the chapter 3, we will propose a gradient recovery operator for the Crouzeix-Raviart

element which is numerically verified to be superconvegent to the exact gradient.

2.4.3 Nonconforming finite element approximation of Stokes Equation

In this subsection, we restrict our discussion on nonconforming finite element approximation

of Stokes equation. Define M̃h = {q ∈ L2(Ω) : q|T ∈ P0, T ∈ T} and Mh = M̃h ∩ L2
0(Ω).

Let V h = Xnc×Xnc and V h
0 = Xnc

0 ×Xnc
0 . The nonconforming finite element approximation

reads as finding (~uh, ph) ∈ V h
0 ×Mh such that

 ah(~uh, ~vh)+ bh(~vh, ph) = (~f,~vh), ∀~vh ∈ V h
0 ,

bh(~uh, qh) = 0, ∀q∈Mh;
(2.10)

where

ah(~vh, ~wh) =

ˆ
Ω

∇h~vh : ∇h ~whdx =
∑
T∈Th

ˆ
T

∇~vh : ∇~whdx,

b(~vh, qh) =

ˆ
Ω

∇h · ~vh qhdx =
∑
T∈Th

ˆ
T

∇ · ~vh qhdx;
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for any ~vh, ~wh ∈ V h and qh ∈Mh. Here ∇h is called broken gradient operator. [16] prove the

following discrete inf-sup condition

inf
qh∈Mh

sup
~vh∈V h

0

bh(~vh, qh)

‖~vh‖1,h,Ω‖qh‖0,Ω

≥ β ≥ 0, (2.11)

where the constant β is independent of h and ‖~vh‖2
1,h,A = ‖v1‖2

1,h,A +‖v2‖2
1,h,A for any A ⊂ Ω.

Therefore the discrete variational problem (2.10) is well posed and the following discrete H1

error estimate holds:

Theorem 2.6. Let the solution (~u, p) of the Stokes problem (2.4) satisfy

~u ∈
(
H2(Ω) ∩H1

0 (Ω)
)2
, p ∈ H1(Ω) ∩ L2

0(Ω).

Then

‖~u− ~uh‖1,h,Ω + ‖p− ph‖0,Ω ≤ h(|u|2,Ω + |p|1,Ω).

Remark. Theorem 2.6 implies that H1 error of velocity filed is of order O(h). Our numerical

experiments in Chapter 3 indicates that the gradient recovery method proposed in Chapter

3 can also applies to each component of velocity to get superconvergent gradient.
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CHAPTER 3 Gradient recovery for the Crouzeix-Raviart

element

The Crouzeix-Raviart element was first proposed in [37] to solve stationary Stokes problem.

It has many useful properties [21], such as commutative relations with respect to the gradient,

divergence, and curl operators, and the existence of an interpolation operator that can be

defined on Hs(Ω) for s ≥ 1
2
. The applications of the Crouzeix-Raviart element can be found

in solids [24, 43], fluids[37] and electromagnets [22, 23], which can be called as a universal

element [21].

In this chapter, we concentrate on post-processing of the Crouzeix-Raviart element and

its application. Specifically speaking, we propose a good gradient recovery method for the

Crouzeix-Raviart element, which is based on the standard of [4], and apply it to a posteriori

error estimates for adaptive nonconforming finite element method.

We provide the main definition of the gradient recovery operator in Section 3.1. Some il-

lustrations of the proposed gradient recovery operator are given in Section 3.2. The properties

are investigated in Section 3.3. Two numerical examples are presented to illustrate super-

convergence of the proposed gradient recovery method in Section 3.4 and its application to

adaptive finite element method will be discussed in Section 3.5. Finally, some conclusions

will be drawn in Section 3.6.

3.1 Definition of Gradient Recovery Operator

Gradient recovery is a method providing a better approximation of ∇u. We introduce a new

gradient recovery operator Gh : Xnc → Xnc ×Xnc. The structure of Ghuh relies on the fact
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that every function in Xnc is uniquely defined by its values at edge centers. Given a finite

element solution uh ∈ Xnc, we only need to define Ghuh at edge centers. After determining

values of Ghuh at all edge centers, we obtain Ghuh ∈ Xnc × Xnc on the whole domain by

interpolation, i.e.

Ghuh :=
∑
z∈M

(Ghuh)(z)φz,

where {φz : z ∈Mh} is nodal basis of Xnc.

For any edge center z = (x, y) and 1 ≤ n ∈ N, define the union of elements around z in

the first n layers as follows

L(z, n) := ∪{T : T ∈ Th, T ∩ L(z, n− 1) = e for some e ∈ Eh},

with L(z, 0) := {e ∈ Eh : z is the middle point of e}.

Let z be the middle point of some interior edge e, i.e. z = M(e). Intuitively, it is natural

to use information on triangle T1 and T2 to recover gradient at z where T1 ∩ T2 = e, i.e.

T1, T2 ∈ L(z, 1). Let |Ti| be the area of Ti (i = 1, 2) and |ω| be the sum of |T1| and |T2|.

There are several possible ways to define (Ghuh)(z) .

1. Simple averaging:

(Ghuh)(z) =
1

2
(∇uh|T1 +∇uh|T2).

2. Weighted averaging:

(Ghuh)(z) = (
|T1|
|ω| ∇uh|T1 +

|T2|
|ω| ∇uh|T2).
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3. Fitting a linear polynomial:

(Ghuh)(z) = ∇pz(z)

where

pz = arg min
p∈P1(L(z,1))

∑
z̃∈M∩L(z,1)

|(uh − p)(z̃)|2;

and Mh is the set of edge centers.

Remark. Method 3 can be viewed as nonconforming counterpart of SCR proposed in [58].

On regular pattern uniform mesh, the above three methods give the same result.

Remark. Hu and Ma prove O(h1.5) superconvergence for the simple averaging method

on uniform mesh of regular pattern in [54] by using the equivalence between the Crouzeix-

Ravart element and Raviart-Thomas element [76] and the superconvergence result of Raviart-

Thomas element [20].

However, just as we know for C0 Lagrange elements, the approximation property of

the above three methods depends heavily on symmetry of local element patch L(z, 1) with

respect to z. Simple calculation combined with Taylor expansion reveals that they exhibit

superconvergence only on regular pattern uniform meshes.

Inspired by the idea of Polynomial Preserving Recovery (PPR) [79, 80, 107], the new

gradient recovery method fits a quadratic polynomial at every edge center. Let zi = (xi, yi) ∈

Mh be an edge center and Kzi denote a patch of elements around zi. Let pzi ∈ P2(Kzi) be

the quadratic polynomial that best fits uh at the edge centers in Kzi in discrete least-squares

sense, i.e.,

pzi = arg min
p∈P2(Kzi )

∑
z̃∈Mh∩Kzi

|(uh − p)(z̃)|2,
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and define the recovered gradient at zi as

(Ghuh)(zi) = ∇pzi(xi, yi).

Let zi0 , zi1 , . . . , zim denote all the edge centers in Kzi . Without loss of generality, let zi = zi0

and hi = max{|zij − zi| : 1 ≤ j ≤ m}. To avoid the computational instability resulting from

small hi, we introduce coordinate transformation

F : (x, y)→ (ξ, η) =
(x, y)− (xi, yi)

hi
,

All computations are carried out on the local element patch K̂zi = F (Kzi). Then we can

rewrite the fitting polynomial as

pzi(x, y) = P Ta = P̂ T â.

with

P T = (1, x, y, x2, xy, y2), P̂ T = (1, ξ, η, ξ2, ξη, η2);

aT = (a0, a1, a2, a3, a4, a5), âT = (a0, hia1, hia2, h
2
i a3, h

2
i a4, h

2
i a5).

The coefficient vector â can be obtained by solving

ATAâ = AT b.
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with bT = (uh(zi0), uh(zi1), . . . , uh(zim)) and

A =



1 ξ0 η0 ξ2
0 ξ0η0 η2

0

1 ξ1 η1 ξ2
1 ξ1η1 η2

1

1 ξ2 η2 ξ2
2 ξ2η2 η2

2

...
...

...
...

...
...

1 ξm ηm ξ2
m ξmηm η2

m


.

Then the recovered gradient at zi is defined as

(Ghuh)(zi) = ∇pzi(0, 0) =

 a1

a2

 =
1

hi

 â1

â2

 (3.1)

Since pzi has 6 unknowns, it requires that Kzi contains at least 6 edge centers. This

naturally leads to Kzi = L(zi, 2). Also, notice that Kzi containing more than 6 middle points

can not guarantee the uniqueness of pzi . If pzi is not unique and L(zi, n) = Kzi ( L(zi, n+1),

then set K equal L(zi, n + 1) and recompute pzi . The patch Kzi is defined to be the first

L(zi, n) such that pzi is unique.

Remark. In superconvergent patch recovery (SPR) [111, 112] and PPR, if zi lies on an edge

between two vertices zi1 and zi2 , then recovered gradient is defined at zi as (Ghuh)(zi) =

β∇pzi1 (zi) + (1−β)∇pzi2 (zi) where β is determined by the ratio of distances of zi to zi1 and

zi2 .

Remark. For the most usual cases, Kzi = Lzi,2 can guarantee the uniqueness of pzi . However,

we can use a slightly large patch to get an litter improved results. For the numerical results

in the chapter, we use Kzi = Lzi,2 for elliptic equation and Kzi = Lzi,3 for stokes equation.
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Remark. From the above definition, we can see that the proposed gradient recovery method

is problem independent. In the following sections, we will apply the gradient recovery to

second order elliptic problem (2.1) and Stokes equation (2.3) to show that it can produce

superconvergent post-processing gradients.

3.2 Illustrations of the Proposed Gradient Recovery Method

To illustrate the essential idea of the above gradient recovery operator, we study regular

pattern and chevron pattern uniform meshes in detail. Note that Gh is a linear operator

from Xnc to Xnc × Xnc. To simplify notation, sometimes Gh is rewritten as the following

component form

Gh =

Gx
h

Gy
h

 , (3.2)

where Gx
h and Gy

h are linear operators from Xnc to Xnc.

3.2.1 Regular Pattern

All edge centers can be classified into three cases: vertical edge center, horizontal edge center

and diagonal edge center. We select two typical cases as showed in Figure 3 and 4. Other

cases can be treated as an orthogonal rotation of the above two cases.

First, consider the case that z is a vertical edge center, i.e. the dotted point in Figure

3. In order to investigate the approximation property of recovery operator, we replace the
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Figure 3: Recovery at vertical edge center of Regular Pattern

finite element solution uh by the exact solution u in the sequel. Given

~ξ = (0, 1, 2, 1,−1,−2,−1,−1, 1, 2, 1,−2,−1)T ,

~η = (0, 0, 0, 1, 1, 0, 0,−1,−1, 2, 2,−2,−2)T ,

b = (u0, u1, u2, u3, u4, u5, u6, u7, u8, u9, u10, u11, u12)T ,

where ui = u(F−1(ξi, ηi)) for 0 ≤ i ≤ 12, we want to fit a polynomial

p̂2(ξ, η) = (1, ξ, η, ξ2, ξη, η2)(â0, â1, â2, â3, â4, â5)T ,
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in the least square sense with respect to (ξ, η). Let ~e = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)T and

A = (~e, ~ξ, ~η, ~ξ ◦ ~ξ, ~ξ ◦ ~η, ~η ◦ ~η)

where ◦ is Hadamard product for matrices. Simple calculation shows that

B =



17
53

0 0 − 5
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− 6
53
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where BT = (ATA)−1AT . Thus we have â = BT b. Recall that

(â0, â1, â2, â3, â4, â5) = (a0, ha1, ha2, h
2a3, h

2a4, h
2a5),
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and hence it holds that

p2(x, y) = â0 +
1

h
(â1x+ â2y) +

1

h2
(â3x

2 + â4xy + â5y
2).

Differentiating with respect to x and y and evaluate at (0, 0), it follows that

(Gx
hu)(z) =

1

84h
(5u1 + 10u2 + 2u3 − 8u4 − 10u5 − 5u6−

2u7 + 8u8 + 4u9 − u10 − 4u11 + u12),

(3.3)

and

(Gy
hu)(z) =

1

28h
(− u1 − 2u2 + u3 + 3u4 + 2u5 + u6−

u7 − 3u8 + 2u9 + 3u10 − 2u11 − 3u12).

(3.4)

By using computer algebra system such as Mathematica, it is very easy to get the following

Taylor expansion for (Ghu)(z)

(Ghu)(z) =

 ux(z) + h2

42
(21uxxx(z) + 12uxxy + 19uxyy + 3uyyy(z)) + o(h2)

uy(z) + h2

42
(39uxxy + 39uxyy(z) + 22uyyy(z)) + o(h2)

 .

It obviously demonstrates that (Ghu)(z) provides a second order approximation to ∇u.

Then we consider that z is a diagonal edge center as seen in Figure 4. Repeating the

same procedure as above, we obtain

(Gx
hu)(z) =

1

84h
(5u1 + 10u2 + 8u3 − 2u4 − 10u5 − 5u6−

8u7 + 2u8 + u9 − 4u10 − u11 + 4u12),

(3.5)
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Figure 4: Recovery at diagonal edge center of Regular Pattern

and

(Gy
hu)(z) =

1

84h
(− 2u1 − 4u2 + u3 + 5u4 + 4u5 + 5u6−

u7 − 5u8 + 8u9 + 10u10 − 8u11 − 10u12).

(3.6)

Also, we have the following Taylor expansion

(Ghu)(z) =

 ux(z) + h2

42
(25uxxx(z) + 17uxxy + 10uxyy − 3uyyy(z)) + o(h2)

uy(z)− h2

42
(3uxxx − 10uxxy(z)− 17uxxy − 25uyyy(z)) + o(h2)

 .

Again (3.5) and (3.6) provide a second order approximation to ∇u.
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3.2.2 Chevron Pattern

Similar to Regular pattern, the gradient recovery operator are different when z are horizontal

edge center, vertical edge center and diagonal edge center. Again, we choose two typical edge

centers as depicted in Figure 5 and Figure 6. First, consider the case when z is a vertical

edge center. Following the same procedure as regular pattern, we get

(Gx
hu)(z) =

1

164h
(11u1 − 11u2 − 6u3 + 6u4 + 22u5 + 16u6−

16u7 − 22u8 − 2u9 − u10 + u11 + 2u12),

(3.7)

and

(Gy
hu)(z) =

1

3648h
(− 228u0 − 183u1 − 183u2 − 567u3 − 567u4 − 48u5 + 1027u6

+ 1027u7 − 48u8 + 10u9 − 125u10 − 125u11 + 10u12).

(3.8)

It is straightforward to verify that

(Ghu)(z) =

 ux(z) + h2

246
(113uxxx(z) + 63uxyy(z)) + o(h2)

uy(z) + h2

1824
(882uxxy(z) + 419uyyy(z)) + o(h2)

 .

which clearly indicates that Ghu(z) converges to ∇u at rate of O(h2).

