DIGITALCOMMONS

— @WAYNESTATE— Wayne State University

Wayne State University Dissertations

1-1-1998

A flexible architecture for manufacturing planning
software maintenance

Yousif A. Mustafa

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations

Recommended Citation

Mustafa, Yousif A., "A flexible architecture for manufacturing planning software maintenance” (1998). Wayne State University
Dissertations. Paper 1230.

This Open Access Dissertation is brought to you for free and open access by Digital Commons@WayneState. It has been accepted for inclusion in

Wayne State University Dissertations by an authorized administrator of Digital Commons@WayneState.

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1230&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1230&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1230&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1230&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations/1230?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1230&utm_medium=PDF&utm_campaign=PDFCoverPages

A FLEXIBLE ARCHITECTURE FOR MANUFACTURING PLANNING
SOFTWARE MAINTENANCE

by
YOUSIF A. MUSTAFA

DISSERTATION
Submitted to the Graduate School of
Wayne State University,
Detroit, Michigan

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

1998

MAJOR: INDUSTRIAL ENGINEERING

Approved by:

'@Q@@/ 2/ VAT

%L e
P S

////,Pb /

h]

: L
. "Fom OL/\'vaO\

To the memory of
my father and brother

ii

ACKNOWLEDGMENTS

I would like to thank, almighty Allah first and foremost for giving me the will,
energy, and guidance without which I couldn’t accomplish this prestigious degree . I also
would like to express my gratitude to my advisor Dr. Olugbenga Mejabi, with whom I had
disagreements most of the time, for his support. I have learned a lot from Dr. Mejabi and
he opens my eyes on many critical issues. I appreciate all the support of my committee
members especially Dr. Donald Falkenburg for his unconditional support..

My appreciation and thanks to those few who encouraged and supported me
throughout my journey to the highest academic level there is, the Ph.D. My appreciation
to my dear wife Feryal, and children Shayma, Sumaya, and Amina. All the help and
support that they gave me, even those little things like typing a report helped to get closer
to my goal.

Finally, I would like to express my thanks to all the women and men who cared

and helped during my journey.

iii

TABLE OF CONTENTS
DEDICATION il
ACKNOWLEDGMENTS il
LIST OF TABLES viil
LIST OF FIGURES ix

CHAPTER 1: FLEXIBILITY IN MANUFACTURING PLANNING SOFTWARE

1.1. Introduction 1
1.2. Software Development and Maintenance 2
1.3. Flexibility and Cost of Manufacturing Software Maintenance 8
1.4. Modes of Software Maintenance 10
CHAPTER 2: LITERATURE REVIEW AND PROBLEM STATEMENT
2.1. Literature Review 12
2.1.1. Software Reuse 13
2.1.2. CLOS 22
2.1.3. CASE 25
2.1.4. Template-Parametric Modeling 29
2.1.5. The Conversion Approach 30
2.1.6. The Versionning Approach 33
2.1.7. Machine Learning 36
2.1.8. The Functionally-Defined Data Approach 37
2.1.9. The Graph-Based Approach 38
2.1.10. Meta-Object Approach 39

2.1.11. Relevant-Classes Approach 4]

iv

2.1.12. Collection Keepers Approach
2.1.13. The Indexing Approach
2.1.14 The Object-Specialization Approach
2.1.15. The Views Approach
2.2. Literature Review Summary
2.3. Research Problem Statement
2.4. Research Objectives
2.5. Deliverables
CHAPTER 3: APPLICATION OF THE PROPOSED ARCHITECTURE, AN
ILLUSTRATIVE EXAMPLE
3.1 Operating Scenarios of the Architecture, An Overview
3.2. Implementation Procedure and Platform
3.3. An Overview of the Inventory Control Subsystem
3.4. Classes of the Inventory Control system.
3.5. Maintenance Plan of the Inventory Control System
3.6. Maintenance Utilizing the proposed Architecture vs. the Other
Approaches
CHAPTER 4: THE PROPOSED ARCHITECTURE AND THE SDLC
4.1. The Proposed Solution Methodology
4.2. Overview of the OAS Architecture
4.3. Overview of the OAS Approach to the SDLC
4.4. Details of the SDLC Phases

4.4.1. Analysis

44

44

47

49

66

63

79

[oe]
h

4.4.2. Design 86

4.4.2.1. Class Design 88

4.4.2.2. Chunk Design 91

4.4.3. Implementation 91

4.4 4. Data Population 93

4.4.5. Maintenance 93
4.4.5.1. Re-Analysis 96

4.4.5.2. Re-Design 97

4.4.5.3. Re-Implementation 97

4.4.5.4. Re-Population 98

4.5. The Modification Scheme 99

CHAPTER S: THE DETAILED FUNCTIONAL BUILDING BLOCKS AND

OPERATING PROCEDURES OF THE OAS

5.1. Functional Modules and their Building Blocks 101
5.1.1. Coordination Manager 102
5.1.2. Design Specifications Module 103
5.1.3. Functional Configuration Module 106
5.1.4. Data Management Module 107
5.1.5. Maintenance Module 108
5.2. Processes of the Functional Building Blocks of the OAS 108
5.2.1. Coordination Manager 108
5.2.2. Design Specifications Module 109

5.2.3. Functional Configuration Module 117

vi

5.2.4. Data Management Module
5.2.5. Maintenance Module
5.3. Object Oriented Classes of the OAS
5.4. Detailed Operating Procedures of the OAS
5.4.1. Design
5.4.2. Implementation
5.4.3. Data Population
5.4.4. Maintenance
CHAPTER 6: RESEARCH CONTRIBUTION AND FUTURE RESEARCH
6.1. The Contribution of the Research
6.2. Future Research
REFERENCES
ABSTRACT

AUTOBIOGRAPHICAL STATEMENT

vii

Table 2.1

Table 3.1

Table 3.2

Table 3.3

Table 3.4

Table 4.1

Table 5.1

Table 5.2

LIST OF TABLES

A Summary of approaches to software flexibility 49
Platform Comparison 55
Classes of the original Inventory control system . 58
A sample requester’s access permission database 59
The modified classes, their attributes and methods 63
A sample Attribute-Method table 77
Maintenance types 146
Maintenance types sorted by action required 146

viii

Figure 1.1
Figure 1.2
Figure 1.3
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8

Figure 4.9

LIST OF FIGURES
The Inventory Control System before modifications
The Inventory Control System after modifications
The cost of software maintenance
The Main Menu of the proposed Architecture
The “Adding an Attribute” user-interface
A Schematic view of the original Inventory Control System
A Schematic view of the Inventory Control System after modifications
A Process diagram of the Inventory Control System after modifications
The SDLC diagram
A generic Software systems classification scheme
A Chunk representing a BOM of a finished product “Table”
An overview of the Object Assembly System
Class Stub
Multiple Inheritance
The OAS approach to the SDLC
Traditional application of the SDLC
Overview of the SDLC

The Analysis phase

Figure 4.10 The Design phase

Figure 4.11 Class Design

Figure 4.12 Implementation phase of the OAS approach

Figure 4.13 The Maintenance phase

ix

O

W
(93]

57

59

61

67

68

69

70

79

81

Figure 4.14 Re-Population

Figure 5.1 Building blocks of the OAS
Figure 5.2 Functional Grouping

Figure 5.3 Functional classes of the OAS
Figure 5.4 the Class Hierarchy of the OAS
Figure 5.5 Operating Procedures of the OAS
Figure 5.6 Class Core Design user-interface
Figure 5.7 Behavior Design user-interface
Figure 5.8 Attribute Design user-interface
Figure 5.9 Chunk Design user-interface
Figure 5.10 The Configuration Process

Figure 5.11 Maintenance of the Object Library

Chapter 1

FLEXIBILITY IN MANUFACTURING PLANNING SOFTWARE

1.1. Introduction

Computer software systems took on a new role in manufacturing planning with the
introduction of Material Requirement Planning (MRP) in 1965. These systems generate
material requirement lists in response to given production requirements. In this way,
inventory management, purchasing, and shipping activities are linked to manufacturing. In
1979, Manufacturing Resource Planning (MRP II) systems were introduced [VerDuin
1995]. MRP II typically includes planning applications, customer order entry, finished
goods inventory, forecasting, sales analysis, production control, purchasing, inventory
control, product data management, cost accounting, general ledger processing, payables,
receivables, and payroll [Turbide 1995]. An emerging market is developing for software
systems that expand the scope of MRP II farther to encompass activities for the entire
organization. Among these systems are Enterprise Resource Planning (ERP), Customer-
Oriented Manufacturing Management System (COMMS), and Manufacturing Execution
Systems (MES). These systems integrate marketing, manufacturing, sales, finance, and
distribution to move beyond optimizing production alone, to optimizing the organization’s
multiple objectives of low cost, rapid delivery, high quality, and customer satisfaction
(VerDuin 1995].

MRP II is the dominant solution for manufacturing in tens of thousands of
companies. These companies range in size from less than a million dollars in sales right up

to the top Fortune 500 companies. By the end of 1990, there were 90,000 MRP II systems

installed in the U.S. However, this is a market penetration of only 11% which clearly
shows the size and potential of the opportunity for MRP II development. Yet, despite the
commonality of needs across the scope of manufacturing, there are distinct differences
when comparing plant to plant, company to company, and industry to industry. The
specifics of planning, manufacturing, and distribution vary considerably. One MRP II
system, therefore, may lack features that allow proper definition of the products or
processes of some industries. Often MRP II has to be modified to adapt to a particular
situation [Turbide 1993]. This modification often pushes the cost even higher and makes
MRP II more out-of-reach for many companies. Therefore, it would be highly beneficial
for the overall scope of manufacturing if a highly flexible low-cost MRP system can be
developed.

1.2. Software Development and Maintenance

Many software development methodologies including the traditional structured
approaches such as the waterfall, spiral, and the fountain approach, as well as the object-
oriented approaches such as Abbot (Abbot),O0SA (Shiaer and Melior), GOOD
(Seidewitz), OOSD (Wasserman), Booch (Booch), OOA (Coad and Yourdon), and the
OMT (Rumbaugh) usually go sequentially through a sequence of steps called the System
Development Life Cycle (SDLC). The Life Cycle typically consists of Analysis, Design,
Implementation, and Maintenance phases. For complex software systems, the life cycle
may cover many months, or even years, before the system is satisfactorily completed.
Since software is meant to represent the real-world, that changes continuously, the
software, therefore, has to be continuously maintained to accommodate these changes.

This makes maintenance particularly important in the development cycle. Sofiware

maintenance, according to the IEEE 1990 Glossary of terms, is defined as “the process of

modifying a software system or component after delivery to correct faults, improve

performance or other attributes, or adapt to a changed environment”.. In fact, software
maintenance, according to [Li & Henry,1993], is one of the most difficult and costly
phases of the software development cycle.

Software systems often have to be maintained, customized, or modified because :

1. Changes have to be made to meet different users’ requirements and demands. For
example, an MRP system designed for an auto manufacturer may require different
functions from the same system designed for a pharmaceutical company. Many
software products are only effectively used when they are customized to closely
match the way in which each company conducts business. Thus, there might arise the

need to customize the basic package for different users.

38

- The software may need to be updated over time as developers learn more about user
requirements. Software often goes through an evolutionary process due to lack of
availability of complete information on user requirements at the time of initial system
development. New information and functionality might be needed to enhance system
performance or expand its scope.

. A software might need to be changed due to errors made, despite extensive testing,

(V3]

during requirements analysis, design, implementation, or data collection.

4. Some software projects start with an initial prototype to verify user’s requirements,
which is then modified and extended to develop a complete and fully functional
system.

5. Many application software environments such as the hardware or software platforms

change over time and somewhat unpredictably. Software applications therefore,
require the ability to adapt to changes in the operating environment.

[Cox 1993] refers to change as the “enemy” to software development. He reported
the following statistics about a group of software projects developed for the Federal
government to highlight what he calls “the software crisis”:
® 47% of the software projects paid for but never delivered.
¢ 29% delivered but never used.

e 19% abandoned or reworked.
* 3% used after change.
e only 2% used as delivered.

Software maintenance could be either: (a) corrective, to fix software defects
discovered during operation; (b) perfective, to enhance performance; (c) or adaptive, to
add features to the software in a changing environment [Ramamoorthy et al. 1984]. These
modifications may sometimes be lengthier, expensive and even more difficult than the
original development. It is important, therefore, to point out that software maintenance
can be easily performed only if the software is flexible. This reflects the need for flexible
software which can be easily developed and maintained with a minimal effort.

The following illustrative example highlights a typical need for modifying a
manufacturing software system so it can be implemented in a different application domain.

An Inventory Control System within an (MRP) package for auto parts
manufacturing plant ensures that all materials are available when and where needed, in the
correct quantity and at the right time. In order to obtain the raw materials required for a

particular shift, the gross production plan must be processed to obtain a list of items

required and the quantity of each. The Inventory Control System must then locate these
items and take them out of inventory so that production may start. As shown in Figure
1.1, the various functions of the Inventory Control System may include:
processProductionPlan, checklnventory, pullltem, checkSafetyLevel and
printPurchaseOrder modules. The processProductionPlan module processes the gross
production plan, one finished product at a time. It identifies the items, and their
corresponding quantities, required to produce a target finished product using the bill of
material (BOM) database. [t then passes the information to the next module,
checklnventory module, in order to check whether the item is available in the required
quantity by checking the quantity-on-hand for that item in the Inventory database. If the
item is not available in the required quantity, control is passed to the printPurchaseOrder
module which accesses the Inventory database, creates and then prints a purchase order
for that item. If a sufficient quantity is available, the checkinventory module passes the
item-id and its required quantity to the pul/lltem module which updates the quantity-on-
hand in the Inventory database, and prints the physical location of the target item in the
warehouse along with the required quantity. The pu/lltem module then passes the item-id
to the checkSafetyLevel module which checks if the quantity-on-hand for that item is
below its safety stock as indicated in the Inventory database. If below the safety stock,
control is passed to the printPurchaseOrder module to generate a purchase order for that

item.

l process [i

> ’ Production ’ i

] Plan ‘: 1

: ' - A !

/ ;
J _\' [

Uj‘ | | Purchase

Yes irpnTi Orders |

Purchase |

Order ! |

- pullltem i . : !

i

<

L Inventoryitem! |
! database

gatmbaze |
|

Figure 1.1, The Inventory Control System before modifications
In order to modify the system just described to make it applicable for use in a

different environment, such as a pharmaceutical manufacturing plant or a nuclear reactor,
several modifications may be required. The new environment requires a high level of
security, as well as special procedures and policies for handling, shipping and disposal of
materials. The functional modifications, as shown in Figure 1.2, are required to achieve the
desired change in the system. Subsequently, some structural modifications may also be
required in order to achieve the new functionalities. Examples of these changes are:
1. An “Access Permission” database has to be created to maintain an identification code

for each personnel in the plant along with his/her corresponding access permission for

requesting different items.

2. A getAccessPermission module should be developed to receive the requester’s

(73]

identification code, use it as a look-up key to identify the requester’s access permission
from the Access Permission database, and append the requester’s access permission

to each item before it is passed to the next module, checkAccessPermission.

- A checkAccessPermission module should be developed to perform the task of

determining whether a requester is authorized to request certain item by matching the
item access code of the Inventory database with the requester’s access permission,

before proceeding to the next module checklnventory.

. The processProductionPlan module must be modified so that it invokes the

getAccessPermission and checkAccessPermission instead of going directly to the
checkInventory module. The processProductionPlan module must also be modified so

that it prompts the requester and asks for his/her identification code.

. In order for the checkAccessPermission module to function properly, the Inventory

database has to modified so that each item will be assigned an item access code to

control access to it.

. The Inventory database has to also be modified, in order to make the system capable

of addressing the needs to special handling, shipping, and disposing of the various
items due to their chemical or physical hazardous nature to ensure safety. An
additional field needs to be added to each record to indicate any special handling

requirements.

7. The pullltem module has also to be modified in order to print the special handling

procedures and policies.

BOM !
Access
; No....=" " Permission
= | database X
: e - i
- ' . !
process .

l tA s i
* Production ge ?cevs
QT | Permission |
| Plan

vt

checkAccess
Prmission

j Purchase |

i Orders '
! i
1

print :
Purchase —

Qerder Handling '

S ~ - b;Procedures‘

! No . \/—\.1
i Ly(h“k_l :
puten ¥ sqarioe T

Yes

! Inventorylted

Figure 1.2, The Inventory Control System after modifications

1.3. Flexibility and Cost of Manufacturing Software Maintenance

Effective manufacturing software should not be based upon rigid processes.
Rather, successful systems must be easily modified, fundamentally sound, and agile
enough to adapt to frequently changing environment. Implementing inflexible, closed
proprietary systems is dramatically opposed to a strategy that recognizes the increased
degree of unpredictability in today’s marketplace [Chamberlain et al. 1995].

Manufacturing software systems have to be responsive to today’s manufacturing
climate characterized by flexible manufacturing systems, high variety product mixes,
shorter lead times, unexpected customer orders, and higher quality.

In order to easily maintain a software system, the software has to be flexible. In
fact, as a general rule for software development, a basic assumption is established that the

requirements of a system will always change; the question is only when and to what

extent. Actually, the requirements change continuously; we only find this out periodically,
therefore flexibility should be a primary criterion by which software systems are
measured [Schapiro 1989]. Often, the task of maintaining a rigid software is very costly in
terms of money, time, and human resources. Studies indicate that the cost of maintaining a
software, as shown in Figure 1.3, increases at a geometric rate over the course of software
development. The reason for this is that maintenance requires repeating many of the
development tasks such as analysis, design, and implementation that were performed

earlier [Burch 1992].

A
Maintenance |
Cost $§ |

i

| et et e

j;Analysrs :Design ; Implementation ‘Maintenance

The SDLC Phases

Figure 1.3, The cost of software maintenance
The following few examples reflects the high cost of software maintenance:
e In 1994 Hewlett-Packard utilized 60-80% of its software development personnel to
maintain between 40-50 million lines of code [Coleman et al. 1994].
e The Federal government alone spends more than $5 billion a year on software

maintenance [Borchardt et al. 1995].

10

¢ The Department of Defense indicates that it cost between $30 to $50 to write one line
of code and about $400 to maintain it [Burch 1992].

e In general, software maintenance costs about five times the cost of the sofiware
license itself [Parker 1997].

Sometimes it may even be better to scrap the original system and start from
scratch, as many programmers sometimes say “I can develop it quicker than [can
understand somebody else’s code™ [Cox et al. 1991]. On the other hand, if the software is
Sflexible, it will be able to gracefully accommodate major as well as minor changes. The
modification cost and effort will be considerably lower, and the software development
cycle may be shorter since any new changes will be easily incorporated. It is reasonable to
expect that the maintenance cost will often be higher with inflexible software systems. On
the other hand, systems with high flexibility will require minimal effort and cost to be
maintained.

1.4. Modes of Software Maintenance

An important distinction between compile-time and run-time software maintenance
has to be highlighted. Compile-time maintenance involves modifications to source code
through at least one Edit-Compile-Link-Test cycle. This is the traditional method of
software maintenance which practically permits any change to be carried out. The
compile-time approach is, however, often lengthy, expensive, and requires “shutting-off”
the system. On the other hand, run-time maintenance is modifying the software while it is
in actual operation. The run-time approach is the only option for time-critical
manufacturing operations. A auto plant, for example, may require run-time maintenance of

its control system because serious disruption and financial loss may result from “shutting

the system down” even for few minutes.

11

Chapter 2

LITERATURE REVIEW AND PROBLEM STATEMENT

2.1. Literature Review

The subject of flexibility in software development has been dealt with in the
literature in many different contexts. Some of the literature deals with the subject from an
analysis, design, and software reuse stand point, while others focus on specific types of
software flexibility issues such as adding or deleting classes. Some authors report research
dealing with changes to database schema, these include the “Orion” database in [Kim et al.
1987], “Gemstone” in [Penny et al. 1987], “Iris” in [Fishman et al. 1987], “Vishnu” in
[Moore et al. 1988], “Cactis” in [Hudson et al. 1988], and the “Mokum” database in [Riet
1989]. Others deal with the subject in terms of flexible operating systems such as the
“Muse” operating system in [Yokote et al. 1989], or in terms of a prototyping tool for
developing a flexible user interface as in [Morsi et al. 1991].

In this section the literature will be categorized, according to the approach used.
Each approach will then be discussed to highlight its strengths and weaknesses. The
categories developed are as follows:

1. The Software Reuse Approach
2. CLOS

. CASE

(V3]

4. The Template-Parametric-Modeling

wn

. The Conversion Approach

(o)}

. The Versioning Approach

7. Machine Learning

8. The Functionally-Defined Data Approach
9. The Graph-Based Approach

10. Meta-Object Approach

11. Relevant-Class Approach

12. Collection-Keepers Approach

1

(V3]

. The Indexing Approach
14. The Object-Specialization Approach

15. The Views Approach

2.1.1. Software Reuse

According to [Shriver 1987] reusing and reworking software is not new: it has
been done since the very beginnings of our industry in the early 1950’s. Reuse means
using an entity in a different contents from that in which it was originally used. This is
often called “black-box™ reuse. When an entity is modified before it is used in the new
setting, it is called “rework” or “white-box” reuse. [Tracz 1987] claims that the technical
foundations from making software reuse a viable alternative to program development
have been demonstrated. [Tracz 1987] also suggests that credibility to the used-program

business has been accomplished and the technology of the future has been settled.

[Gargaro et. al. 1987] propose the following criteria to follow when writing a program to

be reusable:
1. be transportable (platform independent).

2. language independent.

14

In [Barnes 1991] the claim is made that the defining characteristics of good
software reuse is not the use of software per se, but the reuse of human problem solving.
Any work product that makes problem solving accessible, such as requirements
specifications, designs, code, modules, documentation, test data, is a good candidate for
reuse.

[Rine 1991] states that the notion of software reuse has been around for a long
time beginning, for instance with the early notion of subroutines, which in turn led to the
notion of software modules, as well as the numerous ideas about subroutine libraries and
the use of modules in modern language development.

[Frakes et. al. 1994] indicate that software reuse is broadly defined as the use of
engineering knowledge or artifacts from existing systems to build new ones. It is a
technology for improving software quality and productivity. Systematic reuse is a domain
focused on a repeatable process, and concerned primarily with the reuse of higher level life
cycle artifacts, such as requirements, designs, and subsystems. A systematic reuse is
defined as an application area, or more formally, a set of systems that share design
decisions.

[Frakes et. al. 1994] identify software reuse as an important area of software
engineering research that promises significant improvements in software productivity and
quality. Reuse has proven to be a complex area affected by many factors. There are two
basic technical approaches to reuse: parts-based and formal language- based. The parts-
based approach assumes a human program integrating software parts into an application
by hand. In the formal language-based approach, domain knowledge is encoded into an

application generator or a programming language.

In the Object-Orientation paradigm (O. O.), the concept of reuse has been
identified and introduced by many authors and practitioners in the field. [Meyer 1987]
states that if one accepts that reusability is essential to better software quality, the object-
oriented approach- defined as the construction of software system as structured collection
of data types implementations- provides a promising set of solutions. An abstract data type
is a class of objects characterized by the operations available on them and the abstract
properties of these operations.

[Lewis et. al. 19917 have conducted an empirical study of the O.0. paradigm and
software reuse and reported that the O.O. paradigm has a particular affinity to reuse.
[Griss et. al. 1994] state that: “So far we have seen significant gains in productivity when
reusing small-to-medium grain objects. This refers to both individual programmers and
projects that I have seen stock piling objects abstracting common computation functions
well as the use of commercially available object libraries such as Galaxy, InterViews,
RougeWave, and Booch Components. I would also classify the success of Visual Basic in
the same category. It illustrates, that there can be a market for small-to-medium objects
and frameworks that can be used to make flexible and useful assemblies”.

There have been many advancements and projects in the field of 0.0. software
reuse, the following section presents an overview of the most important ones.

[Lenz et. al. 1987] developed a library of building blocks oriented toward systems
programming. The library is built on an extension to PL/S IBM-370 based language and a
tool called BB/LX to allow the implementation of building blocks. The library contains
building blocks such as: stack, queue, chain, list, table, map and sequence. Moreover

there are building blocks for storage management and allocation. On the average, there are

16

10-20 operations available on each building block. Procedural building blocks include
message handlers, command parsers, and input checkers. In order to call and use any
building block from the library, developers have to write special BB/LX calls in their
source code. Each program that needs to reuse a building block begins with an invocation
of the “With” statement, which functions like the Ada “With” clause. The invocation also
specifies the operating system environment, whose services are used when required (like
for storage allocation). Building blocks operations are invoked through the “Do”
statement and the developers have to identify where the building block should be inserted.
Upon calling a building block, a correspor ding code will be fetched automatically from the
building block macro-library to the target program. BB/LX is invoked by a building block
operation and interprets it using the building block code. As a result, code is generated
into the user program.

[Kaiser 1987] developed an O.0. language called Meld which has two essential
aspects: (a) Features: a number of reusable building blocks which is a group of classes. A
feature is larger than a subroutine and similar to an Ada package, it permits the reuse of
the glue code among subroutines and abstract data types. (b) Action-equations: which are
developed to define the relationships that must hold among classes and the dynamic
interaction among classes and between classes and external agents such as users and
operating systems. Meld is implemented by translating each feature into a conventional
programming language and by a special run-time environment that support execution of
systems built from features. [Kaiser 1987] derived the implementation algorithm from
previous work on software generation, specifically language-based editors, where

performance as good as handcoded editors has been achieved.

