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Chapter 1

Introduction

1.1 Background and motivation for this work

As a result of recent world events, the ground vehicle mine blast mitigation problem con-

stitutes a research topic that has been generating increased interest and activity. Physical

tests and development projects involving full scale vehicle systems that are subjected to

blast loads are relatively expensive. The judicious development and implementation of

properly conceived computational and analytical methods to better illustrate the mechan-

ics of mine blast phenomena could be used to significantly reduce the scale and cost of

experimentation and thus moderate the cost of development of mine protected vehicles and

protective equipment for infantry and demining personnel.

A study of demining operations conducted by the United States Department of De-

fense (2000) indicated that the number and severity of casualties resulting from demining

operations could be significantly reduced given, among other things, significant improve-

ments to protective equipment. Furthermore, the United States Department of Defense

(2008) reported that more than 2,300 U.S. troops died and almost 22,000 troops - approx-

imately two thirds of all casualties - were wounded between 2001 and 2008 during the Iraq

and Afghanistan conflicts as a result of explosive devices such as landmines. Landmines

are explosive device that are typically buried in soil and are designed to damage people

and structures by means of momentum transfer produced by the interaction of the high

explosive and the soil.

As can be seen in Fig. 1.1, the number of U.S. veterans seeking health care as a result

of the conflicts in West Asia has been steadily and rapidly rising since 2003 (Stiglitz and

Bilmes, 2008). Based on economic estimates from Stiglitz for as well as on the assumption

that two out of three of the injuries from the global conflicts result from explosive devices,

the economic impact of explosive devices on society has been estimated to be $277 billion
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Figure 1.1: Increase in veterans seeking Veterans’ Administration health care (from Stiglitz
and Bilmes (2008))

(Fig. 1.2). Clearly, then, development of technologies to reduce the destructive effects

of explosive devices would have a favorable effect not only on the economy but, more

importantly, on the life expectancy and quality of life for those in the military services.

1.2 Elements of the mine blast problem

Analysis of the mine blast problem involves examination of the interactions between high

explosives, soil, air and either parts of the human body or structures such as the armored

plates associated with commercial and military ground vehicles. The focus of this research

was on the behavior of systems comprised of explosive, soil, and various simple structures

(Fig 1.3).

The event begins when the solid explosive is detonated and very rapidly generates

high pressure gaseous detonation reaction products. Subsequently the detonation products
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Figure 1.2: Economic cost of explosive device casualties (from Stiglitz and Bilmes (2008))

expand, thereby compressing and shearing the substrate - comprised of soil or water -

which produces, via momentum transfer, significant tractions on adjacent surfaces of the

structure. This thesis will involve the study and description, in some detail, of the primary

mechanisms behind this momentum transfer from the explosive and its enclosing medium

to solid structures.

1.3 Previous work

The mine blast problem is one that is very much interdisciplinary in nature. Various factors

affect the behavior of the emplaced mine and must be properly identified and defined in

order for one to best understand the mechanics associated with mine blast events. A

review of the literature indicates that there is an opportunity to improve identification and

integration of the various methodological elements required for a more thorough treatment

of the problem. These elements include the physics of explosive detonation and certain



4

explosive charge 

soil 

structure 

Figure 1.3: Components of the mine blast problem.

aspects of soil mechanics that most directly affect the amount of momentum transferred to

a structure from a buried explosive.

Various empirical techniques have been devised and applied to the analysis of blast

events. For example, Kingery and Bulmash (1984) collected and compiled air blast data

from various sources and, based on these data, used Hopkinson-Cranz and Sachs scaling

(Baker, 1973) for prediction of air blast phenomena such as reflected overpressure, shock

discontinuity time of arrival, and reflected impulse at various scales for spherical free-air

burst and hemispherical surface burst phenomena. Hopkinson-Cranz scaling can be used

to scale blast effects based on the mass of high explosive involved in a blast event. Sachs

scaling is similar to Hopkinson scaling but enables a correction for atmospheric pressure.

There has thus far been no analogous work that is able to so thoroughly describe and

scale blast events that involve buried explosives and soil as a result of the relatively higher

level of complexity of such phenomena. Nevertheless, researchers have applied various ap-

proaches to the investigation of problems involving explosives detonated while surrounded

by various media. In fact, researchers have been investigating the problem of the response

of continua comprised of water or geological materials to excitation by relatively shallow

(Kolsky et al., 1949; Perkins, 1954) and by more deeply buried explosives (Friedman, 1950;
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Lampson, 1946) for at least 60 years. However, it should be added that, over the course of

this time, less research in this area has been conducted than one might expect.

This interest in the mechanics of explosive charges buried in water, soil, and rock has

been motivated by various problems including crater formation (Nordyke, 1961), ground

shock propagation (Jackson, 1969), and mine blast loading (Westine, 1972). For the case of

explosive detonations in water, there has been investigation of such applications as damage

to underwater structures (Cole, 1965) and the treatment of the blast field produced by

submerged explosives (Malme et al., 1966). For problems involving the combination of soil

and water, researchers have studied underwater channeling (Fourney, Taylor, and Robeson,

1999).

It has been observed that, for all of these problems, factors such as mass density,

compressibility, water content, and strength of the medium surrounding the explosive as

well as such things as problem geometry affect experimental outcomes. There has not

been, however, an integrated approach combining constitutive data, experimental blast

data, and computational analyses for differing soil types at various states that has been

extensive enough to expose, to demonstrate, and to explain the fundamental reasons for

parametric relations between the momentum of a rigid body and the nature of the medium

surrounding a shallow buried explosive.

Various researchers have observed relationships between soil properties or initial state

and phenomena associated with explosives buried in geological materials. Lampson (1946)

used scaling laws to develop empirical ground shock models for explosive detonated in

various soil types. He also investigated crater formation and tried to determine relations

between the models and the response of simple buried structures. He observed that, for the

soils studied, there was not much variation in the density but the degree of compaction, the

water contact, and the air filled void content affected the transmission of pressure waves

through the soil media. Whitman (1964) recognized the relevance of compressive and shear

response of soil to ground motion arising from explosive detonation in or near soil and
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offered a detailed description of the nature of these soil behaviors and the tests used to

determine them.

Fulmer (1965) performed experiments with 0.454 kg spherical trinitrotoluene charges

buried to various depths in beds of wet and dry sand in order to determine the effective

of water content on crater size as well as the effect of detonation on the particle size

distribution of the sand. The dry sand contained about 0.5% water whereas the wet sand

varied between 5.8 and 22% water. It was observed that the craters produced by buried and

surface-laid explosive in wet sand were consistently larger than those produced in dry sand.

It was also observed that there was some degree of particle size reduction after detonation.

Cherry (1967) performed calculations, using the TENSOR finite difference solver (Maenchen

and Sack, 1963), in order to predict mound and cavity growth for very large scale blasts

in desert alluvium. Mechanical properties such as density and sonic velocity were deter-

mined in the field. Other mechanical properties were determined in the laboratory. Tensile

strength was used as the volumetric yield criterion for the alluvium and distortional strain

energy as the determinant of the deviatoric yield. Pressure in the alluvium was determined

experimentally as a function of specific volume.

DiMaggio and Sandler (1971) presented and validated, for certain quasi-static stress

paths and using data for McCormick Ranch Sand, a constitutive treatment that they, in

later work, used for prediction of ground shock during blast events. Loading and unloading

elastic response of the soil was treated by the assumption of constant Young’s and shear

moduli. Inelastic behavior was modeled using the combination of a strain hardening cap

and an exponential yield surface. The exponential yield surface, for lower levels of pressure,

approximated a Drucker-Prager cone but at higher pressures asymptotically approached a

Mises cylinder. Cap expansion and contraction was controlled by volumetric plastic strain.

Wenzel and Esparza (1972) performed air blast experiments as well as experiments

involving explosives shallow buried in soil by measuring loading pressure on rigid plates

by means of Hopkinson-Kolsky bars. They also measured specific impulse by using high
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speed movie cameras to calculate the peak velocity of cylindrical plugs, originally mounted

in the rigid plates, as they were propelled due to initial surface tractions on their bottom

surfaces. They performed a few experiments in order to examine the sensitivity of pressure

and impulse to soil water content and, for the case of buried explosive, noticed that wet

soil produced significantly higher pressure loadings and specific impulse than that of dry

soil.

In subsequent work Wenzel and Esparza (1974) used high speed video to capture the

response of deformable plates to excitation by explosive buried in three types of soil - sand,

topsoil, and clay - excited by explosive buried in soil at two water contents. They reported

that soil type had no great effect on maximum mean permanent plate deformations or on

peak global translational momentum imparted to the targets but that water content did

have a significant effect as did a reduction in scaled ground clearance and scaled charge

mass. They also observed that target dynamic deformation as seen in their high speed films

was greater than permanent deformation and that global vertical translation of the center

of mass of the plates did not occur until maximum dynamic deformation was reached.

Goodrich et al. (1976) performed computations using the SOC74 finite difference solver,

based on an approach used by Terhune, Stubbs, and Cherry (1970) for rock, in order to

examine the sensitivity of ground motion and energy coupling to variations in the bulk

properties of geological materials. The bulk properties that were varied in the investigation

were initial bulk density, initial bulk modulus, water saturation, and shear strength. The

materials examined were representative of soil and weak rock. The calculations indicated

that the most important parameter was the water saturation level followed by initial bulk

density, strength, and initial bulk modulus.

Lottero and Kimsey (1978) used a finite difference Eulerian solver to examine, first,

buried mine blast loading on a rigid flat plate and then, in combination with a finite

difference structural response solver, to use the flat plate loading to look at the distortion

of a deformable flat plate. The soil volumetric behavior, prescribed in terms of the Tillotson
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equation of state (Tillotson, 1962), and other constitutive behaviors were not prescribed

based on laboratory tests but were estimated based on the properties of dry tuff with water

content less than or equal to 5%. The results of these computations, when compared with

empirically derived relations agreed, to within 4.5 and 10%, respectively, of the values from

the empirical estimates for total impulse and plate deformation.

Henrych (1979) published a compendium of blast technology which addressed such

topics as stress wave theory, interactions of explosions with various media, air blast, ground

shock, demolition, and explosions in soil. Solutions were derived for idealized examples of

explosive effects, such as ground shock, cavities, and craters, but it was emphasized that

there is significant variability in properties between different geomaterials and that these

properties are critical for the accurate prediction of effects. For example, it was shown,

based on experimental results (attributed to Lyakhov (1964)), that air filled void volume

fraction had a significant effect on the amplitude of stress waves in sand.

Drake and Little (1983) provided an analysis of data from numerous experiments in-

volving the effect of ground shock on buried structures from explosive detonated near or

beneath the ground. Data for various relative densities of granular soils and for various air

filled void contents of cohesive soils were provided in a tabular form (see Table 1.1). They

indicated that the peak impulse from a shock transmitted through the ground could be

predicted according to the scaled empirical relation

I0

W
1
3

= 1.1 f ρ

(
R

W
1
3

)−n+1

(1.1)

where I0 is the peak impulse, W is the explosive charge mass, f is the ground shock coupling

factor, ρ is the bulk or wet density of the soil, R is the distance from the explosive charge,

and n is the attenuation coefficient. The ground shock coupling factor, f , was defined as

the ratio of the ground shock magnitude from partially to shallow buried explosive to the

ground shock magnitude from a fully buried burst in the same medium. It varies between
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0 and 1 and was parametrized as a function of the scaled depth of burst of the explosive.

The attenuation coefficient n was a function of the seismic velocity since ground shock

attenuation depends on relative density for granular soils and on air filed voids content in

more cohesive soils, both of which strongly influence seismic velocity. It was also observed

that the peak pressure and seismic velocity were proportional to one another. One of the

most notable aspects of this work was the way that the authors examined and demonstrated

the relationship between the blast-related behavior and the carefully determined mechanical

properties of the geological materials used in the experiments.

Westine et al. (1985) applied a scaling approach, using the Buckingham pi theorem, to

the development of an empirical model for the prediction of structural impulse loading from

from explosives detonated in soil. Empirical constants for the relation were estimated based

on results from experiments performed for this study as well as on the results developed by

Wenzel and Esparza (1972). Although an estimate was made of the speed of sound and the

initial bulk, or wet, density of the soil used, no measurements were made of the particle size

distribution, water content, porosity, or other characteristics of the soil that was used for

the experiments and it was suggested that there was little variation of soil bed properties

between experiments.

The empirical model related the scaled peak momentum imparted to the targets to

specific or local impulse, mechanical energy available from the explosive, soil bulk density,

vertical distance from center of mine to bottom of structure, burial depth of center of

mine, cross sectional area of mine (the land-mine was presumed to be pancake-shaped),

and lateral distance from center of mine to impulse prediction location on the surface of the

structure. It is notable that effects based on soil water content were not deemed important

although some of the data from the work by Wenzel and Esparza were used for the modeling

effort, and Wenzel and Esparza had indicated, based on their data (Wenzel and Esparza,

1972), that soil water content had a significant effect on target loading.

Artyunov, Grigoryan, and Kamalyan (1985) found that soil moisture content has a
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Table 1.1: Effect of soil properties on ground shock parameters (adapted from Drake and
Little (1983)).

Soil description Dry
density
(kg/m3)

Wet
density
(kg/m3)

Air
filled
voids
(%)

Seismic
velocity
(m/s)

Acoustic
impedance
(kg/m2 s)

Attenua-
tion

coeffi-
cient

n

Dry desert alluvium
and playa, partially
cemented

1,390 1,490 -
1,600

> 25 640 -
1,280

8.9 X 105-
2.05 X 106

3.0 - 3.25

Loose, dry, poorly
graded sand

1,280 1,440 > 30 180 2.9 X 105 3.0 - 3.5

Loose, wet, poorly
graded sand - free
standing water

1,550 1,860 10 150 -180 2.8 X 105-
3.3 X 105

3.0

Dense, wet sand,
poorly graded

1,590 1,670 32 270 -
400

4.5 X 105-
6.7 X 105

2.5 - 2.75

Dense, dry sand,
poorly graded - free
standing water

1,730 1,990 9 300 6.0 X 10 5 2.75

Very dense dry
sand, relative
density = 100%

1,680 1,750 30 490 8.6 X 105 2.5

Silty clay, wet 1,520 -
1,600

1,920 -
2,000

9 210 -
270

4.0 X 105-
5.4 X 105

2.75 - 3.0

Moist loess, clayey
sand

1,600 1,960 5 - 10 300 5.9 X 105 2.75 - 3.0

Wet sandy clay,
above water table

1,520 1,920 -
2,000

4 550 1.06 X 106-
1.10 X 106

2.5

”Saturated” sand -
below water table in
marsh

- - - - 1 - 4 1,490 2.57 X 106 2.25 - 2.5

”Saturated” sandy
clay - below water
table

1,250 -
1,600

1,760 -
1,990

1-2 1,520 -
1,830

2.68 X 106-
3.64 X 106

2.0 - 2.5

”Saturated” sandy
clay - below water
table

1,600 2,000 < 1 1,520 -
2,010

3.04 X 106-
4.02 X 106

1.5

Saturated stiff clay
saturated clay shale

- - 1,920 -
2,080

0 > 1,520 2.92 X 106-
3.16 X 106

1.5
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significant effect on irreversible deformation, with the effect rising to a peak then descending

again with increasing moisture. The authors conducted experiments in a loess-like loam

with cylindrical horizontal charges in order to examine the relation between water content

and crater cut depth, width, and cross-sectional area. Water content varied between 12

and 27 percent in several steps. They suggested, based on their results, that increasing

water content caused the soil to become more prone to flow because the increased levels of

water content caused the soil to become less compressible and more elastic, in the volumetric

sense, as a result of the relatively lower compressibility of water and soil mineral constituents

as compared to that of air.

An hybrid elastic plastic (HEP) soil constitutive model was developed, based on a com-

bination of high pressure quasi-static and shock test results for various geological materials

such as soil, rock, and concrete (Wagner et al., 1986; Akers and Stelter, 1991; Zimmerman

et al., 1992, 1993; Akers et al., 1995), in order to predict ground shock effects using the

finite element method. The high pressure quasi-static testing (of the order of 102 MPa) for

definition of the constitutive behavior of the geological materials was performed at the US

Army Engineer Research and Development Center in Vicksburg, MS.

The HEP model soil behavior uses advanced pressure-volume models and accurately

represents the high pressure stress strain characteristics of materials such as soil. The model

uses a constant Poisson ratio treatment, uses a two invariant exponential yield surface, and

has been extensively validated against explosive field tests (Danielson et al., 2008). In fact,

the constitutive models used for the soil computations discussed in this thesis are based

directly on material test data generated for the HEP model.

Bergeron et al. (1998) performed blast studies using 106 gram explosive charges on

dry, poorly graded sand with the goals of, first, increasing the understanding of the physics

behind landmine detonation and of, also, producing a consistent set of data for validation of

computational solid and fluid mechanics solvers. They recognized the tremendous influence

of test bed definition and preparation on blast mechanics and placed particular emphasis
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on the characterization of the soil they were using and on the careful examination of test

bed properties before and after tests to improve the consistency between the various tests

that were performed and the accuracy of their results.

The tests involved measurement of the movement of the sand and explosive detonation

products using high speed film and flash x-rays. Air blast and ground shock pressure

histories were also taken using sensors above and within the soil bed. The x-rays and

high speed film records showed that, for all cases except for those cases where the top

of the explosive was initially placed in the same plane as the top surface of the soil, the

detonation products produced a bubble of gas encased in soil which expanded until, at

some point, the top of the soil layer opened and the gases escaped (cf. Figure 1.4), and the

soil that comprised the boundary of crater and the inner boundary of the soil enveloping

the detonation products was eroded by shear stresses produced by the movement of the

detonation products escaping the cavity.

It was also observed that the velocity of expansion of the soil cap decreased with in-

creased depth of burial of the explosive. Each of the experiments was repeated at least three

times; based on relatively high estimates of variance between the repetitions, and despite

the extreme care taken to maintain consistency in the experimental setup, it was noted

that the behavior of these types of blast events varies considerably even for cases involving

an identical prescription of experimental conditions. For example, the displacement field of

the soil subsequent to detonation did not display perfect axial symmetry. Figure 1.4 shows

results from two separate test series and gives a sense of the lack of symmetry that was

observed.

Wang (2001) performed calculations, using the LS-DYNA finite element solver multiple

material arbitrary Lagarangian Eulerian capabilities (Livermore Software Technology Cor-

poration, 2012), and compared the results with some of the experimental data produced

by Bergeron et al. (1998). Clear details were not given regarding the identity and charac-

terization of the soil used in the models but computations were performed for two depths
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Figure 1.4: Flash x-ray images of early time soil surface deformation (from Bergeron et al.
(1998)).

of explosive burial. For the first case, the explosive was buried beneath the soil surface and

for the other case, its top was positioned to be flush with the soil surface.