Then we consider z is diagonal edge center in Chevron pattern uniform mesh. The sam-

pling points in patch Kz is displayed in Figure 6. Simple calculation verifies that

(Ghu)(z) =
1

20h

 u1 − u3 + 2u5 + 2u6 − u8 − 2u9 − 2u10 + u12

u2 − u4 + u6 + 2u7 + 2u8 − u10 − 2u11 − 2u12

 . (3.9)
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Using Taylor expansion, we get

(Ghu)(z) =

 ux(z) + h2

30
(17uxxx(z) + 9uxxy(z) + 12uxyy(z)− 3uyyy(z)) + o(h2)

uy(z) + h2

30
(3uxxx(z) + 12uxxy(z)− 9uxyy(z) + 17uyyy(z)) + o(h2)

 .

It approximates ∇u with second order accuracy.

3.3 Properties of the Gradient Recovery Operator

The two examples in previous section show that Gh provides a finite difference scheme with

2nd order accuracy. Moreover, we can show Gh has 2nd order accuracy in case of Criss-cross

pattern and Unionjack pattern uniform meshes. In general, the following theorem holds.

Theorem 3.1. The recovery operator Gh preserves polynomials of degree two on Kz for an

arbitrary mesh.

Proof. Suppose u ∈ P2(Kz). Then clearly the least square fitting of a polynomial of degree

two will reproduce u, i.e. pz = u on Kz. Thus Ghu = ∇u on Kz.

A direct application of Theorem 3.1 and Bramble-Hilbert Lemma implies the following

superconvergence result.

Theorem 3.2. Let u ∈ W 3
∞(Kz). Then

‖∇u−Ghu‖0,∞,Kz ≤ Ch2|u|3,∞,Kz .

Proof. It is similar to the proof of Theorem 2.2 in [107].

From now on, we assume v ∈ Xnc and zi is the middle point of an arbitrary edge. By
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(3.1), we know

(Ghv)(zi) =

(Gx
hv)(zi)

(Gy
hv)(zi)

 =

 a1

a2

 =
1

hi

 â1

â2

 =
1

hi


m∑
j=0

b1
jvij

m∑
j=0

b2
jvij

 ,

where vij = v(zij) and b1
j and b2

j are some constants that independent of h and hi for

0 ≤ j ≤ m. In addition, let zij (0 ≤ j ≤ m) be all edge centers in Kzi , zi = zi1 , and

vi = v(zi). By setting u ≡ vi in Theorem 3.1, we can conclude that

Ghvi =

 0

0

 .

Thus, we can rewrite (Ghv)(zi) as

(Ghv)(zi) =

(Gx
hv)(zi)

(Gy
hv)(zi)

 =
1

hi


m∑
j=1

b1
j(vij − vi)

m∑
j=1

b2
j(vij − vi)

 .

Notice that for any zij , we can find zi = zj0 , . . . , zjnj
= zij such that zj` and zj`+1

belong to

the same triangle T ∈ Th and zj` ∈ Kzi ∩M. Then

(Gx
hv)(zi) =

m∑
j=1

b1
j

nj−1∑
`=0

(vj` − vj`+1
)

hi
.

Let ej` denote the line segment connecting vj` and vj`+1
, and hj` denote the length of ej` .

Then we have

(Gx
hv)(zi) =

m∑
j=1

b1
j

nj−1∑
`=0

hj`
hi

(vj` − vj`+1
)

hj`
.
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Since v ∈ Xnc, it follows that
(vj`−vj`+1

)

hj`
= ∂v

∂tj`
, where tj denotes the unit tangent vector of

ekj . Notice that
hj`
hi

are bounded by a constant independent of h and hi, then we get

|(Gx
hv)(zi)| . |v|1,∞,Kzi

.

The same argument yields that

|(Gy
hv)(zi)| . |v|1,∞,Kzi

.

For any triangle T ∈ Th, let z1, z2, z3 be the three edge centers of T and K = Kz1 ∪Kz2 ∪

Kz3 . Then the above result can be summarized as the following theorem

Theorem 3.3. Gh : Xnc → Xnc × Xnc is a linear operator, and there exists a constant C

independent of h such that

‖Ghv‖0,∞,T ≤ C|v|1,∞,K ∀T ∈ Th,

for any v ∈ Xnc.

With aid of an inverse estimate, we can prove the following corollary

Corollary 3.4. There is a constant C independent of h such that

‖Ghv‖0,2,T ≤ C|v|1,2,K ∀T ∈ Th

for any v ∈ Xnc.
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Let GX : X → X × X be any gradient recovery operator from X → X × X satisfying

consistency condition, localization condition, and boundness and linearity condition in [4]

where X is some finite element space. A classical way to prove the superconvergence of

gradient recovery operator is to rewrite ∇u−GX(uh) as

∇u−GX(uh) = ∇u−GX(uI) +GX(uI − uh) (3.10)

where uI is the interpolation of the exact solution u in the finite element space X. According

to [4], we can prove O(h(1+r)) superconvergence result provided that there is O(h(1+r)) super-

closeness [12, 71, 101] between the gradient of the finite element solution uh and the gradient

of the interpolation uI . However, there is no such type supercloseness for the Crouzeix-

Raviart element. Actually, [69] proved that the best convergence rate of |uh − uI |1,h,Ω is at

best of O(h).

It is worth to point out that supercloseness between the gradient of the finite element

solution uh and the gradient of the interpolation uI is only a sufficient condition. It is well

known that there is no supercloseness for Lagrange linear element when the mesh is uniform

mesh of Criss-cross pattern or Unionjack pattern. But PPR and SPR can still produce

superconvergent approximate gradient on this two type of uniform meshes; see [107]. The

same thing applies to the proposed gradient recovery method.

3.4 Numerical Experiment

In this section, we present numerical examples to demonstrate superconvergence of our gra-

dient recovery method. First, we consider the second order elliptic problem (2.2) and its non-
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conforming finite element approximation (2.9). Then, we study the superconvergent property

of gradient recovery operator Gh applied to each component of velocity filed for nonconform-

ing finite element approximation (2.10) of Stokes equation (2.4).

In order to identify the performance of the gradient recovery operator, we split mesh

vertices N into interior vertices Nh,1 and near boundary vertices Nh,2, where Nh,2 = {z ∈

Nh : dist(z, ∂Ω) ≤ L} and Nh,1 = Nh \Nh,2. Let

Ωh,1 =
⋃
{T ∈ Th : T has all of its vertices in Nh,1},

and Ωh,2 = Ω \ Ωh,1.

For elliptic equation, let u be solution of (2.2), uh be the solution be the solution of

(2.9), uI is the interpolation of u in the Crouzeix-Raviart space Xnc. The notation used is

the following:

Eh = ‖u− uh‖1,h,Ω denotes broken H1-semi error of finite element solution uh;

Ei = ‖uI − uh‖1,h,Ω denotes broken H1-semi error between uh and uI ;

Er = ||∇u−Ghuh||0,Ωh,2
denotes L2 error of recovered gradient in the interior domain.

To make notation consist, we use the similar notation for Stokes equation without re-

peating the definition. In the following numerical test, we take L = 0.1.

3.4.1 Elliptic equation

Consider the following Poisson equation

−∆u = 2π2 sin πx sin πy, in Ω = (0, 1)2,
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(a) Regular pattern mesh
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Figure 7: Numerical result of elliptic equation on regular pattern mesh

with u = 0 on ∂Ω. The exact solution is

u(x, y) = sinπx sin πy.

First, uniform meshes are considered. In Figure 7, we report the numerical results for regular

pattern uniform meshes. The meshes are obtained by decomposing the unit square into

16× 16, 32× 32, 64× 64, and 128× 128 subsquares and then dividing each subsquare into

triangles with regulars pattern. We observe ‖u − uh‖1,h,Ω is O(h) as proved in Theorem

2.3. The recovered gradient superconverges at rate of O(h2) which doubles the convergence

rate of finite element solution. Notice that ‖uI − uh‖1,h,Ω converge at the same order of

‖u−uh‖1,h,Ω, which means there is no supercloseness result for the Crouzeix-Raviart element,

but it is much smaller than ‖u− uh‖1,h,Ω. The numerical results of Chevron, Criss-cross and

Unionjack pattern are displayed in Figure 8, 9 and 10, respectively. O(h2) superconvergence

of recovered gradient is also observed.
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(a) Chevron pattern mesh

Number of DOF

10
2

10
3

10
4

10
5

10
6

E
rr

o
r

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

E
h

E
i

E
r

N
-1

N
-0.5

(b) Error

Figure 8: Numerical result of elliptic equation on chevron pattern mesh
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(a) Crisscross pattern mesh
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Figure 9: Numerical result of elliptic equation on crisscross pattern mesh
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(a) Unionjack pattern mesh

Number of DOF

10
2

10
3

10
4

10
5

10
6

E
rr

o
r

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

E
h

E
i

E
r

N
-1

N
-0.5

(b) Error

Figure 10: Numerical result of elliptic equation on unionjack pattern mesh
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(a) Delaunay mesh
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Figure 11: Numerical result of elliptic equation on delaunay mesh
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Then we turn to unstructured mesh. We start from an initial mesh generated by EasyMesh

[84], followed by four levels of refinement using bisection. As we can see in Figure 11, the

rate of convergence for the recovered gradient in the L2 norm is very close to 2 and hence

implies a superconvergent recovery.

From the above numerical results, we can observe the superconvergence for the pro-

posed gradient recover operator on both structured meshes and unstructured mesh. Hence,

it serves an asymptotically exact posteriori error estimators for adaptive finite element for

the Crouzeix-Raviart element which will be studied at next section.
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Figure 12: Numerical result of Stokes equation
on regular pattern mesh
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Figure 13: Numerical result of Stokes equation
on chevron pattern mesh

3.4.2 Stokes equation

In the subsection, we consider the Stokes equation (2.3) on the unit square Ω = [0, 1]× [0, 1]

with exact solution

~u(x, y) =

 20xy3

5x4 − 5y4

 ,
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Figure 14: Numerical result of Stokes equation
on crisscross pattern mesh
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Figure 15: Numerical result of Stokes equation
on unionjack pattern mesh

and p(x, y) = 60x2y− 20y3− 5. Let (~uh, ph) be the nonconforming finite element approxima-

tion of the variational problem (2.4), i.e. (~uh, ph) is the solution of the discrete variational

problem (2.10). Here we focus on the gradient recovery of velocity field ~uh. Gh~uh means that

the gradient recovery operator Gh is applied to each component of ~uh. According to Theo-

rem 2.6, the optimal convergence rate of ‖~uh−~u‖1,h,Ω is O(h). We can get superconvergence

results by gradient recovery.

The numerical result for regular pattern uniform mesh is reported in Figure 12. O(h)

convergence are observed for ||~u − ~uh||1,h,Ω and ‖~uI − ~uh‖1,h,Ω for all kinds of meshes while

O(h2) superconvergence can be obersved for ‖Gh~uh −∇~u‖0,Ωh,1
.

Figure 13 listed the numerical result for chevron pattern uniform mesh. The discrete H1

error and the disrecte H1 norm of the difference between finite element solution ~uh and the

nonconforming finite element interpolation ~uI of the exact solution ~u are both about O(h).

Concerning the performance of gradient recovery operator, O(h1.9) superconvergence can be

observed. Compared to the result on regular pattern uniform mesh, the superconvergence
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Figure 16: Numerical result of Stokes equation on Delaunay mesh

rate is a bit low.

Figure 14 and 15 present the numerical result for other two uniform meshes and Figure

16 shows the numerical result for Delaunay mesh. These numerical results are similar to

chevron pattern uniform mesh. The recovered gradient superconverges at rate of O(h1.9) in

the interior of the domain.

It is worth to point that ‖~uI − ~uh‖1,h,Ω is almost the same as ‖~u − ~uh‖1,h,Ω for Stokes

equation. Thus, supercloseness result is not true for nonconforming finite element approxi-

mation Stokes equation (2.10). Even in this case, we can get a superconvergent gradient by

post-processing.
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3.5 Application to adaptive methods

One of the most important applications of gradient recovery is in adaptive finite element

methods. Adaptive finite element method (AFEM) is characterized by the loop of the form

[86, 87]

SOLVE→ ESTIMATE→MARK→ REFINE

More precisely, given an initial mesh T0, set k = 0 and iterate

• SOLVE. Compute the solution uk of discrete variational problem (2.9) on the Crouzeix-

Raviart element space Xnc defined on the mesh Tk.

• ESTIMATE. Compute the local error estimator {η(uk, T )}T∈Tk using uk and (or) Th.

• MARK. Collect a subset Mk ⊂ Th of marked elements according the above posterior

estimator and some marking strategy. In this work, only bulk marking strategy [38] is

considered.

• REFINE Refine Tk into a shape regular mesh and conforming mesh Tk+1 using bisec-

tion [15, 86, 87] in such a way that each element in Mk is bisected at least once and,

finally, increment k.

The essential part of AFEM is the ESTIMATE step. A posterior error estimators can

be categorized into two classes: residue type and recovery type. There are extensive investi-

gations of residue type a posteriori error estimators including both conforming finite element

[4, 9, 10, 11, 15, 86, 87, 95, 96] and the Crouzeix-Raviart element [3, 39]. Concerning re-

covery type a posteriori estimators for conforming finite element method, the theory is also
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relative mature, see [4, 29, 79, 98, 101, 110, 111, 112]. In particular, SPR and PPR become

a standard part of several commercial finite element softwares. The study of recovery type a

posteriori error estimator for nonconforming finite element methods is limited [27, 29, 42].

In this section, we apply the proposed gradient recovery technique to a recovery type

posteriori error estimate. Define a local a posteriori error estimator on the element T as

η(uh, T ) = ‖D 1
2 (Ghuh −∇uh)‖0,T , (3.11)

and a global error estimator as

η(uh,Ω) =

(∑
T∈Th

η(uh, T )

) 1
2

. (3.12)

In the context of adaptive finite element methods for boundary value problems, the effectivity

index κ is used to measure the quality of an error estimator [4, 11]. This index is defined by

the ratio between the estimated error and the true error

κ =
‖Ghuh −∇huh‖0,Ω

‖∇u−∇huh‖0,Ω

(3.13)

where ∇h is the broken gradient operator. To test the robustness of the error estimator

(5.26), we use the first three examples in [30] as our benchmark problems. Readers are

referred to [30] for computational comparison of several posteriori error estimators for the

Crouzeix-Raviart element.

Example 2.5.1. Let us consider the Laplace equation on the L-shaped domain Ω =

(−1, 1)× (−1, 1) \ (0, 1)× (−1, 0) with the Dirichlet boundary condition which is is chosen
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(b) Adaptive refined mesh

Figure 17: Meshes of Poisson equation on L-shaped domain
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Figure 18: Numerical results of Poisson equation on L-shape domain
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(b) Adaptive refined mesh

Figure 19: Meshes of Poisson equation on Crack domain

so that the true solution is r2/3 sin(2θ/3) in polar coordinates. The solution has a corner

singularity at (0, 0). To obtain optimal convergence rate O(h), we use adaptive finite element

method. Fig 17(a) shows the initial mesh while Fig 17(b) plots the adaptive refined mesh.