17

[Bassett 1987] introduced the concept of a frame, where a frame is a model
solution to a class of related problems containing pre-defined change points. [Bassett
1987] built, Using COBOL, a library of three types of frames, (a) data-view frames to
define data fields, (b) screen and report frames, and (c) one custom specification frame per
program. Specification frames are created by programmers from template specification
frames. The specification frame is automatically processed including compile and link
operations. Frames do more than containing source code, they facilitate the design,
manufacture and maintenance of software. In design, a generic frame is a rigorous
parameterized analysis of a problem domain. Construction is an automated assembling
process where frames play the role of standard subassemblies. Specifications in the form of
screen and report definition, relational data frames are translated into executable code.

[Burton et. al. 1987] utilized the SoftCAD package to build a Reusable Software
Library (RSL) to support the design and implementation phases of the SDLC. The library
contains functions, procedures, packages, and programs. Using SoftCAD, a designer may
specify the top-level design of a system by generating object-oriented graphs and Ada
Program Design Language (PDL). The Ada PDL may be used as a template to produce
the detailed design and, ultimately the source code. A program was developed on the
VAX11/750 that automatically scans PDL and source code files and extracts specially
labeled reuse component statements.

[Ratcliffe 1987] discussed a number of guidelines implemented regarding
reusability in a project called “£CLIPSE™. The library created for that project is
characterized by:

1. Components are discrete, in Ada components are called “packages” and they model

18

objects as abstract data types

N

- Interfaces are well defined with low coupling between components.

. There are no subtle side effects.

(93]

4 Information hiding is used to large extent.

At Hewlett-Packard, [Berlin 1990], implemented the concept of reuse in their
CLOS-based hypertext platform. The extent of the software reuse implemented in the
project is integrating subsystems comprising over 200 classes and developing a glue code
to integrate them.

[Dunn 1991] performed domain analysis for the manufacturing of electronic charts
domain at Sperry Machine Inc., and a systematic reuse library was created to be used later
in the development of four software systems. The systematic library consists of 20 classes
having 133 methods. A glue code was required to incorporate the reusable classes as well
as code for the developing the main driver and modifying the existing code in the reused
classes.

[O’Connor et. al. 1994] define synthesis reuse methodology, where synthesis is an
approach based on domain-specific reuse. Synthesis is a way to construct software
systems as instances of a family of similar systems. The approach allows an organization
to leverage the commonality among similar systems by creating standardized requirements
and designs and their corresponding reusable components. At Rockwell International,
[O’Connor et. al. 1994] created a synthesis-based project where an engineer would
describe high level requirements and design decisions. Developers could then select, adapt,
and compose the relevant reusable components based on the requirements and

engineering decisions.

19

[Weide et. al. 1994] advocate the use of a systematic black-box style of reuse
without source code modification They propose casting algorithms as objects Just like
defining abstract data types as objects. These algorithmic objects are designed to accept
generic data types which will add a good deal of flexibility to the reuse process.

[Joos 1994] summarizes her experience at Motorola in implementing the software
reuse approach. A library was built containing a “Toolkif” which consists of design
capture, reuse engineering, and forward engineering. The developers, at Motorola, would
then follow the procedure listed below in order to accomplish the needed reusability:

1. The user enters a set of requirements for which the reuse Toolkit finds a matching

reusable software component.

[£8)

. Based on the user input, the reusable software components are customized to meet the

software requirements.

. Reusable software components are interfaced to new components.

(93]

LN

. The automated testing tools test the new software product.

[Lim 1994] reports on a manufacturing system development project at Hewlett-
Packard. He defines reuse as the use of products such as code, design, and test plans,
without modification, in the development of other software. Leverage reuse, on the other
hand, is defined as modifying existing products to meet specific system requirements.
[Ning et. al. 1994] developed, at Anderson Consulting, an Architecture-driven, Business-
specific, and Component-based (ABC) system development approach based on the
premise that component-based assembly/interconnection of domain-specific-components
has the potential for achieving significant productivity gain and quality improvement. The

domain-oriented library they used contains: requirement documentations, formal design,

20

test script, and source code. Based on the client’s requirements, the developer chooses a
plausible design from the reuse library. The developer would then modify these
components to match the client requirements. Finally, the reusable components are
“glued” together, so packaging and installation procedures are generated and the final
system is then delivered.

[de Cima et. al. 1994] developed a hypertext Design Environment for Reusable
Object-Oriented System (DEROS) based on using frameworks. A framework is defined as
a high level design or application architecture consisting of a set of classes that are
specifically designed to be refined and used as a group. This set of classes embodies an
abstract design for a family of problems (or problem domain) and encourages the
software reuse in a granularity which is larger than a class. [de Cima et. al. 1994] used the
white-box approach to frames, where a frame can be specialized by adding application-
specific subclasses to it.

[Griss 1994] reports an ongoing efforts at Hewlett-Packard to encourage the
implementation of systematic 0.0. and promote the notion of domain-specific kits. A Kit
consists of: reusable components, carefully designed frameworks (A framework refers to
a set of collaborating classes from which an ensemble of interacting objects is generated
primarily by inheritance) which captures the architecture and services for a family of
related products, and some form of glue code which could be either a typical language
such as C or C++ or some problem-oriented language. The kit also contains design tests,
templates, macros, documentation, browser, glue-code editor, application builder, and
generator.

[Rajlich et. al. 1996] introduced the concept of “Orthogonal Architecture” for

reuse and developed a methodology for transforming one program into another program
(within the same domain) in order to satisfy a new set of requirements. Their architecture
consists of (a) six layers, where a layer consists of a number of classes, and (b) six threads,
where threads are special cases of subsystems, and they consist of classes implementing
the same functionality.

[Arnold et. al. 1997] report on the “San Francisco Project” at IBM Research
Division. The project is currently in progress, and it utilizes the concept of frameworks,
which is an O.0. infrastructure and application logic that can be expanded and enhanced
by developers to provide far better software systems. A framework consists of the
following three layers of extendible components: (a) the highest layer containing the core
business processes to provide business objects and default business logic for selected
“vertical” domains, (b) definitions of commonly used objects that can be used as the
foundation for interoperability between applications, and (c) the base layer provides the
infrastructure and services required to build industrial strength applications in distributed,
managed-object, multiplatform applications. It contains object such as: command, entity,
and Factory. Currently, the “San Francisco Project” contains one framework only, the
General Ledger. Building application using “San Francisco Project” frameworks can be
approached in three ways.

(1) Using the objects and classes without changing them. The Developer writes client
code that uses a factory object to access the target framework objects.

(2) Modifying the framework by adding new domain classes from the third level of the
framework. Developers who make these changes need to understand the methods and

programming guidelines for creating, deleting, and updating framework objects.

(3) Modifying the frameworks by extending the supplied domain classes and methods. It
may be necessary to add additional attributes to those defined for classes, or to replace
the logic in one of the methods.

Reviewing all the previous software reuse approaches, one would make the
following conclusions:

1. No reuse approach is specifically directed to implement classes and behaviors needed

to develop MRP systems.

(L8]

- Most approaches reuse a program, module, framework, or a class as the basic building
blocks to build an application. There is a need to reuse very atomic building blocks to
gain more flexibility and productivity. According to [Griss et. al. 1994], the approach
of reusing atomic building blocks (as well as small-to-medium grain objects), as
opposed to a whole class or program results in a significant gains in productivity and
there can be a market for small-to-medium objects that can be used to make flexible
and useful assemblies [Griss et. al. 1994]

. All the previous approaches require developing a “Glue Code” in order to integrate the

(2

reused components. This would require some skills in certain programming language.
4. Most of the approaches will require going through the cycle of “Edit-compile-link-

test” which requires following the compile-time maintenance approach.

2.1.2. CLOS
Common Lisp Object System (CLOS) is an object oriented extension of Lisp,
which is a high level programming language like COBOL or FORTRAN [Steele 1990]. It

enables the programmer to define classes to model objects and their various relationships,

23

and use these classes as building blocks to create new classes. CLOS provides tools that
can help build modular and extensible programs. CLOS supports flexible means of
redefining classes and methods so that the programmer has the freedom to modify the
original design including the organization of classes [Keene 1989].

The basic concepts of CLOS are:

Class: Is an object which determines the structure and behavior of a set of other objects,
which are called instances. Every CLOS object is an instance of a class. A class can inherit
structure and behavior from other classes. A class whose definition refers to other classes
is called a Subclass of those classes, conversely, each one of those classes is called a
superclass of the inheriting class.

Slots: The structure of a class structure is defined in terms of slots. Each slot has a name
and a value. The value of a slot describes the state of the slot at any given time. There are
two kinds of'slots: (a) local slots which stores information about the state of a particular
instance. Each instance maintains its individual copy of the of the slot with its own value,
and (b) shared slot which store information on the state of a whole class. There is only
one value of a shared slot which is associated with the class and shared by all instances of
the class [Kiczales et al. 1991].

Generic function: Is a function whose behavior depends on the class, it contains a set of

methods. Each method defines the class-specific and operations of the generic function
[Steele 1990]. A generic function specifies only the interface. while the implementation is
distributed across a set of methods and is dependent on the classes of the method’s
arguments [Keene 1989].

Access to a slot of a given class is provided for instances of that class by an

24

automatically generated generic function called an accessor.
Metaclass: A metaclass of a class is the class of its class, it contains the following
information about the class: (a) class name, its direct superclasses, and slot specifications,
(b) list of class’s superclasses and their slots specifications, and (c) list of subclasses and
link to methods that reference the class.

To define a class, in CLOS, the programmer utilizes a macro called defclass, and
provides all the necessary information (a) through (c) above for each class.

CLOS also permits the programmer to redefine classes using the defclass macro.
Upon redefining a class structure, which is adding or deleting slots, CLOS will replace the
old structure with the new one. CLOS automatically propagates the changes to all the
instances of the class and its subclasses. Any accessor method that was created by the old
class definition will be removed. The programmer can use the definethod macro to
redefine a method [Keene 1989]. CLOS is also capable of changing the class of an
instance using the change-class macro [Steele 1990].
The major advantages of the CLOS approach can be summarized as follows:

1. Enhances software flexibility.

N

. It is a good tool for rapid prototyping and incremental software evolution.

. It provides an automatic run-time change propagation mechanism upon changing class

L)

structure and object migration.

However, CLOS has the following weaknesses:

1. Changes to class structure and methods are only permitted to existing classes and
methods. No new method can be added. According to [Keene 1989] to redefine an

element of CLOS (such as a method) that element already exists.

2. All changes require some knowledge of the CLOS terminology and syntax in order to

write the code needed to accomplish the required change.
2.1.3. CASE

Computer Aided Software Engineering (CASE) is the approach which uses

computer-based support in the software development process [Brown et al. 1994]. CASE
provides the automated support required to build a flexible, high quality software systems
quickly. CASE first appeared in the mid 80’s as a possible solution to one of the most
frustrating problems in the area of information systems. That was the ability of information
technology groups to quickly respond to customers’ needs for information systems.
CASE tools consist of a set of software products, such as graphical editors, user-interface
design systems, and compilers, integrated through a common repository, that help
automate every stage in the Software Development Life Cycle.
In order to discuss CASE flexibility techniques, three terms must be first defined:
Reverse engineering: Is the process of analyzing a system and representing its components
and interrelationships in an abstract form, independent of the physical implementation. It
involves recovering design specifications or requirements from existing source code or file
definitions. Typically, some sort of graphical representation is the result of Reverse
Engineering. The tools available for Reverse Engineering retain this information in a data
dictionary or knowledge base.
Reengineering: Is the examination and alteration of a system to reconstitute it in 2 new
form. Once a system has been Reverse Engineered into an abstract form, Reengineering is

the modification of this abstraction to meet the new needs, or to make corrections,

enhancements, or modifications.

26

Forward engineering: Is the process of going from a high-level abstraction

(implementation independent) to the physical implementation of a system.

The following are some of the CASE techniques which provide software flexibility:

1.

3]

(V3]

CASE tools for Reengineering are designed to assist analysts in understanding existing
systems and to make it easier and less costly for them when making changes. CASE
re-engineering tools process existing systems to extract a structured analysis of the
system and its design. From there, the system can be logically enhanced or corrected,
then forward engineered to produce the new version. The benefit of this approach,
according to industry studies, is that a reengineerd project can reduce maintenance
costs by 30% to 70%. Some organizations that have implemented CASE
Reengineering tools report remarkable productivity boosts (as high as 300%),

particularly in Reverse Engineering, of files and databases [Borchardt et al. 1995].

. In a CASE environment, design, prototyping tools, automatic code generators, and a

repository of well-tested modules help developers stay responsive to user’s needs.

Specifications are not frozen until very late in the design phase.

. CASE allows a person, or a small team, to perform analysis, design, and coding.

This is feasible because CASE subdivides complex projects into small, easily
manageable modules that interact only minimally. Independent teams of two or three

persons can then accomplish development tasks in parallel.

. Reusing objects and modules is another technique that CASE implements in order to

enhance flexibility, since many systems perform similar functions and use similar
objects. Thus, these functions may be designed, coded, and tested once and then reused

several times. These reusable functional modules, or objects, can be stored in the

27

CASE repository of an organization. The modules and objects can be reused whenever
necessary and modified as required. Time scheduled for a project may be reduced
significantly when reusable designs, data models, or code are used. According to
[Aggarwal et al. 1995]., projects created primarily with reusable software need
approximately 25% of the resources required for designing new software from scratch.
Reusing proven software designs and modules provides higher productivity and
minimizes errors [Aggarwal et al. 1995].
. Some CASE packages implement maintenance tools that analyze the impact of a
change, extract identifier names, list them in alphabetical order, and perform
dataflow analysis. These tools may also check for program style and standards
violations, compute a variety of complexity metrics, restructure unstructured source
code, display the structure of an application, and generate documentation
automatically. The Data Dictionary (DD) is a CASE tool for maintenance which
creates and manipulates a dictionary-like database containing cross-references to
names used in the source code of an application. The cross-references are obtained by
running the source code through the DD. The output from the DD could be any of the
following:
a. Module Map Relation: Containing a listing of the static lexical structure of the
application’s source code.
b. Defined Relation: Containing a list of all identifiers in the system, and where each
one is defined.
C. Referenced Relation: Containing a list of all identifiers and where each one is used.

d. Uses Relation: Containing a list of all modules and indicating what identifiers each

28

module uses.
e. Interface Relation: Containing a list of all modules and functions, and listing their
interfaces.

[Baxter 1992] suggests that software development must focus on problem
specification and justification for the design specifications. The final programs would then
be generated using specially designed CASE tool. This CASE tool uses a library of
heuristic methods coded into a Transformation Control Language (TCL). [Baxter 1992]
introduces the concept of “design maintenance” where any change to the software will be
directed toward the design rather than the code. A change in the design (called delta) will
then trigger the CASE tool to transform the “delta” into a final program.

CASE has its weaknesses [Senn et. al. 1995], [Borchardt et. al. 1995] which can
be summarized as follows:

1. One of the most enduring complaints concerning CASE is that separate tools are not
integrated since most of them are developed for different platforms. They might also
require powerful processing platforms in terms of capacity and capability [Senn et. al.
1995].

2. Vendors claim that restructuring tools in CASE can produce a functionally equivalent
structured program from even the most tangled of source code, but it is important to
distinguish between standard code and structured program logic. Restructuring tools
can generate syntactic structure, but they are still incapable of logical structure . Until
CASE tools advance to where they can consistently make logical inferences from

illogical process flows, this must still be left to developers [Borchardt et. al. 1995].

(93]

. Most CASE tools have poor code generation abilities (most generate C++ declaration

29

and headers only, with no member function body code). None of the tools have good
documentation generation ability [Church et al. 1995].

4. In addition to all the above weaknesses of CASE, it should be clearly pointed out that
CASE can only handle maintenance to the logical design, CASE :s not capable of
propagating any change to the physical underlying persistent data.

5. All the changes to the logical design are carried out by CASE at compile-time and
not at run-time.

2.1.4. Template-Parametric-Modeling

This approach was proposed by [Lim 1996] utilizing the concepts of Object

Oriented simulation using Mode! Builder [Mejabi 1993]. The objective is to build flexible

simulation software models with minimal effort. The research introduces the concept of

the gross structure of a simulation model. The gross structure of a model is a description
of its building blocks and the relationships between them. The approach uses a template
with many parameters to define the gross structural information of a simulation model.

The system then uses the values of the parameters in order to build a model. The approach

provides a library of various types of Parametric templates representing various

application domains. The Parametric-Modeling approach [Lim 1996] allows the user to
select a template which is most appropriate for his/her domain needs, then prompts the
user to provide values for the parameters for that template. The system will then use these
values to build the desired simulation model. The approach also allow the user to control
the characteristics of entities in the simulation model.

Although the architecture proposed by [Lim 1996] supports flexibility, it is

specifically designed to model simulation systems. The architecture was not designed to

30

handle persistent data.

2.1.5. The Conversion Approach

[Kim et al. 1987], [Banerjee et al. 1987], [Kim et al. 1987], [Banerjee et al. 1987],
[Penny et al. 1987], [Fishman et al. 1987], [Morsi et al. 1991], [Morsi et al. 1992],
[Chung et al. 1992], and [Bertino et al. 1993] all describe schemes which propagate
changes by directly modifying all the affected objects in the system. However, these
methods differ in the changes allowed, limitations and restrictions on the changes, and
their specific implementation techniques.

In [Kim et al. 1987], [Banerjee et al. 1987], [Kim et al. 1987], and [Banerjee et al.
1987], the changes allowed in their ORION databases are: changes to class structure,
adding, deleting, renaming a class, and changing class/superclass relationships. Multiple
inheritance where a class inherits part of its structure and behavior from two or more
superclasses is available in ORION, which may improve the modeling power and flexibility
of the database. The objects affected by a change in ORION are modified only when
accessed by the user. This type of conversion is called screening or lazy conversion.
Although the ORION data model has a lot to offer in terms of flexibility, it has five
invariants that must be maintained at all times. Two of the invariants are:
(a) the Full Inheritance Invariant. In multiple inheritance, a class may inherit from two or
more superclasses and the superclasses may have attributes, where attributes is a set of
variables used to define the state of an object, with the same name. In such a case, if the
attributes have different types, then only one attribute can be inherited.
(b) the Default Compatibility Invariant: The domain (a range of acceptable values that an

attribute can take) of an inherited attribute must be a subset of its corresponding value in

31

the superclass.

ORION also has twelve rules used to propagate changes, while preserving the five
invariants. An example of the rules is the Domain Change Rule, which stipulates two
restrictions on the type of changes in an attribute’s domain. F irst, the domain of an
attribute can not be reduced. Second, the domain of an inherited attribute can not be
expanded beyond its value in the superclass. All these invariants and rules, combined, may
limit the capabilities of the model. ORION does not permit dynamic inheritance which is
the ability to change one or more of a class’s superclasses at run-time. It does not permit
object migration either where an object changes its class and becomes a member of
another class at run-time. The authors do not address the full effects of adding or deleting
attributes. For instance, if there is a method, which is a procedure inside a class used to
define and implement aspects of the class behavior, that depends on an attribute, and that
attribute is deleted, this may introduce some instability into the system.

In their IRIS database model, [Fishman et al. 1987] adopt the concept of a ype
which is defined as a named collection of objects sharing common behavior. Objects of the
Same type may not necessarily have the same structure. This is different from the class
concept which, according to [Bertino et. al 1993], is a set of objects having exactly the
same internal structure and behavior. Types are related to each other through inheritance
relationships. A subtype inherits all the behavior of its supertypes. Furthermore, adding
and deleting of types is allowed, and objects can migrate from one type to another.
However, other types of changes are not permitted in the IRIS database. For example, it
does not allow two types that are declared disjoint to be subtypes of a common type. A

type cannot be deleted if it has no instances, and new subtype/supertype relationships

32

among existing types cannot be created. The IRIS data model does not have the capability
to handle dynamic inheritance or changes to object behavior.

[Penny et al. 1987] considered some of the changes in their Gemstone data model,
such as adding or removing a class or an attribute by implementing the conversion
approach similar to that used in ORION and IRIS. The only difference is that in
Gemstone, the modification of affected objects takes place immediately to ensure data
consistency. This is called eager conversion. The model has six invariants on class
modifications. One example of these invariants is that the constraint (which is a rule used
to enforce system integrity by stipulating that attributes must be defined before being used
in a method) on an inherited attribute must be the same as, or a subclass of, the
corresponding constraint in the superclass. Classes in Gemstone are not allowed to change
their superclasses. Furthermore, the Gemstone data model does not permit changes to
object behavior or object-class membership.

In [Morsi et al. 1991], where multiple inheritance is allowed in their Goose data
model, the domain of an attribute inherited from multiple superclasses is restricted to be a
subset or equivalent to the intersection of all corresponding domains in the superclasses.
The changes available include changes to class structure and inheritance relationships.
These changes are propagated to main memory and made permanent upon the issuance of
a SAVE command by the user. The Goose model does not handle object migration or
changes to object behavior. In [Morsi et al 1992], changes such as addition, deletion, and
modification of classes, attributes, and methods are possible. They utilize the C++ class
library in developing an approach which they call the open class hierarchy. In this

approach, the system meta-information is implemented as objects of system classes used to

maintain the database. The approach does not handle changes to object behavior.
However, object behavior changes are discussed in the article as a future research project.
They proposed a code transformer to translate the references between all methods,
attributes, classes in the database, and their respective object identifiers into a source code.
The code transformer will also: (a) produce a list of dependencies between all methods,
attributes and classes, and (b) produce updated source code for the methods affected by
schema change operations. The user would furthermore, be notified and required to make
some compile-time changes whenever automatic method updates are not possible. Their
proposed approach of keeping a list of all the dependencies between the components of
the database seems to involve some data storage overhead penalty which may have a
significant impact on system performance.

2.1.6. The Versioning Approach

This approach is characterized by propagation of changes by creating a version of
each of the affected objects before modifications are carried out. As discussed by [Ahlsen
1983] and [Ahlsen 1984], there is a need in some applications such as the Office
Information System (OIS), to keep track of the history of the system over time by keeping
the state of all objects and classes before and after each change is made to the system. This
may be done for an indefinite period of time. Once a change occurs, the affected objects
are not updated. Instead, new versions are created and old versions of the objects are
kept. A view mechanism is then used to dynamically map instances of different versions of
the same type to the version which is needed by the user. It is the responsibility of the user
to specify the version number that is required. Moreover, when the different versions are

not compatible, they must be processed separately. The approach in [Ahlsen 1984] do not

34

have the capability to handle addition and deletion of types, changes in inheritance
relationships, behavior changes, or object migration. Their approach is developed
primarily to address the specific needs of the OIS domain.

[Zdonik 1985] suggests that when an object is modified, a new version of that
object should be created to reflect the evolution stages that the object passes through. The
data model includes the notion of versions as a primitive concept. A version set is an
ordered collection of objects, each of which represents a snapshot of the state of that
object at some point in time. The decision about which changes should be propagated is
left to the discretion of the database schema designer. This approach handles the special
needs of the OIS and only deals with incremental changes. This method is not capable of
accommodating radical changes such as inheritance relationship changes, behavior
modification, and object migration.

[Narayanaswamy 1988] proposes a method for allowing a design object to evolve
into a family of versions of that object without having to introduce new subtypes. This is
accomplished by introducing a mechanism called instance-inheritance. When an object
evolves, a new version is created and then linked to the old one by a Aas-version link. The
has-version link is multi-valued, which enables any object to link to all its versions.
Instance inheritance takes precedence over default inheritance. This approach is based on
the assumption that over time, a given concrete object may evolve into a family of closely
related objects. Each member of the family shares certain characteristics with the other
members and differs in other respects. This concept is only suitable for specific
applications where changes are parameter-driven (where changes to an object attribute can

be computed in terms of another attribute). Any major change in the structure or behavior

of an object could make that object entirely different from the rest of its family objects.
This would violate the basic assumption of this approach, that an object should evolve
into a family of closely related objects. This approach according to [Narayanaswamy
1988], has the disadvantage of requiring additional mechanisms to handle instance-
inheritance, which might result in some degree of performance loss.

[Katz et al. 1990] suggest creating a version each time an object is changed. These
versions are grouped in a version-hierarchy maintaining is-a-descendant-of and is-an-
ancestor-of relationships among the versions of the same object. Their approach is specific
to Computer Aided Design (CAD) databases and only addresses incremental changes.
None of the major changes such as deletion and addition of classes, modifying
relationships, and object behavior changes are addressed.

[Clamen 1994] supports schema evolution and program compatibility by
suggesting that class evolution be defined by creating a new version of the class upon each
change. Each class has multiple versions; any version can then be represented in terms of
another version through a pre-defined relation. Each instance of a class is composed of
multiple facets to provide multiple interfaces to the instances. Since changes are not
propagated immediately, each facet has a flag to indicate whether it is up-to-date or not
with respect to the most recently modified facet. Each application program interacts with
the instances through a single version. [Clamen 1994] divides class attributes into four
groups: (1) shared, when an attribute is common to all versions of the class, (2)
independent, where its value cannot be affected by any change in the attribute values of
another facet, (3) derived, which is directly derived from the values of the attributes in

another facet, and (4) dependent, when an attribute is affected by changes in the values of

attributes in another facet, but cannot be derived from those values. Modifications to an
attribute on the primary facets are immediately propagated to other facets depending on
the attribute category. This is accomplished by using certain dependence and derivation
rules between the attributes. The types of changes handled in [Clamen 1994] are limited
only to the changing of attributes. Classifying the class attributes into the four categories,
and relating them through dependency and derivation rules is only applicable to cases
where clear dependency relationships exist between attributes. This limits the type of
changes allowed and consequently makes the system less flexible, since required changes
may not always be parameter-driven. Also, the model does not have the capability to
handle changes to class inheritance.

