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Invited Article 
Estimating the Strength of an Association 
Based on a Robust Smoother 
Rand Wilcox 
University of Southern California 
Los Angeles, CA 

 
 

 
 
It is known that the more obvious parametric approaches to fitting a regression line to 
data are often not flexible enough to provide an adequate approximation of the true 
regression line. Many nonparametric regression estimators, often called smoothers, have 
been derived that are aimed at dealing with this problem. The paper deals with the issue 
of estimating the strength of an association based on the fit obtained by a robust smoother. 
A simple approach, already known, is to estimate explanatory power in a fairly obvious 
manner. This approach has been found to perform reasonably well when using the 
smoother LOESS. But when using a running interval, which provides a simple way of 
using any robust measure of location, the method performs poorly, even with a 
reasonably large sample size. The paper suggests an alternative estimation method that 
performs much better in simulations. 
 
Keywords: Running interval smoother, explanatory power, cross-validation, Well 
Elderly 2 Study  
 

Introduction 

Consider a situation where the conditional measure of location of some random 
variable Y, given X, is given by 
 
    |M Y X g X   (1) 
 
where g(X) some unknown function. As is evident, a common strategy is to 
assume g(X) = β0 + β1X, where β0 and β1 are unknown parameters that are 
typically estimated using ordinary least squares (OLS) regression with the goal of 
estimating the conditional mean of Y given X. There are, however, well known 
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concerns with this approach. First, it is often the case that assuming a straight 
regression line is unsatisfactory, which has led to the derivation of many 
nonparametric regression estimators, often called smoothers (e.g., Efromovich, 
1999; Eubank, 1999; Fan & Gijbels, 1996; Fox, 2001; Green & Silverman, 1993; 
Gyöfri, et al., 2002; Härdle, 1990; Hastie & Tibshirani, 1990). Of course, some 
parametric model might be used to deal with any curvature, but often the more 
obvious strategies (e.g., include a quadratic term) are not flexible enough in terms 
of giving a reasonably accurate approximation of the true regression line.  

Another concern with least squares regression, as well as the bulk of the 
smoothers that have been derived, is that they are designed to estimate the 
conditional mean of Y, one concern being that the population mean is not robust 
in the general sense summarized, for example, by Hampel et al., (1986), Huber 
and Ronchetti (2009), Staudte and Sheather (1990). (The population mean has an 
unbounded influence function and its breakdown point is zero.) A related concern 
is that even a single outlier can highly influence the sample mean, which in turn 
can give a distorted view of the typical value of Y given X. Cleveland (1979) 
derived a smoother (generally known as LOESS) aimed at estimating the 
conditional mean of Y and suggested how it might be modified to handle outliers 
among the dependent variable. Another robust approach is the running interval 
smoother in Wilcox (2012). It is more flexible than LOESS in the sense that 
virtually any robust measure of location can be used. For example, it is easily 
applied when the goal is to estimate the conditional median, trimmed mean or M-
estimator of Y. It also can be used to estimate any quantile of interest.  

A fundamental goal is estimating the strength of an association given a fit to 
data. An approach when using any smoother is to use some robust version of 
explanatory power (e.g., Wilcox, 2012). Explanatory power is 
 

 
 
 

2
2

2

Ŷ

Y








  

 
where τ2 is some measure of variation and Ŷ  is the predicted value of Y based on 
some fit to the data. The square root of explanatory power is called the 
explanatory strength of the association. To put ξ2 in perspective, if Ŷ  is based on 
the OLS regression line and τ2 is taken to be the usual variance, ξ2 reduces to R2, 
the usual coefficient of determination. 
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Estimating explanatory power would seem to be straightforward. Given a 
random sample (Xi, Yi), i = 1, ⋯ n, let îY  be the predicted value of Y given that 

X = Xi. Let  2 ˆˆ Y  be an estimate of τ2( Ŷ ) based on 1̂
ˆ, , nY Y  and let  2ˆ Y  be an 

estimate of τ2(Y) based on Y1, ⋯, Yn. The an estimate of explanatory power is 
simply 
 

 
 
 

2
2

2

ˆˆ
ˆ

ˆ

Y

Y





   (2) 

 
This approach seems to perform reasonably well when using LOESS, but when 
using the running interval smoother, it performs poorly: it can be severely biased 
(Wilcox, 2008). The goal in this paper is to suggest another estimation method 
that gives substantially better results.  

The next section describes the details of the proposed estimation method. 
The following section reports simulation results comparing the new estimator to 
the estimator studied in Wilcox (2008). The final section illustrates the new 
method using data from the Well Elderly 2 study. 

The Proposed Method 

The measure of location used here is a 20% trimmed mean. For Y1, ⋯, Yn the 
sample 20% trimmed mean is 
 

  
1

1
2

n g

i
i g

Y
n g



 
   

 
where g = .2n rounded down to the nearest integer and Y(1) ≤ ⋯ ≤ Y(n) are the 
values Y1, ⋯, Yn written in ascending order. The 20% trimmed mean has nearly 
the same efficiency as the mean under normality, but it continues to have high 
efficiency, relative to the usual sample mean, when sampling from heavy-tailed 
distributions. 

The measure of variation that is used is the 20% Winsorized variance. For 
i = 1, ⋯, g, let Wi = Y(g + 1). For i = g + 1, ⋯, n − g, let Wi = Y(i) and for 
i = n − g + 1, ⋯, n let Wi = Yn − g. Then the Winsorized variance is just the usual 
sample variance based on the Winsorized values W1, ⋯, Wn. 
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The running-interval smoother is applied as follows. For some constant f, 
declare x to be close to Xi if  
 
 iX x f MADN    
 
where MADN = MAD/.6745, MAD is the median of the values. 

|X1 − M|, ⋯, |Xn − M| and M is the usual sample median of the Xi values. Let 
N(Xi) = { j:|Xj − Xi| ≤ f × MADN }. That is, N(Xi) indexes the set of all Xj values 
that are close to Xi. Then M(Y | Xi) is taken to be some measure of location based 
on all Yj values such that  ij N X  and here, a 20% trimmed mean is used. It 
appears that often a good choice for the span, f, is f = 1 (e.g., Wilcox, 2012) and 
this value is used here. 

Method M1 

Letting  ˆ |i iY M Y X  based on the running interval smoother just described, 
method M1 consists of simply computing (2) using the Winsorized variance. 

Method M2 

Method M2 differs from method M1 in two fundamental ways. First, îY  is based 
on a leave-one-out cross-validation approach in conjunction with the running 
interval smoother. That is, îY  in method M1 is replaced by  |i iY M Y X , which 
is based on (X1,Y1), ⋯, (Xn,Yn), ignoring the point (Xi,Yi) rather than using all n 
points. For notational convenience, let Ti be the trimmed mean of Y1, ⋯, Yn, 
excluding Yi. The other difference, compared to method M1, is that the estimate 
of explanatory power is replaced by 
 

 
   

 

2 2
1 12

2
1

, , , ,
, ,

n n

n

T T Y Y
T T

 





   (3) 

 
Note that (3) mimics a standard way of writing the coefficient of determination. 
That is, it reflects the proportion of variation accounted for by the dependent 
variable and the fit obtained by the running interval smoother. 
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Simulation Results 

Simulations were used to compare the bias and mean squared error of methods 
M1 and M2 when estimating ξ. For the first set of simulations data were 
generated from the model 1

3
Y X e   . The true value of ξ2 was determined by 

noting that  2 2 2 2/x x e     , in which case the explanatory strength of the 

association is ξ = .5. The sample size is taken to be 50. Both X and e were taken to 
have one of four g-and-h distributions, which contain the standard normal 
distribution as a special case. More precisely, if Z has a standard normal 
distribution, then 
 

 

  2

2

exp 1
exp , if 0

2

exp ,  if 0
2

gZ ZW h g
g

ZZ h g

  
  

 

 
  

 

  

 
has a g-and-h distribution where g and h are parameters that determine the first 
four moments. The four distributions used here were the standard normal 
(g = h = 0), a symmetric heavy-tailed distribution (h = 0.2, g = 0.0), an 
asymmetric distribution with relatively light tails (h = 0.0, g = 0.2), and an 
asymmetric distribution with heavy tails (g = h = 0.2). Table 1 shows the 
skewness (κ1) and kurtosis (κ2) for each distribution. More properties of the g-
and-h distribution are summarized by Hoaglin (1985). 
 
 
Table 1. Some properties of the g-and-h distribution 

 

g h κ1 κ2 

0.0 0.0 0.00 3.00 

0.0 0.2 0.00 21.46 

0.2 0.0 0.61 3.68 

0.2 0.2 2.81 155.98 

 
 

Let 1̂  and 2̂  be the estimates of ξ based on methods M1 and M2, 

respectively. Bias was measured with  ˆ
jE    , j = 1, 2. To add perspective, 
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bias also was measured with the median difference. The accuracy of the 

estimators was also measured with mean squared error,  
2ˆ

jE   , as well as the 

median squared error. 
Table 2 shows the estimated bias when n = 100 and Y = βX + e for three 

choices of the slope: 0, .5 and 1. As can be seen, generally M2 is less biased, and 
in various situations substantially so despite the reasonably large sample size. 
Note that the bias associated with M1 can be quite severe, the estimates being 
approximately −.2 in some cases. 
 
 
Table 2. Estimated mean bias and median bias, Y = βX + e, n = 100 
 

g h β 
mean bias median bias 

M1 M2 M1 M2 

0.0 0.0 0.0 .110 .081 .101 .000 

0.0 0.2 0.0 .115 .078 .104 .000 

0.2 0.0 0.0 .110 .085 .101 .000 

0.2 0.2 0.0 .115 .082 .105 .000 

0.0 0.0 0.5 -.140 -.099 -.139 -.065 

0.0 0.2 0.5 -.178 -.072 -.178 -.035 

0.2 0.0 0.5 -.144 -.108 -.142 -.070 

0.2 0.2 0.5 -.179 -.081 -.138 -.045 

0.0 0.0 1.0 -.132 -.074 -.129 -.057 

0.0 0.2 1.0 -.197 -.059 -.197 -.039 

0.2 0.0 1.0 -.139 -.077 -.134 -.057 

0.2 0.2 1.0 -.201 -.064 -.200 -.047 

 
 

Table 3 reports the estimated squared error. Method M2 does not dominate. 
But M1 never offers a striking advantage, while in some situations M2 is 
substantially better. 

Tables 4 and 5 report the estimated bias and squared error loss when 
Y = .5X2 + e. In terms of bias, the advantage of M2 over M1 is even more striking 
compared to the results in Table 2. Also, in terms of both the mean and median 
squared error, all indications are that M2 performs better than M1. 
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Table 3. Estimated mean squared error (MSE) and median squared error (MEDSE), 

Y = βX + e, n = 100 
 

g h β 
MSE MEDSE 

M1 M2 M1 M2 

0.0 0.0 0.0 .016 .021 .010 .000 

0.0 0.2 0.0 .017 .021 .011 .000 

0.2 0.0 0.0 .016 .023 .010 .000 

0.2 0.2 0.0 .018 .022 .011 .000 

0.0 0.0 0.5 .019 .044 .009 .011 

0.0 0.2 0.5 .030 .038 .018 .011 

0.2 0.0 0.5 .020 .048 .010 .012 

0.2 0.2 0.5 .031 .040 .019 .011 

0.0 0.0 0.7 .024 .018 .017 .005 

0.0 0.2 0.7 .047 .017 .039 .004 

0.2 0.0 0.7 .026 .019 .018 .005 

0.2 0.2 0.7 .049 .019 .040 .005 

 
 
Table 4. Estimated mean bias and median bias, Y = .5X2 + e, n = 100 

 

g h 
mean bias median bias 

M1 M2 M1 M2 

0.0 0.0 -.201 -.085 -.208 -.050 

0.0 0.2 -.182 -.015 -.191 .025 

0.2 0.0 -.203 -.067 -.210 -.036 

0.2 0.2 -.182 .004 -.190 .043 

 
 
Table 5. Estimated mean squared error (MSE) and median squared error (MEDSE), 

Y = .5X2 + e, n = 100 
 

g h 
MSE MEDSE 

M1 M2 M1 M2 

0.0 0.0 .045 .037 .043 .013 

0.0 0.2 .039 .036 .036 .025 

0.2 0.0 .046 .036 .044 .012 

0.2 0.2 .040 .035 .036 .016 
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An Illustration 

The Well Elderly 2 study (Clark et al., 2012; Jackson et al., 2009) was generally 
concerned with assessing the efficacy of an intervention strategy aimed at 
improving the physical and emotional health of older adults. One goal was to 
determine the association between the cortisol awakening response (CAR) and a 
measure of depressive symptoms after intervention. CAR is defined to be the 
change in cortisol concentration that occurs during the first hour after waking 
from sleep. Extant studies (e.g., Clow et al., 2004; Chida & Steptoe, 2009) 
indicate that various forms of stress are associated with the CAR. 

Simply using Pearson’s correlation yields r = .07, which is not significant at 
the .05 level when using Student’s t test (p = .22). There are outliers suggesting 
the use of some robust generalization of Pearson’s correlation. The skipped 
correlation in Wilcox (2012, section 9.4.3) is estimated to be .07. Kendall’s tau 
and Spearman’s rho are .038 and .057, respectively. So all of these correlation 
coefficients fail to detect any association and suggest that any association that 
might exist is relatively weak. However, a test of the hypothesis that the 
regression line is straight (using the method in Wilcox, 2012, section 11.6.1) is 
significant (p < .001). Based on method M1, the strength of the association is 
estimated to be .12 compared to .31 using method M2.  

Concluding Remarks 

It is not being suggested that better-known correlation coefficients should be 
abandoned in favor of method M2. If, for example, a correct parametric model has 
been specified, under normality Pearson’s correlation provides a more accurate 
estimate of the true association in terms of both bias and mean squared error. A 
difficulty is that no single estimator dominates and the optimal estimator depends 
in part on the true nature of the association, which of course is unknown. If, for 
example, a smoother suggests that the regression line is reasonably straight, and if 
outliers do not appear to be a serious issue, Pearson’s correlation seems 
reasonable. But it can be difficult determining whether some specified parametric 
model is sufficiently accurate to justify using something other than method M2. In 
the illustration, for example, the hypothesis of a straight line was rejected. But 
even if this hypothesis is not rejected, there is the issue of whether the test of the 
hypothesis that the regression line is straight has enough power to justify 
assuming a straight line when estimating the strength of the association. Strategies 
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for deciding which estimator to use, or how to resolve any discrepancies among 
the estimators that are used, are in need of further study. 

The running interval smoother can be used when there are two or more 
independent variables. A few simulations were run with two independent 
variables yielding results similar to those reported in Tables 2 and 3. But a more 
extensive investigation is in order. 
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The familywise Type I error rate is a familiar concept in hypothesis testing, whereas the 
per‑ family Type I error rate is rarely addressed. This article uses Monte Carlo 
simulations and graphics to make a case for the relevance of the per‑ family Type I error 
rate in research practice and pedagogy. 
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Introduction 

The familywise Type I error rate (FWER; Tukey, 1953), which is the probability 
of making at least one Type I error in a family of hypotheses, is a familiar concept 
in quantitative research. Much less frequently addressed is the per-family Type I 
error rate (PFER; Tukey, 1953), which is the number of Type I errors expected to 
occur in a family of hypotheses (in other words, the sum of probabilities of Type I 
error for all the hypotheses in the family). The unpopularity of the PFER may 
stem largely from the fact that it is a stricter standard than the FWER, so 
controlling it can be more costly in statistical power (potentially increasing the 
Type II error rate). Given the tremendous pressure on researchers to find 
statistically significant p-values, any reduction in statistical power is a hard sell. 
However, as noted by a previous article in this journal (Barnette & McLean, 
2005) and by others (Klockars & Hancock, 1994; Ryan, 1959, 1962), it is 
arguable that the PFER is often more relevant than the FWER in social and 
behavioral science research. The argument is essentially as follows: Committing 
multiple Type I errors simultaneously is worse than committing only one, yet 
unlike the PFER, the FWER does not distinguish between making one Type I 
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error in a family and making several Type I errors in a family. Moreover, one 
might reason that because both the maximum FWER and the maximum PFER are 
equal to α when there is only one comparison, both error rates should remain less 
than or equal to α when there are multiple comparisons if Type I error is to be 
considered uninflated. 

Readers may debate the comparative merits of the FWER and the PFER. 
The goal of this article is not to definitively advocate for one standard over the 
other, but rather to point out that although both error rates have merits, the PFER 
is almost universally ignored and may deserve more attention. For example, in 
statistics textbooks for the social and behavioral sciences, there is generally no 
mention of the PFER even when the FWER is addressed (e.g., Goodwin, 2010; 
Hinton, 2004; Howell, 2014; Mertler & Vannatta, 2010; Meyers, Gamst, & 
Guarino, 2006; Sirkin, 2006; Stevens, 2009; Tabachnick & Fidell, 2012; Wetcher-
Hendricks, 2011). And although some classic texts on simultaneous inference 
discuss the PFER (e.g., Hochberg & Tamhane, 1987; Miller, 1966; Tukey, 1953), 
many newer books on the subject do not (e.g., Dickhaus, 2014; Dmitrienko et al., 
2010; Hsu, 1996). 

This study briefly describes some popular Type I error rate controlling 
procedures, distinguishing PFER control from FWER control. Then examples 
from the applied statistics literature are used to show how widespread disregard of 
the PFER may be causing confusion. Then Monte Carlo simulations are used to 
demonstrate that in multivariate contexts the PFER can be substantially inflated 
even when the FWER is controlled, particularly when outcome variables are 
correlated. 

Controlling the PFER using the Bonferroni procedure 

The Bonferroni procedure caps the maximum PFER at α by testing each 
hypothesis at a nominal alpha level of α / m, where m is the number of hypotheses 
in the family. With rare exception (e.g., Harris, 2001), textbooks tend not to 
mention that the Bonferroni procedure controls the PFER, and instead recommend 
it only as a method for controlling the FWER. It is true that the Bonferroni 
procedure controls the FWER (as does any method that controls the PFER), but 
using a PFER controlling method to control the FWER prompts two questions: (1) 
If the objective is to control the PFER, then why not say so, and (2) if the 
objective is to control the FWER, then why not use a procedure that is more 
optimized for that purpose? After all, several methods for controlling the FWER 
are more powerful (meaning they can produce significance in more comparisons) 
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than the Bonferroni procedure. Among the most popular of these methods are 
stepwise procedures, such as the Holm and Hochberg procedures, which are 
described in the following section. 

Controlling the FWER using stepwise procedures 

Holm’s (1979) procedure first arranges the m hypotheses from lowest to highest 
p-value. Then the hypotheses are tested sequentially in that order, each at a 
nominal alpha level of α / (m – b + 1), where b is a number between 1 and m 
indicating the position of the given hypothesis in the sequence. Thus, the first 
hypothesis is tested at level α / m, the next at α / (m – 1), the next at α / (m – 2), 
and so on until the last hypothesis is tested at level α. Testing is conditional, 
meaning that if any p-value in the sequence is nonsignificant, then all larger 
p-values are also declared nonsignificant and testing stops. Holm’s method 
controls the FWER, is more powerful than the Bonferroni procedure, and requires 
only slightly more computation. Like the Bonferroni procedure, Holm’s method 
also allows computation of confidence intervals (Strassburger & Bretz, 2008; 
Guilbaud, 2008). 

Hochberg’s (1988) procedure is essentially the reverse of Holm’s: The 
hypotheses are arranged from highest to lowest p-value, then tested sequentially 
in that order, each at a nominal alpha level of α / b, where b is a number between 
1 and m indicating the position of the given hypothesis in the sequence. Thus, the 
first hypothesis is tested at level α, the second at α / 2, the third at α / 3, and so on 
until the last hypothesis is tested at level α / m. If any p-value in the sequence is 
significant, then all smaller p-values are also declared significant and testing stops. 
Hochberg’s procedure controls the FWER (except in certain situations; see 
Dmitrienko et al., 2010) and is more powerful than Holm’s, but generally does not 
allow computation of confidence intervals (Dmitrienko et al., 2010; Guilbaud, 
2012). 

Some other stepwise procedures for controlling the FWER are more 
powerful than Hochberg’s (e.g., Hommel, 1988; Rom, 1990), but they are more 
computationally complex and, like Hochberg’s method, generally do not allow 
computation of confidence intervals (Dmitrienko et al., 2010; Guilbaud, 2012). 
There are also methods that control the FWER in specific contexts. For example, 
Dunnett’s (1955) procedure and its variations (see Dmitrienko et al., 2010) can be 
used when comparing multiple treatment groups to a placebo group. There are 
also Šidák based methods (see Bird & Hadzi-Pavlovic, 2013), which are not 
necessarily applicable to one sided tests. 
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Given the variety of multiple comparisons procedures available, the 
simplicity and versatility of the Bonferroni procedure—which works for any 
p-values regardless of how they were obtained—make the Bonferroni procedure 
useful to teach as a default method of Type I error control (Harris, 2001). 
However, it is important to note that the Bonferroni procedure controls not only 
the FWER but also the PFER. Failing to understand this may lead to confusion 
such as that discussed in the following section. 

Confusion about the utility of the Bonferroni procedure 
The Bonferroni procedure is often described as “overly conservative” (as noted by 
Gordon, Glazko, & Yakovlev, 2007), or as being “improved” through 
modifications such as Holm’s and Hochberg’s (see Dickhaus, 2014; Posch & 
Futschik, 2008; Simes, 1986). This framing is legitimate if the goal is to control 
the FWER. However, if the goal is to control the PFER, then the Bonferroni 
procedure is not overly conservative (and hence is not improved by modifications 
that make it more liberal). Thus, the Bonferroni procedure is perhaps better 
depicted not as a “blunt tool (Miles & Banyard, 2007, p. 263)” for controlling the 
FWER—but rather as a precise and efficient tool for controlling the PFER. 

Psychological researchers that have touted the superior power of stepwise 
methods over the Bonferroni procedure (e.g., Blakesley et al., 2009; Eichstaedt, 
Kovatch, and Maroof, 2013; Seaman, Levin, & Serlin, 1991) have rarely 
mentioned that such methods—though useful—do not control the PFER and 
therefore are not adequate substitutes for the Bonferroni procedure when control 
of the PFER is desired. For example, Eichstaedt and colleagues (2013, p. 693) 
explicitly stated, “The Holm's sequential procedure corrects for Type I error as 
effectively as the traditional Bonferroni method”—which is only true if the PFER 
is not considered (see Barnette & McLean, 2005). In fact, the sometimes 
dramatically inflated PFERs associated with stepwise procedures are so widely 
unknown among researchers that Klockars and Hancock (1994) were moved to 
call inflated PFERs “the hidden costs” of stepwise procedures. 

In summary, lack of acknowledgment for the PFER may be causing 
unnecessary controversy and confusion: Some present the Bonferroni procedure 
as an appropriate method for controlling the FWER; others present the Bonferroni 
procedure as underpowered and obsolete; and neither of these opposing views 
takes into account the procedure’s usefulness for controlling the PFER. However, 
if the Bonferroni procedure were presented as a method for controlling the PFER, 
then there would be no dissonance between: (1) recommending the Bonferroni 
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procedure for controlling the PFER, and (2) recommending more powerful 
methods for controlling the FWER. 

The PFER may be more relevant now than in the past 

There was a time when choosing between the FWER and the PFER appeared to 
be relatively inconsequential. Miller (1966, p. 10) called the choice “essentially a 
matter of taste,” and acknowledged that he preferred the FWER “for feelings he 
[could not] entirely analyze.” Similarly, Tukey (1953, p. 5) wrote that either error 
rate could be used in practice and that the FWER merely had “theoretical 
advantages”. Ryan (1959, p. 40) called the choice between FWER and PFER 
"merely a matter of computational convenience." Indeed, the Bonferroni 
procedure’s maximum FWER is known to be only trivially different from its 
maximum PFER. However, selecting an error rate is no longer simply an 
inconsequential matter of personal preference, given the development of 
procedures—such as the Holm, Hochberg, and Hommel methods—that can 
control the FWER while allowing considerable inflation of the PFER. The 
following simulations demonstrate this inflation in multivariate designs (for 
demonstrations of analogous PFER inflation in other contexts, see Barnette & 
McLean, 2005; Klockars & Hancock, 1994; Shaffer, Kowalchuk, & Keselman, 
2013). 

Methodology 

Monte Carlo simulations were conducted in R (R Core Team, 2013) of two-group 
designs with 50 subjects per group. Three numbers of multivariate normal 
outcome variables were used: m = 2, m = 5, and m = 10. Equal population 
correlations (ρ) between outcome variables were set at 200 values between 0 and 
1. All effect sizes (i.e., population mean differences) were set at zero so that any 
statistically significant sample mean difference between groups would be a Type I 
error. There were 100,000 simulations for each combination of m and ρ. These 
simulations generated pseudorandom sample mean differences and sample 
covariance matrices. 

Two sided univariate tests of the sample mean differences were conducted at 
α = .05 using each of the following four procedures: Bonferroni, Holm, Hochberg, 
and Hommel. For each of these procedures at each combination of m and ρ, the 
FWER was computed by dividing the number of simulations in which 
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significance occurred by 100,000, and the PFER was computed by dividing the 
number of significant tests by 100,000. 

Results 

At each value of m, each of the four procedures had a maximum FWER less 
than .050, but the PFER could differ notably from the FWER when outcome 
variables were correlated. For example, Figure 1B shows that for five outcome 
variables, even a moderate correlation of .6 inflated the Hommel procedure’s 
PFER to approximately 0.067. In other words, although the chance of making a 
Type I error in a given family remained less than one in 20, the rate of Type I 
errors per family was approximately one in 15. The stepwise procedures can 
allow even greater PFER inflation at higher values of m and ρ, but the Bonferroni 
procedure’s maximum PFER is always equal to α and is insensitive to correlation. 

Note that in Figures 1B and 1C, the maximum PFERs of the Hochberg and 
Hommel procedures are well beyond the upper limits of the graphs. At any value 
of m, the maximum PFER for both procedures approaches α × m as ρ goes to 1. 
However, extending the range of the vertical axes to accommodate the extremely 
inflated PFERs at impractically high correlations would have sacrificed detail in 
the busier portions of the graphs while adding little useful information. 

Discussion 

Previous studies (Barnette & McLean, 2005; Klockars & Hancock, 1994; Shaffer, 
Kowalchuk, & Keselman, 2013) showed that the PFER can be substantially 
inflated in multigroup designs even when the FWER is controlled. This article has 
built on those findings in three principal ways: (1) by demonstrating through 
simulation that those findings extend to multivariate designs, (2) by graphically 
illustrating how the population correlation between outcome variables can 
enhance the disparity between the PFER and the FWER, and (3) by using the 
applied statistics literature to show that inadequate acknowledgement of the PFER 
may be causing unnecessary controversy and confusion, particularly with regard 
to the utility of the Bonferroni procedure. 
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Figure 1. Per-family and familywise Type I error rates for the Bonferroni, Holm, Hochberg, 

and Hommel procedures in a two-group design with m outcome variables (α = .05, all null 
hypotheses true). Note that Hommel is equivalent to Hochberg for m = 2. 
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Implications for research practice 
This article proposes that, depending on the research situation, either the PFER or 
the FWER may be more relevant than the other. Controlling the PFER (i.e., using 
the Bonferroni procedure) is appropriate when every mistake hurts—as is 
frequently the case in social and behavioral science research. For example, if a 
psychological therapy is found to significantly improve multiple symptoms, then 
it would be worse for many of those purported improvements to be Type I errors 
than for only one to be a Type I error. If statistical power is of concern, then 
improving the measures and manipulations or increasing the sample size would be 
a better solution than using a more liberal error rate that increases the toleration of 
false findings. 

Controlling the FWER may be sufficient when, given one Type I error, 
additional Type I errors are not costly, or perhaps when dependency among the 
tests is known to be sufficiently low that FWER and PFER are only negligibly 
different. In such situations, a method more powerful than the Bonferroni 
procedure may be used, such as the Holm procedure (if confidence intervals are 
required), the Hochberg or Hommel procedure (if no confidence intervals are 
required), or a context specific method appropriate for the given situation (see 
Dmitrienko et al., 2010 for an extensive list). An important caveat is that the 
Hochberg and Hommel procedures do not necessarily control the FWER for one 
sided tests that can be negatively correlated (see Samuel-Cahn, 1996), whereas 
the Bonferroni and Holm methods do not have this limitation. 

Implications for applied statistics pedagogy 

If the PFER is to be addressed more in practice, then it must also be addressed 
more in pedagogy. Therefore, this article recommends that professors and 
textbook authors include discussion of the PFER along with discussion of the 
FWER. Additionally, when a multiple comparisons procedure is described, the 
specific error rates that it controls (and does not control) should be accurately 
identified. It is no longer sufficient to simply refer to “the Type I error rate.”  

Limitations 

This study did not examine every Type I error rate that has been defined. For 
example, the comparisonwise Type I error rate (Tukey, 1953) is the probability of 
Type I error for a single hypothesis irrespective of the number of hypotheses in 
the family. Thus, controlling Type I error at the comparisonwise level effectively 
means disregarding Type I error inflation altogether and simply conducting each 
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hypothesis test at the unadjusted alpha level. Another error rate that has been 
proposed is the false discovery rate (Benjamini & Hochberg, 1995), which is, 
loosely speaking, the expected proportion of significant hypothesis tests in the 
family that are Type I errors (except when all null hypotheses are true, in which 
case the false discovery rate is equivalent to the FWER). Both the 
comparisonwise Type I error rate and the false discovery rate are more liberal 
than the FWER and thus beyond the scope of this article, but there are contexts in 
which these error rates may be appropriate. 

It should also be acknowledged that the simulations examined neither a 
variety of alpha levels, nor an exhaustive variety of multiple comparisons 
procedures, nor an exhaustive variety of parameter combinations. However, to do 
so would have made exceedingly long and complex an article that required only a 
finite number of examples to support its conclusion that the PFER can be relevant. 
Future articles may examine in detail issues such as which Type I error rates are 
more relevant in particular contexts. 
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Frane (2015) pointed out the difference between per-family and familywise Type I error 
control and how different multiple comparison procedures control one method but not 
necessarily the other. He then went on to demonstrate in the context of a two group 
multivariate design containing different numbers of dependent variables and correlations 
between variables how the per-family rate inflates beyond the level of significance. In 
this article I reintroduce other newer better methods of Type I error control. These newer 
methods provide more power to detect effects than the per-family and familywise 
techniques of control yet maintain the overall rate of Type I error at a chosen level of 
significance. In particular, I discuss the False Discovery Rate due to Benjamini and 
Hochberg (1995) and k-Familywise Type I error control enumerated by Lehmann and 
Romano (2005), Romano and Shaikh (2006), and Sarkar (2008). I conclude the article by 
referring readers to articles by Keselman, et al. (2011, 2012) which presented R computer 
code for determining critical significance levels for these newer methods of Type I error 
control. 
 
Keywords: Type I error, multiple comparisons, simultaneous inference 
 

Introduction 

Frane (2015) presented an article which clarified the difference between the per-
family (PFER) and familywise (FWER) Type I error rates (See also Klockars & 
Hancock, 1994). It is important that applied researchers understand the difference 
between the rates and how different multiple comparison procedures may control 
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one rate of error but not the other. For example, as he notes, the typical Dunn 
(1961)-Bonferroni method controls the overall rate of Type I error per-family, 
whereas other Bonferroni methods of Type I error control (e.g., Holm, 1979) 
control the familywise rate of error. Through simulation methods he then shows 
that in a multivariate design containing two groups, multiple dependent measures, 
and various correlations between the dependent variables, the FWER may be 
controlled, yet the PFER can be very large. The author also notes in the article 
that other issues could have been discussed such as newer methods of controlling 
Type I errors and other multiple comparison procedures themselves; some issues 
were noted but not discussed in detail. 

My intention in this article is to take the reader further into the topics of 
Type I error control and multiple comparison procedures that Frane (2015) did not 
have the space to discuss. I believe these additional topics are very important to 
discuss since the issue of Type I error control has advanced immeasurably since 
the early discussions related to PFER and FWER control. 

Per-experiment and experimentwise Type I error control 

At the outset I want to expand on the definitions of per-family and familywise 
presented by Frane (2015). But first, I want to re-introduce the per-experiment 
(PEER) and the experimentwise (EWER) Type I error rates, rates applied 
researchers are more likely to be familiar with. Ryan (1959, 1960, 1962) in his 
seminal articles regarding overall Type I error control versus comparisonwise 
(CWE) (i.e., per test or per comparison) control, used the terminology per-
experiment and experimentwise to indicate that these rates applied to controlling 
the maximum overall rate of Type I error for multiple tests of significance 
assessed within an experiment. Later in the history of methods for controlling the 
overall rate of Type I error, per-family and familywise became equated with per-
experiment and experimentwise (See Hochberg & Tamhane, 1987).  

The distinction is important because it allows one to adopt per-family and 
familywise control in more interesting and dynamic ways. For example, in a one-
way design where a researcher computes pairwise and complex comparisons 
between group means, one can set a per-family or familywise error rate over each 
family of tests (i.e., the pairwise tests and complex comparisons tests), and thus 
maintain the per-experiment or experimentwise rates at some overall maximum 
value. So a .05 level of significance can be tied to each family of tests and 
consequently the maximum overall joint per-experiment or experimentwise 
probability of Type I error can be fixed at .10. To further illustrate the nuances of 
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familywise and experimentwise control consider an A × B design. In such a 
design a researcher can set familywise rates of error over all tests performed on 
the A effect, B effect, and A × B effects. Collectively, the overall or 
experimentwise Type I error rate would be a function of the three familywise 
rates. For example, suppose the researcher chose to perform all possible pairwise 
comparisons on the A main effect, a number of complex comparisons on the B 
main effect, and a number of interaction contrasts on the A × B effects setting 
a .05 value on each set. Collectively therefore, the overall experimentwise Type I 
error rate would be controlled at the .15 level. Clearly by thinking about the 
familywise or per-family rate as rates for related families of tests, the researcher 
can see the flexibility that s/he is afforded. I will have more to say on how 
researchers should define a family shortly. 

Newer definitions of Type I error control 

Background 
Multiplicity of testing.  The multiplicity problem in statistical inference 
refers to selecting the statistically significant findings from a large set of findings 
(tests) to either support or refute one's research hypotheses. Discussions on how to 
deal with multiplicity of testing have permeated many literatures for decades. 
There are those who believe that the occurrence of any false positive must be 
guarded at all costs (see Games, 1971; Ryan, 1960, 1962; Westfall & Young, 
1993). That is, as promulgated by Thomas Ryan, pursuing a false lead can result 
in the waste of much time and expense, and is an error of inference that 
accordingly should be stringently controlled. Those in this camp deal with the 
multiplicity issue by setting α for the entire set of tests computed. This type of 
control has been referred to in the literature as experimentwise (EWER) or 
familywise (FWER) control. Those in the opposing camp maintain that stringent 
Type I error control results in a loss of statistical power and consequently 
important treatment effects go undetected (see Rothman, 1990; Saville, 1990). 
Members of this camp typically believe the error rate should be set per 
comparison [the probability of rejecting a given comparison] (the CWE rate) and 
usually recommend a five percent level of significance, allowing the overall error 
rate (i.e., EWER or FWER) to inflate with the number of tests computed. In effect, 
those who adopt comparisonwise control ignore the multiplicity issue. 
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Family size.   Specifying family size is a very important component of 
multiple testing. As Westfall et al. (1999, p. 10) note, differences in conclusions 
reached from statistical analyses that control for multiplicity of testing (FWER) 
and those that do not (CWE) are directly related to family size. Specifically, the 
larger the family size, the less likely individual tests will be found to be 
statistically significant with FWER control. Accordingly, to achieve as much 
sensitivity as possible to detect true differences and yet maintain control over 
multiplicity effects, Westfall et al. recommend that researchers “choose smaller, 
more focused families rather than broad ones, and (to avoid cheating) that such 
determination must be made a priori...” (p. 10).  

Not only does the FWER rate depend on the number of null hypotheses that 
are true but as well on the distributional characteristics of the data and the 
correlations among the test statistics. Because of this, an assortment of multiple 
comparison procedures have been developed, each intended to provide FWER 
control. 

As I indicated at the outset, since the per-family/per-experiment and 
familywise/experimentwise error rates were introduced, researchers have defined 
new ways of controlling Type I errors which by-in-large are intended to provide 
control over multiple tests of significance that one does not achieve with 
comparisonwise control and more power to detect effects than is provided by the 
familywise and experimentwise rates.  

The false discovery rate (FDR) 

It was noted by Frane (2015) that this is a new definition of Type I error control 
that affords the user more power to detect true effects though at the cost of 
allowing a greater number of Type I errors. However, Frane believes that if 
researchers want more power they should exert better experimental control and/or 
use more subjects in their studies. Presuming that applied researchers are always 
attuned to controlling extraneous variance and accordingly adopt the best 
experimental control that is feasible for their studies, the remaining avenue to 
increase power to detect effects is to increase the number of participants examined 
in their studies. Not always however, possible. In my department the subject pool 
is limited and experimenters do not have access to as many subjects that comprise 
the pool. Thus, achieving more statistical power through more liberal definitions 
of Type I error control and more sensitive multiple comparison procedures should 
be a viable option for researchers to consider. 



PER-FAMILY OR FAMILYWISE TYPE I ERROR CONTROL 

28 

As indicated, several different error rates have been proposed in the multiple 
comparison literature. The majority of discussion in the literature has focused on 
the FWER, although other error rates, such as the FDR also have been proposed 
(e.g., Benjamini & Hochberg, 1995). The FDR is defined by these authors as the 
expected proportion of the number of erroneous rejections to the total number of 
rejections. 