The mesh is locally refined at the singularity point. We numerically observed from Fig 18(a)

that

||u−∇uh||1,h,Ω ≈ O(N−0.54) ||u−Ghuh||0,Ω ≈ O(N−0.86).

Notice that ‖u− uh‖1,h,Ω converges at optimal rate.

The effectivity index are plotted in Fig 18(b). We see that κ converges to 1 quickly

after the first few iterations which indicates the posteriori error estimator (5.26) or (3.12) is

asymptotically exact.

Example 2.5.2. The second benchmark problem is elliptic equation (2.1) with D = I

and c = 0 on the crack domain Ω = {|x| + |y| ≤ 1} {0 ≤ x ≤ 1, y = 0}. The right hand

side function is 1 and the exact solution is u =
√

1
2
(r − x) − 1

4
r2 with r =

√
x2 + y2. The
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Figure 20: Numerical results of Poisson equation on Crack domain

initial mesh and the adaptive refined mesh is plotted in Fig 19. Fig 20(a) shows that H1

error of numerical solution is optimal and the recovery gradient error superconverges at rate

of O(h1.4). Similarly to previous example, the error estimator is aymptotically exact which

is indicated by the effective index closing to 1, see Figure 20(b).

Example 2.5.3. Our third benchmark problem employs homogeneous boundary data

and an oscillation source term f that matches the exact solution u(x, y) = x(x − 1)y(y −

1) exp(−100(x− 1/2)2 − 100(y − 117/1000)2) on the square domain Ω = [0, 1]2 , see[30, 74].

We use the initial mesh as in Figure 21(a) and the resulting adaptive refined mesh is in Figure

21(b) which is locally refined near the oscillation point. The numerical result is presented

in Figure 22. Since the solution is smooth, we observe O(h2) superconvergence for gradient

recovery error. The estimator is asymptotically exact.
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(b) Adaptive refined mesh

Figure 21: Meshes of Poisson equation on square domain with ossilcatlions
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Figure 22: Numerical Results of Poisson equation on square domain with ossilcatlions
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3.6 Conclusion

We proposed a gradient recovery method for the Crouzeix-Raviart element. The proposed

method fits a quadratic polynomial in least square sense at any edge center and then take

derivative to get recovered gradient. We proved that it is polynomial preserving and is a

bounded linear operator. Numerical experiment showed that it produces superconvergent

recovered gradient and can serve as an asymptotically exact posteriori error estimator.
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CHAPTER 4 Hessian recovery for finite element

Hessian matrix has many applications in scientific computing [61, 65, 66, 83, 45]. which is

typically unavailable in a numerical simulation. A widely-used approach to avoid this dif-

ficulty in practical computation is to replace the information by one recovered from the

obtained numerical approximation [60, 89, 94]. However, there is no general theory guaran-

teeing convergence for existing Hessian recovery methods.

In this chapter, we study Hessian recovery for C0 finite element methods of arbitrary

order. Our approach is to apply PPR twice to the primary computed data. We proved that

the proposed Hessian recovery method preserves polynomials of degree r + 1 on general

unstructured meshes and superconvergence at a rate of o(hr) on mildly structured meshes.

In addition, the method is proved to be ultraconvergent (two order higher) for translation

invariant finite element space of any order.

In Section 4.1, we introduce some notation. Since the building block of our Hessian

recovery is polynomial preserving recovery (PPR), we describe the definition of PPR in

Section 4.2. The formal definition of our Hessian recovery operator is provided in Section

4.3. This definition is illustrated with two examples on uniform meshes and followed by

discussion of its properties. The main superconvergence analysis of the proposed Hessian

recovery method is shown in Section 4.4. In Section 4.5, we use some numerical examples to

verify our theoretical results. We end this chapter with some concluding remarks in Section

4.6.
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4.1 Notation

To simplify notation, the Hessian operator H is denoted by

H =

∂xx ∂xy

∂yx ∂yy

 . (4.1)

For any 0 < h < 1
2
, let Th be a shape regular triangulation of Ω̄ as defined in section 2.3.1.

For any r ∈ N, let Sh,r be the continuous finite element space with piecewise polynomial of

degree r, see section 2.3.2. In this section, we suppose Th is quasi-uniform. Let Nh denote

the set of mesh nodes, i.e. the dual space of Sh,r.

Then we talk about a special finite element space, which is widely used for superconver-

gence anaysis [97]. For A ⊂ Ω ⊂ R2, let Sh,r(A) denote the restrictions of functions in Sh,r

to A and let Sh,r00 (A) denote the set of those functions in Sh,r(A) with compact support in

the interior of A [97]. Let Ω0 ⊂⊂ Ω1 ⊂⊂ Ω2 ⊂⊂ Ω be separated by d ≥ coh and ` be a

direction, i.e., a unit vector in R2. Let τ be a parameter, which will typically be a multiple

of h. Let T `τ denote translation by τ in the direction `, i.e.,

T `τ v(z) = v(z + τ`), (4.2)

and for an integer ν

T `ντv(z) = v(z + ντ`). (4.3)

Following the definition of [97], the finite element space Sh,r is called translation invariant
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by τ in the direction ` if

T `ντv ∈ Sh,r00 (Ω), ∀v ∈ Sh,r00 (Ω1), (4.4)

for some integer ν with |ν| < M . Equivalently, Th is called a translation invariant mesh.

To clarify the matter, we consider five popular triangular mesh patterns: Regular, Chevron,

Union-Jack, Criss-cross, and equilateral patterns, as shown in Figure 23.

h

h

(a)
h

h

(b)

√
2h

√
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(c)
h

h

(d)
h

h

(e)

Figure 23: Five types of uniform meshes: (a) Regular pattern; (b) Chevron pattern; (c)
Criss-cross pattern; (d) Union-Jack pattern; (e) Equilateral pattern

We see that:

1) Regular pattern is translation invariant by h in directions (1, 0) and (0, 1), by 2
√

2h

in directions (±
√

2
2
,
√

2
2

), and by
√

5h in directions (2
√

5
5
,±
√

5
5

) and (±
√

5
5
, 2
√

5
5

), ......

2) Chevron pattern is translation invariant by h in the direction (0, 1), by 2h in the

direction (1, 0), and by 2
√

2h in directions (±
√

2
2
,
√

2
2

), and by
√

5h in directions (±
√

5
5
, 2
√

5
5

),

......

3) Criss-cross pattern is translation invariant by
√

2h in directions (1, 0) and (0, 1), and

by 2h in directions (±
√

2
2
,
√

2
2

), ......

4) Union-Jack pattern is translation invariant by 2h in directions (1, 0) and (0, 1), and

by 2
√

2h in directions (±
√

2
2
,
√

2
2

), ......

5) Equilateral pattern is translation invariant by h in directions (1, 0) and (±1
2
,
√

3
2

), and
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by
√

3h in directions (0, 1) and (
√

3
2
,±1

2
), ......

4.2 Polynomial preserving recovery

Let Gh : Sh,r →
2∏
i=1

Sh,r denote the PPR gradient recovery operator [79, 80, 107]. Given a

function uh ∈ Sh,r, it suffices to define (Ghuh)(z) for all z ∈ Nh. Let z ∈ Nh be a vertex and

Kz be a patch of elements around z which is defined in [80, 107]. Select all nodes in Nh ∩Kz

as sampling points and fit a polynomial pz ∈ Pr+1(Kz) in the least squares sense at those

sampling points, i.e.

pz = arg min
p∈Pr+1(Kz)

∑
z̃∈Nh∩Kz

(uh − p)2(z̃). (4.5)

We called pz is the least-square polynomial approximation (LSPA) of uh at z. The recovered

gradient at z is defined as

(Ghuh)(z) = ∇pz(z).

For linear element, all nodes in Nh are vertices and hence Ghuh is well defined. However,

Nh may contain edge nodes or interior nodes for higher order elements. If z is an edge node

which lies on an edge between two vertices z1 and z2, we define

(Ghuh)(z) = β∇pz1(z) + (1− β)∇pz2(z)

where β is determined by the ratio of distances of z to z1 and z2. If z is an interior node

which lies in a triangle formed by three vertices z1, z2, and z3, we define

(Ghuh)(z) =
3∑
j=1

βj∇pzj(z),
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where βj is the barycentric coordinate of z.

Zhang and Naga proved the following properties of PPR in [79, 80, 107]:

1. Gh is linear.

2. Gh satisfied the consistency condition, i.e.

Gh(Ihp) = ∇p, ∀p ∈ Pr+1(Ω). (4.6)

3. Gh is bounded in the following sense:

‖Ghv‖0,T . |v|1,KT
, ∀T ∈ Th, and ∀v ∈ Sh,r (4.7)

where

KT =
⋃
{Kz : z is a vertice of T}

is the patch corresponding to T . This condition is called the boundedness condition.

Remark. It was proved in [79] that certain rank condition and geometric condition guarantee

the uniqueness of pz in (4.5).

Remark. In order to avoid numerical instability, a discrete least squares fitting process is

carried out on a reference patch ωz .
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4.3 Hessian recovery method

Given u ∈ Sh,r, let Ghu ∈
2∏
i=1

Sh be the recovered gradient using PPR as defined in previous

section. We rewrite Ghu as

Ghu =

Gx
hu

Gy
hu

 . (4.8)

In order to recover the Hessian matrix of u, we apply gradient recovery operator Gh to Gx
hu

and Gy
hu one more time, respectively, and define the Hessian recovery operator Hh as follows

Hhu =

(
Gh(G

x
hu), Gh(G

y
hu)

)
=

Gx
h(G

x
hu) Gx

h(G
y
hu)

Gy
h(G

x
hu) Gy

h(G
y
hu)

 . (4.9)

Just as PPR, we obtain Hh : Sh,r →
2∏
i=1

Sh,r×
2∏
i=1

Sh,r on the whole domain Ω by interpolation

after determining values of Hhu at all nodes in Nh.

Remark. The two gradient recovery operators in definition (4.9) of Hh can be different.

Actually we can define the Hessian recovery operator Hh as following

Hhu =

(
G̃h(G

x
hu), G̃h(G

y
hu)

)
.

By choosing Gh and G̃h as PPR or SPR operator, we obtain four different Hessian recovery

operators, i.e., PPR-PPR, PPR-SPR, SPR-PPR, and SPR-SPR. However, numerical tests

have shown that PPR-PPR is the best one.

In order to demonstrate our method, we shall discuss two examples in detail. For the

sake of simplicity, only linear element on uniform mesh will be considered. In practice, the

method can be applied to arbitrary mesh and higher order elements.
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Example 4.1. Consider the regular pattern uniform mesh as in Figure 24(a). We want

to recovery the Hessian matrix at z0. As deduced in [107], the recovered gradient at z0 is

given by

(Ghu)(z0) =
1

6h


2

1

u1 +

1

2

u2 +

−1

1

u3

−

2

1

u4 −

1

2

u5 +

 1

−1

u6

 .

Here ui = u(zi), (i = 0, 1, . . . 18) represents function value of u at node zi. Thus, according

to the definition (4.9) of the Hessian recovery operator Hh, we have

Hxx
h u

Hxy
h u

 (z0) =
1

6h
(2(Ghu)(z1) + (Ghu)(z2)− (Ghu)(z3)−

2(Ghu)(z4)− (Ghu)(z5) + (Ghu)(z6)) ,

(4.10)

and

Hyx
h u

Hyy
h u

 (z0) =
1

6h
((Ghu)(z1) + 2(Ghu)(z2) + (Ghu)(z3)−

(Ghu)(z4)− 2(Ghu)(z5)− (Ghu)(z6)) ,

(4.11)
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where

(Ghu)(z1) =
1

6h


2

1

u7 +

1

2

u8 +

−1

1

u2

−

2

1

u0 −

1

2

u18 +

 1

−1

u6

 ,

and (Ghu)(z2), . . . , (Ghu)(z6) follow the similar pattern. Direct calculation reveals that

(Hxx
h u)(z0) =

1

36h2
(− 12u0 + 2u1 − 4u2 − 4u3 + 2u4 − 4u5 − 4u6 + 4u7 + 4u8 + u9

− 2u10 + u11 + 4u12 + 4u13 + 4u14 + u15 − 2u16 + u17 + 4u18),

(Hxy
h u)(z0) =

1

36h2
(6u0 − u1 + 5u2 − u3 − u4 + 5u5 − u6 − 2u7 + u8 + u9

+ u10 − 2u11 − 5u12 − 2u13 + u14 + u15 + u16 − 2u17 − 5u18),

(Hyx
h u)(z0) =

1

36h2
(6u0 − u1 + 5u2 − u3 − u4 + 5u5 − u6 − 2u7 + u8 + u9

+ u10 − 2u11 − 5u12 − 2u13 + u14 + u15 + u16 − 2u17 − 5u18),

(Hyy
h u)(z0) =

1

36h2
(− 12u0 − 4u1 − 4u2 + 2u3 − 4u4 − 4u5 + 2u6 + u7 − 2u8 + u9

+ 4u10 + 4u11 + 4u12 + u13 − 2u14 + u15 + 4u16 + 4u17 + 4u18).

It is observed that (Hxy
h u)(z0) = (Hyx

h u)(z0), which means the recovered Hessian matrix is

symmetric, a property of the exact Hessian we would like to maintain.
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Using Taylor expansion, we can show that

(Hxx
h u)(z0) = uxx(z0) +

h2

3
(uxxxx(z0) + uxxxy(z0) + uxxyy(z0)) +O(h4),

(Hxy
h u)(z0) = uxy(z0) +

h2

3
(uxxxy(z0) + uxxyy(z0) + uxyyy(z0)) +O(h4),

(Hyx
h u)(z0) = uyx(z0) +

h2

3
(uxxxy(z0) + uxxyy(z0) + uxyyy(z0)) +O(h4),

(Hyy
h u)(z0) = uyy(z0) +

h2

3
(uxxyy(z0) + uxyyy(z0) + uyyyy(z0)) +O(h4),

which imply that Hhu provides a second order approximation of Hu at z0.

Example 4.2. Consider the Chevron pattern uniform mesh as shown in Figure 24(b).