Results of finite element method calculations were compared, for both cases, with ex-

perimental results for air blast pressure pulse time of arrival, peak over pressure, and

positive phase impulse as measured by pressure transducers located at two positions above

the soil surface. The time of arrival calculations closely matched the experimental results

whereas the peak pressures were under predicted and the impulses were over predicted.

Visualization results from the computations were also compared quantitatively with the

experimental results as reported by Bergeron et al. (1998). Predictions of the geometry

of explosive bubble expansion and soil movement were similar to what was seen in the

experiments.

Braid (2001) performed experiments with the objective of determining the effects of

charge size, depth of burial, and soil type on the output of anti-personnel land mines.

These investigations involved the use of 50, 100, and 200 gram explosive charges and of

two types of soil - a poorly graded medium sand and a well graded silty sand. Both soils

were tested in a dry state. The author noticed that the poorly graded sand was not easy

to compact whereas the silty sand compacted very readily. This would not be unexpected

since a well graded soil with fines - the silty sand - would, by virtue of its increased range

in distribution of particle sizes, fill air voids more readily before the onset of close packing



14

with the concomitant increase in inter-grain forces.

Failure surface, in terms of friction angle, and bulk density were estimated for each soil

type at three qualitative levels of compaction. The yield behavior was determined at rela-

tively low pressures - the maximum pressure of the direct shear tests was 189 kPa. Particle

size distributions were also determined for the two soils. All of the blast experiments were

conducted using what was described as a loose and uncompacted soil state although it was

noted that after each test only the densified soil in the vicinity of the explosive was removed

and replaced for the subsequent test since it was difficult to remove all of the soil in the

test container after each test.

It was observed that the velocity of propagation through the soil was less for the silty

sand than for the poorly graded sand. The near-field peak pressures in the soil were

higher for the poorly graded sand than for the silty sand but the far field pressures were

approximately the same for both soil types. The impulse, however for the silty sand was

higher than that for the poorly graded sand. Increased charge size engendered greater

ejecta flow velocity and, as would be expected, higher blast energies and pressures. Finally,

increased depth of burial yielded greater ejecta velocities and crater sizes.

Gupta (2001) performed calculations, using the CTH solver (McGlaun et al., 1990),

in order to better understand the momentum loading on a plate from a mine buried in

saturated and dry sand which were assumed to be bounding cases of wet and dry soil. A

tabular equation of state for fused quartz was used for the dry sand calculations; a tabular

equation of state based on a mixture model previously developed by Kerley (1999) was

used for the case of saturated sand. It was assumed that yield strength was independent

of pressure. Furthermore, it was supposed that the saturated sand had no yield strength

and that a reasonable estimate for the yield strength of the dry sand would be 100 MPa.

It was observed, based on the computational results, that the saturated sand transferred

significantly more momentum to the steel plate than did the dry sand. A comparison of the

equations of state for the saturated and dry sand showed that, due to its greater porosity, the
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dry sand expended a greater proportion of the explosive’s available mechanical energy in its

compression and therefore less was available for transfer to the plate. It was suggested that

further investigation should to be done in order to more clearly identify which mechanisms

have the most influence on plate loading.

Laine and Sandvik (2001), by adapting a constitutive model that was originally devel-

oped to describe the behavior of an incendiary powder (Moxnes et al., 1999), predicted

phenomena associated with shallow-buried blast events involving a sand from the southern

Swedish village of Sjöbo. Their initial intent was that the model would be used for ground

shock predictions; it was also applied to investigation of a problem that involved demining

equipment (Laine et al., 2002).

The soil response was defined in terms of the soil density, a pressure-volume relation,

a pressure dependent yield surface, a density dependent sound speed, a density dependent

shear modulus, and a relatively low tensile failure limit. The compressive and deviatoric

behavior of the soil, prior to void closure, was determined experimentally by means of

triaxial tests. The soil properties beyond this point were estimated.

Relatively dry sand was tested to confining pressures of 60 MPa and then the hydrostatic

behavior was estimated for pressures beyond this level using a fifth order polynomial fit.

The pressure-dependent yield surface was predicted by first performing triaxial shear tests

to a pressure of 102 MPa. Next a line was extrapolated to intersect a horizontal line

constructed at a deviatoric stress of 225 MPa - the yield strength of Pike’s Peak granite.

Kerley (2001, 2002, 2005) performed studies involving various soil types and experimen-

tal geometries and in them used the p-alpha model for porous compaction. He defined the

volumetric behavior of the soils by combining tabular equations of state for the water and

the skeletal constituents. He variously used elastic-perfectly plastic, zero strength, and per-

fect plasticity strength models similar to that of DiMaggio and Sandler (1971), but without

a cap, to define deviatoric behavior. The results of sensitivity studies that he performed

(Kerley, 2002) indicated that, within the context of his work, the deviatoric strength of the
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soils was the most important determinant of the amount of linear momentum imparted to

stationary targets.

Hlady (2004) performed experimental work using explosive buried in two soil types -

Suffield prairie soil and concrete fine aggregate sand. It was demonstrated that the energy

released by such an arrangement varied significantly with the soil condition. Energy transfer

was measured by means of displacement of a target-piston apparatus that was mounted

above the buried explosive. Variables that were examined included soil moisture content,

soil type, thickness of the soil layer above the explosive, and distance between top of the

soil and the target.

Hlady found that, for the sand in general, moisture content between 0 and 10 percent

did not have a significant effect on energy transferred to the target but for a test involving

what the author called saturated sand, the energy transfer to the target was significantly

increased as compared to that for the cases with dryer sand. For the prairie soil, with

moisture content varying between 5 and 20 percent, it was observed that the energy trans-

fer increased considerably with increasing soil water content. Energy transfer increased

markedly with decreased distance between the soil surface and the target while the transfer

of energy increased to a maximum then diminished to nothing with a rising degree of soil

overburden.

Fourney et al. (2005) performed small scale experiments, using 203 mg, 609 mg, or 3.3 g

explosive charges buried in partially saturated, poorly graded, sand and targets consisting

of metal or plexiglass plates and measured the momentum transfer to the plates using high

speed video. These tests were performed in order to support a related effort involving

2.3 and 4.5 kg explosive scale tests (Taylor, Skaggs, and Gault, 2005), to support the

development of computational tools for the prediction of mine blast effects (Wardlaw et

al., 2003; Szymczak, 2005), and to better understand relationships between effects observed

at different experimental scales.

Once appropriate corrections were made and appropriate scaling rules were applied,
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Figure 1.5: Variation of momentum transferred to round plates as a function of plate
diameter and plate mass (adapted from Fourney et al. (2005))

it was determined that the momentum transfer results from the small scale tests were

proportional to those from the larger, 4.54 kg, tests. The authors also examined, using

small scale tests, the effect of momentum transferred to round plates with variable plate

surface area and mass. It was observed that momentum transfer increased with increasing

surface area and with increasing mass (Figure 1.5).

Szymczak (2005) performed computations and compared them with some of the small

and large scale experimental results described, respectively, by Fourney et al. (2005) and

Taylor, Skaggs, and Gault (2005). The computations were performed, with the assumption

that the partially saturated sand behaved as a Bingham plastic, by means of an incom-

pressible visco-plastic constitutive treatment for the sand.

Constitutive model parameters for the sand had previously been estimated, based on

fits (Szymczak and Rogers, 2000) to data from quasi-two dimensional experiments meant

to investigate channeling behavior in sand submerged below water (Fourney, Taylor, and

Robeson, 1999). The displacement vs. time histories from Szymcak’s computations com-
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pared fairly closely with the small and the large scale experimental results for ratios of

target stand-off distance to explosive depth of burial less than approximately 1.5.

Foedinger and Caiazzo (2006) tested explosive buried in wet and dry clayey sand. It

was observed that the initial velocity of the upper boundary of the expanding dome of soil

above the explosive was higher, for an intermediate depth of burial, for the wet soil than it

was for the dry soil. For a greater depth of burial, the initial velocities were the same for

both soil states. Zakrisson et al. (2008) looked at the loading on a relatively massive rigid

metal plate from an explosive that was buried in wet and dry sand. They observed that

the wet sand imparted more momentum to the plate than the dry sand did.

Genson (2006) performed experiments, using 460, 609, and 636 mg explosive charges

buried in partially saturated poorly graded sand, to investigate the influence of various fac-

tors on the amount of momentum transferred from the buried explosive to solid structures.

The factors that were varied included depth of explosive burial, distance from the soil sur-

face to the bottom of the target structure, and the shape of the bottom of the structure

(Figure 1.6).

a) b)

Figure 1.6: Bottom surfaces of rigid target structures (from Genson (2006)). a) Bihedral.
b) Pyramidal.

The responses of several relatively rigid structures were examined including a flat plate,
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downwardly convex pyramids with different angles between the faces, downwardly convex

bihedra with various angles between the faces, and flat plates with grids of multiple down-

wardly convex pyramids on their bottom faces. Momentum transfer was, in general, found

to be a decreasing function of increasing depth of explosive burial and increasing vertical

distance between structure and the explosive. The excitation of the downwardly pyramidal

and dihedral structures was less pronounced than that of the flat plate.

The momentum transferred to the dihedra was generally less than that transferred to the

flat plate; the reduction became less marked as the initial distance between the explosive

and the bottom of the structure increased. When the target plates laid directly on the

surface of the soil, less momentum was transferred to the structures with pyramidal faces

than to those with bihedral faces. For distances between structure and explosive greater

than this, however, there was little difference between the pyramidal and the bihedral faces.

Finally, the structures with pyramidal arrays on their bottom faces, when placed directly

on the soil surface, underwent less momentum transfer than did the flat plates. At elevated

placements, the momentum transfer was similar to that to the flat plates.

Neuberger, Peles, and Rittel (2007) performed a combination of experiment and com-

putation in order to examine the scaling of flat plate deformation caused by excitation from

large explosive charges flush buried in dry sand. Their computations were performed using

the arbitrary Lagrangian Eulerian technique and agreed closely with experiment. The dry

sand was modeled by means of a generalized Mohr- Coulomb model. The computational

and experimental results showed that the blast response of targets to detonation of large

explosives flush buried in dry sand followed a scaling relation.

Williams et al. (2008) used hybrid elastic-plastic soil models to predict the response of

a flat target to the blast from a shallow-buried explosive buried in dry sand, clayey sand,

and clay. The computational results were such that the impulse imparted to the target

increased with decreasing soil compressibility and yield strength. Anderson et al. (2010,

2011) performed blast tests involving explosive shallow buried in sand that was emplaced
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at three different levels of water content - 7, 14, and 22 percent. It was found that the peak

momentum imparted to a flat, rigid target increased with increasing water content.

Deshpande et al. (2009) demonstrated a computational approach toward integration of

the regimes of rapid and slow granular flow. The slow flow regime was essentially described,

for the case of their example calculations, as the sum of a granular micro-inertial dynamic

contribution and a more traditional contribution given by the prescription of a bulk modulus

for volumetric behavior and of zero strength in shear once a critical bulk density was met or

exceeded. If the bulk density becomes less than a critical value, then the behavior follows

the rapid flow regime, which is a function solely of the granular micro-inertia.

This approach was used to examine the one-dimensional dynamic behavior of a slug

of sand and it was calculated that the momentum transmitted to a target was dependent

upon the initial density of the sand but not upon the coefficient of restitution used for

the modeling of the collisions between individual grains. Calculations were also performed

in which the explosive spherical behavior of wet and dry sand were contrasted. These

computations resulted in clumping of the wet sand, as opposed to dispersion of the dry

sand. The clumping was found to be attributable to the relatively higher initial bulk

modulus of the wet sand.

Ehrgott et al. (2011a) combined carefully constructed test beds with known density,

known water content and known associated soil mechanical properties to measure rigid

target momentum, soil crater formation, and above-ground pressure generation. The target

momentum was measured using a novel impulse measurement device which consisted of

a 914 mm diameter hardened steel plate attached to a piston device. The soils were

characterized by the U.S. Army Engineer Research and Development Center in a specially

constructed high pressure triaxial test cell.

It was found that crater size increased and side angle decreased as the medium went

from clay to intermediate soil to sand - as did measured target impulse from the buried

charge. Interestingly, the air blast pressure measurements showed a reverse trend with the
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air blast impulse occurring in the dry sand and the smallest air blast impulse occurring

in the wet clay. The research also showed an increase in focusing or air blast pressure in

the intermediate silty sand and wet clay compared to the dry sand, indicating an improved

lateral confinement due to soil properties.
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Chapter 2

Overview of the present work

2.1 Research objectives

Although, as was shown in Chapter 1.3, air blast and ground shock phenomena have been

very thoroughly researched and tools are available for predicting their effects, many details

regarding the physics associated with loading from buried land mines are not nearly so

well understood. This work, will integrate a combination of experiment, computation, and

theory to more carefully identify and examine the determinants of mine blast loading on

structures.

Once this has been accomplished, these findings will be applied to establish a method-

ology for prediction of the response of various structures to loading from explosive charges

that are buried in several types of soil with differing initial water content and initial density

and to validate these methods against experimental results. A review of previous work has

shown that there has not, to date, been an intensive examination of momentum transfer

from buried explosives to structures that involves the careful definition and independent

characterization of soil properties for numerous emplacement conditions and soil types.

An investigation will be performed, with independent testing of the constitutive behav-

ior of the soils used in the work, and which will combine experiment and computation in

order to better understand the extents to which such soil properties as yield surface, hydro-

stat (pressure-volume relation), and initial density influence the loading on structures. The

nature of gas-particle flow will be investigated. This type of flow could later prove to, in

some cases, engender significant blast effects by virtue of the erosion and flow of the ejecta

from craters. Finally, the methodology established in this report will be used to predict

the momentum transfer to several structures subjected to varied loading conditions.
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2.2 Thesis outline

In Chapter 3 the rheology of sand-like, small glass particles in a fluidized bed will be

examined. This might, in the future, prove to be a flow regime that is relevant to crater

erosion phenomena. Conservation relations and an Eulerian finite difference treatment

will be used to predict the behavior of the fluidized particles in a Couette flow regime.

Next, experimental results will be used to validate the solution technique and then, finally,

parametric studies will be performed using the finite element solver in order to examine

the way that particle shape and particle diameter affect the rheology of the fluidized bed.

Next, in Chaper 4 there is an examination of the mechanics of momentum transfer

from explosive charges buried in dry poorly graded sand, partially saturated poorly graded

sand, and water to rigid plates. This is accomplished by performing two computational

factorial studies - one that compares the behavior of wet sand and dry sand and another

that compares the behaviors of wet sand and water - to identify and rank the importance,

relative to the momentum transfer to rigid structures, of the various constitutive behaviors

of the beds in which the explosives are placed. The results of the factorial studies and

computations are analyzed and provide insight into reasons for the relative influence of the

constitutive behaviors - yield surface, Poisson ratio, pressure-volume relation, and density

- on momentum transfer.

Chapter 5, involves the investigation of momentum transfer to plates by means of ex-

plosive buried in a variety of media - including water, poorly graded sand, silty sand, and

clayey sand - and buried in a number of emplacement conditions - in other words, buried in

a number of combinations of water content and density. Experimental and computational

results are compared for a new parametric relation between momentum transfer to round

plates and initial containing medium air filled void volume fraction. Computations are

then performed in order to determine the relative sensitivities of momentum transfer to the

containing medium’s hydrostatic behavior, yield behavior, and initial bulk density. Finally,

based on theory and computational results, there is an examination of the reasons for the
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observed sensitivities.

Chapter 6 is an analysis of experimental results and computational predictions for

more complex loadings to structures with various geometries. This study involves the

momentum transfer from explosive buried in partially saturated sand to flat targets, targets

with bottom surfaces that are downwardly convex, and targets with bottom surfaces that

are downwardly concave. There is also an analysis of the effect of varying explosive charge

lateral position beneath the target. Finally, Chapter 7 contains a summary of the research

findings from this work as well as an outline of future research directions.
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Chapter 3

Erosion phenomena: Couette flow in a fluidized bed

3.1 Overview of fluidized bed flow investigation

Multi-phase flow has been investigated and analyzed for treatment of problems with flow

regimes that exhibit some similarities to the mine blast soil-air mixture. These analyses

were performed for application in fields as diverse as coal fraction separation (Zhao and Wei,

2000), chemical processing (Anjaneyulu and Khakhar, 1995), and the study of emissions of

granular solids - in various concentrations in mixture with air and water - from volcanoes

(Dartevelle, 2004). Some of the seminal theoretical development in the field of multiphase

flow was published by Anderson and Jackson (1967) for the description of domain-averaged

flow of solid particle-gas systems and by Ishii, originally in 1975, and later significantly

updated and expanded (Ishii and Hibiki, 2006) for the description of gas-liquid flows.

For the purposes of the present study, the constant particle viscosity methodology (En-

wald et al., 1996; Johansson et al., 2006) was modified appropriately, validated by use of

experimental results reported by Anjaneyulu and Khakhar (1995) then subsequently used

in conjunction with soil parameters from the data assembled and presented by Cho et al.

(2006) in order to put forward a first step toward the development of a methodology for

more appropriately treating a portion the soil-air rheology that may be applicable to mine

blast. The tools developed during this project will hopefully represent a step toward a

better understanding and quantification of mine blast soil ejecta.

3.2 The gas-particle flow model

Following the development presented in Johansson et al. (2006), the governing continuity

and momentum balance equations, developed by Ishii and Hibiki (2006), that were used

for the particle-air flow are

∂

∂t
(εgρg) +∇ · (εgρgUg) = 0 (3.1)
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∂

∂t
(εgρgUg) +∇ · (εgρgUgUg) = ∇ · εgτ g + εgρgg − εg∇P − β(Ug −Up) (3.2)

for the gaseous, air, component (denoted by the subscript g), and

∂

∂t
(εpρp) +∇ · (εpρpUp) = 0 (3.3)

∂

∂t
(εpρpUp) +∇ · (εpρpUpUp) = ∇ · εpτ p + εpρpg − εg∇P −∇Pp + β(Ug −Up) (3.4)

for the particulate components. ε is the volume fraction, ρ is the density, U is the velocity

vector, τ is the viscous stress tensor, g is the gravitational acceleration vector, P is the

static pressure, β is the interphase momentum transfer coefficient and Pp is an estimate of

the particle-particle interaction force. The total volume fraction is equal to 1, that is to

say that εg + εp = 1.