2.1.7. Machine Learning

[McLeod 1988] proposes an approach based on a combination of three types of
machine learning techniques: learning from instruction (LFI), learning from exception
(LFE), learning from observation (LFO), as well as a set of learning heuristics, to an
object-oriented data model called PKM. This approach implements a set of algorithms
encoded in the system to implement a number of changes. The approach is efficient and
easy to use and is particularly attractive because of the ease with which it can be
automated. However, these algorithms implement a fixed set of variables and relationships
upon which the system can learn efficiently. No new variables or relationships can be
introduced. Consequently, the changes that the system can handle are limited to fairly
predictable changes. Therefore, the key issue in evaluating this approach is the trade-off
between efficiency and flexibility. The learning approach might be suitable for well-defined

domains, but is unsuitable for the drastic and often unpredictable changes.

2.1.8. The Functionally-Defined Data Approach

[Moore et al. 1988] and [Hudson 1989] proposed an approach of having certain
dependent attributes derived from other attributes by using algorithms attached to the
independent attributes.

The model, Cactis, as defined in [Hudson 1989] has both attributes and integrity
constraints, where integrity constraints are rules used to enforce system integrity by
stipulating that attributes must be defined before being used in a functionally-defined
method. The system automatically re-computes the derived values whenever a change
takes place and enforces constraints whenever updates are made. Attributes of an object
are classified into two types: derived and intrinsic. Derived attributes have incremental
attribute evolution rules attached to them, to show how the attribute value should be
derived at all times. Intrinsic attributes are simply stored in the object. Some attributes
could be derived from other attributes; these are called dependent attributes. After the
system computes a new attribute value, the update is not always implemented
immediately, but may be deferred until the next time the attribute is accessed. When one
attribute is affected by the change of another attribute, it is marked as being out-of-date
and given a label as “important” or not. If “important,” the attribute will be changed
immediately, if not, the update will be carried out when the attribute is next accessed. The
model in [Hudson 1989] has the capability of creating and deleting objects and
relationships between objects. Object membership in a type (class) can also be dynamically
chosen.

The approach described in both [Moore et al. 1988] and [Hudson 1989] has the

major difficulty of assuming that attributes have to be related to each other and that

38

changes are parameter-driven. This assumption does not hold for many applications. Also,
this approach does not handle any changes to object behavior. The approach used in
Vishnu as described in [Moore et al. 1988] also has limitations resulting from potential
name conflicts. According to the authors, a name conflict causes the system to crash. This
occurs when, implementing multiple inheritance, a class inherits an operation with the
same name from different superclasses. The only solution is for the user to explicitly
resolve any such name conflicts. The approach also involves some overhead, caused by
attaching procedures to attributes.

2.1.9. The Graph-Based Approach

When a change is made to an object, [Chin-Purcell et al. 1989] implement a graph-
based approach to propagate the change to all its dependent objects. For this purpose,
objects are organized in structured networks. Some objects are directly represented in a
view, while others represent more abstract concepts and serve to link the visible objects so
that they represent a coherent design. A simple way to propagate a change in the system is
to have each object in the network maintain a list of its dependent objects. Whenever the
object changes, every object in its dependents list is notified, whereupon, those objects
would update and notify their dependents, and so on. To avoid multiple updates on the
same object and the associated performance loss, some graph analysis must be carried out
before the update sequence begins. This is performed in two steps: the future phase, where
the graph of objects is marked to see where the change will propagate, and the resolution
phase, where the objects are told to update in the correct order.

[Gyssens et al. 1994] use graphs as the basic data type in their GOOD database.

Objects are represented as nodes in a graph. The nodes in the graph represent object

39

classes, and edges represent the relationships and properties of objects. The objects in the
database can be manipulated by adding or deleting nodes and edges in the graph. The
possible operations include addition and deletion of edges, deletion of nodes, and grouping
of objects.

The approach in both [Chin-Purcel 1989] and [Gyssens et al. 1994] does not
address the inheritance issue at all. It handles neither changes to object-class memberships
nor object behavior. Working with graphs requires some additional knowledge and certain
optimization techniques in order to minimize processing time by processing objects in the
correct and optimal order.

2.1.10. Meta-Objects Approach

In their reflective-architecture based operating system called Muse, [Yasuhiko et
al. 1989] implement the approach of meta-objects, where the system consists of objects
and meta-objects. In a reflective architecture, meta-objects can be viewed as a definition of
the computation of objects, or a virtual machine. An object is interpreted by its meta-
object. Yet, an object can also influence the computation of its meta-object by sending
messages to it. This relationship between an object and its meta-object is called the meta-
object hierarchy. Objects are also grouped in classes, and this class hierarchy is
independent from the meta-object hierarchy. An object can inherit from multiple classes,
and is also free to migrate to a new meta-object, as long as it is compatible with its
original meta-object. The approach is based on the assumption that a meta-object holds all
the information required to compute its objects after a change. This assumption indicates
that all the possible changes must be predictable. All changes to the meta-object hierarchy

and the class hierarchy are implemented at compile-time only. The work does not handle

40

any changes to object behavior. Furthermore, the researchers do not explain how changes
to an object or class are carried out.

[Tan et al. 1990] introduced the concept of persistent meta-objects which can be
used for general reflective computation of objects. Each object has a meta-object, and
each program or message has a meta-program and meta-message respectively. In [Tan et
al. 1990], a type is defined as a set of objects with identical structures and behaviors. This
is equivalent to the definition of a class in most of the literature, and different from a type
as defined by [Fishman et al. 1987]. When a type is changed, all the instances of the type
must be notified, in order to carry out the update. In this work, changes are propagated in
a lazy manner. The change is recorded in the meta-object for the class, and at a later time,
when the instance is accessed, the change is implemented. Changes are propagated
through a chain of meta-objects of classes and subclasses. Whenever object behavior,
called programs in the article, is changed, then its meta-program sends a message to the
meta-object of all classes used in that program to ensure that all of the classes are up-to-
date. If there is any difference between the classes and their instances, then all the deferred
changes are immediately performed. This article does not indicate, explicitly, whether this
modification to a program is accomplished at compile-time or at run-time. The approach
does not handle major changes such as changing class structure, inheritance relationships,
or object membership to a class.

The approach in both [Yasuhiko et al. 1989] and [Tan et al 1990] may require
some overhead to maintain all the meta-objects, meta-messages, meta-programs, and
maintain consistency, and at the same time exchange messages between the metas and

their objects.

41

2.1.11. Relevant-Classes Approach

The relevant classes concept was introduced in [Nguyen et al 1989] and
implemented in their Sherpa data model. The approach is used to represent partial and
meaningful designs which are characterized as potential steps toward a complete class
definition. Every instance is attached to exactly one relevant class. Relevant classes can
neither be related by subclass/superclass nor generalization/specialization relationships.
They are only used to support incremental changes and correspond to meaningful
combinations of class attributes and constraints. This approach is specific to incremental
and predictable changes, and does not handle major changes. Also, it does not handle
changes to object behavior and object migration.

In [Nguyen et al 1987] the authors introduced, in their Cadb data medel, the
concept of a prototype, which is a specific “element” maintained for each class. A
prototype is produced automatically with the first object instance of the class and
maintained dynamically to reflect updates performed on the objects belonging to the class.
Prototypes form a database abstraction to model dynamic data structures and values. All
the changes on a class are first applied to the class prototype, to allow detection of
potential inconsistencies resulting from the change operations and any side-effects
resulting from automatic computations of the operation. This approach relies on a dynamic
characterization of the object’s equivalence classes. The idea is, considering the initial
schema of an object, to automatically produce all the potential structures of the sub-
objects that it may contain. The only legal structures are those produced this way and no
errors in the object structures are permitted. However, prototypes are allowed to have

errors in their values in order to test different attribute domains. This approach is specific

42

to CAD where changes are parameter-driven and the types of changes are mostly limited
to changing attribute values.

[Lee et al. 1993] proposed a prototyping model called Object Prototyping which
assumes that a database schema is fixed, and prototyping is achieved by applying
alternative values to the attributes of an object, rather than by changing attribute or
method definitions. When the user selects an object to be changed, he/she constructs a
prototype with the desired properties, and functionally validates the performance of the
prototype objects using a simulation mechanism. If the results satisfy the user, then the
prototyping session stops. If not, another prototype is created with a different set of
properties.

This approach is also limited to CAD and involves some prototyping and
simulation overhead. Also, it does not handle changes such as addition and deletion of
classes, and change in their relationships.

2.1.12. Collection Keepers Approach

[Riet 1989], in the Mokum object-oriented knowledge base, suggests that an
object can be an instance of many types simultaneously, and that objects can be also
grouped in collections. Collection keepers are objects specially created to control the
activities of a collection. Adding or deleting objects to and from a collection, is only done
by sending messages to these collection keepers. There is no explicit relationship between
collections. This approach handles only creation and deletion of objects. It does not have
the capability of handling major changes to class structure, relationships, or object

behavior.

43

2.1.13. The Indexing Approach

[Al-Haji et al. 1992] implement the approach of using indexing tables to perform
schema changes In their ODS database model, [Al-Haji et al. 1992] considered an object
as consisting of two parts: (a) private memory part where the values of attributes are
stored; (b) public part where the methods used to manipulate the private part are found.
The private memory of an object is a contiguous series of words called a chunk (This
definition of a chunk is different from the one adopted later on in this research). The
approach utilizes five tables: IT, the inheritance table which relates the class instances to
their immediate supers, NT the nesting table to relate the immediate nested objects, DOT,
the disk object table to relate an object to its class, SOT the sub-objects table which
maintains the sub-objects for each object, and ROT, the referencing objects table to
indicate which objects reference other objects. Information in an object is distributed
between the chunk, the IT, and the NT. Each of these requires some memory allocation
called a segment. Adding an object instance to a class requires adjusting the IT, NT, ROT,
and SOT, to reflect the relationship between the new instance and other instances existing
in the database. The DOT is also adjusted also by adding one entry for each new instance.
The deletion of an instance variable depends on whether it has an atomic value or a
collection of values. If not atomic, the value can be deleted inside the NT by deleting the
nodes that represent the value of the instance variable from the record of the chunk. The
ROT is also adjusted to reflect the change. The deletion of an atomic valued instance
variable can be done directly within the related segment.

This approach is capable of handling neither changes in object membership to a

class nor inheritance relationships. The approach might also require a considerable amount

44

of overhead for keeping all the five tables current and updated.

2.1.14. The Object-Specialization Approach

[Sciore 1989] introduced the concept of specialized objects, where each object is
assigned a class and acquires the variables and methods of that class. However, inheritance
is determined individually by each object. Object specialization means that objects are able
to inherit from other objects. In general, a real-world entity is modeled by several objects.
The objects corresponding to each entity are arranged in an object hierarchy. These
objects are partially ordered to describe how the objects in the hierarchy should be viewed.
Each object in the hierarchy denotes a role played by the entity. In this approach, there are
two inheritance hierarchies, the class and the object hierarchy. There are also two special
methods defined for all objects. Super which returns the object’s parent in the hierarchy,
and schema which returns the corresponding data dictionary for that object’s class. There
are two ways to add objects to a hierarchy. Existing objects can be copied from other
hierarchies, or an object can be created for a completely new class. New objects can be
created by cloning existing cnes, and roles may be added by extending an existing object
to include the features of another one.

This approach allows only adding and deleting of objects, and does not handle
other major changes such as changes to class structure or inheritance relationships,
changes to object membership to a class, or changes to object behavior.

2.1.15. The Views Approach

[Wiederhold 1991] defined a view on a database as consisting of a query which
defines a suitably limited amount of data. Views are created to provide multiple

abstractions of the objects in a database. Views provide flexibility to the extent that

different users can view the same database according to their needs without affecting the
underlying data. Views can be generated from the database itself or from other views as
well. Objects which are defined at the time when the database is created are called the
base objects, while those created as a result of query are called view objects. [Wiederhold
1991] proposes an architecture to generate views in object-oriented databases. The
architecture consists of: (a) a set of view-object generators to extract data out of the base
objects in relational form, and then assemble the data into a set of view objects, (b) a set of
view-update generators to propagate changes made to view objects to the base objects.

Although this approach provides some flexibility, it has some weaknesses such as:
(a) view generation requires a special mechanism such as SQL commands whose
complexity depends on access paths of the underlying data and the complexity of view
definition [Konomi et al. 1993], (b) view changes are not automatically propagated to
other views and base objects, but it rather require additional programming tasks to be
carried out, and (c) view objects are not persistent and require re-computation each time
they are created, and must be explicitly written to files to be persistent.

Materialization of views, which is defining object views as real objects and not
virtual objects, reduces the retrieval cost. However, when updates occur in base objects,
some additional expensive update overhead is required to recompute views in order to
keep the materialized views consistent with the base objects.. To overcome this problem,
[Konomi et al. 1993] propose data structures that permit efficient incremental updates of
materialized views. When classes are derived from a path of classes, in a class schema, the
key of the path, called a super-key, is defined to be utilized for updates. If derived classes

and the keys of the paths from which the classes are derived are contained in the same

46

subgraphs of class schemas, then class schemas will satisfy a condition called super-key
condition. If class schemas satisfy the super-key condition, incremental updates are
performed efficiently by detecting multiple paths to underlying objects utilizing objects of
classes in the keys. This approach involves a number of high cost procedures such as
views materialization and incremental updates. The incremental update procedure,
according to [Konomi et al. 1993], adds extra classes and introduces more redundancies
into base objects. [Liu et al. 1993] suggest a mechanism, called change processing, to
associate the same object across the different views so that changes made to the object in
one view can be propagated to the other views. This approach is limited to composite
objects, where the domain of a class is another class.

A view, according to [Rundensteiner 1993] as implemented in MultiView data
model, is defined by an object-oriented query and is computed upon demand rather than
stored. She introduces the concept in MultiView as the mechanism for the generation of
customized views. These views assure that updates through views are consistently
reflected in the underlying database. MultiView breaks up view specification into two
tasks: (a) the derivation of virtual classes via an object-oriented query and their integration
into one consistent global schema and (b) the definition of view schemata composed of
both base and virtual classes on top of this augmented global schema. This approach
provides a good level of flexibility since each user can customize his’her own views.
However, the MultiView approach is specific to CAD and requires two additional
expensive overhead mechanisms. The first mechanism is the creation of a schema, called
global schema, to contain all the derived classes. The other mechanism is the specification

of an arbitrarily complex view schema composed of both base schema and global schema.

47

Furthermore, [Rundensteiner 1993] points out that an additional mechanism is needed
since relationships in object-oriented views must be validated so that they are consistent
with the global schemas.

In the SDM model described in [Rovira et al. 1993] views are achieved through
aggregation of lower level components to define a new type of component. These are
clusters which represent groupings of objects that share common properties. The cluster is
the basis for the support of views. Views are achieved by subclassing so that changes will
be reflected automatically, assuring integrity and consistency among multiple views. This
approach is not capable of handling view updates.

2.2. Literature Review Summary

Table 2.1 below shows a summary of the features and capabilities of the fifteen
approaches discussed above, as well as the issues they address, plus some general remarks.
The first column lists all fifteen categories of our classification scheme. The next three
columns indicate whether the corresponding approach handles changes, during run-time
to: (a) class structure, (b) class behavior, or (¢) object-class membership. The column
titled dynamic inheritance shows whether or not the approach handles changes to
inheritance relationships at run-time.

The next column indicates whether the approach handles chunk management. Here
a Chunk is defined as a logical grouping of objects from various classes[Mejabi 1994],
[Lim 1996]). Each chunk has a set of parameters used to define the relationships between
its objects. Chunks have a significant importance in manufacturing in order to represent
instances such as, the Bill-of-Material (BOM) of a target finished product. Other examples

of the use of chunks include modeling the assembly processes and machine/labor

43

assignment to cells in cellular manufacturing. Finally, the last column contains some
general comments.

It should be noticed that most of the approaches are directed toward special
application domains such as CAD, OIS, or database schema evolution and none
specifically addresses the special needs of manufacturing planning. In addition, no
approach is capable of comprehensively handling all the various changes that are required.
A clear need therefore exists for a method that is capable of handling a comprehensive
range of changes, such as changes to class structure or relationships, object to class
relationships, and object behavior, as well as chunk configuration at run-time.

A clear need exists for the development of a flexible architecture which addresses
the needs of manufacturing as well as handling all the maintenance tasks at run-time with

minimal effort.

49

Class Class Object Dynamic Chunk
Approach Structure | Behavior | Migration Inheritanc | Management Remuarks
e

Software Reuse No No No No No Coarse level of granularity, and
requires developing a glue code

CLOS Yes Yes Yes Yes No Generic O.0. programming
language which does not
specifically address MRP needs

CASE No No No No No CASE is capable of propagating
changes only to the logical design
BUT not to the physical underlving
persistent data

Template-Parametric- No No No No Yes Specific to simulation software

Modeling

Conversion Yes No Yes No No Requires attribute domain
constraint
Involves name conflict

Versioning Yes No No No No Specific for certain applications
like OIS

Machine Leaming Yes No No No No Changes have to be predictable
Trade off between tlexibility and
efficiency.

Functionally-Defined Yes No No Yes No Changes have to be incremental

Data Attributes have to be related

Graph-Based Yes No No No No Requires knowledge in
optimization techniques

Meta-Object Yes No No No No Involves overhead mechanism to
Keep and maintain all the meta-
objects in the svstem

Relevant Classes Yes No No No No Specific to CAD, Change have to
be incremental
Requires overhead mechanism for
simulation

Collection Keepers Yes No No No No

Indexing Yes Yes No No No Involves the overhead of keeping
five tables current all the times

Object Specialization Yes No No No No

Views Yes No Yes No No

2.3. Research Problem Statement

Table 2.1 A Summary of approaches to software flexibility

The problem that this research addresses is the high cost of manufacturing

sofnvare maintenance. The objective is to:

¢ Reduce the effort, in terms of human and machine resources, as well as time,

associated with maintenance.

e Perform all the maintenance tasks at run-time and propagate the changes to the

underlying data.

This will eventually lower the high cost required to maintain manufacturing
software systems. For many manufacturing domains, it is highly desirable to maintain
software, not just at compile-time, but rather at run-time while the system is running since
“shutting the system off” is often not an acceptable option.

2.4. Research Approach

The approach of this research to solve the problem is to develop an architecture
that can be used to develop and maintain highly flexible manufacturing software, especially
MRP systems. The research will provide the capability to maintain the systems at run-time
and permit propagation of changes to the underlying persistent data. The proposed
architecture will utilize the concept of software reuse and be comparable to CASE tools,
but will not follow the code generation philosophy used in most CASE systems. Though,
it can be best described as a dynamic-object application builder tool built on the top of a
run-time system; it will also incorporate the concept of chunking from the Template-
Parametric modeling approach. The proposed architecture might be applicable to any
software, however the focus will be on manufacturing software, especially MRP.

The uniqueness of this research will be demonstrated by:

1. Ease of developing manufacturing software systems, especially MRP by utilizing
a specialized-classes library.

2. The capability to handle major and minor changes to software at run-time with
minimal time, effort, cost, and also propagate the changes to the persistent underlying
data.

- Applicability to a wide range of manufacturing software domains since the system

(VD]

utilizes an expandable library of pre-compiled objects.

2

.5S. Deliverables

This research expects as its final result to produce the following:

1

[§S)

(93]

ey

. A fully documented architecture.
. A demonstration of the architecture’s flexibility.
. A working prototype implementation of the main elements of the architecture.

. A manufacturing planning illustrative example to explain the use of the architecture.

Chapter 3
APPLICATION OF THE PROPOSED ARCHITECTURE, AN

ILLUSTRATIVE EXAMPLE

Section 3.1 of this chapter presents an overview of the operating scenarios of the
proposed architecture. Section 3.2 explains the procedure and platform adopted in order
to implement a working prototype of the architecture. Section 3.3 and 3.4 present an
Inventory control component of an MRP system designed for specific manufacturing
domain as an illustrative example. Section 3.5 explains the functional and structural
changes required to implement the same software in a different application domain and
what this process might involve, the section also presents how to utilize the architecture
to carry out these changes. Section 3.6 contrasts the architecture maintenance approach to

the traditional software development tools.

3.1. Operating Scenarios of the Architecture. An Overview

The proposed architecture is a menu-driven system which utilizes a number of
graphical user-interface tools such as screens, buttons, and radio buttons. As shown in
Figure 3.1, the system starts with a main menu allowing the developer to select any of the

following four options: Design, Implementation, Data population and Maintenance.

W
]

Main Menu
Design @
| Implementation (® !
' Data Population (@)
| |
Maintenance (:.:} 1:

®

Exit the System

e ———

Figure 3.1, The Main Menu of the proposed Architecture

Upon selecting the maintenance option, for example, the system will display
another user-interface with a number of maintenance options such as: adding or deleting a
class, adding or deleting an attribute, adding, deleting or modifying a method. Figure 3.2,
shows a sample user-interface to add an attribute to a class. In this example, the system
displays all the classes defined in the MRP system under the title: (These are Your
Classes) where the system can highlight to select any class. The system will also show a
number of icons representing the data types where the system can choose from, and finally
the developer will be prompted to provide a name, domain, and default value for the
attribute. The system will then append the attribute to the selected class upon clicking the

save button on the screen.

Adding an Attribute

These are Your Classes Library Attributes

g’,f,‘;’,’:f,?:em Integer @
Float @
Double (@)
Id O)
String @
Class Name | |
Attribute Name [|
Domain | |
Defauit Value | | i SAVE |

Figure 3.2, The “Adding an Attribute” user-interface

3.2. Implementation Procedure & Platform

In order to prove the concept of this research a working prototype containing a
subset of the overall functions of the architecture have been implemented. The target
prototype is sufficient to conduct a realistic maintenance task of an Inventory Control
system at run-time and highlight the ease of maintenance.

For the overall implementation platform such as the programming language and
tools, three options were considered, CLOS, visual C++, and Objective C. The following
decision variables have been used in order to make a selection.

L. Flexibility issues of the language; such as dynamic binding versus static binding, static
type checking versus dynamic type checking. These issues were very important in the
decision making process since flexibility is the major characteristic of the proposed

architecture.

2. Richness of the language class library; a rich class library such as Arrays and

Dictionaries which provides important basic programming structures and functions.

%0
W

3. Availability of user-interface and development building tools such as screens, buttons,
and toolbars is considered to be a valuable option in the selection process.

Table 3.1, below, uses the four decision variables to compare the advantages and

disadvantages of each selection.

CLOS Visual C++ Objective C
Flexibility: Low since High, however Very high due to the availability as
Binding dynamic utilizing dynamic | well as the ease of use of dynamic
binding is not binding is not a binding
available straightforward
Flexibility; High since all Low because C++ | Very high because Objective C is a
Type variables arc is a static pype- hybrid type-chcckir}g language and
Checlin g not ype checking decision to choose is left to the
checked at language developer

compile-time.

Class Library
Richness

Low

Rich class library

Rich class library in addition to the
availability of some re-usable source
code from existing research

User-interface
and
Development
tools

Poor

High

High

Table 3.1, Platforms Comparison

The conclusion is that Objective C is the best selection as an implementation

language. Accordingly, the platform would be the OPENSTEP operating system since

Objective C uses OPENSTERP as its primary environment.

3.3. An QOverview of the Inventorv Control Subsvstem

A Inventory Control System within an (MRP) package for auto parts

manufacturing plant ensures that all materials are available when and where needed, in the
correct quantity and at the right time. In order to obtain the required raw materials or sub-
assemblies for a particular shift, the gross production plan must be processed to obtain a
list of items required for each final product. The Inventory Control System must then

locate these items and take them out of inventory so that production can start. The system

also generates purchase orders for those items whose quantities are below certain safety

levels through proper timing of order placement . Figure 3.3 shows a schematic view of

the Inventory Control System.

The Inventory Control System will take, as its input:

1. The gross production plan for a shift which consists of: (a) the Id for each finished
product, and (b) the desired quantity.

and produces the following outputs:

1. A list of items and their corresponding quantities required for the shift production

plan.

3%}

. The physical location of each item.

- Purchase orders for those items whose quantities reach below their corresponding

)

safety levels.

The system can be functionally decomposed into the following five main modules:

1. processProductionPlan, this module accepts the gross production plan and processes
one finished product at a time. It identifies the items needed, and their corresponding
quantities, required to produce a target finished product (using its BOM database) and
passes the information to the next module, checklnventory.

2. checklnventory which searches for each item and checks whether or not the item is

available in the right quantity. This is accomplished by checking the quantity-on-hand
for that item in the Inventory database. If available, then the pul/lltem module will be

executed. Otherwise, the printPurchaseOrder module would be executed.

57

process

» Production

Plan

T

’_——pn'nt } I'Pi Orders ;
Purchase i \—/\

Order

Yes

|]
! pullltem -

Safetyleve

Yes

i
Al {nventoryitem:
1 database

Figure 3.3 A schematic view of the original Inventory Control System

3. pullltem updates the quantity-on-hand in the Inventory database and prints shipping
instructions, then passes control to the checkSafetyLevel module.

4. checkSafetyLevel module checks whether or not the quantity-on-hand of the
target item is below its safety level. If it is below its safety level, the
printPurchaseOrder module will be triggered.

5. printPurchaseQOrder prints a purchase order for procurement of the target item based
on its order-quantity.