Repeating the procedure as in Example 4.1, we derive the recovered Hessian matrix at z0 as

(Hxx
h u)(z0) =

1

144h2
(− 72u0 + 36u13 + 36u7),

(Hxy
h u)(z0) =

1

144h2
(− 12u1 + 12u3 + 24u4 − 24u6 + 6u7+

+ 36u9 − 36u11 − 6u13 + 6u14 − 6u18),

(Hyx
h u)(z0) =

1

144h2
(12u1 − 12u3 + 36u4 − 36u6 − 6u7+

6u8 + 24u9 − 24u11 − 6u12 + 6u13),

(Hyy
h u)(z0) =

1

144h2
(− 48u0 − 10u1 − 22u2 − 10u3 − 10u4 + 18u5−

10u6 − 2u7 + u8 + 10u9 + 36u10 + 10u11 + u12−

2u13 + u14 + 10u15 + 16u16 + 10u17 + u18).
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In addition, we have the following Taylor expansion

(Hxx
h u)(z0) = uxx(z0) +

h2

3
uxxxx(z0) +

2h4

45
uxxxxxx(z0) +O(h5),

(Hxy
h u)(z0) = uxy(z0) +

h2

12
(3uxxxy(z0) + 2uxyyy(z0))− h3

24
uxxxyy(z0) +O(h4),

(Hyx
h u)(z0) = uyx(z0) +

h2

12
(3uxxxy(z0) + 2uxyyy(z0)) +

h3

24
uxxxyy(z0) +O(h4),

(Hyy
h u)(z0) = uyy(z0) +

h2

6
(uxxyy(z0) + 2uyyyy(z0))− 5h3

72
uxxyyy(z0) +O(h4).

We conclude that Hhu is a second order approximation to the Hessian matrix. It is worth

pointing out that, though Hxy
h 6= Hyx

h for the Chevron pattern uniform mesh, they are both

second order finite difference schemes at z0.

Remark. PPR-PPR is the only one among the four Hessian recovery methods mentioned in

Remark 4.3 that provides second order approximation for all five mesh patterns, especially

the Chevron pattern.

Both Example 4.1 and 4.2 indicate that for linear element the PPR-PPR approach is

equivalent to a finite difference scheme of second order accuracy at vertex z0. In general, we

can show that Hh preserves polynomials of degree up to k + 1 for kth order element.

Consider Pk-element. Let u be a polynomial of degree k + 1. Since Gh preserves polyno-

mials of degree k+1, it follows that Ghu = ∇u which is a polynomial of degree k. Therefore,

we have

Hhu = (Gh(G
x
hu), Gh(G

y
hu)) = (Gh

∂u

∂x
,Gh

∂u

∂x
) = (∇∂u

∂x
,∇∂u

∂x
) = Hu. (4.12)

It means that Hh preserves polynomials of degree k + 1 for arbitrary mesh.
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(b) Chevron pattern

Figure 24: Illustration on Hessian recovery on uniform mesh

Now we proceed to translation invariant mesh. According to the polynomial preserving

property (4.6), the recovered gradient is exact for polynomials of degree k + 1. Therefore

Gx
hu = Dxu+ hk+1aaax ·Dk+2u+ hk+2bbbx ·Dk+3u+ hk+3cccx ·Dk+4u+ · · · ; (4.13)

Gy
hu = Dyu+ hk+1aaay ·Dk+2u+ hk+2bbby ·Dk+3u+ hk+3cccy ·Dk+4u+ · · · . (4.14)

Note that aaax, aaay, bbbx, bbby, cccx, cccy, · · · are functions of (x, y) if z = (x, y) a nodal point of arbitrary

mesh.

Let zzz = (x, y) be any node on a translation invariant mesh. Notice that coefficients aaax,

aaay, bbbx, bbby, . . . depend only on the coordinates of nodes, since we recover gradient at nodes
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only. Thus for translation invariant meshes, aaax, aaay, bbbx, bbby, . . . are constants. Note that

(Hxy
h u)(zzz) = (Gy

h(G
x
hu))(zzz)

=Gy
h[Dxu(zzz) + hk+1aaax ·Dk+2u(zzz) + hk+2bbbx ·Dk+3u(zzz) + · · · ]

=(Gy
h(Dxu))(zzz) + hk+1(aaax ·Gy

h(D
k+2u))(zzz) + hk+2(bbbx ·Gy

h(D
k+3u))(zzz) + · · ·

=(DyDxu)(zzz) + hk+1(aaay ·Dk+2Dxu)(zzz) + hk+2(bbby ·Dk+3Dxu)(zzz)

+ hk+1(aaax ·Dy(D
k+2u))(zzz) + hk+2(bbbx ·Dy(D

k+3u))(zzz) +O(hk+3)

=(DyDxu)(zzz) + hk+1[aaay ·Dk+2Dxu+ aaax ·Dy(D
k+2u)](zzz)+

hk+2[bbby ·Dk+3Dxu+ bbbx ·Dy(D
k+3u)](zzz) +O(hk+3).

(4.15)

Notice that (4.15) is valid only at nodal points. Similarly,

(Hyx
h u)(zzz) =(DxDyu)(zzz) + hk+1[aaax ·Dk+2Dyu+ aaay ·Dx(D

k+2u)](zzz)+

hk+2[bbbx ·Dk+3Dyu+ bbby ·Dx(D
k+3u)](zzz) +O(hk+3);

(4.16)

(Hxx
h u)(zzz) =(DxDxu)(zzz) + hk+1[aaax ·Dk+2Dxu+ aaax ·Dx(D

k+2u)](zzz)+

hk+2[bbbx ·Dk+3Dxu+ bbbx ·Dx(D
k+3u)](zzz) +O(hk+3);

(4.17)

(Hyy
h u)(zzz) =(DyDyu)(z) + hk+1[aaay ·Dk+2Dyu+ aaay ·Dy(D

k+2u)](zzz)+

hk+2[bbby ·Dk+3Dyu+ bbby ·Dy(D
k+3u)](zzz) +O(hk+3).

(4.18)

(4.15)–(4.18) imply that the Hessian recovery operator Hh is exact for polynomials of degree

k + 2 for translation invariant meshes. Also, we observe Hxy
h = Hyx

h from (4.15) and (4.16)

if z is a local symmetric center.

It is worth pointing out that, except for the Chevron pattern, (4.15)–(4.18) are valid for
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the other four patterns of uniform meshes, since the recovered gradient Ghu produces the

same stencil at each node.

Next we consider even order (k = 2r) element on translation invariant meshes and further

assume that zzz is a local symmetry center for all sampling points involved, in which case

aaax(zzz) = 000, cccx(zzz) = 000, aaay(zzz) = 000, cccy(zzz) = 000; (4.19)

Daaax(zzz) = 000, Dcccx(zzz) = 000, Daaay(zzz) = 000, Dcccy(zzz) = 000. (4.20)

and bbbx, bbby, · · · are constants in (4.14). Here the symbol D is understood as taking all partial

derivatives to each entry of the vector. Consequently,

(Gy
hu)(zzz) = (Dyu)(zzz) + hk+2(bbby ·Dk+3u)(zzz) +O(hk+4), (4.21)

Also, (4.21) is valid only at nodal points. Plugging (4.13) into (4.21) yields

(Hxy
h u)(zzz) = (Gy

hG
x
hu)(zzz)

=(DyG
x
hu)(zzz) + hk+2(bbby ·Dk+3Gx

hu)(zzz) +O(hk+4)

=Dy(Dxu+ hk+1aaax ·Dk+2u+ hk+2bbbx ·Dk+3u+ hk+3cccx ·Dk+4u

+ · · · )(zzz) + hk+2(bbby ·Dk+3Dxu)(zzz) +O(hk+4)

=(DyDxu)(zzz) + hk+2(bbbx ·DyD
k+3u+ bbby ·Dk+3Dxu)(zzz) +O(hk+4).

In the last identity we have used (4.19) and (4.20).

The argument for the other three entries of recovered Hessian matrix are similar. We



61

conclude that the Hessian recovery operator Hh is exact for polynomials of degree up to

k + 3 when k is even and the mesh is translation invariant and symmetric with respect to x

and y.

The above results can be summarized as the following theorem:

Theorem 4.1. The Hessian recovery operator Hh preserves polynomials of degree k+1 for an

arbitrary mesh. If z is a node of a translation invariant mesh, then Hh preserves polynomials

of degree k + 2 . If we further suppose z is local symmetry center for all sampling points

involved and k is a even number, then Hh preserves polynomials of degree k + 3. Moreover,

if the sampling points are symmetric with respect to z, then Hh is symmetric.

Remark. According to [94], the best Hessian recovery method in the literature preserves

polynomial of degree 2 for linear element. Our method preserves polynomial of degree 2 on

general unstructured meshes and preserves polynomials of degree 3 on translation invariant

meshes for linear element.

Theorem 4.2. Let u ∈ W k+2
∞ (Kz); then

‖Hu−Hhu‖0,∞,Kz . hk|u|k+2,∞,Kz .

If z is a node of translation invariant mesh and u ∈ W k+3
∞ (Kz), then

|(Hu−Hhu)(z)| . hk+1|u|k+3,∞,Kz .

Furthermore, if z is a symmetric node of translation invariant mesh and u ∈ W k+4
∞ (Kz) with
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k an even number, then

|(Hu−Hhu)(z)| . hk+2|u|k+4,∞,Kz .

Proof. It is a direct result of Theorem 4.1 and application of the Hilbert-Bramble Lemma.

4.4 Superconvergence analysis

In this section, we first use the supercloseness between the gradient of the finite element solu-

tion uh and the gradient of the interpolation Ihu [12, 28, 56, 57, 98, 101], and properties of the

PPR operator [107, 79] to establish the superconvergence property of our Hessian recovery

operator on mildly structured mesh. Then we utilize the tool of superconvergence by differ-

ence quotients from [97] to prove the proposed Hessian recovery method is ultraconvergent

for translation invariant finite element space of any order.

4.4.1 Linear element

Linear finite element space Sh,1 on quasi-uniform mesh Th is considered in this subsection.

In order to discuss superconvergent result, we need some condition on the mesh. We firstly

talk about mesh condition.

Definition 4.3. The triangulation Th is said to satisfy Condition (σ, α) if there exist a

partition Th,1 ∪ Th,2 of Th and positive constants α and σ such that every two adjacent

triangles in Th,1 form an O(h1+α) parallelogram and

∑
T∈Th,2

|T | = O(hσ).



63

An O(h1+α) parallelogram is a quadrilateral shifted from a parallelogram by O(h1+α).

For general α and σ, Xu and Zhang [101] proved the following theorem.

Theorem 4.4. Let u be the solution of (2.2), uh ∈ Sh,1 be the finite element solution of (2.8),

and Ihu ∈ Sh,1 be the linear interpolation of u. If the triangulation Th satisfies Condition

(σ, α) and u ∈ H3(Ω) ∩W 2
∞(Ω), then

|uh − Ihu|1,Ω . h1+ρ(|u|3,Ω + |u|2,∞,Ω),

where ρ = min(α, σ/2, 1/2).

Using the above result, we are able to obtain a convergent result for our Hessian recovery

operator.

Theorem 4.5. Under the same condition as Theorem 4.4, we have

‖Hu−Hhuh‖0,Ω ≤ hρ‖u‖3,∞,Ω.

Proof. We decompose Hu − Hhuh as (Hu − Hhu) + Hh(Ihu − uh), since Hhu = Hh(Ihu).

Using the triangle inequality and the definition of Hh, we obtain

‖Hu−Hhuh‖0,Ω ≤ ‖Hu−Hhu‖0,Ω + ‖Hh(Ihu− uh)‖0,Ω

= ‖Hu−Hhu‖0,Ω + ‖Gh(Gh(Ihu− uh))‖0,Ω.

The first term in the above expression is bounded by h|u|3,∞,Ω according to Theorem 4.2.
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Since Gh is a bounded linear operator [80], it follows that

‖Hh(Ihu− uh)‖0,Ω . ‖∇(Gh(Ihu− uh))‖0,Ω

Notice that Gh(Ihu− uh) is a function in Sh and hence the inverse estimate [35, 25] can be

applied. Thus,

‖Hh(Ihu− uh)‖0,Ω . h−1‖Gh(Ihu− uh)‖0,Ω . h−1‖Ihu− uh‖1,Ω

and hence Theorem 4.4 implies that

‖Hh(Ihu− uh)‖0,Ω . hρ‖u‖3,∞,Ω.

Combining the above two estimates completes our proof.

4.4.2 Quadratic element

We proceed to quadratic finite element space Sh,2. According to [57], a triangulation Th is

strongly regular if any two adjacent triangles in Th form an O(h2) approximate parallelogram.

Huang and Xu proved the following superconvergence results in [57].

Theorem 4.6. et u be the solution of (2.2), uh ∈ Sh,2 be the finite element solution of

(2.8), and Ihu ∈ Sh,2 be the quadratic interpolation of u. If the triangulation Th is uniform

or strongly regular and u ∈ H4(Ω), then

|uh − Ihu|1,Ω . h3|u|4,Ω.
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Based on the above theorem, we obtain the following superconvergent result.

Theorem 4.7. Under the same assumption as in Theorem 4.6, we have

‖Hu−Hhuh‖0,Ω ≤ h2‖u‖4,Ω.

Proof. The proof is similar to the proof of Theorem 4.5 by using Theorem 4.6 and the inverse

estimate.

Remark. Theorem 4.7 can be generalized to mildly structured meshes as in [57].

4.4.3 Translation invariant element of any order

First, we observe that the Hessian recovery operator results in a difference quotient. It is

due to the fact that Gh is a difference quotient [107] and the composition of two difference

quotients is still a difference quotient. Let us take linear element on uniform triangular mesh

of the regular pattern as an example, see Figure 24(a). The recovered second order derivative

at a nodal point z is

(Hxx
h uh)(z) =

1

36h2
(− 12u0 + 2u1 − 4u2 − 4u3 + 2u4 − 4u5 − 4u6 + 4u7 + 4u8 + u9

− 2u10 + u11 + 4u12 + 4u13 + 4u14 + u15 − 2u16 + u17 + 4u18).
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Let φj be the nodal shape functions. Since φz(z
′) = δzz′ , it follows that

(Hxx
h uh)φ0(x, y)

=
1

36h2
[−12u0φ0(x, y) + 2u1φ1(x+ h, y)− 4u2φ2(x+ h, y + h)

− 4u3φ3(x, y + h) + 2u4φ4(x− h, y)− 4u5φ5(x− h, y − h)

− 4u6φ6(x, y − h) + 4u7φ7(x+ 2h, y) + 4u8φ8(x+ 2h, y + h)

+ u9φ9(x+ 2h, y + 2h)− 2u10φ10(x+ h, y + 2h) + u11φ11(x, y + 2h)

+ 4u12φ12(x− h, y + h) + 4u13φ13(x− 2h, y) + 4u14φ14(x− 2h, y − h)

+ u15φ15(x− 2h, y − 2h)− 2u16φ16(x− h, y − 2h) + u17φ17(x, y − 2h)

+ 4u18φ18(x+ h, y − h)].

The translations are in the directions of `1 = (1, 0), `2 = (0, 1), `3 = (
√

2
2
,
√

2
2

), `4 = (
√

2
2
,−
√

2
2

),

`5 = (
√

5
5
, 2
√

5
5

), and `6 = (2
√

5
5
,
√

5
5

). Therefore, we can express the recovered second order

derivative as

(Hxx
h uh)(z) =

∑
|ν|≤M

6∑
i=1

Ci
ν,huh(z + νh`i), (4.22)

for some integer M .

Since u and uh are the solution of variational problem (2.2) and (2.8), respectively. Then

for any v ∈ Sh,r0 , we deduce that

B(u− uh, v) = 0. (4.23)

In particular, (4.23) holds for any v ∈ Sh,r00 .