The viscous shear stress tensor was modeled, for each phase, by

τ k = (ξk −
2

3
µk)(∇ ·Uk)I + 2µkSk (3.5)

where ξk represents bulk viscosity, µk is the dynamic viscosity, and Sk is the rate of defor-

mation tensor

Sk =
1

2
[∇Uk + (∇Uk)

T ] (3.6)

The correlation for the interphase momentum transfer coefficient β that was used (van

Wachem et al., 2001; Wen and Yu, 1966) was
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β =
3

4
CD

(1− εp)εpρg|Ug −Up|
φdp

(1− εp)−2.65 (3.7)

where dp is the mean particle diameter, φ is the particle sphericity, and CD is the coefficient

of drag for a single sphere. The correlation used for the single sphere drag coefficient CD

was (Rowe, 1961)

CD =


24

Rep(1−εp)
{1 + 0.15[(1− εp)Rep]0.687} if (1− εp)Rep < 1, 000

0.44 if (1− εp)Rep > 1, 000
(3.8)

where Rep is the particle Reynolds number

Rep ≡
φdpρg|Ug −Up|

µg
. (3.9)

Finally, the scale of the particle-particle interaction force Pp was estimated by means

of (Gidaspow and Ettehadieh, 1983)

∇Pp = G0e
−c(εg−εg,min) · ∇εp (3.10)

where G0 and c are empirically determined constants, εg is gas phase volume fraction,

and εg,min is the smallest possible gas volume fraction. The viscosity of the particle phase

was treated as a constant according to the so-called constant particle viscosity method

(Johansson et al., 2006).

3.3 Model geometry

The geometry used in all cases is the geometry that was employed by Anjaneyulu and

Khakhar (1995) in an experimental study of the rheological behavior of an air-glass bead

fluidized bed (Fig. 3.1). A rotating cylinder imparts shear stress to an annular fluidized

bed containing various mixtures of air and particles and the gross particle flow behavior is

measured and deduced. Boundary conditions at the cylinder walls, are assumed to be no
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Figure 3.1: Simplified model geometry for analytical and numerical test cases, inner rotating
cylinder radius = 6 mm, fluidized bed outer radius = 32.5 mm.

slip. The radius of the rotating cylinder was 6 mm; the outer radius of the bed was 32.5

mm. The cylinder rate of rotation was 5/6 revolutions/s.

3.4 Equations of motion for test cases

It was assumed, based on the reported experimental results (Anjaneyulu and Khakhar,

1995) that the flow was unidirectional azimuthal (θ-direction) flow. Based on the same

findings it was also assumed that no slip boundary conditions could be applied and that

there were no edge effects.

The continuity relations, Equations (3.1) and (3.3) vanish and, after some simplification,

the fluid flow is defined using the following three relations:

−ρp
u2
θ,p

r
= G0e

−c(εg−εg,min) · ∂εp
∂r

(3.11)
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µg

{
∂

∂r
εg

[
1

r

∂

∂r
(ruθ,g)

]}
− β(uθ,g − uθ,p) = 0 (3.12)

µp

{
∂

∂r
εp

[
1

r

∂

∂r
(ruθ,p)

]}
+ β(uθ,g − uθ,p) = 0. (3.13)

3.5 Definition of boundary conditions

As stated before, it was demonstrated (Anjaneyulu and Khakhar, 1995) that there was no

slip at the walls of the internal rotating cylinder or at the wall of the outer cylinder.

This leads to definition of the boundary conditions for the problem which are

uθ,k(ri) = 2πriΩ0 (3.14)

uθ,k(ro) = 0 (3.15)

where ri, ro,, and Ω0 are rotating cylinder radius, outer wall radius, and rotational speed

of inner cylinder, respectively.

3.6 Physical properties for gas and particle phases

The experimental data from used in this work (Anjaneyulu and Khakhar, 1995) were those

generated under minimum fluidization conditions, viz., under those conditions for which

the pressure drop through the column matched the body force, from gravity, that was

exerted on the material contained in the column. The choice for the value of εp was based

on results reported in the literature for minimum fluidization conditions. For minimum

fluidization, the particle volume fraction εp should be at least 0.54 (Olowson and Almstedt,

1991). For nearly spherical particles, εp should be approximately 0.55-0.60, decreasing a

bit with increasing particle size (McCabe et al., 2001).

Based on the experimental conditions and the geometry, a scale analysis was performed

on Equation 3.11. Order of magnitude estimates of the various quantities in Equation 3.11
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are presented in Table 3.1.
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Figure 3.2: Correlations for G0exp[−c(εp,max− εp)]. Note that voidage is the gas-phase gas
fraction εg and is equal to 1-εp (adapted from Enwald et al. (1996)).

Using these estimates, it was determined that the radial variation of the particle volume

fraction ∆εp across the bed was of the order of 10−3, whereas the order of magnitude of

εp was 10−1. The scale of G0exp[−c(εp,max − εp)] was based on the results of Gidaspow

and Ettehadieh (1983) as presented in Enwald et al. (1996) (Figure 3.2). The results

from Gidaspow and Ettehadieh were chosen rather than those from Gidaspow and Syamlal

(1985) or Bouillard et al. (1989) since only the results reported in Gidaspow and Ettehadieh

yielded elastic moduli for volume fractions assumed relevant to the current problem. Values

for other physical properties associated with the flow problem test case are given in Table

3.2.
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Table 3.1: Parameter orders of magnitude for the estimate of radial variation of particle
volume fraction εp.

Parameter Scale Units

ρ 1 X 103 kg/m3

u2 1 X 10−4 (m/s)2

R 1 X 10−2 m
G0exp[−c(εp,max−εp)] 1 X 102 N/m2

∆r 1 X 10−2 m
εp and εp,max 1 X 10−1 dimensionless

Table 3.2: Physical properties of glass beads and air.

Property Air ( at 20 ◦C) Glass beads Units

Sphericity φ — 1.00 dimensionless
Mean particle diameter dp — 9.00 X 10−4 m
Viscosity µ 1.20 — Pa s
Density ρ 1.88 X 10−5 2.50 X 103 kg/m3

Volume fraction ε 4.60 X 10−1 5.40 X 10−1 dimensionless

3.7 Discretization of equations of motion

Given the determination, via scale analysis, that εp was relatively constant across the radial

position of the bed, expansion and rearrangement of Equations 3.12 and 3.13 yields the

two relations that were used for the discretization.

∂2uθ,g
∂r2

+
1

r

∂uθ,g
∂r
−
(

1

r2
+

β

εgµg

)
uθ,g +

β

εgµg
uθ,p = 0 (3.16)

∂2uθ,p
∂r2

+
1

r

∂uθ,p
∂r
−
(

1

r2
+

β

εpµp

)
uθ,p +

β

εpµp
uθ,g = 0 (3.17)

First and second derivatives were approximated using central differences in order to limit

the truncation error to be of the order of (∆r)2.
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∂2uθ,g
∂r2

=
uθ,g,i+1 − 2uθ,g,i + uθ,g,i−1

(∆r)2 +O
[
(∆r)2] (3.18)

∂2uθ,p
∂r2

=
uθ,p,i+1 − 2uθ,p,i + uθ,p,i−1

(∆r)2 +O
[
(∆r)2] (3.19)

∂uθ,g
∂r

=
uθ,g,i+1 − uθ,g,i−1

2 (∆r)
+O

[
(∆r)2] (3.20)

∂uθ,p
∂r

=
uθ,p,i+1 − uθ,p,i−1

2 (∆r)
+O

[
(∆r)2] (3.21)

Substitution of these expressions for the derivatives into Equations 3.16 and 3.17 led, after

some rearrangement, to the discretized equations that were implemented in the code:

uθ,g,i = K1uθ,g,i+1 +K2uθ,g,i−1 +K3uθ,g,i (3.22)

uθ,p,i = K4uθ,p,i+1 +K5uθ,p,i−1 +K6uθ,p,i (3.23)

where K1−K6 are coefficients that are combinations of the various factors and parameters

in Equations 3.16 - 3.21 that depend upon the values of the radial position as well as upon

the particle and air velocities.

3.8 Solution method

The Gauss-Seidel iteration method was used for the numerical solution of the flow equations,

with the boundary conditions for the particle and gas velocities at ri and ro enforced by

constraint of the velocity values to constant values at these radial locations.

3.9 Comparison of numerical and analytical results

The accuracy of the flow problem solution method was investigated by comparing numerical

results from the code with the analytical solution for the single component, Newtonian
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Figure 3.3: Comparison of numerical and analytical solutions to the single component
Newtonian flow problem.

viscosity problem. The problem statement, for this case, is

µ

{
∂

∂r

[
1

r

∂

∂r
(ruθ)

]}
= 0 (3.24)

uθ(ri) = 2πriΩ0 (3.25)

uθ(ro) = 0 (3.26)

with the analytical solution

uθ(r) =
Ω0κro(
κ− 1

κ
) ( r

ro
− ro

r

)
(3.27)
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where κ = ri/ro.

The analytical and numerical solutions to this problem are compared in Figure 3.3. It

can be seen that the numerical results very closely matched the analytical solution. It

is noteworthy that the radial velocity distribution is determined only by radial position,

inner radius value, outer radius value, and angular velocity of inner cylinder and that flow

behavior is not dependent on fluid intrinsic properties such as viscosity or density.

3.10 Parameter identification: air velocity distribution
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Figure 3.4: Comparison of experimental results with initial numerical solution derived with
air velocity calculated using Equations 3.22 and 3.23.

As a result of the nature of the algorithm used to solve Equations 3.22 and 3.23, it

was found that the solutions for both the air and particle phases converged identically -

independent of the input values for air or particle viscosities, for particle sphericity, for

particle diameter, and for air density - to the analytical solution represented by Equation

3.28 and shown in Fig. 3.3. This was found to be a result, during solution convergence, of
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the tendency of the air and particle velocities to converge toward one another. This caused

the scale of the coupling coefficients βi to grow large and forced the velocity distributions for

the two components to completely converge to one another. This result did not match the

Bingham plastic experimental results as modeled and reported (Anjaneyulu and Khakhar,

1995) (cf. Figure 3.4).
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Figure 3.5: Effect of decreasing the air-phase velocity for the case of particle viscosity µp
= 1.0 Pa s.

In an effort to better determine the velocity distributions without completely revamping

the solution algorithm, the values for the air velocity were constrained to be multiples of

the velocities of the solid fraction, viz., uθ,g,i = Kug,p,i, where K is a constant. The results

for K > 1, i.e., for air velocity greater than particle velocity did not, in general, converge

to yield any physically plausible results. Neither did the solutions for K=1.

Some results for various values of K < 1 are shown, in Figures 3.5 and 3.6 for particle

viscosity values set to 1.0 and 0.01 Pa S. For the case of particle viscosity set to 1.0 Pa s



36

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
r (m)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

u 
(m

/s
)

uair per eqn
uair = 0.9 uparticle
uair = 0.5 uparticle
uair = 0
Bingham, expt.

Figure 3.6: Effect of decreasing the air-phase velocity for the case of particle viscosity µp
= 0.01 Pa s. The particle velocity distribution appears to approach the experimentally
determined velocity distribution.

(Fig. 3.5), it can be seen that, as K decreases from 0.9 to 0.0, there is moderate movement

toward the experimental results. For the case of particle viscosity set to 0.01 Pa s (Fig. 3.6),

it can be seen that as K decreases toward a value of 0.0, the particle velocity distribution

seems to fairly closely converge to the experimental result.

Although, the results appeared to converge toward the experimental result, more work

needs to be done in order to be sure that the particle velocity distributions approach each

other as a result of the physics rather than simply as a result of the mathematical behavior

of the current model. It is not, at this point, clear that the azimuthal air velocity, in this

physical situation, would necessarily tend toward 0 or even that it would necessarily be

lower than the particle velocity. To this end, future investigation will be conducted and

will involve the numerical solution of Equations 3.16 and 3.17 using other discretization

schemes. For now, however, the behavior of the model will be investigated with K, and
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thus the azimuthal air velocity, set to 0.0.

3.11 Parameter identification: particle velocity
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Figure 3.7: Material identification for the best value of particle viscosity based on mean-
square error between experiment and model. The best value of particle viscosity was about
0.0095 Pa s.

A statistical technique was employed to determine the value for particle viscosity that

would enable the numerical solution to most closely match, using the measure of mean

square difference from the experimental results. Mean square error (MSE) was calculated

as

MSE =

m∑
j=1

(uexperimental,j − unumerical,j)2

m
(3.28)

where uexperimental,j and unumerical,j are the experimentally reported and numerically calcu-

lated values of particle velocity, j is as used in the discretization, and j=m is the value of
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the radial position for which the value of the experimentally reported particle velocity is

less than about 10% of its maximum value. The level of particle viscosity that allowed the

numerical solution to most closely approach the experimentally determined solution was

0.0095 Pa s (Fig. 3.7).

3.12 Effect of grid spacing on solution
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Figure 3.8: Comparison of numerical results for various mesh sizes versus experimental
(Bingham plastic) results.

A comparison of solutions generated by means of different grid spacing is presented in

Figure 3.8, for solutions involving 25, 50, and 100 grid points. It can be seen that similar

convergence was achieved for all three levels of spacing between grid points and that all

three regimes seemed to approach the experimental result in a similar fashion.

3.13 Iteration convergence

The convergence of the iterated solution was measured by means of the root mean square

error (RMSE) between iterations according to
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Figure 3.9: Convergence of iterations for the case of particle viscosity 0.0095 Pa s and 100
grid points.

RMSE =

√√√√√√
n−1∑
i=1

(uk − uk−1)2

n− 1
(3.29)

where k refers to the kth iteration, i corresponds to the radial position ri, and n corresponds

to the maximum value of i, viz., the maximum radius is denoted, within the FORTRAN

code as rn. The iteration results are shown in Figure 3.9, where it can be seen that, for the

case of 100 grid points and particle viscosity 0.0095 Pa s, excellent convergence appears to

have occurred after about 400 iterations, i.e., at that point RMSE <1%.

3.14 Summary of experimental results

The experimental results (Anjaneyulu and Khakhar, 1995) were given in terms of the

Bingham plastic parameters
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τrθ =

 τy + µγ̇ for τrθ > τy

τy for τrθ 6 τy

(3.30)

where γ̇ is rate of deformation, τrθ is shear stress, µ is viscosity, and τy is yield stress, viz.,

the level of shear stress below which no deformation will occur. The data are summarized

in Table 3.3. rinterface is defined as that value of the radius for which the shear stress falls

to the level of τy for which the fluid begins to behave as a solid. Anjaneyulu and Khakhar

(1995) estimated the Bingham plastic parameters using least squares techniques and noted

that a significant difference was measured between the theoretical (Bingham model) and

directly observed ratio of critical radius to inner cylinder radius, viz., the theoretical ratio

was 1.41 whereas the ratio that was actually observed was 2.2.

Table 3.3: Summary of experimental data (Anjaneyulu and Khakhar, 1995).

Parameter Value Units

Particle diameter 9.00 X 10−4 m
Inner cylinder radius 6.00 X 10−3 m
Yield stress 4.50 Pa
Viscosity 2.00 X 10−1 Pa s
Shear stress at inner wall 9.00 Pa s
Rotational velocity 8.33 X 10−1 dimensionless
Theoretical rinterface/ri 1.41 dimensionless
Actual rinterface/ri 2.2 dimensionless

It should be noted that the computational model seemed to show results for this appar-

ent disparity in critical radius that fit the experimental data better than did the Bingham

model as evidenced by the approximate intersection point of the two phase computational

result with the r/ri axis (Fig. 3.10).

3.15 Flow effects resulting from variation of sphericity and particle diameter

Comparisons, using the numerical model developed for this work, of flow behavior resulting

from variation of sphericity and particle size were performed based on particle properties
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Figure 3.10: Comparison of experimental and numerical velocity distributions as a function
of r/ri. Note that the intersection of the CFD result with the r/ri axis seemed to match
the experimental results in Table 3.3 better than the Bingham fluid model.

reported in the literature (Cho et al., 2006). Sphericity is defined to be the diameter of the

largest sphere that can be inscribed on a particle relative to the diameter of the smallest

sphere that can be circumscribed on a particle.

The results of these calculations are shown in Figures 3.11 and 3.12. The calculations

seemed to show that resistance to flow increased with decreasing particle size and that

resistance to flow increased with decreasing sphericity. Figure 3.13, which shows results for

several real materials also appears to exhibit the same trend of increasing flow resistance

with decreasing particle size and sphericity. The reason for this can be deduced based on

inspection of Equations 3.8, 3.9, and 3.10. As either sphericity or particle size decreases,

the particle Reynolds number, coefficient of drag, and coupling factor will increase, thereby

increasing the resistance to flow. It should not be tacitly concluded that this trend is correct

simply based on the correlations. Future work will involve more extensive comparison of
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Figure 3.11: Effect of sphericity on velocity distribution and resistance to flow. As sphericity
decreased, the calculated resistance to the flow increased.

these results with relevant experimental results, if they are available, in order to more fully

verify whether the current model adequately predicts two phase fluid flow behavior.

Extensive searches for relevant comparison data have, to date, not been successful.

If adequate data cannot be found, a different physical regime, for which more extensive

validation data can be identified, will be modeled using the techniques developed for this

work. It is not inconceivable that the effects of sphericity and average particle diameter

might depend on the geometry and other characteristics of the flow regime and particle

and fluid components.
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Figure 3.12: Effect of average particle diameter on velocity distribution and resistance to
flow. As particle diameter decreased, calculated resistance to the flow increased.



44

0.5 1 1.5 2 2.5 3
r (m)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

u 
(m

/s
)

Glass beads, Bingham, expt., sph=1 d=0.9 mm
Glass beads, cfd, sph=1.0, d=0.9 mm
Glass beads, cfd, sph=1.0, d=0.32 mm
Nevada sand, cfd, sph=0.85, d=0.15 mm
Granite powder, cfd, sph=0.24, d=0.09 mm
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on velocity distribution and resistance to flow. As these parameters decreased, calculated
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Chapter 4

The excitation of structures by explosive buried in sand and water

Explosive Charge 

Dry Sand, 
Wet Sand, 
Or Water 

Round Plate 

40.1 mm 
9.9 mm 

4.4 g explosive 
charge Height 12.95 mm 

Diameter 21.59 mm 

0.279 m 

(a) 

(b) 

Figure 4.1: Experimental setup used (Fourney et al., 2010) to measure plate response to
excitation from shallow buried explosive. a. Charge geometry. b. Test bed setup.

4.1 Overview of the sand- and water-based investigation

A combination of soil characterizations, computations and small-scale experiments were

carefully analyzed in order to better understand the behavior of shallow-buried explosives.