Use of the false discovery rate criterion has become widespread when 
making inferences in research involving the human genome, where family sizes in 
the thousands are common. See the review by Dudoit, Shaffer and Boldrick 
(2003), and references contained therein. Another area of research where FDR 
controlling procedures have had a significant impact is functional magnetic 
resonance imaging. In these experiments researchers are conducting numerous 
(often more than 100,000) significance tests that relate to tests of activation on 
specific voxels (i.e., areas) within the brain (e.g., Callan, Jones, Munhall, Callan, 
Kroos, & Vatikiotis-Bateson, 2003). 

The Benjamini and Hochberg (1995) procedure has been shown to control 
the FWER for several situations of dependent tests, that is, for a wide variety of 
multivariate distributions that make their procedure applicable to most testing 
situations scientists might encounter (see Sarkar, 1998; Sarkar & Chang, 1997). In 
addition, simulation studies comparing the power of the Benjamini and Hochberg 
procedure to several FWER controlling procedures have shown that as the 
number of treatment groups increases (beyond 4 treatment groups), the power 
advantage of their procedure over the FWER controlling procedures becomes 
increasingly large (Keselman et al., 1999). The power of FWER controlling 
procedures is highly dependent on the family size (i.e., number of comparisons), 
decreasing rapidly with larger families (Holland & Cheung, 2002; Miller, 1981). 
Therefore, control of the FDR results in more power than FWER controlling 
procedures in experiments with many treatment groups, but yet provides more 
control over Type I errors than CWE controlling procedures. 

Suppose for n means, μ1, μ2, …, μJ, and our interest is in testing the family 
of m = [J(J – 1)]/2 pairwise hypotheses, H0 : μi − μj = 0, of which m0 are true. Let 
S equal the number of correctly rejected hypotheses from the set of R rejections; 
the number of falsely rejected pairs will be V. In terms of the random variable V, 
the CWE is E(V / m), while the FWER is given by P(V ≥ 1). Thus, testing each 
and every comparison at α guarantees that E(V / m) ≤ α, while according to the 
Bonferroni inequality, testing each and every comparison at level α / m guarantees 
that P(V ≥ 1) ≤ α. 
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According to Benjamini and Hochberg (1995) the proportion of errors 
committed by falsely rejecting null hypotheses can be expressed through the 
random variable Q = V / R, that is, the proportion of rejected hypotheses that are 
erroneously rejected. (It is important to note that Q is defined to be zero when 
R = 0; that is, the error rate is zero when there are no rejections.) The FDR was 
defined by Benjamini and Hochberg as the mean of Q, that is 
 

    
Number of false rejections,  or 

Number of rejections
VE Q E E Q E
R

  
    

   
.  

 
That is, the FDR is the expected proportion of false discoveries or false 

positives. 
As Benjamini and Hochberg (1995) indicate, this error rate has a number of 

important properties: 
 
a) If μ1 = μ2 = … = μJ, then all m (pairwise) comparisons truly equal 

zero, and therefore the FDR is equivalent to the FWER; that is, in the 
case of the complete null being true, FDR control implies FWER 
control. Specifically, in the case of the complete null hypothesis 
being true, S = 0 and therefore V = R. So, if V = 0, then Q = 0, and if 
V > 0 then Q = 1 and accordingly P(V ≥ 1) = E(Q). 

b) In testing the family of (pairwise) hypotheses, of which m0 are true, 
when m0 < m, the FDR is smaller than or equal to the FWER. The 
FDR is smaller than or equal to the FWER because in this case 
FWER = P(R ≥ 1) ≥ E(V / R) = E(Q). This indicates that if the 
FWER is controlled for a procedure, then the FDR is as well. 
Moreover, if one adopts a procedure that provides FDR control, 
rather than strong (i.e., over all possible mean configurations) FWER 
control, then based on the preceding relationship, a gain in power 
can be expected. 

c) V / R tends to be smaller when there are fewer pairs of equal means 
and when the non-equal pairs are more divergent, resulting in a 
greater differences in the FDR and the FWER values and thus a 
greater likelihood of increased power by adopting FDR control. 
 

With the BH FDR procedure, the p-values corresponding to the m (pairwise) 
statistics for testing the hypotheses H1, H2, …, Hm are ordered from smallest to 
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largest, that is, p1 ≤ p2 ≤ … ≤ pm. Let k be the largest value of i for which 
pi ≤ (i / m)α and then reject all Hi, i = 1, 2, …, k. On the basis of this procedure, 
one begins by assessing the largest p-value, pm, and then proceeds to smaller p-
values as long as pi > (i / m)α. Testing stops when pi ≤ (k / m)α. 

The k-FWER criterion and procedures for its control2 
The classical approach for controlling Type I errors for a family of many (say m) 
hypothesis tests is FWER control. Once the family is defined, control of the 
FWER requires that 
 

FWER ≤ α 
 
for all configurations of true and false hypotheses. It is well known that for non-
independent tests the probability (Pr) of making one or more Type I errors is 
 

FWER = Pr(One or more Type I errors for m tests) < 1 – (1 – α)m 
 

Examples of procedures that control the overall rate of Type I error when 
many tests of hypotheses are examined are the single-stage Bonferroni procedures 
(e.g., Dunn, 1961) and stepwise Bonferroni procedures (Hochberg, 1988; Holm, 
1979). However, when there are many hypotheses to be examined they can be 
deficient in power to detect non-null hypotheses. Indeed, when the size of the 
family of hypotheses to be tested becomes large, FWER becomes very restrictive 
and not very powerful at detecting false null hypotheses. For example, for m tests 
of significance, the single-stage Bonferroni level of significance would be α / m 
and when m is large detecting non-null effects will be difficult. As Lehmann & 
Romano (2005) note “control of the FWER at conventional levels becomes so 
stringent that individual departures from the hypothesis have little chance of being 
detected” (p. 1139).  

Accordingly, Type I error control is not the only issue researchers must 
consider when testing a hypothesis or set of hypotheses. As in the case of testing a 
single hypothesis, researchers must also consider the ability of a procedure to 
detect departures from the hypothesis when they do occur (Lehmann & Romano, 
2005, p. 1139). To address this issue, Lehmann & Romano, as well as others (See 
the references cited in Lehmann & Romano) developed the k-FWER method of 

                                                           
2 Keselman et al. (2012) previously introduced these procedures to the psychological audience. Their article also includes 
the mathematical underpinnings of the procedures. 
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Type I error control. As they note, with a larger family of hypotheses, one might 
be willing to allow the possibility of falsely rejecting k true null hypotheses. With 
the possibility of falsely rejecting more than one, two, three, etc. null 
hypothesis(es), one obtains more power to detect false null hypotheses. Lehmann 
and Romano (2005) define k-FWER as the probability of rejecting at least k true 
null hypotheses.  
 

k-FWER = Pr{reject at least k hypotheses Hi with i ∈ I(P)} 
 

Here I(P) denotes the set of true null hypotheses when P is the true 
probability distribution. Control of the k-FWER requires that k-FWER ≤ α for all 
P. When k = 1, then k-FWER reduces to 1-FWER or FWER which controls the 
probability of rejecting at least one true null hypothesis.  

To help the reader to fully appreciate k-FWER, I note the following. 
Consider what it means to control 2-FWER instead of 1-FWER (or simply 
FWER) at α = .05? This would be equivalent to specifying that the probability of 
2 or more false rejections is controlled at .05, whereas FWER controls the 
probability of any (i.e., 1 or more) false rejections at .05. In essence, then, 2-
FWER implicitly tolerates 1 false rejection and makes no explicit attempt to 
control the probability of its occurrence, unlike FWER which tolerates no false 
rejections at all. More generally, then, k-FWER tolerates k − 1 false rejections, but 
controls the probability of k or more false rejections at an α = .05. 

 Before presenting these newer methods I provide some additional 
clarification of the k-FWER. First, remember that FWER control treats rejections 
of multiple true null hypotheses as being no more serious than the rejection of 
only one (i.e., at least one) true null hypothesis. The newer procedures have the 
same conceptual underpinning; however, for them falsely rejecting multiple true 
null hypotheses is no more serious than the rejection of only two, three, etc. true 
null hypotheses (i.e., at least 2, 3, etc.). Accordingly, a clean outcome from an 
analysis controlling the FWER is an outcome with no Type I errors. A clean 
outcome from a k-FWER analysis is an outcome with no more than k − 1 Type I 
errors. Note that in both cases, the number of Type I errors produced when at least 
k are produced (1 in the case of FWER) is of no concern as far as the error rate 
criterion is concerned. 

Keselman, Miller and Holland (2011) describe four procedures that utilize 
the k-FWER method of multiple testing control. Technical descriptions can be 
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found in Keselman et al. (2011). As well these authors provide R code for running 
the newer procedures (See also Keselman et al., 2012).3 
 

The Holm and generalized Holm (Lehmann and Romano) procedures 
Lehmann and Romano (2005) provided a generalization of the Holm (1979) 
procedure. Just as the Holm procedure controls FWER under all dependency 
conditions, the generalized procedure controls k-FWER under the same 
dependency conditions (i.e., there are no dependency conditions).  

The ordered p-values for the m individual tests denoted 
p(1) ≤ … ≤ p(k) ≤ … ≤ p(m) correspond to hypotheses, H(1), …, H(k), …, H(m). The 
generalized Holm procedure is defined stepwise as follows: 

 
Step 0. Let i = 1, k and α are chosen by the experimenter. 
Step 1. If i ≤ k, go to step 2. If k < i ≤ m, go to step 3. Otherwise, stop and 

reject all of the hypotheses. 

Step 2. If  i
kp
m


 , go to step 4. Otherwise, set i = i + 1 and go to step 1. 

Step 3. If  i
kp

m k i



 

, go to step 4. Otherwise, set i = i + 1 and go to 

step 1. 
Step 4. Reject H(j) for j < i and accept H(j) for j ≥ i. 
 

The Hochberg and generalized Hochberg (Sarkar 1) procedures 

The generalization of the Hochberg (1988) procedure is a step up version of the 
generalized Holm procedure presented by Lehmann and Romano. Sarkar (2008) 
states that it controls k-FWER when the test statistics are independent or when 
they satisfy the multivariate totally positive order of two (MTP2) condition.4 

A step up procedure based on the same set of critical values as a step down 
procedure will always reject at least as many hypotheses and therefore will be 

                                                           
3 The R code provides users with adjusted p-values. In its typical application, researchers compare a test statistic to a 
FWER critical value. Another approach for assessing statistical significance is with adjusted p-values, p~i, i = 1, …, m 
(Westfall et al., 1999; Westfall & Young, 1993). As Westfall and Young note “p~i is the smallest significance level for 
which one still rejects a given hypothesis (Hi) in a family, given a particular (familywise) controlling procedure.” (p. 11) 
The advantage of adjusted p-values for multiple comparison procedures, as with p-values for tests in comparisonwise 
contexts, is that they are more informative than merely declaring retain or reject Hi; they are a measure of the weight of 
evidence for or against the null hypothesis when controlling FWER. For example, if p~i = 0.09, the researcher/reader can 
conclude that the test is statistically significant at the FWER = 0.10 level, but not at the FWER = 0.05 level. Adjusted 
p-values are provided by the SAS system for many popular multiple comparison procedures (See Westfall et al., 1999). 
SPSS also provides adjusted p-values for most multiple comparison procedures. 
4 Keselman et al. (2012) define MTP2 in their article. 
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more powerful at detecting false null hypotheses. I therefore recommend using the 
generalized Hochberg procedure over the generalized Holm procedure as long as 
the Hochberg procedure is appropriate to use. 

The generalized Hochberg procedure is defined stepwise as follows: 
 
Step 0. Let i = m, k and α are chosen by the experimenter. 
Step 1. If i > k, go to step 2. If 1 ≤ i ≤ k, go to step 3. Otherwise, stop and 

accept all of the hypotheses. 

Step 2. If  i
kp

m k i



 

, go to step 4. Otherwise, set i = i − 1 and go to 

step 1. 

Step 3. If  i
kp
m


 , go to step 4. Otherwise, set i = i − 1 and go to step 1. 

Step 4. Reject H(j) for j ≤ i and accept H(j) for j > i. 
 

Romano and Shaikh procedure  Romano and Shaikh (2006) 
developed a generalized version of the Hochberg procedure that has no 
dependency restrictions associated with it. This fact makes it attractive in 
situations with complex dependency conditions, i.e., such as when the family of 
tests are that the elements of a correlation matrix are zero. Step up tests such as 
the Hochberg are more powerful at detecting false null hypotheses than the step 
down test using the same critical values. However, since this generalized 
Hochberg test is valid to use under all dependency conditions, it does not use the 
same critical values as the generalized Holm procedure. The critical values are 
approximately halved. This negatively affects power to detect false null 
hypotheses since the p-values must be less than the critical values to be declared 
statistically significant. See Keselman et al.’s (2011) Appendix A for more 
information. 
 

Sarkar 2 procedure  The Sarkar (2008) procedure is another generalized 
version of the Hochberg procedure. It controls k-FWER when the joint 
distribution of the p-values is multivariate totally positive of order two (MTP2) in 
addition to having identical kth-order joint distributions under the null hypotheses. 
MTP2 is a somewhat restrictive condition that is violated if any of the test 
statistics are negatively correlated, but met if the tests are pairwise independent 
(Sarkar, 2000). An example of a MTP2 procedure would be many to one contrasts 
in a balanced design as is found in a Dunnett’s one-sided comparisons with a 
control.  
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When the p-values are independent, this procedure has been found to be a 
more powerful generalized Hochberg procedure than a step up version of the 
generalized Holm procedure when 2 ≤ k ≤ 1 / α (Sarkar, 2008). When k = 1, the 
Sarkar procedure is equivalent to the Hochberg procedure. Although, the Sarkar 
procedure is valid to use as long as the p-values have a MTP2 distribution, we 
only recommend its use when the p-values are independent [See Keselman et al.’s 
(2011) Table 1 for a description of k-FWER method and type of dependency 
assumed to exist between the test statistics and associated p-values]. (Note: The R 
code provided in their Appendix B is only valid for the Sarkar procedure when the 
p-values are independent.) 

Discussion 

As the reader can see, the way in which Type I errors can be controlled for 
families of tests goes way beyond the per-family and familywise rates discussed 
by Frane (2015). The intention of my article was to review methods previously 
presented in the statistical and psychological literatures, with the intention of 
letting the reader see that researchers have many techniques that can be adopted to 
control the overall rate of Type I error. I recommend that applied researchers give 
serious consideration to the newer techniques (FDR and k-FWER) because they 
provide more power to detect non-null effects and yet limit the overall rate of 
Type I error at some specified value. So referring back to the title of this article I 
would say with regard to per-family or familywise control—eether, eyether, or 
perhaps neether, nyther. 5 The reader should note that the R code provided in 
Keselman et al. (2011, 2012) provides adjusted p-values for all of the newer 
methods discussed in this article. Users must select a method of control before 
cherry-picking the method that has the greatest number of statistically significant 
findings as reported through the R code. 
  

                                                           
5 The methods described in this paper do not provide confidence intervals as compared to simultaneous MCPs [procedures 
that use one critical value to assess statistical significance such as Tukey’s (1953) method]; they, nonetheless, should be 
considered an important tool in any data analyst’s arsenal of viable methods for investigating treatment effects through 
many tests of significance. 
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As the authors note, the familywise error rate (FWER) is used rather often, whereas the 
per-family error rate (PFER) is not. Is this as it should be? It would seem that no 
universal answer is possible, as context determines which is more appropriate in any 
given application. In the general scenario of testing the benefit of an intervention, one 
might ideally want an error rate that aligns with the decision for benefit. In most cases the 
FWER does this pretty well, while allowing one to identify those endpoints for which 
benefit exists. The PFER does not seem to have any advantage over the FWER in this 
general testing scenario. Perhaps in some other scenarios the PFER might have some 
reasonable role. 
 
Keywords: Familywise error rate, per-family error rate 
 

Introduction 

As Berger (2004) notes, the alpha level should be selected strategically, based on 
the ramifications of committing a Type I error relative to a Type II error. The 
entire testing framework becomes more complicated when dealing with multiple 
hypothesis tests, and in this case various circumstances must be taken into 
account. Apart from choosing the proper alpha level for the specific situation, one 
must also define (prospectively) what constitutes a win (so to speak). Is it enough 
to find statistical significance on any one endpoint? Or do we instead combine the 
results in some way to obtain an overall finding? 

The familywise Type-I error rate (FWER) is the probability of at least one 
Type I error in a family of hypotheses occurring, and is used rather often. The 
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per-family Type I error rate (PFER) is the sum of probabilities of Type I errors in 
the family for all hypotheses, and is almost never used in practice (Frane, 2015). 

When performing multiple hypothesis tests, various circumstances must be 
taken into account. Apart from choosing the proper alpha level for the specific 
situation (preferably strategically, rather than based on the one size fits all  
precedent of 0.05), there is a risk that a Type I (false positive) or Type II (false 
negative) error may occur. The familywise Type-I error rate (FWER), the 
probability of at least one Type I error in a family of hypotheses occurring, is used 
rather often. Meanwhile, the per-family Type I error rate (PFER), the sum of 
probabilities of Type I errors in the family for all hypotheses, is almost 
completely ignored (Frane, 2015). Does the PFER deserve as much attention as 
the FWER receives? We do not attempt any general answer to this question, but, 
instead, focus on one specific application. For the commonly encountered 
scenario of testing the benefit of an intervention with several possible endpoints, 
we think there is a good reason why PFER is not used. 

As the author (Frane, 2015) states, committing numerous Type I errors 
simultaneously is worse than committing only one, with FWER unable to 
differentiate between creating one Type I error and multiple Type I errors in a 
family of hypotheses. We suggest that the choice between controlling the FWER 
or the PFER should be based on the specific situation. The FWER works well for 
the commonly encountered scenario of testing an intervention with several 
possible endpoints of interest. The PFER does not appear to have any advantage 
over the FWER in this scenario, but perhaps in some other scenarios it might. The 
purpose of this response is not to determine which error rate is superior to the 
other, but how to establish which error rate should be controlled based on a 
testing situation. We first consider the scenario of testing an intervention for 
benefit due to any of several endpoints and then discuss the choice of alpha level.  

Tests of an intervention with multiple endpoints of interest 

Consider a study designed to test whether an intervention or exposure is beneficial 
or detrimental to patient health, compared to some comparison condition. Suppose 
that benefit can be measured by using any of several endpoints. This is quite a 
general scenario, which applies equally to clinical trials as well as to behavioral 
intervention studies or in fact to many observational studies. In this case, it is easy 
to see that control of the FWER is sufficient to guarantee that if any endpoint is 
identified as significant, and if biases can be suitably removed by the study design, 
then either any such endpoint is truly affected by the intervention or an unlikely 
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event has occurred. This is also true if the PFER is controlled. However, control 
of the PFER is more restrictive (less powerful) than control of the FWER. Thus, 
there is no reason to prefer the PFER to the FWER in this general scenario. 

An interesting observation about this scenario is that control of the FWER is 
not necessary to guarantee the type of concordance desired. One might consider 
testing an intersection hypothesis whose rejection corresponds with evidence of 
an intervention benefit. To make this clearer, suppose that there are two endpoints, 
and let H1 (H2) be the null hypothesis that the first (second) endpoint is unaffected 
by the intervention. If one would recommend the intervention if either endpoint is 
beneficial, then one really wants to claim benefit if either H1 or H2 are false. This 
argues for testing the intersection null hypothesis H0 = H1 ∩ H2. Rejection of this 
null hypothesis corresponds to benefit. This approach circumvents multiple 
comparison altogether as only a single hypothesis is tested. 

The downside to this approach is that rejection of H0 leaves one unable to 
conclude improvement on any specific endpoint. As Durkalski and Berger (2009) 
note, success on a composite endpoint leaves one “unable to determine which 
outcome is driving the claim”. The other caveat to this approach is one must 
decide how to test H0, which in general could be difficult. An adaptive testing 
approach could prove useful (Berger and Ivanova, 2002), but the usual solution 
for testing H0 involves rejecting if min(p1, p2) ≤ α/2, where p1 (p2) is the p-value 
for testing H1 (H2). With this solution, one is once again controlling the FWER, 
although in general such an approach could lead to more powerful testing 
procedures. This observation is a major reason why FWER is the predominantly 
used error rate for publications of confirmatory findings for studies that test an 
intervention. Bloch et al. (2001) describe one way of testing a single null 
hypothesis, although rejecting their null also allows one to conclude non-
inferiority on all endpoints. 

Choosing an alpha level 
Returning now to the strategic selection of the alpha level, we note that 

cancer therapy often involves both high risk and high reward. The promise of 
meaningful improvement is counterbalanced by the almost certain toxicity of the 
treatment which, in some cases, may have the potential to do more harm than 
good. That said, false positives and false negatives can both result in grave 
consequences, including illnesses left untreated, illnesses over-treated, and 
ultimately higher mortality rates for patients. So the calculation has to consider 
the relative harm likely caused by each type of error. 
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As one extreme example (following Berger, 2004), one may conduct a trial 
to determine if broccoli will prevent arthritis. If broccoli is found, rightfully or 
wrongfully, to prevent arthritis, then the result would simply be increased 
consumption of broccoli. Since broccoli is known to have other health benefits, 
and few (if any) drawbacks, this will still lead to substantial health benefits, 
regardless if it helps to treat the symptoms of arthritis. So here, a Type I error 
would not result in very much harm at all. Alpha can be set to a much larger level 
than the usual 0.05. Another example is Glucosamine and Chondroitin. Like 
broccoli, these substances have no known side effects and are known to be 
generally good for cartilage health. Despite no strong evidence of a benefit for 
sufferers of osteoarthritis pain, many people take Glucosamine and Chondroitin 
because of the low risk involved coupled with some possible benefit. Conversely, 
if an aggressive and highly toxic cancer treatment is found to be beneficial, then 
its increased use will incur additional costs and also result in toxicity, so the 
benefit should offset this risk, and we should be fairly certain that it does (Berger, 
2004). A Type I error in this case would result in severe consequences, so alpha 
should be small, 0.05 or perhaps even 0.01. These are simple examples, but the 
concept is that alpha should be carefully considered, and not just set at the usual 
level of 0.05 as a matter of course (Berger & Hsieh, 2005). 
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Frequentist confidence intervals were compared with Bayesian credible intervals under a 
variety of scenarios to determine when Bayesian credible intervals outperform frequentist 
confidence intervals. Results indicated that Bayesian interval estimation frequently 
produces results with precision greater than or equal to the frequentist method. 
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Introduction 

Although mathematicians introduced the field of Bayesian statistics in the 1700s, 
Bayesian methods gained most of its popularity in practice fairly recently 
(McCarthy & Parris., 2004; Smyth, 2004; Stoyan & Penttinan, 2000). Researchers 
have used frequentist methods for statistical analysis until technological advances 
and the introduction of certain algorithms, such as Markov chain Monte Carlo, 
gave way to increased computational power that enabled complex calculations to 
be done using Bayesian procedures (Little, 2006). This resulted in an increase in 
the interest of Bayesian statistics and sparked much controversy and debate 
regarding which method should be used by researchers (Little, 2006). 

The frequentist approach relies on properties based on repeated sampling 
and takes only sample data into account to estimate the population parameter. 
Bayesian statistics, however, adds the component of a prior distribution based on 
prior knowledge and/or expert opinion of the subject. Using the prior information 
and the observed data, Bayesian methods calculate a refined estimate of the 
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population parameter. Some claim that this subjective prior is key to most 
accurately estimating the population parameter while others claim that the lack of 
objectivity of Bayesian statistics interferes with the results (Choy et al., 2009). 

The goal of this study was to compare Bayesian credible intervals to 
frequentist confidence intervals under a variety of scenarios to determine when 
Bayesian credible intervals outperform frequentist confidence intervals. The 
Central Limit Theorem (CLT) states that when a large enough random sample is 
taken the distribution of the sample means will be approximately normal. This 
theorem has been widely researched and it is generally accepted that as long as 
the sample size is around 25 we can rely on the CLT when performing inference 
on the population mean when the population is not normal (Stonehouse & 
Forrester, 1998). 

Although not as well studied as the CLT, there exists a Bayesian Central 
Limit Theorem (BCLT) which states that under certain conditions the posterior 
probability distribution is approximately normal for large enough sample sizes 
(Walker, 1969). For Bayesian credible intervals, if the data are assumed to follow 
a normal distribution and if the prior distribution is also assumed to be normal 
then the calculations are straightforward because the posterior distribution for the 
population mean will also follow a normal distribution (Kruschke, 2010). If the 
data are not normal and transformations of the data do not achieve normality, then 
a more appropriate distribution could be used to model the data, however, this 
leads to a more complicated analysis. Furthermore, there is no guarantee that an 
appropriate distribution can be found that models the data. The goal of our study 
is to examine the robustness of Bayesian credible intervals when the assumption 
of normally distributed data is violated and to determine under what scenarios 
Bayesian credible intervals outperform frequentist confidence intervals. 

Methodology 

In order to investigate the BCLT we generated populations from three different 
distributions: 1) Standard normal distribution; 2) Beta distribution with 
parameters α = 2 and β = 5 (moderately skewed distribution); 3) Exponential 
distribution with parameter λ = 0.5 (strongly skewed distribution). We repeatedly 
and randomly sampled from each population for various sample sizes (n = 10, 15, 
20, 25, 30, 40, 50, and 75). For each scenario we calculated Bayesian credible 
intervals and frequentist confidence intervals. The frequentist confidence interval 
was calculated using the following formula: 
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where t n−1 is the critical value for a 95% confidence interval with n − 1 degrees of 
freedom. Bayesian confidence intervals were calculated as follows: 
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where σ2 is the population variance, µ0 is the prior mean and 2

0  is the prior 
variance.  

The population variance was always estimated with the sample variance, s2. 
For each population distribution and sample size we calculated Bayesian credible 
intervals using a prior mean that wasn’t biased, a prior that had a low bias, and a 
prior that had a large bias. We use the term bias to represent how far off the prior 
mean is from the population mean. A bias of 0.25 times the standard deviation 
was considered as a small bias in the prior mean and a bias of 0.50 times the 
standard deviation as a large bias in the prior mean. For the normal distribution, 
the bias was added to the prior before running the simulations. For the skewed 
distributions, we looked at both positive (prior mean > population mean) and 
negative biases (prior mean < population mean). The prior variance can be 
thought of as how confident one is in the prior mean. For instance, if there is a lot 
of confidence in the prior mean then the prior variance would be small since the 
researcher has honed in on the population mean. If there is little confidence in 
their prior mean then the prior variance would be large to reflect this. A 
confidence in the precision was considered to be equal to a value that would be 
equivalent to a sample size of about 12. In other words, about as much confidence 
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was placed in the prior as would be if there was a sample of 12 from the 
population. This value was somewhat arbitrary; however, it represents the typical 
confidence in a prior mean. Thus, the prior variance was calculated as 
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0 12


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For each scenario (combination of sample size, bias, and population shape) we 
computed capture rate as the percent of the intervals that contained the true 
population mean. Additionally, the mean squared error (MSE) was calculated for 
each scenario. The MSE combines both the bias of an estimator as well as the 
variance. The MSE was calculated as 
 
    2ˆ ˆMSE bias var     (6) 
 
The bias is the difference between the estimated value and the true mean of the 
population. For the frequentist method it can be shown that the bias of the sample 
mean is 0, therefore, the MSE is var( y ) for frequentist methods. All statistical 
analyses were performed using R (R Development Core Team, 2007). 

Results 

The capture rates of the frequentist and Bayesian intervals are shown in Figure 1 
for various scenarios and sample sizes. As expected, the frequentist intervals have 
a 95% capture rate when the population distribution is normal. The frequentist 
method does quite well for the moderately skewed population where a sample size 
of 30 is needed to obtain a 95% capture rate. For the strongly skewed population, 
the frequentist intervals do not capture the parameter at the stated 95% level, 
however, when the sample size is 75 the capture rate remains at about 94%. For 
all scenarios, the no bias and positive, low bias scenarios performed best for small 
sample sizes with capture rates above 95% for both the normal population and the 
moderately skewed population. These capture rates decreased when sample size 
increased since the credible intervals were weighted more heavily by the data 
rather than the prior information and thus conform to frequentist properties. 

For the strongly skewed data, the scenario that performed the best was the 
positive, low bias prior. This scenario captured the mean about 95% of the time 
for all sample sizes. A negative bias increased the capture rate when compared to 
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a positive bias. As expected, the high bias scenarios performed the worst with 
respect to capture rates. For all sample sizes, the high bias scenarios gave worse 
results than the frequentist intervals, indicating that sample sizes need to be larger 
than 75 to dilute the bias in the prior. The results indicate that as long as the bias 
in the prior distribution is not too large then one can have results better than 
frequentist’s methods even for strongly skewed distributions.  

The MSE is given in Figure 2 for each sample size. The MSE accounts for 
both bias and variance of an estimator and, therefore, the smaller the MSE the 
better the performance of the statistic in estimating the parameter. Since the 
sample mean is an unbiased estimate of the population mean, the frequentist 
confidence interval has a bias equal to zero and the MSE is only based on the 
variance of the estimator. The bias for the Bayesian credible intervals varied from 
no bias to a bias of half of a standard deviation. For all three population 
distributions, there were no significant differences between MSE when the sample 
size reached 75. Similar results were obtained for the normal and moderately 
skewed population. 

The largest difference in MSE between the different scenarios occurred for 
small sample sizes. The MSE was significantly larger for the frequentist 
confidence intervals than the Bayesian credible intervals until a sample size of 40 
for the high biased Bayesian scenario. When comparing the frequentist 
confidence intervals to the low bias and no bias credible intervals, they are 
significantly lower until the sample size reaches 75. All Bayesian scenarios 
performed better than the frequentist intervals until a sample size of 30 was 
reached. The no bias and low bias continued to perform better than the frequentist 
interval until a sample size of 75 was reached. 

The degree of bias needed before the capture rate drops below 0.95 is 
investigated in Figure 3. Iterations were performed using samples sizes of 15, 30, 
50, and 75. Surprisingly, there was not much difference between the three 
different population shapes (normal, moderately skewed, strongly skewed) even 
for smaller sample sizes. In addition, the sample size did not have much effect on 
capture rate. When the sample size is 15 both the normal distribution and the 
moderately skewed distribution are above the 95% capture rate until the bias was 
equal to 0.4, at which point the capture rate dropped very quickly. The strongly 
skewed population performed only slightly below the 95% capture rate when 
n = 15 until a bias equal to 0.4 at which point it dropped off significantly. The 
differences between the three distributions were very small for all sample sizes. 
For sample sizes larger than 15 the capture rate dropped below the 95% level at a 
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0.3 level of bias. Thus, it appears that the effects of the bias are slightly worse for 
larger sample sizes. 
 
 

 
Figure 1. Capture rates for confidence 
intervals and Bayesian credible intervals. 
 
 
 

 
Figure 2. Mean squared error (MSE) for 
each scenario. 
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Figure 3. Capture rates for different sample sizes and different degrees of bias. The bias 
is calculated by the number of standard deviations above the prior’s mean. 
 
 
 

The MSE for increasing levels of bias in the prior mean in shown in Figure 
4. The three distributions are shown on separate graphs and within each graph are 
three separate sample sizes. The solid line represents the MSE for frequentist 
methods for each sample size. For the normal distribution, when the Bayesian 
methods reach a bias of 0.6 the MSE is about equal to the frequentist methods 
with the same sample size. After a bias of 0.6 the Bayesian methods perform 
worse than frequentist methods with respect to the MSE. The differences were 
minor when comparing distributions. For strongly skewed distributions a smaller 
biased is required to perform better than frequentist methods. Surprisingly, for all 
distributions there was not much difference between the bias cutoff for different 
sample sizes. For the strongly skewed distribution, after a bias of 0.4 the 
frequentist methods performs better for n = 50 compared to a bias of 0.6 for a 
sample size of n = 15. 
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Figure 4. MSE calculated for different degrees of bias. The horizontal line reflects the 
MSE for frequentist methods of the same sample size. 
 
 

Conclusion 

These results indicate that when a prior mean is less than 0.4 to 0.6 standard 
deviations from the population mean then Bayesian credible intervals outperform 
frequentist confidence intervals with respect to MSE and capture rate for most 
scenarios that we looked at. For larger biases, frequentist confidence intervals will 
perform better with respect to MSE. Additionally, the distribution of the data did 
not have a large effect on the results even though the methods used assumed that 
the data came from a normal distribution. For strongly skewed data, neither 
frequentist nor Bayesian intervals performed at the optimal 95% capture rate with 
the exception being the Bayesian scenario with small, positive bias. Thus, for 
strongly skewed data it is suggested to seek a transformation for the data no 
matter which technique is used. In conclusion, this research demonstrates that 
Bayesian credible interval can have desirable properties for small sample sizes 
when the bias can be kept within about 0.5 standard deviations of the mean. 
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Because researchers will never know the bias of the prior mean they should only 
use Bayesian techniques when they have good information about the subject 
being researched. 
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A new exponentiality test was developed by modifying the Lilliefors test of 
exponentiality. The proposed test considered the sum of all the absolute differences 
between the exponential cumulative distribution function (CDF) and the sample empirical 
distribution function (EDF). The proposed test is simple to understand and easy to 
compute. 
 
Keywords: Cumulative distribution function, empirical distribution function, 
exponentiality test, critical value, significance level, and power 
 

Introduction 

Exponential distributions are quite often used in duration models and survival 
analysis, including several applications in macroeconomics, finance and labor 
economics (optimal insurance policy, duration of unemployment spell, retirement 
behavior, etc.). Quite often the data-generating process for estimating these types 
of models is assumed to behave as an exponential distribution. This calls for 
developing tests for distributional assumptions in order to avoid misspecification 
of the model (Acosta & Rojas, 2009). “The validity of estimates and tests of 
hypotheses for analyses derived from linear models rests on the merits of several 
key assumptions. The analysis of variance can lead to erroneous inferences if 
certain assumptions regarding the data are not satisfied” (Kuehl, 2000, p. 123).  

As statistical consultants we should always consider the validity of the 
assumptions, be doubtful, and conduct analyses to examine the adequacy of the 
model. “Gross violations of the assumptions may yield an unstable model in the 
sense that different samples could lead to a totally different model with opposite 
conclusions” (Montgomery, Peck, & Vining, 2006, p. 122). 

In this study we developed a new Goodness-of-Fit Test (GOFT) of 
exponentiality and compare it with four other existing GOFTs in terms of 
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computation and performance. This study also derived the critical values of the 
proposed test. The proposed test considered the sum of all the absolute differences 
between the empirical distribution function (EDF) and the exponential cumulative 
distribution function (CDF). 

Methodology 

To generate critical values, this study used data simulation techniques to mimic 
the desired parameter settings. Three different scale parameters (θ = 1, 5, and 10) 
were used to generate random samples from an exponential distribution. Sample 
sizes 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45 and 50 were used. The study 
considered three different significance levels (α) (0.01, 0.05 and 0.10). For each 
sample size and significance level, 50,000 trials were run from an exponential 
distribution which generated 50,000 test statistics. The 50,000 test statistics were 
then arranged in the order from smallest to largest. The proposed test is a right tail 
test. So, this study used the 99th, 95th, and 90th percentile of the test statistics as the 
critical values for the given sample size for the 0.01, 0.05, and 0.10 significance 
levels respectively. 

To verify the accuracy of the intended significance levels and to compare 
the power of the proposed test with other four exponentiality tests, data were 
produced from varieties of 12 distributions (Weibull (1,0.50), Weibull (1,0.75), 
Gamma (4,0.25), Gamma (0.55,0.275), Gamma (0.55,0.412), Gamma (4,0.50), 
Gamma (4,0.75), Gamma (4,1), Chi-Square (1), Chi-Square (2), t (5) and 
log-normal (0,1)) to see how the proposed test statistic works. Fifty thousand 
replications were drawn from each distribution for sample sizes 5, 10, 15, 20, 25, 
30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 1000, and 2000. For each 
sample size, the proposed test statistic and critical values were compared to make 
decisions about the null hypothesis. There were 50,000 trials for each sample size. 
The study tracked the number of rejections (rejection yes or no) in 50,000 trials to 
evaluate capacity of the proposed test to detect the departure from exponentiality. 

The study used R 3.0.2 for most of the simulations to generate test statistics, 
critical values and power comparisons. Microsoft Excel 2010 was also used to 
make tables and charts. Monte Carlo simulation techniques were used to generate 
random numbers which were used to approximate the distribution of critical 
values for each test. 

The proposed modified Lilliefors exponentiality test statistic (PML) takes 
the form, 
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    *

1

n

i i
i

PML F x S x


  ,  (1) 

 
where  *

iF x  is the CDF of exponential distribution using the maximum 
likelihood estimator for the scale parameter θ and S(xi) is the sample cumulative 
distribution function. The estimator ̂  is the uniformly minimum variance 
unbiased estimator (UMVUE) of the scale parameter θ. 

The CDF,  *
iF x , is given by 2 

 

  *  1 –  i
xiF x exp
x

 
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



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where 1 
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x
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  . The EDF is given by equation 3 

 
    iS x i n   (3) 
 

Lilliefors test (LF-test) statistic (Lilliefors, 1969) is given by: 
 

    *
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Sup
D F x S x

x
  ,  (4) 

 

where, F*(xi) = 1 – exp xi
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n
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x
x

n
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 , and S(xi) is the empirical 

distribution function (EDF). Finkelstein & Schafers test (S-test) statistics 
(Finkelstein & Schafer, 1971) is given by: 
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n n

 


 
   

 
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where, 1ˆ   .  
n
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x

x
n

  
  Van-Soest test (VS-test) statistics (Soest, 1969) is given 

by: 
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 . Srinivasan test ( nD - test) statistics 

(Srinivasan, 1970) is given by: 
 
    max1   ;n n iD i n S x F x     ,  (7) 

 

where, λ is a scale parameter,   ;F x   = 1 - 
 

1

1  
n

ix
nx



  
 

  

,  n iS x  is the EDF. 