Let all coefficients in the bilinear form B(·, ·) be constant. Then the orthogonal property
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(4.23) impiles

B(T `ντ (u− uh), v) = B(u− uh, T `−ντv) = B(u− uh, (T `ντ )∗v) = 0.

for any v ∈ Sh,r00 .

Therefore, Theorem 5.5.2 of [97] (with F ≡ 0) implies that

‖Hxx
h (u− uh)‖0,∞,Ω0 .

(
ln
d

h

)r̄
min
v∈Sh

‖Hxx
h u− v‖0,∞,Ω1

+ d−s−
2
q ‖Hxx

h (u− uh)‖−s,q,Ω1 .

(4.24)

Here r̄ = 1 for linear element and r̄ = 0 for higher order element. Note that Hxx
h u ∈ Sh,r

and hence the first term on the right hand side of (4.24) can be estimated by standard

approximation theory under the assumption that the finite element space includes piecewise

polynomial of degree k:

min
v∈Sh

‖Hxx
h u− v‖0,∞,Ω1 . hk+1|u|k+3,∞,Ω1 , (4.25)

provided u ∈ W k+3
∞ (Ω), see [25, 35]. It remains to attack the second term on the right hand

side of (4.24). Note that

‖Hxx
h (u− uh)‖−s,q,Ω1 = sup

φ∈C∞
0 (Ω1),‖φ‖s,q′,Ω1

=1

(Hxx
h (u− uh), φ). (4.26)
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Here 1
q

+ 1
q′

= 1 and

(Hxx
h (u− uh), φ) = (u− uh, (Hxx

h )∗φ)

. ‖u− uh‖0,∞,Ω2‖(Hxx
h )∗φ‖0,1,Ω2

. ‖u− uh‖0,∞,Ω2 ,

(4.27)

where we use the fact that ‖(Hxx
h )∗φ‖0,1,Ω2 is bounded uniformly with respect to h when

s ≥ 1. We now once again apply Theorem 5.5.1 from [97] to ‖u − uh‖0,∞,Ω2 with Ω2 ⊂⊂ Ω

separated by d, then

‖u− uh‖0,∞,Ω2 .

(
ln
d

h

)r̄
min
v∈Sh

‖u− v‖0,∞,Ω

+ d−s−
2
q ‖u− uh‖−s,q,Ω.

(4.28)

If the separation parameter d = O(1) , then we combine (4.24), (4.25) and (5.13) to

obtain

‖Hxx
h (u− uh)‖0,∞,Ω0 .

(
ln

1

h

)r̄
hk+1‖u‖k+3,∞,Ω + ‖u− uh‖−s,q,Ω. (4.29)

Following the same argument, we can establish the same result for Hxy
h , Hyx

h , and Hyy
h .

Therefore, (4.29) is satisfied by replacing Hxx
h with Hh:

‖Hh(u− uh)‖0,∞,Ω0 .

(
ln

1

h

)r̄
hk+1‖u‖k+3,∞,Ω + ‖u− uh‖−s,q,Ω. (4.30)

Now we are in a perfect position to prove our main result for translation invariant finite

element space of any order.
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Theorem 4.8. Let all the coefficients in the bilinear operator B(·, ·) be constant; let Ω0 ⊂⊂

Ω2 ⊂⊂ Ω be separated by d = O(1); let the finite element space Sh,r, which includes piecewise

polynomials of degree r, be translation invariant in the directions required by the Hessian

recovery operator Hh on Ω2; and let u ∈ W k+3
∞ (Ω). Assume that Theorem 5.2.2 from [97] is

applicable. Then

‖Hu−Hhuh‖0,∞,Ω0 .

(
ln

1

h

)r̄
hk+1‖u‖k+3,∞,Ω + ‖u− uh‖−s,q,Ω. (4.31)

for some s ≥ 0 and q ≥ 1.

Proof. We decompose

Hu−Hhuh = (Hu− Ih(Hu)) + (Ih(Hu)−Hhu) +Hh(u− uh), (4.32)

where Ih(Hu) ∈
2∏
i=1

Sh,r ×
2∏
i=1

Sh,r is the standard Lagrange interpolation of Hu in the finite

element space Sh,r. By the standard approximation theory, we obtain

‖Hu− Ih(Hu)‖0,∞,Ω . hk+1|Hu|k+1,∞,Ω . hk+1|u|k+3,∞,Ω. (4.33)

For the second term, using Theorem 4.2, we have

‖Ih(Hu)−Hhu‖0,∞,Ω0 =‖
∑
z∈Nh

((Hu)(z)− (Hhu)(z))φz‖0,∞,Ω0

. max
z∈Nh∩Ω0

|(Hu)(z)− (Hhu)(z)|

.hk+1|u|k+3,∞,Ω.

(4.34)
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The last term in (4.32) is bounded by (4.30). The conclusion follows by combining (4.30),

(4.33) and (4.34).

Remark. Theorem 4.8 is a ultraconvergence result under the condition

‖u− uh‖−s,q,Ω . hk+σ, σ > 0.

The reader is referred to [85] for negative norm estimates.

4.5 Numerical tests

In this section, two numerical examples are provided to illustrate our Hessian recovery

method. The first one is designed to demonstrate the polynomial preserving property of

the proposed Hessian recovery method. The second one is devoted to a comparison of our

method with some existing Hessian recovery methods in the literature on both uniform and

unstructured meshes.

In order to evaluate the performance of Hessian recovery methods, we split mesh nodes

Nh into Nh,1 and Nh,2, where Nh,2 = {z ∈ Nh : dist(z, ∂Ω) ≤ L} denotes the set of nodes

near boundary and Nh,1 = Nh \Nh,2 denotes rest interior nodes. Now, we can define

Ωh,1 =
⋃
{τ ∈ Th : τ has all of its vertices in Nh,1},

and Ωh,2 = Ω \ Ωh,1. In the following examples we choose L = 0.1.



71

Let G̃h be the weighted average recovery operator. Then we define

HZZ
h uh =

(
G̃h(G̃

x
huh), G̃h(G̃

y
huh)

)
,

and

HLS
h uh =

(
G̃h(G

x1
h uh), G̃h(G

x2
h uh)

)
.

For any nodal point z, fit a quadratic polynomial pz at z as PPR. Then HQF
h is defined as

HQF
h uh(z) =

 ∂2pz
∂x2

1
(0, 0) ∂2pz

∂x1∂x2
(0, 0)

∂2pz
∂x2∂x1

(0, 0) ∂2pz
∂x2

2
(0, 0)

 .

HZZ
h , HLS

h , and HQF
h are the first three Hessian recovery methods in [89]. To compare them,

define

De = ‖Hhuh −Hu‖L2(Ω1,h), DeZZ = ‖HZZ
h uh −Hu‖L2(Ω1,h),

DeLS = ‖HLS
h uh −Hu‖L2(Ω1,h), DeQF = ‖HQF

h uh −Hu‖L2(Ω1,h).

where uh is the finite element solution.

Example 4.3. Consider the following function

u(x, y) = sin(πx)sin(πy), (x, y) ∈ Ω = (0, 1)× (0, 1). (4.35)

Let Ihu be the standard Lagrangian interpolation of u in the finite element space. To validate

Theorem 4.2, we apply the Hessian recovery operator Hh to Ihu and consider the discrete
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maximum error of Hh(Ihu) − Hu at all vertices in N1,h. First, linear element on uniform

meshes are taken into account. Figure 25 display the numerical results on the uniform meshes.

The numerical errors decrease at a rate of O(h2) for four different pattern uniform meshes.

It means the proposed Hessian recovery method preserves polynomial of degree 3 for linear

element on uniform meshes.

Next, we consider unstructured meshes. We start from an initial mesh generated by

EasyMesh[84] as shown in Figure 26(a), followed by four levels of refinement using bisection.

Figure 26(b) shows that the recovered Hessian Hh(Ihu) converges to the exact Hessian at

rate O(h). This coincides with the result in Theorem 4.1 that Hh only preserves polynomials

of degree 2 on general unstructured meshes

Then we turn to quadratic element. We test the discrete error of recovered Hessian

Hh(Ihu) and the exact Hessian Hu using uniform meshes of regular pattern and the same

Delaunay meshes. Similarly, we define ‖ · ‖∞,h as a discrete maximum norm at all vertices

and edge centers in an interior region Ω1,h. The result of uniform mesh of regular pattern

is reported in Figure 27(a). As predicted by Theorem 4.2, HhuI converges to Hu at rate of

O(h4) which implies Hh preserves polynomials of degree 5 for quadratic element on uniform

triangulation. For unstructured mesh, we observe that HhuI approximates Hu at a rate of

O(h2) from Figure 27(b).

Example 3.5.2. We consider the following elliptic equation


−∆u = 2π2 sin πx sin πy, in Ω = [0, 1]× [0, 1],

u = 0, on ∂Ω.

(4.36)
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(d) Unionjack pattern

Figure 25: Polynomial preserving property of Hessian recovery for linear element on 2D
uniform mesh

The exact solution is u(x, y) = sin(πx) sin(πy). First, linear element is considered. In Table

1, we report the numerical results for regular pattern meshes. All four methods ultraconverge

at a rate of O(h2) in the interior subdomain. It is not a surprise that HLS
h and HZZ

h perform

as good as Hh since it is well known that the polynomial preserving recovery is the same as

weighted average for uniform triangular mesh of the regular pattern.

The results of the Chevron pattern is shown in Table 2. Hhuh approximates Hu at rate

O(h2) while HLS
h uh, H

ZZ
h uh and HQF

h uh approximate Hu at rate O(h). It is observed that
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(b) Numerical Result

Figure 26: Polynomial preserving property of Hessian recovery for linear element on 2D
unstructured mesh
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Figure 27: Polynomial preserving property of Hessian recovery for 2D quadratic element

our method out-performs other three Hessian recovery methods on the Chevron pattern

uniform meshes. To the best of our knowledge, the proposed PPR-PPR Hessian recovery is

the only method to achieve O(h2) superconvergence for linear element under the Chevron

pattern triangular mesh.

Then the Criss-cross pattern mesh is considered and results are displayed in Table 3.

An O(h2) convergence rate is observed for our recovery method, HLS
h and HZZ

h while no
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Table 1: Comparative results for linear element on 2D regular pattern mesh
Dof De order DeZZe order DeLS order DeQF order
121 7.93e-001 9.73e-001 7.93e-001 4.01e-001
441 2.02e-001 1.06 2.02e-001 1.22 2.02e-001 1.06 1.03e-001 1.05
1681 5.10e-002 1.03 5.10e-002 1.03 5.10e-002 1.03 2.61e-002 1.03
6561 1.28e-002 1.02 1.28e-002 1.02 1.28e-002 1.02 6.53e-003 1.02
25921 3.20e-003 1.01 3.20e-003 1.01 3.20e-003 1.01 1.63e-003 1.01
103041 8.00e-004 1.00 8.00e-004 1.00 8.00e-004 1.00 4.08e-004 1.00

Table 2: Comparative results for linear element on 2D chevron pattern mesh
Dof De order DeZZe order DeLS order DeQF order
121 6.51e-001 7.98e-001 7.82e-001 9.03e-001
441 1.34e-001 1.22 2.12e-001 1.03 2.34e-001 0.93 4.30e-001 0.57
1681 3.38e-002 1.03 7.96e-002 0.73 9.87e-002 0.64 2.11e-001 0.53
6561 8.46e-003 1.02 3.57e-002 0.59 4.68e-002 0.55 1.05e-001 0.51
25921 2.11e-003 1.01 1.73e-002 0.53 2.30e-002 0.52 5.23e-002 0.51
103041 5.29e-004 1.00 8.57e-003 0.51 1.15e-002 0.50 2.62e-002 0.50

Table 3: Comparative results for linear element on 2D crisscross pattern mesh
Dof De order DeZZe order DeLS order DeQF order
221 5.49e-001 3.57e-001 4.40e-001 7.14e-001
841 1.28e-001 1.09 8.03e-002 1.12 1.04e-001 1.08 6.17e-001 0.11
3281 3.22e-002 1.01 2.01e-002 1.02 2.62e-002 1.01 5.95e-001 0.03
12961 8.06e-003 1.01 5.04e-003 1.01 6.55e-003 1.01 5.90e-001 0.01
51521 2.02e-003 1.00 1.26e-003 1.00 1.64e-003 1.00 5.89e-001 0.00
205441 5.04e-004 1.00 3.15e-004 1.00 4.09e-004 1.00 5.88e-001 0.00

Table 4: Comparative results for linear element on 2D unionjack pattern mesh
Dof De order DeZZe order DeLS order DeQF order
121 1.25e+000 8.40e-001 9.87e-001 1.05e+000
441 3.16e-001 1.06 1.77e-001 1.20 2.48e-001 1.07 6.95e-001 0.32
1681 7.96e-002 1.03 4.46e-002 1.03 6.24e-002 1.03 6.14e-001 0.09
6561 2.00e-002 1.02 1.12e-002 1.02 1.56e-002 1.02 5.95e-001 0.02
25921 5.00e-003 1.01 2.80e-003 1.01 3.91e-003 1.01 5.90e-001 0.01
103041 1.25e-003 1.00 6.99e-004 1.00 9.78e-004 1.00 5.89e-001 0.00

Table 5: Comparative results for linear element on 2D unstructured mesh
Dof De order DeZZe order DeLS order DeQF order
139 4.31e-001 4.38e-001 4.40e-001 3.26e-001
513 1.38e-001 0.87 2.20e-001 0.53 1.49e-001 0.83 1.79e-001 0.46
1969 5.39e-002 0.70 2.36e-001 -0.05 5.85e-002 0.69 8.88e-002 0.52
7713 2.38e-002 0.60 1.62e-001 0.28 2.55e-002 0.61 4.35e-002 0.52
30529 1.14e-002 0.54 1.13e-001 0.26 1.19e-002 0.56 2.15e-002 0.51
121473 5.59e-003 0.51 7.97e-002 0.25 5.73e-003 0.53 1.07e-002 0.51

convergence rate is observed for HQF
h . The results for the Union-Jack pattern mesh is very

similar to the Criss-cross pattern mesh except that our recovery method superconverges at
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rate O(h2) as shown in Table 4.

Now, we turn to unstructured mesh generated by EasyMesh [84] as in the previous

examples. Numerical data are listed in Table 5. Hh, H
LS
h and HQF

h converge at a rate of

O(h2) while HZZ
h only converges at a rate of O(h).

The results above indicate clearly that our Hessian recovery method converges at rate

O(h) on general Delaunay meshes, which is predicted by Theorem 4.5. On uniform meshes,

we can obtain O(h2) ultraconvergence on an interior sub-domain as predicted by Theorem

4.8.
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Figure 28: Numerical result of Hessian recovery for 2D quadratic element

Now, we consider quadratic element. Note that our Hessian recovery method is well

defined for arbitrary order elements. However, the extension of the other three methods

to quadratic element is not straightforward or even impossible and hence only our method

is implemented here. We report the numerical results in Figure 28(a) for regular pattern

uniform mesh. About O(h3.2) order convergence is observed, which is a bit better than the

theoretical result predicted by Theorem 4.8. Figure 28(b) shows the result for Delaunay mesh
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generated by EasyMesh [84]. About O(h1.9) superconvergence is observed.