The constitutive behavior of the soils, developed based on the literature (Zimmerman et al.,

1992), was determined using a combination of high pressure quasi-static tests and effective

stress theory; the motion of rigid objects impacted by the material flow resulting from blast

experiments was measured by use of high-speed digital video photography. Computations

that simulated the blast experiments were performed by use of an arbitrary Lagrangian
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Eulerian (ALE) treatment in a nonlinear finite element code. A factorial design approach

was used to deduce the underlying mechanics of such systems. Using this approach, it

was determined that, for water and for dry and partially saturated granular materials

lower deviatoric yield strength was a key factor which caused sand or water to flow more

readily thereby producing higher levels of momentum loading to bodies in close proximity

to the buried explosive. It was also observed that higher bulk stiffness and mass density

were moderately important factors although they were less significant than was the shear

strength of the medium containing the explosive.

In the present work, experimental results from small-scale tests performed by Fourney

et al. (2010) are compared with computational investigations in an attempt to gain insight

into the physics behind the excitation of targets by shallow-buried explosives. The targets

used for this work were disk-shaped, relatively rigid, aluminum targets and were excited

by explosive buried in water, wet sand, or dry sand. First, there is a description of the

experimental setup and computational approach including a detailed explanation of the

constitutive behavior of the materials that were modeled.

Next, there is a description of the factorial experimental designs used to separate and

compare the effects of some of the modeled bed substrate properties such as strength,

density, and volumetric behavior. Subsequently there is an analysis of the results from the

factorial computational experiments and an examination of possible explanations for some

of the observed behaviors.

4.2 Experimental setup

Figure 4.1 illustrates the experimental setup used by Fourney et al. (2010) to measure the

response of the rigid aluminum plates to the excitation of shallow buried explosive. The 4.4

g explosive charges used for this work were constructed using Detasheet C and an RP-87

detonator. The cylindrical charges were inserted into a bed of water, wet sand, or dry sand

so that their top faces were 9.9 mm below the top surface of the bed. The bottom face

of the aluminum target plate was located 40.1 mm above the top surface of the bed. The
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plate was constructed of aluminum alloy 6061 with mass 10.05 kg and behaved essentially

as a rigid body in its response to the loading from the buried explosive. The translation

of the target was measured by tracking the motion of the target using high-speed video in

order to determine the velocity history; the plate momentum could then be calculated by

forming the product of the velocity and the mass.

4.3 Computational model

4.3.1 Computational techniques

Computations involving solid mechanics are often performed using a Lagrangian description

of the problem with a computational mesh that moves with the solid material. Compu-

tations involving fluids are typically performed using an Eulerian description with a mesh

that is fixed in space.

As a result of the nature of the current problem, which involves coupling between fluid

and solid constituents, computations were here performed using an arbitrary Lagrangian-

Eulerian (ALE) approach for the fluids and the very highly deformed soil coupled with a

Lagrangian approach for the solid target. If a purely Lagrangian finite element approach

had been used, this would have been an appropriate choice for the part of the problem

involving only the solid target, but mesh distortion resulting from large displacements

caused by the explosive, soil, and fluid motions would have caused the calculations to

become unstable.

An Eulerian approach would have been a good choice of continuum treatment for the

explosive and the fluid and soil components but the accuracy of the treatment of the solid

target would have been sacrificed. The ALE approach used here offers the advantages of

the moving mesh for handling the transport of mass, momentum, and energy for the fluid

and soil constituents and can be easily coupled to the solid target, which is given a purely

Lagrangian treatment.

Given a moving mesh such as the one that is used for the ALE computations, the

conservation equations, neglecting thermal effects, for the transport of mass, momentum,
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and energy, respectively, are

∂ρ

∂t
= −ρvi,i − (vi − ui)ρ,i (4.1)

ρ
∂vi
∂t

= tji,j + ρbi − ρ(vi − ui)vj,i (4.2)

ρ
∂e

∂t
= tijdij + ρbivi − ρ(vi − ui)e,i (4.3)

where ρ is the mass density, ui the mesh velocity vector, vi the material velocity vector, tij

the stress tensor, bi the body force vector, e the internal energy, dij the rate of deformation

tensor, and where, for any quantity Q,

Q,i ≡
∂Q

∂xi
(4.4)

Computations involving the explosive detonation products, air, and bed material either

wet sand, dry sand, or water - were performed numerically by means of a multi-material

ALE technique as implemented in the LS-DYNA explicit finite element solver. The behavior

of the materials that were handled using the ALE method and the behavior of the aluminum

target, treated by means of explicit Lagrangian finite element calculations, were coupled

by means of a penalty method.

A cylindrical geometry was chosen for the computational domain. The mesh size for the

ALE domain was varied by radial position in the circular plane of the domain. In the region

closest to the center, the mesh size was approximately 1 mm; toward the outer radius of

the domain, the mesh size gradually increased to about 0.1 m. The distance between nodes

in the vertical, axial, direction was approximately 2 mm, but in the region of the domain

initially filled with air this distance was gradually increased between this distance and 6.4

mm between the top of the target (in its initial position) and the top of the computational
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domain. The axially symmetric computational domain contained approximately 20,000

elements.

The nominal mesh size of 1 mm that was in the central region of the ALE domain was

well within the converged range of mesh sizes determined for computations previously used

to investigate a problem involving the wet sand but with a 636 mg explosive charge that

was an order of magnitude smaller than the 4.4 g charge used in the current study. It

is assumed, therefore, that this mesh configuration was sufficiently converged to preclude

spurious predictions based on mesh sensitivity.

!

Figure 4.2: Flow chart of ALE time integration loop.

The ALE calculations were performed as follows. For each time step, a split operator

technique was used to solve the transport equations for the mass, momentum, and energy
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transport of the air, detonation product, and soil constituents of the problem (Fig. 4.2). In

Fig. 4.2, the an, vn, and un, are the nodal accelerations, velocities, and displacements,

respectively, at time step n. M refers to the nodal mass matrix whereas P n and F n

refer to the body forces and the stress divergence. The donor cell algorithm, a first order

upwind scheme, was used to perform the advection step. For each time step, the temporal

integrations were performed explicitly using a second order accurate central differencing

scheme.

For the purposes of the present work, the description of the multi-phase mixture of

detonation products, soil, and air was handled in a relatively simple manner that is often

used for ALE computations. Each element within the ALE computational domain could

be populated with more than one material. For each time step, the strain rates for all

materials within an element were set to the value of the average strain rate for the element.

Subsequently, the stress state of each element was determined by summing the products

of the volume fraction and stresses of each constituent of the element. Beyond this, no

assumptions were made regarding the coupling of the soil and gaseous components of the

mixture. Benson (2010) has reported that this method, is simple, robust, and conserves

energy exactly.

The interface between the rigid target and the fluids was treated as having infinite

slip. At the outer surfaces of the computational domain the default zero force boundary

condition was used. For this boundary condition, outflow is not prevented and inflow

to cells is constrained to be composed of the same material that is present in the cells.

It should be noted, though, that the ALE computational domain was sufficiently large

and that the pressures at the internal boundary of the domain were of sufficient positive

magnitude that it was unlikely that prescription of this particular boundary condition, for

this set of computations, had much of an effect on the results.
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Table 4.1: Explosive model parameters (adapted from Dobratz (1981) as reported in Cooper
(1997)).

Parameter Value

Initial density (kg/m3) 1,480
Detonation velocity (m/s) 7,000
Chapman-Jouget pressure (Pa) 1.95 X 1010

Jones Wilkins Lee (JWL) parameter A (Pa) 3.490 X 1011

JWL parameter B (Pa) 4.524 X 109

JWL parameter C (Pa) 5.204 X 108

JWL parameter R1 (dimensionless) 4.1
JWL parameter R2 (dimensionless) 1.2
JWL parameter ω (dimensionless) 0.30

4.3.2 Constitutive models

The 6061 aluminum alloy that comprised the targets was modeled as a rigid solid. The

behavior of the reaction products from the detonation of Detasheet C, the high explosive

used for this work, was defined in terms of initial density, Chapman-Jouget pressure, det-

onation velocity, and a Jones Wilkins Lee (JWL) equation of state for description of the

adiabat. The form of the JWL equation of state that was used for this work was

p = A

(
1− ω

R1V

)
e−R1V +B

(
1− ω

R2V

)
e−R2V +

ωE ′

V
(4.5)

V in this equation is defined as the ratio of the volume of the detonation reaction

products to the initial volume of the explosive. E ′ is the energy per unit volume. p is

pressure. A, B, ω, R1, and R2 are constants. The values of the JWL parameters used

in these models were adapted from Dobratz (1981) as reported in Cooper (1997) and are

shown in Table 4.1.The JWL coefficient C was modified slightly to ensure that the equation

of state more closely reflected the known amount of available specific chemical potential

energy of the Detasheet C explosive. The air was modeled as having Newtonian viscosity

and an ideal gas equation of state; air properties are shown in Table 4.2.

For computations involving pure water, without any soil, as the material surrounding
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Table 4.2: Fluid model parameters (Mie-Gruneisen parameters are from Steinberg (1987)).

Parameter Water Air

Initial density at 20 ◦C (kg/m3) 998.2 1.204
Tensile cutoff (Pa) -0.01 -1.0
Dynamic viscosity at 20 ◦C (N s/m2) 1.002 X 10−3 1.82 X 10−5

Equation of state type Mie-Gruneisen Ideal gas
Specific heat ratio – 1.4
Gruneisen Γ0 0.50 –
Mie-Gruneisen EOS C (m/s) 1,480 –
Mie-Gruneisen EOS S1 2.56 –
Mie-Gruneisen EOS S2 -1.986 –
Mie-Gruneisen EOS S3 0.2268 –
Mie-Gruneisen EOS a 2.67 –

the explosive, the water was treated as being a simple Newtonian fluid. Its properties are

also shown in Table 4.2. The approach to the water equation of state was based on what

was reported and used by Steinberg for modeling spherical explosions in water (Steinberg,

1987). The Mie-Gruneisen equation of state was used to model the compressive behavior

of the water. This equation can be written as

p =
ρ0C

2 (V0/V )
[
1 +

(
1− Γ0

2

)
(V0/V )− a

2
(V0/V )2]{

1− (S1 − 1) (V0/V )− S2
(V0/V )2

(V0/V )+1
− S3

(V0/V )3

[(V0/V )+1]2

} (4.6)

where p is the pressure, Γ0 is the Gruneisen constant, a is the linear correction to the

Gruneisen constant. C, S1, S2, and S3 define the intercept and the slope of the experimen-

tally determined shock velocity - particle velocity curve for a given material. Here, V /V0

is the ratio of the volume V of the water while it is in any particular state relative to a

reference volume V0. The values of the various coefficients used for the equation of state

are shown in Table 4.2. The hydrostatic behavior calculated using this equation of state

and assumed for the water is shown in Figure 4.3.

The amount of momentum transferred from a system comprised of shallow buried ex-

plosive in soil to an external target is dependent on the characteristics of the high explosive
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Figure 4.3: Compressive behavior of dry sand, wet sand, and water.

but is also very much a function of the properties of the soil. The definition of the proper-

ties of wet and dry sand as applied in this work was based on soil constitutive properties

generated for the work that was done to develop hybrid elastic-plastic soil models used

for the prediction of ground shock (Zimmerman et al., 1992; Akers et al., 1995). The vol-

umetric and yield relations used to predict the sand behavior were developed based on

a combination of quasi-static test results and effective stress theory (Zimmerman et al.,

1993).

The particle size distributions for the poorly graded sand used in the blast experiments

and for the poorly graded sands that were mechanically tested to determine the continuum

properties used to define the constitutive models used in the computations are compared

in Figure 4.4. Although the sands used in the computations were a little bit more coarse

than that used for the blast experiments, the three sands are considered to be very similar
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(Ehrgott et al., 2011a; Windham, 2013; Ehrgott, 2013).
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Figure 4.4: Particle size distributions for sand used in blast experiments and for sands
that were tested to define the constitutive models used in the computations. Although the
computational sands were a little bit coarser, the sands were very similar (Ehrgott, 2011b;
Windham, 2013; Ehrgott, 2013).

The physical properties used to model the dry sand were based directly on the hybrid

elastic-plastic models used in SABER (Akers et al., 1995). Constitutive properties were

available in SABER for partially saturated sand with air filled void contents of 1% and

of 5% but were not available for sand with an air filled void content at an intermediate

level characteristic of the sand used in the small scale blast experiments. As a result, the

pressure-volume relation, yield surface, and other physical soil parameters used for this

sand were estimated using the method of bisection (Gear, 1978) and were subsequently

validated successfully against various small-scale blast experiments.

The application of the method of bisection was straightforward. First, there was use of
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the available 1% and 5% air filled void properties as well as properties that were estimated,

as explained below, for a value of air filled voids at the midpoint between the two available

levels, viz., at the level of 3% air filled voids content, to perform a computation to predict

the maximum impulsive loading on a flat target.

These results were compared with experiment and it was observed that the peak exper-

imental value of target momentum was somewhere between the levels that were computed

for sand with 1% and 3% air filled void content. Next the properties of a soil with air

filled voids content midway between 1% and 3% were estimated and subsequently this bi-

section process was performed repeatedly until the computed value for target momentum

converged to the experimental value.

At this point, the constitutive properties determined for the converged level of air filled

void content were used to perform computations that gave reasonable agreement with

experiments involving various alternate target geometries and loading conditions. The

experiments used previously for evaluation of the wet sand material model were, in some

respects, similar to the current experiments but the scale and target geometry for those

experiments was, in some cases, different from those employed in the current work.

Figure 4.5 shows the pressure-volumetric strain relations for the 1% and the 5% air

filled void content sands as well as the relation for the converged value (2.09% air filled

voids) found via the bisection method. A careful examination of the hydrostats for the 1%

and 5% air filled void content sands revealed several things.

Each of the two soils exhibited two regimes of compressibility. The first regime existed

at lower levels of strain and was found to give an excellent fit, for both soils, to a linear

relation between pressure and volumetric strain and to exhibit a significantly lower stiffness

than the regime which existed at higher levels of strain. The second regime existed at levels

of strain that exceeded the strain at which the air filled void content would be expected

to become vanishingly small, exhibited a significantly higher stiffness than the first regime,

and was found to fit a quadratic relation between strain and pressure.
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Figure 4.5: Pressure - volumetric strain relations for the 1% and 5% air filled void content
sands as well as for the converged value (2.09% air filled voids) found via the bisection
method.

In addition, it was noticed that the low pressure relations for the two soils were co-linear

and that the relations for the high pressure regimes, if translated along the line that defined

the low pressure regime, were found to overlay one another. These results were used to

estimate the pressure-volumetric strain behavior of the soil, at various levels of air filled

void content, in the application of the bisection method to the identification of constitutive

properties of the wet sand used in the blast experiments.

The yield surfaces for the 1% and 5% air filled void content sand as well as the surface

for the converged air filled void content are shown in Figure 4.6. The hydrostats (pressure-

volumetric strain relations) for air filled voids contents between 1% and 5% exhibited a

linear relation between pressure and air filled void content. The asymptotic yield behavior

exhibited at higher pressures by the 1% and 5% air filled voids content sands begins when
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Figure 4.6: Yield relations for the 1%, 5% sands and for the converged value (2.09% air
filled voids) sand estimated by means of the bisection method.

the pressure forces the air filled void content to become vanishingly small.

Beyond this level of pressure, the water carries the additional hydrostatic stress which

essentially limits the friction - and the yield - to a constant level, for undrained conditions, as

pressure continues to increase (cf. Lambe and Whitman (1968)). Furthermore, the testing

that resulted in the yield surfaces for the 1% and 5% air filled voids sand was, by design,

more accurate at higher pressures than at lower pressures. As a result, the yield surface

was estimated for sands with various air filled void contents using linear interpolation.

Since the sand used in the blast experiments was poorly graded, granular in nature,

and had a particle distribution that was similar to that used to prepare the 1% and 5% air

filled voids constitutive models, a relatively constant dry density was assumed between the

soils and the resulting relationship between bulk or wet density ρbulk and air filled voids
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volume fraction αair (Lambe and Whitman, 1968):

ρbulk = ρdry + ρwater (1− ρdry/Gs − αair) (4.7)

where ρdry was the dry density of the soil, ρwater was the density of water in the soil, and

Gs was the specific gravity of the soil particles. The bulk density varied linearly with the

air filled void content and was calculated directly for a given volume fraction of air voids.

Finally, the values used to estimate tensile cutoff and Poisson ratio for levels of air filled

content intermediate between 1% and 5% were calculated by means of linear interpolation.

The values of Initial wet density, Poisson ratio, and tensile cutoff for 1%, 5% and converged

(2.09%) air filled void volume fraction are summarized in Table 4.3.

Table 4.3: Converged wet sand properties. Properties for 1% and 5% air filled voids sands
were interpolated to their converged values for 2.09 air filled voids.

Parameter 1% air filled voids
sand

2.09% air filled voids
sand

5% air filled voids
sand

Initial wet density
(kg/m3)

2,117 2,106 2,077

Poisson ratio 0.48 0.47728 0.47
Tensile cutoff (Pa) -27,784 -24,820 -16,937

Some of the general properties of the soil models are given in Table 4.4. The tensile

failure of the soils, which generally occurs at very low levels of stress, was prescribed to

occur as a function of the times during which the maximum principal stress in an element

was in tension and exceeded the value of tensile cutoff given in Table 4.3.

Table 4.4: Miscellaneous soil model parameters.

Parameter Dry sand Wet sand

Initial wet density (kg/m3) 1,750 2,106
Poisson ratio 0.34 0.47728
Tensile cutoff (Pa) -24,500 -24,820
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The behavior of the soil was described using a hypoelastic, variable modulus treatment

(Nelson and Baron, 1971; Rohani, 1977). The relationship between the stress increments

dσij and the strain increments dεij was defined as

dσij = K dεkkδij + 2 G

(
dεij −

1

3
dεkkδij

)
(4.8)

where K was the variable bulk modulus, and a constant Poisson ratio ν was used so that

the variable shear modulus G(K, ν) was calculated as

G(K, ν) =
3K(1− 2ν)

2(1 + ν)
. (4.9)

The volumetric constitutive properties of the soils were input to the solver in tabular form.

The data pairs input to the table consisted of soil pressure levels that corresponded to

various states of natural volumetric strain. These data for the wet and dry sand, which

are shown graphically in Figure 4.3 and compared with the pressure volume behavior of

the water, were differentiated numerically by the solver to yield the bulk and shear moduli

that were used for the finite element calculations.