According to Pugh (1963), the test statistic, nD -test, is based on the 
Rao-Blackwell and Lehman-Scheffe theorems which give the best unbiased 
estimate. Schafer, Finkelstein and Collins (1972) corrected the critical points of 
this test statistic originally proposed by Srinivasan (1970). 

Results 

Development of critical values 
The critical values from the simulated data generated for the three different values 
of the scale parameters (θ = 1, 5, and 10) are exactly the same for the set of 
parameters. It appeared that the critical values for the proposed test are the 
functions of the sample size (n) and the significance levels (α) but invariant with 
the choice of the scale parameter (θ). Table 1 shows the critical values for the 
proposed test. Due to space limitations, only five digits are shown on Table 1. 
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Table 1. Critical Values for the Proposed Exponentiality Test (θ = 1) 

 

n α = 0.01 α = 0.05 α = 0.10 

4 1.0567 0.8331 0.7409 

5 1.1760 0.9315 0.8202 

6 1.2703 1.0109 0.8931 

7 1.3642 1.0856 0.9562 

8 1.4647 1.1580 1.0189 

9 1.5403 1.2209 1.0757 

10 1.6274 1.2875 1.1310 

15 1.9444 1.5561 1.3653 

20 2.2271 1.7731 1.5636 

25 2.4762 1.9682 1.7342 

30 2.7097 2.1624 1.9066 

35 2.9111 2.3291 2.0584 

40 3.1062 2.4837 2.1904 

45 3.3216 2.6331 2.3204 

50 3.4557 2.7526 2.4309 

 

Accuracy of significance levels 

The simulated significance levels are presented on Table 2. Due to the limitations 
of the space, the simulated significance levels are rounded to three digits. The 
results showed that all five tests of exponentiality worked very well in terms of 
controlling the intended significance levels. The study found that the proposed 
test performs very closely to other four tests of exponentiality in terms of the 
accuracy of the intended significance levels (for each sample size and overall 
averages across the 19 different sample sizes). To allow for a better view of the 
five exponentiality tests across all sample sizes and significance levels, the 
columns for Lilliefors test are labelled by “LF”, Van-Soest test by “VS”, proposed 
modified Lilliefors test by “PML”, Srinivasan test by “D” and Finkelstein & 
Schafers test by “S” for the rest of the tables and figures presented in this study. 
 
 
Table 2. Average Simulated Significance Levels 

 

α LF D CVM S PML 

0.010 0.010 0.010 0.010 0.010 0.010 

0.050 0.051 0.051 0.051 0.051 0.051 

0.100 0.100 0.100 0.101 0.101 0.101 
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Power analysis 
First, consider the relationship between the alternative distribution, 
Weibull (1, 0.50) and the simulated power. Figure 1 summarizes the power 
analysis for the Weibull (1, 0.50) alternative distribution. The PML-test 
outperformed the power for all other four exponentiality tests across all 
significance levels and sample sizes. The power of all four exponentiality tests 
exceeded the LF-test. The VS-test, the D-test, and the S-test showed similar 
performance in power. It appears that for sample sizes 40 or more, the powers for 
all five exponentiality tests close to 1. 
 
 

 
 
Figure 1. Power for Alternative Distribution: Weibull (1, 0.50) 

 

 

Second, consider the relationship between the alternative distribution, 
Weibull (1, 0.75) and the simulated power. Figure 2 summarizes the power 
analysis for the Weibull (1, 0.75) alternative distribution. This distribution has the 
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same scale parameter (θ = 1) with the previous Weibull (1, 0.50) distribution but 
the shape parameter (β) is changed from 0.50 to 0.75. This caused the power to 
reduce substantially across all sample sizes and all significance levels under 
consideration. 

The PML-test outperformed the power for all other four exponentiality tests 
across all sample sizes and significance levels. In all parameter settings under 
investigation, the powers for the LF-test were the lowest as compared to other 
four exponentiality tests. The powers of the S-test and VS-test were almost 
identical across all sample sizes and significance levels. For a fixed significance 
level, the powers for the D-test were greater than the S-test and VS-test for small 
sample sizes but this relationship was reversed for medium to large sample sizes. 
For all significance levels with sample sizes at least 200, the powers for all five 
exponentiality tests were almost equal and they approach 1. 
 
 

 
Figure 2. Power for Alternative Distribution: Weibull (1, 0.75) 
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Third, consider the relationship between the alternative distribution, 
Gamma (4, 0.25) and the simulated power. Figure 3 summarize the power 
analysis for the Gamma (4, 0.25) alternative distribution. According to Bain and 
Engelhardt (1992), the shape parameter, k, in the Gamma distribution determines 
the basic shape of the graph of the probability distribution function (PDF). The 
value of the shape parameter in null distribution is 1 and the shape parameter in 
this alternative distribution is 0.25 which are much different. The PML-test 
outperformed the powers of all other four exponentiality tests across all sample 
sizes and all significance levels under consideration. For a fixed significance level, 
the powers of the D-test, VS-test, and S-test exceeded the powers of the LF-test 
for small sample sizes. For medium to large sample sizes, the LF-test, D-test, S-
test, and the VS-test exhibited the identical power across all significance levels. In 
all parameter settings, the powers of the D-test, the VS-test and the S-test were 
similar. For sample sizes at least 40, the powers of all five exponentiality tests 
were found almost equal which were close to 1 across all significance levels. 
 
 

 
Figure 3. Power for Alternative Distribution: Gamma (4, 0.25) 
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Fourth, consider the relationship between the alternative distribution, 
Gamma (0.55, 0.275) and the simulated power. Figure 4 summarizes the power 
analysis for the Gamma (0.55, 0.275) alternative distribution. The PML-test 
outperformed other four exponentiality tests across all sample sizes and 
significance levels. The LF-test exhibited the lowest power across all sample sizes 
and significance levels. For sample sizes at least 50, the powers for all five tests 
were found almost equal which were close to 1 across all significance levels. In 
all parameter settings, the powers for the VS-test, the D-test, and the S-test were 
identical but all these three tests outperformed the LF-test across all sample sizes 
and significance levels. 
 
 

 
Figure 4. Power for Alternative Distribution: Gamma (0.55, 0.275) 

 

 

Although the overall power trends in the previous alternative distribution 
(Gamma (4, 0.25)) and this distribution were similar among five exponentiality 
tests, the powers for this distribution was lower than the previous alternative 
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distribution across all sample sizes and significance levels. In the previous 
alternative distribution, the value of the shape parameter (K) is 0.25 which is 
0.275 in this alternative distribution. 

Fifth, consider the relationship between the alternative distribution, 
Gamma (0.55, 0.412) and the simulated power. Figure 5 summarizes the power 
analysis for the Gamma (0.55, 0.412) alternative distribution. The PML-test 
outperformed other four exponentiality tests across all sample sizes and 
significance levels. The LF-test exhibited the lowest power across all sample sizes 
and significance levels. For sample sizes at least 80, the powers for all five tests 
were found almost equal which were close to 1 across all significance levels. In 
all parameter settings, the powers for the VS-test, the D-test, and the S-test were 
identical but all three tests outperformed the LF-test across all sample sizes and 
significance levels. Comparing the powers for this alternative distribution with the 
previous alternative distribution (Gamma (0.55, 0.275)), the powers were reduced 
in this alternative distribution across all sample sizes and significance levels. This 
is due to only the change in shape parameter (k) from 0.275 to 0.412. The scale 
parameters (θ) were the same on these two alternative distributions. It is relevant 
to argue that for Gamma alternative distribution, the powers for these five 
exponentiality tests depend only on the shape parameter (k). It is also important to 
note that the shape parameter (k) in the null distribution was 1. So, this study 
showed that as the shape parameter in the alternative distribution is close to the 
shape parameter of the null distribution, the simulated powers would be decreased. 

Before considering the power for next two alternative distributions, it is 
imperative to discuss that the Chi-Square distribution is a special case of Gamma 
distribution. According to Bain and Engelhardt (1992), if a variable Y is a special 
Gamma distribution with scale parameter (θ = 2) and shape parameter (k = ν/2), 
the variable Y is said to follow a Chi-Square distribution with ν degrees of 
freedom. So, if Y ~ Gamma (θ = 2, k = ν/2), a special notation for this distribution 
can be written as: 
 
  2 ~  Y     (8) 
 
Using equation 8, the Gamma (4, 0.5) and the Chi-Square (1) distributions are 
equivalent. This study previously showed that the power for the Gamma 
distribution depends only on the shape parameter (k). So, the powers of the 
Gamma (4, 0.5) and Chi-Square (1) alternative distributions must be equivalent. 
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Figure 5. Power for Alternative Distribution: Gamma (0.55, 0.412) 

 

 

Sixth, consider the relationship between the alternative distributions, 
Gamma (4, 0.5), Chi-Square (1) and the simulated power. Figure 6 summarizes 
the power analysis for the Gamma (4, 0.5) and Chi-Square (1) alternative 
distributions. For a fixed sample size and a significance level, powers for these 
two alternative distributions were exactly the same. As in the previous alternative 
distributions, the PML-test outperformed all other four exponentiality tests across 
all sample sizes and significance levels. The LF-test was in the last place on the 
power curve. The powers for the VS-test and S-test were identical for a fixed 
sample size and a significance level. The D-test demonstrated the superior power 
than the VS-test and the S-test for small sample sizes across all significance levels 
but this relationship was reversed for medium to large sample sizes. For sample 
sizes at least 200, the powers for all five tests were equivalents which were close 
to 1. As compare with the previous alternative distribution (Gamma (0.55, 0.412)), 
powers for these two alternative distributions decrease across all sample sizes and 
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significance levels. It is relevant to note that the shape parameter (k) was changed 
from 0.412 to 0.50 which caused the decrease in power. It appears that as the 
value of the shape parameter (k) approaches that of the null distribution (k = 1), 
the simulated powers decreases. 
 
 

 
Figure 6. Power for Alternative Distribution: Chi-Square (1) 

 

 

Seventh, consider the relationship between the alternative distribution 
Gamma (4, 0.75) and the simulated power. Figure 7 summarizes the power 
analysis for the Gamma (4, 0.75) alternative distribution. The PML-test 
outperformed all other four exponentiality tests across all sample sizes and 
significance levels. The LF-test was in the last place on the power curve. The 
powers for the VS-test and S-test were identical for a fixed sample size and 
significance level. The D-test demonstrated the superior power than the VS-test 
and the S-test for small sample sizes across all significance levels but this 
relationship was reversed for medium to large sample sizes. For sample size at 
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least 1,000, the powers of all five tests were equivalents which were close to 1. As 
compare with the previous alternative distribution (Gamma (4, 0.5)), powers of 
this alternative distributions were significantly decrease across all sample sizes 
and significance levels. It is relevant to note that the shape parameter (k) was 
changed from 0.5 to 0.75 which caused the decrease in power. Among five 
Gamma alternative distributions discussed in this chapter, this alternative 
distribution exhibited the lowest power across all sample sizes and significance 
levels. 
 
 

 
Figure 7. Power for Alternative Distribution: Gamma (4, 0.75) 

 

 

Before considering the power for next two alternative distributions, it is 
indispensable to revisit that the Chi-Square distribution is a special case of 
Gamma distribution (equation 8). This study previously showed that the power for 
the Gamma distribution depends only on the shape parameter (k). Null 
distributions were generated using the exponential (θ = 5) for power simulation. 



ADHIKARI & SCHAFFER 
 

66 

Using 8, Gamma (4, 1) and Chi-Square (2) alternative distributions must produce 
similar powers for the set of parameters (n and α). In other words Gamma (4, 1) 
and Chi-Square (2) alternative distributions can be used for the simulation of 
significance levels. 

Eighth, consider the relationship between the alternative distributions, 
Gamma (4, 1), Chi-Square (2) and the simulated power. Figure 8 summarizes the 
power analysis for the Gamma (4, 1) and Chi-Square (2) alternative distributions. 
The powers of all five exponentiality tests across all sample sizes and significance 
levels were too low which were pretty close to their significance levels. It is due 
to the fact that the power of these five exponentiality tests depends only on the 
shape parameter (k). It appears that the scale parameter (θ) does not have any role 
on the simulated powers. 
 
 

 
Figure 8. Power for Alternative Distribution: Chi-Square (2) 
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Ninth, consider the relationship between the alternative distribution t (5) and 
the simulated power. Figure 9 summarizes the power analysis for the t (5) 
alternative distribution. This is the only one symmetric distribution used in the 
power analyses. All five exponentiality tests quickly detected non-exponentiality. 
For sample sizes at least 15, the powers for all five tests were almost identical 
which were close to 1. The range of the powers was found to be very narrow 
across all sample sizes for a fixed significance level. 
 
 

 
Figure 9. Power for Alternative Distribution: t (5) 

 

 

Finally, consider the relationship between the alternative distribution 
log-normal (0, 1) and the simulated power. Figure 10 summarizes the power 
analysis for the log-normal (0, 1) alternative distribution. For small sample sizes, 
all five exponentiality tests demonstrated similar power across all significance 
levels. For medium to large sample sizes, the PML-test and S-test were in the top, 
the VS-test was in the middle and the D-test and LF-test were in the bottom of the 
power curve. It appears that the PML-test exhibited equal or better power among 
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five exponentiality tests in the set of parameters considered in this study. For 
sample sizes at least 1000, the powers for all five tests were almost identical 
which were close to 1. 
 
 

 
Figure 10. Power for Alternative Distribution: log-normal (0, 1) 

 

 

Conclusion 

This study claimed that the PML-test demonstrated consistently superior power 
over the S-test, LF-test, VS-test, and D-test for most of the alternative 
distributions presented in this study. The D-test, VS-test, and S-test exhibited 
similar power for a fixed sample size and a significance level. The LF-test 
consistently showed the lowest power among five exponentiality tests. So, 
practically speaking the proposed test can hope to replace the other four 
exponentiality tests discussed throughout this study while maintaining a very 
simple form for computation and easy to understand for those people who have 
limited knowledge of statistics. 
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A likelihood ratio test for the equality of two partial correlation coefficients based on two 
independent multinormal samples has been derived. The large sample Z-test for the same 
problem has also been discussed. The power analysis of the two tests is obtained. It has 
been found that the approximate likelihood ratio (ALR) test showed consistently better 
results than Z -test in terms of power. The size of the ALR test is slightly more than the 
alpha level. The ALR test is recommended strongly for use in practice. 
 
Keywords: Likelihood ratio test, partial correlation coefficients, asymptotic 
distribution  
 

Introduction 

The partial correlation coefficient is frequently used to measure the correlation of 
two variables after eliminating the effect of other variable(s) in a set of correlated 
variables. For example, it may be of interest to know the correlation between 
intelligence and weight of people after eliminating the effect of age. In this case, 
the partial correlation coefficient will give the appropriate measure of the required 
correlation. 

Statistical inference concerning the partial correlation coefficient for a single 
sample problem has been studied by Fisher (1924). Some discussions are also 
given in Anderson (2003). Surprisingly, the extension of inference problem 
concerning partial correlation coefficient to two-sample as well as multi-sample 
problems has received very little attention. Test for the equality of several 
multiple and partial correlation coefficients based on several independent Wishart 
densities has been derived by Gupta and Kabe (2001). 
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In this paper, it has been considered the problem of testing the equality of 
two partial correlation coefficients based on two independent multinormal 
samples. It could be of interest to see whether the partial correlation of 
intelligence and weight of children after eliminating the effect of age in United 
States differs from the same in Asia and therefore, it is needed to develop test for 
the equality of partial correlation coefficients. 

In the next section, the likelihood ratio test for the equality of two partial 
correlation coefficients is derived and the large sample test is also discussed. The 
power analysis of the tests is obtained through simulation and is discussed in the 
final section. 

It has been found that the approximate likelihood ratio (ALR) test shows 
consistently better results than Z-test in terms of power. The size of the ALR test 
is slightly more than the alpha level. The ALR test is recommended strongly for 
use in practice. 

Test of H0:    1 2
12.3 12.3  Versus H1:    1 2

12.3 12.3   

Likelihood ratio test 

Let  1 px x x 
 be a p × 1 vector of observations and  1 p   

  be a p × 1 

vector of unknown means. It is assumed that  ,px N   , where Σ is a p × p 

unknown positive definite matrix and Np denotes p-variate normal distribution. It 
will be considered the case of p = 3 in this article, i.e. 
 

    
11 12 13

1 2 3 3 1 2 3 21 22 23

31 32 33

~ ,x x x x N
  

     

  

  
      

  
  

  (1) 

 
It follows from (1) that 
 

 11.3 12.3 11.3 22.31.3 1.3
2

2.3 2.3 12.3 11.3 22.3 22.3

~ ,
x

N
x

   

    

     
              

  (2) 
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where, 
 

  

 

1.3 1
3 3

2.3 2

13
1.3 1 3 3

33

23
2.3 2 3 3

33

 given 

 and

x x
X x

x x

x

x


  




  



   
    
  

  

  

  

 12.3
12.3

11.3 22.3




 
 partial correlation coefficient 

 between X1 and X2 given X3 = x3. 
 
Now, the joint probability density function of x1.3 and x2.3 is given by 
 

 

 

 
 

       
2 2

1.3 1.3 1.3 1.3 2.3 2.3 2.3 2.3
12.32

11.3 22.311.3 22.312.3

1.3 2.3

1 2
2 1

2
11.3 22.3 12.3

, ;

1

2 1

x x x x

f x x

e
   


  



   

    
   
   





  (3) 

 
where, θ denotes the parameter vector of the distribution. Let      1 2, , , nX X X  
be 3 × 1 vector of observations i.i.d.  3 ,N   , where  and   are given by 

(1).  
From (2), it can be said that 

 

 
( )

11.3 12.3 11.3 22.31.31.3
2( )

2.32.3 12.3 11.3 22.3 22.3

~ ,
i

i

x
N

x
   

    

     
             

  (4) 

 

and 
 

 

1.3

2.3

i

i

x

x

 
 
 
 

’s are independent, i = 1,2,…,n. Using (3), the likelihood function of

 

 

1.3

2.3

i

i

x

x

 
 
 
 

, i = 1,2,…,n is obtained as follows: 
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    

  
 

           
2 2

2.3 2.32.3 2.31.3 1.31.3 1.3
12.32

1 1 112.3 11.3 22.311.3 22.3

1.3 2.3

1 2
2 1

2
11.3 22.3 12.3

, , 1, , ;

1

2 1

i i i i
n n n

i i i

i i

x x x x

n

L x x i n

e

   


  



   

  

 
    

   
  

  

 

  



 (5) 

 
Now, it is considered two sample problem with n1 and n2 observations 

respectively from each population. Let         1 2 3
i i i ix x x x 
  be the ith 

observation from population 1; i = 1,2,…,n1 and       1 1
3 ,ix N   , where,  1

  

and  1
  are the mean vector and dispersion matrix respectively and hence 

 
 

 

 

 

       

       

1 1 1 1
11.3 12.3 11.3 22.31.3 1.3

2 1
1 1 1 1

2.3 2.3 12.3 11.3 22.3 22.3

, , 1,2, ,
i i

i i

x
N i n

x

   

    

     
      

     
      

where, 

 

 

 

 

1.3 1

2.3 2

i i

i i

x x

x x

   
   
  
  

 given    
3 3

i iX x   

 

Let         1 2 3
j j j jz z z z 
  be the jth observation from population 

2; j = 1, 2, …, n2 and       2 2
3 ,jz N   , where,  2

 and  2
  are the mean 

vector and dispersion matrix respectively and hence 
 

 

 

 

       

       

2 2 2 22
11.3 12.3 11.3 22.31.3 1.3

2 2 2 2 2 2
2.3 2.3 12.3 11.3 22.3 22.3

,
j

j

z
N

z

   

    

     
     

     
      

, where 

 

 

 

 

1.3 1

2.3 2

j j

j j

z z

z z

   
   
  
  

 given    
3 3

j jZ z . Under the above setup, the likelihood ratio test 

for testing H0 Vs. H1 is derived as follows: Under H1, the log-likelihood function 

based on 
 

 

1.3
1

2.3

, 1,2, ,
i

i

x
i n

x

 
 

 
 

 and 
 

 

1.3
2

2.3

, 1,2, ,
j

j

z
j n

z

 
 

 
 

 is 
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         
       

  

    
 

 

    
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    
 

    
 

1 1
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1 1 1 21
1 1 2 11.3 22.3 12.3
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11.3 22.3 12.3
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1 2 2112.3
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1
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log log2 log log log 1
2

log log log 1
2

2
1

2 1

i i in n

i i

in

i

nL n n

n

x x x

x
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 



 


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 
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 
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1
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12.32 2 21 111.3 11.3 22.3
2 2 2212.3
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2
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2
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j
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z

  
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 



 




 
 
 
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 
 
 

   
  
 
 
 

 
 
 

 



  (6) 

 
Maximizing log L1 in (6) w.r.t.  

1.3
r

 ,  
2.3

s
 ,  

11.3
r

 ,  
22.3

s
 ,  

12.3
r

 ; r, s = 1, 2, it can be 
obtained that 
 
 

       
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1 2 2 2
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1
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12.3 12.3

1 1 2 2

1 .

ˆ ˆ2 1 1

n n
n n n n

H n n
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
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 (7) 

 
where,  
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and    1 212.3 12.3
12.3 12.3

11.3 22.3 11.3 22.3

ˆ ˆ,a b
a a b b

   . 

 
Similarly, under H0 , the log-likelihood function is given by 
 

 

       
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  (8) 

 
where,   = common value of  1

12.3  and  2
12.3  under H0. Maximizing log L0 in (8) 

w.r.t.        1 1 2 2
1.3 2.3 1.3 2.3, , ,     it is obtained that  

       1 1 2 2
1.3 1.3 2.3 2.3 1.3 1.3 2.3 2.3ˆ ˆ ˆ ˆ, , ,x x z z         

Now, 
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Similarly, 
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       

 20 22.3 12.3
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It is obtained by adding the equations (9) and (10) that 
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From (9) and (10), it follows that 
 

 
   

11.3 22.3
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From (11) and (12), it can be obtained that    1 2
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Similarly, 
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From (12), and (14) it follows that 
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       2 211.3 22.32 1 2
2 12.3 1 2

2 2

ˆlog log log 1 log 1
2 2

b bn n nn n n
n n

 
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 (15) 

 
(15) is obtained by using (13) and (14).  
 
Now, taking partial derivative of the expression in (15) w.r.t. ρ and setting it to 
zero, it follows that  
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   
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   
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   1 2
12.3 12.3

1 2

ˆ ˆˆi.e., .k k
n n

 






  (16) 

 
Note: Asymptotically, 1k n  and 2k n  under H0. 
Hence, 
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
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
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 (17) 

 
Using (7) and (17), likelihood ratio test statistic for testing H0 Vs. H1 is obtained 
as follows: 
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  

 



  
 

 

  (18) 

 
where ̂  is given by (16),    1 2

12.3 12.3ˆ ˆ and    are given by (7). 

 



TWO POPULATION PARTIAL CORRELATION COEFFICIENT TEST 

78 

Asymptotic distribution of  : 
 
Lemma 1.  Suppose that A, An, n = 1, 2, … are all p × p symmetric matrices 
such that An - A = O(αn) and 0n  as n . Denote by g(An) and g(A) as real 
valued continuous function of An and A respectively. Then we have g(An) -
 g(A) = O(αn) as n . 
 
Proof:  The proof of Lemma 1 can be done the same way as in Zhao, 
Krishnaiah and Bai (1986). 
 

Lemma 2.  Let 1 2, , , nX X X  be i.i.d.  3 ,N    where,  1 2 3      and 

11 12 13

21 22 23

31 32 33

.
  

  

  

 
 

   
 
 

 Then .a sS   where   
2

1

1
i i

i
S X X X X

n 

     

 
Proof:  Proof of Lemma 2 follows from the Strong Law of Large Numbers.  
 
Lemma 3.  Let 12.3 be the partial correlation coefficient between X1 and X2, 

given X3 = x3. It can be written that 
 

   
1.3 2.312.3

12.3
11.3 22.3 1.3 2.3

cov ,

var var

x x
x x




 
   i.e., 

12.3  is a continuous function of Σ. Let  12.3̂  = estimate of 12.3
12.3

11.3 22.3

s
s s

  , 

where  13 11.3 12.311 12
1.2 12 23

2 2 23 21.3 22.321 22 33

1
x

s s ss s
S s s

s s ss s s
    

      
     

 i.e., 12.3̂  is a 

continuous function of S. Then . .
12.3 12.3ˆ a s   . 

 
Proof:  Since 12.3̂ is a continuous function of S and 12.3  is a continuous 
function of Σ, the proof of Lemma 3 follows easily from Lemma 1 and Lemma 2. 
 

Theorem 1:  Let Λ be the likelihood ratio test statistic given by (18) for testing 
H0 vs. H1. Then 2

12log   under H0 as 1 2,n n  , where the symbol 2
1  

denotes chi-square distribution with 1 degree of freedom. 
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Proof:  Using Lemma 3, it follows under H0 that, 
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  (19) 

 
where,  1

12.3̂  ,  2
12.3̂  , ̂  and   are given by (7), (8) and (16). Now, the expression 

of Λ in (18) is asymptotically equivalent to 
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Hence,    2 2ˆ2log log 1 log 1n         
 
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(by Taylor Series expansion and 0n   as n ) 
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where 0n   as n  (using (19)). Since  
 2

ˆ
0,1

1
Ln

N
 







 as n  

(Anderson (2003), p.133), it is obvious that 
 

  

 

2
2
122

ˆ
 as,  where   denotes convergence in distribution.

1
L Ln

n

 





  


 (21) 

 
Theorem 1 follows from (20) and (21).  

Large sample Z-test: 
Under this case of p = 3, it can be shown that (Anderson (2003)) for large sample 
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z N
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The following large sample Z-test for testing H0 Vs. H1 is proposed: 
 

 1 2

1 1

1.96 at 5% level of significance.
1 1

4 4

z z
Z

n n


 


 

  (22) 

 
The two tests given by (18) and (22) are compared by power analysis in the next 
section. 

Simulation Results 

Multivariate normal random vectors using R program are generated in order to 
evaluate the power and size of the two tests given by (18) and (22). The R 
program produced estimates of    1 2

12.3 12.3,   and   (given by (7) and (16)) along 
with the Approximate Likelihood Ratio (ALR) statistic given by (18) and the 
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Z-statistic given by (22) 5,000 times for each particular combination of population 
parameters (    1 2

12.3 12.3 and   ). The frequency of rejection of each test statistic at 
α = 0.05 was noted and the proportion of rejections (power) are reported in Table 
1 for various combinations of 1  and 2  (    1 2

12.3 12.3 and   ). 
On the basis of our study, it is found that the ALR-test showed consistently 

better results than Z - test in terms of power. The size of the ALR test is slightly 
more than alpha level. The ALR test is recommended strongly for use in practice 
 
 
Table 1. Empirical significance level and power of the Approximate Likelihood Ratio 

(APR) test and the Z-test (ZT) for p = 3 and α = 0.05 
 

N1=N2=25 

ρ1 ρ2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 ALR 0.050 0.067 0.107 0.187 0.307 0.453 0.639 0.758 0.998 

 
ZT 0.050 0.054 0.068 0.101 0.158 0.259 0.431 0.684 0.945 

0.3 ALR 0.100 0.062 0.054 0.069 0.125 0.242 0.414 0.640 0.981 

 
ZT 0.069 0.055 0.049 0.057 0.086 0.148 0.280 0.530 0.884 

0.5 ALR 0.300 0.195 0.127 0.074 0.053 0.081 0.178 0.420 0.727 

 
ZT 0.159 0.119 0.085 0.061 0.051 0.066 0.130 0.319 0.743 

0.7 ALR 0.621 0.528 0.426 0.297 0.184 0.089 0.052 0.118 0.472 

 
ZT 0.425 0.354 0.279 0.202 0.131 0.076 0.050 0.101 0.428 

0.9 ALR 0.998 0.995 0.981 0.956 0.902 0.782 0.586 0.282 0.063 

 
ZT 0.945 0.920 0.884 0.828 0.742 0.613 0.429 0.202 0.050 

N1=25, N2=50 

0.1 ALR 0.059 0.077 0.143 0.263 0.469 0.670 0.876 0.977 0.999 

 
ZT 0.050 0.056 0.076 0.119 0.202 0.338 0.552 0.814 0.986 

0.3 ALR 0.122 0.065 0.052 0.065 0.145 0.284 0.489 0.721 0.802 

 
ZT 0.076 0.058 0.049 0.060 0.099 0.186 0.364 0.661 0.959 

0.5 ALR 0.466 0.305 0.186 0.095 0.059 0.010 0.257 0.610 0.965 

 
ZT 0.200 0.145 0.098 0.064 0.050 0.072 0.163 0.414 0.863 

0.7 ALR 0.881 0.782 0.633 0.453 0.279 0.128 0.066 0.166 0.692 

 
ZT 0.548 0.461 0.363 0.261 0.164 0.085 0.050 0.120 0.551 

0.9 ALR 1.000 0.999 0.997 0.992 0.960 0.885 0.707 0.356 0.069 

 
ZT 0.987 0.977 0.958 0.925 0.864 0.750 0.550 0.261 0.050 
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The ability to validate formative measurement has increased in importance as it is used to 
develop and test theoretical models. A method is proposed to gather convergent and 
discriminant validity evidence of formative measurement. Survey data is used to test the 
proposed method. 
 
Keywords: Causal indicators, formative measurement, construct validity, convergent 
validity, discriminant validity, mediator 
 

Introduction 

There has been a vigorous debate and discussion about the issues surrounding the 
application of formative measurement (Bollen, 2007; Howell et al., 2007a, 2007b; 
Petter et al., 2007) and how to validate this specific kind of measurement model 
(Hardin et al. 2011). Because procedures used to validate reflective measurement 
are not appropriate for formative measurement, there is a need to develop 
measurement theory to validate formative measurement (Hardin et al., 2011).  

Formative measurement has been applied in multiple disciplines, including 
Marketing (e.g., Chandon et al., 2000), Entrepreneurship (e.g., Brettel et al., 2011), 
and Information Systems (IS) (e.g., Pavlou & Gefen, 2005). For example, Pavlou 
and Gefen (2005) measured perceived effectiveness of institutional structures 
with formative measurement, which included four dimensions: feedback 
technologies, escrow services, credit card guarantees and trust in intermediary. 

mailto:xuequnwang1600@gmail.com
mailto:frenchb@wsu.edu
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Although some researchers question the appropriateness of such models 
(e.g., Edwards, 2011), others have shown that formative measurement can be 
appropriate in certain contexts. For example, for multidimensional constructs, 
causal indicators can be developed to “comprise all essential aspects of the focal 
construct’s definition” (MacKenzie et al., 2011, p. 304).  

Using only global reflective indicators may, however, “diminish the 
correspondence between the empirical meaning of the construct and its nominal 
meaning, because there is no way to know whether the respondent is considering 
all of the subdimensions (facets) of the focal construct that are part of the nominal 
definition when responding to the global question” (MacKenzie et al., 2011, p. 
327). Therefore, though there remain several issues related to the adoption of 
formative measurement, given that formative measurement can be appropriate in 
many contexts (Cadogan & Lee, 2013; Diamantopoulos et al., 2008; Jarvis et al., 
2003; MacKenzie et al., 2011), developing corresponding methods is necessary so 
that researchers can validate formative measurement. 

There are multiple aspects of construct validity that require evaluation using 
various methods to develop and maintain a strong validity argument. Having such 
evidence does not and cannot rely on a single method. According to Messick 
(1995), there are six aspects of construct validity: content, substantive, structural, 
generalizability, external, and consequential aspects of construct validity. In this 
paper, external aspect of validity evidence is focused upon, which deals with 
“convergent and discriminant evidence” (Messick, 1995, p. 745). More recently, 
Cizek et al. (2008) examined various aspects of validity from previously 
published indicators. They discussed validity including the traditional division of 
construct validity evidence (convergent and discriminant evidence), criterion-
related evidence, content evidence, evidence based on response process, evidence 
based on consequences, face validity evidence and evidence based on internal 
structure, supporting the need for various forms of evidence. In this study 
associations with other variables (convergent and discriminant evidence) rather 
than all possible sources of validity evidence is focused on. Note that this is only 
one step toward developing a comprehensive validity argument to support 
inferences from formative measurement. 

Previous studies have paid little attention to convergent and discriminant 
validity of formative measurement (Bollen, 2011). This may be attributed to the 
fact that formative measurement is quite different from reflective measurement. 
Although there are relatively mature and sophisticated methods to gather 
convergent and discriminant validity evidence for reflective measurement based 
on classical test theory (CTT) (Kane, 2006), there lacks an agreed method or set 
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of procedures to gather convergent and discriminant validity evidence for 
formative measurement (Barki et al., 2007; Diamantopoulos & Winklhofer, 2001; 
Jarvis et al., 2003; Petter et al., 2007). Thus, a researcher and practitioner can 
often faces difficulty in dealing with convergent and discriminant validity when 
one moves from reflective measurement to formative measurement 
(Diamantopoulos et al., 2008). 

In this study, constructs are used to refer to “a conceptual term used to 
describe a phenomenon of theoretical interest” (Edwards & Bagozzi, 2000, p. 
156-157), and latent variable is used to refer to the representation of a certain 
construct in a model. Indicators are used to refer to “observed variables that 
measure a latent variable” (Bollen, 2011, p. 360). The kind of indicators depends 
on “whether the indicator is influenced by the latent variable or vice versa” 
(Bollen, 2011, p.360). Reflective indicators are used to refer to those influenced 
by the latent variable, and causal indicators are used to refer to those influencing 
the latent variable. 

The focus in this study is on formative measurement with causal indicators. 
As Bollen (2011) illustrated, formative measurement may include causal 
indicators or formative indicators. The key difference between these two types of 
indicators is that “causal indicators should have conceptual unity in that all the 
variables should correspond to the definition of the concept whereas formative 
indicators are largely variables that define a convenient composite variable where 
conceptual unity is not a requirement” (Bollen, 2011, p. 360). Variables 
consisting of formative indicators may not have any meaningful conceptualization. 
Therefore, formative measurement with causal indicators is focused upon in this 
study (Bollen, 2011). 

Although formative measurement have been recognized in the literature 
(Diamantopoulos et al., 2008); there are no agreed upon methods to provide 
convergent and discriminant validity evidence for formative measurement. 
Because construct validity is “a necessary condition for theory development and 
testing” (Jarvis et al., 2003, p. 199), it is important to gain validity evidence 
before one tests theory. This paper adds to the current validity literature by 
proposing and testing a method to gain validity evidence (convergent and 
discriminant evidence) for formative measurement. Note that the proposed 
method does not aim to challenge or replace CTT when testing reflective 
measurement. After testing our method with real data for formative measurement, 
construct validity for reflective measurement is also examined following our new 
method. The results from our method and those from Confirmatory Factor 
Analysis (CFA) are consistent. 
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Reflective vs. Formative Measurement 

 
A. Reflective Measurement 

 
B. Formative Measurement 

 
Figure 1. Two kinds of measurement models. 
 
 
Many measurement models that social science deals with are reflective (Panel A 
from Figure 1; Diamantopoulos et al., 2008, Petter et al., 2007). For reflective 
measurement, the direction of causality is from the latent variable to the indicators. 
Because all indicators are the effects of the same latent variable, they are expected 
to be highly correlated (internal consistency reliability) (Bollen, 1984). The 
deletion of an indicator will probably not alter the meaning of the latent variable 
given that there are sufficient and similar functioning indicators to represent the 
latent variable. Ideally the indicators are interchangeable. Measurement errors are 
taken into account at the indicator level (c.f. Edwards and Bagozzi (2000), Jarvis 
et al. (2003), MacKenzie et al. (2005), for a more detailed description). Thus, the 
equation for a measurement model with reflective indicators is given as (Bollen & 
Lennox, 1991): 
 
 i i ix      (1) 
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where η is the latent variable, xi is the ith reflective indicator for the latent variable 
η, λi represents the effect of η on that indicator (coefficient) and εi is the 
measurement error for xi. 

In contrast, for formative measurement the latent variable is influenced by 
these causal indicators (Bollen, 1984; Chin, 1998). Thus, deleting an indicator 
will alter the meaning of the latent variable (Bagozzi, 2007; Bollen, 2007; 
Diamantopoulos et al., 2008; Howell et al., 2007b; Jarvis et al., 2003). 
Additionally, there is no reason to expect that these causal indicators are 
necessarily highly correlated with each other, which makes internal consistency 
reliability inappropriate. Unlike reflective indicators, causal indicators are 
assumed to be error free (c.f. Edwards and Bagozzi (2000), Jarvis et al. (2003), 
and MacKenzie et al. (2005)) and that there may be a disturbance term 
representing “non-modeled causes” (Diamantopoulos, 2006, p. 7). Thus, the 
equation for a measurement model with causal indicators is (Bollen & Lennox, 
1991): 
 
 1 1 i ix x        (2) 
 
where η represents the latent variable, xi is the ith causal indicator for latent 
variable η, γi represents the path weights for indicators xi and ζ is the disturbance 
term which includes other variance not accounted for by the indicators 
(MacKenzie et al., 2005). For example, job satisfaction can be measured with 
indicators such as “I am very satisfied with my pay”, “I am very satisfied with the 
nature of my work”, and “I am very satisfied with my opportunities for 
promotion”, and so on, and these three indicators influences one’s job satisfaction 
level (MacKenzie et al., 2011). Because the covariance between causal indicators 
could be any value, the way to examine construct validity (convergent validity 
and discriminant validity) for reflective measurement based on CTT (e.g., CFA) 
cannot be used. Therefore, a new method is required to validate formative 
measurement.  