3.4. Classes of the Inventorv Control System

Based on the functional decomposition of the Inventory Control system, the

candidate classes, their attributes and methods are listed in Table 3.2, below:

58

RequestMgr Inventoryltem

Atrributes productNo itemId
(string) (string)

productQuantity itemDescription
(integer) (string)

quantityOnHand
(integer)

standardCost
(float)

safetyLevel
(integer)

vendorld
(string)
leadTime
(integer)
location
(string)

Methods processProductionPlan checklnventory

pullltem

checkSafetyLevel
printPurchaseOrder
Table 3.2 classes of the original Inventory Control System

3.5. Maintenance Plan of the Inventorv Control System

In this illustrative example, the Inventory Control system just described will be
maintained to make it applicable for use in a different environment, such as a hospital or
nuclear reactor, where high level of security is required. In addition, the new requirements
indicate a need for managing special procedures and policies for handling, shipping and
disposal of these materials. Figure 3.4 a schematic view of the Inventory Control system

after modifications.

BOM
Access
r_l_g % Permission
' database
—L process getAcces; theckAccess
) Production e Prmission e E—
(,Q_[: Plan l Permission | | Purchase |
] FN Orders !
print :
Purchase —
Oerd]
< " erder l Handling
- t P-Procedures |
pullitem i W.: |
., - 7 ‘:
- Yes | o !
| i
{___S_k |

i Inventorylted |

Figure 3.4 A schematic view of the Inventory Control System after modifications

With these new requirements, some re-analysis will be required to produce a
different functional decomposition of the system. The output of the re-analysis highlights
the following:

1. An “Access Permission” database has to be created to contain an identification code
for each personnel in the plant along with his/her corresponding access permission for
requesting various items. Table 3.3 shows that request-id “Smith” , for example, has a
privilege of type “2” while “Johnson™ has a privilege of type “6”. In this setup type

“9” may have higher access privileges than “7” or *“3”.

Whitener 9
Smith 2
Table 3.3, a sample requester’s access Permission database

48]

(93]

(94]

60

- A getAccessPermission module should be developed to receive the requester’s

identification code, use it as a look-up key to identify the requester’s access permission
from the Access Permission database, and append the requester’s access permission

to each item before it is passed to the next module, checkAccessPermission.

- A checkAccessPermission module should be developed to perform the task of

determining whether a requester is authorized to request a certain item by matching the
item access code of the Inventory database with the requester’s access permission

before proceeding to the next module checkinventory.

. The processProductionPlan module should be modified so that it invokes the

getAccessPermission and checkAccessPermission instead of just the checkInventory
module. The processProductionPlan module should also be modified so that it

prompts the requester to provide his/her identification code.

- In order for the checkAccessPermission module to function properly, the Inventory

database has to modified so that each item will be assigned an item access code to

limit access to it.

. To make the system capable of addressing the needs to special handling, shipping, and

disposing of the various items due to their chemical or physical hazardous nature to
ensure safety a new field, handling procedure, has to added to each item in the

Inventory database has

. The pullitem module has also to be modified in order to print the special handling

procedures and policies.

Figure 3.5 shows a process diagram of the Inventory Control System after modifications.

Production

Requirements

s

process
Production
Plan

, getAccess

Permission |

61

vailable |
i puliitem l
.
Invalid ! ‘
{
Not| available !
error
Message check
_/ afetylev
} ~_
Y |
f print i

Purchase ﬂ_———‘
Order ? below safety

leve!

Figure 3.5, A Process diagram of the Inventory Control System after modifications

Subsequently, the re-analysis step will require a re-design step, as shown in Figure

3.6. The following set of changes has to be introduced:

a new class has to be added.

the structure and behavior of existing classes have to be modified.

all these changes have to be propagated to the underlying objects.

Analysis

Design

|

l

\ 4 |

Implemetation !
I
|

62

} Population |
e
New Requirements L
- - - - - -z
k»l | J ; I
! .) L R i
Re-Analysis Re-Design Re-iImplemetation i—# Re-Population | i
[T e S 1‘4—; P C P |
] L i

The following table summarizes the output of the re-design step:

Maintenance

Figure 3.6, the SDLC diagram

RequestMgr

Inventoryltem

AccessPermission

Attributes

productNo
(stringj

itemlId
(stringj

requesterld
(stringj

productQuantity
(integer)

itemDescription

(string)

requesterAccessPermis
sion

(string)

requesterld
(string)

quantityOnHand
(integer)

standardCost

(float)

safetyLevel
(integer)

vendorld

(string)

leadTime
(integer)

location
(string)

63

itemAccessCode
(string)

handlingProcedure
(string)

Methods

processProductionPlan

checklnventory

getAccessPermisiion

pullltem

checkAccessPermisiion

checkSafetyLevel

printPurchaseQOrder

prinHandling Procedure

Table 3.4, the modified classes, their attributes and methods

As shown (in bold) in the table above, the required changes are:

1. Creating a new class: AccessPermission.

2. Adding two attributes (requesterId & requesterAccessPerm) to class AccessPermission.

(93]

AccessPermission.

4. Creating objects for class AccessPermission.

(V)

. Adding two methods (getAccessPermisiion & checkAccessPermisiion) to class

. Adding two attributes (itemAccessCode & handlingProcedure) to class /nventoryltem.

6. Modifying all the objects of class Inventoryltem to incorporate the two newly added

attributes.

7. Adding a method (prinHandlingProcedure) to a class Inventoryltem.

8. Modifying the implementation of a method (processProductionPlan) of class

RequesiMgr.

3.5._ Maintenance Utilizing the Proposed Architecture vs. the Other Approaches

The maintenance phase is where most approaches will take the results of the re-

design step and proceed to re-implementation by going through the traditional cycle of

[Edit-Compile-Link]. An additional code would then be required for re-population. In

other words, to accomplish all the changes listed in the previous section using any of the

64

approaches discussed earlier, the developer would be required to go, at least once,

through the following cycle:

1. Locating where the change must be introduced in the source code.

2. Developing some source code to accomplish the required change as well as for re-

population.

3. Compiling (evaluating), linking, the source code.

The re-implementation step using the architecture, on the other hand, will take the
same results from the re-design step and will require:

Selecting the “Maintenance option” of the architecture main menu, then:

¢ selecting the “Creating New Class” option to add the AccessPermission class.

¢ selecting the “Adding an Attribute to a Class” options to add the two attributes
(requetsld & requestAccessPermission) to class AccessPermission, and two attributes
(itemAccessCode & handlingProcedure) to class Inventoryltem. This option will
automatically propagate the changes to the underlying objects in both classes.

» Selecting the “Creating an Object” option to instantiate a number of objects from class
AccessPermission.

o Selecting the “Adding a Method to a Class” option to compose the two methods:
(getAccessPermission, checkAccessPermission) to class AccessPermission, and
(printHandlingProcedure) to class Inventoryltem.

All the re-implementation and re-population steps will be carried out automatically
and transparently at run-time with out the need to modify an existing source code or
develop a new one. Adding an attribute to a class, for example, will be automatically and

transparently propagated to all the underlying objects of the target class.

This illustrative example reflects the ease of maintenance of a manufacturing
software using the architecture. All the required changes can be performed by merely

navigating through the various architecture menus and screens and providing the desired

data.

Chapter 4

THE PROPOSED ARCHITECTURE AND THE SDLC

Section 4.1 of this chapter explains the solution methodology for this research problem,
and section 4.2 introduces an overview of the proposed architecture. Section 4.3 and
section 4.4 explain the different phases of the SDLC of a software system using our
proposed architecture. Section 4.5 explains the modification scheme adopted in this

research.

4.1. The Proposed Solution Methodology

The solution methodology is built on the concept of software reuse. The proposed
architecture, the Object Assembly System (OAS), also incorporate concepts from the
Template-Parametric Modeling approach and will be built on top of an object-oriented
run-time environment.

The OAS concept rests on two basic ideas:

1. Using a library of pre-compiled objects, and

2. Utilizing pointers to connect the pre-compiled objects in order to assemble classes and
chunks.

In order to identify the OAS among the various software systems, Figure 4.1
below shows a generic non-exhaustive software classification scheme. As shown in the
figure, the OAS is an application builder which develop an application software by

assembling and packaging pre-compiled atomic building blocks.

66

67

Software Systems

Utility Systems Application systems Operating systems
(Norton) ©0s)
Software Dev. communication Scientific Eng. App. Financial qce
Tools software App. App. automation
Application Builder CASE Tools DBMS
the OAS

Figure 4.1, A generic Software systems classification scheme

One important contribution proposed by the OAS is the use of chunks. A Chunk is
a logical grouping of objects, from different classes, having a pre-defined set of
relationships [Mejabi 1994] and [Lim 1996]. Each chunk template is identified by a unique
name and has a set of parameters, which consists of: the number of objects from each
class, the names of their corresponding classes, and the relationship between classes.
Chunking is utilized as a leverage to perform a wide range of software maintenance tasks
with minimal effort. This approach provides the flexibility to automatically manipulate all
the objects of the chunk instead of manipulating each object individually. The Bill-of-
Material (BOM) module of MRP is a good example to demonstrate the power of
chunking in manufacturing software. As shown in Figure 4.2, below, a final finished
product “Table” could be thought of as a chunk. The finished “Table” chunk consists of
one top and one leg assembly. The leg assembly, in turn, consists of four legs, two short

rails, and two long rails. The number of all the tops, legs, and rails can be easily modified

68

collectively by manipulating the chunk parameters as opposed to manipulate each item

type individually.
Table
|
| |
Leg A'ssembly Top
[1] 1]
|
| |
! i 5
Short Rail Long Rail Leg
(2] [2] 4]

Figure 4.2 A Chunk representing a BOM of a finished product “Table”

4.2. Overview of the OAS Architecture

The architecture of the OAS, shown in Figure 4.3, consists of two main components :
1. a library of pre-compiled objects and
2. a number of functional modules to manipulate the library objects.

The next subsection will describe each component in details.

{ User Requirements

m
@\

(Configuration)

Domain Knowledge
Conceptual Design

. /
7/

Data

Management !
, | \M.i"t/ ’ Module %
| \/

/o:;gn\“'

\ Specifications

MRP !\\
System i AN
(Chemical P
Mfg) \}A_A_RPD,
! !database!
R N
|
MRP |
hN
System | ™.
P (Aerospace { .
Industry) ' G:RD‘
. ! database "
| MRP
{ System
{ . '
; (Automotive
U -
? ~ i MRP |
{database

Figure 4.3 An overview of the Object Assembly System

1. The Pre-Compiled Object Library which is an expandable library of primitive, as well

as some specialized, pre-compiled classes and objects directed towards MRP

applications. The Pre-Compiled Object Library (The OAS Application Kit) contains:

a) Classes

1. Stub: A class Stub (which is the root class in the proposed OAS) used to create

all other classes. The definition of class Stub, shown in Figure 4.4 below,

proposed in this research will have the following structure:

1. Class-name: which is a unique class identifier.

2. Superclass-id: a pointer to the superclass of the target class.

3. Superclass-name: the name of the superclass of the target class.

4. Attribute-list: An open-ended list of pointers to other objects representing the

70

various class attributes, including relationship attributes.
5. Method-list: An open-ended list of pointers to other objects representing class

behaviors.

f‘

| id
Superclass
Attributes Methods
- id R
id Stub g —»
-
class name
superclass name

Figure 4.4 Class Stub

2. Specialized Classes: A number of extendible classes designed specifically for

MRP requirements. Below is a list of some specialized classes in the library:

2.1. Inventoryltem, A class containing information about each item in the MRP

system such as: item Id, description, quantity on hand, price, location, lead
time, and safety level. This class has the following three subclasses which
are used to distinguish the type of item. Class SubAssemblyltem, for
example, indicates a sub-assembly part and will have attributes such as

componentList .Class FinishedProductltem, on the other hand, is a final

71

finished product and will have attributes such as: toolsAndMachines
required, and suggested profit margin.

2.1.1. RawMaterialltem,

2.2.2. SubAssemblyvltem

2.2.3. FinishedProductltem

2.2. Supplier, A class containing information about suppliers such: supplier Id,
address, phone, contact, lead time, discount, and rating.

2.3. RequestMgr, A class to describe a request using data such as :requester Id.
This class is also capable of exploding a FinishedProductItem.

2.4. PurchasingMigr, A class used to hold information about purchase orders

such as purchase order number, date, item Id’s and their quantities, and
vendor Id’s. It is responsible for priority management of orders, and timely
release and print of purchase orders.

2.5. WarehouseMgr, A class used to hold information about a warehouse such

as: warehouse Id, address, phone, capacity, cycle counting, and special
facilities. This class is highly important for MRP application in case of
multiple warehouses due to its capability of assigning items to the proper
warehouse.

2.6. SchedulingMgr, This class describes the Master Production Schedule by

identifying the planned production quantities of finished products by date,
week or period as well as the required resources. It is capable of modifying
the schedule upon any change in demand.

2.7. GeneralLedger, This class enables a company to setup and maintain a

72

record of codes containing summarized totals of debits and credits for
specified periods. It contains information such as: company code, code for

each division, department and customer of the company.

2.8. ForecastingMgr, This class utilizes forecasting logic to anticipate

customer order demands, it holds information such as sales for previous
periods. This class is important since forecasting is the driving force

behind Master Production Schedule.

2.9. InventoryTransactionMegr, The function of this class is to record and report

inventory changes such as item procurements, inventory transfers, and

scrap percentage and quantity, it then updates the inventory accordingly.

2.10. CapacityReqPlanner, The function of this class is to monitor and report

[£S)

2.12.

11

imbalances between the load versus capacity, as well as the capacity for
labor/machine/resource load for a work center during a specified period of
time. The class stores the following information about each work center in
the company: work center Id, labor capacity, machine capacity, and
resource capacity.

FinancialM{gr, This class is designed to generate (using the information
from the General Ledger) balance sheets, profit and loss accounts, and
budget versus actual comparisons.

SalesAnalysisMgr, Presents a detailed analysis of sales history and allows

sales orders to be to be matched against forecasts and driven directly into
the Master Production Schedule. The class stores information such as:

itemld, customer Id, salesPerson Id, quantity sold, total sales price, and

ship-to-address.
2.13. BOM, This function of this class is to explode a finished product, it holds
the Bill-of-Material of that product.

3. MethodCreator: A class designed to be used as a container to hold the steps of a

target method.
b) Chunks:
1. Chunk: A logical grouping of objects.
c) Attribute Building Blocks, A number of classes representing fundamental data types
designed to define the various class attributes and relationships. The following is a list
of some attribute building blocks in the OAS library:

1. Integer: A class representing a fundamental data type “integer”.

N

. Float: A class representing a fundamental data type “float”.

- Double: A class representing a fundamental data type “double”.

W)

4. Character: A class representing a fundamental data type “character”.

n

. String: A class representing a data type “string”.

N

. Boolean: A class representing a fundamental data type “Boolean”.
7. Id: A class represents a data type “pointer”.

Each attribute building block will have the following structure:

[a—

. an attribute name.

A

. attribute value.

. attribute default value and

(93]

SN

. attribute domain.

d)_Behavior Building Blocks:

1. OASMethodLib: A class containing some basic low-level behaviors, such as:

(a) multiply
(b) subtract
(c) retreiveThis Attribute
(d) unArchive ThisObject
The OASMethodLib also contains some specialized complex behaviors directed
toward MRP needs such as:
(a) explodeThisProduct
(b) updateQtyOnHand
(c) printPurchaseOrder
A class method can be composed using both types of building blocks. The
RequestMgr class, for example, has a method called: “getRequiredItems” which
consists of the following two building blocks:
1. explodeThisProduct, and
2. multiply
The OASMethodLib class can be further extended and new behaviors can
be added as needed.
The richness and diversity of the Pre-Compiled Object Library (will be referred
to as: the Object Library for the rest of this research) determines the range of
applications that can be built from the library. The library can always be
expanded by adding new types of objects and behaviors as needed in an off-line

mode.

74

2. The Functional Modules which are used to manipulate the library objects and classes,

they are:

a) The Coordination Module, invokes the system main menu and allows the developer to

navigate and invoke the various functions of the OAS as well as coordinating the
execution of the other modules of the system, such as the Design Specification
module, to accomplish the desired task.

b) The Design Specifications Module, provides an interface to the Pre-Compiled Object

Library allowing the developer to design classes, their attributes and behaviors as well
as designing chunks during the design phase. The Design Specifications Module
validates design specifications by enforcing rules such that no two attributes, in a class
and its superclass, have the same name. Following is a list of the validation rules:

a. Each class and chunk in the application software has a unique name.

b. Each attribute, method, and relationship (in a class) has a unique name.

c. Each attribute value must be within the domain of the attribute as

defined in the class definition.
d. A superclass of a target class cannot be a subclass of any of the
subclasses of the target class.
The Design Specifications Module creates and uses the following files for its
operations:

(1)_the Class Specs file, contains data about each class in the application software

such as:
(@) Class-name: which is a unique class identification.

(b) Superclass-name: Name of its superclass

(¢) Method-list: An open-ended list of the names of methods along with the
names of its building blocks as shown below.
[method name-1, Blg Blk-1,Blg Blk-2,..], [.eccvnc......], [method name-N, ...]
(d) Attribute-list: An open-ended list of attribute definitions. Each attribute
definition has the following format:
(attribute name-1, its data type, its default value, domain], [......]
(e) Relationship-list: An open-ended list of names of relationships in the
following format:
[relationship name-1], [..............], [relationship name-N]
(2) the Chunk Specs file, contains the name of each chunk in the MRP system and its

parameter-list.

(a) Chunk name: which is a unique name to identify each chunk in the application
software.
(b) Parameters-list: This list contains the number of objects from various classes,
the names of their corresponding classes, and their relationships.

(3) the Attribute-Method table file, which stores all the names of attributes and

methods in the application software and indicates, in a tabular format, which
attribute is implemented by which method. This dependency relationship is

required during the maintenance phase to account for the ripple effect of adding or

removing an attribute.

M1 M2 M3 M4 M5

1 1 1 1 0

0 0 1 1 1

A3 1 I 1 1 0
A4 1 0 0 1 1
A5 0 1 0 0 1
A6 0 l 0 0 0

Table 4.1, A sample Attribute-Method table file

The sample table 4.1 above indicates that attribute A4 is implemented by methods
M1, M4, and M3, it also shows that deleting attribute A6 will only affect method
M2.

(4) the Library ClassNames file, to store the names of all the classes of the Pre-

Compiled Object Library in order to be displayed later when needed.

c) The Functional Configuration Module, maps and assembles objects, and chunks from

the Object Library to the logical design in order to generate the various
class prototypes and chunks defined during the design phase.

d) The Data Management Module is responsible for populating the system with data

objects as well as propagating the changes made during maintenance to the underlying

objects.

e) The Maintenance Module which allows the developer to select one or more

maintenance option such as adding or deleting a class. The Maintenance Module will
then invoke the appropriate module to execute the required change.

Inheritance in the QAS

As has been shown in Figure 4.4 in the beginning of this section, this research

implements single inheritance, where a class inherits its behaviors and characteristics

77

78

from a single superclass via an IS-A relationship as opposed to multiple inheritance, where
a class inherits its behavior and characteristics from more than one superclass as shown in
Figure 4.5 below. The justification for this decision is based on the following reasons:
1. Conflict: When methods with the same name are inherited from A and B, it is not clear
from which class the methods should actually be inherited. Such conflicts are
inevitable when classes A and B have a common (direct or indirect) superclass C. In
this case, an additional mechanism has to be provided to resolve the ambiguity

[Blascheck 1994].

[®)

. Duplication of instance variables: When A and B have a common superclass C, class
N would inherit attributes from both A and B. If objects of class C have an attribute x,
objects from class A and B will also have attribute x. When N inherits from A and B,
the problem arises whether x should be duplicated in N objects or not. An additional

mechanism is needed to allow the developer to make such decision [Blascheck 1994].

W

. Complexity: In single inheritance, class hierarchy always consists of one or more
trees. Trees are easy to understand, because there is only a single line of ancestors for
every class. When multiple inheritance is implemented, the resulting class hierarchy
takes the form of a directed acylic graph (DAG). The superclasses of an individual
class also form a DAG, which makes it hard to determine statically which methods are
inherited from which superclass. This would necessarily result in additional complexity

to software maintenance [Blascheck 1994].

79

]
Class C }
i
IS'A : . IS’A
Class A Class B

IS-A IS-A

|

l
!Class N ,

Figure 4.5 Multiple inheritance
4. Efficiency: Because of the additional complexity, compilers for languages with
multiple inheritance are difficult to implement and consumes more memory and longer
run-time [Blascheck 1994].

4.3. Overview of the OAS Approach to the SDLC

Most of the researchers and practitioners in the field of software engineering
consider the software development life cycle to consist of: Analysis, Design,
Implementation, and Maintenance. Data Population, which is the process of instatiating a
software system with data so it can be used to fulfill its purpose, is typically not
recognized as a separate phase despite its considerable importance. This research.
however, will highlight data population since most of the maintenance efforts will relate to
propagating changes to the underlying data objects.

Figure 4.6 shows a high level overview of the SDLC using the OAS approach, and
Figure 4.7 outlines the SDLC using traditional software development methods. This
section presents an overview of the different phases of the SDLC of a software system

using the OAS approach. The discussion, in this section as well as the following sections,

will be presented for each phase in terms of:
1. The input and output for the phase or activity.
2. The various functions in each phase, its corresponding set of inputs, outputs and tools

3. The proposed OAS architectural elements are explained, where applicable, to provide

a high level understanding of this research.

80

A
N
Al |Problem System Class/Object
L Definition Functional Outlining
Y Decomposition
S
!S A1.1 A1.2 A1.3

A1

Class Design
D [Class Core Design]
E Platform Proto- Chunk
s Selection type !Behavlor Design][Design
! Plann. ‘Attribute Design j
G
N lReIationshlp Design i
A2.1 A2.2 2 3 A2.4

A2
|
M
P Object/Class/Chunk Classes Testing System
L Configuration Integration
E &
M Testing
E A3.1 A3.2 A3.3
N. k3

A4 DATA POPULATION
M JRe-Implem entation Re-Population
A R Object/Class/chunk Locate Affected
(e- . Re- X Configuration Objects
N Analysis Design
T {Classes Test i
£ Maintain Affected
A5 A5=3 AS.4
R

81

Figure 4.6, The OAS approach to the SDLC

Problem System Class/
Definition Functional Object
Decomposition Outlining

A
N
A
L
Y
S
|

S

Class Design

2 Platform Prototype 'Attribute Design

Selection Planning : :
S {Behavior Design ;
| ! ;
G ’Relationship Design i
N , ;
I
M System
P Code Code Program | |Integration
L Generating || Editing ||Compiling Linking Testing &
E Testing
M
E
N.

DATA POPULATION

M Re-Implementation Re-Population
|A Re- Re- ’TLCode Gen. Code Edit.
N Analysis Design
T Compiling Linking
E
N Prog. Test. Sys. Test.

h

Figure 4.7 Traditional application of the SDLC

The high level view of the SDLC using the OAS, as shown in Figure 4.8, will have

the following set of inputs and outputs:

Input

—

3]

LI

Output

. User requirements.

1. Functional application software.

2. System data.

. Knowledge of the domain that the software system will support.

83

- Key practices and policies of the enterprise that the software system must support.

f
i
i

User requirements
—_— >

Domain knowledge
—_

Practices & policies
e

|
Analysis ! Design
L
. Data .
Implementation . Maintenance
Popuation

Functional application

software
L

System data
 —

Figure 4.8 Overview of the SDLC

Details of the various sets of functions, inputs, outputs, and their corresponding

tools, for each phase, are outlined below:

Function | Input Output Tools
Analysis | User requirements, Statement of the problem and Text editor, data entry
knowledge. policies, and description of the system main forms, and drawing tools
practices of the enterprise functional modules. Description | to describe the system
that the software must of key objects, chunks, classes, functional modules,
support. their characteristics, key objects, classes, and their
behaviors and relationships. characteristics, behaviors
Object to class mapping. and relationships.
Function | Input Output Tools
Design Description of the system The Class Specs file, the Chunk | The Design Specification

main functional modules.

Specs file, and the Attribute-

Module o access the

84

Description of key objects, Method table file. Platform Object Library allowing
chunks, classes, their selection and prototype the developer to design
characteristics, key planning. classes, and chunks as
behaviors and relationships. well validating the design
Object to class mapping. specifications.
The Object Library and the
ClassNames file.
Function Input Output Tools
Implementation | The Class Specs file, Class and The Functional Configuration Module
the Chunk Specs file, | chunk to map and assemble objects from the
and the Object prototypes. Object Library to the logical design in
Library. Platform order to generate the various class and
selection and chunk prototypes defined during the
prototype planning. design phase.
Function Input Output Tools
Data Prototype for each class and chunk | Persistent data The Data Management
Population in the application software. objects. Module. to create required
objects.
Function Input QOutput Tools
Maintenance | New userrequirements | Updated analysis All the tools listed above in order

and enhancements,
existing class and
chunk prototypes as
well the persistent data

objects.

results, updated
design files, updated
class and chunk
prototypes, and

updated data objects.

to change the logical design, class
and chunk prototypes. The data
management Module to carry out
the changes to the underlying data

objects.

4.4. Details of the SDLC Phases

The following subsections 4.4.1 through 4.4.5 explain, in details, the OAS

85

approach to the different phases of the SDLC..
4.4.1 Analvsis

The analysis phase as shown in Figure 4.9 below consists of three major tasks. The

inputs, outputs, and tools are explained below:

Input

—

. User requirements in a textual format.

L)

. Knowledge of the domain that the software system will support.

- Key practices and policies of the enterprise.

(93]

Output

—

- Statement defining the problem and objectives of the software system.

o

. Textual and diagrammatic description of the main functional modules of the system.

. Textual and diagrammatic description of key objects, classes, their characteristics, key

Gl

behaviors, and relationships.