The yield behavior of the soil was defined by a two invariant exponential yield surface

defined by the pressure and the stress deviator (DiMaggio and Sandler, 1971) such that

the yield function f was given by

f(J1, J
′
2) =

√
3J ′2 − [A− C exp (B J1/3)] = 0 (4.10)

with J1 and J ′2 referring to the first stress invariant and the second deviatoric stress

invariant, respectively, and where A, B, and C were experimentally fitted constants. At

lower levels of pressure the yield surface approximated a Drucker-Prager cone but at higher

pressures asymptotically approached a Mises cylinder. The deviatoric yield behavior of the

wet and dry sand are shown in Figure 4.7.
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Figure 4.7: Yield surfaces for wet and dry sand.

4.4 Results and analysis

Figure 4.8 shows a comparison of computational and experimental results for momentum

imparted to rigid targets of various diameters. The experimental work was performed by

Fourney et al. (2010). The computations and best fit curves were performed as a part

of the present work. Best fit curves were determined using least squares fits to quadratic

polynomials for the water and the wet sand and cubic splines for the dry sand. For all

three substrates - dry sand, wet sand, and water - target momentum increased with target

disk diameter. The experimental results were reported to have been accurate to within +/-

10% of their true values (Fourney, 2013a). It can be observed that the values of calculated

momentum, for any particular combination of disk size and substrate, were very close to

the experimentally determined values.
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Figure 4.8: Comparison of experiment and computation for various target sizes. Best fit
curves were determined using least squares fits to quadratic polynomials for the water and
wet sand and using cubic splines for the dry sand.

Figure 4.9 shows, based on the computations, for the progression of 25.4 cm target

loading as a function of time for the case of explosive buried in wet sand. In Figure 4.9a-d,

the gold body represents the rigid target, the brown region comprises the sand, the green

region contains the expanding gaseous detonation products, and the light blue region is the

air. Figure 4.9e shows the computational vertical acceleration-time history for the target.

Figure 4.9a is taken 40 µs after detonation and shows the initial contact between the

sand and the target with the resulting initial rise in target acceleration. Figure 4.9b shows

the conformation of the system at 68 µs, the time at which peak acceleration occurs. It

should be noted here that the development, after the initial contact at 40 µs, of an annular

region of soil which expands radially and continues to transfer momentum to the target

at 1 ms (Figure 4.9c) and which at 2 ms, the time at which the target acceleration has

essentially ended, has expanded beyond the circumference of the target and, as a result,

has ceased to supply momentum to the target (cf. Figure 4.9d and Figure 4.9e).



62

!
!

!!!! !
a)!!40!µs!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!b) 68 µs 

!!!!! !
c) 1 ms!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!d) 2 ms 

!!!!!!!!!!!
0.0 5.0×10-4 1.0×10-3 1.5×10-3 2.0×10-3

Time (s)

0.0

1.0×104

2.0×104

3.0×104

4.0×104

5.0×104

Ta
rg

et
 a

cc
el

er
at

io
n 

(m
/s

2 )

!
!!!!!!!!!!!!e) 

Figure 4.9: Computations for 25.4 cm target loading with wet sand. (a) 40 µs - initial
contact of sand with target. (b) 68 µs - peak target acceleration. (c) 1 ms - target
acceleration continues. (d) 2 ms - target acceleration has ended. (e) Acceleration - time
history. The target is yellow, the sand is brown, the detonation products are green, and
the air is blue.
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As a result of the close agreement between the computational models and experiment,

it was considered that it might be possible to deduce something about the target loading

mechanisms by the application of appropriately designed computational factorial compar-

isons whereby various components of the material models for the test bed substrates are

combined in various ways in order to determine which of the material properties might

have the greatest effect on the amount of momentum transferred to a target (Montgomery,

1991). Two such groups of computations were performed. First the behavior of water and

wet sand were compared by performing a 23 full factorial design for which the effects of

initial wet density, the volumetric relation, and the yield surface were compared. There

was also a comparison of the behavior of dry sand and wet sand by means of a 24 full

factorial design for which the effects of wet density, pressure-volume behavior, yield surface

and Poisson ratio were measured and compared. For both sets of investigation, results were

examined for a fixed target diameter of 25.4 cm.

Table 4.5: Computational results for the water-wet sand comparison.

Run Density Pressure volume Yield Peak target
Relation relation surface momentum (N s)

1 wet sand wet sand wet sand 51.38
2 wet sand wet sand water 86.14
3 wet sand water wet sand 57.15
4 wet sand water water 88.66
5 water wet sand wet sand 41.92
6 water wet sand water 69.45
7 water water wet sand 47.20
8 water water water 70.44

The effect of a particular factor - for example, density - in the comparison between wet

sand and water, was measured by taking the difference between the mean target momentum

with water density and the mean target momentum with wet sand density

cρ = ywet sand − ywater (4.11)
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where cρ denotes the momentum effect due to density ρ, ywet sand is the mean momentum

calculated using wet sand density, and ywater is the mean momentum calculated using water

density.

The normalized effects were calculated by dividing each of the effects by the effect

possessing the greatest magnitude. For both comparisons, viz., that between wet sand and

water as well as that between wet sand and dry sand, the factor that had the greatest

effect on target momentum was yield surface type. Therefore, the normalized effects were

calculated by dividing each effect in each of the two comparisons by the effect calculated

for yield surface. The raw results from these computations are shown in Table 4.5.
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Figure 4.10: Normalized response from the water - wet sand comparison.

When the behavior of the water and wet sand was compared (Figure 4.10), it was

observed that, in the mean, the factor that had the greatest effect on the amount of

momentum imparted to the target was the yield relation. For this factor, as well as for the

other two factors, a positive effect was one that was a result of the water behavior being,

in the mean, larger than the effect associated with the unsaturated sand. Thus when the



65

effect of yield strength on target momentum was examined, the effect of the yield strength

of water was greater than the effect of the yield strength of wet sand. The yield surface

for the wet sand is shown in Figure 4.7; the water, of course, has no strength, so it can be

inferred that the momentum imparted by the material with no strength - the water - was

greater than that imparted by that with the higher strength - the wet, partially saturated

sand.

Table 4.6: Computational results for the dry sand-wet sand comparison.

Run Density Pressure Yield Poisson Peak target
Relation volume surface Ratio momentum

relation (N s)

1 dry sand dry sand dry sand dry sand 19.89
2 dry sand dry sand wet sand wet sand 47.19
3 dry sand wet sand dry sand dry sand 22.38
4 dry sand wet sand wet sand wet sand 48.77
5 wet sand dry sand dry sand dry sand 20.42
6 wet sand dry sand wet sand wet sand 49.93
7 wet sand wet sand dry sand dry sand 23.67
8 wet sand wet sand wet sand wet sand 51.38
9 dry sand dry sand dry sand wet sand 39.42
10 dry sand dry sand wet sand dry sand 41.43
11 dry sand wet sand dry sand wet sand 42.34
12 dry sand wet sand wet sand dry sand 43.87
13 wet sand dry sand dry sand wet sand 41.59
14 wet sand dry sand wet sand dry sand 43.58
15 wet sand wet sand dry sand wet sand 45.33
16 wet sand wet sand wet sand dry sand 46.65

The difference in the inertial effect of the substrate material resulting from the difference

in initial density - 998 kg/m3 for water versus 2,106 kg/m3 for the unsaturated sand - also

showed a fairly significant effect. For this case the material with the higher density - the

sand - imparted more momentum than did the material with the lower density. The effect

based on the difference in stiffness (cf. Figure 4.3) seemed to produce an effect with more

momentum imparted by the stiffness associated with water - although this was the smallest
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effect of the three.
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Figure 4.11: Normalized response from the wet sand - dry sand comparison.

A similar approach was used to compare the magnitudes of the mean effects of the

properties of wet saturated and dry sand on the amount of peak momentum transferred

to a 25.4 cm target. For this case, a 24 full factorial design was used to look at the effects

of initial density, yield surface, volumetric behavior, and Poisson ratio. The raw results

are shown in Table 4.6; a comparison of the normalized effects is shown in Figure 4.11.

For this case, the greatest effect was also that due to yield. In Figure 4.11, normalized

effects greater than zero - in this case, all of the effects - are those due to the effect of the

property associated with wet sand being greater in absolute value than the effect resulting

from same property for the dry sand:

c[·] = ywet sand − ydry sand (4.12)

where c[·] denotes the effect on momentum transfer due to property [·], ywet sand is the mean

momentum calculated using the property associated with partially saturated sand, and
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ydry sand is the mean momentum calculated using the property associated with dry sand.

therefore it can be seen that the lower strength of the unsaturated sand resulted in

greater target momentum than did the higher strength of the dry sand (see Figure 4.7). It

was noticed that the effect of Poisson ratio was also very significant with the higher Poisson

ratio of the wet sand 0.48 producing greater target momentum than that of the dry sand

0.34. The effects due to the pressure-volume behavior and the initial bulk density were

less pronounced than those from the strength and Poisson ratio. The volumetric behavior

for the two initial states of the sand is shown in Figure 4.3; the initial densities of the

unsaturated and the dry sand were 1,750 and 2,150 kg/m3, respectively.

Figure 4.12 compares fringes of the rate of shear strain and flow pathlines for (b) dry

sand, (c) wet sand, and (d) water. Figure 4.12(a) shows the initial state of all three systems.

Figure 4.12 illustrates several things; four of them are germane to the present discussion.

First of all, the crater size 150 µs subsequent to detonation increases as substrate material

changes from dry sand to wet sand and, then, to water. Secondly, it can be seen that,

based on the pathlines, the overall amount of flow seems to vary with substrate type in the

same way as the crater size.

Thirdly, the volume of material involved in substrate flow, as evidenced by the shear

strain rate contours, seems to increase with decreasing strength and increasing target mo-

mentum as substrate type changes from dry sand to wet sand and then to water. Finally,

it appears that the seal created by annular walls of substrate seems to open earlier for dry

sand than for wet sand and water perhaps thereby allowing earlier release and expansion

of the high pressure detonation product gases that drive the movement of substrate which,

ultimately, results in a lower momentum increase of the rigid target.

When the first order interactions between the factors were examined, it was noticed

that the only really significant interaction was that between the strength and the Poisson

ratio. This interaction was such that the effect of Poisson ratio was fairly minimal when the

wet sand yield surface was used but became significant when the strength model was that
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Figure 4.12: Comparison of computational deviatoric strain rate and substrate flow 150 µs
after detonation for dry sand, wet sand, and water. (a) Initial state for all three substrates.
(b) Dry sand. (c) Wet sand. (d) Water. The gold body is the rigid target; the fringed body
is the deforming substrate. Magenta traces are pathlines of tracers initially embedded in
substrate. Flow and deviatoric strain rate increased while strength decreased in the order
dry sand- wet sand - water. Strain rate increases as fringe changes from blue to red.
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Figure 4.13: First order interaction between yield surface type and Poisson ratio.

for the dry sand (Figure 4.13). The interaction between Poisson ratio and yield relation for

sand was analyzed by first calculating and comparing the effect of the two types of Poisson

ratio for the cases involving the dry sand yield relation and then repeating this process

for the cases involving the wet sand yield surface. The other, relatively insignificant, first

order interactions were estimated in a similar fashion.

A comparison of the yield surfaces and the behavior of the various combinations of

Poisson ratio and strength model for a simulated uniaxial strain test (Figure 4.14) give

some insight into the reasons for the first order interaction. First of all, the larger Poisson

ratio prescribed for the behavior of the wet sand results in higher lateral stresses in reaction

to an increased axial stress for an applied uniaxial strain test. The pressure in Figure 4.14

is given by p = (σa + 2σl) / 3 while the Mises or effective stress, σeff is defined to be equal
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Figure 4.14: Uniaxial strain stress path response for various combinations of Poisson ratio
and yield surface.

to the difference σa - σl where σa is the axial, applied stress and σl is the lateral stress.

Therefore a higher effective stress implies, at any given pressure and for a uniaxial strain

path with applied axial compression, a lower lateral stress since for this strain path the

magnitude of the axial stress will always be greater than or equal than that of the axial

stress.

The wet sand yield surface, at all pressures, causes yielding at a significantly lower level

of effective stress than does the dry sand yield surface. It can be seen, from Figure 4.14, that

the lower yield stress of the wet sand yield surface limits the large differences in lateral stress,

particularly at higher levels of pressure, that might be caused by a difference in Poisson

ratio. On the other hand, for the case of the dry sand yield surface the difference in Poisson

ratio can cause, particularly at higher pressures, significantly higher lateral stresses which,

for a substrate in an unconfined state such as the sand on the sides of and on top of the

cavity filled with the expanding explosive detonation products, will cause greater lateral
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Figure 4.15: Effect of Poisson ratio for dry sand 750 µs after detonation. a) Dry sand. b)
Dry sand pseudo-material with wet sand Poisson ratio. The pseudo-material, due to its
higher Poisson ratio and resultant higher induced lateral stresses supplied more momentum
to the target. The rigid target is dark grey. The air is blue, the detonation products are
violet, and the sand is brown.
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expansion of the sand surrounding the explosive bubble thereby creating larger tractions

at the interface with the target and thus, in the end, imparting more momentum to the

target.

Figure 4.15 compares the behavior of the system with dry sand with that of the system

with the dry sand pseudo-material with wet sand Poisson ratio 750 µs after detonation. It

can be seen that the higher Poisson ratio resulted in, due to the higher level of induced

transverse stress in the substrate, more containment of the detonation product gases. The

higher level of containment caused less of the mechanical energy available in the compressed

detonation product to vent to the atmosphere, more of it to be available to increase the

momentum supplied to the target, and more of the momentum of the moving sand to be

imparted to the target.
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Chapter 5

Momentum transfer involving sand and soils containing fines

5.1 Overview

It has been observed that factors such as mass density, compressibility, water content, and

strength of the medium surrounding the explosive as well as such things as problem geom-

etry affect experimental outcomes. However, there has not been an integrated approach

combining constitutive data, experimental blast data, and computational analyses for sev-

eral soil types at various states that has been extensive enough to expose, to demonstrate,

and to explain the fundamental reasons for parametric relations between the momentum

transferred to a rigid body and the nature of the medium surrounding a shallow buried

explosive.

Small-scale dynamic experiments were performed by the University of Maryland Dy-

namic Effects Laboratory using explosive charges shallow buried in water or in various soil

types at differing initial states (Fourney, 2013b). Using the results from these experiments,

it was discovered that the amount of momentum transferred to a rigid target is relatively

independent of soil type but that it mostly depends on the initial air-filled void content of

the soil and on the effect that water content has on the yield strength of the soil. Data

from quasi-static tests of soils at a number of initial states along with known results for the

higher pressure behavior of water-quartz mixtures were combined to construct soil models

at various initial states for silty sand (SM), clayey sand (SC), and poorly graded sand (SP).

The present chapter focuses primarily on the application of computation and analysis to

examine and clarify the mechanisms behind the experimental observations. Computations

were performed in order to evaluate the sensitivity of rigid plate loading to various facets of

constitutive behavior described in the soil models in order to better understand the causes

for the newly revealed parametric relationships. The computations closely matched the

experimental results, thereby supporting theories regarding the parametric relations. The
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results from the computations offered significant insights into the mechanics behind the

parametric relations.

Section 5.2 describes the blast experiment setup, the blast experiment test bed prepara-

tion procedures, and the soil characterization methods. Section 5.3 explains the represen-

tation of soil and water behavior that was used to examine the blast behavior for various

combinations of soil density and water content. Next, Section 5.4 discusses the experimen-

tal and computational results and shows, for both, the strong correlation between peak

target momentum and the test bed material initial air filled void content. Subsequently,

Section 5.5 presents an examination of the sensitivities to soil air filled voids content, water

content, and initial density.

5.2 Experimental Setup

5.2.1 Blast test setup

The blast experiments discussed, used for analysis, and used for validation in this work were

performed, with some direction by the author - with regard to prescribed soil properties

and parameter variation - by colleagues at the University of Maryland Dynamic Effects

Laboratory (Fourney, 2013b). The setup for the small scale blast tests performed at the

University of Maryland Dynamic Effects Laboratory was similar to that described in section

4.2 except for a few differences. First, only one target geometry was used for the current

investigations. The target was a 305 mm diameter, 50.9 mm thick plate constructed of

aluminum alloy 6061 with mass 10.05 kg that behaved essentially as a rigid body in its

response to the loading from the buried explosive. Also, as will be discussed in more detail,

the test bed preparation procedures for the various soil emplacements were different than

those used for the work discussed in Chapter 4.

The translation of the target was measured using high-speed video in order to determine

the displacement history from which the velocity was determined. The plate momentum

was calculated as the product of the vertical translational velocity (over the first 25.4 mm

of travel distance) and the plate mass. Figure 5.1 shows photographs of the apparatus that



75

was used at the University of Maryland for the small scale blast tests.

5.2.2 Test bed preparation

For the case of the water test bed, a 1.8 m by 1.8 m by 0.30 m deep tank was filled

with water, the explosive and plate were positioned appropriately (see Figure 4.1), and the

explosive was detonated. For the cases involving soil test beds, the soil was first completely

dried in an oven at 110 ◦C. Subsequently the soil was brought to the desired water content

by careful hand mixing and gradual addition of water in a 0.076 m3 bucket. Water content

w is defined according to the civil engineering convention

w =
mw

ms

× 100 (5.1)

where mw and ms are the masses of water and of soil solids, respectively, contained in a

control volume of the soil.

Once the correct water content was achieved, the soil-water mixture was allowed to

equilibrate for 24 hours and then was placed in a thick-walled hollow cylindrical aluminum

container with 311 mm inner diameter and 237 mm depth in lifts (layers) that were approx-

imately 25.4 mm in height. All of the layers of the soil in the container were compacted

identically and the positions of their top surfaces were carefully measured with a caliper

and then scarified before addition of the next layer in order to promote homogeneity of

the test bed. Compaction was accomplished by means of a steel rod, 25.4 mm in diameter

and 1.5 m long, and a 6.8 kg steel ball with a hole drilled into it which fit over the rod.

The ball was dropped from a given height with a given number of impacts until the desired

compaction level was achieved.

Air filled voids volume fraction αa is defined as a proportion of the total volume of the

individual constituents in a control volume of the soil:

αair =
Vair
Vtotal

(5.2)
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Figure 5.1: Apparatus for small scale blast tests (Fourney, 2013b). The scale of the large
ruler is in inches (one inch = 25.4 mm). a. Soil test bed with uncovered explosive charge.
b. Apparatus shown with rigid target (round plate) positioned above the soil bed.



77

Table 5.1: Soil emplacement conditions: poorly graded sand (SP).

Initial volume fraction air Water content (%) Initial wet density (kg/m3))

0.071 19.4 1970
0.104 17.3 1930
0.142 17.3 1850
0.157 17.3 1820
0.167 12.8 1890
0.200 12.8 1810
0.206 17.3 1710
0.230 12.2 1760
0.268 8.8 1740

Table 5.2: Soil emplacement conditions: silty sand (SM).