For reflective measurement, convergent evidence is provided when 
“different indicators of theoretically similar or overlapping constructs are strongly 
interrelated” (Brown, 2006, p. 2), and discriminant evidence is provided when 
“indicators of theoretically distinct constructs are not highly intercorrelated” 
(Brown, 2006, p. 3). In other words, convergent validity essentially refers to 
whether indicators from a latent variable do belong to that latent variable, and 
discriminant validity essentially refers to whether indicators from a latent variable 
do not belong to other latent variables. 
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However, for formative measurement, high correlations are not required 
between its indicators (Jarvis et al., 2003). Furthermore, correlations among 
causal indicators within a measurement model need not be higher compared to 
correlations between them and indicators from other measurement models (Bollen, 
2011; Bollen & Lennox, 1991). Therefore, the traditional approach toward 
establishing convergent and discriminate validity from CTT is not appropriate. In 
this study, an adaptation of the definition of convergent and discriminant validity 
is proposed to accommodate the context of formative measurement. Convergent 
validity is used to specify that causal indicators from a measurement model 
should explain a significant proportion of variance from the latent variable that 
they measure; discriminant validity is used to specify that these same indicators 
should explain a much lower proportion of variance from other latent variables. 
That is, indicators that are associated with the target latent variable will explain 
much more variance of that latent variable and those indicators should not explain 
a large amount of variance of other latent variables relative to the target latent 
variable. 

These definitions adapt Brown (2006)’s definition by reversing the direction 
of relationship between the latent variable and the indicators. Discriminant 
evidence is particularly important because it indicates that these indicators do not 
belong to other latent variables. 

The Context of Validation 

Identification is always an issue for structural equation models with latent 
variables, and there are two general identification rules: First, each latent variable 
must be assigned a scale; Second, the number of free parameters estimated in a 
model must be no more than the number of unique pieces of information in the 
covariance matrix of manifest variables (Bollen & Davis, 2009). Thus, for a 
reflective measurement model, the minimum number of indicators should be at 
least three. However, there is one more identification requirement raised by 
formative measurement. MacCallum and Browne (1993) showed that an 
additional requirement for the identification of the disturbance from formative 
measurement was that the latent variable measured by causal indicators must emit 
two paths to its reflective indicators or other latent variables. Therefore, a model 
is proposed in which the latent variable measured by causal indicators predicts 
two or more outcome variables measured by reflective indicators as the context in 
which to gather convergent and discriminant validity evidence (Bollen & Davis, 
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2009). Our model is consistent with the circumstances identified by Bagozzi 
(2011) under which formative measurement are appropriate to be used.  

The example model proposed is shown in Figure 2, where latent variable η1 
is measured by causal indicators and its convergent and discriminant validity 
evidence is to be examined. Note that the actual research model may be different 
from this test model: The model is used to gather convergent and discriminant 
validity evidence only; and its structural paths may differ widely from those of the 
research model. What the model is trying to do is to examine the indicators from 
latent variable η1 in terms of convergent and discriminant validity. 
 
 

 
Figure 2. An example model of the proposed method. 
 
 

A Mediator Perspective 

Psychologists have recognized the concept of a mediator for quite a long time 
(e.g., Woodworth, 1928). Furthermore, Baron and Kenney (1986) clarified the 
nature of a mediator: a given variable functioned as a mediator if it accounted for 
the relationship between an independent variable and a dependent variable. To be 
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a mediator, a variable needs to meet three conditions: (a) Variance of independent 
variable A significantly accounts for variance of mediator B. In other words, the 
path coefficient of Path A is significant. (b) Variance of mediator B significantly 
accounts for variance of the dependent variable C. In other words, the path 
coefficient of Path B is significant. (c) When Paths A and B are controlled, the 
previous significant relation (Path C) between the independent variable A and 
dependent variable B significantly decreases (or even becomes zero). 

By applying the mediator perspective, the relevant latent variable η1 can be 
seen as a mediator which accounts the influence of causal indicators I1-I3 on the 
other latent variables (e.g., η2; Panel A from Figure 3) (Bollen, 2007; Bollen & 
Davis, 2009; Howell et al., 2007b). Then, latent variable η1’s construct validity 
(i.e., convergent and discriminant evidence) can be examined. Note that our 
method is justified based on previous literature. Bollen (2007), for example, 
argued that the latent variables measured by causal indicators mediated “the effect 
of causal indicators on these other variables” (p. 222). MacKenzie et al. (2011) 
also argued that “the adequacy of the hypothesized multidimensional structure can 
be assessed by testing whether the sub-dimensions of the multidimensional focal 
construct have significant direct effects on a consequence construct, over and 
above the direct effect that the focal construct has on the consequence” (p. 323). 
Specifically, the causal indicators “must share the latent variable η as a common 
consequence and, moreover, η must fully mediate the effects of” their indicators 
“on other observed or latent variables that are modeled as outcomes of η” 
(Diamantopoulos, 2011, p. 340). Also as Franke et al. (2008, p. 1230) argued, the 
latent variables measured by causal indicators “mediate the effects of their 
indicators on other variables, constraining their indicators to have the same 
proportional influence on the outcome variables….If the formative indicators 
could have direct as well as mediated effects on the outcome variables, then the 
proportionality constraint would not necessarily hold”. (Here formative indicators 
refer to causal indicators in Bollen (2011)’s terminology.) 

In the proposed method, the validity of formative measurement is supported 
even if causal indicators have direct influence on the outcomes variables, as long 
as “the magnitude of the effect of the focal construct on the consequence 
construct is substantially larger than the combined magnitudes of the direct effects” 
of its indicators on the outcome variables (MacKenzie et al., 2011, p. 323). In 
other words, the latent variable can fully or partially mediate the influence of 
causal indicators I1-I3 on latent variable η2. It is similar to the context in which 
the research model only contains reflective measurement and construct validity is 
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supported even if cross-loadings exist as long as these cross-loadings are much 
less then loadings between reflective indicators and the focal latent variables.  

 Therefore, to gather η1’s convergent evidence, if indicator I1 indeed 
belongs to η1, the influence of I1 on η2 should be mediated by η1 (Panel A from 
Figure 3). In other words, I1 should explain a significant amount of variance of η1. 
That is consistent with the definition of formative measurement: Indicator I1 
influences η1, and then η1 influences η2. Following Baron and Kenny’s instruction, 
we can examine convergent validity in three steps. See Table 1 for each step. 
Especially, significant indicator weight is the first step. If indicator weights (Path 
A) are not significant, there is no need to go further, given that the strength of 
indicator weight is the statistical metric used to judge indicator retention (Bollen 
& Lennox, 1991; Chin, 1998; Diamantopoulos et al., 2008; Diamantopoulos & 
Winklhofer, 2001). 
 
 

 
A. Convergent Validity 

 
B. Discriminant Validity 

 
Figure 3. A mediator perspective. 
 
 
 
Table 1. A mediator perspective to gather validity evidence for formative measurement. 
 
Step  Description 

Step 1  Examine if path coefficient for Path A is significant 
 If path coefficient for Path A is not significant, then I1 does not significantly 

cause η1. There is no need to go further. 
 If path coefficient for Path A is significant, then 

Step 2  Examine the coefficient for Path C (without controlling B) 
 If path coefficient for Path C is not significant, then I1 and η2 do not share a 

significant amount of variance. There is no need to go further. 
 If path coefficient for Path C is significant, then 

Step 3  Examine the coefficient for Path C by controlling A and B 
 If path coefficient for Path C becomes less or insignificant, then η1 mediates 

the influence of I1 on η2. Therefore I1 probably belongs to η1. 
 If path coefficient for Path C remains the same or changes little, then η1 does 

not mediate the influence of I1 on η2. Therefore I1 may not belong to Y1. 
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To gather η1’s discriminant evidence, the same process is gone through by 
examining if η1 mediates indicators from other measurement models. For example, 
indicators A1-A4 from latent variable η2 can be examined and confirmed that η1 
cannot mediate these indicators’ influences on η2 (Panel B from Figure 3). 
Indicators from η2 should explain a much less amount of variance of η1 than I1 - 
I3. The same process in Table 1 is followed. When path coefficient for Path C is 
tested controlling for Path A and Path B, if path coefficient for Path C does not 
change significantly, then the influences of indicator A1- A4 are not mediated by 
η1. Therefore, indicators A1- A4 do not belong to η1. In contrast, if the path 
coefficient for Path C reduces significantly or even becomes insignificant, A1- A4 
may belong to η1. Here content analysis is needed to further examine these 
indicators, and indicators A1- A4 are problematic in the sense that the results are 
not consistent with developed theory.  

Methodology 

Participants 
Participants (N = 337) from an entry level business class at a large state university 
in the Northwest of the U.S. completed the scales described below. The 
demographic information collected includes age and gender. The mean age of the 
participants was 20.35, with the range between 18 and 36 years. The percentage 
of male students was 62.00%. 

Measures 

Perceived Effectiveness of Institutional Structures (PE) (Pavlou & Gefen, 2005), a 
correctly modeled formative measurement (Petter et al., 2007), was selected as 
our example of formative measurement. Two other constructs (Trust and Trust 
Propensity (TP), where Trust is Trust in the Community of Sellers, and TP is 
Trust Propensity). For a detailed description of PE, Trust and TP and their 
indicators, please refer to Pavlou and Gefen (2005).) were chosen to form the 
model to test in Figure 2. The instruments from original studies were adapted to 
fit the new study environment. The indicators of PE and Trust were reworded to 
focus on online shopping behaviors.  
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Procedures 
Participants were given class credit to participate in the study (less than 1% of 
their final grade) with other options if they selected not to participate. Data 
collection occurred in laboratories for the business class. After participants 
arrived in the laboratories, the administrator read aloud the purpose and 
procedures for the study. Then participants accessed a website to complete the 
questionnaire. The questionnaire contained a randomized sequence of indicators 
from PE, Trust, TP and other constructs from Pavlou and Gefen (2005) as well as 
demographic information questions. Once the questionnaire was completed (about 
10 mins), participants were thanked and exited the laboratory.  

Data Analysis 

Mplus (Muthén & Muthén, 1998-2012) was used to analyze the data. Our analysis 
had two components. First, our proposed method was tested with the model 
including PE, Trust and TP. Second, the proposed method was applied to gain 
convergent and discriminant evidence for Trust, to show that the proposed method 
is consistent with CTT when examining measurement models with reflective 
indicators. 

For the first component of the analysis, CFA was first performed to gather 
the convergent and discriminant evidence of the two latent variables measured by 
reflective indicators: Trust and TP (Brown, 2006). The global fit was assessed and 
the following fit indices were used: chi-square statistic (χ2), Comparative Fit 
Index (CFI), and the Standardized Root Mean Squared Residual (SRMR). The χ2 
test is significant when p value is less than 0.05. In such contexts, the model may 
not represent data reasonably well. CFI equal to or greater than .90 indicates 
reasonable global fit (Rigdon, 1996). The SRMR less than .05 indicates acceptable 
fit (Byrne, 1998). Because the result of chi-square test is likely inflated by sample 
size, the result of χ2 test is routinely significant with large sample size, even if the 
differences between S and ∑ are negligible (Brown, 2006). Therefore, other fit 
indices were used in combination with the chi-square test. Standardized loadings 
were then used to gather the convergent evidence and cross loadings were used to 
gather the discriminant evidence. For the size of item loadings, suggestions given 
by Straub et al. (2004) were followed, who suggest that loadings should be 
“above .707 so that over half of the variance is captured by the latent construct” (p. 
410). 

Next the model including PE, TP and Trust was examined to gather 
convergent and discriminant validity evidence for PE, which is measured by 
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causal indicators. The global fit of the model was first examined. Here acceptable 
overall goodness of model fit is important to show that the baseline model can fit 
the data well (Brown, 2006). The convergent and discriminant validity evidence 
for PE was then gathered following the method proposed above (refer to Table 1).  

For convergent evidence, proposed indicators for PE should converge on PE. 
From a mediator perspective, PE should mediate the influence of its indicators on 
the other two latent variables (Figure 4). For discriminant evidence, indicators 
from other measurement models should not belong to PE. From a mediator 
perspective, PE should not mediate the influence of indicators from other latent 
variables on these two latent variables. 
 
 

 
Figure 4. Model to gather convergent and discriminant evidence for PE. 
 
 
 

In the second component of the analysis, the convergent and discriminant 
validity evidence of Trust were gathered with the method proposed in this study. 
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These analyses demonstrated that our proposed method was consistent with CTT 
when gathering convergent and discriminant evidence from reflective 
measurement as well. First convergent validity of Trust was examined to check if 
Trust1-Trust4 belonged to Trust (Figure 5). Next discriminant validity was 
examined to check if TP1-TP3 belonged to Trust. 
 
 

 
Figure 5. A mediator method to gather convergent and discriminant evidence for trust. 

 

Results 

CFA 
The global fit of the model was acceptable (χ2(13) = 85.779, NC = 6.60, 
p < 0.0001, CFI = 0.943, SRMR is 0.040). Although the result of χ2 test was 
significant, it was largely due to the large sample size (337). Other fit indices met 
stated criteria. 

For convergent evidence, indicators’ standardized loadings were examined. 
The standardized loadings for all indicators are shown in Table 2: all loadings 
were significant and most loadings were above 0.707 (except for Trust2 and TP2), 
which indicates that the latent variables explain more than 50% of variance for 
most indicators. This indicated reasonable convergent evidence. For discriminant 
evidence, the cross loadings between indicators and other latent variables were 
examined, requiring that indicators load much higher on the latent variables they 
measure than on other latent variables (Gefen & Straub, 2005). From the results 
of Modification Indices (M.I.), no M.I.s for cross loading are significant, 
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indicating good discriminant evidence. (In Mplus, M.I. is the amount chi-square 
which would drop if the parameter is estimated as part of the model. 3.84 is the 
chi-square value which is significant at the .05 level for one degree of freedom.  
When the M.I. is significant, we also want to examine the size of completely 
standardized expected parameter change. Usually, values more than 0.300 are 
considered large and should be included in the model. Value less than 0.200 
indicates a trivial change of parameter, and we may not include it into the model, 
even if M.I. is significant.) To summarize, Trust and TP have good convergent 
and discriminant evidence. 
 
 
Table 2. Loadings. 
 
  Trust   TP 
Trust1 0.786 TP1 0.750 
Trust2 0.687 TP2 0.595 
Trust3 0.907 TP3 0.803 
Trust4 0.928     
 

Construct Validity (Convergent and Discriminant Evidence): 
Formative Measurement 
The fit for baseline model was first examined. The model met fit criteria 
(χ2(48) = 145.439, p < 0.0001, NC = 3.03, CFI = .92, SRMR is 0.039). Therefore, 
the global fit of baseline model was reasonable. 

The method outlined in Table 1 was followed. For convergent validity, PE1-
PE6 were considered as independent variable, PE as the mediator, and Trust (or 
TP) as the dependent variable. In the first model (Trust as the dependent variable, 
refer to Table 3), the path coefficient for Path A was first examined. According to 
the second column, the path coefficients from PE1 and PE6 to PE were significant, 
indicating that PE1 and PE6 significantly influenced PE in this context. Next, the 
path coefficient for Path C was examined, without controlling Path A. According 
to the forth column, path coefficients from PE1 and PE6 to Trust were significant, 
indicating that the PE1 and PE6 explained a significant amount of variation of 
Trust. Finally, the path coefficient for Path C was examined, controlling Path A 
and B. According to the third column in Table 3, the path coefficient for Path B 
(from PE to Trust) was significant. According to the last column, when 
controlling Path A and Path B, all path coefficients were insignificant, indicating 
that there were no direct effects from PE1 and PE6 to Trust. Therefore, PE fully 
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mediated the influence of PE1 and PE6 on Trust. In the second model (TP as the 
dependent variable, refer to Table 4), the same procedures were followed, and the 
results also indicated full mediation. Specially, path coefficients for Path C were 
not significant according to the forth column, indicating that PE1 and PE6 could 
not explain a significant amount of variance of TP even before controlling Path A 
and Path B. Therefore, PE1 and PE6 belonged to PE, indicating good convergent 
evidence. 
 
 
Table 3. Path coefficient between PE, PE’s indicators and Trust. 
 

 Path A Path B Path C (before 
controlling Path A) 

Path C (after 
controlling Path A) 

PE1 0.239* 0.764* 0.148* 0.082 
PE2 0.173 0.764* - 0.098 
PE3 0.142 0.764* - -0.131 
PE4 0.046 0.764* - -0.136 
PE5 -0.020 0.764* - 0.007 
PE6 0.355* 0.764* 0.163* 0.000 

 

*Note: p < 0.05 
 
 
Table 4. Path coefficient between PE, PE’s indicators and TP. 
 

 Path A Path B Path C (before 
controlling Path A) 

Path C (after 
controlling Path A) 

PE1 0.239* 0.629* 0.011 -0.069 
PE2 0.173 0. 629* - -0.094 
PE3 0.142 0. 629* - 0.097 
PE4 0.046 0. 629* - 0.099 
PE5 -0.020 0. 629* - -0.004 
PE6 0.355* 0. 629* 0.091 0.001 

 

*Note: p < 0.05 
 
 

For discriminant validity, Trust1-Trust4 were considered as independent 
variable, PE as the mediator, and Trust as the dependent variable (refer to Table 
5). First, the path coefficient for Path A was examined. According to the second 
column, path coefficients from Trust1-Trust4 to PE were significant, indicating 
that Trust1-Trust4 significantly influenced PE. Next, the path coefficient for Path 
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C was examined, without controlling Path A. According to forth column, Trust1-
Trust4 significantly influenced Trust.  

Finally, the path coefficient for Path C was examined, controlling Path A 
and Path B. According to third column, the path coefficient for Path B (from PE 
to Trust) was significant. According to the last column, path coefficient for Path C 
(from Trust1-Trust4 to Trust) was still significant and decreased little after 
controlling for Path B, indicating that PE did not mediate the influence of Trust1-
Trust4 on Trust. Therefore, indicators Trust1-Trust4 did not belong to PE, and 
discriminant evidence was supported.  
 
 
Table 5. Path coefficient between PE, Trust and Trust’s indicators. 
 

 Path A Path B Path C (before 
controlling Path A) 

Path C (after 
controlling Path A) 

Trust1 0.755* 0.967* 0.715* 0.636* 
Trust2 0.633* 0. 931* 0.575* 0.445* 
Trust3 0.867* 0. 964* 0.837* 0.620* 
Trust4 0.883* 0. 985* 0.868* 0.678* 

 

*Note: p < 0.05 
 

Another evidence of discriminant validity was that after adding Trust1 (to 
Trust4) to PE, the path coefficient from PE to Trust was more than 0.900, 
indicating bad discriminant validity (Now PE and Trust cannot discriminate from 
each other). Therefore, to keep PE as a meaningful and separate latent variable, 
Trust1 (to Trust4) should be removed from PE. However, this argument should be 
based on the previous step in that PE could mediate several indicators’ influence 
on Trust and TP. If PE could not function as mediator in previous steps, then 
indicators could be problematic. 

Construct Validity (Convergent and Discriminant Evidence): 
Reflective Measurement 
In this section the proposed method was applied to gather convergent and 
discriminant evidence of reflective measurement (Trust), to confirm that Trust1-
Trust4 belonged to Trust and TP1-TP3 did not belong to Trust. To gather 
convergent evidence, TP was considered as the independent variable, Trust as the 
mediator and Trust1-Turst4 as the dependent variable (refer to Table 6). 
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Table 6. Path coefficient between Trust, Trust’s indicators and TP. 
 

 Path A Path B Path C (before 
controlling Path A) 

Path C (after 
controlling Path A) 

Trust1 0.473* 0.786* 0.375* 0.004 
Trust2 0.473* 0.687* 0.321* -0.006 
Trust3 0.473* 0.907* 0.435* 0.012 
Trust4 0.473* 0.928* 0.435* -0.011 

 

*Note: p < 0.05 
 
 

The path coefficient for Path A was first examined. According to the second 
columns in Table 6, the path coefficients were significant and not more than 0.800, 
which indicated that TP explained a significant amount of variance of Trust, and 
TP and Trust were discriminant from each other. Next the path coefficient for 
Path C was examined, without controlling Path A. According to the forth column, 
path coefficients for Path C were significant, indicating that Trust1-Trust4 loaded 
on TP significantly. Finally, the path coefficient for Path C was examined, 
controlling Path A and Path B. According to the third column, path coefficients 
for Path B were significant and more than 0.707 (except for Trust2). According to 
the last column, all path coefficients for Path C were insignificant, which 
indicated that Trust fully mediated TP’s effect on Trust1-Trust4. Therefore, good 
convergent evidence was supported.  

To gather discriminant evidence, TP was considered as the independent 
variable, Trust as the mediator and TP1-TP3 as the dependent variable (refer to 
Table 7). The path coefficient for Path A was first examined. According to the 
second column, the path coefficient was significant and less than 0.800, indicating 
that TP explained a significant amount of variance from Trust, and they were 
discriminant from each other. Next, the path coefficients for Path C were 
examined, without controlling Path A. According to the forth column, path 
coefficients for Path C were all significant, indicating that TP1-TP3 loaded on TP 
significantly. Finally, the path coefficients for Path C was examined, controlling 
Path A and Path B. According to the third column, the path coefficients for Path B 
(from Trust to TP1-TP3) were significant. However, no path coefficients 
(loading) were more than 0.707. According to the last column, all path 
coefficients for Path C were significant and decreased little, indicating Trust could 
not mediate TP’s effect on TP1-TP3. Therefore, TP1-TP3 did not belong to Trust. 
Thus, good discriminant evidence was supported. 
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Table 7. Path coefficient between Trust, TP and TP’s indicators. 
 

 Path A Path B Path C (before 
controlling Path A) 

Path C (after 
controlling Path A) 

TP1 0.437* 0.432* 0.750* 0.642* 
TP2 0.500* 0.269* 0.595* 0.625* 
TP3 0.525* 0.366* 0.803* 0.920* 

 

*Note: p < 0.05 
 
 

To summarize, our results showed that Trust1-Trust4 are indicators of Trust 
but TP1-TP3 were not. These conclusions are consistent with the results of CFA 
in the framework of CTT. Therefore, the method proposed is consistent with CTT 
when we gather convergent and discriminant evidence for reflective measurement.  

Discussion 

Formative measurement has been recognized in previous literature (Bollen, 1984; 
Bollen, 2011; Petter et al., 2007; Wang, Jessup, & Clay, 2015). However, there 
has not been an agreed method to gain convergent and discriminant validity 
evidence for formative measurement. The purpose of this study was to propose a 
method to gain convergent and discriminant evidence for formative measurement. 
A mediator perspective was adopted to propose a series of steps to test the validity 
of formative measurement. The data collected supports our method and showed 
that the method could keep those indicators which should belong to a formative 
measurement model and teasing out those which should not be part of the 
measurement. Our method can guide further social and behavioral research on 
how to gather convergent and discriminant validity evidence for formative 
measurement, and contribute a potential solution to one of the issues surrounding 
the application of formative measurement raised by recent literature (Edwards, 
2011).  

It is admitted that conclusions drawn from our method are dependent upon 
the data from a single example with one data set. In the results above that we 
showed that PE2, PE3, PE4 and PE5 did not significantly influence PE. Therefore, 
those four indicators may not belong to PE. However, the decision whether PE2, 
PE3, PE4 and PE5 are to be retained based on statistical results (convergent and 
discriminant validity) and other validity evidences (e.g., content validity) would 
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be necessary. Any scale refinement should be based on both empirical and 
theoretical information and not rely solely on empirical data. For formative 
measurement, indicator weights are dependent on specified structural models 
(Bollen &Davis, 2009), and the relative contribution of indicator weights is model 
dependent (Bollen et al., 2001; Hauser & Warren, 1997). Therefore, the choice 
should be based on “theoretical relevance” (Cenfetelli & Bassellier, 2009). If PE2, 
PE3, PE4 and PE5 represent unique and important domain of PE, they should be 
kept despite the fact that they do not significantly influence PE in this context 
with an eye in refining how they are assessed.  

Because the procedures of measurement development and validation are 
quite complex, researchers may find that the focal latent variable cannot mediate 
the relationship between certain causal indicators and outcome variables. 
Consider the context with reflective measurement only. Even if researchers have 
followed strict procedures to develop indicators, it is still possible for several 
reflective indicators to have insufficient discriminant validity (e.g., cross-loadings 
are high) (MacKenzie et al., 2011). Based on previous discussions, cross-loadings 
for reflective indicators are similar to direct effects which cannot be mediated by 
the latent variable from a formative measurement model (Figure 4 and 5). When 
the latent variable measured with causal indicators cannot mediate the relationship 
between certain causal indicators and outcome variables, these corresponding 
indicators are problematic (Diamantopoulos, 2011; MacKenzie et al., 2011). Our 
method can detect these indicators and warn researchers that their measurement 
models are not be supported. 

Limitation and Directions for Future Research 

A few limitations should be recalled when applying the proposed method. First, 
the application of statistical testing is based on relevant literature (e.g., Bollen, 
1989; Bollen & Lennox, 1991). As MacKenzie et al. (2011) argue, “indicator 
validity is captured by the significance and strength of the path from the indicator 
to composite latent construct” (p. 315). Bollen (2011) also argued that “a 
coefficient of a causal indicator with the wrong sign or that is not statistically 
significant would appear to be invalid and a candidate for exclusion” (p. 365). A 
significance test was relied on in the first stage of examining convergent and 
discriminant validity (Table 1). After the first stage, it is the difference of path 
coefficients between the second and the third stage that is important in supporting 
validity claims (Table 1). It is fully acknowledged that the exclusive focus on 
statistical significance ignores the problem that in large samples, effects that are 



CONSTRUCT VALIDITY WITH FORMATIVE MEASUREMENT 

102 

trivial in magnitude can be statistically significant. However, in smaller samples 
where power is too low to be effective, even appreciably large effects may not be 
statistically significant in smaller samples. Therefore, when researchers apply our 
method and are in the first stage of our method, they may also want to check the 
statistical power to ensure that there is adequate power to detect medium to large 
effects. 

Second, because the residual from formative measurement can only be 
identified when there are at least two paths emitting from the formative 
measurement model, at least two other latent variables measured by reflective 
indicators are needed. This limitation is due to the underlying attribute of 
formative measurement. One potential way to solve that issue is to add a 
reflective indicator to that measurement model so that only one other latent 
variable is needed. In this context, the formative measurement model still emits 
two paths: one to its reflective indicator and one to another outcome latent 
variable. Note that our method is fully consistent with recent debate of the 
disturbance term for formative measurement (Cadogan & Lee, 2013). Specifically, 
Cadogan and Lee (2013) suggested that using formative latent variables 
(formative measurement with the disturbance term) should be suspended until 
researchers developed corresponding measurement theories; meanwhile, other 
alternatives could be used, such as formative composite variables (formative 
measurement without the disturbance term). Therefore, after gathering convergent 
and discriminant validity evidence for formative measurement, researchers should 
apply formative composite variables in their model testing. As discussed above, 
our model is just to validate formative measurement, not to test theories 
developed containing formative measurement. 

Third, for our method, the number of indicators used in reflective 
measurement should be at least four. As discussed above, for reflective 
measurement, the minimum number of indicators should be at least three. 
However, if there are only three indicators in a reflective measurement model 
(like TP in the previous data), the number of indicators from that measurement 
model will become two when we move one indicator to the formative 
measurement model and test if the latent variable measured with causal indicators 
can mediate the effect from that indicator. With only two indicators a latent 
variable will be unidentifiable.  

Fourth, the analysis employed indicators from previously published studies. 
There was no control over model fit, strength of relationship between variables, 
and so on. Even though this may reflect reality, future studies can employ Monte 
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Carlo techniques to further validate the proposed under a variety of conditions 
(e.g. degree of model misspecification, strength of loadings). 
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The problem of estimating the finite population mean of in simple random sampling in 
the presence of non-response and response error was considered. The estimators use 
auxiliary information to improve efficiency, assuming non–response and measurement 
error are present in both the study and auxiliary variables. A class of estimators was 
proposed and its properties studied in the simultaneous presence of non-response and 
response errors. It was shown that the proposed class of estimators is more efficient than 
the usual unbiased estimator, ratio and product estimators under non-response and 
response error together. A numerical study was carried out to compare its performance. 
 
Keywords: Population mean, Study variable, Auxiliary variable, Mean squared error, 
Measurement errors, Non-response. 
 

Introduction 

Over the past several decades, statisticians were interested in the problem of 
estimating the parameters of interest in the presence of response error 
(measurement errors). In survey sampling the properties of the estimators based 
on data usually presuppose that the observations are the correct measurements on 
characteristics being studied. However, this assumption is not satisfied in many 
applications and data is contaminated with measurement errors, such as reporting 
errors and computing errors. These measurement errors make the result invalid, 
which are meant for no measurement error case. If measurement errors are very 
small and we can neglect it, then the statistical inferences based on observed data 
continue to remain valid. On the contrary, when they are not appreciably small 
and negligible, the inferences may not be simply invalid and inaccurate but may 
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often lead to unexpected, undesirable and unfortunate consequences (see 
Srivastava & Shalabh 2001). Some important sources of measurement errors in 
survey data are discussed in Cochran (1968), Shalabh (1997), Sud and Srivastva 
(2000). Singh and Karpe (2008, 2010), Kumar, Singh, and Smarandache (2011), 
Kumar, Singh, Sawan, and Chauhan (2011) and Sharma and Singh (2013) studied 
the properties of some estimators of population parameters under measurement 
error. 

Consider a finite population U = (U1, U2,..., UN) of N units. Let Y and X be 
the study variate and auxiliary variate, respectively. Suppose that we have a set of 
n paired observations obtained through simple random sampling procedure on two 
characteristics X and Y. Further it is assumed that xi and yi for the ith sampling 
units are observed with measurement error instead of their true values (Xi, Yi). For 
a simple random sampling scheme, let (xi, yi) be observed values instead of the 
true values (Xi, Yi) for ith (i = 1.2 ,…, n) unit, as 
 
  i i iu y Y    (1) 
 
  i i iv x X    (2) 
 
where ui and vi are associated measurement errors which are stochastic in nature 
with mean zero and variances 2

u  and 2 ,v  respectively. Further, let the ui’s and 
vi’s are uncorrelated although Xi’s and Yi’s are correlated. 

Let the population means of X and Y characteristics be μx and μy, population 
variances of (x, y) be ( 2

x , 2
y ) and let ρ be the population correlation coefficient 

between x and y respectively (see Manisha and Singh 2002). 
In sample surveys, the problem of non-response is common and is more 

widespread in mail surveys than in personal interviews. The usual approach to 
overcome non-response problem is to contact the non-respondent and obtain the 
information as much as possible. Hansen and Hurwitz (1946) were the first to deal 
with the problem of non-response. They proposed a sampling scheme that 
involves taking a subsample of non-responds after the first mail attempt and then 
obtain the information by personal interview. 

For a finite population U = {U1, U2, …, UN} of size N and a random sample 
of size n is drawn without replacement. Let the characteristics under study, say, y 
takes value yi on the unit Ui (I = 1, 2, …, N). In survey on human population it is 
often the case that n1 unit respond on the first attempt while n1 (= n - n1) units do 
not provide any response. In the case of non-response of at initial stage Hansen 
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and Hurwitz (1946) suggested a double sampling plan for estimating the 
population mean comprising the following steps: 

 
i. A simple random sample of size n is drawn and the questionnaire is 

mailed to the sample units; 
ii. A sub-sample of size r = (n2 / k), (k > 1) from the n2 non responding 

units in the initial step attempt is contacted through personal 
interviews. 

 
Note that Hansen and Hurwitz (1946) considered the mail surveys at the 

first attempt and the personal interviews at the second attempt. In the Hansen and 
Hurwitz method the population is supposed to be consisting of response stratum 

of size N1 and the non-response stratum of size N2 = (N - N1). Let 
1

N

i
i

Y y N


  

and    
22

1
1

N

y i
i

S y Y N


    denote the mean and the population variance of the 

study variable y. Let 
1

1 1
1

N

i
i

Y y N


 and      
1 22

11
1

1
N

iy
i

S y Y N


    denote the 

mean and variance of response group. Similarly, let 
2

2 2
1

N

i
i

Y y N


 and 

     
2 22

22
1

1
N

iy
i

S y Y N


    denote the mean and variance of the non-response 

group. The population mean can be written as 1 1 2 2Y WY W Y  , where 

W1 = (N1 / N) and W2 = (N2 / N). The sample mean 
1

1 1
1

n

i
i

y y n


  is an unbiased 

for 1Y , but has a bias equal to  2 1 2W Y Y  in estimating the population mean Y . 

The sample mean 2
1

r

r i
i

y y r


  is unbiased for the mean y2 for the n2 units. 

Hansen and Hurwitz (1946) suggested an unbiased estimator for the population 
mean Y  is given by *

1 1 2 2ry w y w y  . 
Where w1 = (n1 / n) and w2 = (n2 / n) are responding and non-responding 

proportions in the sample. The variance of *y  is given by 

 
 

 
2* 2 2

2

11
y y

W kfV y S S
n n

 
  
 

; where f = (n / N). 
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In the sampling literature, it is known that efficiency of the estimator of 
population mean of a study variable y can be increased by the use of auxiliary 
information related to x which is highly correlated with study variable y. Cochran 
(1977) suggested the ratio and regression estimator of the population mean Y of 
study variable y in which information on the auxiliary variable is obtained from 
all sample units, and the population mean of auxiliary variable x is known, while 
some units do not provide any information on study variable y. Rao (1986), Khare 
and Srivastava (1995,1997), Okafor and Lee (2000) and Singh and Kumar (2008, 
2009, 2010) have suggested some estimator for population mean of the study 
variable y using auxiliary information in presence of non-response. 

Let xi, (i = 1, 2, …, N) denote a auxiliary characteristics correlated with the 
study variable yi, (i = 1, 2, …, N) the population mean of auxiliary variable is

1

N

i
i

X x N


 . Let 1X and 2X  denote the population means of the response and 

non-response groups. Let 
2 2

1 2 2 2 2
1 1 1

, ,
n n r

i i r i
i i i

x x n x x n x x r
  

      denote the 

means of the n1 responding units, n2 non-responding units, and r = (n2 / k) sub-
sampled units respectively. In this paper we have merged two major concepts for 
improvement of estimation techniques that is consideration of measurement error 
and non-response in the estimation procedure and proposed a class of estimators. 

Notations  

Let 
1 1

1 1, ,
n n

i i
i i

x x y y
n n 

    be the unbiased estimator of population means X  

and Y , respectively but  
22

1

1
1

n

x i
i

s x x
n 

 

  and  

22

1

1
1

n

y i
i

s y y
n 

 

  are not 

unbiased estimator of ( 2
x , 2

y ), respectively. The expected values of 2
xs and 2

ys  in 
the presence of measurement error are, given by, 

 
 

 

2 2 2

2 2 2

x x v

y y u

E s

E s

 

 

 

 
 

 
and for non-response group  
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 

 
2 2 2

2 2 2

2 2 2

2 2 2 .

x x v

y y u

E s

E s

 

 

 

 
 

 
When the error variance 2

v  is known, the unbiased estimator of 2
x , is

2 2 2ˆ 0x x vs    , and when 2
u  is known, then the unbiased estimator of 2

y  is
2 2 2ˆ 0y y us    .  

Similarly, for the non-response group the unbiased estimator of
2

2
x , is

2 2 2

2 2 2ˆ 0x x vs    , and when 
2

2
u  is known, then the unbiased estimator of 

2

2
y  is

2 2 2

2 2 2ˆ 0y y us    . 
 

 
 

 
2 2 2

2 2 2

2 2 2

2 2 2 .

x x v

y y u

E s

E s

 

 

 

 
 

 
Define  
 

 
 

 

0

1

1

1
y

x

y e

x e





 

 
 

 
such that  
 

    0 1 0,E e E e   
 
and up to the first degree of approximation (when finite population correction 
factor is ignored) 
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




   
        

   

  
       

   


 

    

 

Adapted estimator 

A traditional estimator for estimating population mean in the simultaneous 
presence of response and non-response error is given by,  
 
 1t y   (3) 
 

Expression (3) can be written as 
 
  2

1 01t Y Y e     (4) 
 
Taking expectation both sides of (4), we get bias of estimator t1 given as 
 
  1 0Bias t    (5) 
 
Squaring both sides of (4) 
 
  

2 2 2
1 0t Y Y e    (6) 

 
and taking expectation and using notation, mean square error of t1 is obtained up 
to first order of approximation, as  
 

  
2 2 2

2 2
1 22 2

2

1 1y u u
y

y y

S
MSE t AS

n S S
    

         
   

  (7) 
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or 
 
  1MSE t M   (8) 
 

where, 
  21k W

A
n


  and 
2 2 2

2 2
22 2

2

1 1y u u
y

y y

S
M AS

n S S
    

         
   

. 

In the case, when the measurement error is zero or negligible, MSE of 
estimator t1 is given by, 

 

  
2

* 2
1 2

y
y

S
MSE t AS

n
    (9) 

 

where, 
1

2
2
2

u
t uM A

n


   is the contribution of measurement errors in t1. 