4.6 Conclusion

In this chapter, we introduced a Hessian recovery method for arbitrary order Lagrange fi-

nite elements. Theoretically, we proved that the PPR-PPR Hessian recovery operator Hh

preserves polynomials of degree k+ 1 on general unstructured meshes and preserves polyno-

mials of degree k + 2 on translation invariant meshes. This polynomial preserving property,

combined with the supercloseness property of the finite element method, enables us to prove

convergence and superconvergence results for our Hessian recovery method on mildly struc-

tured meshes. Moreover, we proved the ultraconvergence result for translation invariant finite

element space of any order by using the argument of superconvergence by difference quotient

from [97].
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CHAPTER 5 Superconvergent two-grid schemes for el-

liptic eigenvalue problems

A tremendous variety of science and engineering applications, e.g. the buckling of columns

and shells and the vibration of elastic bodies, contain models of eigenvalue problems of partial

differential equations. A recent survey article [46] of SIAM Review listed 515 references on

theory and application of the Laplacian eigenvalue problem.

In this chapter, we apply PPR gradient recovery to efficient computation of eigenvalue. We

combine ideas of the two-grid method[102, 34, 62, 72, 108], two-space method[5, 91], shifted-

inverse power method[55, 103], and PPR recovery enhancement [82, 78, 81] to design our

new algorithms. The first purpose is to introduce two superconvergent two-grid methods for

eigenvalue problems. The new proposed methods enjoy all advantages of the above methods

: low computational cost and superconvergence.

In addition, we apply PPR gradient recovery for adaptive finite element method of eigen-

value problems. In the context of adaptive finite element method for elliptic eigenvalue prob-

lems, residual type a posteriori error estimators are analyzed in [40, 53, 67] and recovery type

a posteriori error estimators are investigated by [75, 99, 73]. For all adaptive methods men-

tioned above, an algebraic eigenvalue problem has to be solved during every iteration, which

is very time consuming. This cost dominates the computational cost of AFEM and usually

is ignored. To reduce computational cost, Mehrmann and Miedlar [77] introduced a new

adaptive method which only requires an inexact solution of algebraic eigenvalue equation on

each iteration by only performing a few iterations of Krylov subspace solver. Recently, Li and

Yang [68] proposed an adaptive finite element method based on multi-scale discretization
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for eigenvalue problems and Xie [100] introduced a type of adaptive finite element method

based on the multilevel correction scheme. Both methods only solve an eigenvalue problem

on the coarsest mesh and solve boundary value problems on adaptive refined meshes.

The second purpose of this chapter is to propose two multilevel adaptive methods. Using

our methods, solving an eigenvalue problem by AFEM will not be more difficult than solv-

ing a boundary value problem by AFEM. The most important feature which makes them

distinguishing from the methods in [68, 100] is that superconvergence of eigenfunction ap-

proximation and ultraconvergence (two order higher) of eigenvalue approximation can be

numerically observed.

In Section 5.1, we introduce the model eigenvalue problem and its conforming finite

element discretization. Section 5.2 is devoted to presenting two superconvergent two-grid

methods and their error estimates. In Section 5.3, we propose two multilevel adaptive meth-

ods. Section 5.4 gives some numerical examples to demonstrate efficiency of our new methods

and finally some conclusions are drawn in Section 5.5.

5.1 A PDE eigenvalue problem and its conforming finite element

discretization

Consider the following second order self adjoint elliptic eigenvalue problem:

 −∇(D∇u) + cu = λu, in Ω,

u = 0, on ∂Ω;
(5.1)
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where D is a 2× 2 symmetric positive definite matrix and c ∈ L∞(Ω). Define a bilinear form

B(·, ·) : H1(Ω)×H1(Ω)→ R by

B(u, v) =

ˆ
Ω

(D∇u · ∇v + cuv)dx.

Without loss of generality, we may assume that c ≥ 0. It is easy to see that

B(u, v) ≤ C‖u‖1,Ω‖v‖1,Ω, ∀u, v ∈ H1
0 (Ω),

and

B(u, u) ≥ α‖u‖2
1,Ω, ∀u ∈ H1

0 (Ω).

Define ||| · |||Ω =
√

B(·, ·). Then ||| · |||Ω and ‖ · ‖1,Ω are two equivalent norms in H1
0 (Ω).

The variational formulation of (5.1) reads as: Find (λ, u) ∈ R×H1
0 (Ω) with u 6= 0 such

that

B(u, v) = λ(u, v), ∀v ∈ H1
0 (Ω). (5.2)

It is well known that (5.2) has a countable sequence of real eigenvalues 0 < λ1 ≤ λ2 ≤ λ3 ≤

· · · → ∞ and corresponding eigenfunctions u1, u2, u3, · · · which can be assumed to satisfy

B(ui, uj) = λi(ui, uj) = δij. In the sequence {λj} , the λi are repeated according to geometric

multiplicity.

The finite element discretization of (5.1) is : Find (λh, uh) ∈ R × Sh,r0 with uh 6= 0 such

that

B(uh, vh) = λh(uh, vh), ∀vh ∈ Sh,r0 . (5.3)
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Similarly, (5.3) has a finite sequence of eigenvalues 0 < λ1,h ≤ λ2,h ≤ · · · ≤ λnh,h and cor-

responding eigenfunctions u1,h, u2,h, · · · , unh,h which can be chosen to satisfy B(ui,h, uj,h) =

λi,h(ui,h, uj,h) = δij with i, j = 1, 2, · · · , nh and nh = dimSh,r0 .

Suppose that the algebraic multicity of λi is equal to q, i.e. λi = λi+1 = · · · = λi+q−1. Let

M(λi) be the space spanned by all eigenfunctions corresponding to λi. Also, let Mh(λh) be

the direct sum of eigenspaces corresponding to all eigenvalue λi,h that convergences to λi.

For the above conforming finite element discretization, the following result has been

established by many authors [7, 8, 31, 92, 102, 103].

Theorem 5.1. Suppose M(λi) ⊂ H1
0 (Ω) ∩Hr+1(Ω). Let λi,h and λi be the ith eigenvalue of

(5.3) and (5.2), respectively. Then

λi ≤ λi,h ≤ λi + Ch2r. (5.4)

For any eigenfunction ui,h corresponding to λi,h satisfying ‖ui,h‖a,Ω = 1, there exists ui ∈

M(λi) such that

|||ui − ui,h|||Ω ≤ Chr. (5.5)

Before ending this subsection, we present an important identity [8] of eigenvalue and

eigenfunction approximation.

Lemma 5.2. Let (λ, u) be the solution of (5.2). Then for any w ∈ H1
0 (Ω)\{0}, there holds

B(w,w)

(w,w)
− λ =

B(w − u,w − u)

(w,w)
− λ(w − u,w − u)

(w,w)
. (5.6)



82

This identity will play an important role in our superconvergence analysis.

According to [82], two adjacent triangles (sharing a common edge) form an O(h1+α)

(α > 0) approximate parallelogram if the lengths of any two opposite edges differ by only

O(h1+α).

Definition 5.3. The triangulation Th is said to satisfy Condition α if any two adjacent

triangles form an O(h1+α) parallelogram.

Let Gh be the PPR gradient recovery operator as defined in section 4.2. Using the same

methods [107, 93], we can prove the following superconvergence result:

Theorem 5.4. Suppose M(λi) ⊂ H1
0 (Ω)∩W 3,∞(Ω). Further, suppose Th satisfies Condition

α. Let Gh be the polynomial preserving recovery operator and r = 1. Then for any eigenfunc-

tion of (5.3) corresponding to λi,h, there exists an eigenfunction ui ∈ M(λi) corresponding

to λi such that

‖D 1
2∇ui −D

1
2Ghui,h‖0,Ω . h1+ρ‖ui‖3,∞,Ω, (5.7)

where ρ = min(α, 1).

As pointed out in [82], α = ∞ if Th is generated using regular refinement. Fortunately,

the fine grid Th is always a regular refinement of some coarse grid TH for two-grid method.

When we introduce two-grid methods in Section 5.2, we only perform gradient recovery on

fine grid Th . Thus we assume α =∞ and hence ρ = 1 in section 5.2.
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5.2 Superconvergent two-grid methods

In the literature, two-grid methods [102, 103, 55, 108] were proposed to reduce the cost of

eigenvalue computations. To further improve the accuracy, two different approaches: gradient

recovery enhancement [82, 93, 78, 99] and two-space methods [5, 91] can be used. Individually,

those tools are useful in certain circumstances. Combined them properly, we are able to design

much effective and superconvergence algorithms, which we shall describe below.

5.2.1 Gradient recovery enhanced shifted inverse power two-grid scheme

In this scheme, we first use the shifted inverse power based two-grid scheme [103, 55] and

then apply the gradient recovery enhancing technique [82].

Algorithm 1

1. Solve the eigenvalue problem on a coarse grid TH : Find (λi,H , ui,H) ∈ R × SH,10 and
‖ui,H‖a = 1 satisfying

B(ui,H , vH) = λi,H(ui,H , vH), ∀vH ∈ SH,10 . (5.8)

2. Solve a source problem on the fine grid Th: Find uih ∈ Sh,10 such that

B(uih, vh)− λi,H(uih, vh) = (ui,H , vh), ∀vh ∈ Sh,10 , (5.9)

and set ui,h =
uih
‖uih‖a

.

3. Apply the gradient recovery operator Gh on ui,h to get Ghu
i,h.

4. Set

λi,h =
B(ui,h, ui,h)

(ui,h, ui,h)
− ‖D

1
2∇ui,h −D

1
2Ghu

i,h‖2
0,Ω

(ui,h, ui,h)
. (5.10)

To prove our main superconvergence result, we need the following Lemma, which was

proved in [103, Theorem 4.1].
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Lemma 5.5. Suppose that M(λi) ⊂ H1
0 (Ω) ∩W 3,∞(Ω). Let (λi,h, ui,h) be an approximate

eigenpair of (5.2) obtained by Algorithm 1 and let H be properly small. Then

dist(ui,h,Mh(λi)) . H4 + h2, (5.11)

where dist(ui,h,Mh(λi)) = inf
v∈Mh(λi)

|||ui,h − v|||Ω.

Based on the above Lemma, we can establish the superconvergence result for eigenfunc-

tions.

Theorem 5.6. Suppose that M(λi) ⊂ H1
0 (Ω) ∩W 3,∞(Ω) . Let (λi,h, ui,h) be an approximate

eigenpair of (5.2) obtained by Algorithm 1 and let H be properly small. Then there exists

ui ∈M(λi) such that

‖D 1
2Ghu

i,h −D
1
2∇ui‖0,Ω . (H4 + h2). (5.12)

Proof. Let the eigenfunctions {uj,h}i+q−1
j=i be an orthonormal basis of Mh(λi). Note that

dist(ui,h,Mh(λi)) = |||ui,h −
j=i+q−1∑
j=i

B(ui,h, uj,h)uj,h|||Ω.

Let ũh =
∑j=i+q−1

j=i B(ui,h, uj,h)uj,h. According to Theorem 5.4, there exist {ũj}i+q−1
j=i ⊂M(λi)

such that

‖D 1
2Ghu

j,h −D
1
2∇ũj‖0,Ω . h2. (5.13)
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Let ui =
∑j=i+q−1

j=i B(ui,h, uj,h)ũj; then ui ∈M(λi). Using (5.13), we can derive that

‖D 1
2Ghũ

h −D
1
2∇ui‖0,Ω

=‖
j=i+q−1∑
j=i

B(ui,h, uj,h)(D
1
2Ghuj,h −D

1
2∇ũj)‖0,Ω

.

(
j=i+q−1∑
j=i

‖(D 1
2Ghuj,h −D

1
2∇ũj)‖2

0,Ω

) 1
2

.h2.

Thus, we have

‖D 1
2Ghu

i,h −D
1
2∇ui‖0,Ω

≤‖D 1
2Gh(u

i,h − ũh)‖0,Ω + ‖D 1
2Ghũh −D

1
2∇ui‖0,Ω

.‖Gh(u
i,h − ũh)‖0,Ω + h2

.‖∇(ui,h − ũh)‖0,Ω + h2

.|||ui,h − ũh|||Ω + h2

.(H4 + h2) + h2

.H4 + h2;

where we use Lemma 5.5 to bound ‖ui,h − ũh‖a,Ω.

The following Lemma is needed in the proof of a superconvergence property of our eigen-

value approximation.

Lemma 5.7. Suppose that M(λi) ⊂ H1
0 (Ω) ∩W 3,∞(Ω). Let (λi,h, ui,h) be an approximate
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eigenpair of (5.2) obtained by Algorithm 1 and let H be properly small. Then

‖D 1
2Ghu

i,h −D
1
2∇ui,h‖0,Ω . (H2 + h). (5.14)

Proof. Let ũh be defined as in Theorem 5.6. Then we have

‖D 1
2Ghu

i,h −D
1
2∇ui,h‖0,Ω

≤‖D 1
2Ghu

i,h −D
1
2Ghũh‖0,Ω + ‖D 1

2Ghũh −D
1
2∇ũh‖0,Ω + ‖D 1

2∇ũh −D
1
2∇ui,h‖0,Ω

.‖Ghu
i,h −Ghũh‖0,Ω + ‖D 1

2Ghũh −D
1
2∇ũh‖0,Ω + ‖D 1

2∇ũh −D
1
2∇ui,h‖0,Ω

.‖∇ui,h −∇ũh‖0,Ω + ‖D 1
2Ghũh −D

1
2∇ũh‖0,Ω

.|||ui,h − ũh|||Ω + ‖D 1
2Ghũh −D

1
2∇ũh‖0,Ω

.(H4 + h2) + h

.(H2 + h).

Here we use the fact that ||| · |||Ω and ‖ · ‖1,Ω are two equivalent norms on H1
0 (Ω).

Now we are in a perfect position to prove our main superconvergence result for eigenvalue

approximation.

Theorem 5.8. Suppose that M(λi) ⊂ H1
0 (Ω) ∩W 3,∞(Ω). Let (λi,h, ui,h) be an approximate

eigenpair of (5.2) obtained by Algorithm 1 and let H be properly small.

|λi,h − λi| . H6 + h3. (5.15)
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Proof. It follows from (5.6) and (5.10) that

λi,h − λi

=
B(ui,h, ui,h)

(ui,h, ui,h)
− ‖D

1
2∇ui,h −D

1
2Ghu

i,h‖2
0,Ω

(ui,h, ui,h)
− λi

=
B(ui,h − ui, ui,h − ui)

(ui,h, ui,h)
− ‖D

1
2∇ui,h −D

1
2Ghu

i,h‖2
0,Ω

(ui,h, ui,h)
− λi(u

i,h − ui, ui,h − ui)
(ui,h, ui,h)

=
(D

1
2 (ui,h − ui),D

1
2 (ui,h − ui))

(ui,h, ui,h)
− ‖D

1
2∇ui,h −D

1
2Ghu

i,h‖2
0,Ω

(ui,h, ui,h)
+

(c(ui,h − ui), ui,h − ui)− λi(ui,h − ui, ui,h − ui)
(ui,h, ui,h)

=
‖D 1

2∇Ghu
i,h −D

1
2∇ui‖2

0,Ω

(ui,h, ui,h)
+

2(D
1
2Ghu

i,h −D
1
2∇ui,D

1
2∇ui,h −D

1
2Ghu

i,h)

(ui,h, ui,h)
+

(c(ui,h − ui), ui,h − ui)− λi(ui,h − ui, ui,h − ui)
(ui,h, ui,h)

.