Initial volume fraction air Water content (%) Initial wet density (kg/m3))

0.059 13.8 2120
0.074 13.8 2080
0.081 11.3 2130
0.134 11.3 2000
0.148 11.3 1970
0.173 11.3 1910
0.209 8.8 1890
0.218 11.9 1800
0.222 8.8 1860
0.263 8.4 1770
0.265 9.7 1730
0.269 9.4 1730
0.273 8.5 1740
0.295 4.2 1790
0.295 4.2 1790
0.299 9.4 1660
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or, expressed as a percentage,

air filled voids content =
Vair
Vtotal

× 100 (5.3)

where Vair is the volume of air and Vtotal is the total volume of the soil. The soil’s total

volume is the sum of the volumes of water, solid, and air components of the soil.

It was possible to weigh the entire test bed apparatus by use of a scale. In this way it

was determined that it was possible to vary and measure not only the initial water content,

but the initial density, which equates to the determination of the air filled voids content of

the soil. Once the state of the soil in the test bed was determined, the explosive was placed

in its correct position, the small cavity directly above the emplaced explosive was filled

with soil and tamped to achieve a similar level of compaction to that of the soil throughout

the rest of the bed, the target plate was put in place, and the explosive was detonated.

The initial soil conditions for the soils used in the blast experiments are given in Tables

5.1, 5.2, and 5.3.

Table 5.3: Soil emplacement conditions: clayey sand (SC).

Initial volume fraction air Water content (%) Initial wet density (kg/m3))

0.076 14.6 2030
0.092 14.9 1990
0.101 12.4 2020
0.119 10.9 2010
0.136 10.9 1980
0.189 10.9 1850
0.199 10.3 1850
0.206 9.1 1860
0.207 10.9 1810
0.226 10.4 1780
0.240 10.4 1750
0.246 10.9 1730
0.262 10.9 1690
0.292 11.1 1620
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5.2.3 Soil Characterization
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Figure 5.2: Particle size distributions for the three soils used in this work.

The soils used were poorly graded sand, silty sand, and clayey sand or, as defined ac-

cording to the Unified Soil Classification System (USCS) ERDC (1960), soils designated

as SP, SM, and SC, respectively. The USCS is a system used in geology and geotechni-

cal engineering to characterize and compare soil and gravel based on their particle size

distributions and consistencies.

Particle size distributions are determined using a vibrating platform by placing the

soil on top of a series of progressively finer sieves and observing the proportion of the

soil retained on each of the sieves and, subsequently, for determination of particle size

distributions of particles less than a nominal size of 0.075 mm, using a hydrometer test.

Figure 5.2, shows the experimentally obtained gradation plots for the skeletal materials of

the three soils used in this work.
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It can be seen that the particle size distribution of the the poorly graded concrete sand

was much narrower than those of the other two soils. In other words there was much less

diversity in particle size for the concrete sand than for the other materials. Furthermore,

Figure 5.2 shows that both of the other soils, the silty sand and the clayey sand, contained

large fractions of particles that were much finer than those that comprised the skeleton of

the concrete sand.

Soil consistency is quantified in terms of plasticity index and liquid limit. The plasticity

index is the the range of water contents for which the soil behaves like a plastic solid.

The liquid limit is the water content at which the behavior of a soil changes from being

predominantly like a plastic solid to being more like a fluid. The poorly graded sand and

the silty sand used in this research exhibited no plasticity; the clayey sand exhibited a

plasticity index of 8 and a liquid limit of 27.

Quasi-static experimental determination of the properties of various soils at various

states was performed for related project work by colleagues at the US Army Engineer

Research and Development Center (ERDC) (see, for example, Corps of Engineers (1980);

Ehrgott (2011b)) in order to more accurately predict, computationally, the results of the

blast experiments. All of the various soil mechanical property test data sets, used for the

computations, were determined by means of tests that involved uniaxial strain (UX) stress-

strain, stress path, and pressure volume relations and triaxial compression (TXC) failure

relations. A minimum of 11 remolded soil specimens were tested for each soil type and

emplacement condition for the purpose of determining mechanical properties used in the

soil material models.

Prior to conducting the mechanical property tests, the height, diameter, and weight of

each remolded test specimen were determined. These measurements were used to compute

the specimen’s wet or bulk density. Measurements of post test water content were conducted

in accordance with procedures given in Corps of Engineers (1980). The values of dry density,

porosity, degree of saturation, and volumes of air, water, and solids were calculated from
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the values of post test water content, wet density, and specific gravity.

The laboratory mechanical property tests were performed under quasi-static conditions

using axial strain rates between 10−4 and 10−5 sec−1 and times to peak load between

5 and 30 min. Mechanical property data were obtained using several stress and strain

paths. Undrained volumetric stress-strain data were obtained during the hydrostatic load-

ing phases of the triaxial compression tests and from the hydrostatic compression (HC)

tests.

Shear and failure data were generated by means of unconsolidated-undrained TXC tests.

One-dimensional compressibility data were obtained using undrained UX tests with lateral

stress measurements. The terms undrained and unconsolidated refer to tests for which

no pore fluid (liquid or gas) was allowed to escape or drain from the membrane-enclosed

specimens.

Empirical relations were derived based on the experimentally determined water content

and yield surfaces of the various soils. These relations were in the form of semi-logarithmic

least squares fit between the mean yield strength and the water content of the soils. The

yield strength of the soils was a function of the soil water content and decreased with

increasing water content (Figure 5.3) to the limit of no strength that was observed for the

case of pure water.

The relation between the mean yield strength of the poorly graded sand and its water

content (with best fit relation Y S = 2609 exp(−0.199w), where Y S ≡ yield strength

and w ≡ water content) was somewhat different than those for the clayey sand and the

silty sand, both of which contained higher fines contents (with best fit relation Y S =

675 exp(−0.474w)). This was, in part, a result of some of the innate differences between the

fabric behavior of the poorly graded sand and the more readily compressed fines-containing

silty sand and clayey sand.

Part of this difference was also a result of the different approach required for modeling

the yield strength of the poorly graded sand due to difficulties in triaxial test sample prepa-
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Figure 5.3: Relation between mean yield strength and initial soil water content. In the
empirical best fit relations Y S represents yield strength and w denotes water content.
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ration because of the greater permeability of the more porous material to the interstitial

flow of water. The silty sand and the clayey sand could be tested directly for determina-

tion of the yield surface. On the other hand, it was necessary to combine test results for

relatively dry sand with effective stress theory in order to estimate the yield surface for

various states of the poorly graded sand.

5.3 Computational approach

5.3.1 Computational procedures

The computational techniques and constitutive behavior descriptions used for the present

analyses were similar to those described in Section 4.3.1 except for some of the details

regarding the constitutive treatment of the soils for the various emplacement conditions.

As was the case with the investigation of the excitation of sand and water in Chapter 4,

it was possible to take advantage of the axial symmetry of the problem in order to use a

two-dimensional mesh for calculations.

5.3.2 Constitutive models

The approach used for predicting above ground loads transmitted to above ground targets

from shallow buried explosives was to model the explosive, the surrounding soil, the air

above the soil and the above ground aluminum plate. The behavior of water, air, and

explosive during these sorts of blast events was modeled in the same way as in Chapter 4.

The approach used for the constitutive treatment of the soil involved quasi-static ex-

perimental determination of the properties of various soils at various states (see Section

5.2.3) in order to emulate, computationally, the behaviors of the soils used in the blast

experiments. Laboratory mechanical properties of the test bed soils were determined at

various combinations of density, air filled voids volume fraction, and water content.

For the silty sand and clayey sand test bed materials a series of mechanical property

tests were conducted by colleagues at the US Army Engineer Research and Development

Center in Vicksburg, MS, for related project work, for density - water content - air void

combinations intended to span the range of air filled voids contents used in the small scale
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Table 5.4: Soil models used for computations. These were based on experimentally deter-
mined mechanical properties. Poorly graded sand properties were derived from experimen-
tally determined dry sand properties using effective stress theory.

Soil type Initial volume fraction air Water content (%) initial wet density (kg/m3))

SP 0.047 22.7 1949
SP 0.142 17.3 1844
SP 0.200 12.8 1801
SP 0.230 12.2 1746
SP 0.268 8.8 1728
SM 0.047 11.1 2210
SM 0.142 11.16 1990
SM 0.191 11.0 1876
SM 0.219 6.8 1915
SM 0.260 7.0 1808
SC 0.096 13.5 2010
SC 0.199 13.3 1756
SC 0.209 9.5 1840
SC 0.212 11.35 1790
SC 0.268 9.6 1700

blast tests. For the case of the poorly graded sand, test results for sand evaluated at one

emplacement condition - relatively dry with 4% water content and 30% air filled voids

content - were used in combination with effective stress theory (Zimmerman et al., 1993)

to calculate the mechanical properties used for the sand constitutive models in this work

(Table 5.4), which were also intended to cover the range of air voids contents used in the

blast tests.

In physical tests for determination of the soil properties, the volumetric behavior of

various soils was examined using confining pressures to 200 MPa and then, beyond this level

of pressure, volumetric behavior was defined using a fit based on the Hugoniots for water

and for the solid constituents of the soil. The hydrostats used used in the computational

models went to pressures of 5 GPa. The soil constitutive models were implemented into

LS-DYNA for subsequent blast calculations.

The hydrostat was defined by input of data pairs - pressure as a function of natural
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volumetric strain - to the solver. The solver performed numerical differentiation of these

tabulated data to calculate bulk modulus as a function of volumetric strain. The hydrostatic

behavior was treated as being hypoelastic with variable bulk modulus and constant Poisson

ratio.

Examples of the hydrostatic behavior of the various materials investigated are shown

in Figures 5.4 and 5.5. Figure 5.4, shows a peak pressure scale of 200 MPa in order to help

the reader to see the differences in lower pressure behavior between the soils with fines and

the poorly graded concrete sand and to also notice the similarity in lower pressure behavior

between the clayey sand and the silty sand.

The hydrostats for the partially saturated soils used in this work are very similar in form

to the one used in the previous chapter for the partially saturated sand. In Figures 5.4 and

5.5, it can be seen that at lower levels of volumetric strain, the soil is more compliant and,

at strains exceeding that at which the initially present air filled voids vanish and the soil

reaches a state of saturation, the soil becomes much more stiff. It can also be seen that the

level of strain, the saturation strain, at which this change in stiffness occurs is related to

the initial air filled voids content of the soil.

The laboratory soil mechanical properties for various combinations of water and air

filled voids content were implemented into LS-DYNA for subsequent blast calculations.

The hydrostatic behavior was treated as being hypoelastic with variable bulk modulus and

constant Poisson ratio (Rohani, 1977). The relationship between the stress increments dσij

and the strain increments dεij was

dσij = K dεkkδij + 2 G

(
dεij −

1

3
dεkkδij

)
(5.4)

where K was variable bulk modulus, and a constant Poisson ratio ν was used so that the

variable shear modulus G(K, ν) was given by
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Figure 5.4: Typical soil hydrostats for pressures up to 200 MPa. Example hydrostats are
shown for poorly graded sand (14.2% air filled voids, 17.3% water content), silty sand
(21.9% air filled voids, 6.8% water content), clayey sand (9.6% air filled voids, 13.5% water
content), and water.
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Figure 5.5: Typical soil hydrostats for pressures up to 5 GPa. Example hydrostats are
shown for poorly graded sand (14.2% air filled voids, 17.3% water content), silty sand
(21.9% air filled voids, 6.8% water content), clayey sand (9.6% air filled voids, 13.5% water
content), and water.
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G(K, ν) =
3K(1− 2ν)

2(1 + ν)
. (5.5)

The volumetric constitutive properties of the soils were input to the solver in tabular form.

The data input to the table consisted of pressure - natural volumetric strain pairs. These

data for the soils were differentiated numerically by the solver to yield the bulk and shear

moduli that were used in the ALE finite element calculations.

Figures 5.6 and 5.7 show examples of the deviatoric yield behavior of the fine-grained

soils and the poorly graded sand that were examined. The soil behavior was elastic-perfectly

plastic. The yield function for the silty sand and the clayey sand were given by (DiMaggio

and Sandler, 1971)

f(p, J ′2) =
√
J ′2 − [α− γ exp(βp)] = 0 (5.6)

where p is the pressure, J ′2 is the second invariant of the deviatoric stress tensor, and α, β,

and γ are constants for a given soil and soil state. α, β, and γ were, fit by means of results

from unconsolidated, undrained triaxial test results.

The deviatoric behavior of the partially saturated poorly graded sand was estimated us-

ing effective stress theory based on the assumption that once air-filled void content becomes

zero, the hydrostatic loading is carried primarily by the water and the effective stress - the

stress imparted to the soil skeleton - increases only moderately with increases in total pres-

sure (Zimmerman et al., 1993; Lambe and Whitman, 1968). As a result of this, the shear

resistance of the soil skeleton increases much less at total pressures beyond the pressure at

saturation compared to increases it would exhibit when dry. For the cases involving par-

tially saturated, poorly graded sand, the yield surface was somewhat similar to that given

in Equation 5.6 except that the yield relation beyond saturation was determined differently

as is reflected in the somewhat different shape of the yield surface beyond saturation.

At pressures below saturation pressure, in the initially partially saturated sand, at
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Figure 5.6: Typical soil yield surfaces up to 200 MPa pressure. Example yield surfaces
are shown for poorly graded sand (14.2% air filled voids, 17.3% water content), silty sand
(21.9% air filled voids, 6.8% water content), and clayey sand (26.79% air filled voids, 9.6%
water content).
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Figure 5.7: Typical soil yield surfaces up to 5 GPa pressure. Example yield surfaces are
shown for poorly graded sand (14.2% air filled voids, 17.3% water content), silty sand
(21.9% air filled voids, 6.8% water content), and clayey sand (26.79% air filled voids, 9.6%
water content).
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which the air filled voids disappear and the soil becomes saturated, the yield behavior is

very similar to that of dry sand. At pressures beyond this point, the yield behavior is

defined by the effective pressure, that is the pressure acting on the soil skeleton, defined

as pe ≡ pt - u where pt is the total pressure and u is defined as the pressure supported by

the water in the pores of the soil. Using effective stress theory, it was possible to estimate

the yield behavior of the partially saturated sand at various combinations of water content

and air filled voids content Zimmerman et al. (1993).

For the example soils shown in Figure 5.6, scaled to pressures up to 200 MPa, it can

be seen that, at lower pressures, the yield surfaces could be represented, in principal stress

space, as being similar to the pressure-dependent cones suggested by Drucker and Prager

(1952), with yield strength increasing linearly with pressure. At higher pressures, the yield

strength remained constant for the case of the silty and clayey sand models. For the case of

the model used for the poorly graded sand it can be seen that at higher pressures the yield

point increases much less rapidly than at lower pressures. Figure 5.7, shows the example

yield surfaces scaled to pressures of 5 GPa, the upper limit of the prescribed pressure used

in the tabulated LS-DYNA constitutive models.

5.4 Comparison of experimental and computational results

Figure 5.8 gives a comparison of the test bed air filled void content with experimentally de-

termined target momentum results for beds containing water as well as for beds containing

the three soils at various emplacement conditions. This figure also shows an estimate of

the experimental data mean values, as a function of air filled volume fraction, which were

calculated by means of a second order polynomial using a least squares fitting algorithm

(Carnahan, Luther, and Wilkes, 1969), and the 95% prediction limits based on the second

order polynomial (Oberkampf and Roy, 2010). It was observed that a relation between air

filled voids volume fraction and momentum transferred to a target held, experimentally,

for water, which was treated as having no air filled voids, as well as for all three of the soil

types that were used in these investigations.
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Figure 5.8: Comparison of experimental data, of predictions of experimental mean values,
and of computational results for 304.8 mm diameter plates. Target momentum, indepen-
dent of test bed material type, decreased with increasing air filled void volume fraction.

Based on analyses described below, this relationship was found to be, at least in part,

associated with the behavior that involved a very large increase in the stiffness of the soil

once its air void volume approached zero. The soils with lower initial air void volume

fraction reached this point at lower levels of strain than did soils with higher initial air void

volume fraction. This resulted in higher soil mass flow rates out of the soil beds and, as

result, increased target momentum for soils with lower initial air filled voids content.

Computations were performed according to the setup in Figures 4.1 and 5.1, for water

and for the three soils at various emplacement conditions and, again, it was seen that

there was a very significant correlation between decreasing initial volume fraction of air

filled voids and increasing target momentum. Figure 5.8 compares the results from the

computations to the data and gives estimates for the mean values from the experiments.
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Figure 5.9: Deviation between computational results and second order polynomial estimate
of mean value from blast experiments. 95% limits are bounds for the prediction limits based
on the blast experiment data.

Figure 5.9, offers an attempt to give a better sense of the accuracy of the computational

momentum as compared to the mean values of the experimental momentum as a function

of air filled void content.

The ordinate in Figure 5.9, in other words, the deviation from the mean target momen-

tum, is defined as the algebraic difference between a particular momentum, for example, a

computationally determined momentum, and the second order polynomial estimate of the

experimentally determined momentum (cf. Oberkampf and Roy (2010)). It can be seen

that, except for the case of the 30% air filled void content poorly graded sand, the values of

the computations fell within the 95% limits for prediction derived from the experimentally

determined momentum results.
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Table 5.5: Starting points, for each of the three soil types, for the computational sensitivity
studies.

Soil
type

Initial
volume

fraction air

Water
content

(%)

Natural volumetric
strain at lock-up

Mean yield
strength
(MPa)

initial wet
density
(kg/m3)

SP 0.200 12.8 0.223 168.86 1801
SM 0.191 11.0 0.212 4.00 1876
SC 0.209 9.5 0.234 7.39 1840

5.5 Sensitivities to yield surface, hydrostat, and bulk density

Further computations were performed to investigate the sensitivity of the target momentum

to variation of the initial density, the yield surface, and the hydrostat of the test bed soil.

As was discussed in Section 5.3.2, constitutive models, based on experimental data, were

developed at five different soil emplacement conditions for each of the three soil types. For

each of the three soil types, the constitutive model associated with the median volume

fraction of air voids was used as a starting point for the sensitivity studies (Table 5.5).

Sensitivities were then estimated by separately adjusting the yield surface, the hydrostat,

and the density to those of the models for each of the other four levels of air voids for each

of the soils. The various levels of metrics associated with the key characteristics of the soil

models used for the sensitivity studies are summarized in Table 5.6.