When there is non-response and response error both are present, a ratio type 
estimator for estimating population mean is, given by 
 

 
*

*r
yt X
x

   (10) 

 
Expressing the estimator tr in terms of e’s  
 
   

1
0 11 1rt Y e e 

     (11) 
 
Expanding equation (11) and simplifying,  
 
   2

0 1 0 1 1rt Y Y e e e e e         (12) 

 
and taking expectation both sides of (12), the bias of estimator tr is  
 

  
2 2 2

2 2
2 2 2 22 2

2

11 1 2x v v
r x xy x y xy x y

x x

SBias t AS S S A S S
n S S n

 
 

      
           

     
  (13) 

 
Squaring both sides of (12),  
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  
22 2 2 2

0 1 0 12r yt Y e e e e         (14) 

 
Taking expectations of (14) and using notations, we get the MSE of 

estimator tr as 
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  (15) 
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where, 
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 2 2 2
1

xy x y xy x yO S S A S S
n
 

 
  
 

. 

A regression estimator under measurement error and non-response is defined as  
 
  * *

lrt y b X x     (17) 

 
Expressing the estimator tr in terms of e’s,  0 11lrt Y e bXe   , 
 
and expanding equation (17) and simplifying, 
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    0 1lrt Y Ye bXe     (18) 

 
Squaring both sides of (18) and after simplification,  
 
  

2 2 2 2 2 2
0 1 0 12lrt Y Y e b X e bXYe e        (19) 

 
Taking expectations both sides of (19) the MSE of estimator tlr is obtained as 
 
   2 2 2lrMSE t M b R N bRO     (20) 
 
The optimum value of b is obtained by minimizing (20) and is given by 
 

 * 1 Ob
R N
 

  
 

  (21) 

 
Substituting the optimal value of b in equation (20), the minimum MSE of the 
estimator tlr is obtained as 
 

  
2

min
1lr

OMSE t M
MN

 
  

 
  (22) 

 
In the case, when the measurement error is zero or negligible, MSE of estimator t1 

is given by 
 

  
  22 2 2 2 2

2 2 2 2 2

11 1 2lr y xy y x xy x y

k W
MSE t S S b S b S S

n n
 


             (23) 

Proposed class of estimator 

A proposed class of estimators given by  
 

 
*

*
1 2 *p

yt m y m X
x

    (24) 
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Note for (m1, m2) = (1, 0) *
1t y  (usual unbiased estimator), and for 

(m1, m2) = (0, 1) 
*

2 *

yt X
x

  (usual ratio estimator). Thus, the proposed class of 

estimators is generalized version of usual unbiased estimator and ratio estimator. 
Expressing the estimator tp in terms of e’s  
 
     

1
1 0 2 0 11 1 1pt mY e m Y e e 

       (25) 
 
Expanding equation (25) and simplifying,  
 
    2

0 2 1 1 0 1pt Y Y e m e e e e      
 

  (26) 

 

 
Squaring both sides of (26) and after simplification,  
 
  

2 2 2 2 2
0 2 1 2 0 12pt Y Y e m e m e e        (27) 

 
Taking expectations of (27) and using notations, the MSE of estimator tr is 
obtained as 
 
   2

2 22pMSE t M m R N m RO     (28) 

 
The optimum value of 2m  is obtained by minimizing (28), given by 
 

 *
2

1 Om
R N
 

  
 

  (29) 

 
and * *

1 21m m  . 
Substituting the optimal value of 2m in equation (28) the minimum MSE of 

the estimator tp is obtained as 
 

  
2

min
1p

OMSE t M
MN

 
  

 
  (30) 
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The minimum MSE of proposed class of estimator tp given in (30) is same 
as the MSE of regression estimator under simultaneous presence of non-response 
and measurement error, given in equation (22). 

Efficiency comparisons 

First, the efficiency of the proposed estimator tp is compared with usual unbiased 
estimator,  
 

 
   1 min

2 2

0 

If 1 0, 0

PMSE t MSE t

O OM M
MN MN

 

    
       

    

  (31) 

 
The condition listed in (31) shows that proposed family of estimators is 

always better than the usual estimator under the non-response and measurement 
error. 

Next, the ratio estimator is compared with proposed family of estimators tp, 
 

 
     

 

2

2 min min

2

0, 2 1 0

0    

P
OMSE t MSE t M N O M
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N O

  
        

  

 

  (32) 

 
Observe that the condition (32) holds and shows proposed family of 

estimators is better than the ratio estimator under the non-response and 
measurement error. 

Empirical study 

Data statistics 
The data used for empirical study was taken from Gujarati and Sangeetha 
(2007, pg, 539) where,  
 

Yi = True consumption expenditure, 

Xi = True income, 
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yi = Measured consumption expenditure, 

xi = Measured income. 

From the data given we get the following parameter values: 
 
 
Table 1. Value of the parameters 
 

n μy μx Sy Sx ρ 2
u  2

v  
70 981.29 1755.53 613.66 1406.13 0.778 36.00 36.00 

μy2 μx2 Sy2 Sx2 ρ2 R W2
  

597.29 1100.24 244.11 631.51 0.445 0.5589 0.25  

 
 
Table 2. Showing the MSE of the estimators with and without measurement errors 

 

Estimators 

 
MSE 
Without 
Error 

Contribution 
of meas. error 
in MSE 

Contribution 
of non-
response 

MSE including 
me. Errors & 
non-response 

*
1t y  10759.39 1.03 2553.840 13313.58 

tr 6967.135 1.35 4607.335 11574.92 

tlr 4246.903 0.86 2527.751 6775.036 

tp 4246.903 0.86 2527.751 6775.036 

 
 

Table 2 exhibits that measurement error and non-response plays an 
important role in increasing the MSE of an estimator. We also conclude that 
contribution of measurement error and non-response in usual estimator is less 
than in comparison to the ratio estimator; these observations have interesting 
implication where the ratio estimator performs better than sample mean under the 
absence of any measurement error in X characteristics. There may be a case when 
ratio estimator is poor than sample mean under the consideration of any 
measurement error. It is observed from Table 2 that the performance of our 
proposed estimator tp is better than usual estimator t1 and ratio estimator tr under 
non-response and measurement error. Further it is observed that contribution of 
non-response error is larger than the response error in increasing the MSE of the 
estimators. 
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Conclusion 

A class of estimator of the population mean of study variable y was proposed 
using auxiliary information. The estimators use auxiliary information to improve 
efficiencies, assuming non-response and measurement error are present in both 
the study and auxiliary variables. In addition, some known estimator of 
population mean such as usual unbiased estimator and ratio estimator for 
population mean are found to be members of the proposed class of estimators. 
The MSEs of the proposed class of estimators were obtained up to the first order 
of approximation in the simultaneous presence of non-response and response error. 
The proposed class of estimators are advantageous in the sense that the properties 
of the estimators which are members of the proposed class of estimators can be 
easily obtained from the properties of the proposed class of estimators. 
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Estimating the Accuracy of Automated 
Classification Systems Using Only Expert 
Ratings that are Less Accurate than the 
System 
Paul E. Lehner 
The MITRE Corporation 
McLean, VA, USA 
 
 
A method is presented to estimate the accuracy of an automated classification system 
based only on expert ratings on test cases, where the system may be substantially more 
accurate than the raters. In this method an estimate of overall rater accuracy is derived 
from the level of inter-rater agreement, Bayesian updating based on estimated rater 
accuracy is applied to estimate a ground truth probability for each classification on each 
test case, and then overall system accuracy is estimated by comparing the relative 
frequency that the system agrees with the most probable classification at different 
probability levels. A simulation analysis provides evidence that the method yields 
reasonable estimates of system accuracy under diverse and predictable conditions. 
 
Keywords: Inter-rater reliability, Kappa, artificial intelligence 
 

Introduction 

Information technology is advancing to develop systems that address problems of 
increasing sophistication and complexity. A quick scan of programs sponsored by 
research funding agencies (e.g., www.nih.gov, www.nsf.gov, www.darpa.mil, 
www.iarpa.gov ) showed new systems being developed to address complex 
problems as diverse as automated medical and clinical diagnoses, technology 
readiness evaluation, detection of emerging technologies, classification of the 
behavioral contents of unstructured video segments, recognition and classification 
of metaphors used in natural language text and many others. 

The complexities of the problems that these advanced systems address make 
it difficult to evaluate the accuracy of such systems. It is usually necessary to 

mailto:plehner@mitre.org
http://www.nih.gov/
http://www.nsf.gov/
http://www.darpa.mil/
http://www.iarpa.gov/


PAUL E. LEHNER 

123 

resort to using expert raters to assign ground truth for test cases. However, the 
complexity of these problems also challenge to the expert raters. Raters often 
disagree as to which is the correct category. Furthermore as future systems 
address problems of ever increasing sophistication and complexity, it seems likely 
that the experts will be even more challenged and exhibit even lower levels of 
agreement. Ground truth data sets based on expert assignments are fallible and are 
likely to become more so in the future. 

Using expert raters to assign ground truth to test cases is a well-established 
practice. For classification problems, which are the focus of this paper, a statistic 
such as Kappa is used to measure inter-rater agreement; and then the rating 
process is refined until a satisfactory level of agreement is reached. Once the 
agreement threshold is reached, assignments of individual raters or collaborating 
teams of raters are treated as truth and system accuracy is measured by the level 
of agreement with the assigned ground truth (See Gwet, 2010 for review). 

For several reasons, this common scientific practice does not adequately 
meet the needs of advanced system evaluation. First, the level of agreement 
amongst raters will rarely meet a satisfactory level. The problems that these 
systems address are simply too complex. About the only way to increase the level 
of agreement is to select relatively simple and therefore non-representative test 
cases. 

Second, estimating system accuracy by measuring the level of agreement 
with expert raters makes the de facto assumption that the experts are more 
accurate than the system. This assumption runs contrary to a substantial body of 
empirical research where it is often found that simple algorithms outperform 
human experts in complex judgments (Dawes, 1979; Grove, Zald, Lebow, Snitz, 
& Nelson 2001; Tetlock, 2005). It should not be presumed that the experts are 
more accurate than the system. 

Third, there is considerable evidence to suggest that for a wide variety of 
judgment tasks collaborative team judgments are not substantially more accurate 
than the judgments of randomly selected individual team member (e.g., 
Surowiecki, 2005; Armstrong, 2006). In judgment tasks, where there is no 
obvious correct answer, it should not be presumed that collaboration will reliably 
lead the raters to converge to the correct answer.  

Finally, when evaluating a classification system the statistic of greatest 
interest is the accuracy of the system - the proportion of system assignments that 
are correct. Unfortunately there is an unclear relationship between inter-rater 
reliability statistics such as Kappa, the probability of correct ground truth 
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assignments and the accuracy of any systems tested against error-prone ground 
truth assignments. 

A different approach is presented here to using expert ratings to estimate the 
accuracy of classification systems. Rather than treat expert ratings as a surrogate 
for ground truth, expert ratings are treated as error prone estimates of ground truth 
where independent ratings are fused to estimate ground truth probabilities, and the 
ground truth probabilities are then used to estimate system accuracy. 

One practical instantiation of this estimation approach is described below. In 
addition simulation test results are provided that support several claims. First, 
under diverse conditions, this approach reliably yields estimates of system 
accuracy that are approximately correct. If a system is 90% accurate then this 
approach will yield an estimate of system accuracy that is close to 90%. Second, 
the accuracy of the estimate of system accuracy is largely independent of whether 
the expert raters are more or less accurate than the system. If a system is in fact 
90% accurate, and the raters are individually 60% accurate, then the estimate of 
system accuracy will still be approximately 90%. Third, reliable estimates of 
system accuracy can often be obtained with a reasonably small number of test 
cases (e.g. fifty test cases with three expert raters). In complex domains it is 
important to keep sample sizes as small as possible, since it may be time 
consuming and costly to obtain expert ratings. Fourth, and importantly, the 
conditions under which the above three claims may break down are predictable. 
Therefore test data sets can be intentionally constructed to ensure that the 
conditions are met that are needed for accurate estimation of system accuracy. 

Estimating the accuracy of system classifications 

The method for estimating accuracy described below was derived from the 
following assumptions.  
 

AA1.  For each case there is a unique correct classification. 
AA2.  For each case raters independently assign classifications. 
AA3.  Expected agreement between raters increases as expected rater 

accuracy increases. 
 

Assumption AA3 refers to expected agreement and accuracy. Here 
“accuracy” refers to the total proportion of correct classifications made by all the 
raters, irrespective of which raters are making correct and incorrect classifications. 
And “agreement” refers to the total proportion of pairwise agreement among all of 
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the raters and cases. For any particular set of cases, accuracy may be low yet 
agreement high (the raters made the same mistakes), but AA3 asserts that in 
general there is an expected positive relationship between accuracy and 
agreement.  

Theorem 1: 
AA1-AA3 are ensured if and only if the raters behave as though their selection for 
each case is determined by a single confusion matrix where the conditional 
probability of correct assignment is constant and the conditional probability of all 
incorrect assignments is equal.  

 
That is to say all raters on all problems are selecting from a single confusion 

matrix with a structure such as shown in Table 1.  
The proof of this theorem is found in the Appendix. The general structure of 

the proof shows that if the raters are assigning classifications using any process 
other than selecting from a common confusion matrix with the structure 
illustrated in Table 1, then it is always possible to construct a classification 
process with lower expected accuracy and higher expected agreement, or higher 
accuracy and lower agreement; thereby violating the assumed monotonic 
relationship between expected accuracy and expected agreement.  
 
 
Table 1. Implied Structure of Rater Confusion Matrices for Four Category Problem (A to 
D are true categories and “A” to “D” are selected categories.) 
 

 “A” “B” “C” “D” 
A Pc (1-Pc)/3 (1-Pc)/3 (1-Pc)/3 
B (1-Pc)/3 Pc (1-Pc)/3 (1-Pc)/3 
C (1-Pc)/3 (1-Pc)/3 Pc (1-Pc)/3 
D (1-Pc)/3 (1-Pc)/3 (1-Pc)/3 Pc 

 
 

AA1 through AA3 also seem to be assumed implicitly in many contexts 
where the Kappa statistic is applied. Indeed it is AA3 that would seem to warrant 
the common practice of using expert ratings as surrogates for ground truth when 
high levels of inter-rater agreement are found. Consequently it is reasonable to 
claim that the estimation method described below is derived from assumptions 
implicit in the Kappa statistic and how Kappa is often used. Because of this 
relationship to the Kappa statistic, in the remainder of this paper AA1-AA3 will 
be referred to as K-assumptions. Furthermore, the properties of equal rater 
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accuracy, equal error probabilities and equal problem difficulty that are implied 
by the K-assumptions will be referred to as K-properties. 
 
Table 2. Sample data of expert ratings and system assignments for 10 test cases 
 

Case # Rater 1 Rater 2 Rater 3 Rater 4 System 
1 “C” “D” “C” “C” “A” 
2 “B” “D” “C” “C” “C” 
3 “C” “C” “D” “C” “C” 
4 “B” “B” “D” “D” “B” 
5 “A” “B” “B” “B” “B” 
6 “C” “B” “D” “A” “A” 
7 “A” “A” “A” “A” “A” 
8 “A” “D” “B” “C” “C” 
9 “D” “B” “A” “A” “D” 

10 “A” “D” “A” “B” “B” 
 
 

The estimation method is straightforward to explain in the context of an 
example. Consider the test data in Table 2. There are 10 test cases, 4 categories, 4 
raters and the system’s proposed answers. When referring to ground truth the four 
categories are labeled A, B, C, D; when referring to rater and system assignments 
they are labeled “A”, “B”, “C”, “D”. 

As described below the estimation method is composed of four basic steps. 

Estimate rater accuracy 

Given that each rater has an identical confusion matrix, with the structure 
shown in Table 1, the probability that two raters will agree on any one case is 
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  (1) 

 
Here Pa is the probability of agreement, Pc is the probability that a rater will 

make the correct assignment, and N is the number of categories. Solving for Pc 
yields  
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Eq. 2 is used to estimate rater accuracy. In the 10 cases in Table 1 there was 

33% agreement (20 pairs out of 60). Setting Pa to .33 and solving for Pc yields Pc 
= 0.5; which is the estimate of rater accuracy. 

Estimate base rates 

The probability that a rater will assert a category, say “A”, is as follows: 
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Here P(“A”) is the marginal probability that the rater asserts “A”, P(“A”|A) 

is the conditional probability that the rater will assert “A” if A is true, and P(A) is 
the marginal probability of A. Solving for P(A) yields 
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Setting P(“A”) to be the observed relative frequency of “A”, and P(“A”|A) 

to be the estimate of Pc from above, yields 
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Eq. 5 is used to estimate the base rate for each category by setting Pc to be 

the estimate from above and P(“X”) to be the observed relative frequency across 
all raters and ratings that category X was assigned. In Table 1 there are 11 
instances of each of the categories; so the estimated base rate is 0.325 for category 
A. Applying Eq. 5 to the other categories yields base rates of 0.25, 0.25 and 0.175 
for B, C and D respectively. 
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Estimate ground truth probabilities 
Use Bayes rule, assuming conditional independence for each rater, to estimate 
ground truth probabilities. For example, in case 1 above the raters selected 
“CCDC”. So for each possible ground truth value calculate P(…|”CDCC”) and 
normalize. 
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Repeating this step for the other 9 cases yields the estimated probability 
distributions shown in Table 3. 
 
 
Table 3. Estimated ground truth probabilities for sample data  
 

 Ground Truth Probability System 
Answer Case # A B C D 

1 0.041 0.032 0.860 0.067 “A” 
2 0.084 0.195 0.584 0.136 “C” 
3 0.041 0.032 0.860 0.067 “C” 
4 0.074 0.511 0.057 0.358 “B” 
5 0.120 0.828 0.031 0.021 “B” 
6 0.325 0.250 0.250 0.175 “A” 
7 0.975 0.009 0.009 0.006 “A” 
8 0.325 0.250 0.250 0.175 “C” 
9 0.657 0.169 0.056 0.118 “D” 

10 0.657 0.169 0.056 0.118 “B” 
 

Estimate system accuracy 
Assume any probability distribution over the categories for each test case. For any 
test case, let Pg be the probability of the classification with the highest probability, 
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Ps be the probability that the system will assign the correct answer, Pa be the 
probability that the system will assign the same classification as the highest 
ground truth probability. It follows that  
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Note that this relationship holds whether or not the classification with the 

highest probability is correct. Solving for Ps yields 
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Eq. 7 is used to estimate system accuracy as follows. First separate the test 

cases into bins with approximately the same highest estimated ground truth 
probability. In this paper the ranges (.9, 1.0], (.8, .9], (.7, .8], etc. are used. For 
example, in Table 3 there is one case in the (.9, 1.0] range, 3 cases in the (.8, .9] 
range, 2 cases in the (.6, .7] range, etc. Second for each bin calculate the average 
ground truth probability within the bin; record the proportion of system 
assignments that agree with the most probable answer; then estimate system 
accuracy for each bin using equation Eq. 7. Third estimate overall system 
accuracy by taking the average of the estimated accuracy in each bin weighted by 
the number of cases in each bin. This is shown in Table 4. 
 
 
Table 4. Estimate of System Accuracy for Sample Data 
 

Probability 
Bin 

Average Ground 
Truth Probability 

Number 
in Bin 

Proportion of 
Agreement 

Estimated 
Accuracy 

.9 – 1.0 0.975 1 1.000 1.000 
.8 - .9 0.849 3 0.667 0.776 
.6 - .7 0.657 2 0.000 0.000 
.5 - .6 0.548 2 0.333 0.452 
.2 - .3 0.325 2 0.500 1.000 

  Weighted Average = 0.731 
 
 

The reader may be curious as to why the estimate of system accuracy is not 
simply the average of the estimated ground truth probabilities for the system 
answers. The reason is that taking the average will consistently underestimate 
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system accuracy; because the system’s answer is itself additional evidence for 
each category. So, for example, if the system answer is “C” and the estimated 
ground truth probability for C is 0.6; then a better estimate for C would be 
somewhat higher than .6. But until system accuracy is estimated it cannot be 
determined how much more than .6 is appropriate. In the above example, the 
average estimated ground truth probability of the system answers is .466, but the 
estimate of system accuracy in Table 4 is 0.731. 

Note that the value of Kappa (using 1/number-categories to determine 
random agreement) for the data in Table 2 is 
 

   

   

Kappa =
= Observed Agreement - Random Agreement / 1.0 - Random Agreement

= .333 - .25 / 1 - .25  = 0.11
 

Standard thresholds normally require a level of Kappa = 0.7 before the 
expert ratings are considered usefully reliable (Gwet 2010). Kappa = 0.11 is 
considered “slight agreement” and is far too low for the ratings to be considered 
useful for establishing ground truth. 

Overall then, in the sample data provided in Table 2; inter-rater agreement is 
“slight” (Kappa = 0.11), estimated rater accuracy is 0.50, and estimated system 
accuracy is 0.731. 

Performance and robustness 

The above example illustrates how to estimate system accuracy for classification 
problems even when inter-rater agreement and estimated rater accuracy are very 
low. This section examines the accuracy of estimates of system accuracy, and the 
robustness of those estimates, through a series of simulations. 

All of the simulations described below use the following procedure to assign 
the confusion matrix for each rater and the system, based on values set to four 
parameters: an initial probability of correct assignment (IPC), a problem difficulty 
adjustment (PDA), degree of asymmetric dispersion (AD), and a proportional 
error range (PER). 

Each confusion matrix is constructed as follows: 
 
1. Initially assign the conditional probability of a correct classification 

to be IPC for all categories. 
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2. Add PDA to the conditional probabilities of correct assignment. 
3. For each category distribute the remaining probability 

(1 - IPC - PDA) to the incorrect classifications in a manner that is 
proportional to the distance from the correct classification, where the 
probability of a classification that is M steps removed from the 
correct classifications is AD times more likely than a classification 
that is M+1 steps removed. 

4. For each conditional probability of incorrect assignment (IC) set the 
range to be [IC - PER*IC, IC + PER*IC], then randomly select a 
new probability by uniform sampling over this range. 

5. Normalize the modified confusion matrix after the random changes 
in step 4 so that expected accuracy is equal to IPC + PDA. 

 
For example, if there are five categories and 
(IPC, PDA, AD, PER) = (.6, 0, 1.0, 0), then the resulting confusion matrix is 
shown in Table 5. 
 
 
Table 5. Confusion matrix where (IPC, PDA, AD, PER) = (0.6, 0, 1.0, 0) 
 

Correct 
Category 

Classification 
“A” “B” “C” “D” “E” 

A 0.6 0.1 0.1 0.1 0.1 
B 0.1 0.6 0.1 0.1 0.1 
C 0.1 0.1 0.6 0.1 0.1 
D 0.1 0.1 0.1 0.6 0.1 
E 0.1 0.1 0.1 0.1 0.6 

 
 

On the other hand, if (IPC, PDA, AD, PER) = (.6, -.2, 2.0, 1.0), then the 
confusion matrix after the first three steps would be as shown in Table 6. 
 
 
Table 6. Confusion matrix where (IPC, PDA, AD, PER) = (0.6, -0.2, 2.0, 0) 
 

Correct 
Category 

Classification 
“A” “B” “C” “D” “E” 

A 0.400 0.320 0.160 0.080 0.040 
B 0.218 0.400 0.218 0.109 0.055 
C 0.100 0.200 0.400 0.200 0.100 
D 0.055 0.109 0.218 0.400 0.218 
E 0.040 0.080 0.160 0.320 0.400 
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Then after adding random variation around the incorrect probability assignments 
in step 4, and renormalizing in step 5, the resulting confusion matrix would look 
something like the randomly generated confusion matrix shown in Table 7. 
 
 
Table 7. Example of randomly generated confusion matrix where (IPC, PDA, AD, PER) = 
(0.6, -0.2, 2.0, 1.0) 
 

Correct 
Category 

Classification 
“A” “B” “C” “D” “E” 

A 0.349 0.438 0.106 0.082 0.025 
B 0.015 0.439 0.291 0.183 0.073 
C 0.034 0.225 0.377 0.301 0.064 
D 0.107 0.088 0.085 0.512 0.207 
E 0.010 0.008 0.098 0.469 0.415 

 
 
For a selected sample size, N, a “simulation run” executes the following: 
 

1. Randomly select the base rate probability for each classification 
2. Generate the confusion matrices for each rater and the system 
3. Use the base rate probability and confusions matrices to randomly 

generate N cases. 
4. Estimate system accuracy (using method described above) 
5. Compare estimated system accuracy to “true” system accuracy, 

where there are two measures of true system accuracy 
a. Expected accuracy (i.e. P(A)*P(“A”|A) + P(B)*P(“B”|B) + 

…) 
b. Proportion correct in sample 

When K-Assumptions are satisfied  

This section examines circumstances where the assumptions implicit in Kappa are 
satisfied. That is to say where the raters are selecting from a single confusion 
matrix of the structure shown in Table 1 and where the system confusion matrix 
also has the same well-behaved structure. 

Illustrated in Figure 1 is the asymptotic behavior of the estimation method. 
The simulation results depicted in Figure 1 had five categories, three experts each 
with 60% accuracy, 5000 test cases for each run, and where there are 10 runs each 
with system accuracy set to .1, .3, .5, .7 and .9 respectively. 
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Figure 1. Estimated vs. true system accuracy from simulations with accuracy of three 
experts each at 0.6, sample size at 5000, with equal error probabilities and equal problem 
difficulty. (Kappa = 0.251) 
 
 

The results depicted in Figure 1 indicate that estimates of system accuracy 
cluster tightly around true system accuracy. When true system accuracy is 0.1, 
which is less accurate than random guessing (0.2), estimates of system accuracy 
cluster tightly around 0.1. When true system accuracy is 0.9, which is far better 
than the raters’ accuracy (0.6), estimates of system accuracy cluster tightly around 
0.9. Across all fifty simulation runs the average value of Kappa was just 0.251.   

The results below depict what happens when sample size and rater accuracy 
are varied. Figures 2-4 depict the results of fifty simulation runs with a sample 
size of 200 per run and rater expert accuracy is set to .4, .6 and .8 respectively. 
 
 

 
Figure 2. Estimated vs. true system accuracy from simulations with accuracy of three 
raters each at 0.4, sample size at 200, with equal error probabilities and equal problem 
difficulty. (Kappa = .065) 
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Figure 3. Estimated vs. true system accuracy from simulations with accuracy of three 
raters each at 0.6, sample size at 200, with equal error probabilities and equal problem 
difficulty. (Kappa = .255) 
 
 
 

 
Figure 4. Estimated vs. true system accuracy from simulations with accuracy of three 
raters each at 0.8, sample size at 200, with equal error probabilities and equal problem 
difficulty. (Kappa = .562) 
 
 

The results shown in Figures 2-4 indicate that the correspondence between 
estimated and true system accuracy improves rapidly as rater accuracy improves. 
Even when the raters are just 60% accurate, estimates of system accuracy are 
consistently within ± 0.1 of true system accuracy. 

Figures 5-7 depict results when sample size is further reduced to just 50 
cases per run. When rater accuracy is 0.4 there is little correspondence between 
estimated and true system accuracy. However when rater accuracy is 0.6 and 0.8 
this correspondence improves quickly. 
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Figure 5. Estimated vs. true system accuracy from simulations with accuracy of three 
experts each at 0.4, sample size at 50, with equal error probabilities and equal problem 
difficulty. (Kappa = .060) 
 
 
 

 
Figure 6. Estimated vs. true system accuracy from simulations with accuracy of three 
experts each at 0.6, sample size at 50, with equal error probabilities and equal problem 
difficulty. (Kappa = .244) 
 
 

Note that in Figures 6 and 7 the two measures of true system accuracy yield 
slightly different results. Estimated accuracy corresponds more closely to 
proportion correct in sample than to expected accuracy. This occurs because the 
proportion correct in a sample varies according to a binomial distribution defined 
by system accuracy. So even if there is perfect correspondence between estimated 
accuracy and proportion correct (as is the case when rater accuracy is set to 1.0), 
the standard deviation of the estimate around expected accuracy (Ea) would still 
be equal to (Ea·(1-Ea)/N)½ . 
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Figure 7. Estimated vs. true system accuracy from simulations with accuracy of three 
experts each at 0.8, sample size at 50, with equal error probabilities and equal problem 
difficulty. (Kappa = .546) 
 
 

In summary, when the K-assumptions are satisfied, the estimation method 
exhibits an orderly relationship between estimated and true system accuracy.  
Estimates of system accuracy are unbiased, and the correspondence between true 
and estimated system accuracy improve rapidly as rater accuracy and sample size 
increase. 

When K-Assumptions are substantially violated 

In practice it is difficult to imagine a circumstance where the K-assumptions and 
the implied K-properties are satisfied. All raters are not equally accurate; some 
are typically more experienced and expert than others. All types of errors are not 
equally probable; this property is certainly false when the categories are naturally 
ordered or when the raters have some idea of which categories have the highest 
base rates. And all problems are not equally difficult; unless the test cases are 
carefully pre-selected and therefore unrepresentative of real world diversity. 

In this section the behavior of the estimation method is examined in cases 
where the K-properties are violated. In all of the simulation runs summarized 
below the K-properties of equal rater accuracy, equal problem difficulty, and 
equal error probabilities are substantially violated. Specifically:  

Rater accuracy (IPC) was varied by .1. For example, instead of three raters 
with .6 accuracy, initial accuracy would be set to .5, .6 and .7 respectively. 

Problem difficulty (PDA) was varied by .2. For about a third of the test 
cases rater and system accuracy were reduced by .2 (or set to a minimum of 0.0) 
and for about another third accuracy was increased by .2 (or set to the maximum 
of 1.0). 
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Asymmetric dispersion (AD) was set to 2.0. An incorrect answer that is 
‘next to’ the correct answer is twice as likely as one two steps removed and 4 
times as likely as one 3 steps removed, etc. 

Error probabilities were randomly varied by up to 100% (PER=1.0). For 
example, if the error probability is initially set to .2 then that error probability 
would be randomly selected from the range [0, .4]. This random variation is done 
independently for each error probability. 

To appreciate the magnitude of impact of these parameter settings consider 
again Tables 5 and 7 above. Table 5 is exactly the confusion matrix that results 
when initial rater accuracy is set to .6 and the K-properties are satisfied. Table 7 is 
representative of about 1/3 of the cases when initial rater accuracy is set to .6 but 
with the above parameter settings. It seems fair to characterize Table 7 as a 
substantial variation from Table 5.  

All of the simulation runs in this section use the above parameter settings to 
systematically and then randomly vary the rater and system confusion matrices. 
The results shown in Figure 8 illustrate the asymptotic behavior of the estimation 
method when the K-properties are substantially violated. Note that when system 
accuracy is preset to .1 and .9, expected accuracy is .133 and .867 respectively. 
This occurs because problem difficulty is varied plus and minus 0.2, but accuracy 
can be no lower than 0.0 or higher than 1.0. So for example when system 
accuracy is preset to 0.1, one third of the problems have system accuracy reset to 
0.3, one third stay at 0.1 and the remaining third are reset to 0.0; then averaged 
expected system accuracy is then .133. 

There is a linear relationship between estimated and true accuracy. There is 
also some bias in the estimates; estimated accuracy is too high when true system 
accuracy is low and estimated accuracy is to low when true system accuracy is 
high. Note though that when the system was more accurate than the raters the 
estimates of system accuracy were still consistently higher than the raters’ 
accuracy. The estimate of system accuracy may be conservative, but it is not 
bounded by the raters’ accuracy.  
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Figure 8. Estimated vs. true system accuracy from simulations with accuracy of three 
raters at .5, .6 and .7; sample size at 5000 and confusion matrices systematically then 
randomly varied. (Kappa = 0.305) 
 
 

There is a straightforward explanation for this estimation bias. The 
violations of the K-properties inflated inter-rater agreement. Because inter-rater 
agreement is used to estimate rater accuracy, as per Eq. 2, this leads to a slightly 
inflated estimate of rater accuracy. Inflated estimates of rater accuracy in turn lead 
to overestimates of the ground truth probabilities for the categories with the 
highest estimated ground truth probabilities. Finally given the equation for 
deriving system accuracy from the ground truth probabilities (Eq. 7) this leads to 
the estimation bias. In comparing Figures 1 and 8, note that Kappa was .251 
and .305 respectively; and the average estimated accuracy for the runs in Figure 1 
was exactly 0.60 and the average estimated rater accuracy for the runs in Figure 8 
was 0.64. 

In general violations of the K-properties will inflate expected inter-rater 
agreement with one exception. Differences between rater accuracy decreases 
rather than increases expected inter-rater agreement, but the net effect is small 
when compared to the larger opposite effect of the other violations. For example, 
if overall rater accuracy is set to .6 and then varied by.2 (i.e. rater accuracy set 
to .4, .6, .8 respectively) and true system accuracy is 0.9 then estimated accuracy 
will be approximately 0.924 – a 0.024 overestimate. But if instead problem 
difficulty is varied by the same amount (.4, .6, .8 respectively) then system 
accuracy will be approximately 0.857 – a 0.043 underestimate. Varying 
dispersion by 100% around the error probabilities results in an approximate 0.036 
underestimate, and setting asymmetric dispersion to 2.0 results in a 0.068 
underestimate.  

In Figures 9-11 the sample size is 200 cases per run and expected rater 
accuracy is set to .4, .6 and .8 respectively. In Figures 12-14 sample size is 
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reduced to 50 cases per run. Except for the bias toward underestimating high 
system accuracy (and overestimating low system accuracy) these results are 
similar to the results with the matrices that satisfy the K-properties. Increasing 
rater accuracy and sample size both decrease the variance of the estimate. The 
estimation bias is pronounced when rater accuracy is very low (0.4), noticeable 
when rater accuracy is moderate (0.6), and appears negligible when rater accuracy 
is high (0.8). 

In practice, most efforts to evaluate system accuracy address systems that 
are hypothesized to perform well. For such evaluations the estimates derived from 
this method become increasingly conservative as the ratings of the experts are 
increasingly suspect.  
 
 

 
Figure 9. Estimated vs. true system accuracy from simulations with accuracy of three 
raters at .3, .4 and .5; sample size at 200 and confusion matrices systematically then 
randomly varied. (Kappa = .142) 
 
 

 
Figure 10. Estimated vs. true system accuracy from simulations with accuracy of three 
raters at .5, .6 and .7; sample size at 200 and confusion matrices systematically then 
randomly varied. (Kappa = .306) 
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Figure 11. Estimated vs. true system accuracy from simulations with accuracy of three 
raters at .7, .8 and .9; sample size at 200 and confusion matrices systematically then 
randomly varied. (Kappa = .578) 
 
 

 
Figure 12. Estimated vs. true system accuracy from simulations with accuracy of three 
raters at .3, .4 and .5; sample size at 50 and confusion matrices systematically then 
randomly varied. (Kappa = .144) 
 
 

 
Figure 13. Estimated vs. true system accuracy from simulations with accuracy of three 
raters at .5, .6 and .7; sample size at 50 and confusion matrices systematically then 
randomly varied. (Kappa = .311) 
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Figure 14. Estimated vs. true system accuracy from simulations with accuracy of three 
raters at .7, .8 and .9; sample size at 50 and confusion matrices systematically then 
randomly varied. (Kappa = .586) 
 
 

Discussion 

The objective in this study was to demonstrate that it is feasible to reliably 
estimate the accuracy of system classifications when ground truth can only be 
estimated with fallible expert ratings. The simulation results described herein 
provide evidence for the claims stated in the introduction, namely that reliable 
estimates of system accuracy can be obtained from fallible expert ratings under a 
diverse conditions, that the reliability of these estimates is approximately the same 
whether the system is more or less accurate than the expert raters, and that the 
conditions under which these accuracy estimates become unreliable are 
predictable (e.g., inter-rater agreement is low and sample size is small). 

In the estimation method the level of inter-rater agreement is used to 
estimate the overall accuracy of the expert ratings, Bayesian updating based on 
the estimated expert accuracy is used to estimate a “ground truth” probability for 
each classification, and finally system accuracy is estimated by comparing the 
relative frequency that the system assignment agrees with the most probable 
classification at different probability levels. 

Although the estimation method was derived from assumptions that are 
implicit in the Kappa statistic (and how it is often used), a simulation analysis 
shows that the accuracy of the estimates of system accuracy are robust against 
substantial variations from the rater behavior implied by those assumptions. The 
accuracy of the estimates of system accuracy is driven primarily by overall rater 
accuracy (which can be estimated from inter-rater agreement) and sample size. 



ESTIMATING SYSTEM ACCURACY USING FALLIBLE EXPERT RATINGS 

142 

Recommended use and uses to avoid 
The simulation results presented herein suggest an overall data collection and 
estimation approach where measured inter-rater agreement is used to determine 
the number of test cases needed to obtain high confidence in system accuracy 
estimates. For example for five category problems with three raters if initial data 
collection indicates that Kappa is around .3 then data collection should continue 
for at least 200 cases. This would be a sufficient number of cases to obtain 90% 
“confidence” that estimated accuracy is within .1 of true accuracy. On the other 
hand, if Kappa is around .55 then a sample size of 100 cases is sufficient to ensure 
the same “confidence interval.” As the number of raters and categories varies, so 
does the parametric relationship between sample size and confidence in estimates 
of system accuracy; so additional simulation runs such as those shown here would 
be needed to determine sample size requirements.  

In this approach all test cases are useable, even ones where raters 
substantially disagree. This makes it feasible to randomly select test cases from 
the population of problems from which the system is likely to be applied which in 
turn should facilitate the ability generalize test results to practice.  

As noted above, violations of the K-properties (equal rater accuracy, 
problem difficulty and error probabilities) will bias the estimate of system 
accuracy. The magnitude of this bias interacts with overall rater accuracy. If 
system accuracy is high and rater accuracy low then the estimation procedure 
described herein will likely substantially under estimate system accuracy. In the 
above simulations, for example, on five category problems when true system 
accuracy was .9 and rater accuracy was .4 the estimate of system accuracy was 
around .6. Consequently when Kappa is very low (e.g. less than .2) it would be 
helpful to examine the inter-rater agreement data for patterns that suggest 
violations of the K-properties. For example, the K-property of equal error 
probabilities implies that all pairwise disagreements are equally likely (e.g. “AB” 
as likely as “AE”) and a statistical test can be performed to help determine if this 
pattern is violated. If it is, then the estimate of system accuracy can be adjusted 
upwards. There is much work to be done to determine how and when such 
adjustments should be made, but doing so seems feasible.  