From Theorem 4.1 in [103], we know that ‖ui,h−ui‖0,Ω . (H4 +h2) and hence the last term

in the above equation is bounded by O((H4 + h2)2). Theorem 5.6 implies that the first term

is also bounded by O((H4 + h2)2). Using the Hölder inequality, we obtain

|(D 1
2Ghu

i,h −D
1
2∇ui,D

1
2∇ui,h −D

1
2Ghu

i,h)|

≤ ‖D 1
2Ghu

i,h −D
1
2∇ui‖0,Ω‖D

1
2∇ui,h −D

1
2Ghu

i,h)‖0,Ω

. (H4 + h2)(H2 + h) . H6 + h3 (5.16)

and hence

|λi,h − λi| . H6 + h3.

This completes our proof.
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Taking H = O(
√
h), Theorem 5.6 and 5.8 implies that we can get O(h2) superconvergence

and O(h3) superconvergence for eigenfunction and eigenvalue approximation, respectively.

Remark. Using the Hölder inequality to estimate (5.16) does not take into account the

cancellation in the integral. Similar as [82], numerical experiments show that the actual

bound is

|(D 1
2Ghu

i,h −D
1
2∇ui,D

1
2∇ui,h −D

1
2Ghu

i,h)| . (H4 + h2)2,

which says that we have “double”-order gain by applying recovery.

Remark. Algorithm 1 is a combination of the shifted inverse power two-grid method [103, 55]

and gradient recovery enhancement [82]. It inherits all excellent properties of both methods:

low computational cost and superconvergence. We will demonstrate in our numerical tests

that Algorithm 1 outperforms shifted inverse power two-grid method in [103, 55].

Remark. If we firstly use classical two-grid methods as in [102] and then apply gradient

recovery, we can prove ‖D 1
2Ghu

i,h − D
1
2∇ui‖0,Ω . (H2 + h2) and |λi,h − λi| . H3 + h3. It

means we can only get optimal convergence rate insteading of superconvergent convergence

rate when H = O(
√
h).

5.2.2 Higher order space based superconvergent two-grid scheme

Our second scheme can be viewed as a combination of the two-grid scheme proposed by Yang

and Bi [103] or Hu and Cheng [55] and the two-space method introduced by Racheva and

Andreev [91].

Note that we use linear finite element space SH,10 on coarse grid TH and quadratic finite

element space Sh,20 on fine grid Th. Compared with the two-grid scheme [103, 55], the main
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Algorithm 2

1. Solve an eigenvalue problem on a coarse grid TH : Find (λi,H , ui,H) ∈ R × SH,10 and
‖ui,H‖a = 1 satisfying

B(ui,H , vH) = λi,H(ui,H , vH), ∀vH ∈ SH,10 . (5.17)

2. Solve a source problem on the fine grid Th: Find uih ∈ Sh,20 such that

B(ui,h, vh)− λi,H(ui,h, vh) = (ui,H , vh), ∀vh ∈ Sh,20 . (5.18)

3. Compute the Rayleigh quotient

λi,h =
B(ui,h, ui,h)

(ui,h, ui,h)
. (5.19)

difference is that Algorithm 2 uses linear element on coarse grid TH and quadratic element on

fine grid Th while the two-grid uses linear element on both coarse grid TH and Th. Compared

with the two-space method [91], the main difference is that Algorithm 2 uses a coarse grid

TH and a fine grid Th whereas the two-space method only uses a grid Th. Algorithm 2 shares

the advantages of both methods: low computational cost and high accuracy. Thus, we would

expect Algorithm 2 performs much better than both methods.

For Algorithm 2, we have the following Theorem:

Theorem 5.9. Suppose that M(λi) ⊂ H1
0 (Ω) ∩ H3(Ω). Let (λi,h, ui,h) be an approximate

eigenpair of (5.2) by Algorithm 1 and let H be properly small. Then there exists ui ∈M(λi)

such that

|||ui,h − ui|||Ω . (H4 + h2); (5.20)

λi,h − λi . (H8 + h4). (5.21)
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Proof. By Theorem 4.1 in [103], we have

|||ui,h − ui|||Ω . ηa(H)δ3
H(λi) + δh(λi); (5.22)

and

λi,h − λi . η2
a(H)δ6

H(λi) + δ2
h(λi). (5.23)

Since we use linear element on TH and quadratic element on Th, it follows from the interpo-

lation error estimate [25, 35] that

ηa(H) . H, δH(λi) . H, δh(λi) . h2.

Substituting the above three estimate into (5.22) and (5.23), we get (5.20) and (5.21).

Comparing Algorithm 1 and 2, the main difference is that Algorithm 1 solves a source

problem on fine grid Th using linear element and hence perform gradient recovery while Al-

gorithm 2 solves a source problem on fine grid Th using quadratic element. Both Algorithm 1

and 2 lead to O(h2) superconvergence for eigenfunction approximation and O(h4) ultracon-

vergence for eigenvalue approximation by taking H = O(
√
h). The message we would like to

deliver here is that polynomial preserving recovery plays a similar role as quadratic element,

but with much lower computational cost.

Remark. In order to get higher order convergence, we require higher regualrity such as

M(λi) ⊂ H1
0 (Ω) ∩W 3,∞(Ω) for Algorithm 1 and M(λi) ⊂ H1

0 (Ω) ∩H3(Ω) for Algorithm 2,

in the proof. However, we can use Algorithm 1 and 2 to get high accuracy approximation

even with low regularity.
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5.3 Multilevel adaptive methods

Algorithm 3 Given a tolerance ε > 0 and a parameter 0 ≤ θ < 1.

1. Generate an initial mesh Th0 .

2. Solve (5.2) on Th0 to get a discrete eigenpair (λ̄h0 , uh0).

3. Set ` = 0.

4. Compute η(uh` , T ) and η(uh` ,Ω), then let

λh` = λ̄h` − η(uh` ,Ω)2.

5. If η(uh` ,Ω)2 < ε, stop; else go to 6.

6. Choose a minimal subset of elements T̂h` ⊂ Th` such that∑
T∈T̂h`

η2(uh, T ) ≥ θη2(uh,Ω);

then refine the elements in T̂h` and necessary elements to get a new conforming mesh
Th`+1

.

7. Find u ∈ Sh`+1,1
0 such that

B(u, v) = λh`(u
h` , v), v ∈ Sh`+1,1

0 ,

and set uh`+1 = u
‖u‖0,Ω . Define

λ̄h`+1 =
B(uh`+1 , uh`+1)

(uh`+1 , uh`+1)
. (5.24)

8. Let ` = `+ 1 and go to 4.

In this section, we incorporate two-grid methods and gradient recovery enhancing tech-

nique into the framework of adaptive finite element method and propose two multilevel

adaptive methods. Both methods only need to solve an eigenvalue problem on initial mesh

and solve an associated boundary value problem on adaptive refined mesh during every

iteration.
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Algorithm 4 Given a tolerance ε > 0 and a parameter 0 ≤ θ < 1.

1. Generate an initial mesh Th0 .

2. Solve (5.2) on Th0 to get a discrete eigenpair (λ̄h0 , uh0).

3. Set ` = 0.

4. Compute η(uh` , T ) and η(uh` ,Ω), then let

λh` = λ̄h` − η(uh` ,Ω)2.

5. If η(uh` ,Ω)2 < ε, stop; else go to 6.

6. Choose a minimal subset of elements T̂h` ⊂ Th` such that∑
T∈T̂h`

η2(uh, T ) ≥ θη2(uh,Ω);

then refine the elements in T̂h` and necessary elements to get a new conforming mesh
Th`+1

.

7. Find u ∈ Sh`+1,1
0 such that

B(u, v)− λh`(u, v) = (uh` , v), v ∈ Sh`+1,1
0 , (5.25)

and set uh`+1 = u
‖u‖0,Ω . Define

λ̄h`+1 =
B(uh`+1 , uh`+1)

(uh`+1 , uh`+1)
.

8. Let ` = `+ 1 and go to 4.
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Let uh be a finite element solution in Sh,1 and Gh be PPR recovery operator. Define a

local a posteriori error estimator on the element T as

η(uh, T ) = ‖D 1
2Ghuh −D

1
2∇uh‖0,T , (5.26)

and a global error estimator as

η(uh,Ω) =

(∑
T∈Th

η(uh, T )2

) 1
2

. (5.27)

Given a tolerance ε and a parameter θ, we describe our multilevel adaptive methods in

Algorithm 3 and 4. Here we use Dörfler marking strategy [38] in step 6.

Note that the only difference between Algorithm 3 and 4 is that they solve different

boundary value problems on step 7. Algorithm 3 solves boundary value problem (5.24) like

two-grid scheme in [102] while Algorithm 4 solves boundary value problem (5.25) similar to

two-grid scheme in [103, 55]. Boundary value problem (5.25) would lead to a near singular

linear system. Although there are many efficient iterative methods, like multigrid methods,

as pointed out in [55], the computational cost of solving (5.24) should be higher than (5.25).

Numerical results of both methods are almost the same as indicated by examples in next

section. Thus, Algorithm 3 is highly recommended.

Compared to methods in [68, 100], Algorithm 3 and 4 use recovery based a posteriori error

estimator. The propose of gradient recovery in the above two algorithms is twofold. The first

one is to provide an asymptotically exact a posteriori error estimator. The other is to greatly

improve the accuracy of eigenvalue and eigenfunction approximations. Superconvergence
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result O(N−1) and ultraconvergence O(N−2) are numerically observed for eigenfunction and

eigenvalue approximation respectively. However, methods in [68, 100] can only numerically

give asymptotically optimal results. We would like to emphasize that the new algorithms can

get superconvergence or ultraconvergence results with no more or even less computational

cost compared to the methods proposed in [68, 100].

5.4 Numerical Experiment

In this section, we present several numerical examples to demonstrate the effectiveness and

superconconvergence of the proposed algorithms and validity our theoretical results.

The first example is designed to demonstrate superconvergence property of Algorithm

1 and 2 and make some comparison with the two-grid scheme in [103, 55]. Let the ith

eigenpairs obtained by Algorithm 1 and 2 be denoted by (λi,A1, ui,A1) and (λi,A2, ui,A2). Also,

let (λi,TG, ui,TG) be the ith eigenpair produced by the shift inverse based two-grid scheme in

[103, 55].

The presentation of other examples is used to illustrate the effectiveness and sueprcon-

vergence of Algorithm 3 and 4. In these examples, we focus on the first eigenpair. Let λ̄A3

and λA3 be the eigenvalue generated by Algorithm 3 without and with gradient recovery

enhancing, respectively. Define λ̄A4, λA4, uA3, and uA4 in a similar way.

Example 5.1. Consider the following Laplace eigenvalue problem


−∆u = λu, in Ω,

u = 0, on ∂Ω,

(5.28)
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where Ω = (0, 1)×(0, 1). The eigenvalue of (5.28) are λk,l = (k2+l2)π2 and the corresponding

eigenfunctions are uk,l = sin(kπx) sin(lπy) with k, l = 1, 2, · · · . It is easy to see the first three

eigenvalues are λ1 = 2π2 and λ2 = λ3 = 5π2.
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Figure 29: Uniform Mesh
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Figure 30: Delaunay Mesh

Table 6: Eigenpair errors of Algorithm 1 for Example 1 on Uniform Mesh
i H h λi,A1 λi,A1 − λi Order ‖Ghu

i,A1 −∇ui‖0,Ω Order
1 1/4 1/16 19.733813512912 -5.40e-03 7.059395e-02
1 1/8 1/64 19.739186935311 -2.19e-05 3.97 4.387700e-03 2.00
1 1/16 1/256 19.739208716241 -8.59e-08 4.00 2.734342e-04 2.00
1 1/32 1/1024 19.739208801843 -3.36e-10 4.00 1.707544e-05 2.00
2 1/4 1/16 49.311524605286 -3.65e-02 0.00 ————
2 1/8 1/64 49.347897768530 -1.24e-04 4.10 ————
2 1/16 1/256 49.348021565420 -4.40e-07 4.07 ————
2 1/32 1/1024 49.348022003783 -1.66e-09 4.02 ————
3 1/4 1/16 49.311750580349 -3.63e-02 0.00 ————
3 1/8 1/64 49.347802761238 -2.19e-04 3.69 ————
3 1/16 1/256 49.348021182216 -8.23e-07 4.03 ————
3 1/32 1/1024 49.348022002296 -3.15e-09 4.01 ————

First, uniform mesh as in Fig 29 is considered. The fine meshes Th are of sizes h = 2−j

(j = 4, 6, 8, 10) and the corresponding coarse meshes TH of size H =
√
h. Table 6 lists the

numerical results for Algorithm 1. ‖Ghu
i,A1−∇ui‖0,Ω (i = 1) superconverges at rate of O(h2)

which consists with our theoretical analysis. However, |λi,A1−λi| (i = 1, 2, 3) ultraconverges

at rate of O(h4) which is better than the results predicted by Theorem 5.8. In particular, it

verifies the statement in Remark 5.2.1. Since λ2 and λ2 are multiples eigenvalues, the error of
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Table 7: Eigenpair errors of Algorithm 2 for Example 1 on Uniform Mesh
i H h λi,A2 λi,A2 − λi Order ‖∇ui,A2 −∇ui‖0,Ω Order
1 1/4 1/16 19.740140941323 9.32e-04 3.344371e-02
1 1/8 1/64 19.739212357340 3.56e-06 4.02 2.076378e-03 2.00
1 1/16 1/256 19.739208816236 1.41e-08 3.99 1.308168e-04 1.99
1 1/32 1/1024 19.739208802235 5.59e-11 3.99 8.198527e-06 2.00
2 1/4 1/16 49.399143348018 5.11e-02 0.00 ————
2 1/8 1/64 49.348217238157 1.95e-04 4.02 ————
2 1/16 1/256 49.348022827362 8.22e-07 3.95 ————
2 1/32 1/1024 49.348022008741 3.29e-09 3.98 ————
3 1/4 1/16 49.573605264596 2.26e-01 0.00 ————
3 1/8 1/64 49.348559514553 5.38e-04 4.36 ————
3 1/16 1/256 49.348024046492 2.04e-06 4.02 ————
3 1/32 1/1024 49.348022013418 7.97e-09 4.00 ————

Table 8: Eigenpair errors of shift-inverse Two-grid scheme for Example 1 on Uniform Mesh
i H h λi,TG λi,TG − λi Order ‖∇ui,TG −∇ui‖0,Ω Order
1 1/4 1/16 19.930259632276 1.91e-01 4.375101e-01
1 1/8 1/64 19.751103117985 1.19e-02 2.00 1.090672e-01 1.00
1 1/16 1/256 19.739951989101 7.43e-04 2.00 2.726155e-02 1.00
1 1/32 1/1024 19.739255250511 4.64e-05 2.00 6.815303e-03 1.00
2 1/4 1/16 50.199210624678 8.51e-01 0.00 ———–
2 1/8 1/64 49.399315353599 5.13e-02 2.03 ———–
2 1/16 1/256 49.351217793553 3.20e-03 2.00 ———–
2 1/32 1/1024 49.348221696982 2.00e-04 2.00 ———–
3 1/4 1/16 50.779973345337 1.43e+00 0.00 ———–
3 1/8 1/64 49.428220994371 8.02e-02 2.08 ———–
3 1/16 1/256 49.353003975409 4.98e-03 2.00 ———–
3 1/32 1/1024 49.348333256327 3.11e-04 2.00 ———–

eigenfunctions approximation are not available and it is represented by “−” in Tables 6-12.