Figure 5.10 and Table 5.7, show the computational sensitivity of the target momentum

to the mean yield strength of the soil. Mean yield strength was calculated as

Ymean =

∫ pmax

0

Y (p)dp

pmax
(5.7)

where Y (p) is the pressure dependent yield surface and pmax was 5 GPa, the maximum

pressure prescribed in the hydrostat and yield surface tables.

The mean yield strength of all three soil types had a strong influence on the momentum

imparted to the targets, with the momentum decreasing with increasing yield strength.
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Table 5.6: Characteristics of soil models used for sensitivity study.

Soil
type

Initial
volume

fraction air

Water
content

(%)

Natural volumetric
strain at lock-up

Mean yield
strength
(MPa)

initial wet
density
(kg/m3)

SP 0.047 22.7 0.048 28.61 1949
SP 0.142 17.3 0.153 87.82 1844
SP 0.200 12.8 0.223 168.86 1801
SP 0.230 12.2 0.261 268.80 1746
SP 0.268 8.8 0.312 459.41 1728
SM 0.047 11.1 0.048 3.40 2210
SM 0.142 11.16 0.153 3.60 1990
SM 0.191 11.0 0.212 4.00 1876
SM 0.219 6.8 0.247 21.46 1915
SM 0.260 7.0 0.301 29.94 1808
SC 0.096 13.5 0.101 0.90 2010
SC 0.199 13.3 0.222 1.50 1756
SC 0.209 9.5 0.234 7.39 1840
SC 0.212 11.35 0.238 3.00 1790
SC 0.268 9.6 0.312 7.39 1700

The range of variation in momentum for the poorly graded sand as well as for the two soils

with fines - silty sand and clayey sand - was about 15 N-s over the range of yield strength

evaluated.This was because decreasing yield strength promotes an increasing rate of flow

of the substrate material out of the soil bed thereby increasing tractions on the bottom

surface of the target plate.

Figure 5.11 shows an example of the increase in flow rate resulting from a change in

yield surface, 300 µs after detonation, for the case of silty sand with mean yield strength

of 3.4 MPa (Figure 5.11a) and 29.9 MPa (Figure 5.11b). First, it can be seen that, for the

case of the lower yield strength, more material has been removed from the soil bed than

was removed for the case of the 29.9 MPa mean yield strength.

It can also be seen that, as a result of the increased propensity toward flow of the lower

yield strength soil, the annular region of soil above the initial top surface of the soil bed for

that material has greater integrity than the annular region associated with the higher yield
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Table 5.7: Computational sensitivity of target momentum to mean yield strength of soils.
The prescribed bulk densities and hydrostats for each soil type were held constant; only
the prescribed yield surfaces were varied.

Soil type Mean yield strength (MPa) Target momentum (N-s)

SP 28.61 49.5
SP 87.82 40.9
SP 168.86 36.4
SP 268.80 34.9
SP 459.41 33.3
SM 3.40 38.2
SM 3.60 37.9
SM 4.00 39.1
SM 21.46 29.8
SM 29.94 27.4
SC 0.90 43.5
SC 1.50 42.7
SC 3.00 38.9
SC 7.39 35.1

strength soil as is evidenced by the leakage of the detonation products at the top of the soil

region (Figure 5.11b). Figure 5.12, based on finite element-based sensitivity calculations,

shows that approximately twice as much soil was ejected from its original position for the

case involving the material with the lower (3.4 MPa) yield strength than was ejected for

the case of the higher (29.9 MPa) mean yield strength.

Part of this difference is also a result of the different approach required for modeling the

yield strength of the poorly graded sand due to difficulties in triaxial test sample preparation

because of the greater permeability of the more porous material to the interstitial flow of

water. The silty sand and the clayey sand could be tested directly for determination of the

yield surface. On the other hand, it was necessary to combine test results for relatively dry

sand with effective stress theory in order to estimate the yield surface for various states of

the poorly graded sand.

A very important characteristic of the volumetric high pressure compressive stress strain

behavior of soils is the phenomenon of lock-up. Lock-up occurs, in an undrained soil
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Figure 5.10: Computational sensitivity of target momentum to mean yield strength of soils.
The prescribed bulk densities and hydrostats for each soil type were held constant; only
the prescribed yield surfaces were varied. The range of momentum for the poorly graded
sand as well as for the two soils with fines - silty sand and clayey sand - was about 15 N-s
over the range of yield strength evaluated.

condition, at the level of pressure and compressive strain at which the air void volume

fraction becomes vanishingly small thereby causing the bulk modulus to increase very

significantly. Referring to the quasi-static, experimentally determined, hydrostats for silty

sand in Figure 5.13, the lock-up points are seen to be at natural strain levels of 0.05, 0.15,

0.21, 0.25, and 0.30, respectively, for initial air filled void contents of 4.7, 14.2, 19.1, 21.9,

and 26.0 percent.

The computational sensitivity of target momentum to the hydrostat - and thus to the

lock-up point and air filled void content - is shown in Figure 5.14 and Table 5.8. The hydro-

stat influenced the target momentum at all levels of air filled void content; this sensitivity

seemed to be more pronounced for initial volume fractions below about 0.2. Artyunov,

Grigoryan, and Kamalyan (1985) suggested that the volume of the crater cuts they were
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Figure 5.11: Effect of silty sand yield strength on flow and target loading at 300 µs. The
grey material represents the rigid aluminum target, the light blue blue material the air, the
red material the gaseous detonation reaction products, and the brown material the soil. a)
3.4 MPa soil mean yield strength; b) 29.9 MPa soil mean yield strength. For the case of
the soil with lower yield strength, more soil was removed from its original position and was
traveling toward - and loading - the rigid target (cf. Figure 5.12).
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Figure 5.12: Effect of silty sand yield strength, based on the finite element computational
sensitivity study, on the mass of soil ejected from the soil bed. Approximately twice as
much soil was ejected from the bed containing the lower yield strength soil.

producing experimentally were comprised of the sum of the volume increase caused by

compaction of the soil and of the volume increase that resulted from the movement of some

of the soil out of the soil bed.

It seems correct to assume similarly that for the case of the present work part of the

available mechanical energy available from the detonation of the explosive and expansion

of the gaseous detonation products was expended in compressing the soil bed and that part

of it was used to push some of the soil away from the soil bed. A portion of that energy

that resulted in the ejection of the soil from the bed was then used to supply the tractions

that imparted the momentum to and propelled the rigid target upward.

Referring again to Figure 5.13, one notices that the amount of mechanical energy re-

quired to perform a uniaxial compression of an element of soil by a particular volume
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Figure 5.13: Variation of hydrostat lock-up position with changes in soil initial air filled
void content for the case of silty sand. Lock-up strain increases with increasing air filled
void content.

increment increases with decreasing levels of initial air filled void volume fraction. Lower

air filled void content results in higher soil stiffness which forces more of the soil to move

up and away from the bed and toward the target which, in turn, yields increased upward

target momentum.

This is precisely what was observed in the results from the computations. Figure 5.15

shows a comparison of the computational results for silty sand 300 µs after detonation.

Figure 5.15a, shows results for the case of the 4.7 percent air filled voids hydrostat; in Figure

5.15b, for the hydrostat associated with an initial 26.0 percent air filled voids content. It

can be seen that, for the case of the 4.7 percent air filled voids hydrostat, the amount of

soil close to the boundary of the rigid target - and therefore able to produce tractions on

the target boundary - is significantly greater than it is for the case of the 26.0 percent
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Figure 5.14: Computational sensitivity of target momentum to lock-up strain of soils. The
prescribed bulk densities and yield surfaces for each soil type were held constant; only the
prescribed hydrostats were varied. The range of momentum for the poorly graded sand as
well as for the two soils with fines - silty sand and clayey sand - was about 15 N-s over the
range of air filled voids that was evaluated.

hydrostat.

In fact, from the computational results it was noticed that there were actually some

gaps containing no soil in the annulus comprised mostly of soil closest to the boundary of

the target. It can be also be seen that when the initial air filled void content increased

there was a substantial decrease in the amount of soil ejected from the test bed. In Figure

5.16 it can be seen that about two thirds more soil was ejected from the bed containing

soil that initially had 4.7 percent air filled voids content than was ejected from the bed

containing the soil that initially had 26 percent air filled voids content.

It has been generally considered, based to some degree on the work performed by

Westine et al. (1985), that the mass density of a soil emplacement is the dominant factor

with regard to momentum transfer. It should, however, be emphasized that the effects
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Figure 5.15: The effect of initial air filled void content on silty sand soil ejection and soil
volume fraction 300 µs after detonation. The grey material represents the rigid aluminum
target, the light blue blue material the air, the red material the gaseous detonation reaction
products, and the brown material the soil. a) 4.7 percent initial air filled voids content
hydrostat (stiffer); b) 26.0 percent air filled voids hydrostat (softer). A greater proportion
of the stiffer soil was ejected from the bed (cf. Figure 5.16). This resulted in higher target
loading.
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Table 5.8: Computational sensitivity of target momentum to lock-up strain of soils. The
prescribed bulk densities and yield surfaces for each soil type were held constant; only the
prescribed hydrostats were varied.

Soil type Initial volume fraction air Target momentum (N-s)

SP 0.047 45.9
SP 0.142 38.6
SP 0.200 36.4
SP 0.230 35.4
SP 0.268 35.0
SM 0.047 53.6
SM 0.142 42.9
SM 0.191 39.1
SM 0.219 39.3
SM 0.260 38.4
SC 0.096 42.8
SC 0.199 35.0
SC 0.209 35.1
SC 0.212 34.0
SC 0.268 31.3

of soil water content and air filled void content were not examined in that study. Figure

5.17 shows the sensitivity of target momentum to the initial wet or bulk density of the soil.

There was a trend toward a moderate increase of momentum transfer with increasing initial

bulk density but this sensitivity was clearly much less significant than the sensitivities to

mean yield strength (Figure 5.10) and to hydrostat (Figure 5.14).
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Figure 5.16: Effect of air filled voids content, based on the silty sand computational sensi-
tivity study, on the mass of soil ejected from the soil bed. Approximately two thirds more
soil was ejected from the bed containing the lower air filled void content soil.
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Figure 5.17: Computational sensitivity of target momentum to wet density of soils. The
prescribed hydrostats and yield surfaces for each soil type were held constant; only the
prescribed bulk densities were varied. The target momentum was less sensitive to initial
wet density than it was to yield surface and pressure-volume lock-up point.



106

Table 5.9: Computational sensitivity of target momentum to wet density of soils. The
prescribed hydrostats and yield surfaces for each soil type were held constant; only the
prescribed bulk densities were varied.

Soil type Wet density (kg/m3) Target momentum (N-s)

SP 1728 35.9
SP 1746 36.1
SP 1801 36.4
SP 1844 36.6
SP 1949 37.2
SM 1808 38.4
SM 1876 39.1
SM 1915 39.2
SM 1990 39.7
SM 2211 41.3
SC 1700 34.1
SC 1756 34.8
SC 1790 35.0
SC 1840 35.1
SC 2010 36.4
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Chapter 6

Momentum transfer to more complex target geometries

6.1 Overview

Experimental and computational investigations were performed in order to better under-

stand the mechanical response of rigid targets with various geometries to the detonation

of shallow buried explosives. The focus of the present chapter is on the analysis, inter-

pretation, and application of computational methods to better understand the mechanics

behind experimentally observed results. The motion of the targets in response to loading

from explosive buried in soil was measured experimentally by colleagues at the Univer-

sity of Maryland Dynamic Effects Laboratory using high-speed digital video photography

(Fourney et al., 2010).

This work involved flat targets, targets that were downwardly convex, and targets that

were downwardly concave with explosive charges located at various positions beneath the

targets. It was observed that, in general, angled targets - whether downwardly concave

or convex - tended to reduce the amount of momentum imparted to the center of mass

of the targets. Computations were performed by use of an arbitrary Lagrangian-Eulerian

treatment in a nonlinear finite element code. A model based on quasi-static test evalu-

ations of poorly graded concrete sand was used for prediction of the soil behavior. The

computational technique used for predicting blast response provided results that showed

very good agreement with experiment.

The effect of variation of explosive lateral location relative to the centerline of the targets

was examined, as was the effect of variation of the angle of concavity and convexity. Impulse

response for downwardly concave models was compared with the response for downwardly

convex targets in order to further investigate the question of whether the well known

reduction in impulse for the downwardly convex topology is entirely due to an increased

offset of target bottom surface from the soil surface or whether other reasons might also
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affect blast response.

6.2 Experimental setup

The charge size and scale used for the work discussed in this chapter was found, from

an experimental standpoint, to be easy to manage and to be appropriate for prediction

of full-scale tests. Figure 6.1 illustrates the experimental setup used by Fourney et al.

(2010) to measure the response of the rigid aluminum plates to the excitation of shallow

buried explosive. The 636 mg explosive charges used for this work were constructed with

of Detasheet C, which contributed 567 mg of the high explosive PETN, and an RP-87

detonator, which added another 26 mg of PETN and 43 mg of RDX so that the total

amount of explosive added by the detonator was 69 mg.

Most of the mechanical energy from the detonation was provided by the Detasheet C.

The cylindrical charges were inserted into a bed of wet concrete sand so that their top

faces were 4.8 mm below the top surface of the sand. The rigid aluminum target plates

were located in the desired conformation above the buried charge. The lowest point of each

plate was positioned at the desired standoff distance, 21.6 mm, above the surface of the

sand using either blocks of wood or stand off bolts.

The experimental work referenced in this chapter (Fourney et al., 2010) built upon the

initial work done by Genson (2006), but included a deeper investigation of the effects of

variation of charge location and target shape. The details regarding test bed preparation,

explosive charge manufacture, and many aspects of the experimental procedures performed

for the present work are contained in Genson’s thesis. The charge size, depth of burial of

the explosive, and distance from the soil surface to the bottom of the target would be

expected to compare, using Hopkinson-Cranz scaling, with a full-size charge of 4.54 kg, a

depth of burial of 93 mm, and a distance from soil surface to target bottom of 416 mm.

The displacements of markings on the corners of each of the plates were measured by

use of high-speed digital video. These displacement measurements were used to calculate

the velocities of the plates. The velocity values, in conjunction with the measured masses
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!
Figure 6.1: Experimental setup. 636 mg cylindrical explosive charges were buried to a
depth of 4.8 mm in wet concrete sand and placed at various distances from the centerline
of rigid aluminum targets. The vertical distance between the top surface of the sand and
the lowest point of each of the 203.2 mm X 203.2 mm targets was 21.6 mm. Each test
performed was a specific combination of one target geometry and one charge location. a.
Side view. b. Top view.
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 2 

 

 
Figure 2.  Target plate geometries, clockwise from top left, a. 13°  convex down; b. 

13°  concave down; c. 21°  concave down; d. flat; and e. 21°  convex down. Targets 

were machined from aluminum alloy 6061 and shallow buried explosives were 

detonated at various locations beneath the targets. Target angle was defined as the 

initial angle between a target bottom half-surface and the horizontal plane. 

a. 

b. 

c. 

d. 

e. 

Figure 6.2: Target plate geometries, clockwise from top left, a. 13◦ convex down; b.
13◦ concave down; c. 21◦ concave down; d. flat; and e. 21◦ convex down. Targets
were machined from aluminum alloy 6061 and shallow buried explosives were detonated at
various locations beneath the targets. Target angle was defined as the initial angle between
a target bottom half-surface and the horizontal plane.

of the targets were then used to determine the impulse imparted to the targets. Figure

6.2 shows the geometries of the plates that were tested. The plates were constructed of

aluminum alloy 6061 and behaved essentially as rigid bodies in their response to the loading

from the buried explosive. The plates were machined in such a way that all of them were of,

nominally, 1.5 kg mass. The particle size distribution for the poorly graded concrete sand

that was used was determined experimentally using a sieve test and is shown in Figure 6.3.

6.3 Computational domain model

The methods used for performing the computations with the wet and dry sand were similar

to those described in Section 4.3 of this thesis. However, as a result of the lack of axial

symmetry in the geometry of the targets (cf. Figure 6.2) it was necessary to perform the

finite element ALE computations using a three-dimensional mesh. Figure 6.4 shows the

three-dimensional, cylindrical mesh that was used for the ALE domain. The radius of the
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Figure 6.3: Particle size distribution for poorly graded concrete sand.

cylindrical ALE domain was 480 mm. The height of the lower portion of the domain in

the axial direction, which initially contained the soil and the explosive was 164.1 mm; the

height of the upper portion, initially filled by air and the rigid target, was also 164.1 mm.

The mesh size for the ALE domain varied by radial position in the circular plane of the

domain. In the region closest to the center, the mesh size was approximately 2 mm; toward

the outer radius of the domain, the mesh size was about 16 mm. The distance between

nodes in the vertical, axial, direction was approximately 2 mm. LS-DYNA uses an isotropic

method for the advection of quantities between elements. This means that such quantities

are transported through the faces of elements but not through corners or edges (Hallquist,

2006). For the type of physical problem treated in the present work mass, momentum, and
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energy are radially propagated in the plane of the cylinder. An unstructured mesh was

used to model the problem.

A mesh convergence study was performed which involved excitation of the flat target by

means of the explosive charge buried in wet sand directly beneath the center of the target.

The results of this study indicated that the mesh with the nominally 2 mm center region

was well within the converged region (Figure 6.5).

 5 

 
 

 
Figure 5. The mesh that was used for the ALE computational domain. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.4: The mesh that was used for the three-dimensional ALE computational domain.

6.4 Effect of target geometry

A summary of the experimental results for the various targets is given in Table 6.1. For

factor combinations for which more than one test was performed it can be seen that there

was some degree of variability. Thus far no detailed examination of test-to-test variability

has been performed, but possible sources for this variation might include small differences

in explosive charge mass, in soil moisture content, as well as in the spatial configuration

of the explosive in the soil and the height of the target above the top of the soil. An

examination of the result averages reveals several trends. It was observed that, for the

cases where the charge was located directly beneath the centers of the targets, the amount

of peak momentum imparted to the flat target and the 13◦ concave target were relatively

similar whereas the 21◦ concave target exhibited a moderately lower level. For these center
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Figure 6.5: Results of the mesh convergence study. The nominally 2 mm mesh that was
used for the computational work was in the converged region.

shots, the severity of the blast load was significantly reduced for both of the targets that

were downwardly convex, with increased reduction for the 21◦ target.

The nominal depth of burial of the explosive and the stand-off distance between the

targets and the upper surface of the soil bed was the same for all of the tests performed

for this work. The target stand-off distance was taken to be the vertical distance from

the sand surface to the nearest point on the target. For the downwardly convex targets,

this point was at the lateral centerline of plate. For the downwardly concave targets, these

points were at the outer edges of the plate. As a result, the distance between the surfaces

of the angled plates and the charge was greater than it was between the flat plate and the

charge.