The estimation method described herein is specifically intended for cases 
where each rater is an independent measure of ground truth classifications. The 
procedure assumes the causal structure shown in Figure 15-10a. 
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Figure 15. Assumed causal relationship between ground truth and expert ratings vs. 
causal structure of forecasting tasks 
 
 

There are many applications that involve aggregation of independent 
estimates from multiple individuals but do not have the causal structure shown in 
Figure 15-10a. For many such applications use of the estimation method 
described here would be inappropriate. For example, it is becoming common 
practice in forecasting to systematically combine the ratings of multiple 
independent forecasters (e.g. Surowieki, 2005). Although the estimation method 
presented here could be mechanically applied to such forecasting tasks, such an 
application may yield spurious results. Forecasting tasks do not have the causal 
structure shown in Figure 15-10a, but have a causal structure closer to the one 
shown in Figure 15-10b where expert ratings are not in any sense direct measures 
of the future outcomes. On the other hand the estimation method can and has been 
used to retrospectively assess whether a forecasted outcome actually occurred. 
For example Lehner et al. (2012) examined the accuracy of the imprecise 
forecasts typically found in published forecasts by using multiple raters to 
retrospectively assess whether the forecasted outcome occurred and then using an 
estimation method similar to the one presented here to estimate the accuracy of a 
collection of forecasts. Similarly Levitt and Lehner (2011) applied a variation of 
this method to resolve disagreeing historical judgments as to the timeframe when 
key developments occurred in the maturation of new technologies.  

The distinction between Figures 15-10a and 15-10b is essentially the 
distinction between medical diagnosis and medical prognosis. It would be 
appropriate to apply the method to estimate the accuracy of a new diagnostic 
system by comparing system diagnoses to those of medical professionals, but it 
would be inappropriate to use it to estimate the accuracy of a new system’s 
prognoses by comparing them to the prognoses of medical professionals.  

In general it is important that the causal structure relating the rater and 
system selections to ground truth match the structure assumed by the estimation 
method. The process of collecting ratings from the experts should be engineered 
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to ensure this causal structure; such as by ensuring that the expert ratings are 
independent and to the extent possible having available the same data for each 
rater for each test case.  

The estimation method presented here was developed to address test and 
evaluation of an automated classification system after development. However it 
does seem feasible to also employ this approach during system development. 
Specifically the estimation method could be used to develop training data sets 
with a probability distribution of correct classifications for each training case. 

Related and future research 

The research presented in this paper had the very specific goal of 
demonstrating that it is feasible to reasonably estimate system accuracy using 
fallible expert ratings even when the system is substantially more accurate than 
the experts. Nothing in this paper would support a claim that the estimation 
method presented here is in any sense optimal. There are many opportunities for 
improvement. Three suggestions are offered below.  

First, the estimation method was designed for use with classification 
problems for which there is no natural ordering to the categories. The simulation 
results suggest that the method is robust even when there is a natural ordering, but 
the accuracy of estimates of system accuracy would likely be improved if the 
method is modified to specifically account for the fact that certain types of errors 
are more likely than others. For example, if the natural ordering is A, B, C, D, E, 
then a rating of “A” should be more evidence for category B than for category E. 
The method presented here treats B and E equally.  

Second, as noted above, it should be feasible to develop statistical 
procedures to estimate whether and to what degree K-properties are violated. 
From these estimates it should be also feasible to adjust the system accuracy 
estimates to correct for bias. This area is unexplored.  

Third, the estimation method presented here is entirely algebraic. Everything 
is derived directly from some percent-of-agreement statistics. No effort was made 
to estimate base rates and confusion matrices that represent a “best fit” to the 
inter-rater agreement data. But there are best fit methods that could be used for 
this purpose. For example, the non-linear optimization methods in Latent Class 
Analysis (McCutcheon, 1987) could be used to find maximum likelihood 
estimates for the base rate and confusion matrix probabilities. Both Uebersax 
(1988) and Carpenter (2008) applied this approach to binary classification 
problems; and Carpenter also used Bayes inference to aggregate ratings and 
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estimate classification probabilities. Similarly one could use non-linear 
optimization to find base rates and confusion matrix probabilities that minimize 
the difference between expected and observed relative frequency of each inter-
rater pair (relative frequency of “AA”, “AB”, “AC” …). It remains an open and 
interesting question as to whether use of such optimization methods would yield 
better results. 
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Appendix 

Proof of Theorem 1 
Restating the assumptions: 
 

AA1. For each case there is a unique correct classification 
AA2. For each case raters independently assign classifications 
AA3. Expected agreement between raters increases as expected rater 

accuracy increases. 
 
Begin with a few definitions.  

Definition of correct classification in AA1: For each case there is a vector 
<c1, c2 … cn> where for some index i, ci = 1 and the remaining values are 0. 

Definition of independent assignment in AA3: For each case, the probability 
that a rater will select a class is conditionally independent of the other raters’ 
selections. 

Independent assignments allow the description of each rater’s selection 
behavior as a probability vector. That is to say, for each case each rater has a 
selection probability for each category. These will be called selection vectors. 

Definition of rater accuracy in AA3: For M raters and N cases, rater 
accuracy is defined as the total proportion of correct selections. 

For example, if there are 10 cases and three raters who make correct 
assignments in 7, 5 and 9 of the cases respectively, then rater accuracy = 0.7. 

The three lemmas below all use the same proof strategy. Begin with any two 
selection vectors that are not identical. Construct a selection vector that is the 
average of the two. The average vector will necessarily have the same expected 
accuracy but a different level of expected agreement than the original two vectors. 
If the average vector has higher/lower expected agreement, then create a new 
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vector by slightly reducing/increasing the probability of correct assignment in the 
average vector. When the change is sufficiently small the new vector will have 
higher/lower expected accuracy and lower/higher expected agreement than the 
original two vectors. Most of the algebraic complexity in these proofs is the result 
of showing one way to calculate a change that is always “sufficiently small”. 

Lemma 1: 

To ensure AA1-AA3 within each case all raters must behave as though they are 
selecting a category using the same selection vector. 
 
Proof:  Let <p11, p12 … p1n> and <p21, p22 … p2n> be the selection vectors 
of 2 raters for a specific case; where some probabilities do not agree (e.g. 
p11 \ p21). For purposes of the proofs below, assume that category 1 is the correct 
category. (The arguments below apply no matter which category is correct.) 

Below it is shown how to construct from two different selection vectors a 
common selection vector for both raters where expected accuracy is lower but 
expected agreement higher. Consequently unless the two raters have the same 
selection vector, there will always be another pair of vectors with lower expected 
accuracy and higher expected agreement – violating AA3. 

Set  1 2 2i i ip p p   ,  1 2 2i i ie p p   ,    2
1 2 12d e p p    ,if 

p1 < p2,    2
1 2 12d e p p     , and d = 0 if p1 = p2 
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1 2 1 2

1
2 2 2
1 2

For selection vectors ,  and ,
  Expected accuracy 

Expected agreement    

n n

n

p p p p p p
p
p p p

     



   

  (A3) 

 
Expected accuracy in (A1) is higher than in (A3), but expected agreement is 

lower; where the common selection vector in (A3) was constructed from a 
difference between the vectors in (A1). Consequently, whenever there is a 
difference between the selection vectors of two raters a selection probability 
vector for the two raters can be constructed with lower expected accuracy but 
high expected agreement. 

Within each case if the selection vectors of the raters differ AA3 is not 
guaranteed.         *** 

Lemma 2: 
To ensure AA1-AA3 within each case the error probability is the same for all 
incorrect categories. 
 
Proof:  From Lemma 1 it is known that AA1-AA3 imply that for each case 
all raters have the same selection vector. Let that vector be <p1, p2 … pn>. Assume 
category 1 is the correct assignment and that the remaining probabilities are not 
all equal. 

Below it is shown how to construct selection vector, with equal probability 
for all incorrect assignments, where expected accuracy is higher but expected 
agreement lower. Consequently the error probabilities are unequal, there will 
always be a vector with higher expected accuracy and lower expected agreement 
– violating AA3. 

Set    2 1e np p p n     ,  i i ee p p   for all i > 1, set 

 min 2min ne e e  and 
min

2 2d e . 

Note that (e2 + … en) = 0 and that there are at least 2 ei that are not zero. 
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  (A6) 

 
Since emin2*(p1 – pe)) + emin4 /2 < emin2 + emin2 <= e22 + e32 + … en2, expected 

agreement in (A4) is higher than expected agreement in (A6) even though 
expected accuracy is lower.  

Consequently, whenever the probability of incorrect assignment is unequal, 
there will always be a selection vector with higher expected accuracy and lower 
expected agreement, violating AA3. 

Within each case and selection vector if the error probabilities are unequal 
AA3 is not guaranteed.       
 *** 

Lemma 3: 

To ensure AA1-AA3 the selection vector must be the same across all cases. 
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Proof:  Lemmas 1 and 2 show that AA1-AA3 imply that for each case the 
raters have identical selection vectors of the form <pe … pc … pe> where pc is the 
probability of assigning the correct category and pe = (1-pc)/(n-1) where n is the 
number of categories. 

Below it is shown that across different cases the selection vectors must have 
the same values for pc (and therefore pe) else a violation of AA3 can be 
constructed. 

Let pc1 and pc2 be the probability of correct assignment on two different 
cases, and pe1 and pe2 the corresponding error probabilities. For each case, order 
the cases such that the correct assignment is first. So for all raters the probability 
vector is <pc1, pe1, … pe1> for case 1 and <pc2, pe2, …, pe2> for case 2, but the 
categories may be in a different order. The proof below makes no reference to 
matching categories across cases so this ordering does not affect the proof.  
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Since  2 4 2 2 2 2

min min min min2 ,c e c ee p p e e e e e        expected agreement in 

(A7) is higher than expected agreement in (A9) even though expected accuracy is 
lower. 

Consequently, whenever the probability of correct assignment across cases 
is unequal, there will always be a probability vector that is the same across cases 
with higher expected accuracy and lower expected agreement, violating AA3.  
Across cases, if the selection vectors differ then AA3 is not guaranteed. *** 

Theorem 1: 

AA1-AA3 are ensured if and only if the raters behave as though their selection for 
each case is determined by a single confusion matrix where the conditional 
probability of correct assignment is constant and the conditional probability of all 
incorrect assignments is equal. 
 
Proof:  The “only if” necessity portion follows directly from Lemmas 1-3. 
Sufficiency follows the fact that with a constant conditional probability of correct 
assignment (Pc) and incorrect assignments (Pe), expected accuracy is Pc and 
expected agreement is      

22 2 21 1 1c e c cP n P P P n      . Clearly expected 
agreement increases monotonically with Pc.   *** 
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The purpose of this study is to investigate the impact of estimation techniques and sample 
sizes on model fit indices in structural equation models constructed according to the 
number of exogenous latent variables under multivariate normality. The performances of 
fit indices are compared by considering effects of related factors. The Ratio Chi-square 
Test Statistic to Degree of Freedom, Root Mean Square Error of Approximation, and 
Comparative Fit Index are the least affected indices by estimation technique and sample 
size under multivariate normality, especially with large sample size. 
 
Keywords: Structural equation modeling, multivariate normality 
 

Introduction 

Modeling methods are employed for studying the phenomena than require the 
utilization of complex variable set. Structural Equation Modeling (SEM) is 
preferred when studying the causal relations and the latent constructs among the 
variables is in question. The reason is it can be used to analyze complex 
theoretical models and its practicability. 

The objective of SEM is to explain the system of correlative dependent 
relations between one or more manifest variables and latent constructs 
simultaneously. It serves to determine how the theoretical model that denotes 
relevant systems is supported by sample data, i.e., estimation of relations between 
the main constructs. Because there is no single criterion for the theoretical model 
fit evaluation obtained as a result of SEM, a wide array of fit indices was 
developed (Schermelleh-Engel and Moosbrugger, 2003; Ding et al., 1995; 
Sugawara and MacCallum, 1993). Studies conducted through SEM were 
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undertaken by using empirical and non-empirical data so as to develop and 
confirm theory (Bentler and Dudgeon, 1996; Wang et al., 1996; Bentler, 1994). 

Simulation studies were conducted to test the robustness of SEM, because 
the assumptions required usually cannot be verified in practice. Because these 
studies were conducted in order to verify hypothesis, a known theoretical model 
was taken as a reference and the behaviors of the most commonly used techniques 
in specific conditions were observed. The parameter estimations obtained through 
the estimation techniques based on various distributional conditions and sample 
size, standard errors and the bias of model fit indices were researched in the 
studies conducted. 

Studies were conducted for recommending and improving the parameter 
estimation techniques used in SEM and selecting the conditions in which these are 
to be used (Boomsma and Hoogland, 2001; Wang et al., 1996; Chou and Bentler, 
1995; Bentler, 1994). Other studies were conducted by employing various 
empirical designs so as to examine the effects of factors such as estimation 
techniques, sample sizes, distributional conditions, number of latent variables, 
number of manifest variables, the misspecification degree of the model, factor 
loads, factor correlations, improper solutions, convergence errors on model fit 
indices make contribution to the SEM literature (e.g., Herzog & Boomsma, 2009; 
Fan & Sivo, 2007; Sivo et al., 2006; Lei & Lomax, 2005; Marsh et al., 2004; 
Boomsma and Hoogland, 2001; Fan et al., 1999; Hu & Bentler, 1998, 1999; 
Wang et al., 1996; Chou and Bentler, 1995; Ding et al., 1995; Marsh & Balla, 
1994; Sugawara and MacCallum, 1993; Gerbing & Anderson, 1992). 

Hence, a wide array of simulation studies were conducted on model fit 
indices through various estimation techniques. Unlike these studies, in the current 
study the inclusion of a higher number of estimation techniques was used. 
Furthermore, the differentiation of the model structure was agreed to be studied as 
exogenous factor rather than an effect so as to reach a mutual interpretation. The 
effects of estimation technique and sample size factors on model fit indices were 
examined in circumstances in which the multivariate normality assumption was 
ensured and in the models which were established by taking exogenous 
(independent) latent variables into consideration in the research. The model fit 
indices were compared to recommend appropriate model fit indices in line with 
the effects of these factors. 
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Methodology 

Maximum likelihood estimation technique 
Maximum likelihood estimation (MLE) technique is one of the normal theory 
estimation techniques that is able to provide model parameter estimations 
simultaneously (Kline, 2011; Chou and Bentler, 1995). Assume a {x1, x2, …, xn} 
random sample is derived from multivariate normal distribution N(μ0, Σ0). In 
order to achieve Σ0 = Σ(θ0), assumed there is population (true) matrix function 
with Σ0, q × 1 size and θ0 unknown parameter. In this case, MLE function can be 
defined as in equation (1). 
 
       1

MLEF log tr log p
   S S       (1) 

 
S denotes sample covariance matrix while Σ(θ0) indicates the covariance matrix 
of the hypothesized model, tr denotes the trace of matrix and p represents the 
number of manifest variables (Lee, 2007). 

Generalized least squares technique 

The GLS technique makes multivariate normality assumption flexible compared 
to MLE technique, yet also features the assumptions of MLE technique. GLS 
function can be given as follows. 
 
     

21
GLSF 2   tr S V    (2) 

 
The population and sample covariance matrices are indicated with Σ and S 
respectively. The V matrix can be a constant positive definite matrix or a 
stochastic matrix which converges to 1

0
 . The GLS function reduces to the least 

squares function when V equals to identity matrix (I) (Lee, 2007). 

Asymptotically distribution-free technique 
The Asymptotically Distribution-Free (ADF) technique does not require 
multivariate normality assumption and is based on the calculation of W weighted 
matrix and GLS estimation. Accordingly, assume x1, x2, …, xn are the 
independent identically distributed observations of a sample with mean vector μ, 
covariance matrix Σ0 = Σ(θ0) and finite eighth-order moments that is not obliged 
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to be selected from a multivariate normal distribution. A  ADF estimator of θ0 
will be defined as in equation (3) as the vector which minimizes GLS function: 
 

        
'1 1

ADFF 2    vecs vecs         S W S       (3) 

 
Here vecs denotes the column vector which is obtained through derivation of 

lower triangle matrix components row by row. W is the stochastic weighted 
matrix with positive definite and is assumed to converge to Σ* (Lee, 2007). Many 
researchers emphasized the requirement to work with large sample sizes so as to 
ensure that ADF estimations have the desired asymptotical properties (i.e., 
Bentler & Dudgeon, 1996). 

Satorra-Bentler scaled chi square test statistic 
The normal theory chi-square statistic can be adjusted for its convergence to the 
referenced chi-square distribution even if it is not fit for the expected chi-square 
distribution in circumstances where the normality assumption is violated. 
Satorra−Bentler scaled χ2 test statistic can be indicated as follows: 
 

 
2

2 MLE
SB





   (4) 

 
 2

MLE  denotes the chi-square value of MLE technique. The ϖ constant, also 
known as the scaling factor, is a function of the model-implied weighted matrix, 
the multivariate kurtosis index and the degree of freedom for the model (Finney 
and Distefano, 2006; Chou and Bentler, 1995). Provided that multivariate kurtosis 
is not in question 2

MLE  value is equal to 2
SB  value, and two chi-square values are 

obtained as different from each other only on the event of the degree of 
multivariate kurtosis increases (Finney and Distefano, 2006). 

Commonly-used model fit indices in SEM 
χ2 and χ2 / v Ratio   The χ2 test statistic is an absolute fit index which 
assumes multivariate normality and is sensitive to sample size (Gerbing and 
Anderson, 1992). This test statistic 
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       2 112 1  1 F2 n tr log log p n          
 

S S    (5) 

 
is distributed the central χ2 with degree of freedom {½ p (p + 1)} − t in large 
samples. Here p, denotes the number of observed variables and t symbolizes the 
number of estimated independent parameters. S denotes unrestricted sample 
covariance matrix whereas Σ(θ) denotes restricted covariance matrix. It is said 
that the larger the likelihood related to χ2, the closer the fit between the 
hypothesized model and the perfect model (Herzog and Boomsma, 2009; Hu and 
Bentler, 1995). This statistic is dependent on sample size. With increasing sample 
size and a fixed number of degree of freedom, the χ2 value increases. This signs to 
the problem that plausible models might be rejected (Schermelleh-Engel and 
Moosbrugger, 2003).  

χ2 / v, χ2 is an index obtained by dividing the test statistic value by the 
degree of freedom (ν). It is known as parsimony and stand-alone fit index. The 
development of Tucker-Lewis Index is also based on this ratio. The value of this 
ratio gives information on the fit between data and model. It is said that with 
smaller index value of χ2 / v ratio, the consistency will be better. Schermelleh-
Engel and Moosbrugger (2003) stated that this ratio indicates good fit when it 
produces 2 or a smaller value while it indicates an acceptable value when it 
produces a value of 3. Ding et al. (1995) stated that this ratio should be close to 1 
or have a smaller value. 
 
Standardized Root Mean Square Residual (SRMR) Index   The 
Standardized Root Mean Square Residual (SRMR) is an index of the average of 
standardized residuals between the observed and the hypothesized covariance 
matrices (Chen, 2007). This absolute fit index can be indicated as follows: 
 

 
   
 

2

1 1
/

1 / 2

ˆp i
ij ij ii jji j

s s s
SRMR

p p


 

 
 




 
  (6) 

 
where sij indicates a component of S sample covariance matrix and ˆ ij  shows a 

component of  ˆ   hypothesized model whereas p is the number of observed 

variables. SRMR does not give any information about the direction of 
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discrepancies between S and  ˆ   (Kline, 2011; Schermelleh-Engel and 

Moosbrugger, 2003).  
Although SRMR indicates the acceptable fit when it produces a value 

smaller than 0.10, it can be interpreted as the indicator of good fit when it 
produces a value lower than 0.05 (Kline, 2011; Hu and Bentler, 1999; 
Schermelleh-Engel and Moosbrugger, 2003; Lacobucci, 2010). One of the reasons 
of preferring SRMR index in studies is its relative independence from sample size 
(Chen, 2007). 
 
Root Mean Square Error of Approximation (RMSEA) Index The 
RMSEA is an index of the difference between the observed covariance matrix per 
degree of freedom and the hypothesized covariance matrix which denotes the 
model (Chen, 2007). This absolute fit index is estimated as follows: 
 

 
  ˆF , 1 ,   0

1
RMSEA max

n

  
       
  

S  
  (7) 

 
Here   F ˆ,S    indicates the fit function is minimized whereas max points to the 

maximum value of the values given in brackets. While l is the number of known 
parameters and t is the number of independent parameters,  = l  t indicates the 
value of the degrees of freedom and n indicates the sample size (Schermelleh-
Engel and Moosbrugger, 2003). 

Observe in equation (7) that RMSEA produces a better quality of estimation 
when the sample size is large compared to smaller sample sizes. When the sample 
size is large, the term [1/(n – 1)] gets closer to zero asymptotically (Rigdon, 1996).  

The RMSEA also takes the model complexity into account as it reflects the 
degree of freedom as well. RMSEA value smaller than 0.05, it can be said to 
indicate a convergence fit to the analyzed data of the model while it indicates a fit 
close to good when it produces a value between 0.05 and 0.08. A RMSEA value 
falling between the range of 0.080.10 is stated to indicate a fit which is neither 
good nor bad. Hu and Bentler (1999) remarked that RMSEA index smaller than 
0.06 would be a criterion that will suffice. A few researchers stated that RMSEA 
is among the fit indexes which are affected the least by sample size (Marsh et al., 
2004; Schermelleh-Engel and Moosbrugger, 2003). 
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Tucker-Lewis Index (TLI)  The Tucker-Lewis Index (TLI) is an 
incremental fit index. Non-Normed Fit Index (NNFI) which is also known as TLI 
was developed against the disadvantage of Normed Fit Index regarding being 
affected by sample size. TLI is calculated as given below (Schermelleh-Engel and 
Moosbrugger, 2003; Ding et al., 1995; Gerbing & Anderson, 1992). 
 

 
   

 
   

    

2 2

2

/ / F / F /
F / 1/ 1/ 1

i i t t i i t t

i ii i

TLI
n

     

 

 
 

 
  (8) 

 
Here 2

i  belongs to the independence model whereas 2
t  belongs to the 

target model. vi and vt are the number of degrees of freedom for the independence 
and target models respectively, in relation to the chi-square test statistics. F is the 
value of appropriate minimum fit function, and n indicates sample size.  

The bigger TLI value indicated better fit for the model. Although values 
larger than 0.95 are interpreted as acceptable fit, 0.97 is accepted as the cut-off 
value in a great deal of researches. Furthermore TLI is not required to be between 
0 and 1 as it is non-normed. The key advantage of this fit index is the fact that it is 
not affected significantly from sample size (Schermelleh-Engel and Moosbrugger, 
2003; Ding et al., 1995; Gerbing & Anderson, 1992). 
 
Comparative Fit Index (CFI)  The Comparative Fit Index (CFI) is 
an incremental fit indices. CFI is a corrected version of relative non-centrality 
index. The extent to which the tested model is superior to the alternative model 
established with manifest covariance matrix is evaluated (Chen, 2007) and the 
equation can be given as in (9). 
 

 
 

   

2

2 2

,   0
1

,  ,   0
t t

t t i i

max
CFI

max

 

   

 
  

  
 

  (9) 

 
Here max indicates the maximum value of the values given in brackets. 2

i  
and 2

t  are test statistics of the independence model and the target model 
respectively. vi and vt are the degrees of freedom of the independence model and 
the target model in relation to chi-square test statistics respectively (Schermelleh-
Engel and Moosbrugger, 2003; Ding et al., 1995; Gerbing & Anderson, 1992). 
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The CFI produces values between 01 and high values are the indicators of 
good fit. When CFI value is 0.97, it means that the fit in question is better 
compared to the independence model. An acceptable fit is in question provided 
that CFI value is larger than 0.95 (Schermelleh-Engel and Moosbrugger, 2003). 
This index is relatively independent from sample size and yields better 
performance when studies with small sample size (Chen, 2007; Hu and Bentler, 
1998). 

Hypothesized models 
Two structural equation models (SEMs) with different structures of mean and 
covariance, and constructed in accordance with exogenous latent variable number 
were established. Model 1 is the model with two exogenous and one endogenous 
latent variables with each of the exogenous variable having two indicators (Figure 
1). Model 2 is the other model established through the addition of one exogenous 
variable with two indicators to the structure given in Model 1 (Figure 2).  
 
 

 
 
Figure 1. Structural equation model with three latent variables, with observed variables 
each (Model 1) 
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Figure 2. Structural equation model with four latent variables, with observed variables 
each (Model 2) 
 
 

Sample generation 

The mean vectors and covariance matrices which were used for generating data 
are given in Table 1 for identification model. Multivariate normal distribution 
data were generated by taking Model 1 and Model 2 into consideration for the 
sample sizes determined as 100, 500 and 1000 units. MLE, GLS, ADF and SB_ χ2 
techniques were applied to the derived data. SEMs which are significant in 
accordance to the test statistics were included in the study (p > 0.05). χ2 / v ratio, 
SRMR, RMSEA, TLI, and CFI model fit indices which were obtained from the 
significant SEMs were recorded. A total of 1200 significant SEMs were examined 
in the research. The simulation and all of the remaining statistical analyses were 
performed in R software through the utilization of MSBVAR, mvShapiroTest, 
QRMlib and lavaan packages. 
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Table 1. Covariance matrices and Mean vectors of Model 1 and Model 2 
 

Model 1 y1 y2 x1 x2 x3 x4 
y1 1.50           
y2 1.18 1.50     x1 0.95 0.90 1.50    x2 0.95 0.90 1.20 1.50   x3 0.95 0.90 0.50 0.50 1.50  x4 0.95 0.90 0.50 0.50 1.30 1.50 

μ1 = (100 100 100 100 100 100) 
 

Model 2 y1 y2 x1 x2 x3 x4 x5 x6 
y1 1.50               
y2 1.18 1.50       x1 0.95 0.90 1.50      
x2 0.95 0.90 1.20 1.50     x3 0.95 0.90 0.50 0.50 1.50    x4 0.95 0.90 0.50 0.50 1.30 1.50   
x5 0.95 0.90 0.50 0.50 0.50 0.50 1.50  x6 0.95 0.90 0.50 0.50 0.50 0.50 1.25 1.50 

μ2 = (100 100 100 100 100 100 100 100) 
 

μ1: Mean vector of Model 1; μ2: Mean vector of Model 2 
 

Study design 

The study was designed as 4  3 so as to examine the effects of 4 different 
estimation techniques (MLE, GLS, ADF and SB_ χ2) and 3 different sample sizes 
(100, 500 and 1000) under multivariate normal distribution condition by taking 
both structural models into consideration. 

A rank transform was applied to each index, and then Factorial Analysis of 
Variance (Factorial ANOVA) was conducted so as to find out the effects of 
estimation technique and sample size factors on χ2 / v ratio, SRMR, RMSEA, TLI 
and CFI model fit indices based on the models established. Tukey’s Honestly 
Significant Difference (Tukey’s HSD) was used for the pairwise comparisons of 
the factors in which statistically significant differences were found. 

Results 

Out of the simulation results obtained by applying SEM estimation techniques to 
Model 1 and Model 2 under multivariate normality condition, 3.17%, 8.60% and 
7.6% comprise of the convergence error of model, improper solutions, and the 
simulations excluded from the study (non-significant SEMs) respectively. As well 
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as the significance of the models included in the study, it was found that fit 
indices also have good fit and acceptable fit. 

The comparative summarized table of model fit indices based on estimation 
techniques (p-values) is given in Table 2. While no significant differentiation was 
identified in respect to χ2 / v ratio obtained from Model 1 based on the estimation 
techniques and RMSEA indices, differentiations were identified in SRMR, TLI 
and CFI. Although the CFI was the least affected one from the estimation 
techniques among the model fit indices which were identified to have 
differentiations, SRMR was the most affected one. No significant differentiation 
between the normal theory techniques MLE and GLS or between SB_ χ2 and each 
normal theory was found in respect to CFI. However, CFI obtained with ADF 
technique was identified to be different from those achieved by the other 
techniques. In terms of TLI, no significant differentiation was determined 
between MLE and SB_ χ2 techniques and, as for SRMR index, between MLE and 
GLS techniques (Table 2).  

When the entirety of the model fit indices were examined based on the 
estimation techniques in the structure given in Model 2, it was found that χ2 / v 
ratio index was different compared to GLS and ADF techniques, yet these 
produced similar values in all of the remaining techniques. As for the RMSEA 
and CFI indices, these were identified to show no difference compared to MLE, 
GLS and SB_ χ2 techniques, yet all of the values obtained with ADF were 
different from those obtained with the other techniques. In respect to TLI, only 
MLE and SB_ χ2 did not show any significant difference in between (Table 2). 
 
 
Table 2. The comparative summarized table of model fit indices based on estimation 
techniques (p-values for Tukey’s HSD) 
 

  Model 1 Model 2 

 Fit Indices Fit Indices 
Technique χ2 / v¤£ SRMR¤ RMSEA¤£ TLI¤ CFI¤ χ2 / v¤ SRMR¤ RMSEA¤ TLI¤ CFI¤ 

MLE-GLS  0.191  <0.001 0.372 0.42 <0.001 0.471 <0.001 0.72 
MLE-ADF  <0.001  <0.001 <0.001 0.068 <0.001 0.022 <0.001 <0.001 

MLE-SB_ χ 2  <0.001  1.000 0.999 1.000 <0.001 0.999 1.000 0.999 
GLS-ADF  <0.001  0.002 0.038 <0.001 <0.001 <0.001 <0.001 <0.001 

GLS-SB_ χ 2  <0.001  <0.001 0.457 0.401 <0.001 0.551 <0.001 0.629 
ADF-SB_ χ 2   <0.001  <0.001 <0.001 0.074 <0.001 0.015 <0.001 <0.001 

 

MLE: Maximum Likelihood Estimation; GLS: Generalized Least Squares; ADF: Asymptotically Distribution Free; 
SB_ χ2: Satorra-Bentler Scaled Chi-Square; χ2 / v :(Chi-Square test statistic/degree of freedom) ratio; SRMR: 
Standardized Root Mean Square Residual; RMSEA: Root Mean Square Error of Approximation; TLI: Tucker – 
Lewis Index; CFI: Comparative Fit Index; ¤ : Ranked Value; Degree of Freedom of Model 1 (1)= 6; Degree of 
Freedom of Model 2 (2)= 14; £: p>0.05 value for Factorial ANOVA 
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Table 3. The comparative summarized table of model fit indices based on sample sizes 
(p-values for Tukey’s HSD) 
 

 Model 1 Model 2 

 Fit Indices Fit Indices 
Sample 

Size χ2 / v¤ SRMR¤ RMSEA¤ TLI¤ CFI¤ χ2 / v¤ SRMR¤ RMSEA¤ TLI¤ CFI¤ 

100-500 0.006 <0.001 0.005 <0.001 <0.001 0.005 <0.001 0.217 <0.001 0.004 
100-1000 0.001 <0.001 0.049 <0.001 <0.001 0.024 <0.001 0.003 <0.001 <0.001 
500-1000 0.786 <0.001 0.705 <0.001 0.862 0.863 <0.001 0.236 <0.001 0.126 

 

(χ2 / v): (Chi-Square test statistic/degree of freedom) ratio; SRMR: Standardized Root Mean Square Residual; 
RMSEA: Root Mean Square Error of Approximation; TLI: Tucker – Lewis Index; CFI: Comparative Fit Index; ¤ : 
Ranked Value; Degree of Freedom of Model 1 (1)= 6; Degree of Freedom of Model 2 (2)= 14 
 
 

The summarized comparative table of model fit indices based on sample 
size (p-values) is given in Table 3. The index values of SRMR and TLI obtained 
from Model 1 under multivariate normality condition was found to be 
significantly different according to sample sizes. However, while χ2 / v ratio, 
RMSEA and CFI obtained with a sample size of 100 units were observed to be 
significantly different from those obtained with the sample sizes of 500 and 1000 
units, no significant differentiation was observed in none of the three indices 
obtained in sample sizes of 500 and 1000 units. With the increasing sample size, 
and in particular, when the sample size was above 500 units, it can be said that no 
significant change is seen in χ2 / v, RMSEA and CFI values. All model fit indices 
showed significant differences based on sample size. However, while no 
significant differentiation was identified when they were examined in respect to 
χ2 / v ratio, RMSEA and CFI values based on large sample size (n > 500), 
significant differentiation was determined according to small and large sample 
sizes (100 and 1000). Additionally, it was found that there is no difference 
between the values obtained with small sample sizes (100 and 500) in RMSEA. 

Discussion 

The empirical evaluation of the proposed models is an important aspect of theory 
development process. It was determined that the χ2 / v ratio index based on the 
structures given in Model 1 and Model 2 was not affected from MLE and SB_ χ2 
techniques, and RMSEA and CFI were not affected from MLE, GLS and SB_ χ2. 
TLI was determined to be insensitive to MLE and SB_ χ2 techniques, yet SRMR 
index was affected from all estimation techniques. When the compliance of our 
findings with the literature is evaluated on the basis of models, it is seen that they 
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are generally in compliance with the results of the studies conducted by Sugawara 
and MacCallum (1993), Hu and Bentler (1998, 1999), Fan et al. (1999), and Lei 
and Lomax (2005) yet entirely incompliant with the results produced by Ding et 
al. (1995). 

When both model structures are taken into consideration in multivariate 
normal distribution condition and in the event of studying with large sample size;  
χ2 / v rate, RMSEA and CFI were determined to be independent from sample size 
while SRMR and TLI were dependent. When the compliance of our findings with 
the literature is examined on the basis of models, it was generally in parallel to the 
study results produced by Lacobucci (2010), Herzog et al. (2009), Jackson, (2001, 
2007), Beauducel and Wittmann (2005), Curran et al. (2003), Kenny and 
McCoach (2003), Curran et al. (2002), Hu and Bentler (1999), Fan et al. (1999), 
Ding et al. (1995), Marsh and Balla (1994). Yet our findings except RMSEA were 
quite different from the study results of Fan and Sivo (2007). Furthermore, 
Rigdon (1996) emphasized the requirement to prefer RMSEA with large sample 
sizes and researches conducted to develop theory in his study in which RMSEA 
and CFI were compared. 

The difference of model structure was accepted as an exogenous factor 
rather than a primary effect. Therefore, it can be stated that particular model fit 
indices obtained with only ADF technique are negatively affected from the 
increase of the number of latent variables when the result is evaluated in respect 
to the factors examined in this study. 

In conclusion, it would be appropriate to prefer χ2 / v ratio, RMSEA and CFI 
in the event of studying with large samples and utilization of MLE, GLS and 
SB_χ2 techniques under multivariate normal distribution condition. Furthermore, 
we do not recommend using SRMR in model fit research as it is the most affected 
index from estimation technique and sample size. 
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Reduction of the high dimensional classification using penalized logistic regression is 
one of the challenges in applying binary logistic regression. The applied penalized 
method, correlation based elastic penalty (CBEP), was used to overcome the limitation of 
LASSO and elastic net in variable selection when there are perfect correlation among 
explanatory variables. The performance of the CBEP was demonstrated through its 
application in analyzing two well-known high dimensional binary classification data sets. 
The CBEP provided superior classification performance and variable selection compared 
with other existing penalized methods. It is a reliable penalized method in binary logistic 
regression. 
 
Keywords: high dimensional, penalization, binary classification, correlation based 
penalty, LASSO, elastic net, ridge 
 

Introduction 

With advances in technology, data are becoming larger, resulting in high 
dimensional problems. One of these problems facing researchers in application is 
the number of variables p, exceeding the number of sample size n. In classical 
statistical theory, it is assumed that the number of observations is much larger 
than the number of explanatory variables, so that large-sample asymptotic theory 
can be used to derive procedures and analyze their statistical accuracy and 
interpretability. For high-dimensional data, this assumption is violated. 

To overcome this challenge, various penalized methods have been proposed 
beginning with ridge penalty (Hoerl & Kennard, 1970). It estimates the regression 
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coefficients through 2 -norm penalty. It is well known that ridge regression 
shrinks the coefficients of correlated predictor variables toward each other, 
allowing them to borrow strength from each other (Friedman, Hastie, & 
Tibshirani, 2010). The least absolute shrinkage and selection operator (LASSO) 
was proposed by Tibshirani (1996) to estimate the regression coefficients through 

1 -norm penalty. While demonstrating promising performance for many 
problems, the LASSO estimator does have some shortcomings (Zou & Hastie, 
2005). Firstly, the LASSO tends to have problems when explanatory variables are 
highly correlated. Secondly, it cannot select more explanatory variables than the 
sample size. 

Zou and Hastie (2005) proposed the elastic net penalty which is based on a 
combined penalty of LASSO and ridge regression penalties in order to overcome 
the drawbacks of using the LASSO and ridge regression on their own. Tutz and 
Ulbricht (2009) proposed correlation based penalty to encourage a grouping effect 
by using correlation between explanatory variables as weights through making a 
group of highly correlated explanatory variables to either be selected together or 
to left out altogether. Although this penalty does well when there is high 
correlation among explanatory variables, it doesn’t do as well when the 
correlation is perfect (Tan, 2012). This study applies a new penalized penalty 
proposed by Tan (2012), namely Correlation Based Elastic Penalty (CBEP), in 
penalized logistic regression, and compares it with elastic net, LASSO, and ridge 
penalties. We apply these four methods and test the classification performance on 
two well-known data sets. 