FY

. Object to class mapping.

! ! proslem statement

User requirements i | | System | ’ >
> Problem | Lo .
. Functional | Systtem functional
i Definition iti >
Domain knowledge ! Decomposition modules
> Textual & diagrammatic
. . ! description of key classes
Practices & policies | Class/Object ! and objects
Outlining J object to class mapping
-
|

Figure 4.9 The Analysis phase

Function Input Output Tools

Problem User requirements. | Statement of the problem Text editor and data entry

definition and the system objectives tools.

86

System system objectives, semantic and diagramming | Text editor and drawing tools
functional domain knowledge. | description of the main to show the main functional
.. policies, and functional modules of the modules of the system.

decomposition

practices of the application software system

enterprise.
Class/object System functional Textual and diagrammatic | Text editor, data entry and
outlining modules. description of. key classes, drawing tools to describe the

objects, their characteristics,
key behaviors, and
relationships. Object to

class mapping.

key classes, objects. their
characteristics, behaviors. and

relationships.

The OAS does not introduce any changes to the analysis phase when compared to

the analysis phase in the traditional software development approaches such as CASE.

4.4.2. Design

The design phase of the OAS is shown in Figure 4.10 with the chunk design

function added. The inputs, outputs, tools and functions of the design phase are listed

below:
System .
functional | 1 []
Class Chunk Prototype |
Textual & diagrammatic Design Design Planning
description of key 9 g I

classes

°Bi5ER to class

Input

Platform Selection

i Flatform seiection

prototype planrﬁng

Class Specs file

Figure 4.10 The Design phase

Chunk Specs file
Method-table file

Object scenario diagrams

1. Textual description of the main functional modules of the system.

2. The Object Library files and the ClasssNames file.

87

3. Textual description of key objects, chunks, classes, their characteristics, key behaviors,

and relationships.

4. Object to class mapping.

Output

1. The Class Specs file, the Chunk Specs file, and the Attribute-Method table file.

2. Platform selection where hardware, operating system, and implementation

environments are specified.

("3

. Prototype planning, which is a plan to develop and test several prototypes in order to

verify user requirements and iterate over the analysis and design phases as necessary.

The plan contains (1) the number of prototype models needed, (2) conditions for

satisfactory completion of prototyping, and (3) which modules should be included in

each prototype.

Function Input Output Tools
Class Description of objects, The Class Specs file and Text editor and the Design
design classes, their key behaviors, | the Attribute-Method table Specifications Module.
characteristics, and file.
relationships. Objects to
class mapping. The Object
Library and the ClassNames
file.
Chunk System main functional The Chunk Specs file. Text editor and the Design
design modules. Specifications Module for
providing the user-interface
to help the developer design
chunks and provide their
corresponding parameters.
Platform User requirements. Choice of the hardware Text editor.
selection Enterprise practices and and software environment.

policies.

88

Prototype [User requirements. The number of prototypes, | Text editor..

planning conditions, and the

modules to be included in

each prototype.

4.4.2.1. Class Design

Class design can be further divided into four design tasks as shown in Figure 4.11,
class core, attribute, behavior, and relationship design. These four functions will be

explained in detail in the next subsections.

The Class Specs file
Textual d ¢ —_— containing class names,
extual desc. o ; . !
iClass Core! i Behavior l attributes, and behaviors
objects & classes | | Design | ! Design ; ! and relationships
o | I
: i o . i N
Object to class Attribute ’ Relationship ! The Method-;able
» - (- I —
mapping | Design | Design ‘

Figure 4.11 Class Design
The inputs and outputs of class design function of the OAS are:
Input
1. Description of the key objects, classes, their key behaviors, characteristics, and

relationships.

(£

. Object to class mapping.

. The Object Library and the ClassNames file.

(93]

Qutput

1. The Class Specs file, and the Attribute-Method table file.

Class Core Desisn

The purpose of this step is to define new classes in the MRP system. The

39

functions, inputs, outputs and tools in the class core design step are:

Function Input Output Tools

Class Description of classes and The Class Specs file. The Design Specifications
Core the ClassNames file. Module and data entry tools.
design

Behavior Design

In the OAS, the functions, inputs, outputs and tools in the behavior design step are:

Function Input Output Tools

Behavior | Description of the various The updated Class Specs The Design Specifications

desion behaviors of the class. The file and the Attribute- Module and data entry tools.
o

Object Library Method table file

It is important to highlight the fact that the OAS starts with behavior design as
opposed to starting with designing class characteristics. This approach will result in
producing an flexible software system since no attribute will be defined unless it definitely
contributes to supporting class behavior. During the behavior design step, the Design
Specifications Module updates the Class Specs File by adding the names of the methods
and their building blocks to the corresponding class in the file. It also updates the
Attribute-Method table file by creating a column representing the new method storing (1)
in all the cells of intersection of the target method column and its supporting arguments
rows as was previously shown in Table 4.1 of section 4.2. The Attribute-Method table file
identifies which attribute is implemented by which method in order to resolve

dependencies when deleting an attribute.

90

Attribute Desion

This step is to design the attributes to support the required behavior of a class. The

inputs, outputs, functions and tools, for this step are:

Function Input Output Tools

Attribute | Description of the The updated Class Specs The Design Specifications

design characteristics of the class. file and the Attribute- Module and data entry tools.
The Object Library. Method table file.

In the design step, the Design Specifications Module updates the Class Specs File
by adding the names of the attributes, provided by the developer, to the corresponding
class in the file. It also updates the Attribute-Method table file by adding an entry (a row)

for each attribute added and indicating which method implements which attribute.

Relationship Design

The OAS approach to relationship design of a class will have the following set of

functions, inputs, outputs and tools:

Function Input Output Tools

Relationship Description of the various The updated Class Specs | The Design Specifications

desien relationships that a class file. Module and data entry
o
has with other classes. The tools.
Object Library

Class relationships are considered as attributes, called relationship attributes. The
Design Specifications Module updates the Class Specs File by adding the names of the

relationship attributes to the corresponding class in the file.

91

4.4.2. 2. Chunk Design

The OAS introduces the concept of chunking to manufacturing software. This
concept of grouping objects in a chunk is not addressed in traditional software

development tools. The functions, its input, output, and tools implemented in this step will

be:
Function Input Output Tools
Chunk Description of the various The Chunk Specs file. The Design Specifications
design chunks in the application Module to define. chunks
o
software system. and provide their
corresponding parameters.

4.4.3. Implementation

The implementation phase has the following inputs and outputs:

Input

1. The Class Specs file.

L)

. The Chunk Specs file.

. The Object Library files.

W)

Qutput

1. Class prototype for each class and configured chunks.

The implementation phase, as shown in Figure 4.12, consists of three functions.

The Class Specs file

92

The Pre-Compiled Object

— >

Object/Class
Configuration

Class prototypes
»

Library files

The Chunk Specs file

>

i
i Classes 3

!
|

System
Integration
and Testing

Configured chunks
—>

Figure 4.12 Implementation phase in the OAS approach

Following is an overview of these functions, their inputs, outputs and tools required:

Function Input Output Tools

Object/class The Class Specs file, the | Class prototypes and The Functional

configuration Chunk Specs file, and the configured chunks. Configuration Module 1o

Object Library. map and assemble object

from the Object Library to
the logical design

Classes Class prototypes and The expected output of Testing systems and

testing configured chunks. the individual classes. debuggers of the
implementation environment.

System Class prototypes and Fully functional MRP Support modules dedicated to

integration configured chunks. system which fulfills the | integrating the individual

user requirements. programs.

and testing

The Implementation phase is where an important extension to traditional software

development approaches is proposed in this research. This research uses the concept of

pre-compiled objects and open-ended lists of pointers. The Implementation phase in the

traditional software development methods takes the output of the design phase and

produces a set of hard-coded computer-oriented structures defining classes, their

characteristics and behaviors. The OAS, on the other hand, assembles and packages pre-

compiled building block to produce class prototypes.

Class attributes and behaviors are represented by open-ended lists containing
pointers to pre-compiled building objects selected from the Object Library. This approach
adds a high degree of flexibility to the application software since there is no need to edit,
compile and link source-code upon making changes such as changing a class hierarchy,
attributes or behavior.

Upon completing the implementation phase the MRP application software system
will be fully functional and ready for execution.

4.4.4. Data Population

Data population is the process of creating persistent data before or during system

use. The input, output, and tools of this step are tabulated below:

Function Input Output Tools
Data Class and chunk prototypes. | Persistent data objects. The Data Managenient
Population and user supplied data. Module.

4.4.5. Maintenance

System maintenance is defined as any change to the software after delivery to the
customer. Most traditional software development approaches such as CASE are capable
of only handling changes to the logical design. This requires updating the source code,
compiling, and linking. Moreover, in the traditional approach, propagating these changes
to the underlying data objects, or re-population, has to be done manually.

As shown in Figure 4.13 ,system maintenance phase consists of four functions,

namely: Re-Analysis, Re-Design, Re-Implementation and Re-Population.

94

New userrequirements
or enhacement

> 1 ! Updated classes and

Existing classes and chunks Re-Analysis Re-Design chunks

-
» i

Existing data objects Updated data

A 4

> objects
Re-Implementation Re-Population| |ypdated Ciass Specs file,
Existing Class Specs file, Chunk .
- Specs file, and the Attribu
Specs file, and the Attribute-Method table file

l

table file
Figure 4.13 The Maintenance phase
In the OAS, the maintenance phase will have the following set of inputs and outputs:

Input

1. New user requirements or enhancements.

[§%)

. Existing Class specs file, Chunk Specs file, and the Attribute-Method table file.

. Existing class and chunk prototypes.

(¥5)

LN

. Existing data object files.

QOutput

—_—

. Updated Class specs file, Chunk Specs file, and the Attribute-Method table file.

88}

. Updated class and chunk prototypes.

(V%)

. Updated data object files.
The four functions, in turn, will have the following input, output, and tools

associated with them:

Function Input Output Tools
Re—analysis New user requirements | Updated analysis | Text editor, data entry forms, and
or enhancements, and results. drawing tools. in edit mode. to
existing analysis describe the system functional
results. modules, objects, classes, their
characteristics, behaviors, and

95

relationships.

Re-design New user requirements | Updated Class Text editor, data entry forms, and
or enhancements, Specs file, drawing tools, in edit mode, to
updated analysis updated Chunk define classes and chunks. The
results, and existing Specs file, and Design Specifications Module for
Class Specs file, updated designing classes and chunks as
Chunk Specs file, and | Attribute- well as validating the design
the Attribute-Method Method table file. | specifications.
table file.

Re- Updated Class Specs Updated class and | Functional Configuration Module

implementation file, and Chunk Specs | chunk prototypes. | to select objects from the Pre-
file. Compiled Object Library to

assemble the various class and
chunk prototypes described during
the design phase.

Re- Population | Updated class and Updated data The Data Management Module.
chunk prototypes. object files.

Existing data object
files.

The various types of maintenance tasks that the OAS is capable of handling are

listed below:

¢ Maintenance of Classes

1. Maintenance of class inheritance

Creating a new class

Deleting a class

Dynamic Inheritance: (Changing a superclass)

2. Maintenance of class behavior

Adding a method to a class

Deleting a method from a class

Modifying a method’s implementation

3. Maintenance of class structure
Adding an attribute to a Class
Deleting an attribute from a Class
Changing an attribute’s domain
Changing an attribute’s default value
Adding a relationship to a class
Deleting a relationship from a class

Maintenance of Objects

Creating a new object

Deleting an object

Creating a relationship between two objects

Removing a relationship between two objects

Changing the value of an object attribute

Object Migration: (Changing an object-class membership)

e Maintenance of Chunks

Creating a chunk

Deleting a chunk

Assembling a chunk

It should be mentioned that maintaining the Object Library, such as adding a new
behavior building block, is an off-line activity that may require some source coding with
compiling and linking.
4.4.5.1. Re-Analysis

Re-Analysis is the first submodule to be executed during system maintenance. its

96

inputs, outputs, and tools are:

Input

1. New user requirements or enhancements.
2. Existing analysis results.

Output

1. Updated analysis results.

Tools

Text editor, data entry forms, and drawing tools, in edit mode, to describe the system
functional modules, key classes, their characteristics, behaviors, and relationships.
4.4.5.2. Re-Design

In this step the inputs, outputs, and tools are:

Input:

1. New user requirements or enhancements.

88

. Updated analysis results.

. Existing Class Specs file, Chunk Specs file, and the Attribute-Method-table file.

(93]

Output:
1. Updated Class Specs file, Chunk Specs file, and the Attribute-Method-table file.

Tools

Text editor, data entry forms, and drawing tools, in edit mode, to define system functional
modules, classes and chunks. The Design Specifications Module for designing classes and
chunks as well as validating the design specifications.

4.4.5.3. Re-Implementation

In the OAS, re-implementation is very much similar to implementation.

98

Input:

1. Updated Class Specs file, Chunk Specs file, and the Attribute-Method-table file.

Output:

1. Updated class and chunk prototypes.

Tools

Functional Configuration Module to select objects from the Object Library to assemble
the various class and chunk prototypes described during the design phase.

4.4.5.4. Re-Population

The OAS, unlike traditional development approaches, is capable of automatically
propagating all changes made to the logical design to the affected underlying data objects.

The Data Management Module will be invoked to accomplish this task.

If Locate
i Affected
Changes ! Objects Updated data object
i | Maintain i | fles
j Affected !
| Objects

Figure 4.14 Re-Population

As shown in Figure 4.14, the inputs, outputs, and tools to re-population are:

Function Input Output Tools

Locate affected | Changes introduced by | Classes, objects and chunks to be | The Data

objects the developer. changed are located by the Data | Management
Management Module. Module.
Update Classes, objects, or Modified classes, objects, or The Data
chunks to be changed Management

affected objects

99

and type of change. chunks. Modlule.

4.5. The Modification Scheme

The modification schemes, implemented in order to modify the underlying data

objects, found in the literature are:

1.

N

[V

The Versionning approach described in [Zdonic 1990] involves using a mechanism of
class versions, generating a new version of a given class each time the class is
modified. Another mechanism is required to connect the different versions of a class to

each other and present the user with the desired version.

. The Deferred or Screening approach used in ORION described in [Banerjee et al.

1987] where modifications to objects are deferred (possibly indefinitely) until they are

used again. Objects are not actually modified but rather screened in order to be

presented to the user.

. The Conversion approach implemented in Gemstone described in [Penny et al. 1987].

In this approach all the objects are modified immediately to conform to the new class
definition.

The first approach requires two mechanisms and versioning is not a desired option

in MRP systems since the end-users usually need to see an accurate snapshot of their

inventory at any given time. The screening approach causes a degregation of performance

due to screening references to or from objects of a modified class. It also requires a

permanent mechanism throughout the system life time. It does not appear possible to

determine when the system can stop screening objects of modified classes. It also requires

100

a permanent mechanism throughout the system life time.

The modification scheme adopted in this research is similar to the Conversion
approach implemented in the Gemstone data model. The decision was made based on the
following reasons:

1. Performance and speed of execution are highly desired options in MRP systems.

™~

. Consistency of data is guaranteed when implementing the conversion approach.

. No overhead mechanisms are needed for versioning or screening.

L)

Chapter S
THE DETAILED FUNCTIONAL BUILDING BLOCKS AND OPERATING

PROCEDURES OF THE OAS

This chapter describes to the functional modules and the operational procedures of the
proposed OAS. Section 5.1 lists all the functional modules, their building blocks, and a
brief description of the task of each module. Section 5.2 explains, in details, the processes
performed by each functional building block in the architecture. Section 5.3, on the other
hand, presents the Object Oriented class design of the OAS. Section 5.4 describes the

procedures for operating the system.

5.1. Functional Modules and their Building Blocks of the OAS

The functional modules of the proposed OAS, as shown in Figure 5.1, consist of
the following components:
1. Coordination Manager

2. Design Specifications Module

(93

. Functional Configuration Module
4. Data Management Module

5. Maintenance Module

101

Coordination Manager

AN

Design Driver

validateHlerarchy

! }
L i
i validateMethod }
'f validateAttribute }

! validateRelationship |
[1

[validateObject
]’ Attributes |

{anAMethod It ignA "‘mbu(” editClass 7

i enterClass !lr‘

__/

[}
} i
LeditAnribute] editMethod || displayMethods | | emercnunxj | Class Specs File
(5 i |
: ; :] Chunk Specs
! enterObject !{enterfwoomects; | File x
" " i Method-table)
Display and Edit Module
f———————y
l storeClass]'
—_—
| storeMethod |
- updateDcletingClass]{ updateDeletingAttribute
storeAttribute] !
pdateChangingSuperciass]I pd

—_—
g storeRelationship |
J

it updateChangingAttrDefault

Design Validation

i

i

i storeChunk || |1 >
_ L updateDeletingMethod | i updatedeletingChunk
i i Fil
Design Files ! updateMethodTableFile

gingAttrDomain =
|
t
i

| configAddingClass
1

configDeletingClass

L

—
| configChangingSuperciass

configAddingRelaticnship

P
'

i configDeletingRelationship

!

configAddingMethod

{ configDeletingMethod

configAddingAttribute

configDeletingAttribute

[
|

Module Creation Module
Design Files Maintenance Module
Design Files Creation & Maintenance Module
Design Specification Module
[canfigDriver | [maintDriver]

! populationDriver

| L

oy P o i i
! j

; propagaeChangingSuperclas E :LchangeOblectAnrlbuteValue

changeAttnbuteDomain B changeClassMembership

|
!

E changeAttributeDefault 1} ! deleteChunk E
i: createObject i g assembleChunk ‘:
[deleteObject ‘l { madifyObijects]
LcreamoujectsRelau'onship J ! addAttributesToObject]
l propagaeClassDeietion ' ' addOneAttnibuteToObject]

LA leteOneAttri [{ ‘\bjec!

[configAddingChunk

Data Management Module

Functional Configuration Module

Maintenance Module

~ !
—
: Pre-Compiled

i Object Library |

S

Figure 5.1, Building blocks of the OAS

5.1.1. Coordination Manager

The Coordination Manager is the key module responsible for invoking all other

modules of the OAS. The main menu of the Coordination Manager allows the developer

to use the different functionalities of the system such as analysis, design, or
implementation.

5.1.2. Design Specifications Module

The Design Specifications Module is responsible for performing design tasks,
design validation, and creation of the design files. The Design Specifications Module
consists of the following submodules:

1. Design Driver

(L8]

. Display and Edit Module

. Design Validation Module

(V5]

4

. Design Files Creation Module.

W

. Design Files Maintenance Module.
The names of the building blocks of each submodule and a brief description of its
task are listed below:

Design Driver

The Design Driver is responsible for invoking other building blocks in order to
perform the various design tasks such as class core design, class behavior, class structure,
and chunk design.

Displav and Edit Module

This module displays the various design specification items such as, a class with its
attributes and methods, in order to allow the developer to edit and modify them. The
Display and Edit Module consists of the following building blocks:
enterClass: A user-interface to allow the developer to enter a class name and its

superclass.

104

designAMethod: A user-interface to display the behavior building blocks of the Pre-

Compiled Object Library and allow the developer to select, drag and drop behavior blocks
to compose a method.

designAnAttribute: A user-interface to display a group of icons representing the various

attributes of the Object Library allow the developer to select an attribute and provide a
name, domain and default value for it.

editClass: A user-interface to display names of a class, its superclass, attributes, methods,
relationships and its objects and allow the developer to select any of them.

editAttribute: A user-interface to display an attribute name, domain, and default value and
allow the developer to edit the default value or domain. The editAttribute then prompt the
developer, , in case of changing the attribute domain, to provide an algorithm in order to
change the value of the attribute in the underlying objects of the target class..
enterChunk: A user-interface to display all the chunk names in the application software
and allow the developer to specify a chunk name and enter its corresponding parameters.
enterObject: A user-interface to allow the developer to enter an object name and provide
values for its attributes.

editMethod: A user-interface to allow the developer to edit a method implementation.

enterTwoQObjects: A user-interface to create a relationship between two objects by

allowing the developer to enter two object names and the name their target relationship.

displayMethods: A user-interface to display all the method names which use a target

attribute.

Design Validation Module

The function of this module is to validate all design specifications. Following is a

list of the building blocks of the Design Validation Module, and a brief description of
their corresponding functions:

validateHierarchy: Checks whether the name of a class and its superclass provided by the

developer makes a valid class/superclass relationship.

validateMethod: Checks if a target method name exists in a certain class.

validateAttribute: Checks if a target attribute name exists in a certain class.

validateRelationship: Checks if a target relationship name exists in a certain class.

validateObjectAttriibutes: Checks if the data type and value of each attribute of a target

object conform to the attributes data type, domain, and default value declared in the class
definition.

Design Files Creation Module

This module is responsible for creating the design files: the Class Specs file, Chunk
Specs file, Attribute-Method table file, and the ClassNames file. This module has the
following submodules:
storeClass: Creates a record in the Class Specs file for each class in the MRP system and
saves the class name and its superclass.
storeMlethod: Saves a method in the “Method-list” of the target class record of the Class
Specs file. It also creates a column for the method in the Attribute-Method table file.
storeAtiribute: Saves an attribute in the “Attribute-list” of the target class record of the
Class Specs file. It also creates a row, for the attribute, in the Attribute-Method table file.

storeRelationship: Saves a relationship in the “Relationship-list” of the target class record

of the Class Specs file.

storeChunk: Saves a chunk name along with its parameters in the Chunk Specs file.

106

Design Files Maintenance Module

This module updates the three design files, the Class Specs file, the Chunk Specs
file, and Attribute-Method table file, upon any change initiated by the developer during the
maintenance phase. The building blocks of the Design Files Maintenance Module are:

updateDeletingClass: Deletes a class record from the Class Specs file.

updateChangingSuperclass: Changes the superclass of a class in the Class Specs file.

updateDeletingRelationship: Deletes a relationship from a class in the Class Specs file.

updateDeletingMethod: Deletes a method from a class in the Class Specs file.

updateDeletingAttribute: Deletes an attribute from a class in the Class Specs file.

updateChangingAttrDomain: Changes the domain of a target attribute of a class in the

Class Specs file.

updateChangingAtrDefault: Changes the default value of a target attribute of a class in

the Class Specs file.

updateDeletingChunk: Deletes a chunk record from the Chunk Specs file.

updateMethodTableFile: Deletes a method or an attribute from the Attribute-Method

table file

5.1.3. Functional Configuration Module

The task of the Functional Configuration module is to select objects from the
Object Library in order to assemble and package the class and prototypes designed during
the design phase. The building blocks of this module are:
configDriver: Coordinates the execution of all the configuration tasks.

configdddingClass: Creates a class core prototype.

configDeletingClass: Deletes a class prototype.

107

configChangingSuperclass: Changes the superclass of a class.

configAddingRelationship: Adds a relationship object to a class prototype.

configDeletingRelationship: Deletes a relationship object from a class prototype.

configAddingMethod: Adds a method object to a class prototype.

configDeletingMethod: Deletes a method object from a class prototype.

configAddingAtiribute: Adds an attribute object to a class prototype.

configDeletingAttribute: Deletes an attribute object from a class prototype.

configAddingChunk: Creates a chunk object.

5.1.4. Data Management Module

The Data Management Module is responsible for performing the task of
populating the MRP system with data as well as propagating changes to the physical
underlying data objects during maintenance. The Data Management Module consists of
the following submodules:

populationDriver: Directs and coordinates all the activities to carry out all the changes to

the underlying data objects.

modifyObjects: Modifies all the objects in a target class and its subclasses upon a adding

or deleting attributes or relationships.

changeAttributeDomain: Changes the domain of an attribute in all the objects of a target

class.

changeAtributeDefault: Changes the default value of an attribute in all the objects of a

target class.

propagateClassDeletion: Modifies the structure of all the objects in a target class and its

subclasses when deleting the class

108

propagateChangingSuperclass: Modifies the structure of all the objects in a target class
and its subclasses when changing the superclass of the target class..

addAttributesToObject: Adds attributes to an object.

addOneAttributeToObject: Adds only one attribute to an object.

deleteOneAttributeFromQObject: Removes only one attribute from an object.

createQObject: Creates an object.
deleteObject: Deletes an object.

createObjectsRelationship: Creates a relationship between two objects.

deleteObjectsRelationship: Deletes a relationship between two objects.

changeQbjectAttributeValue: Changes the value of an object attribute.

changeClassMembership: Changes the membership of an object in a class.

deleteChunk: Deletes a chunk.

assembleChunk: Populates a chunk with objects.

5.1.5. Maintenance Module

The task of this module is to coordinate the maintenance tasks, it has one building
block.
maintDriver: Directs and coordinates the execution of the appropriate building blocks to
perform the various maintenance tasks.

5.2. Processes of the Functional Building Blocks of the OAS

This section will explain in details all the processes performed by each building
block of the OAS functional modules.

5.2.1. Coordination Manager

1. Display a screen with five options: Analysis, Design, Implementation, Population,

109

Maintenance, and Exit the system.

2. If option is Design, then the designDriver will be invoked.

(V3]

. If option is Implementation, then the configDriver will be invoked:

4. If option is Population, then the populationDriver will be invoked.

[}

. If option is Maintenance, then the maintDriver will be invoked.

o)}

. If option is to Exit the system, then stop.

5.2.2. Design Specifications Module

designDriver

The designDriver will permit the developer to select one of the following with six
options: Class Core Design, Behavior Design, Attribute Design, Relationship Design,
Chunk Design, and going back to the OAS main menu.

Displav and Edit Module

enterClass

1. Access the Class Specs file and the Library ClassNames file.

88}

. Display a screen showing a list of the class names in both the Class Specs file the Pre-
Compiled Object Library files.