Figure 6.6 shows experimental results from Fourney et al. (2010) for a flat plate excited

by a 4.4g charge with a depth of burial of 5.34 mm in wet sand. It can be observed that
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Table 6.1: Computational and experimental (Fourney et al., 2010) results for center and
quarter shot excitation of target plates. Negative angle definitions indicate downwardly
concave targets. Positive angle definitions indicate that targets were downwardly convex.
For factor combinations for which more than one test was performed, individual test results
are shown first and these are then followed by their average value.

Target
bottom
angle (◦)

Charge
location

Experimental peak
target momentum

(N-s)

Computational peak
target momentum

(N-s)

Percentage
difference

-21 Center 5.62, 6.42; mean 6.02 6.50 7.7
-13 Center 6.41, 6.96, 6.66; mean

6.68
6.69 0.2

0 Center 6.49, 6.78; mean 6.64 6.64 0 - used to
calibrate

model
13 Center 5.26 5.26 0.0
21 Center 4.84 4.38 -9.5
0 Quarter 8.35, 7.44; mean 7.90 7.18 -9.1
13 Quarter 6.94 6.26 -9.8
21 Quarter 5.74 5.36 -6.6

impulse decreases significantly with increasing stand off distance. It seems most likely that

at least some of the observed reduction in the loading of the 21 degree downwardly concave,

the 13 degree downwardly convex, and the 21 degree downwardly convex plates was a result

of the increased distance between explosive and target. It is interesting to note that the

downwardly convex targets, for the case of central loading, exhibited lower momentum than

did the downwardly concave targets (Table 6.1).

In order to more carefully examine the mechanics of target loading as they relate to

angled surfaces, a series of tests was conducted by Fourney et al. (2010) that involved the

measurement of specific impulse at various locations on rigid downwardly convex targets

as well as on rigid flat plates. For this work measurements were taken, using high speed

digital video, of the impulse delivered to tapered, removable 25.4 mm diameter plugs. The

mass of the plugs was varied, depending on the location on the rigid target, so that the

velocity could be most accurately measured. Results from this work are shown in Figure
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Figure 6.6: Impulse versus stand-off distance (SOD) for flat plate targets (from Fourney
et al. (2010)). Charge size was 4.4 g and depth of burial was 5.34 mm. Impulse decreased
exponentially with increasing distance between explosive and flat plate target.

6.7.

Referring to Figure 6.7, it is difficult, for distances greater than about 50 or 60 mm

from the explosive, to distinguish between the response of the flat plate and the angled

plate. However, as the distance between the explosive and the target decreased below this

level there was some divergence between the results for the two cases. As the distance

decreased, there appeared to be a trend toward higher excitation of the flat plate than of

the angled target. On this basis it could be hypothesized that some portion of the reduction

in excitation was a result of the effect of the geometric shape of the bottom of the target.

The performance of additional tests at smaller distances between charge and flat plate

would help to clarify whether such an hypothesis is, in fact, correct. A comparison, taken

from high speed video of some of the blast experiments, of the response of plates to ex-

citation beneath their centerline and for quarter shots, i.e., for shots with charge located
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Figure 6.7: Specific Impulse versus radial distance from explosive charge center as measured
by the momentum of tapered plugs located at various positions on flat and downwardly
convex rigid aluminum targets (from Fourney et al. (2010)).

beneath a position halfway between the center and the outer lateral edge of the targets, can

be seen in Figure 6.8. These images, from high speed video recordings of blast experiments

performed by Fourney et al. (2010), were taken 20 milliseconds after explosive detonation.

6.5 Effect of offset loading

For the impacts that involved flat and downwardly convex plates (Table 6.1), the imparted

momentum was higher for shots with the charge located halfway between the center and

edge of the target than it was for the case of the centerline shots. This was a result of the

combination two factors. First, a significant rotational component of the motion was caused

by the offset location of the bottom surfaces of the targets relative to the progression of

the blast front. This effect for the offset explosive location, developed from computational

results, is shown in Figure 6.9.

Figure 6.9a shows the initial configuration of the flat plate as it rests upon its supports.
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Figure 9. Conformation of flat (left), and 21° convex down (right) plates 20 

milliseconds after charge detonation. Top row: targets that were excited by means 

of explosive buried beneath target centerline. Bottom row: targets that were excited 

by means of buried explosive charge located halfway between the centerline and 

outer lateral edge of target. 

Figure 6.8: Conformation of flat (left), and 21◦ convex down (right) plates 20 milliseconds
after charge detonation. Top row: targets that were excited by means of explosive buried
beneath target centerline. Bottom row: targets that were excited by means of buried
explosive charge located halfway between the centerline and outer lateral edge of target.

Figure 6.9b shows the conformation of the plate about 200 microseconds after the initiation

of the detonation, at which point it is constrained on its left side by the support bolt but

is rotating counter-clockwise and separating slightly on its right side from support bolt.

Figure 6.9c shows the target 8 milliseconds after detonation, rotating counter-clockwise

and completely separated from the bolt supports.

A hand calculation for impulsive loading of a very thin, rigid rod helped to clarify the

fundamental reasons that the offset shots resulted in higher target translational momentum

than did the center shots. If an impulse is defined as, say [δ(t) FC] where δ(t) is the Dirac
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Figure 10. Effect, for quarter shot computations, of constraining bolt supports on 

target dynamics. a. Target in initial configuration. b. Target 200 microseconds after 

detonation, constrained on left side by support bolt but rotating and separating 

slightly on right side from support bolt. c. Target 8 milliseconds after detonation, 

rotating and separated from all bolt supports. 

 
 
 
 
 
 
 
 
 
 
 

a. 

b. 

c. 

Figure 6.9: Effect, for quarter shot computations, of constraining bolt supports on target
dynamics. a. Target in initial configuration. b. Target 200 microseconds after detonation,
constrained on left side by support bolt but rotating and separating slightly on right side
from support bolt. c. Target 8 milliseconds after detonation, rotating and separated from
all bolt supports.

delta function and FC is the magnitude of the impulsive load then it can be shown, by

integrating the relations for conservation of linear and angular momentum, that this impulse

applied as quarter loading to the rod will impart 1.75 times the kinetic energy that it would

impart if applied at the center of the rod. Therefore, even a somewhat lower impulsive load

applied as a quarter shot could still impart more kinetic energy to a target than a somewhat

higher impulsive load applied at the center of the target.

In addition, the initial constraint on the targets caused by the presence of the bolts

used to position the targets above the top surface of the soil served to redirect a portion of

the quarter shot rotational kinetic energy to the end that it was converted to translational

kinetic energy thereby increasing the translational momentum of the targets’ centers of
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Figure 6.10: Computational kinetic energy results for flat plate rotation constrained by sup-
port bolts are compared with results for unconstrained flat plate. Support bolt constraint
contact forces, for the constrained case, are superimposed.

mass. This point is illustrated in Figure 6.10, taken from a comparison of computational

results for the flat plate with offset excitation but in one case constrained by the support

bolts and, in another case floating free in space, that is, with no bolt constraints.

The total calculated kinetic energy for the target is almost the same for the constrained

case as it is for the unconstrained case. However, it can be seen that the partitioning

of rotational and translational energy is significantly different for the two cases. In the

constrained case, the torque resulting from the contact forces between the target and the

constraining bolts results in a significant reduction of target rotational inertia, and therefore

rotational kinetic energy, which leads to a higher proportion of target translational kinetic

energy - and translational momentum - than that which is observed for the unconstrained

case. It is interesting to note the correspondence between the constrained case contact

forces and the rotational kinetic energy of the target for the constrained case.
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6.6 Computational results

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004
Time (s)

0

1

2

3

4

5

6

7

8

9
Pe

ak
 ta

rg
et

 m
om

en
tu

m
 (N

-s
)

1% air filled voids
Interpolated model
5% air filled voids

Figure 6.11: Computed target momentum - time histories generated using concrete sand
models with 1 percent, 5 percent, and an interpolated, intermediate, level of air filled
voids for the case of the flat plate with explosive charge buried directly beneath the lateral
centerline of the plate.

Constitutive models associated with the SABER ground shock solver (Zimmerman et

al., 1993; Akers et al., 1995) were used for performing calculations involving 1 percent air

filled void and 5 percent air filled void poorly graded wet concrete sand. Computations per-

formed using models for these two soils for the case of the flat plate and centerline location

of the explosive produced target peak momentum of 8.07 N-s and 5.24 N-s, respectively.

One of the primary aims of this study was to examine the use of a computational method

that would be based very much on the physics of the problem and that would involve a

minimal amount of tuning of model parameters.

However, no constitutive models were immediately available for concrete sand emplace-

ment conditions with air filled void contents between 1 and 5 percent. As a result, an
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iterative process, based on the physical behavior of the soil and discussed previously in

section 4.3.2, was used to develop interpolated values for the various components of the

soil model to the end that the computational model produced a peak target momentum

that matched the experimental peak level of 6.64 N-s. Computed target momentum - time

histories generated using concrete sand models with 1 percent, 5 percent, and the calibrated

intermediate level of air filled voids are presented in Figure 6.11.

High speed video was used by Genson (2006) in order to investigate the evolution, for

time increments of 40 microseconds, of the blast for the case of a 0.636 g explosive charge,

wet sand, 4.826 mm depth of charge burial but with no target, in other words, under the

same conditions of soil and explosive that were used in the present study for aluminum

target excitation. Computations, using the ALE method described above, were performed

for this same set of parameters. A comparison of these results is given in Figure 6.12.

All frames in the figure are shown at the same scale. In the figure, the soil was repre-

sented by the light gray colored continuum while the reaction products from the detonation

of the explosive were represented by the black region. As a result of the relatively low vol-

ume fraction of sand in the dust cloud and the computational mesh size in comparison to the

scale of the sand particles, it was not possible to capture, for the case of the computations,

the fine detail of the dust that comprised the cloud of ejecta.

During the course of computations performed on the downwardly convex target plates

for center shot charge location, convergence problems emerged for the case of the 250

mm computational domain radius. A physically unrealistic continuous increase in target

momentum was observed in the plate response to the blast load. This was caused by

the emergence of numerical instabilities at the ALE computational domain boundaries. A

convergence study that involved several iterations with expansion of the outer radius of the

cylindrical ALE computational domain beyond its initial value of 246.3 mm supported this

hypothesis. Based on the results of the convergence study, the computational domain size

was ultimately expanded to a radius of 480 mm.
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Figure 13. 40 µs per frame comparison of experimental results (from Genson [7]),  

with computational results. In the animation illustrations, the grey material is the 

wet sand; the black material is the detonation reaction product gases. 

Detonation 
products (black) 

Soil (grey) 

Figure 6.12: 40 µs per frame comparison of experimental results (from Genson (2006)),
with computational results. In the animation illustrations, the grey material is the wet
sand; the black material is the detonation reaction product gases.
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Computations were performed first for center shots on all target configurations. A pri-

mary objective of the computational work was to determine whether it would be possible

to match the experimental results for the rigid plates by using ALE computations and the

soil model described above, a soil model that was based purely on quasi-static determi-

nation of the soil behavior. The results from these computations are compared with the

experimental findings in Table 6.1.

Percentage difference was calculated based on the deviation of computational results

from experimental results. The case of the flat plate, center charge location was used to

interpolate the soil model. Thus, for that particular case, the calculation of percentage

difference was not relevant.

It can be seen that, for the remaining cases, the agreement between computation and

experiment was reasonable. Computations were also performed for some of the cases that

involved explosive buried halfway between the center and the outside lateral edge of these

targets. The agreement with the experimental results was found to be, for these cases, also

very good.
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Chapter 7

Conclusions and future research recommendations

7.1 Conclusions

The two phase fluid model developed for this work and applied to the Couette flow of a

fluidized bed very closely matched experimental data. Although it was a relatively simple

model, it yielded accurate results. It could possibly, in the future, be applied toward

examination of a secondary blast effect, namely, the flow of soil that has been ejected, via

erosion, from the surfaces of craters.

The application of soil mechanics principles and effective stress theory to computations

involving shallow buried explosives in water, dry sand, and unsaturated sand yielded close

agreement with small scale experiments as well as some insight into the mechanisms behind

target loading from such events.

Materials with yield surfaces that had lower yield strengths demonstrated a greater

propensity toward flow and toward higher target momentum loading. This was, when

comparing effects due to dry sand, wet sand, and water the most significant factor. Water,

being a fluid, had no strength and produced the highest target loading. Dry sand had

the highest strength at any given pressure and produced the lowest target loading. The

strength and target loading for the case of unsaturated sand were intermediate between

those observed with the other two materials.

Other, but less important factors, for the comparison of responses due to water, wet

sand, and dry sand, were those associated with bulk compressibility and initial bulk density.

It was observed that lower volumetric stiffness yielded somewhat lower target loading and

that higher initial density yielded moderately higher target loading.

Next, investigations were performed using beds comprised of water as well as beds

comprised of each of three soil types - poorly graded sand, silty sand, and clayey sand - using

various combinations of initial water content and compaction. It was demonstrated that,
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in both the experiments and in the computations, that there is a significant relationship

between initial air filled voids volume fraction and the momentum applied to a rigid target

plate by an explosion in a bed filled with soil or with water, and that the the momentum

imparted to the target decreases with increasing initial air filled void content. Not all

computations converged to a single curve, but leading order effects were captured.

Computations were used, based on experimentally obtained constitutive models for the

behavior of the soils, to determine and compare the sensitivity of the target momentum to

soil yield behavior, to compressive soil hydrostatic behavior, and to initial soil bulk density.

It was shown, using computations, that the momentum imparted to the target increases

with decreasing yield strength as a result of the propensity of the lower levels of yield

strength to increase the rate of flow of the soil out of the soil bed and toward the rigid

target.

It was shown, by comparing experimentally determined constitutive behavior for soils

with varying levels of water content, that there is a relation between soil initial water

content and the mean yield strength whereby the yield strength decreases with increasing

water content. It was also shown, via computations, that there was significant sensitivity

to the lock-up point of the hydrostat which is directly related to the initial air filled void

volume fraction of a soil. The lock-up point is the point at the level of compressive strain

at which the air filled void content of the soil becomes vanishingly small and at which the

bulk modulus makes a significant jump.

The target momentum increased as the saturation or lock-up point moved toward de-

creasing levels of strain due to the tendency of the reduction in compliance to force more

soil outward from the soil bed and upward toward the rigid target. Finally, it was ob-

served, using a series of computations, that there was somewhat less sensitivity of target

momentum to the initial bulk density of the soil.

The response of downwardly convex, flat, and downwardly concave rigid targets to

excitation from shallow buried explosives located at various locations beneath the targets
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was examined using an approach that involved experimental, computational, and analytical

methods. High speed video techniques were used to observe blast phenomena and measure

the dynamics of the target plates. It was observed experimentally that rigid targets - with

bottom geometries that were downwardly convex and with bottom geometries that were

downwardly concave - reduced the amount of momentum imparted to the target by the

explosive detonation products and the soil.

Also, it was observed that the rotational effects imparted to flat and downwardly convex

targets with explosive buried in non-centerline locations were significant. The computations

that were performed were found to agree very closely with experimental results. This work

served to reinforce the hypothesis that a computational soil model, based purely on quasi-

static test evaluations, could enable close agreement between experiment and computational

results for peak target momentum.

7.2 Recommendations for future research

Several areas for future research are indicated by the findings from the current work.

• The two phase fluidized bed model developed for this work has some potential for

application to the flow of soil removed, by erosion, from crater boundaries. Before it is

assumed, however, that this model accurately predicts more general two phase flow phe-

nomena, the model should be modified in order to be able to treat two or three dimensional

problems and then more completely evaluated using the experimental crater evolution re-

sults available from, say, Bergeron et al. (1998) or Foedinger and Caiazzo (2006).

• New aspects of the mechanics of momentum transfer from explosive charges buried in

water, sand, clayey sand, and silty sand to rigid structures were discovered and examined.

There are still significant opportunities for investigation of these types of effects when the

explosive is buried in more cohesive soils consisting primarily of clay.

• The deviatoric yield behavior used in these investigations was treated as being plastic,

and was defined as being dependent only on the the first and second stress invariants. It

might prove to be worthwhile to use similar methodology in order to more carefully examine
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the dependence of momentum transfer on viscous effects and, also, whether it would be

useful to define yield behavior in terms of all three stress invariants.

• This work involved measurement and definition of the effects on structures in terms

of the total momentum transferred to them, that is on the temporal-spatial integral of

momentum transferred to the structures. There is still a need for a more detailed exam-

ination, in time and space, of the nature of the momentum field created by the soil and

buried explosive.

• The effects of buried charges were, in this work, examined in terms of loading on

rigid structures. Many relevant structures are not rigid but are deformable. Therefore the

effects of buried explosives on deformable structures ought also to be investigated.

• Finally, further research ought to be undertaken in order to more fully understand

the physics associated with the placement of buried explosive charges in positions that are

laterally off-center relative to structures.
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Physical tests involving full-scale systems subjected to blast loads are expensive. The

development of more accurate computational and analytical methods to better understand

and predict the mechanics of mine blast phenomena could be used to reduce the cost of

development of mine protected vehicles and protective equipment for personnel involved in

demining and similar activities.

Although the science associated with air blast and blast-related ground shock phenom-

ena is very extensive, that of mine blast, involving explosives buried in soil, is less well

developed. In this work, theoretical, experimental, and computational methods are synthe-

sized to better understand some of the mechanisms that affect the way that an explosive

charge, buried in a bed containing soil or water, might affect a structure located above and

in proximity to the surface of the bed.

For some loading regimes, the flow of soil as it is ejected from the surface of a blast

crater is important. This work first examines the behavior of a bed containing sand-like

particles suspended in air by virtue of the flow of the air. A computational technique, using

finite differences, was developed to solve the equations of motion for the fluidized bed. The

method was applied to predict Couette flow and compare the predictions with published
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experimental results. This technique was further applied to predict the sensitivity of the

flow to the sphericity and size of the fluidized particles.

Next, experiments were examined which involved momentum transfer from buried gram

scale explosive charges to rigid structures initially suspended above the surface of the

water or soil. Associated computations were performed using an arbitrary Lagrangian

Eulerian (ALE) finite element method. The constitutive behavior of the several types of

soil involved in the work was defined by means of characterizations using high pressure

(hundreds of millions of Pascal) uniaxial and triaxial tests at various initial combinations

of water content and density; the associated computations were validated using results from

blast experiments.

Various trends, sensitivities, and parametric relations, with significant practical impor-

tance, were analyzed and reported. Finally, there were analyses of experiments and compu-

tations involving momentum transfer to the bottoms of structures with various topologies.
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