This paper is organized as follows. Methodology covers the penalized 
logistic regression methods. Data description is explained in the following section. 
The second to last section is devoted to results and discussions. Finally we end 
this paper with a conclusion. All implementations are done using elasticnet 
package in R. 

Methodology 

Penalized Logistic Regression Methods 
Logistic regression is considered one of the most important methods in several 
fields such as medicine, social science, and financial banking. It is widely used in 
binary classification problems, where the response variable has two values coded 
as 0 and 1. One of the problems that researchers face in applying logistic 
regression is the high dimensionality of the data, where the number of variables p, 
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exceeds the number of sample size n, in fields such as genomics, biomedical 
imaging, and DNA micro-arrays. Selecting an optimal subset of explanatory 
variables in order to improve the classification accuracy and to make the model’s 
interpretation easier is the main objective of the variable selection in high 
dimensional data (Pourahmadi, 2013). A procedure called penalization, which is 
always used in variable selection in high dimensional data, attaches a penalty term 
Pλ (β) to the log-likelihood function to get a better estimate of the prediction error 
by avoiding overfitting. Recently, there is growing interest in applying the 
penalization method in logistic regression models. In order to extract the most 
important explanatory variables in classification problems, a series of penalized 
logistic regression methods have been proposed. For example, Shevade and 
Keerthi (2003) proposed the sparse logistic regression based on the LASSO 
penalty. Similar to sparse logistic regression with the LASSO penalty, Cawley 
and Talbot (2006) investigated sparse logistic regression with Bayesian penalty. 
Liang et al. (2013) did another investigation in the sparse logistic regression 
model using a 1

2
 penalty. There are varieties of different forms of the penalty 

term, depending on the application requirements. 
In a high dimensional classification using logistic regression, our goal is to 

classify the response variable y, which is coded as 0 and 1, from high dimensional 
explanatory variables px . In general, in logistic regression, the response 
variable y is a Bernoulli random variable, and the conditional probability that y is 
equal to 1 given x, which is denoted as π (x), is 
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The likelihood will be 
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Then, the log-likelihood becomes 
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The penalized logistic regression (PLR) is defined as 
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where λ is defined as a tuning parameter (λ ≥ 0). It controls the strength of 
shrinkage in the explanatory variables: when λ takes larger value, more weight 
will be given to the penalty term. Because the value of λ depends on the data, it 
can be computed using cross-validation method (James, Witten, Hastie, & 
Tibshirani, 2013). Before solving the PLR, it is worth centering to the y and 

standardizating to xj, so that 
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j = 1,2,…, p, in order to make the intercept (β0) equal zero. Many different forms 
of the penalty term have been introduced in the literature, including ridge penalty, 
LASSO, elastic net, and correlation based penalty. 

Ridge Regression 

One of the most popular penalties is ridge regression, which was introduced by 
Hoerl and Kennard (1970) as an alternative solution to ordinary least square when 
there is multicollinearity between explanatory variables. The ridge regression 
solves the logistic log-likelihood in Eq. (4) using 2 -norm penalized logistic log-

likelihood (i.e.,   2
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p

j
j
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In ridge regression, the tuning parameter λ controls the amount of shrinkage, 

but never sets explanatory variable coefficients to be exactly equal zero. So, in 
high dimensional data when p > n, the ridge regression will not provide the 
sparsity model. Although ridge regression doesn’t have the sparsity property, it is 
preferred in high dimensional data because we expect high correlation between 
explanatory variables. The maximum likelihood solution of Eq. (6) is 
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Least Absolute Shrinkage and Selection Operator  

Tibshirani (1996) proposed the least absolute shrinkage and selection operator  
(LASSO), as a penalty for variables selection by setting some variable 
coefficients’ to zero. It does both continuous shrinkage and automatic variable 
selection simultaneously. As with the ridge regression the LASSO estimates are 
obtained by maximizing the log-likelihood. Instead of using 2 -norm, the LASSO 

uses the 1 -norm on the logistic regression coefficients (i.e.,  
1

p

j
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The penalized logistic regression using LASSO is 
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Depending on the property of the LASSO penalty, some coefficients will be 

exactly equal zero. Hence, LASSO does the variable selection. Consequently, 
LASSO has sparsity property. Although LASSO is widely used in many 
applications, it has some drawbacks. One of these drawbacks is that it is not 
robust to high correlation among explanatory variables and will randomly choose 
one of these variables and ignore the rest. Another drawback of LASSO is that in 
high dimensional data when p>n, it chooses at most n explanatory variables, 
whereas there may be more explanatory variable coefficients than n with non-zero 
values in the final model (Zhou, 2013). Solving Eq. (8) will depend on 
optimization methods. So, 
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Elastic Net 

Elastic net is a penalized method for variable selection, which is introduced by 
Zou and Hastie (2005) to deal with the drawbacks of LASSO. Elastic net tries to 
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merge the 2 -norm and the 1 -norm penalties, by using ridge regression penalty 
to deal with high correlation problem while taking advantage of LASSO penalty 
in variable selection property. The elastic net logistic regression is defined by 
 

        2
1 2

1 1 1
log 1 log 1 .

p pn

i i i i j j
i j j

PLR y x y x     
  

          (10) 

 
As we observe from Eq. (10), elastic net is dependent on non-negative two tuning 
parameters λ1, λ2 and leads to penalized logistic regression solution  
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According to lemma 1 in Zou and Hastie (2005), to find the estimates of βElastic in 
Eq. (11), the given data set ( , )y X  is extended to an augmented data ( , ) y X and 
is defined by 
 

 
     

1
2

2, ,1
2

1 ,
0n p p n p

X y
X y



 

 

   
         

  (12) 

 
As a result of this augmentation the elastic net can be written as a LASSO penalty 
and solved. Hence, the elastic net can select all p explanatory variables in the high 
dimensional when p > n and not only n explanatory variables as in the LASSO, 
because 

X  has rank p. 

Correlation Based Penalty 

Similar to elastic net, this penalty encourages a grouping effect by using 
correlation between explanatory variables as weights. This penalty is proposed by 
Tutz and Ulbricht (2009), their contribution is to make a group of highly 
correlated explanatory variables to be either selected together or to left out 
altogether. Tan (2012) reported that although the elastic net penalty does well 
when there is high correlation among explanatory variables, it doesn’t do well 
when there is perfect correlation. An extension of the correlation-based penalty to 
deal with this drawback was made in elastic net penalty. The penalty is defined as 
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where rj, j+1 is the correlation between xj and xj+1. The penalized logistic regression 
using this penalty and the estimate of βCBEP be, respectively 
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CBEP is reduced to LASSO like elastic net after applying augmentation to the 
original data set for different values of λ2. 

Data Set Description 

To evaluate the four used methods, two binary classification microarray data sets 
are used: colon tumor data set and diffuse large B-cell lymphoma (DLBCL) data 
set. The colon tumor microarray data set describes the expression of 2000 genes 
in 40 tumor and 22 normal tissue samples, the aim being to construct a classifier 
capable of distinguishing between cancer and normal tissues. This set is described 
in Alon et al. (1999), and publicly available at 
http://genomics-pubs.princeton.edu/oncology/affydata/index.html. For the 
DLBCL data set, the gene expression values of 77 samples were measured by 
high-density oligonucleotide microarrays of the two most prevalent adult 
lymphoid malignancies which 58 samples of diffuse large B-cell lymphomas 
(DLBCL) and 19 samples of follicular lymphoma (FL). Each sample contains 
7,129 gene expression values. More information on this data can be found in 
Shipp et al. (2002) and it is freely available at http://www.genome.wi.mit.edu/cgi-
bin/cancer/datasets.cgi. To apply the binary classification using the four methods 
that we are considered, the type of the response variable for each data set is coded 
as a 0 and 1, where in colon data the normal equals 0 and tumor equals 1, while in 

http://genomicspubs.princeton.edu/oncology/affydata/index.html
http://www.genome.wi.mit.edu/cgi-bin/cancer/datasets.cgi
http://www.genome.wi.mit.edu/cgi-bin/cancer/datasets.cgi


ALGAMAL & LEE 

175 

DLBCL data, FL is set to code 0 and DLBCL is set to code 1. The classification 
function is defined as  ˆ 0.5I y  . 

Results 

To examine the performance of the correlation based elastic penalty we compare 
it with three well-known penalization methods; elastic net, LASSO, and ridge. We 
use a randomly drawn test data set. Each data set at hand was split into 10%, 20%, 
and 30% to form the test data set, respectively. This procedure is repeated 100 
times. The required tuning parameters by the ridge, LASSO, elastic net, and 
CBEP methods were performed by 10-fold cross-validation on the training data 
set. Specifically, for ridge and LASSO, the tuning parameter was 
λRidge = 5.460, 3.197, 5.590) and λLasso = (0.055, 0.091, 0.068) for each training 
data set respectively. For the tuning parameters of elastic net and CBEP, the 
solution is different, because these two methods require prior value of λ2 to 
transform the original training data set to the new augmented training data set. A 
sequence of values for λ2 is given, where 0 ≤ λ2 ≤ 100. For each value of λ2 a 
10-fold cross-validation was performed to select the remaining tuning parameters. 
Here the best value for λ2 is 0.01 for colon data set and 0.025 for DLBCL data set. 
Therefore, the tuning parameters for elastic net are (0.30, 0.15, 0.40) and 
(0.50, 0.40, 0.30) for colon and DLBCL data sets corresponding to each 
percentage of test data set, and for CBEP are (0.40, 0.30, 0.38) and 
(0.60, 0.50, 0.35) for colon and DLBCL data sets corresponding to each 
percentage of test data set. 

The deviance test error is computed as the criterion of evaluation. Figure 1 
displays the corresponding boxplots of the deviance test error for the four used 
methods for both data sets, (a) colon tumor and (b) DLBCL. It is clear that CBEP 
has less variability among the three penalization methods. Also, it can be seen that 
LASSO and ridge are more variable than CBEP and elastic net. Table 1 
summarizes the averaged deviance test error (Mean) and the standard deviation 
(Std. Dev.) of the estimation of the response variable. Furthermore, coefficient of 
variation (CV), classification accuracy, and the numbers of selected variables are 
listed. When the sample size of the test set increases, the mean of the deviance 
test error decreases for the CBEP and the other three methods in both data sets. 
For example, in colon data the means for CBEP are 0.108, 0.104, and 0.102 with 
the sample size of the test set 10%, 20%, and 30% respectively. 

Concerning the deviance test error, we observed that for colon and DLBCL 
data the CBEP method has mean with standard deviation smaller than the results 
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of the elastic net, LASSO, and ridge for all test set sizes. For example, in DLBCL 
data, when the test data size is 10%, the mean of the CBEP is 0.118 with standard 
deviation equal to 0.032, which is smaller than 0.124 (0.045), 0.340 (0.265), and 
0.292 (0.268) for the elastic net, ridge, and LASSO methods respectively. With 
both data sets and test set sizes, the results of CV show that the CBEP method 
yields less variation than the other three methods. Furthermore, we see that the 
CBEP method outperforms the elastic net, LASSO, and ridge for both colon and 
DLBCL data sets in term of accuracy classification. It can even classify with 
accuracy of 100% for colon data set at percentage 10% and 20% of test set, and 
also for DLBCL data set at 20% and 30% percentages of test set.  

In terms of the number of selected variables (model complexity), the 
penalized logistic regression using CBEP includes explanatory variables less than 
using elastic net, although in some cases CBEP includes variables same as elastic 
net. Moreover, LASSO selects more variables than CBEP and elastic, and of 
course penalized logistic regression using ridge includes the whole explanatory 
variables. Because of several correlation coefficients among explanatory variables 
above 0.5, we have seen that the CBEP and elastic net methods prevail against the 
LASSO. 

It is obvious that the CBEP method performs better in term of averaged 
deviance test error by obtaining smaller values of deviance error, classification 
accuracy, and the number of selected variables followed by elastic net, LASSO, 
and ridge for various percentages of test data sets for both colon and DLBCL data 
sets. 
 

 
Figure 1: Percentages comparison of the deviance test error 
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Table 1: Deviance test error, classification accuracy, and no. of variables selected over 

100 random split 
 

 

Colon DLBCL 

LASSO Ridge Elastic CBEP LASSO Ridge Elastic CBEP 

Deviance test error 

10% 

Mean 0.483 0.958 0.134 0.108 0.292 0.340 0.124 0.118 
Std. Dev. 0.295 0.785 0.079 0.069 0.268 0.265 0.045 0.032 

CV 1.154 2.687 0.277 0.226 0.806 0.724 0.198 0.176 

20% 

Mean 0.422 0.447 0.119 0.104 0.288 0.331 0.122 0.116 
Std. Dev. 0.297 0.552 0.067 0.060 0.227 0.218 0.042 0.023 

CV 0.829 1.968 0.200 0.187 0.589 0.810 0.172 0.155 

30% 

Mean 0.354 0.395 0.107 0.102 0.265 0.296 0.117 0.112 
Std. Dev. 0.337 0.375 0.066 0.069 0.220 0.186 0.053 0.054 

CV 1.088 1.237 0.208 0.248 0.538 0.558 0.203 0.195 

Classification Accuracy (%) 
10% 50.00 33.34 100.00 100.00 75.00 62.50 75.00 87.50 
20% 83.34 66.67 91.69 100.00 86.67 80.00 100.00 100.00 
30% 89.47 73.68 89.47 94.73 86.95 82.60 95.65 100.00 

No. of selected variables 
10% 28 All 21 21 42 All 40 40 
20% 26 All 23 24 44 All 39 38 
30% 24 All 16 14 40 All 40 38 

 
 

Finally, Figure 2 displays the path solution of the CBEP and elastic net for 
the colon tumor data set of 70% training data set in one run. The doted horizontal 
line represents the best value of elastic net (s = 0.40) and CBEP penalty (s = 0.38) 
that selected by cross-validation. The figure also shows, the elastic net path is 
very similar to CBEP path. 
 
 

 
Figure 2: Solution paths for 30% test of colon tumor 
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Conclusion 

A study of a new penalization method based on CBEP was done by application to 
binary logistic regression. Three penalization methods in addition to CBEP, 
including elastic net, LASSO, and ridge, were compared by applying two high 
dimensional real data sets. The results show that the CBEP outperforms the other 
three methods in term of deviance test error, classification accuracy, and model 
complexity. Also, the different percentages of the test data size do not affect the 
performance of CBEP. It was concluded the CBEP is more reliable in applying 
penalized binary logistic regression. 
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The method of the estimation of the probability of an event occurring under the influence 
of the causal and random effects is considered. Epistemological differences from the 
traditional approaches to causality are discussed, and a new model of the statistical 
estimation of the parameters of each effect is proposed. The simple and effective 
algorithms of the model parameters estimation are presented, and numerical simulations 
are performed. A practical marketing example is analyzed. The results support the 
validity of the estimation procedure and open the perspective for the application of the 
method for various decision making problems, where different causes can yield the same 
outcome. 
 
Keywords: causal and random effects, categorical data, causal modeling 
 

Introduction 

Modern decision making actively uses statistical methods, but there is one 
paradoxical aspect in it. To apply the results of statistical modeling and 
forecasting in practice, a decision maker, or a manager should be sure that the 
decision is based on a causal relationship: for instance, a positive correlation 
between advertising and sales could mean that it makes sense to increase spending 
on advertising for getting higher revenue. However, most of the statistical 
methods do not produce “causal models”, they only agree that “correlation is not 
causation”. For instance, Leo Breiman (2001) emphasized the indifference of the 
statistical learning to causal problematics (see also Hastie, Tibsharani, & 
Friedman 2009). So, a positive relationship between advertising and sales may 
simply indicate that with bigger sales, a company has a higher profit and thus is 
able to spend more on advertising. More questions related to statistical and causal 
approaches in sociosystemics and mediaphysica are considered in (Kuznetsov & 
Mandel, 2007, Mandel, 2011). 

mailto:stan.lipovetsky@gfk.com
mailto:igor.mandel@gmail.com
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The past two decades have witnessed a burst of works on various causality 
problems and methods. Three main approaches intensively used in causality 
studies are: simultaneous structural equations founded by S. Wright (1921, 1960; 
more references within Kline, 2010); potential outcomes proposed by J. 
Splawa-Neyman (1990), and advanced by D. Rubin (1974, 2006), and the concept 
of do-operators and associated with them acyclic graphs developed by J. Pearl 
(2000, 2013). There are many other authors and proposals combining and 
modifying these ideas, although according to J. Pearl, almost all of these 
approaches in fact talk about the same things, using different terms and stressing 
different aspects of the problem. One thing is common for most of these works is 
that they consider a situation when many variables are interlinked, and the main 
aim of the causal analysis consists in disentangling of these influences and 
evaluating the pure impact of each cause on the effect. For instance, in the 
influential J. Pearl’s book (2000), all descriptions begin only when graphs have 
complex structures, with several arrows targeting each node, but it is not clear 
what to do, if there is only one outcome and many potential causes. 

While most applications of causal inference focus on a complex situation 
with multiple outcomes, the current paper revisits a seemingly simple case of a 
single binary outcome variable with multiple sources of causal and additional 
random effects. Randomness is understood here not as a “remaining part” of the 
unexplained variance, which is typical in statistics, but as the source of the 
unknown (not associated with any variables) causes, resulting in the same effect. 
This concept and a general model was proposed in (Mandel, 2013), where one can 
also find a discussion about the correct definition of causes and effects, the 
differences between individual and statistical causes, and other methodological 
issues, partly touched on here. This current paper considers the problems of the 
parameters estimation in such a model. 

 The Concept of the Causal Intrinsic Probabilities 

Consider a model of the direct impact of multiple causes onto the binary outcome 
Y with Y = 1 and Y = 0 meaning that the effect of the interest has occurred or has 
not, respectively. Consider a case of K attributes A1, A2,..., AK (where Ak = 1 and 
Ak = 0 denote the presence and the absence of a k-th attribute, with k = 1, 2,…, K). 
The attributes are represented by the categorical variables which may be binary, 
ordinal, or nominal variables. A vector of the realized values of such attributes 
can be denoted as a = (a1, a2, ..,aK), and this may represent levels of the same 
and/or different categorical variables, e.g., A1 = 1 means male, A2 = 1 means 
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female, A3 = 1 means kids, A4 = 1 means teenagers, A5 = 1 means adults, etc. Let 
us assume that the attribute Ak creates the causal effect Y = 1 with probability pk. 
In the simplest case k = 2, the probability that Y = 1 would follow the rule of the 
union of the independent events: S = p1 + p2 - p1 * p2. In essence, it just reflects 
the fact that the coincidence of two causes does not produce anything more than 
one effect. Respectively, the probability of not having the causal effect would be 
presented as 1 – S = (1 - p1)(1 - p2). 

For any K, the causal effect of outcome Y = 1 is defined as an intrinsic 
(latent) probability Scausal(a), where a is a vector of the realized set of attributes, so 
that the probability of not-occurring of the event is: 
 
    

 : 1

1 1
k

causal k
k a

S a p


     (1) 

 
where p1, p2,.., pK are parameters which represent the causal strength associated 
with the presence of each attribute Ak. Note that the absence of an attribute may 
imply the presence of the opposite attribute (e.g., the absence of the “male” 
attribute A1 contributes to the presence of the “female” attribute, A2). In other 
situations it could vary: for instance, a road accident may happen due to fog (A1), 
reckless driving (A2), ice conditions (A3), and other non-mutually exclusive causes.  

There is also an irreducible latent probabilistic "random cause" that 
represents other factors that are not explicitly accounted for by the set of attributes. 
It is assumed that this random effect is: a) independent of other attributes; b) its 
outcome (denoted as r in the sequel) is constant across all configuration of 
attributes that may be present for a particular individual. These assumptions yield 
the expected probability at the population level as the union of the causal and 
random sources, S(a) = Scausal(a) + Srandom – Scausal(a)∙Srandom, or in the explicit 
form: 
 

 

     

    

   
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k

causal causal
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k
k a

S a S a r r S a

r S a

r p


   

   

   

  (2) 

 
The aim of the proposed causal model is the estimation of K + 1 parameters, 

p1,..,pK, and r, on the basis of the sample of the realized outcomes Yi(a) = {1, 0} 
and the associated attribute vectors. 
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Concerning the motivation for the model, we can see the following 
arguments. Our setup acknowledges the asymmetric nature of causality, and the 
model (1)-(2) for intrinsic (causal) probability assumes that a single cause is 
sufficient for an event to happen ("fire"), whereas for an event not to occur, all 
potential causes should be ineffectual. It can be seen in a diagram with parallel 
pathways, where at least one of them would fire the event. It contrasts with a 
common binary logistic regression, where all the attributes contribute additively 
to the probability of the event occurring, or not occurring. Also, the model 
assumes that a random cause is irreducible and is presented within the sample 
probabilities S(a). Finally, in the considered model, the main role is played by the 
presence of attributes, rather than by the changing levels of the factors in classical 
methods based on the concept of regression, potential outcomes, and other models. 

Thus, each cause works as an independent entity and is associated not with 
the whole variable (like a binary “gender”), but with the separated levels (grades) 
of the variable (like two variables of “males” and “females”). It is different from 
the traditional statistical way of making models: one should look at these “grades 
related yields” rather than at the coefficients of general association (or regression), 
linking the whole “gender” to the outcome. Each level of the potentially causal 
variable produces an outcome with its own intrinsic probability. And if there are 
some causes, which cannot be associated with any measured variables, but still 
produce the outcome, then we relate them to the random cause. A typical example 
of such random causes is as follows: customers can buy a product regardless of 
advertising or promotions (a “baseline” which is hard to estimate). The purpose of 
the causal analysis is to evaluate the intrinsic probabilities, or the parameters of 
the outcome Y = 1 generated by different causes, including the random ones, with 
the observed data. 

Causal Analysis and Parameters Estimation 

The causes and the effect are associated with the usual statistical variables. 
Consider a data set containing variables X – the attribute causes of the outcome 
variable Y. With categorical causal variables, each grade of a causal X variable 
has its probability of generating the occurrence of the event, or the value Y = 1 in 
the outcome. A categorical variable with n grades can be presented as a set of n 
binary variables x1, x2, …, xn, or the so-called Gifi-system (Gifi, 1990; Lipovetsky, 
2012), where each j-th of these binary variables has 1s in the positions of j-th 
grade, and 0s in other positions. It allows the estimation of the causal effect only 
for values 1 for each variable, and the random cause can also have the impact 
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inducting the appearance of the event Y = 1. So, the outcome Y = 1 occurs as a 
union of the independent events coming from two different sources – those 
associated with the measured variables and random noise (2). 

As an explicit example, consider data with three x, so in total there are eight 
cells of all combinations of their values, and in each cell we find the proportions 
Si of the outcome variable S(a), so the proportion of Y = 1 in the base size of each 
cell. The cells and corresponding proportions Si are presented in Table 1. Of 
course, in a particular real data set, some cells can be empty. The variables in 
Table 1 are orthogonal (see in Appendix A), so they are statistically independent. 
 
 
Table 1. Example of data set with three binary variables. 

 

i x1 x2 x3 Si 

1 0 0 0 0.09141 
2 1 0 0 0.73409 
3 0 1 0 0.25630 
4 1 1 0 0.80300 
5 0 0 1 0.57608 
6 1 0 1 0.86570 
7 0 1 1 0.63409 
8 1 1 1 0.89563 

 
 

In a general case of many variables, each presented via the Gifi-system of 
binaries with their total number of K variables, model (2) can be presented in a 
generalized form: 
 

    
1

1 1 1 ik
K

x
i k

k

S r p


      (3) 

 
where k = 1, 2, …, K is a number of variable xik identifying the k-th parameter of 
the probability in the i-th cell (i = 1, 2, …, N). The values of xik are 1 or 0 when 
the variable is presented or not, respectively, as in Table 1. So, for the i-th value Si, 
with values xik = 1, the term 1-pk enters the product in (3), and for values xik = 0 
the term 1- pk is absent in the i-th row of the data. The cells as the new units are 
denoted by the current index i = 1, 2, …, N. The relations (3) show that if any 
probability pk or r is close to 1, the total probability of event occurrence Si is close 
to 1 as well. This system corresponds to the feature of the independence of the 
variables’ levels when the value of union Si is defined by the criterion of “at least” 
one variable impacting on the event appearance. It is important to note that due to 
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the definition (3), any additional cause with the term (1-pk) can only increase Si, 
as can be expected. 

Consider how to estimate parameters of the model (3) by data like those 
given it Table 1. Regrouping and taking logarithm of equation (3), and using 
notations 
 
      0ln 1 , ln 1 , ln 1i i k ky S b r b p        (4) 
 
we represent (3) in the linearized form: 
 
 0 1 1 ...i i K iKy b b x b x      (5) 
 

So, the problem of estimation of the parameters bk is reduced to the ordinary 
least squares (OLS) linear regression, with the known solution  
 
  

1b X X X y
    (6) 

 
where y (4) is a vector of N-th order, X is the design matrix of xik values 
(completed by the additional column of all 1s, which corresponds to the intercept 
b0 in the model), b is the vector of all K + 1 parameters in (5). If there are not 
enough observations, the matrix of the second moments X’X in (6) could be close 
to singular, and its inversion is impossible, or it yields too inflated coefficients. In 
such a case, we can use a regularization imposed onto the parameters which 
produces the so-called ridge-regression: 
 
  

1b X X qI X y
     (7) 

 
When the profile parameter of the ridge regression q is close to zero, the 

solution (7) reduces to OLS (6). More complicated ridge-regressions with a high 
quality of fit see in (Lipovetsky, 2010). 

By the estimated coefficients b (6)-(7), each original parameter of 
probability can be obtained from the relations (4) by transformation: 
 
    01 exp , 1 expk kr b p b      (8) 
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The relations (8) show that the parameters b should be negative which can 
be achieved by their special parameterization (for instance, each b is substituted 
by another unknown parameter c in the relation b = -c2, and a nonlinear estimation 
is performed for the free parameters c). But usually the solutions (6)-(7) are 
feasible for the meaningful values (8). 

To illustrate this approach, return to Table 1, take yi = ln(1 - Si) as the 
dependent variable (4), and construct the model (6). Its coefficients are presented 
in the first column of Table 2. These coefficients are transformed by (8) to the 
probabilities r of the random impact and pi of the causes, which are given in the 
second numerical column in Table 2. In the next column, Table 2 also presents the 
original values of cause probabilities used in this simulated data. Comparison of 
the estimated and the original values shows a pretty good quality of the estimation 
with the relative errors of several percent or less shown in the last column of 
Table 2. The coefficient of multiple determination in this model (6) equals 0.998, 
and its value adjusted by degrees of freedom equals 0.995, so the quality of the 
model is indeed very high. 
 
 
Table 2. Regression coefficients and probability estimates. 
 

Coefficients of 
regression 

Estimates of cause 
probability 

Original values used 
in simulation 

Relative error, % to 
original values 

b0 -0.102722 r 0.09762 0.10 2.38 
b1 -1.240261 p1 0.71069 0.70 1.53 
b2 -0.224870 p2 0.20138 0.20 0.69 
b3 -0.697456 p3 0.50215 0.50 0.43 

 
 

Note that a design matrix like in Table 1 is orthogonal, so the x-variables 
have zero correlations. In such situation, coefficients of multiple linear regression 
equal the coefficients in the pair regression of y on each x separately, which 
makes calculations even simpler, as shown in Appendix A. If a cell of certain 
variables’ combination is empty, the number of rows in the design table can be 
reduced. But even in such a case, it is possible to hold the whole design matrix 
substituting zero by a small proportion value, say, S = 0.005.  

In application, the interest may be in estimating an additive share of 
influence of each cause in the effect. In order to achieve this, use the formula: 
 

  

 

ln 1
ln 1

ikx
k

ik i
i

p
S S

S





  (9) 
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where the total of the causes (including the random one corresponding to the 
index k = 0) in each cell equals the predicted proportion: 
 

 
0

K

i ik
k

S S


   (10) 

 
The derivation and other properties of the relations (9)-(10) are presented 

in Appendix B. 

Methodology 

Numerical simulations 
To test validity of the proposed estimation procedure, a series of 

experiments on the generated data were performed. The varied parameters are 
described in Table 3. Not all combinations of these parameters (there are about 
1700 scenarios) were estimated, some of them are simply impossible. For each 
combination of factors, several random runs (from one to forty) were performed. 
In each case, the assignment of value 1 to Y was done, if any of X variables was 
equal 1. For correlations in Table 3, both signs were used; correlation -1 means 
that two variables represent in fact one binary variable. 
 
 
Table 3. Different parameters of simulation and estimation 

 

 Parameters Value 1 Value 2 Value 3 Value 4 

1 
Number of observations 

in a data set 
100 500 10,000  

2 
Number of causal 

variables 
1 2 3 8 

3 
Correlations between 

certain X variables 
Low (0-0.3) Middle (0.3-0.7) High (> 0.7) -1 

4 
Random causal 

coefficients 
0.1 0.5 0.8 Any 

5 
Causal coefficients for X 

variables 
Equal Different   

 
 

After the modeling, the estimated in (6)-(8) parameters of the causal yields 
were compared with the original values used in data generation. The estimated 
and the original parameters for models with one, two, or three causal variables on 
ten datasets, together with the relative errors, are presented in Table 4. 
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Table 4. Probability estimates for datasets with 1, 2, or 3 variables, by 10,000 

observations. 
 

  
Estimated parameters Original parameters Relative error, % 

Data 

set 
Model r p1 p2 p3 r p1 p2 p3 r p1 p2 p3 

1 OLS 0.571 0.773 
  

0.5 0.77 
  

14.3 0.5 
  

2 OLS 0.107 0.269 
  

0.1 0.31 
  

7.1 14.0 
  

3 OLS 0.857 0.514 
  

0.8 0.71 
  

7.1 27.4 
  

4a OLS 0.893 -0.426 
  

0.8 0 
  

11.6  
  

4b Ridge 0.847 0.001 
  

0.8 0 
  

5.9  
  

5 OLS 0.104 0.026 0.716 
 

0.1 0.03 0.72 
 

4.4 8.2 0.4 
 

6 OLS 0.803 0.527 0.041 
 

0.8 0.48 0.15 
 

0.4 10.1 72.1 
 

7 OLS 0.095 0.837 0.911 
 

0.1 0.87 0.87 
 

4.8 4.2 4.3 
 

8 OLS 0.527 0.883 0.887 
 

0.5 0.87 0.87 
 

5.5 1.1 1.6 
 

9 OLS 0.489 0.677 0.393 0.677 0.5 0.53 0.53 0.97 2.2 28.8 25.2 30.5 

10 OLS 0.099 0.498 0.559 0.613 0.1 0.53 0.53 0.65 0.7 5.2 6.2 5.5 

 
 

In most cases, the OLS regression (6) works well, producing probabilities 
close to the original values used for the data simulation. In one dataset #4, the 
OLS yields the negative probability value (row 4a), so we run the ridge regression 
(7), which yields all positive probabilities (row 4b). It is interesting to note that 
the original p1 in this case equals zero. The relative errors of the estimated 
probabilities to their original values show a reasonable precision mostly of several 
percent, but sometimes more (it often corresponds to close to zero or one original 
values). 

What is especially important here, when the causes are dominantly random 
(like in rows 3, 4, and 6, when r = 0.8), the estimation procedure still yields very 
good results, separating causal related events with low intensity from this very 
high level (80%) of “noise”. In fact, even the biggest deviation (72%) in row 6 for 
the estimate 0.04 vs. 0.15 doesn’t seem bad with this high random influence. The 
other important feature: the procedure works even when coefficients are equal to 
each other, like in rows 7 and 8, with different level of randomness. It is 
remarkable because in traditional statistics, if two values (i.e., males and females) 
produce the same marginal frequency, the gender is considered having no causal 
interpretation. Actually, we can say that each cause works with the same intensity, 
and they both differ from the random cause. 

In another experiment with eight variables, the original coefficients might 
take any values (not controlled). This situation matches the typical data sets in 
many applied research. The results of 40 simulations are shown in Table 5, where 
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the average correlation of original Y with Xs is 0.05, and the maximum correlation 
equals 0.15. 
 
 
Table 5. Quality of the parameters estimation. 

 

 p1 p2 p3 p4 p5 p6 p7 p8 r 

Correlations between 
original and 

estimated values 
among 40 runs 

0.69 0.87 0.78 0.81 0.83 0.86 0.74 0.80 0.64 

Median error, % 
to original value 

35 20 23 32 27 33 21 21 40 

 
 

The first row in Table 5 shows that correlations between original and 
estimated values are quite big, so the procedure definitely captures the main 
features of the data. It is especially important because the original datasets 
(10,000 observations) have practically no correlations among Y and X variables, 
so in this situation the traditional statistical methods fail. The second row in Table 
5 shows that median error is about 20-30% of the original values, similar to those 
in row 9 in Table 4. Of course, it is not an ideal but a good enough result in a 
situation where original data are uncorrelated. Other experiments showed that the 
estimations only slightly depend on the level of the mutual correlations between X 
variables, so the problem of multicollinearity is not so troubling in this approach 
as in common regression modeling. 

Example of estimation of advertising efficiency 

A typical phase in media planning is the analysis of mutual frequency distribution 
of the media vehicles (TV shows, magazines, websites, etc.) and of the particular 
brand consumption. The high brand frequency for some vehicle is considered as a 
good indicator, and this vehicle is included in the list of the candidates for making 
advertising via it. Table 6 in its left part presents cross-tabulation of five products 
and four media vehicles (all data are real and represent popular magazines and 
different important products; the number of the respondents is measured in tens of 
thousands). For example, in a cell Product 1 - Vehicle 2, or P1-V2 (Table 6, left 
half), 13.8% means that this fraction of the readers of V2 magazine have bought 
P1, so V2 is the most promising vehicle (not accounting for circulation, frequency 
of advertising, and other factors). 
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Five causal models were constructed using each product as a target – the 
resulting parameters are presented in Table 6, the right part, with estimates of the 
random causes in the last column. Comparing the two parts of Table 6 shows a 
rather dramatic difference. The most promising cell P1-V2 suggests that just about 
3.1% of buyers (instead of 13.8%) might have bought the product due to this 
magazine’s advertising, while the other customers could buy regardless of it. A 
similar diminishing we see in any cell, for instance, the Vehicle 1 is even not 
important at all, so all buyers have no relation to this magazine, they would buy 
the product anyway, without this advertising. This type of analysis shows 
completely different picture of the media performance, and the decisions about 
advertising distribution could be changed accordingly. 
 
 
Table 6. Modeling of the advertising efficiency 

 

 
Fraction of vehicle audience 

consuming particular product, % 
Estimated causal coefficients, % 

Product P/ 
Vehicles V V1 V2 V3 V4 Total V1 V2 V3 V4 

Random 
causes 

P1 7.2 13.8 9.2 11.8 8.5 0 3.1 1.9 6.5 8.3 

P2 2.9 5.1 3.9 5 3.2 0 4.8 2.6 0 3.1 

P3 0.3 1.2 1.8 0.5 0.5 0 1.1 1.5 0 0.5 

P4 6.8 12.6 10.3 10.6 7.5 0 4.3 0 0 7.1 

P5 2.2 3.4 5.9 3.8 2.9 0 0 0.7 1.9 3 

 
 

For each product, the total number of positive outcomes was decomposed by 
different magazines, according to (9), (10) and (23) from Appendix B. As 
expected, the found shares reflect the importance of the magazines, as shown in 
Table 6. For example, for the product P2 the vehicles V2, V3 and random effect 
contribute as much as 17%, 7% and 76%, respectively; the random causes 
dominate (up to 95%) for all the considered products. 

Conclusion 

A new approach to causal modeling was considered based on the direct 
accounting for the internal relationship between the causal impacts and the 
outcome effect. The proposed model is a significant departure from the regular 
regression, or statistical learning models, as well as from the traditional models of 
causal analysis. In the suggested model, each causal variable effects the outcome 
individually, not cumulatively with others, which contrasts with the traditional 



LIPOVETSKY & MANDEL 

191 

statistics, where the outcome cumulates the combined effect of all the variables of 
influence, and adding variables improves the goodness of fit. Also, unlike in the 
traditional methods, the random cause is not considered as something to be 
“minimized”, but rather as a reflection of all causes which were not captured by 
the introduced variables. The proposed approach to the analysis and estimation of 
causal relations demonstrates several important features: 
 

 it offers a way to estimate the causal relationships, when many 
possible causes generate one effect – a situation very typical for 
numerous applications; 

 it allows to estimate the intensity of the causal relationships in the 
data, even if there is no correlation between Y and X variables, when 
causal variables are highly correlated among themselves, when 
coefficients of variables are equal to each other, when random 
component in the data is very high; all these features make it very 
different from the traditional statistical and causal approaches; 

 it works just with frequency tables (providing they exist for all or 
many combinations of the predictors), so there is no need for the 
original observational data sets, that may be very useful in many 
practical situations; 

 parameter estimation is simple and could be performed with any 
available software. 

 it works with data of high dimensionality, since the orthogonal 
design matrix allows to reduce estimation to paired regressions. 

 
Future generalization of the main problems of the parameter evaluation for 

causal and random impacts can be seen in using numerical Y and X variables, and 
in the framework of complex causal relationships (as in structural equations, or 
acyclic graphs with do-operators). 
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Appendix A: Closed-form OLS solution for the orthogonal 
design 

The OLS solution (6) for a multiple linear regression can be presented in 
analytical closed-form, if we have a total set of all possible cells, that is: for K 
variables there are N = 2K cells of all possible combinations of 0 and 1 values by 
each variable. For instance, if K = 3, there are eight cells as those presented in 
Table 1. For the orthogonal design matrix, each coefficient of regression can be 
estimated by the paired relation. For that we need covariance of y with each xj:  
 

     1 1

1 1
cov ,

N N

j i ij j i ij j
i i

y x N y y x x N y x Nyx 

 

 
     

 
    (A1) 

 
And the variance of each x is: 
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Covariance of two binary predictors is: 
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Then each coefficient of regression (6) equals: 
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where y’xj is the scalar product of the vector and vector xj. With all mean values 
of xs equal 0.5, the intercept in the model (5) equals: 
 
  0 1 1 10.5K K Kb y b x b x y b b          (A5) 
 
Using (14) in (15) yields: 
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The parameters of probability (8) are also related. Indeed, rewriting r using (A5) 
yields: 
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So, the relations (A5), or (A7) between the coefficients should be taken into 
account in simulations of the model parameters. 