. Prompt the developer to provide (or select) a class name and its superclass.

L)

desianAMethod

1. Access the Class Specs file and display a list of the class names in the Class Specs file

and prompt the developer to select a class name.

o

. Display the attribute names of the target class.

- Access the Object Library files and display a list of its behavior building

(V8]

blocks.

110

4. Allow the developer to drag and drop any behavior building block from the library,
provide the required arguments and assemble the blocks in a sequence that
accomplishes the desired behavior.

5. Prompt the developer to provide a method name.

designAnAttribute

1. Access the Class Specs file and display a list of the class names in the Class Specs file

and prompt the developer to select a class name.

88}

. Access the Object Library files to display all the data types of the Pre-
Compiled Object Library and allow the developer to select one.

. Prompt the developer to provide a name for the target attribute, a domain and a default

(V3]

value when applicable.
editClass
1. Access the Class Specs file and display a list of the class names in the Class Specs file

and prompt the developer to select a class name.

[0}

. Upon selecting a class name, display a screen to display the name of the target class,
its superclass, attributes names along with their data types, domains and defaults,
method names, and objects names.

3. Allow the developer to select the superclass name, any attribute or method name.

editAttribute

1. Display a screen showing the target attribute name, its data type, default, domain.

2. Allow the developer to modify the domain or the default value and provide an

algorithm in order to change the attribute values of existing objects, when applicable.

111

editMethod

1. Access the Object Library files and display a list of its behavior building
blocks.

2. Display the attribute names of the target class.

3. Display the building blocks of the target method and allow the developer to delete any
block or change its arguments. Also allow the developer to drag and drop any building
block from the Object Library, supply the required arguments and
assemble the blocks in a sequence that accomplishes the desired behavior.

enterObject

1. Display the attribute names of the target class and prompt the developer to provide
values for them.

2. Prompt the developer to provide an object name.

enterTwoOQObijects

1. Access the Class Specs file and display a list of the class names in the Class Specs file

and prompt the developer to select one or more class name.

8]

. Upon selecting class name(s) display a list of relationship names of the class selected
(or the first class if more that one class are selected) and prompt the developer to select
a relationship name.

. Upon selecting a relationship name, display a screen prompting the developer to

(V3]

provide two object names (a source and a destination).

displavMethods

1. Access the Class Specs file and display a list of the class names in the Class Specs file

and prompt the developer to select a class name.

112

2. Upon selecting a class name, display a screen to display the name of the target class,
its superclass, attributes names along with their data types, domains and defaults,

method names, and objects names.

(V3]

- Allow the developer to select a target attribute.

4. Search the Attribute-Method table file for the target attribute.

W

. Display a list of all method names which use the target attribute.

enterChunk

1. Access the Chunk Specs file.

o

- Display a list of all the chunk names in the Chunk Specs file and prompt the developer

to provide a chunk name.

(V3]

- Upon selecting a chunk, prompt the developer to provide the chunk parameters-list.

Design Validation Module

validateHierarchv

1. Search the Class Specs file for the superclass name (provided by the developer) of the
target class and verify that it is not a subclass of the target class. Ifit is, then return
FALSE to indicate invalid hierarchy else return TRUE.

2. Search the Class Specs file for the subclasses of the target class and verify that none
of them is a superclass of the superclass (provided by the developer). If this test is true
then return TRUE to indicate a valid hierarchy else return FALSE.

3. If both step 1 and 2 returns TRUE then this submodule will return TRUE to indicate

a valid hierarchy else return FALSE.

validateMethod

1. Search the Class Specs file for the target class record.

2. If the target method name is found in the target class then return TRUE else return
FALSE

validateAttribute

1. Search the Class Specs file for the target class name.
2. If the target attribute name is found in the target class then return TRUE else return
FALSE.

validateRelationship

1. Search the Class Specs file for the target class name.

2. If the target relationship name is found in the target class then return TRUE else return
FALSE.

validateObject Attributes

1. For each attribute in the target object
1.1. Ifits data type matches the data type of that attribute declared in the class
definition in the Class Specs file then return TRUE
else return FALSE.
1.2. If the value is not less and not greater that the attribute domain declared in the
class definition in the Class Specs file then return TRUE
else return FALSE.
2. If the return value if TRUE in both 1.1, and 1.2 then return TRUE else return FALSE.

Design Files Creation Module

storeClass
1. Access the Class Specs file and create a record for the target class.

2. Save the name of the target class and its superclass in the newly created record.

114

3. Search the Class Specs file for the subclasses of the target class.
4 For each subclass record:
store the name of the target class in the (superclass-name)
save the subclass record.
storeMethod

1. Search the Class Specs file for the target class record.

[$S]

. Add the name of the target method, as well as the list of its building blocks, to the
(Method-list) of the target class in the Class Specs file, and save the target class record.

. Access the Attribute-Method table file and create a column for the target method.

(V3]

4. For each supporting argument of the target method:
Search the rows of the Attribute-Method table file for the supporting attribute,
and store (1) in the cells where the target method column intersects with the row
of its supporting attribute to indicate the dependency relationship.

. Save the Attribute-Method table file.

wn

storeAttribute

—

. Search the Class Specs file for the target class record.
2. Add the target attribute name to the (4tribute-list) of the target class in the Class
Specs file, and save the target class record.

. Access the Attribute-Method table file and create a row for the target attribute.

(P8]

. Search the columns of the Attribute-Method table file for the methods that implement

EiN

the target attribute, and store (1) in the cells where the target attribute row intersects
with the columns of methods which implement it. to indicate the dependency

relationship.

5. Save the Attribute-Method table file

storeRelationship

1. Search the Class Specs file for the target class record.

2. Add the target relationship name to the (Relationship-list) of the target class in the
Class Specs file and save the target class record.

storeChunk

1. Access the Chunk Specs file and create a record for the target chunk.

2. Store the target chunk name along with its parameters-list in the newly created record.

Design Files Maintenance Module

updateDeletingClass

1. Search the Class Specs file for the records of the superclass and subclasses of the
target class.
2. For each subclass:
Remove the target class name from the (Superclass-name)
Store the name of the superclass of the target class in the (Superclass-name)
Save the subclass record.
3. Delete the target class record from the Class Specs file.

updateChangingSuperclass

1. Search the Class Specs file for the target class record.
2. Store the name of the new superclass in the (superclass-name) of the target class in the
Class Specs file and save the target class record.

updateDeletinaRelationship

1. Search the Class Specs file for the target class record.

116

2. Remove the name of the target relationship from the (Relationship-list) of the target
class and save the target class record.

updateDeletineMethod

1. Search the Class Specs file for the target class record.
2. Remove the name of the target method from the (Method-list) of the target class and

save the target class record.

updateDeletingAttribute

1. Search the Class Specs file for the target class record.
2. Remove the name of the target attribute from the (Astribute-list) field of the target
class and save the target class record.

updateChangingAttrDomain

1. Search the Class Specs file for the target class record.
2. Replace the domain of the target attribute in the (4¢tribute-list) of the Class Specs file
with the new Domain provided by the developer and save the target class record.

updateChangingAttrDefault

1. Search the Class Specs file for the target class record.

2. Replace the default value of the target attribute in the (Attribute-list) of the Class
Specs file with the new Default provided by the developer and save the target class
record.

updateDeletineChunk

1. Search the Chunk Specs file for the record of the target chunk.

2. Remove the record of the target chunk from the Chunk Specs file.

117

updateMethodTableFile

L. If maintOption is Deleting a method from a class then:
Search the Attribute-Method table file for the target method column.

Remove the column of the target method from the Attribute-Method table file.

[§)

- If maintOption is Deleting an attribute from a class then:
Search the Attribute-Method table file for the target attribute row.
Remove the row of the target attribute from the table.

. Save the Attribute-Method table file.

(V3]

5.2.3. Functional Confisuration Module

confieDriver

. If Creating a new class then call configAddingClass submodule.

—

[£8)

. If Deleting class then call configDeletingClass submodule.

W

. If Changing a superclass then call configChangingSuperclass submodule.

4. If Adding a relationship to a class then call configdddingRelationship submodule.

5. If Deleting a relationship from a class then call configDeletingRelationship submodule.
6. If Adding a method to a class then call configAddingMethod submodule.

7. If Deleting a method from a class then call configDeletingMethod submodule.

8. If Adding an attribute to a class then call configAddingAttribute submodule.

9. If Deleting an attribute from a class then call configDeletingAttribute submodule.

10. If Creating a chunk then call configAddingChunk submodule.

confieAddineClass

1. Search Object Library or the MRP system for the superclass of the

target class.

118

2. Create a class prototype for the target class as a subclass of the superclass (provided by
the developer) by:
Creating a proxy of the superclass prototype
Storing both ID of the superclass in the (Superclass-id) of the target class and the
name of the superclass in the (Superclass-name) of the target class.
3. Save the target class prototype..

configDeletingClass

1. Search the class files of the MRP system for the target class prototype.

[3S)

- Search for the class prototype of the subclasses of the target class.

. For each subclass:

(93]

Remove the ID and the name of the target class from the(Superclass-id), and the
(Superclass-name) respectively
Store both the ID and name of the superclass of the target class in the(Superclass-
id), and the (Superclass-name) respectively

4. Save the subclasses of the target class.

5. Delete the target class file.

configChanging-Superclass

1. Search the class files of the MRP system for the target class prototype.

N

- Search for the prototype of the new superclass of the target class.

- Remove the ID and name of the old superclass from the (Superclass-id) and

(P8

(Superclass-name) of the target class and store in it the name and ID of the new
superclass instead..

4. Save the target class prototype.

119

configAddingRelationship

1. Search the class files of the MRP system for the target class prototype.

2. Search the Object Library for the class representing the relationship
attribute.

3. Create an instance using the target relationship name and store its ID in the (Autribute-
list) of the target class prototype.

4. Save the target class prototype.

confieDeletingRelationship

- Search the class files of the MRP system for the target class prototype.

—

N

- Search for the target relationship in the (A#ribute-list) of the target class prototype.

- Remove the ID of the target relationship from the (4utribute -list) of the target class

(93]

prototype.

4. Save the target class prototype.

conficAddineMethod

. Search the class files of the MRP system for the target class prototype.

—

- Create an instance of class MethodCreator, using the target method name provided by

£

the developer, to store the method building blocks listed in the Class Specs file.

- Store the ID of the target method object in the (Merhod-list) of the target class

LI

prototype.
4. Save the target class prototype.

configDeletineMethod

1. Search the class files of the MRP system for the target class prototype.

2. Remove the ID of the target method from the (Method-list) of the target class

prototype.

3. Save the target class prototype.

ConfigAddingAttribute

1. Search the class files of the MRP system for the target class prototype.

2. Search the Object Library for the class representing the target attribute
as described in the Class Specs file.

3. Create an instance using the target attribute name and store its ID in the (4iribute-
list) of the target class prototype.

4. Save the target class prototype.

configDeletingAttribute

1. Search the class files of the MRP system for the target class prototype.

2. Remove the ID of the target attribute from the (Atribute-list) of the target class
prototype.

3. Save the target class prototype.

configAddineChunk

1. Search the Object Library for class Chunk.

[£8)

- Create an instance of class Chunk using the chunk name in the Chunk Specs file and

store the chunk parameters in it.

(V3]

. Save the target chunk.

5.2.4. Data Management Module

populationDriver

1. If maintOption is Deleting a class then propagateClassDeletion will be invoked to

propagate the appropriate changes.

121

2. If maintOption is Changing a superclass then propagateChangingSuperclass will be
invoked to propagate the appropriate changes.

. If maintOption is Adding a relationship to a class, Deleting a relationship from a class,

(93]

Adding an attribute to a class, or Deleting an attribute from a class, then modifyObjects
will be invoked to propagate the appropriate changes to the affected objects.
4. If maintOption is Changing an attribute domain then call changeAttributeDomain.
5. If maintOption is Changing an attribute default value then call changeAttribute Default.
6. If maintOption is Deleting a chunk then call deleteChunk submodule.

propagateClassDeletion

1. Search the class files of the MRP system for the target class prototype.
2. Store the attributes of the target class in a temporary area.

. Search the class files of the MRP system for the subclasses of the target class.

W

. Search the MRP data files for the object under each class in step 1 and 3.

4

For each object:
for each attribute of the target class (temporarily held in step 2)

call deleteOneAuributeFromQObject

Save the object.
5. If the objects of the target class is to “migrate to another class” then search the class
files of the MRP system for the “migrate to class” and its superclasses.
6. Search the MRP data files for the object under each class in step 5.
For each object:

call addAttributesToObject

Save the object.

propagateChangingSuperclass

1. Search the class files of the MRP system for the target class prototype.

2. Search the class files of the MRP system for the old superclass of the target class.

(V8]

. Store the attributes of the old superclass in a temporary area.

N

. Search the class files of the MRP system for the subclasses of the target class.

- Search the MRP data files for the objects under each class in step 1 and 4.

[%4

For each object:
for each attribute of the old superclass (temporarily held in step 3)

call deleteOneAttributeFromQObject

Save the object.

6. Search the class files of the MRP system for the new superclass of the target class.

7. Store the attributes of the new superclass in a temporary area.
8. Search the MRP data files for the objects under each class in step 1 and 4.
For each object:
for all attribute of the new superclass (temporarily held in step 7)

call addAttributesToObject

Save the object.

addAttributesToObject

122

1. Compare the attribute set of the new class (Held in a temporary area) with the attribute

set of the target object.
2. For each attribute that exists in the new class but not in the target object

call addOneAttributeToObject.

addOneAttributeToObject

1. Search the Object Library for the class that matches the data type of the

target attribute.

[

. Create its instance object using the name and default value defined in the class

definition.

- Store the ID of the object created in step 2 in the target object.

(¥

removeOneAttributeFromOQObject

1. Remove the ID of the target attribute from the attribute-list of the target object.

modifvObjects

. Search the MRP class files for the target class prototype.

P

S8

. Identify the target relationship or attribute to be added or deleted.

. Search the MRP class files for the subclasses of the target class.

(93]

. Search the MRP data files for the object under each class in step 1 and 3.

4+

For each object:
If Deleting an Attribute or Relationship

call deleteOneAttribute FromQObject

If Adding an Attribute or Relationship
call addOneAttribute ToObject
save the object.

changeAttributeDomain

1. Search the class files of the MRP system for the target class prototype.
2. Search the MRP data files for the objects under the target class.

3. For each object:

124

Change the value of the target attribute be scanning and executing the
“algorithm” provided by the developer (the algorithm will take the following
form:
change factor, operator such as *, +, /)
and the new domain will take the following value:
new domain value = old domain multiplied or added (or any other operation) to
the change factor

Save the object.

changeAttributeDefault

1. Search the class files of the MRP system for the target class prototype.

(8]

. Search the MRP data files for the objects under the target class.

. For each object:

(V3]

Change the default value of the target attribute to the value provided by the
developer.
Save the object.

createObject

1. Search the class files of the MRP system for the target class prototype.

(3]

. Create the desired object as an instance of the target class prototype.

. Call validateObjectAttributes.

(93]

oS

. If validation is TRUE (all attribute values provided are valid) then
for each attribute defined in the class prototype
call addOneAttributeToObject using the attribute values provided by the

developer.

5. Save the object.

deleteObject

1. Search the MRP data files for the target object.
2. Delete the target object.

createQbjectsRelationship

1. Search the MRP data files for the target objects.

S

. Store the ID of the destination object in the (duribute-list) of the source object along
with the name of the target relationship.

. Save the destination object.

(98]

deleteObjectsRelationship

1. Search the MRP data files for the target objects.
2. Remove the ID of the destination object from the (Attribute-list) of the source
object.

. Save the destination object.

(V)

changeObjectAttributeValue

—

. Search the MRP data files for the target objects.

o

. Display the target attribute in edit mode and allow the developer to modify the

attribute value.

. Search the class files of the MRP system for the target class to which the object

|98]

belongs.
4. Validate that the attribute value provided by the developer is a valid one (not less or
greater that the target attribute domain defined in the class prototype).

. If valid attribute value then save the object in the corresponding data object file else

(9,

display an error message such as: “attribute value does not match attribute domain”.

changeClassMembership

1. Search the class files of the MRP system for the target “migrate-to-class” prototype.

[§84

. Search the class files of the MRP system for the superclasses of the target “migrate to
class”.

. For each class in step 1 and 2

(V3]

Save the attributes in a temporary holding area.
Search the MRP data files for the objects under each class in step 1 and 2.
For each object:

call addAtributesToObject

Save the object.

assembleChunk

1. Search the MRP data files for the target chunk prototype.

o

. Access the parameters list of the target chunk to identify the number of objects

required of each class.

(98]

. Search the MRP data files for the for the required objects.

4. Store the ID’s of the target objects in a temporary area to make it available to the
developer.

deleteChunk

1. Search the MRP data files for the target chunk prototype.

2. Delete the target chunk.

127

5.2.5. Maintenance Module

maintDriver

1. Display a screen showing the following maintenance options:
Creating a class, Deleting a class, Changing a superclass, Adding a relationship to
a class, Deleting a relationship from a class, Adding a method to a class, Deleting
a method from a class, Modifying a method implementation, Adding an attribute to a
class, Deleting an attribute from a class, Changing an attribute domain, Changing
an attribute default value, Creating an object, Deleting an object, Creating a
relationship between two objects, Removing a relationship between two objects,
Changing the value of an object attribute, Changing an object-class membership,
Creating a chunk, Deleting a chunk, Assembling a chunk.

2. If maintOption is Creating a class then

call enterClass

call validateHierarchy

If valid hierarchy then call storeClass
call configDriver
3. If maintOption is Deleting a class then
call enterClass
call updateDeletingClass

call configDriver

call propagateClassDeletion

4. If maintOption is Changing a superclass then

call enterClass

128

call editClass

call validateHierarchy

If valid hierarchy call updateChangingSuperclass

call configDriver

call propagareChangingSuperclass

5. If maintOption is Adding a relationship to a class then
call enterClass

call desienAnAttribute

call validateRelationship

If valid relationship name then call storeRelationship

call configDriver
call modifyQObjects

6. If maintOption is Deleting a relationship from a class then
call enterClass
call editClass

call updateDeletingRelationship

call configDriver
call modifyObjects

7. If maintOption is Adding a method to a class then
call enterClass

call desienAMethod

call validateMethod

If valid method name call storeMlethod

call configDriver
8. If maintOption is deleting a method from a class then
call enterClass

call editClass

call updateDeletingMethod

call updateMethodTableFile

call configDriver

9. If maintOption is Modifying a method implementation then

call enterClass
call editClass
call editMethod
call storeMethod
10. If maintOption is Adding an attribute to a class then
call enterClass

call desigrnAnAttribute

call validateAttribute

If valid attribute name call storeAttribute

call updateMethodTableFile

call configDriver

call modifyQObjects
L1. If maintOption is Deleting an attribute from a class then
call enterClass

call editClass

call displayMethods

call updareDeletingAttribute

call updateMethodTableFile

call configDriver
call modifvQbjects

12. If maintOption is changing an attribute domain then

call enterClass
call editClass
call editAttribute

call updateChangineAttrDomain

call changeAttributeDomain

13. If maintOption is changing an attribute default value then
call enterClass
call editClass
call editAttribute

call updareChangingAttrDefault

call changeAttributeDefault

14. If maintOption is Creating an object then

call enterClass

call enterObject

call createQObject

15. If maintOption is Deleting an object then

call enrerClass

130

call enterObject

call deleteQObject

16. If maintOption is Creating a relationship between two objects then

call enter TwoQbjects

call createObjectsRelationship

17. If maintOption is Deleting a relationship between two objects then

call enrerTwoQbjects

call deleteQbjectsRelationship

18. If maintOption is Changing the value of an attribute then

call enterClass

call enterQbject

call changeObjectAttribute Value

19. If maintOption is Changing an object-class membership then

call enterClass

call enterQbject

call changeClassMembership

20. If maintOption is Creating a chunk then
call enterChunk
call storeChunk
call configDriver

21. If maintOption is Deleting a chunk then
call enterChunk

call updateDeletineChunk

132

call deleteChunk
22. If maintOption is Assembling a chunk then
call enterChunk

call assembleChunk

5.3. Object Oriented Classes of the OAS

As indicated in section 4.2 of chapter 4, classes of the OAS can be arranged into
two categories:
1. The OAS Application Kit, or the Object Library classes such as: Integer,

or Inventoryltem.

2. The functional classes which are utilized to manipulate the Application Kit classes.

In order to identify the potential functional classes of the OAS, the functional
building blocks have to be grouped based on similarity of their functions.
Observing the function of each building block in the detailed architecture of the OAS, the
building blocks can be categorized into the following functional groups:

1. Coordination

L]

. Maintenance

(F3]

. Display and Edit

4. Validation

5. Files Updating

6. Configuring

7. Data Management

The functional groups and their corresponding building blocks are shown in Figure

5.2 below.

Coordination
storeClass storeMethod storeAttribute
designDrver enterClass designAM ethod designAnAnbute
[edtMetnod displayMethacs R o storeChurk
edtAttnbute edtClass i PRy etationship
updateDeieting updateChanging updateDeleting
T .
enterChunk enterObject enterTwe Class Superciass Relationstup
Cbjects
P Deleting fe Deteting updateChanging
Methad Attribwie AttrDomain
DISpIay and Edit updateChanging o Deleting pdateMethod
AttrOefautt Chunk TabiFie
validate e Atrbut
Hierarchy Sy route
Files Updating
I
validate l validateChunk
Relatonsnip !
population] F propagateChanging i progagateCiass .
Driver | Superciass i Qeletion i
Validation ; 'l cmangeAtbute |@ changeAttrioute |
i Coects |1 C0geAs i g .
i maatyOne I Oomain hy Cefautt
: L
| adeArnbuteTo || addOneAunbute || celeteOneAmnbute |
; Object | l ToObject 1 FramObject !
i
; Obi deieteObrect createObjects |
maintDrver 1 createObject e e Relatonship ‘
deleteObjects changeObject c¢hangeClass
Relationship AttributeVaive Membership
Maintenance
deleteChunk assembleChunk
Data Management
" ht:ontlgi\m'.hng cenfigDeleting configChanging
configDrver
Class Class Superclass
configAdding] cantigDeleting configAdding] contigDeleting l
Relationstup] Relationship Metnoa] Methoa
configAdding configDeleting contigDeleting
Attribute Artribute Chunk
Configuring

Figure 5.2, Functional Grouping
Based on a functional grouping, the following are potential candidate functional classes:
1. MainDriver
2. DesignMgr

3. ValidationMgr

134

4. ConfigurationMgr
5. PopulationMgr
6. MaintenanceMgr
Figure 5.3 below shows the functional candidate classes with their corresponding

building blocks.

[mainOrver
MainDriver
. edi thod
manageDesign enterClass designAMethod | | designrAnAttnbute editClass edtAtinbute e :
. nterTwo i I
enterObject y e.r displayMethods enterChunk storeClass storeMethod storeAttribute |
Objects 1
]
store storeChunk dateDeleting || updateCrangig || updateQeleting Deleting || updateDeleting |
Relationship) Class Superciass Relationship Methad ’ Attribute i
updateChanging p hanging P DNeat ing l upd Meothad
AttrDomain AttrCefautt Chunk I TableFie
DesignMgr
i vaidate ! !] . i
“[lidateMethod | | vaidateAribute || vaicate ! 7
Herarchy) B j; Reianonsnp ! ! mantDrner
)
validateCbject | idateChunk
Attributes ' valdate
MaintenanceMgr
ValidationMgr
{ manage manage propagateClass :
) Population l RePoputation Deleton J
t o
manage manageRe
Canfiguration Configuration | propagateChanging addAttribute addOneAttnbute
Superclass ToObject ToObpect
conﬁgulr:Adding configureDelet removeQneAttnbute modiyObjects changeAttnbute |
Class ingetass FremObject e Domain |
configureChang configureAdding changeAttribute . .
createQbject deleteOb,
ingSuperciass Relaticnship Default e ject
f - I H : !
i configureDeleti ’ ; configureAdding] , createprs‘.s f d;leltae.()b;:?ts H :nhar;geo\::fct !
i nsRelant. A sethod 1 : Relationship " elationshio M ributeValue !
t | !
ctangeClass ;
configureDelet | | configureAdding ! Mempership assembleChunk ! deleteChunk i
ingMethod Attribute ! - !
configureDelet configureAdding }
InGAttnbute Chunk {
! ' PopulationMgr
ConfigurationMgr

Figure 5.3, Functional class of the OAS
Figure 5.4 below shows the full view of the Object Oriented class hierarchy of the

OAS including its Application Kit as well as the functional classes.

W

SVO 941 Jo AyaIesalf] e "Q'Q oY) ‘p's 2aniyg

1onpoig Aiquiassy jeliaen
pausjuiy ang mey
16js) BNl B TR 1By Jabpa7]| WBWl(" bW 16y way
s_m shjeuysajes || Bupunosay ||baykioedes || esuestusau Guysesaloy jeisuan}| Bupinpayasg|| asnoyasem|| Bujseyoing Ja)ddng Kiojuanauy |[1Byisanbay
uesjoog u__ Jajoereyn _ Buins _ 1eo|4 k_ BmSELv
an _ 108319 T
poylawsvo | | Mivouauan poulaw yunyo qnis 1bpaeyag _r 16 ute 16pndod 6wbyuon 16juBisag Jaauquien

L

.

9t1

.

js%o _

137

5.4. Detailed Operating Procedures of the OAS

This section presents the steps required to operate the OAS and invoke its various
functions. However, in this research, the analysis phase is not considered to be a key
factor in providing flexibility to software. Accordingly, this research is not introducing any
new concepts or suggestions to the analysis and will not discuss this phase. All the other
phases will be explained in detail in the next four subsections, 5.4.1 through 5.4.4.