One important thing we want to point out is that we observe numerically that λA1 obtained

by Algorithm 1 approximates the exact eigenvalue from below; see column 4 in Table 6.

Similar phenomenon was observed in [44] where they use a local high-order interpolation

recovery. We want to remark that lower bound of eigenvalue is very important in practice and

there are many efforts for obtaining eigenvalue approximation from below. The readers are

referred to [6, 70, 104, 105] for other ways to approximate eigenvalue from below. In Table 7,

we report the numerical result of Algorithm 2. As expected, O(h4) convergence of eigenvalue

approximation and O(h2) convergence of eigenfunction approximation are observed which

validate our Theorem 5.9. The shift-inverse power method based two-grid scheme in [103, 55]
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is then considered, the result being displayed in Table 8. λi,TG approximates λi (i = 1, 2, 3)

at a rate O(h2) and ‖ui,TG − ui‖a,Ω (i=1) converges at a rate of O(h).

Comparing Tables 6 to 8, huge advantages of Algorithm 1 and 2 are demonstrated. For

instance, on the fine grid with size h = 1/1024 and corresponding coarse grid with size

H = 1/32, the approximate first eigenvalues produced by Algorithm 1 and 2 are exact up

to 10 digits while one can only trust the first five digits of the first eigenvalue generated by

the two-grid scheme in [103, 55].

Table 9: Comparison of Three Algorithms for Example 1 on Uniform mesh
i H h i, λA1 λi,A1 − λi λi,A2 λi,A2 − λi λi,TG λi,TG − λi
1 1/2 1/16 20.1083669 3.69e-01 20.2080796 4.69e-01 20.3504780 6.11e-01
1 1/4 1/256 19.7398503 6.41e-04 19.7398588 6.50e-04 19.7406011 1.39e-03

Then we consider the case H = O( 4
√
h) for the first eigenvalue. We use the fine meshes of

mesh size h = 2−j with j = 4, 8 and corresponding coarse meshes satisfying H = 4
√
h. The

numerical results are shown in Table 9. We can see that the two proposed Algorithms give

better approximate eigenvalues. Thus Algorithm 1 and 2 outperforms the two-grid scheme

even in the case H = 4
√
h. One interesting thing that we would like to mention is that λi,A1

approximates λi from above in this case, see column 4 in Table 9.

Table 10: Eigenpair errors of Algorithm 1 for Example 1 on Delaunay Mesh
i H h λi,A1 λi,A1 − λi Order ‖Ghu

i,A1 −∇ui‖0,Ω Order
1 31 385 19.735647110619 -3.56e-03 5.338236e-02
1 105 5761 19.739198229599 -1.06e-05 2.15 2.835582e-03 1.08
1 385 90625 19.739208765246 -3.69e-08 2.05 1.686396e-04 1.02
1 1473 1443841 19.739208802041 -1.38e-10 2.02 1.049196e-05 1.00
2 31 385 49.307472112236 -4.05e-02 0.00 ————
2 105 5761 49.347888708818 -1.33e-04 2.11 ————
2 385 90625 49.348021524994 -4.80e-07 2.04 ————
2 1473 1443841 49.348022003630 -1.82e-09 2.01 ————
3 31 385 49.301142920140 -4.69e-02 0.00 ————
3 105 5761 49.347856273486 -1.66e-04 2.09 ————
3 385 90625 49.348021393237 -6.12e-07 2.03 ————
3 1473 1443841 49.348022003123 -2.32e-09 2.01 ————
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Table 11: Eigenpair errors of Algorithm 2 for Example 1 on Delaunay Mesh
i H h λi,A2 λi,A2 − λi Order ‖∇ui,A2 −∇ui‖0,Ω Order
1 31 385 19.739293668773 8.49e-05 9.258930e-03
1 105 5761 19.739209125443 3.23e-07 2.06 5.705799e-04 1.03
1 385 90625 19.739208803434 1.26e-09 2.01 3.555028e-05 1.01
1 1473 1443841 19.739208802184 5.33e-12 1.97 2.220103e-06 1.00
2 31 385 49.350648806465 2.63e-03 0.00 ————
2 105 5761 49.348029138391 7.13e-06 2.18 ————
2 385 90625 49.348022031328 2.59e-08 2.04 ————
2 1473 1443841 49.348022005547 1.00e-10 2.01 ————
3 31 385 49.351570779092 3.55e-03 0.00 ————
3 105 5761 49.348029733509 7.73e-06 2.27 ————
3 385 90625 49.348022033250 2.78e-08 2.04 ————
3 1473 1443841 49.348022005554 1.07e-10 2.01 ————

Table 12: Eigenpair errors of shift-inverse Two-grid scheme for Example 1 on Delaunay Mesh
i H h λi,TG λi,TG − λi Order ‖∇ui,TG −∇ui‖0,Ω Order
1 31 385 19.821235920927 8.20e-02 2.865766e-01
1 105 5761 19.744334806708 5.13e-03 1.02 7.159881e-02 0.51
1 385 90625 19.739529185236 3.20e-04 1.01 1.789929e-02 0.50
1 1473 1443841 19.739228826191 2.00e-05 1.00 4.474820e-03 0.50
2 31 385 49.828430094852 4.80e-01 0.00 ————
2 105 5761 49.377951127988 2.99e-02 1.03 ————
2 385 90625 49.349892261888 1.87e-03 1.01 ————
2 1473 1443841 49.348138895061 1.17e-04 1.00 ————
3 31 385 49.893495693695 5.45e-01 0.00 ————
3 105 5761 49.381970792689 3.39e-02 1.03 ————
3 385 90625 49.350143791388 2.12e-03 1.01 ————
3 1473 1443841 49.348154618353 1.33e-04 1.00 ————

Now, we turn to unstructured meshes. First we generate a coarse mesh TH and repeat

regular refinement on TH until H = O(
√
h) to get the corresponding fine mesh Th. The

first level coarse mesh is generated by EasyMesh [84] and the other three level coarse mesh

are generated by regular refinement. The numerical results are provided in Tables 10 to 12.

Note that NH and Nh denote the number of vertices on coarse mesh TH and fine mesh Th,

respectively. Concerning the convergence of eigenvalue, Algorithm 1 and 2 ultraconverge at

rate O(h4) while the two-grid scheme converges at rate O(h2). Note that in Tables 5.5–5.7,

NH ≈ H−2 and Nh ≈ h−2. Therefore, convergent rates for H and h “double” the rates for

NH and Nh, respectively. As for eigenfunction, ‖Ghu
i,A1 − ∇ui‖0,Ω and ‖∇ui,A2 − ∇ui‖0,Ω

are about O(h2) while ‖∇ui,TG −∇ui‖0,Ω ≈ O(h).
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Example 5.2. In the previous example, the eigenfunctions u are analytic. Here we con-

sider Laplace eigenvalue value problem on the L-shaped domain Ω = (−1, 1)×(−1, 1)/[0, 1)×

(−1, 0]. The first eigenfunction has a singularity at the origin. To capture this singularity,

multilevel adaptive algorithms 3 and 4 are used with θ = 0.4. Since the first exact eigenvalue

is not available, we choose an approximation λ = 9.6397238440219 obtained by Betcke and

Trefethen in [14], which is correct up to 14 digits.

Fig 31 shows the initial uniform mesh while Fig 32 is the mesh after 18 adaptive iterations.

Fig 33 reports numerical results of the first eigenvalue approximation. It indicates clearly

λ̄A3 and λ̄A4 approximate λ at a rate of O(N−1) while λA3 and λA4 approximate λ at a rate

of O(N−2). The numerical results for Algorithms 3 and 4 are almost the same. Furthermore,

we notice that λA3 and λA4 approximate the exact eigenvalue from below. It is well known

that λ̄A3 and λ̄A4 are upper bounds for the exact eigenvalue. In actual computation, we use

λ̄A3 − λA3 ≤ ε as stop criteria for adaptive Algorithm 3 where ε is the given tolerance. A

similar procedure is applied to Algorithm 4.
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Figure 31: Initial Mesh for Example 5.2
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Figure 32: Adaptive Mesh for Example 5.2

In the context of adaptive finite element method for boundary value problems, the ef-
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Figure 33: Eigenvalue Approximation Error for Example 5.2

fectivity index κ is used to measure the quality of an error estimator [4, 11]. For eigenvalue

problem, it is better to consider eigenvalue effectivity index insteading of traditional effec-

tivity index in [4, 11]. In the article, we consider a similiar eigenvalue effective index as in

[48]

κ =
‖D 1

2Ghuh −D
1
2∇uh‖2

0,Ω

|λ− λh|
, (5.29)

where uh is either uA3 or uA4 and λh is either λA3 or λA4. The effectivity index for the

two proposed multilevel adaptive algorithms are reported in Figs 34 and 35. We see that κ

converges to 1 quickly after the first few iterations, which indicates that the posteriori error

estimator (5.26) or (5.27) is asymptotically exact.

Example 5.3. Consider the following harmonic oscillator equation [47], which is a simple



101

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Number of Dof

E
ffe

ct
iv

e 
In

de
x

Figure 34: Effective index of Algorithm 3 for
Example 5.2
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Figure 35: Effective index of Algorithm 4 for
Example 5.2

model in quantum mechanics,

−1

2
∆u+

1

2
|x|2u = λu, in R2, (5.30)

where |x| =
√
|x1|2 + |x2|2. The first eigenvalue of (5.30) is λ = 1 and the corresponding

eigenfunction is u = γe−|x|
2/2 with any nonzero constant γ.

We solve this eigenvalue problem with Ω = (−5, 5)×(−5, 5) and zero boundary condition

as in [100]. The initial mesh is shown in Fig 36 and the adaptive mesh after 20 iterations

is displayed in Fig 37. The parameter θ is chosen as 0.4. Numerical results are presented

in Figs 38 and 39. For eigenvalue approximation, O(N−1) convergence rate is observed for

|λ̄A3 − λ| while O(N−2) ultraconvergence rate is observed for |λA3 − λ|. For eigenfunction

approximation, ‖D 1
2∇uA3 −D

1
2∇u‖0,Ω ≈ O(N−0.5) and ‖D 1

2GhuA3 −D
1
2∇u‖0,Ω ≈ O(N−1).

The numerical result of Algorithm 4 is similar.

Figs 40 and 41 graph the eigenvalue effectivity index for the two proposed multilevel

adaptive algorithms. They also indicate that the posteriori error estimator (5.26) or (5.27)
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is asymptotically exact for problem (5.30).
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Figure 36: Initial Mesh for Example 5.3
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Figure 37: Adaptive Mesh for Example 5.3
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Figure 38: Eigenvalue approximatio Error for
Example 5.3
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Figure 39: Eigenfunction approximatio Error
for Example 5.3

5.5 Conclusion

When eigenfunctions are relatively smooth, two-space method (using higher-order elements

in the second stage) is superior to two-grid methods (using the same element at finer grids in

the second stage). They have the comparable accuracy. However, at the last stage, the degrees

of freedom of the two-space method is much smaller than that of the two-grid method.
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Figure 40: Effective index of Algorithm 3 for
Example 5.3
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Figure 41: Effective index of Algorithm 4 for
Example 5.3

For linear element on structured meshes, using gradient recovery at the last stage achieves

similar accuracy as the quadratic element on the same mesh. Therefore, with much reduced

cost, the gradient recovery is comparable with the two-stage method on the same mesh.

Algorithms 3 and 4 use recovery type error estimators to adapt the mesh, and have

two advantages comparing with the residual based adaptive algorithms. 1) Cost effective.

In fact, the recovery based error estimator plays two roles: one is to measure the error,

and another is to enhance the eigenvalue approximation. 2) Higher accuracy. Indeed, after

recovery enhancement, the approximation error is further reduced.
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Recovery techniques are important post-processing methods to obtain improved approx-

imate solutions from primary data with reasonable cost. The practical usage of recovery

techniques is not only to improve the quality of approximation, but also to provide an asymp-

totically exact posteriori error estimators for adaptive methods. This dissertation presents

recovery techniques for nonconforming finite element methods and high order derivative as

well as applications of gradient recovery.

Our first target is to develop a systematic gradient recovery technique for Crouzeix-

Raviart element. The proposed method uses finite element solution to build a better approx-

imation of the exact gradient based on local least square fittings. Due to polynomial preserv-

ing property of least square fitting, it is easy to show that the new proposed method preserves

quadratic polynomials. In addition, the proposed gradient recovery is linearly bounded. Nu-

merical tests indicate the recovered gradient is superconvergent to the exact gradient for

both second order elliptic equation and Stokes equation. The gradient recovery technique

can be used in a posteriori error estimates for Crouzeix-Raviart element, which is relatively

simple to implement and problem independent.
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Our second target is to propose and analyze a new effective Hessian recovery for continu-

ous finite element of arbitrary order. The proposed Hessian recovery is based on polynomial

preserving recovery. The proposed method preserves polynomials of degree (k + 1) on gen-

eral unstructured meshes and polynomials of degree (k+ 2) on translation invariant meshes.

Based on it polynomial preserving property, we can able to prove superconvergence of the

proposed method on mildly structured meshes. In addition, we establish the ultraconver-

gence result for the new Hessian recovery technique on translation invariant finite element

space of arbitrary order.

Our third target is to demonstrate application of gradient recovery in eigenvalue compu-

tation. We propose two superconvergent two-grid methods for elliptic eigenvalue problems

by taking advantage of two-gird method, two-space method, shifted-inverse power method,

and gradient recovery enhancement. Theoretical and numerical results reveal that the pro-

posed methods provide superconvergent eigenfunction approximation and ultraconvergent

eigenvalue approximation. In addition, two multilevel adaptive methods based recovery type

a posterior error estimate are proposed.
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