System operation, as shown in Figure 5.3, starts with selecting an option from the

OAS Main Menu such as design, implementation, population, or maintenance.

i
|
. . !
j class attribute behavior refationship
Design Design Design
chunk
N N Design ’
Y Y { |
.’ A 4 Y YY A 4 Y i
| N , |
! classDesign attr.Design beh. Design rel. Design ‘
| | !
L ! { | |
A 4 \ 4 A 4 !
Implementation
' |
. Implement.
) ﬂ_A
| LN
‘ I'N
{
|
~§— populationj
| 1Y
! N
maintenance
’maintena ;
n
_‘: ce | Y \\
N

Figure 5.5, Operating Procedure of the OAS

5.4.1. Design

Upon selecting the Design option from the Main Menu, another menu will be

138

displayed. The developer will be given the choice to select: Class Core design, Behavior
design, Attribute design, Relationship design, or Chunk design. The processes performed
in each option will be discussed below:

Class Core Design

If the developer selects the class core design option, then:

1. The enterClass submodule will display a user-interface similar to Figure 5.6 where
existing classes in both the Class Specs file and the Object Library are
shown. The developer will be prompted to provide a class name, and select a

superclass from the classes displayed on the screen.

Class Core Design
Your System Classes : Library Classes
ftem . Stub
Order . Employee
. Machine
i
... |
Class Name | |

i

| its Superclass

Figure 5.6, Class Core Design user-interface

38

. Upon selecting the “save” option, the validateHierarchy submodule will be triggered
to validate whether the superclass name provided by the developer results in a valid

hierarchical relationship.

(V3]

. If the hierarchy is valid, the name of the target class, along with its superclass

will be stored in the Class Specs file by calling the storeClass submodule. Else an

139

error message (Invalid class/superclass relationship) will be displayed and the
developer will prompted to provide a new superclass..

Behavior Design

If the developer selects the class behavior design option, then the following
procedures will be performed:
1. The enterClass submodule will display a screen similar to Figure 5.7, where classes

from the Class Specs file are shown and the developer will be allowed to select a class.

N

. Upon selecting a class, the designAMethod submodule will display the name of the
selected class and a list of its attribute names as well as a list of all the behavior
building blocks of the Object Library in the format shown in the following example:

<floar> add: <float> To: <float>
The line above shows a low-level behavior building block, from the Pre-Compiled
Object Library, called “add” which requires two arguments of float data type and
returns a float.

. The developer will be allowed to drag & drop any number of blocks, supply the

(2]

required arguments and assemble the blocks in the sequence which accomplishes the
desired behavior.

4. Next, the developer will be prompted to provide a method name.

5. Upon selecting the “save” option, the validateMethod will be invoked to validate

whether the target method name exists in the target class.

6. If the method name does not exist in the target class, the storeMethod will store the

Behavior Design

These are Your Classes User Attributes
Inventoryitem qtyOnHnd
PurchaseOrder qtyOrdrd

i
User Method

<qtyOnHnd> add:<qtyOnHnd>To:<qtyOrdrd>

Class Name |

Method Name []

L]

Library Behaviors

assign:<integer>To:<integer>
<float> add:<float>To:<float>

: SAVE |

Figure 5.7, Behavior Design user-interface

Attribute Desien

method in both the Class Specs file and Attribute-Method table file, else an error

developer will be prompted to provide a new method name.

If the developer selects the class attribute design option, then:

140

message, such as “Method name already exists in the class”, will be displayed and the

1. The enterClass submodule will display a screen similar to the one shown in Figure 5.8,

88

select a class name.

applicable.

of the selected class and a number of icons, to represent the various data types

where classes from the Class Specs file are shown and the developer is prompted to

. Upon selecting a target class, the designdnAttribute submodule will display the name

available in the Object Library such as: integer, double, string, or id. The developer

will be able to select a data type then provide a name, default value, and domain when

141

Attribute Design j

These are Your Classes Library Attributes
Inventoryltem
Employee Integer @
Float @
‘>
Double ¢ /%
d (@

String @
Class Name | !

Attribute Name []

Domain |
Default Value [] [SAVE |

Figure 5.8 Attribute Design user-interface
3. Upon choosing the “save” option, the validateAttribute will be invoked to validate
whether the target attribute name exists in the target class.
4. If attribute name does not exist in the target class, it will be stored in both the Class
Specs file and Attribute-Method table file by calling the storedttribute submodule.
Else an error message (Attribute name already exists in the class) and the developer
will be prompted to provide a new attribute name.

Relationship Design

If the developer selects the class relationship design option, then these procedures
will be performed:

1. The enterClass submodule will display a screen similar to Figure 5.8, where classes
from the Class Specs file are shown, and the developer is prompted to select a class
name.

2. Upon selecting a target class, the designdnAttribut submodule will display the name of

the selected class and a number of icons to represent the various data types available

142

in the Object Library. The developer will then be prompted to select the
relationship data type (id) and provide a name for it.

3. Upon selecting the “save” option selection, the validateRelationship will be invoked to
check whether or not the target relationship name exists in the target class.

4. If the relationship name does not exist in the target class, the target relationship will be
stored in the target class in the Class Specs file by calling the storeRelationship
submodule else an error message(Relationship name already exists in the class) will be
displayed.

Chunk Desion

When the developer selects the chunk design option, then:

1. The enterChunk submodule will display a user-interface similar to Figure 5.9 where all
chunk names in the Chunk Specs file will be shown. The developer is prompted
to enter a chunk-name along with its parameter-list.

2. Upon selecting the “save” option, the storeChunk submodule will store the chunk in

the Chunk Specs file.

; Chunk Design !

I These areYour Chunks
' Table

Chair
| |
i Chunk Name |
i Parameter-list
i
| class-1] YR —
, class-2 Qty-2 :]
| class-3["] ay-3 ["]
' clns-ij = { class-2 *[clau-JJ
| SAVE
L

Figure 5.9 Chunk Design user-interface

5.4.2. Implementation

When selecting the Implementation option from the Main Menu, the Coordination

Manager gives control to the configDriver in order to generate the class and chunk

prototypes. The configDriver will perform the following processes, for each class and

chunk in the Class Specs file and the Chunk Specs file respectively, to accomplish its task:

1. For each class defined in the Class Specs file:

1.1. The configAddingClass submodule will search the Pre-Compiled Object

Library for Class Stub ,or the superclass of the target class, and create a subclass

of it. This newly created class will be the target class prototype. The

configAddingClass will then will store the ID of the superclass in the target class

prototype.

1.2. For each method defined in the target class, the configdddingMlethod

submodule will search the Pre-Compiled Object for class MethodCreator. Next it

will create an object from MethodCreator and use it as a container to store the
building blocks of the target method (from the Class Specs file). The ID of the
container object which represent the target method will then be stored in the
target class prototype.

1.3. For each attribute defined in the target class, the configdddingAttribute

submodule searches the Object Library for the attribute whose data

type matches the target attribute definition and creates an object of it. The ID of

the target attribute object will then be stored in the target class prototype.
1.4. For each relationship defined in the target class, the configddding

Relationship submodule will search the Object Library for the

144

relationship attribute “id” and create an object representing the target relationship

then store its ID in the target class prototype.

Fre-Conmpiiéd

Object Library

Functional
Configuration Module

painter to superclass

i t | configure ! z !
, ' confguref confgure i configure Adding l :

1 H . " :
%Specs : l Addin 8 & C "-\71 Adding |. adding '>i c |-—1 Relation :_d c h ~.class_—*
| Class | | ; . Method i Attribu(e ! J D ehi oo T Prototype

 fil — —f I ship | ,——m— :
¥re/ }] * ! L /, D Ne——

T‘f

|

' t

Sl 3
' Y -

S RN oM

W AW A’—:"/]

Figure 5.10 The Configuration Process

Figure 5.10 shows a schematic representation of the sequence of events performed
in order to assemble a class during configuration where m stands for method, ¢ for class
and A for an attribute.

2. For each chunk defined in the Chunk Specs file, the configAdddingChunk submodule
will search the Object Library for the for class Chunk and creates its
proxy. then store the chunk parameters in it.

5.4.3. Data Population

When selecting the data population option from the Main Menu, the Coordination
Manager will invoke the populationDriver submodule in order to populate the MRP
system with data. A menu will be displayed with options to: create an object, or assemble
a chunk. The populationDriver will perform the following procedures to accomplish the
various tasks for each option.

1. If the developer selects creating an object then the enterObject submodule will be

called to display all class names in the MRP system and allow the developer to select

one. The enterObject will then display attribute names of the target class and prompt

the developer to provide an object name and values for its attributes. Upon “save”

option, the createObject submodule will create and save the desired object.

2. To assemble a chunk from existing objects the populationDriver would call display

Chunks submodule to display a list of the chunk names in the Chunk Specs file and

allow the developer to select a target chunk. Next, the assembleChunk submodule will

be invoked to identify the required number of objects from the right classes based on

the chunk Parameter-list specified in the Chunk Specs file. The ID’s of these objects

will then be available to the developer to take the desired action.

5.4.4. Maintenance

When selecting the maintenance option from the Main Menu, the Coordination

Driver gives control to the maintDiver submodule where a menu will be displayed

allowing the developer to choose any of the options listed in Table 5.1 below:

[Maintenance Type

Creating a New Class

Deleting a Class

Changing a Superclass

Adding a Method to a Class

Deleting a Method from a Class

Modifying a Method Implementation

Adding an Attribute to a Class

Deleting an Attribute from a Class

Changing an Attribute Domain

Changing an Attribute Default Value

Adding a Relationship to a Class

Deleting a Relationship from a Class

Creating a Chunk

Deleting a Chunk

Creating an Object

Deleting an Object

146

Creating a Relationship between two objects

Removing a Relationship between two Objects

Changing the value of an Object Attribute

Changing an Object-Class Membership

Assembling a Chunk

Table 5.1 Maintenance types
Some of the changes listed in Table 5.1, require re-design and re-implementation,
some require re-design, re-implementation, and re-population while others require
population only. Table 5.2 below, categorizes the maintenance types by the required

action.

Maintenance Type | Action(s) Required I

Creating an Object

Deleting an Object

Creating a Relationship between two objects These changes require

Removing a Relationship between two Objects Re-Population only

Changing the value of an Object Attribute

Changing an Object-Class Membership

Assembling a Chunk

Changing an Attribute Domain These changes require
Changing an Attribute Default Value Re-Design and
Deleting a Chunk Re-Population
Creating a New Class These changes require
Adding a Method to a Class Re-Design and
Deleting a Method from a Class Re-Implementation

Creating a Chunk

Deleting a Class

Changing a Superclass These changes require
Adding an Attribute to a Class Re-Design,
Deleting an Attribute from a Class Re-Implementation, and
Adding a Relationship to a Class Re-Population

Deleting a Relationship from a Class

Table 5.2, Maintenance types sorted by action required

It is very important to emphasize that these changes will be immediately executed

147

in a real-time fashion as they initiated by the developer. In other words, upon any change
initiated by the developer, all the appropriate re-design, re-implementation, and re-
population procedures will be transparently invoked without further developer

intervention.

The following subsections will present , in details, all the processes performed for
each maintenance option in the sequence used in Table 5.1.

Creating a New Class

1. The enterClass submodule will display a screen where classes from both the Class
Specs file and the Object Library are shown and the developer is

prompted to provide a class name and select a superclass.

8]

. Upon selecting a “save” option the validateHierarchy will validate if the developer
provided a valid hierarchy.

. If valid hierarchy then storeClass submodule will be update the Class Specs file by

[#3)

adding the target class to it else display an error message “invalid superclass”..
4. The configAddingClass submodule will be called to create the target class prototype.

Deleting a Class

1. The enterClass submodule will display a screen where classes from the Class Specs
file are shown and the developer is prompted to select a class name.

2. Next, the developer will be prompted to confirm deleting the target class. If deletion is
confirmed, then the developer will be asked to specify whether or not to delete all the
objects of the target class or migrate them to another class.

3. If migration is selected then the developer will be asked to provide the “migrate-to-

class”.

148

4. Upon selecting a “delete” option the updateDeletingClass submodule will update the
Class Specs file by deleting the target class from it.

5. Next, the configDeletingClass will be called to remove the target class and re-align the
hierarchical relationships.

6. The propagateClassDeletion will be invoked to propagate the appropriate changes.

Changing a Superclass

1. The enterClass submodule will display a screen where classes from the Class Specs

file are shown and the developer is prompted to select a class name.

o

- Upon selecting a class name the editClass submodule will be called and the class
superclass will be displayed on the screen in edit mode and the developer would be
allowed to modify it.

. The validity of the new hierarchy will then be checked by calling the validare

(V3]

Hierarchy submodule. If valid then updateChangingSuperclass will change the
inheritance relationship of the target classes in the Class Specs file. Else display an
error message “invalid superclass” and the developer will be prompted to provide
another superclass.

4. The configChangingSuperclass will be invoked next..

5. The change will be propagated to the affected objects by calling the
propagateChangingSuperclass.

Adding a Method to a Class

1. The enterClass submodule will display a screen where the classes from the Class
Specs file are shown and the developer is prompted to select a class name.

2. Upon selecting a target class, all the attribute names of the target class will be shown

149

and the designdMethod submodule will display all the behavior building blocks of the
Object Library.

- The developer will be allowed to drag & drop any number of blocks, supply the

L)

required attributes and assemble the blocks in the sequence which accomplishes the
desired behavior.

4. Next the designdMethod submodule will prompt the developer to provide a
method name.

5. Upon selecting a “save” option, the validateMethod submodule will validate if the
target method name exists in the target class.

6. If method name does not exists in the target class, the storeMethod submodule will add
the target method to the target class in the Class Specs file and the Attribute-Method
table file. Else a “Duplicate method name” message will be displayed and the
developer will be prompted to provide a new method name.

1. The configAddingMethod submodule will be invoked to create an object containing
the method building blocks and store its ID in the target class prototype.

Modifying a Method Implementation

1. The enterClass submodule will display a screen where the classes from the Class
Specs file are shown, and the developer is prompted to select a class name.

2. Upon selecting a target class, the editClass submodule will be called to display a list of
all the method names in the target class and allow the developer to select a target
method.

3. Upon selecting a target method, the editMethod submodule will display all the

building blocks of the Object Library, the attribute names of the target class as

4.

well as the building blocks of the target method allowing the developer to (a) add or
delete a building block, (b) modify the arguments of a building block.
Upon selecting a “save” option, the storeMethod submodule will save the target

method in the target class in the Class Specs file and the Attribute-Method table file.

Deleting a Method from a Class

1.

[0S

[V8)

The enterClass submodule will display a screen where the classes from the Class

Specs file are shown and the developer is prompted to select a class name

- Upon selecting a target class, the editClass submodule will be called to display a list of

all the method names in the target class and allow the developer to select a target

method for deletion.

- Upon confirming the deletion, the updateDeletingMethod and Update-Method-

TableFile submodules will delete the target method from both the Class Specs file and

Attribute-Method table file.

- The configDeletingMethod submodule will remove the ID of the target object method

from the class prototype.

Adding an Attribute to a Class

1.

(£

(93

The enterClass submodule will display a screen where classes from the Class Specs

file are shown and the developer is prompted to select a class name.

. Upon selecting a target class, the designdnAttribute submodule will display a screen

where all the attribute names of the Object Library will be listed and the
developer will be allowed to select an attribute and provide a name, a domain and

default value for it.

- The validateAttribute will validate if the target attribute name exists in the target class.

4.

6.

151

If attribute name does not exist in the target class, the storedttribute and the
updateMethodTableFile submodules will add the target attribute to both the Class
Specs file and Attribute-Method table file respectively else an error message
“Duplicate attribute name” will be displayed and the developer will be prompted to

provide another attribute name..

- The configdddingAttribute submodule will be called to create the required attribute

object and store its ID in the target class prototype.

Finally, the modifyObjects will be invoked to propagate the appropriate changes to the

affected objects.

Deleting an Attribute from a Class

1.

o

[UF]

The enterClass submodule will display a screen where classes from the Class Specs

file are shown and the developer is prompted to select a class name.

. Upon selecting a target class, the editClass submodule will be called to display a list of

all the attribute names in the target class and allow the developer to select a target

attribute.

- The target attribute will be used as a look-up key in the Attribute-Method table file to

display all the method names which implement the target attribute by calling the
displayMethods submodule. If there exists a method which implements the target
attribute then the session will be terminated with a proper message, else the
updateDeletingAttribute and updateMethodTableFile submodules will delete the target

attribute from the Class Specs file and the Attribute-Method table file respectively.

. The configDeletingAttribute submodule will be called to remove the ID of the target

attribute object from the class prototype.

5.

The modifyObjects will be invoked to propagate the appropriate changes to the

affected objects.

Changing an Attribute Domain

l.

9

LI

w

The enterClass submodule will display a screen where classes from the Class Specs

file are shown and the developer is prompted to select a class name

- Upon selecting a target class, the editClass submodule will be called to display a list of

all the attributes names in the target class and allow the developer to select a target

attribute.

- The editAttribute submodule will display the target attribute, its data type, domain and

default value in edit mode and allow the developer to modify the attribute domain. The
developer will then be prompted to provide an “algorithm™, if needed, in order to
change the attribute value in the existing objects . The algorithm will have the
following format:

change factor, an operator (such as * or +)

. The updateChangingAttrDomain will change the target attribute domain in the Class

Specs file.

. The changeAttributeDomain submodule will then modify the domain of the target

attribute in all the objects of the target class using the “algorithm” provided by the

developer.

Changing an Attribute Default Value

1.

2.

The enterClass submodule will display a screen where the classes from the Class
Specs file are shown and the developer is prompted to select a class name.

Upon selecting a target class, the editClass submodule will be called to display a list of

(38

(98]

W

all the attributes names in the target class and allow the developer to select a target

attribute.

- The editAttribute submodule will display the target attribute, its data type, domain and

default value in edit mode and allow the developer to modify the attribute default

value.

- The updateChangingAttrDefault will change the target attribute default value in the

Class Specs file.

. Next, the changeAttribute Default submodule will modify the default of the target

attribute in all the objects of the target class.

Adding a Relationship to a Class

I.

8]

(93]

The enterClass submodule will display a screen where the classes from the Class

Specs file are shown and the developer is prompted to select a class name.

- Upon selecting a target class, the designdnAttribute submodule will display all the

attributes in the Object Library and prompt the developer to select the relationship

attribute.

- The validateRelationship submodule will be invoked to validate if the target

relationship does not exist in the target class.

- If relationship name does not exist in the target class, the storeRelationship submodule

will add the target relationship to the target class in the Class Specs file. Else an error
message “duplicate relationship name” will be displayed and the developer will be

prompted to provide another relationship name.

- The configAddingRelationship submodule will create the required relationship object

and store its ID in the target class prototype.

6. The modifyObjects will then be invoked to propagate the appropriate changes to the
affected objects.

Deleting a Relationship from a Class

1. The enterClass submodule will display a screen where the classes from the Class

Specs file are shown, and the developer is prompted to select a class name.

88}

- Upon selecting a target class, the editClass submodule will be called to display a list of
all the relationship names in the target class and allow the developer to select a target
relationship.

. The updateDeletingRelationship will the be invoked to delete the target relationship

[V

from the target class in the Class Specs file.

4. The configDeletingRelationship will be invoked to remove the ID of the target
relationship object from the target class prototype.

5. Finally, the modifyObjects will be invoked to propagate the appropriate changes to the
affected objects.

Creating an Object

1. The enterClass submodule will display a screen where the class names from the Class

Specs file are shown, and the developer is prompted to select a class name.

[£8)

. Upon selecting a target class, the enterObject submodule will display the attribute
names of the target class and prompt the developer to enter an object name and values

for its attributes.

|98

. Upon “save” option the target object will be created by the createObject submodule

and saved in a data object file.

Deleting an Object

1. The enterClass submodule will display a screen where classes from the Class Specs

file are shown, and the developer is prompted to select a class name.

5]

. Upon selecting a target class, the enterObject submodule will display the object names
of the target class and the developer will be prompted to select an object name for

deletion.

(93]

. Upon the developer acceptance, the deleteObject submodule will delete the target
object from its corresponding data object file.

Creating a Relationship between two Objects

1. The enter TwoObjects submodule will display all class names and allow the developer

to select one or two class names, then display their corresponding object names.

S

. The createObjectsRelationship will prompt the developer to select any two object

names.

. Upon a “save” option, the ID of the second object along with the relationship name

(73]

will be stored in the first object.

Removing a Relationship between two Objects

1. The enterTivoObjects submodule will display all class names and allow the developer

to select one or two class names, then show their corresponding objects names.

[SS)

. The deleteObjectsRelationship will prompt the developer to select any two object

names.

. Upon a “delete” option the ID of the second object along with the relationship name

(93]

will be removed from the first object.

Changing the Value of an Object Attribute

1. The enterClass submodule will display a screen where classes from the Class Specs
file are shown and the developer is prompted to select a class name.

2. Upon selecting a target class, the enterObject submodule will display the object names
of the target class and the developer will be prompted to select an object name and a
target attribute for change.

. The changeObjectAttributeValue will display the target attribute and allow the

(93]

developer to modify the value of the target attribute and save the target object in its

data object.

Changing an Object-Class Membership

1. The enterClass submodule will display a screen where classes from the Class Specs

file are shown and the developer is prompted to select a class name.

o

. Upon selecting a target class, the enterObject submodule will display the object names
of the target class and the developer will be prompted to select an object name and

select its new class (migrate-to-class).

W)

. The changeClassMembership will modify the object structure to make it compatible
with its new class.

Creating 2 Chunk

1. The enterChunk submodule will display a list of all the chunk names in the Chunk
Specs file and the developer is prompted to enter a chunk name along with its

parameter-list.

2. Upon selecting a “save” option, the storeChunk will store the target chunk in the

Chunk Specs file.

157

3. Next, the configAddingChunk submodule will create an object representing the target
chunk and store in it the chunk parameter-list..

Deleting a Chunk

1. The enterChunk submodule will display a list of all the chunk names in the Chunk

Specs file and the developer is prompted to select one.

S8}

. Upon selecting a chunk name and confirming its deletion, the updateDeletingChunk
will delete the target chunk from the Chunk Specs file.

. The deleteChunk submodule will then delete the target chunk.

(V3]

Assembling a Chunk

1. The enterChunk submodule will display all the chunk names in the Chunk Specs file
and prompt the developer to select one.

2. Upon selecting a target chunk name, the assembleChunk submodule will assemble the
target chunk using existing object.

Maintenance of the Object Librarv

One of the important features of OAS is the capability for expanding its Object
Library. As shown in Figure 5.11 below, the Library could be easily maintained by adding
new behavior building blocks, classes, or attribute building blocks. The input will be the

old library along with the new additions.

Efe-Complled >

lObject

|Library /U'pd_ated\

Maintenance
A liVI dul } Pre-Compiled

Additions or odule Object Library

Deletions »
to the Library

Figure 5.11 Maintenance of the Object Library

The Object Library can be maintained by developing the required module using
Objective C source code going through the cycle of edit-compile-link-test before

appending the target module to the library.

Chapter 6

RESEARCH CONTRIBUTION AND FUTURE RESEARCH

6.1. The Contribution of the Research

The research is building on existing research such as software reuse, chunking

[Lim 1996], and CASE, in an object-oriented framework in order to develop and maintain

manufacturing software systems. The research, in this regard, is a software development

tool capitalizing on existing ideas and approaches. However, the research will have the

following contribution to the existing body of knowledge:

Taking the software reuse approach one step further by introducing the reuse of pre-
compiled objects with higher level of granularity such as integer, float and id. The
OAS also reuses specialized pre-compiled objects designed to meet the MRP needs.
Utilizing the idea of chunking in manufacturing software system.

Providing another alternative to the traditional approach of [edit-compile-link] to
software development and maintenance such as CASE. This alternative of assembling
and packaging pre-compiled objects, as has been demonstrated in the case study,
requires a minimal effort and software development skills.

The research will have the following benefits in the area of manufacturing software

engineering;:

L.

)

Ease of development and maintenance of highly flexible manufacturing planning
software systems due to its capability to assemble and de-assemble classes from pre-

compiled building blocks.

. Use of chunking and MRP-oriented application kit of specialized classes.

160

3. Capability, as an Object-Oriented. run-time application building tool, to reduce the
effort and cost of software maintenance where all changes would be carried out at
run-time.

4. Automated propagation of all changes to the underlying data objects at run-time.

The OAS is a good tool for manufacturing software due to the following requirements and

features that distinguishes manufacturing from other domains:

1. Frequent changes due to continuous improvements, new product developments and

subsequent changes in operations.

3]

. The high cost of maintenance.

. The need for run-time maintenance than compile-time in many cases.

Gl

6.2. Future Research

The research could be extended to:
1. Develop a set of variables to quantify software flexibly. As a general guideline,
ease and cost of maintenance are good tools to measure software flexibility. Following
are some variables which could be used to measure the ease and cost of maintenance:
(a) The time required to carry out the following processes:
e Locating where the change should be introduced in the target software.
e Developing a code or any other mean required to accomplish the change.
e Processing and executing change.
e Propagating the change to the persistent data.
(b) Skills needed to carry out the change.
(c) Complexity of the process of locating, developing, and executing the change.

Ultimately, all these times, skills, and complexity could then be weighted and factored as

161

cost.

2. Develop a real-life MRP case study and use the variables listed above in order to bench-
mark the flexibility of the OAS versus any other comparable software maintenance tool.

3. Develop software systems for domains other than manufacturing planning domain. A
good candidate domain would be characterized by:

¢ High frequency of change.
¢ Run-time maintenance requirement.
¢ Wide ripple effect upon introducing a change.
e Larger volume of data.
Applying the OAS for other domains would be accomplished by expanding its Pre-
Compiled Object Library through:
(a) adding other attribute building blocks.
(b) adding specialized behavior building blocks to the OASMethodLib to meet the
requirements of the target domain.
(c) adding more specialized classes to the library.
Any addition to the library has to start with initiating the proper Objective-C code,
compiling and saving into the library.

4. Implementing the technique of multiple inheritance to further extend its flexibility by
extending the structure of the root class Stub so that it would have a list of pointers
instead of one to its superclass. This could be accomplished by modifying the
Objective-C underlying code of class Stub to reflect Superclass-id-list and superclass-
name-list instead of superclass-id and superclass-name respectively. Accordingly, all

the naming conflicts associated with multiple inheritance would then have to be

162

resolved by adopting a proper approach from the existing research body.

5. Incorporating the concepts of fuzzy logic to make the OAS applicable for even wider
range of domains. According to [George et. al. 1993] a fuzzy object-oriented system is
characterized by:

(a) uncertainty in the values of an object’s attributes.

(b) uncertainty in the class-superclass relationship.

In other words, the value of an object attribute equals to a certain value in a certain

degree of membership, similarly, a class is a subclass of another class in a certain

degree of membership. Therefore, to integrate fuzziness in the OAS structure, two

steps would be required:

(a) To accomplish fuzziness in an object’s attribute value, another variable must be
added to the definition of an attribute building block (in addition to name, value,
domain, and default value), this variable would be an integer of float to hold the
degree of membership.

(b) To incorporate fuzziness in the class-superclass inheritance relationship, each
pointer pointing to a superclass must be associated with an integer or float variable

to hold the degree of inheritance relationship.

REFERENCES

A
[Aggarwal et al. 1995] R. Aggarwal and J. Lee, CASE and TQM for Flexible Systems

Information Systems Management, Fall 1995, pp. 15-19.

[Ahlsen et al. 1983] M. Ahlsen, A. Bjornerstedt, S. Britts, C. Hulten, L. Soderlund,
Making Type Changes Transparent, Proceedings of IEEE workshop on
Languages for Automation, Nov. 1983, pp. 110-117.

[Ahlsen et al. 1984] M. Ahlsen, A. Bjornerstedt, S. Britts, C. Hulten, L. Soderlund, 4n
Architecture for Object Management in OIS, Readings in object-oriented
databases, edited by Stanley Zdonik and David Maier, Morgan Kaufmann
publishing, 1990, pp. 570-581.

[Arnold et. al. 1997] Vincent Arnold, Rebecca Bosch, Eugene Dumstroff, Paula Helfrich,
Timothy Hung, Verlyn Johnson, Ronald Persik, Paul Whidden, /BM Business
Framework: San Francisco Project Technical Overview, IBM Systems Journal,
vol. 36, No. 3, 1997, pp. 437-445

B

[Banerjee et al. 1987] Jay Banerjee, Hong-Tai Chou, J. F. Garza, Won Kim, Darrel
Woelk, Nat Ballou, Hyoung-Joo Kim, Data Model Issues for Object-Oriented
Applications, ACM Transactions on Office Information Systems, Vol. 5, No. 1,
Jan. 1987, pp. 3-26.

[Banerjee et al. 1987] Jay Banerjee, Won Kim, Hyoung-Joo Kim, Henry Korth, Semantics
and Implementation of Schema Evolution in Object-Oriented Databases,
Proceedings- ACM on Management of Data,, May 1987, Publ. by ACM
pp 311-322.

[Barnes et. al. 1991] Bruce Barnes, Terry Bollinger, Making Reuse Cost-Effective,
IEEE Software, January 1991, pp. 13-24.

[Bassett 1987] Paul G. Bassett, Frame-Based S oftware Engineering, IEEE Software,
July 1987, pp. 9-16.

[Baxter 1992] Ira Baxter, Design Maintenance Systems, Communications of the ACM,
Vol. 35, No. 4, April 1992, pp. 73-89.

[Benson et al. 1992] Dan Benson, Greg Zick, Spatial and Symbolic Queries for 3-D
Image Data, SPIE vol. 1662 Image Storage and Retrieval Systems 1992,
pp. 134-145.

[Berlin 1990] Lucy Berlin, When Objects Collide, Experiences with Reusing Multiple
Class Hierarchies, OOPSLA ECOOP 90, Ottawa, Canada 21-25 Oct. 1990, ACM

Press, pp. 181-193.

163

164

[Bertino et al. 1993] Elisa Bertino, Lorenzo Martino, Qbject-Oriented Database Systems,
Addison-Wesley Publishing Company, 1993, pp. 23.

[Booch 1991] G. Booch, Qbject-Oriented Design with Applications, Benjamin
Cummings Publishing Co., Redwood City, CA (1991).

[Borchardt et al. 1995] D. Borchardt, N. Ramarapu, and M. Frolick, CASE Tools as
Catalyst for Reengineering, Information Systems Management, Fall 1995,
pp. 20-25.

[Brown et al. 1994] A. Brown, D. Carney, E. Morris, D. Smith, P. Zarrella, Principles of
CASE Tool Integration, Oxford University Press, 1994, pp. 12-15.

[Buchmann et al. 1991] A. P. Buchmann, R. S. Carrera, M. A. Vazquez-Galindo,

Handling Constraints and their Exceptions: An Attached Constraint Handler for

Object-Oriented CAD Databases. On Object-Oriented Database Systems, K. R.
Dittrich, U. Dayal, A. P. Buchmann (Eds), Springer-Verlag, 1991, pp. 65-83.

[Burch 1992] John G. Burch, Svstem Analvsis, Design, and Implementation,
Boyd & Fraser Publishing Company, 1992, pp. 608-609.

[Burton et. al. 1987] Bruce Burton, Rhonda Weink-Aragon, Stephen Baily, Kenneth
Koehler, Lauren Mayes, The Reusable Software Library, IEEE Software, July
1987, pp. 25-35.

C
[Chamberlain et al. 1995] W. Chamberlain, and G. Thomas, The Future of MRP II:

Headed for Scrap Heap or Rising from the Ashes, IIE Solutions, July 1995,
pp.32-35.

[Chung et al. 1992] Yunkung Chung, Gary W. Fischer, [llustration of object-oriented
databases for the structure of a bill of materials. Computers in Industry, No. 19,
1992, pp. 257-270.

[Church et al. 1995] Terry Church, Philip Matthews, An Evaluation of Object-Oriented
CASE Tools: The Newbridge Experience. Proceedings of the Seventh
International Workshop on Computer-Aided Software Engineering, July 1995,
Publ. by IEEE, pp. 4-9.

[Clamen 1994] Stewart Clamen, Schema Evolution and Integration, Distributed and
Parallel Databases, No. 2, 1994, pp. 101-126.

[Coleman et al. 1994] D. Coleman, D. Ash, B. Lowther, and P. Oman, Using Metrics to
Evaluate Software System Maintainability, Computer No. 27, Aug. 94, pp. 44-49.

[Cox et al. 1991] Brad Cox, Andrew Novobilski, Qbject-Oriented Programming, An
Evolutionary Approach, Addison-Wesley Publishing Co., 2nd edition, 1991,

pp. 27.

D

[de Cima et. al. 1994] Alberto de Cima, Claudia Werner, Alessandro Cerqueira, The_
Designof Object-Oriented Software With Domain Architecture Reuse, The
International Conference on Software Reuse, Advances in Software
Reusability, Nov. 1-4, 1994, Rio de Janero, Brazil, Edited by William B. Frake,
IEEE Computer Press Society, pp. 178-187.

[Dunn et. al. 1991] Michael Dunn, John Knight, Software Reuse in an Industrial Setting:
A Case Study, IEEE 1991, pp. 329-338.

E

{El-Sharkawi et al. 1990] Mohamed El-Sharkawi, Yahiko Kambayashi, Object
Migration Mechanism to Support Updates in Object-Oriented, PARBASE-90,
International Conference on Databases, Parallel Architectures, and their
Applications, Mar. 1990, Publ. by IEEE, pp. 378-387.

F

[Fishman et al. 1987] D. H. Fishman, D. Beech, H. P. Cate, E. C. Chow, T. Connors,
J. W. Davis, N. Derrett, C. G. Hoch, W. Kent, P. Lyngbaek, B. Mahbod, M. A.
Neimat, T. A. Rayan, M. C. Shan, [ris: An Qbject-Oriented Database
Management System, Readings in object-oriented databases, edited by Stanley
Zdonik and David Maier, Morgan Kaufmann publishing, 1990, pp. 216-226.

[Frakes et. al. 1994] William Frakes, Sadahiro Isoda, Success Factors of Systematic
Reuse, IEEE Software, July 1987, pp. 15-19.

[Frakes et. al. 1994] William Frakes, Thomas Pole, An Empirical Study of Representation
Methods for Reusable Software Components, IEEE Transaction on Software
Engineering, vol. 20, No. 8, Aug. 1994, pp. 617-630.

G
[Gargaro 1987] Anthony Gargaro, Reusability Issues and Ada, IEEE Software, July

1987, pp. 43-51.

[George et. al. 1993] Roy George, Bill Buckles, Fredrick Petry, Modelling Class
Hierarchies in the Object-Oriented Data Model Fuzzy Sets and Systems, Official
Publication of the International Fuzzy Systems Association IFSA, Volume 60,
Number 3, Dec. 24, 1993, pp. 259-272.

[Griss et. al. 1994] Martin L. Griss, W. (Vojtek) Kozaczynski, Anthony Wasserman,
Christina Jette, Robert Troy, Object-Oriented Reuse (Panel Discussion), The
International Conference on Software Reuse, Advances in Software
Reusability, Nov. 1-4, 1994, Rio de Janero, Brazil, Edited by William B. Frake,
IEEE Computer Press Society, pp. 209-213.

166

[Griss 1994] Martin L. Griss, Architechting Kits for Reuse, The International Conference
on Software Reuse, Advances in Software Reusability, Nov. 1-4, 1994, Rio de
Janero, Brazil, Edited by William B. Frake, [EEE Computer Press Society,
pp. 216-217.

[Gupta et al. 1990] Rajiv Gupta, Melvin A. Breuer, 4n Extensible User Interface for an
Object-Oriented VLSI CAD Framework, Proceedings of the first International
Conference on Systems Integration ICSI, Apr. 1990, Publ. by IEEE pp. 559-568.

H

[Hudson et al. 1989] Scott Hudson, Roger King, Cactis: A self-Adaptive, Concurrent
Implementation of an Object-Oriented Database Management Systems, ACM
Transactions on Database Systems, Vol. 14, No. 3, Sep. 1989, pp. 291-321.

J
[Jarke 1987] M. Jarke, R. Venken, Database Software Development as Knowledge base
Evolution in ESPRIT 87: Achievements and Impact. Amsterdam, North-Holland,

pp. 204-414.

[Joos. 1994] Rebbecca Joos, Software Reuse at Motorola, IEEE Software, September
1994, pp. 42-46.

K
[Kaiser et. al. 1987] Gail E. Kaiser, David Garlan, Melding Software Systems from
Reusable Building Blocks, IEEE Software, July 1987, pp. 17-24.

[Katz et al. 1990] R. H. Katz, E. Chang, Making Changes in a Computer-Aided Design
Database, Readings in object-oriented databases, edited by Stanley Zdonik and
David Maier, Morgan Kaufmann publishing, 1990, pp. 400-407.

[Keene 1989] Sonya E. Keene, Qbject-Oriented Programming in Commion LISP, A
Programmer s Guide to CLOS, Addison-Wesley Publishing Company, 1989,
pp. 139-151.

[Kim et al. 1987] Won Kim, Nat Ballou, Jay Banerjee, Hong-Tai Chou, J. F. Garza,
Darrel Woelk, Features of the ORION Object-Oriented Database System, .
Proceedings of the 13th International VLDB Conference 1987, published by the
IEEE, pp. 154-187.

[Kim et al. 1987] Won Kim, Jay Banerjee, Hong-Tai Chou, J. F. Garza, Darrel Woelk,
Composite Object Support in an Object-Oriented Database System, OOPSLA 87,
Sigplan Notices, Vol. 22, No. 12, Dec. 1987, pp. 1118-125.

[Kim 1990] Won Kim, A New Database for New Times. Datamation, Jan. 1990,
pp- 35-42.

[Konomi et al. 1993] S. Konomo, T. Furukawa, and Y. Kambayashi, Super-Key Classes

167

for Udating Materialized Derived Classes in Object Bases, Lecture Notes in

Computer Science, S. Ceri, K. Tanaka, and S. Tsur (eds.), Springer-Verlag, 1993,
pp.310-326.

L
[Lee & Henry 1993] Wei Li, Sallie Henry, Qbject-Oriented Metrics that Predicts

Maintainability, Journal of Systems Software, 1993, 23, pp. 111-122.

[Lenz et. al. 1987] Manfred Lenz Hans Albrecht Schmid, Peter Wolf, Software Reuse
Through Building Blocks, IEEE Software, July 1987, pp. 34-42.

[Lewis et. al. 1991] John Lewis, Sallies Henry, Dennis Kafura, Robert Schiman, 4n_
Empirical Studv of the Object-Oriented Paradigm and Software Reuse,
OOPSLA91 SIGPLAN Notices, vol. 26, No. 11, Nov. 1991, pp. 184-196.

[Lim 1994] Wayne Lim, Effects of Reuse on Qualitv, Productivity, and Economics, TEEE
Software, September 1994, pp. 23-29.

[Lim 1996] Ik Sung Lim, Design of a Flexible Unified Object-Oriented Simulation
Svstem Architecture, A Ph. D. Dissertation Submitted at Wayne State University,
Detroit, Michigan, U.S. ,1993, pp.79-108.

(Liu et al. 1993] K. Liu, D. Spooner, Qbject-Oriented Databases Views for Supporting
Multidisciplinary Concurrent Engineering, Proceedings of the 17th Annual
International Computer Software and Applications Conference, Publ. by IEEE,
1993, pp.19-25.

M
[Manfred et. al. 1987] Manfred Lenz, Hans Albrecht Schmid, and Peter F. Wolf,
Software Reuse through Building Blocks, IEEE Software, July 1987, pp. 34-42.

[Mejabi 1993] O.0. Mejabi, Object-Oriented Simulation Using Model Builder,
Proceedings of the 1993 Winter Simulation Conference, G. W. Evans,
M. Mollaghasemi, E. C. Russel (eds.), pp. 303-307.

[Meyer 1987] Bertnard Meyer, Reusability: The Case for Object-Oriented Design, IEEE
Software, March 1987, pp. 50-63.

[Moore 1988] D.J. Moore, P.A. Drewe, M.s. Ganti, R.j. Nassif, S. Podar, D.H. Taenzer,
Vishnu: An Object-Oriented Database Management System Supporting Sofnvare
Lngineering, Proceedings of the Tewlfth Annual International Computer
Software & Applications Conference, Oct. 1988, Publ. by IEEE pp. 186-192.

[Morsi et al. 1991] Magdi Morsi, Shamkant Navathe, Hyoung-Joo Kim, 4 Schema
Management and Prototyping Interface for an Object-Oriented Database
Environment, Object Oriented Approach in Information Systems, F. Van Assche,

168

B. Moulin, C. Rolland (eds.) North Holland, 1991 IFIP, pp. 157-179.

[Morsi et al. 1992] Magdi Morsi, Shamkant Navathe, Hyoung-Joo Kim, An Extensible
Object-Oriented Database Testbed, Proceedings-International Conference on
Data Engineering, Feb. 1992, Publ. by IEEE pp. 150-157.

N
[Narayanaswamy et al. 1988] K. Narayanaswamy , K. V. Bapa Rao, 4n Incremental

Mechanism for Schema Evolution in Engineering Domains, Proceedings of the

International Conference on Data Engineering 1988, published by the IEEE,
pp. 294-301.

Nguyen et al. 1987] G. T. Nguyen, D. Rieu, Expert Database Support for Consistent
Dyvnamic Objects, Proceedings of the 13th VLDB Conference, Brighton Sep.
1987, pp. 493-500.

[Nguyen et al. 1989] G. T. Nguyen, D. Rieu, Schema evolution in object-oriented
database systems, Data & Knowledge Engineering, 4, (1989), North Holland,
pp. 43-67.

[Ning et. al. 1994] Jim O. Ning, Kanth Miriyala, W. (Vojtek) Kozaczynski, An
Architecture-driven, Business-specific, and Component-based Approach to
Software Engineering, The International Conference on Software Reuse,
Advances in Software Reusability, Nov. 1-4, 1994, Rio de Janero, Brazil, Edited
by William B. Frake, IEEE Computer Press Society, pp. 84-93.

o
[O’Connor et. al. 1994] James O’Connor, Catherine Mansour, Jerri Turner-Harris, Grady
Campbell. Jr., Reuse in Command-Control Svstems, EEE Software, September

1994, pp. 70-79.

P
[Parker 1997] Kevin Parker, Big, Bigger, Best Manufacturing Svstems, Chilton’s
Manufacturinf Systems, July 1997, pp. 20-27.

[Penny et al. 1987] D. Jason Penny, Jacob Stein, Class Modification in the Gemstone
Object-Oriented DBMS, OOPSLA 87, Sigplan Notices, Vol. 22, No. 12, Dec.
1987, pp. 111-117.

R

[R. Olivia et al. 1992] Olivia R., Liu Sheng, Chih-Ping Wei, Object-Oriented Modeling
and Design of Coupled Knowledge-base/Database Systems, Proceedings-
International Conference on Data Engineering, Feb. 1992, Publ. by IEEE
pp. 98-105.

[Rajlich et. al. 1996] Vaclav Rajlich, Joao Silva, Evolution and Reuse of Orthogonal
Architecture, IEEE Transactions on Software Engineering, vol. 22, No. 2, Feb.

169

19961996, pp. 153-157.

[Ramamoorthy et al. 1984] C. V. Ramamoorthy, A Prakash, W. T. Tsai, and Y. Usuda,

Software Engineering: Problems and perspectives, [EEE Computer, Vol. 17, No.

10, Oct. 1984, pp. 191-209.

[Ratcliffe 1987] M. Ratcliffe, Report on a Workshop on Software Reuse, Hereford, UK
on 1-2 May 1986, ACM SIGSOFT Software Engineering Notes, vol. 12, No. 1,
Jan. 1987, pp. 42-47.

[Riet 1989] R. P. van de Riet, MOKUM: An object-oriented active knowledge base
svstem. Data and Knowledge Engineering, v4, nl, July 1989 pp. 21-42.

[Rine 1991] David Rine, 4 Short Overview of a History of Software Maintenance: A4s it
Pretains to Reuse, ACMSIGSOFT Software Engineering Notes, vol. 16, No. 4,
Oct. 1991, pp. 60-63.

[Rovira et al. 1993] M. Rovira, D. Spooner, J. Haddock, The Concepts of Views in
Simulation, Proceedings of the 1993 Winter Simulation Conference, G.W. Evans,
M. Mollaghasemi, E. C. Russel, W. E. Biles (edt.), 1993, pp. 552-559.

[Rundensteiner 1993] Elke Rundensteiner, Tools for View Generation in Object-
Oriented Databases, Proceedings of the 2nd International Conference on
Information and Knowledge Management, 1993, Publ. by ACM, N.Y.,
pp. 635-644.

[Rundensteiner 1993] Elke Rundensteiner, Design Tool Integration Using Object-
Qriented DatabasesViews, Proceedings of the 1993 [EEE/ACM International
Conference on Computer-Aided Design, 1993, Publ. by IEEE, N.J., pp. 104-107.

S
[Schapiro 1989] David Schapiro, A continuous Approach to Qbject-Oriented Software

Analysis. Fourth Israeli conference on Computer Systems and Software
Engineering, June 1989, Publ. by IEEE pp. 120-127.

[Sciore 1989] Edward Sciore, Object Specialization, ACM Transactions on Information
Systems, Vol. 7, No. 2, April 1989, pp. 103-122.

[Seidewitz 1989] E. Seidewitz, General Qbject-Oriented Software Development:
Background and Experience. The Journal of Systems and Software, No. 9, 1989,
pp- 95-108.

[Senn et al. 1995] J. Senn and J. Wynekoop, The Other Side of CASE Implementation
Information Systems Management, Fall 1995, pp. 7-14.

[Shriver 1987] Bruce Shriver, Reuse Revisited. [EEE Software, January 1987, pp. 5.

170

[Steele 1990] Guy Steele, Common LISP, The Language, second edition, Digital Press,
1990.

[S.Y.S. etal 1991] S. Y. S, Rahim Yaseen, H. Lam, 4n Extensible kernel object
management system, Proceedings of OOPSLA 91, pp. 247-263.

T
[Tracz 1987] Will Tracz, Reusability Comes of Age, IEEE Software, July 1987, pp. 6-8.

[Turbide 1993] David Turbide, MRP + The Adaptation, Enhancement, and Application
of MRP I, Industrial Press, 1995, pp. 1-12.

[Turbide 1995] David Turbide, MRP I Still Number one!, IE Solutions, May 1995,
pp. 28-31.

A%

[Verlage et al. 1992] Martin Verlage, Peter Knauber, Just-in-Time Initialization of
Objects Representing Software Processes, Proceedings of the 1992
ACM/SIGAPP Symposium on Applied Computing SAC, Mar. 1992, Publ. by
ACM pp. 706-710.

[VerDuin 1995] William VerDuin, Better Products Faster, A Practical Guide to
Knowledge-Based Svstems for Manufacturing, IRWIN Publ., 1995.

W

[Wiederhold 1991] Gio Wiederhold, Views, Objects, and Databases, Topics in
Information systems, K. R. Dittrich, U. Dayal, and A. P. Buchmann (eds.),
Springer-Verlag, 1991, pp.29-43.

[Weide et. al. 1994] Bruce Weide, William Ogden, Murali Sitaraman, Recasting
Algorithms to Encourage Reuse, IEEE Software, September 1994, pp. 80-88.

zZ

[Zdonik 1983] Stanley Zdonik, An Qbject Management System for Office Applications,
Management and Information Systems, Languages for Automation, Edited by Shi-
Kuo Chang, 1985, pp. 197-222.

ABSTRACT

A FLEXIBLE ARCHITECTURE FOR MANUFACTURING PLANNING
SOFTWARE MAINTENANCE

by

YOUSIF A. MUSTAFA

May 1998
Advisor Dr. O. Mejabi
Major: Industrial Engineering

Degree: Doctor of Philosophy

Computer software systems took on a new role in manufacturing planning with the
introduction of Material Requirement Planning (MRP) system in 1965. The MRP system
generates material requirement lists in response to given production requirements. In this
way, inventory management, purchasing, and shipping activities are linked to
manufacturing. In 1979, Manufacturing Resource Planning (MRP II) systems were
introduced [VerDuin 1995]. MRP II typically includes planning applications, customer
order entry, finished goods inventory, forecasting, sales analysis, production control,
purchasing, inventory control, product data management, cost accounting, general ledger
processing, payables, receivables, and payroll [Turbide 1995]. An emerging market is
developing for software systems that expand the scope of MRP II farther to encompass
activities for the entire organization. Among these systems are Enterprise Resource
Planning (ERP), Customer-Oriented Manufacturing Management System (COMMS), and

Manufacturing Execution Systems (MES). These systems integrate marketing,

171

172

manufacturing, sales, finance, and distribution to move beyond optimizing production
alone, to optimizing the organization’s multiple objectives of low cost, rapid delivery, high
quality, and customer satisfaction [VerDuin 1995]. MRP II is still the dominant solution
for manufacturing in tens of thousands of companies. These companies range in size from
less than a million dollars in sales right up to the top of Fortune 500 companies. However,
this is a market penetration of only 11% which clearly shows the size and potential of the
opportunity for MRP II development. Yet, despite the commonality of needs across the
scope of manufacturing, there are distinct differences when comparing plant to plant,
company to company, and industry to industry. Often MRP II has to be modified to adapt
to a particular industry [Turbide 1993]. This modification often pushes the cost even
higher and makes MRP II more out-of-reach for many companies.

Therefore, it would be highly beneficial for the overall scope of manufacturing if a
highly flexible low-cost MRP II system can be developed.

This research presents a flexible architecture for development and maintenance of
manufacturing planning software, especially MRP II. The architecture uses the concept of

software reuse and is built on top of run-time object-oriented framework.

AUTOBIOGRAPHICAL STATEMENT

YOUSIF A. MUSTAFA

PERSONAL DATA: Bomn on October 17, 1947 in Iraq.

EDUCATION:

EXPERIENCES:

INTERESTS:

HOBBIES:

B.S. in Physics
September 1970, College of Science, University of Baghdad, Iraq.

M.S. in Operations Research
May 1993, College of Engineering, Wayne State University, USA.

Ph. D. in Industrial Engineering
December 1997, College of Engineering, Wayne State University,
USA.

1995-Date, Associate Professor
Madonna University, Livonia, Michigan, USA.

1990-1995, College Instructor
Lewis College of Business, Detroit, Michigan, USA

1988-1990, College Instructor
City International College of Business, Sydney, Australia.

1970-1987, Computer Programmer/Analyst, Iraq, Syria, and the
USA.

1970-1977, High School Physics Teacher, Baghdad, Iraq.
Academic research and teaching

Reading and following political events and news.

	Wayne State University
	1-1-1998
	A flexible architecture for manufacturing planning software maintenance
	Yousif A. Mustafa
	Recommended Citation

	tmp.1444834471.pdf.78e0J