Appendix B. Decomposition to the additive shares of 
influence of each cause in the effect. 

Consider (3) in a generalized form, where we denote r = p0 and xi0 = 1 identically: 
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with the aim to present Si as a total of the items, each related to one of the causes: 
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For the additive decomposition of Si we take shares proportional to the ratio of 
logarithms: 
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The total of (B3), due to (B1), coincides with Si itself: 
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If Si was defined as the quotient of the counts Si = ni / Ni, where ni is the counts of 
Y = 1 in the base size Ni of each cell. Then by using it in (B3), we obtain the 
estimation for the counts nik related to each k-th cause: 
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Total of (B5) by k, similarly to (B4) yields: 
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The aim of this study was to make a comparison among existing estimation methods 
(Kaplan-Meier, Nelson-Aalen and Regression on Ordered Statistics (ROS)) for randomly 
left censored time to event data under selected distributions and for different level of 
censoring and sample sizes in order to determine the strength of these methods based on 
simulated data. Comparisons among the methods are made on the basis of unbiasedness 
and Monte Carlo Standard Error of the summary statistics (mean time to event) obtained 
by those methods under different conditions. 
 
Keywords: Time to event data, Left censoring, detection limit, bias, Monte Carlo 
Standard Error 
 

Introduction 

Time to event data arises in a number of applied fields, such as medicine, biology, 
public health, epidemiology, engineering, economics, demography, actuarial 
science and many other scientific areas in which time to the occurrence of some 
event is of interest for some population of individuals. The most typical 
characteristic of time to event data is incompleteness where it arises either by 
censoring or by truncation. Censoring, a very common feature of time to event 
data broadly indicates the situation that some events are known to have occurred 
only within certain intervals but the exact time of occurrence is unknown (Klein 
& Moeschberger, 2003). Among different censoring situations, left censoring 
provides information indicating only that the event of interest has occurred prior 
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to entry into the study (Klein & Moeschberger, 2003). In other words, left 
censored data are commonly encountered as values below a detection limit and 
hence are often termed as non-detects. A detection limit is a threshold below 
which measured values are not considered significantly different from a blank 
value, at a specified level of probability (Helsel, 2005a). 

Although the analysis of left-censored data has important applications in 
various fields of study, very few studies focused on left censoring. Owen and 
DeRouen (1980) used Monte Carlo simulation techniques for estimating the 
average exposure of industrial workers to an air contaminant. Another study on 
water-quality data containing multiple detection limits used a robust approach to 
estimate the summary statistics and model the distributions of trace-level 
environmental data (Lee & Helsel, 2005). Popovic, Nie, Chettle, and McNeill 
(2007) used inverse variance weighting (IVW) of measurements to estimate the 
mean and standard error of the randomly left censored data on bone lead 
concentrations in order to provide valid inference about bone lead concentrations. 
A comparison based simulation study was done by Annan, Liu, and Zhang (2009) 
to compare a non-parametric, a semi parametric and a parametric approach to 
obtain estimates of summary statistics in different censoring situations and 
varying sample sizes  

The Kaplan-Meier (Kaplan & Meier, 1958), Nelson-Aalen (Nelson, 1972 
and Aalen, 1978), Maximum Likelihood (Cohen, 1959) and the Regression on 
Order Statistics (ROS) (Helsel & Cohn, 1988) are the methods available in 
literature for computing summary statistics on data with non-detects. The 
objective of this study is to compare three nonparametric and one semi-parametric 
estimation methods for finding summary statistics.  

In this study, two different algorithms of Kaplan-Meier (1958) methods, one 
(denoted as KM-I in the rest of this paper) proposed by Helsel (2005a) and the 
other one (KM-II) by Popovic et al. (2007), was compared with another non 
parametric method based on modified Nelson Aalen method proposed by Popovic 
et.al (2007) and a semi parametric method based on Regression on Order 
Statistics (denoted as ROS) suggested by Helsel and Cohn (1988). A Monte Carlo 
simulation study was conducted to determine the efficiency of these methods for 
analyzing left-censored data under different distributions in terms of Bias and 
Monte Carlo Standard Error of the mean time to event in which the methods were 
employed for different sample sizes and different censoring levels. 
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Non-parametric Estimation of Mean 

Let S(x) be the survivorship function that gives the proportion of subjects 
expected to live at least x units of time. The survival probability is a product of 
incremental probabilities indicating the probabilities of surviving to the next 
lowest detection limit, given the number of observations at and below that 
detection limit. The mean of survival time x is calculated by 
 

    
2

1

b

b

x S u du      (1) 

 
where μ(x*) signifies that the mean of variable x is a function of the chosen 
interval xi : {b1 ≤ xi ≤ b2}. Parameter b1 is the chosen lower boundary for the set 
of measurements. 

Kaplan-Meier (KM) method 

The Kaplan-Meier (KM) method proposed by Kaplan and Meier (1958) is a 
nonparametric method frequently considered as a standard method for estimating 
summary statistics of censored time to event data. The method has primarily been 
used for right-censored data. However, for calculation of summary statistics of 
left-censored data, the basic algorithm of Kaplan Meier method (used for right-
censored data) has been modified. The modifications suggested are: 
 

i. to transform left censored data to right censored one (Helsel, 2005b)  
ii. to directly use left censored data with modified formulae (Popovic et 

al. 2007). 
 
Formulation of KM method 1 According to the transformation method 
suggested by Helsel (2005b), the following steps are carried out to obtain the KM 
estimator of the survival probability: 
 

i. All left-censored values are first arranged in descending order and 
subtracted from an arbitrarily chosen value larger than maximum 
value of the data set. Consequently, the left-censored data will 
automatically be transformed into right-censored data arranged in 
ascending order. All observations are then ranked from lowest to 
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highest. For each subject i = 1, …, n (considering both censored and 
observed values), the transformed value will be 

 
 i iA x     (2) 

 
where Ai is an arbitrary constant, greater than the maximum 
observed value of the data set and xi is the ith observed value.  

 
ii. The number of both detected and censored data that are at and below 

each observed value (observations at risk) are then computed as 
 

 1j jb n r     (3) 
 

where n is the total number of observations regarding both observed 
and censored and rj is the rank of observed values only. 

 
iii. If dj denotes the number of observations at the jth value (for tied 

values it is greater than 1), the incremental probabilities are given by  
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and the product of the k incremental probabilities, going from high to 
low values for the k detected observations will give the KM 
estimator  
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iv. The mean survival time is then estimated as  
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Generally we consider  0
ˆ  1S x   and    0.ˆ

nS x   
 

v. The estimated mean survival time for original data will thus be  
 

    ˆ   ˆj j jx A x     (7) 

 
Formulation of KM method 2 The algorithm of this process was developed 
by Popovic et al. (2007) for estimating the survival function based, primarily, on 
the work of Kaplan and Meier (1958), Hosmer and Lemeshow (1999) and Ware 
and Demets (1976). According to this method, the following steps are to be 
carried out for obtaining this estimator: 
 

i. For each subject i = 1, …, n, xi is ordered in ascending order 
regarding both censored and observed data, and a censoring level δi 
is assigned such that δi = 1, if the subject is observed and δi = 0 if it 
is censored. Therefore, in case of a tie, censored entries should 
precede the observed events. Only the observed values along with 
their rank order ri and censoring level δi from previous step will be 
considered. Thus the subjects with δi = 1 are selected. For each entry, 
the incremental probabilities are calculated as  
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ii. Conventionally,  Ŝ x  is computed starting with the highest ranked 

entry Xn which is given as  
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and the estimator of the mean for the given range 
{ xi : {b1 ≤ xi ≤ b2}is given by 
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Since the survivorship function for left censored data equals unity 
for observations greater than the maximum observed event,  2ˆ  b  is 
equal to the maximum observation in the set. As a result, the 
probability of having detected all observations greater than the 
maximum value of the data set is one. The probability decreases as x 
becomes progressively closer to b1, with discontinuities at each 
measured event. 

 
Nelson-Aalen method According to Popovic et al. (2007), computation 
method of Nelson-Aalen estimator (Nelson, 1972 and Aalen, 1978) for left-
censored data set is similar to the KM method that uses left censored data directly. 
The basic difference between these two methods lies in the process of computing 
the survival probability, which instead of equation (7), is computed as  

 

  i
i

i

p
r


   (11) 

Semi-parametric Method (Regression on Order Statistics 
(ROS)) 

The algorithm of Regression on Order Statistics (ROS) method, developed by 
Helsel and Cohn (1988) can be summarized into following steps: 
 

i. Let Ej be the probability of exceeding the jth detection limit, by Aj the 
total number of uncensored observations in the range [j, j + 1) and by 
Bj the total number of observations, censored and uncensored, less 
than or equal to the jth detection limit. Note that for highest detection 
limit, Ej + 1 = 0 and Aj + Bj = n. The exceedance probability Ej for 
each detection limit can be utilized for the computation of plotting 
positions for both censored and uncensored data using the relation 

 

  1 11j
j j j

j j

A
E E E

A B 


   (12) 

 
and the number of non-detects below the jth detection limit is defined 
as 
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 1 1j j j jC B B A      (13) 
 

ii. A Weibull-type plotting position p can be calculated for a given 
uncensored observation by 

 

    
 11

1
j j

j i
j

E E
p i E r

A


  


  (14) 

 
where, Ej is the exceedance probability of the censoring limit below 
the observation, Ej + 1 is the exceedance probability of the censoring 
limit above the observation and  ir is the rank of the observation 
falling within the jth and (j + 1)th detection limit.  

 
iii. The Weibull-type plotting positions for censored observations are 

generally given by 
 

  
 1

1
j

i
j

E
p i r

C





  (15) 

 
iv. The normal quantiles of the plotting positions are known as the order 

statistics of the ROS method. A linear regression of the uncensored 
observations against the normal quantiles of the uncensored plotting 
positions is formed and the regression equation for predicting the 
unobserved data can be obtained as 

 
  normal scores ofPredicted log-valu  the plotting posite ions      (16) 

 
v. The censored concentrations are modeled using the parameters of the 

linear regression and normal quantiles of the censored data. These 
modeled censored observations are used along with the uncensored 
observations, to model the distribution of the sample population. 
Individually, they are not considered the values that would have 
existed in the absence of censoring. The observed uncensored values 
are then combined with modeled censored values to corporately 
estimate summary statistics of the entire population. By combining 
both types of values this method avoids transformation bias. 
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Methodology 

Simulation study 
In this study, randomly left censored time to event data was simulated from 
exponential, Weibull and lognormal distribution where 1000 simulations were 
conducted for different combinations of sample sizes and censoring levels. The 
levels of censoring were considered to be 15%, 25% and 50% and the sizes of 
samples considered are small (25), moderately large (80) and large (200). 

Results and Findings 

A comparison of the methods by this simulation is made on the basis of the 
performances of the four methods, KM-I, KM-II, N-A and ROS in terms of 
absolute bias and MCSE of the estimates. Note that the performances of the four 
methods according to the two criteria have a nested factorial structure of its own, 
the factors that are taken under consideration of the simulation are: 
 

1. Three different populations, namely exponential (λ = 0.5), Weibull 
(λ = 1, k = 2) and lognormal distribution (µ = 0.19 and σ = 1) 

2. Three different sample sizes 25, 80 and 200, 
3. Three different levels (15%, 25% and 50%) of censored observations, 

and 
4. Any possible interaction between the above factors. 

 
The major findings of the simulation studies are summarized in Table 1. 

From these findings, it can be observed that when the populations mean is 
estimated using a sample drawn from an exponential (0.5) distribution, the ROS 
method performs the best in terms of absolute bias for all sample sizes and 
censoring levels considered in the study. For sample size 80, with 15%, 25% and 
50% censored observations, the ROS method produced an absolute bias of 0.017, 
0.037 and 0.112 respectively, which are lowest among the four methods, whereas 
the corresponding highest (among the four methods) absolute biases, 0.028, 0.083 
and 0.412 respectively are observed for the KM-I method. Similar observations 
can be made for sample sizes 25 and 200 from exponential population, where 
ROS method produced the least absolute bias for estimate of mean for each of the 
censoring levels 15%, 25% and 50% and KM-I method produced the 
corresponding highest absolute bias. 
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Table 1. Comparison of Bias and Monte Carlo Standard Error (MCSE) of mean time to 

event for KM-I, KM-II, N-A and ROS methods under three different distributions 
(exponential with λ = 0.5, Weibull with λ = 1, k = 2 and lognormal with µ = 0.19 and σ = 1) 
 

D
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 Absolute Bias  MCSE 
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E
x
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n
e

n
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a
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 25 0.15  0.047 0.163 0.206 0.025  0.397 0.422 0.414 0.401 

  0.25  0.112 0.232 0.282 0.042  0.390 0.415 0.409 0.401 

  0.50  0.486 0.194 0.301 0.108  0.367 0.401 0.387 0.418 

 80 0.15  0.028 0.174 0.188 0.017  0.216 0.229 0.228 0.217 

  0.25  0.083 0.234 0.252 0.037  0.211 0.225 0.225 0.217 

  0.50  0.412 0.157 0.215 0.112  0.190 0.208 0.203 0.221 

 200 0.15  0.025 0.169 0.175 0.017  0.141 0.148 0.148 0.142 

  0.25  0.077 0.233 0.242 0.038  0.138 0.146 0.146 0.142 

  0.50  0.395 0.127 0.164 0.120  0.124 0.134 0.131 0.146 

W
e

ib
u

ll 

 25 0.15  0.046 0.155 0.198 0.025  0.388 0.408 0.401 0.392 

  0.25  0.104 0.239 0.290 0.035  0.395 0.416 0.411 0.409 

  0.50  0.476 0.209 0.313 0.094  0.377 0.414 0.339 0.440 

 80 0.15  0.033 0.157 0.172 0.023  0.219 0.228 0.227 0.221 

  0.25  0.092 0.230 0.249 0.046  0.221 0.236 0.255 0.227 

  0.50  0.416 0.155 0.215 0.119  0.192 0.210 0.207 0.227 

 200 0.15  0.027 0.168 0.173 0.019  0.137 0.145 0.144 0.138 

  0.25  0.079 0.231 0.240 0.041  0.133 0.140 0.140 0.137 

  0.50  0.392 0.133 0.169 0.118  0.122 0.134 0.131 0.143 

L
o
g

n
o

rm
a

l 

 25 0.15  0.029 0.147 0.183 0.001  0.427 0.418 0.411 0.428 

  0.25  0.070 0.218 0.260 0.004  0.425 0.402 0.396 0.426 

  0.50  0.302 0.273 0.353 0.020  0.422 0.371 0.359 0.427 

 80 0.15  0.032 0.133 0.145 0.009  0.247 0.246 0.245 0.247 

  0.25  0.065 0.200 0.216 0.008  0.245 0.236 0.235 0.245 

  0.50  0.265 0.228 0.271 0.001  0.237 0.208 0.204 0.242 

 200 0.15  0.022 0.136 0.141 0.002  0.155 0.151 0.151 0.155 

  0.25  0.055 0.203 0.211 0.001  0.154 0.147 0.146 0.154 

  0.50  0.248 0.213 0.239 0.003  0.148 0.135 0.133 0.151 

 
 

In case of Weibull (1, 2) population, the absolute bias produced by the ROS 
method is, again, the least among those of the four methods for each of the sample 
sizes and each of the censoring levels considered in the simulation. In comparison 
between methods, we can observe that for sample size 25 with 25% censored 
observations, absolute bias for the KM-I, KM-II, N-A and ROS methods are 
0.104, 0.239, 0.289 and 0.035 respectively. For sample size 80, the computed 
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absolute bias for the ROS method for 15%, 25% and 50% censored observations 
are 0.023, 0.046 and 0.119 respectively. 

Considering the lognormal (0.19, 1) population, the absolute bias produced 
by the ROS method is still the least among those of the four methods for each of 
the sample sizes and each of the all censoring levels considered in the simulation. 
In comparison between methods, we observe for sample size 80 with 25% 
censored observations, absolute bias for the KM-I, KM-II, N-A and ROS methods 
are 0.065, 0.200, 0.216 and 0.008 respectively. For sample size 25, the computed 
absolute bias for the ROS method for 15%, 25% and 50% censored observations 
are 0.001, 0.004 and 0.020 respectively. 

For all the methods and for all the sample sizes from lognormal (0.19, 1) 
population, the simulation results conform to the almost obvious affirmation that 
the absolute bias decreases as the censoring levels increases. When the samples 
are drawn from an exponential (0.5) or Weibull (1, 2) population, the same 
observation, that is, the absolute bias decreases as the censoring level increases, 
can be made for the KM-I and ROS methods and for all the sample sizes. The 
KM-II and N-A methods in cases of both exponential (0.5) or Weibull (1, 2) 
population, however, surprisingly showed inconsistency where the absolute bias 
decreases for 50% censoring levels. 

The effect of increasing sample size on the absolute bias of the estimate of 
mean for the three methods other than the ROS method seems to be apparent for 
all the parent populations. For example, with exponential (0.5) population, the 
ROS method produces an absolute bias of 0.025, 0.017 and 0.017 for the sample 
sizes 25, 80 and 200 respectively at a censoring level of 15%. This eventually is 
indicating evidence of ROS method being insensitive to the increase of sample 
size from 80 to 200. The method has also been observed to be robust to the 
change of sample sizes with 25% and 50% of censoring levels and with Weibull 
(1, 2) and lognormal (0.19, 1) populations. 

Although, the four methods differ substantially in terms of the bias of the 
estimated mean, it is noticeable that for lognormal (0.19, 1) population, the Monte 
Carlo Standard Error (MCSE) of the estimated mean is almost the same for the 
methods for same sample size and level of censoring. However, for exponential 
(0.5) and Weibull (1, 2) populations, slight differences in MCSEs is observed, and 
these differences reveal that the KM-I and ROS methods have a marginal 
advantage over the KM-II and N-A method. For example, for Weibull (1, 2) 
population, the MCSE for the four methods, KM-I, KM-II, N-A and ROS, for 
sample size 80 with 15% censoring level are 0.054, 0.057, 0.057 and 0.054 
respectively. The difference of MCSE for different methods is seemingly higher 
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for smaller sample sizes and higher level of censoring. The generally anticipated 
feature that the MCSE would be smaller for larger sample has been observed 
throughout. 

Conclusion 

The discussion in the earlier section can be summarized to reach to the following 
conclusions: 
 

1. The ROS method produces the least absolute bias among those of the 
four methods for all sample sizes, all level of censoring for 
exponential (0.5), Weibull (1, 2) and lognormal (0.19, 1) populations. 

2. The ROS method is more robust to the level of censoring. For 
increasing level of censoring, absolute bias of the estimate of mean 
increase for all sample sizes and all methods except for the ROS 
method. 

3. For larger sample sizes, the MCSE of the estimate of mean of ROS 
method is the least among those of the four methods, although the 
differences of MSE are trivially small. 

4. The ROS method is more robust to the change of sample size. For 
increasing sample size, absolute bias of both the estimates of mean 
increase for all levels of censoring and all methods except for the 
ROS method. 
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The Kumaraswamy exponential distribution, a generalization of the exponential, is 
developed as a model for problems in environmental studies, survival analysis and 
reliability. The estimation of parameters is approached by maximum likelihood and the 
observed information matrix is derived. The proposed models are applied to three real 
data sets. 
 
Keywords: Information matrix, Maximum likelihood, Moment generating function. 
 

Introduction 

A random variable X has the exponential distribution if its cumulative distribution 
function for x > 0 is given by 
 
   1 xF x     (1) 
 
where λ > 0 is a scale parameter, the probability density function is 
 
   xf x     (2) 
 
Using the Kumaraswamy link function by Cordeiro and de Castro (2011) given as 
 

        
11

, 1
ab bg x a b f x F x F x


      
  (3) 
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By inserting (1) and (2) in (3) we have 
 

      
11

, 1 1 1

                            , , 0

ab bx xg x a b

a b

  


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

  (4) 

 
Another term of Kumaraswamy distribution can be obtained using the 

binomial series expansion. The Kumaraswamy exponential distribution in 
equation (4) can be expanded as follows: 
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as 
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Statistical inference 

Given a random variable X following equation (4), the likelihood function is 
obtained as 
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Taking log-likelihood of the above 
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Fisher information 
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Application 

For the sake of numerical illustrations, the two data sets used by Raja and Mir 
(2011) are considered. The first data set is on the failure time of the conditioning 
system of an airplane and the second is the runs scored by a Cricketer in 27 
innings at national level. 
 
 
Table 1. Descriptive Statistics on Failure Time on Conditional System 

 

Min Q1 Q2 Mean Q3 Max Var 
1.0 12.5 22.0 59.6 83.0 261.0 5167.421 

 

Skewness Kurtosis 
1.693605 4.966655 

 
 
Table 2. Descriptive Statistics in runs scored by a Cricketer 

 

Min Q1 Q2 Mean Q3 Max Var 
2.00 8.00 25.00 36.41 50.00 127.00 1149.02 

 
Skewness Kurtosis 
1.124548 3.492725 
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Table 3. Failure Time on Conditional System 

 

 
Model 

 
Estimates 

Statistics 
Log-

likelihood AIC 

Weibull α^ =0.8536, λ^ =0.0183 -151.970 305.94 

Lognormal μ ＾=3.358, λ^ =1.3190 151.621 305.242 

Exponentiated 
Weibull α^ =3.824, θ ＾=0.1732, δ ＾=82.235 -149.567 308.134 

Exponentiated 
Gumbel α^ =1.9881, λ^ =49.0638 -148537 299.074 

Exponentiated 
Lognormal α^ =0.1542, μ ＾=3.1353, δ ＾=0.3648 -148.659 303.318 

Lehman Type II 
Exponential α^ =0.3439, λ^ =0.0057 -152.6097 309.2593 

Exponential λ^ =0.0168 -152.6297 307.2593 

Kumaraswamy 
Exponential 
Distribution 

α^ =10.142, b ＾=0.9129, λ^ =0.0005 -107/9653 221.9306 

 
 
Table 4. Runs Scored by a Cricketer 

 

  
Model 

 
Estimates 

Statistics 
Log-

likelihood AIC 

Gamma α^ =0.7235, λ=0.0127 -125.654 253.308 

Weibull α^ =1.040, λ=36.985 -124.021 250.042 

Lognormal μ ＾=3.0534, λ =1.174 -125.059 252.118 

Exponentiated 
exponential 

α^ =0.8126, λ=0.0153 -125.945 253.93 

Exponentiated 
Lognormal α^ =0.578, μ ＾=3.1836, δ ＾=0.7834 -125.965 257.93 

Exponentiated 
Gumbel 

α^ =1.873, λ=45.264 -124.843 251.686 

Exponential λ^ =0.0275 -124.0589 250.1177 

Kumaraswamy 
Exponential α^ =0.13006, b ＾=0.9557, c^ =0.00014 -108.7224 223.4449 
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Conclusion 

The probability density function of Kumaraswamy-exponential distribution was 
discussed and applied for two data sets. In first data set regarding failure times of 
the conditioning system of an aeroplane. Kumaraswamy exponential provided the 
best fit followed by exponentiated Gumbel. In second data set regarding runs 
scored by a cricketer Kumaraswamy exponential, Weibull and exponential 
distributions provided better fit. 
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The method of maximum likelihood estimation based on Median Ranked Set Sampling 
(MRSS) was used to estimate the shape and scale parameters of the Exponentiated 
Exponential Distribution (EED). They were compared with the conventional estimators. 
The relative efficiency was used for comparison. The amount of information (in Fisher's 
sense) available from the MRSS about the parameters of the EED were be evaluated. 
Confidence intervals for the parameters were constructed using MRSS. 
 
Keywords: Exponentiated exponential distribution; Fisher information; Maximum 
likelihood estimation; Median ranked set sampling; Ranked set sampling 
 

Introduction 

One of the most common approaches of data collection is that of a simple random 
sample (SRS). Other more structured sampling designs, such as stratified 
sampling or probability sampling, are also available to help make sure that the 
obtained data collection provides a good representation of the population of 
interest. Any such additional structure of this type revolves around how the 
sample data themselves should be collected in order to provide an informative 
image of the larger population. With any of these approaches, once the sample 
items have been chosen, the desired measurements are collected from each of the 
selected items. 

Many efforts are made to develop statistical techniques for data collection 
that generally leads to more representative samples (samples whose 
characteristics accurately reflect those of the underlying population). To this end, 
ranked set sampling and some of its variations were developed.  

mailto:monjedsamuh@ppu.edu
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In this section, the ranked set sampling (RSS) and median ranked set 
sampling (MRSS) are presented. The exponentiated exponential distribution 
(EED) and its properties are also discussed. 

Ranked set sampling  

RSS was proposed by McIntyre (1952) to estimate a pasture yield in Australia. 
This method was not used for a long time, but in the last 30 years a lot of research 
work was done using this method, which has become very important in different 
aspects. 

SRS and RSS are both independent, but they differ in several ways, like: 
 
1. RSS is more efficient than SRS with the same number of measured 

elements.  
2. Development of RSS procedure is more difficult than that of SRS.  
3. In SRS, just m elements are needed but in RSS m elements are chosen 

out of m2 to achieve the desired sample.  
 
Also stratified random sampling and RSS are different in some things like: 
 

1. In stratified sampling we limited with no more six strata but in RSS we 
are not restricted ourselves with the number of sets.  

2. In both of them SRS is used but in RSS ordering the elements in each 
set is needed before selecting the sample.  

 
RSS as a method used basically for infinite population where the set of sampling 
units drawn from a population can ranked in a cheap way which is not costly 
and/or time consuming. The steps of choosing RSS are as follows:  
 

1. Randomly select m sets each of size m elements from the population 
under study.  

2. The elements for each set in Step (1) are ranked visually or by any 
negligible cost method that does not require actual measurements.  

3. Select and quantify the ith minimum from the ith set, i = 1, 2, …, m to 
get a new set of size m, which is called the ranked set sample.  

4. Repeat Steps (1) − (3) h times (cycles) until obtaining a sample of size 
n = mh.  
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Figure 1 illustrates the procedure of RSS in terms of matrices. Let 
Yi = {X(ii); i = 1, …, m}; that is, the obtained RSS, {X(11), X(22), …, X(mm)}, is 
denoted by {Y1, Y2, …, Ym}. If the process is repeated h cycles, then the RSS can 
be represented as a matrix of size n = hm as it is shown in Step 4 of Figure 1. 
 
 

     

     

     

      

11 12 1 11 12 1

21 22 2 21 22 2

1 2
1 2

11 22
11 12 1

21 22 2

1 2

Step 1: Step 2: 

Step 3: , , , Step 4: 

m m

m m

m m mm
m m mm

mm
m

m

h h hm

X X X X X X
X X X X X X

X X X X X X

X X X
Y Y Y
Y Y Y

X X X

   
   
   
   
   
   
   

 

  
 
 
 
 
 
 

 

 
Figure 1. Ranked set sampling procedure 

 

 
 

RSS as a method is applicable where ranking and sampling units is much 
cheaper than the measurement of the variable of interest. In particular RSS can be 
used in the following situation: 

 
1. Ranking units in a set can be done easily by judgment in the variable 

of interest through visual inspection or with the help of certain 
auxiliary means.  

2. If there is a concomitant variable can be obtained easily (concomitant 
is a variable which is not of major concern but are correlated with the 
variable of interest).  

Median ranked set sampling  

MRSS was suggested by Muttlak (1997) as a method to estimate the population 
mean instead of RSS to reduce the errors, and increase the efficiency over RSS 
and SRS. It is described by the following steps: 
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1. Randomly select m2 sample units from the target population.  
2. Allocate the m2 units into m sets each of size m, and rank the units 

within each set.  
3. From each set in Step (2), if the sample size m  is odd select from each 

set the 1
2

thm  
 
 

 smallest rank unit i.e the median of each set. While if 

the sample size m is even select from the first 
2
m  sets the 

2

thm 
 
 

 

smallest rank unit and from the second 
2
m

 sets take the 2
2

thm  
 
 

 

smallest rank unit. This step yields m sample elements which is the 
median RSS. 

4. Repeat Steps (1) − (3) h times (cycles) until obtaining a sample of size 
n = mh. 

 
Figure 2 illustrates the procedure of MRSS when m = 4 in terms of matrices. 

Let us denote the MRSS 
        12 22 33 43, , ,X X X X  by  1 2 3 4, , ,Y Y Y Y . If the process 

is repeated h cycles, then the RSS can be represented as a matrix of size n = 4h as 
it is shown in Step 4 of Figure 2. 
 
 

       

       

       

       

        

11 12 13 14 11 12 13 14

21 22 23 24 21 22 23 24

31 32 33 34
31 32 33 34

41 42 43 44
41 42 43 44

12 22 33 44
11 12 13 14

21 22 23 24

Step 1: Step 2: 

Step 3: , , , Step 4: 

X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X

X X X X

X X X X
Y Y Y Y
Y Y Y Y

   
   
   
   
   
   
   

 

1 2 3 4h h h hY Y Y Y

 
 
 
 
 
 
 

  

 
Figure 2. Median ranked set sampling procedure 

 



SAMUH & QTAIT 

219 

The exponentiated exponential distribution  
The exponentiated exponential distribution (EED) introduced by Gupta and 
Kundu (1999) as a generalization of the exponential distribution. It is of great 
interest and is popularly used in analyzing lifetime or survival data. Consider the 
random variable X that is exponentiated exponential-distributed with scale 
parameter λ > 0 and shape parameter α > 0. The probability density function of X 
is given by 
 

   
1

; , 1 ; 0x xf x e e x


   


    . 

 
The corresponding cumulative distribution function is given by 
 

   ; , 1 xF x e


    . 

 
It is clear that the EED is simply the αth power of the exponential cumulative 

distribution. So, the case where α = 1 is called the exponential distribution. The 
mean, variance, skewness, kurtosis and the pdf's curves of the EED for different 
values of the scale and shape parameters are shown in Table 1. 

The properties of the EED have been studied by many authors, see for 
example Gupta and Kundu (2001), Nadarajah (2011), Ghitany et al. (2013), and 
Ristić and Nadarajah (2014). 

Literature Review  

Stokes (1976) used RSS for estimating the parameters in a location-scale family 
of distributions. The RSS estimators of the location and scale parameters are 
shown to be more efficient than the SRS estimators. She also used RSS to 
estimate the correlation coefficient of a bivariate normal distribution. 

Lam et al. (1994) used RSS for estimating two-parameter exponential 
distribution. 

 

  
 1 exp
y

f y


 

  
  

 
  (1) 
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Table 1. The mean, variance, skewness, kurtosis and the pdf's curves of the EED for 

different values of α and λ. 
 

(α,λ) Properties of the EED 

(1,1) 

  
PDFs Curve: 

Mean: 1 Skewness: 2 

 

Variance: 1 Kurtosis: 9 

(0.5,1.5) 

    PDFs Curve: 
Mean: 0.2845 Skewness: 3.8514 

 

Variance: 0.2790 Kurtosis: 19.6675 

(1.5,2.5) 

  
PDFs Curve: 

Mean: 0.7364 Skewness: -0.5053 

 

Variance: 1.0640 Kurtosis: 0.5123 

(0.5,0.5) 

    PDFs Curve: 
Mean: 0.8536 Skewness: 3.8514 

 

Variance: 2.5109 Kurtosis: 19.6675 

 
 

An unbiased estimators of   and   based on RSS with their variances are 
derived. They made a comparison between these estimators with their counterpart 
in SRS. 

Stokes (1995) considered the location-scale distribution, xF 



 
 
 

, and 

estimated μ and σ using the methods of maximum likelihood estimation and best 
linear unbiased estimation within the framework of RSS. Sinha et al. (1996) used 
RSS to estimate the parameters of the normal and exponential distributions. Their 
work assumed partial knowledge of the underlying distribution without any 
knowledge of the parameters. For each parameter, they proposed best linear 
unbiased estimators for full and partial RSS. 
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Samawi and Al-Sagheer (2001) studied the use of Extreme RSS (ERSS) and 
MRSS for distribution function estimation. For a random variable X, it is shown 
that the distribution function estimator when using ERSS and MRSS are more 
efficient than when using SRS and RSS for some values of a given x. 

Abu-Dayyeh and Sawi (2009) considered the maximum likelihood estimator 
and the likelihood ratio test for making inference about the scale parameter of the 
exponential distribution in case of moving extreme ranked set sampling (MERSS). 
The estimators and test cannot be written in closed form. Therefore, a 
modification of the maximum likelihood estimator using the technique suggested 
by Maharota and Nanda (1974) was considered. It was used to modify the 
likelihood ratio test to get a test in closed form for testing a simple hypothesis 
against one-sided alternatives. 

Al-Omari and Al-Hadhrami (2011) used ERSS to estimate the parameters 
and population mean of the modified Weibull distribution. The maximum 
likelihood estimators are investigated and compared to the corresponding one 
based on SRS. It was found that the estimators based on ERSS are more efficient 
than estimators using SRS. The ERSS estimator of the population mean was also 
found to be more efficient than the SRS based on the same number of measured 
units. 

Haq et al. (2013) proposed a partial ranked set sampling (PRSS) method for 
estimation of population mean, median and variance. On the basis of perfect and 
imperfect rankings, Monte Carlo simulations from symmetric and asymmetric 
distributions are used to evaluate the effectiveness of the proposed estimators. It 
was found that the estimators under PRSS are more efficient than the estimators 
based on simple random sampling. 

Abu-Dayyeh et al. (2013) used RSS for studying the estimation of the shape 
and location parameters of the Pareto distribution. The estimators were compared 
with their counterpart in SRS in terms of their biases and mean square errors. It 
was shown that the estimators based on RSS can be real competitors against those 
based on SRS. 

Sarikavanij et al. (2014) considered simultaneous comparison of the location 
and scale estimators of a two-parameter exponential distribution based on SRS 
and RSS by using generalized variance (GV). They suggested various RSS 
strategies to estimate the scale parameter. Their performances in terms of GV 
were compared with SRS strategy. It was shown that the minimum values of set 
size, m, based on RSS, which would result in smaller GV than that based on SRS. 
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Maximum likelihood estimation and fisher information based on SRS 
Consider a random sample coming from the EED f(x; α; λ) where the values of α 
and λ are unknown. The likelihood function is given by 
 

11

1

( , ) (1 ) ; 0, 0.

n

i
i i

n x
xn n

SRS
i

L e e


      


 




   

 
 
Thus, the log likelihood function is 
 

 
1 1

log ( , ) log log ( 1) log(1 ) .i

n n
x

SRS i
i i

L n n e x     

 

         (2) 

 
The normal equations become 
 

 
1 1

log ( , ) ( 1) 0.
1

i

i

xn n
SRS i

ix
i i

L x en x
e





 


 




 


    

 
    (3) 

 

 
1

log ( , ) log(1 ) 0,i

n
xSRS

i

L n e  

 






   


   (4) 

 
 
From Equation 4, the maximum likelihood estimator (MLE) of α as a function of 
λ, say  ̂  , is 
 

 
1

ˆ ( ) .
log 1 i

n
x

i

n

e 

 








 

 
Substituting  ̂   in Equation 2, we obtain the profile log-likelihood of λ as 
 

 1

1 1

ˆlog ( ( ), ) log log log(1 )

log log(1 ) .

i

i

n
x

SRS
i

n n
x

i
i i

L n n n e

n n e x




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 







 

   
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

 
  (5) 

The MLE of λ, can be obtained by maximizing (5) w.r.t λ as 
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1 1 1
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1 1log(1 )

i i

i i
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  (6) 

 
However, the solutions are not in closed forms, in order to obtain estimates 

for α and λ, the normal equations can be solved numerically. 
Fisher information (FI) number is used to measure the amount of 

information that an observable sample carries about the parameter(s). The FI 
number for the parameter θ is defined as 

 
2

2

log ( )( ) .LFI 







  
 

Based on the random sample 1 2, , , nX X X  the FI numbers of α and λ are, 
respectively, given by 
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Maximum likelihood estimation and fisher information based on 
MRSS 

Consider the maximum likelihood estimation of the parameters α and λ of EED 
under MRSS paying attention to the odd and even set sizes. 

Odd set sizes  

Suppose {Yji; j = 1, 2, …, m} is a MRSS from an EED, where h is the 
number of cycles and m is the set size. Since the set size m is assumed to be odd, 
the Yji are independent and identically distributed as the distribution of the 

1
2

thm  
 
 

 order statistics of the random sample X1, X2, …, Xm; that is 
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The likelihood function of MRSS for odd set size m is given by 
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where c1 is a constant. Thus, the log likelihood function is 
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where d1 is a constant. 

The normal equations become 
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The MLEs of the parameters α and λ are the solutions of the Equations (9) and 
(10). However, the solutions are not in closed forms, in order to obtain estimates 
for α and λ, the normal equations can be solved numerically. Based on the MRSS 
{Yji; j = 1, 2, …, h; i = 1, 2, …,m}, for odd set size m, the FI numbers of α and λ 
are, respectively, given by 
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The observed FI numbers are evaluated at the maximum likelihood estimates. 

Even set sizes 

Because the set size m is assumed to be even, for each  1,2, , ; ~ ,
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random sample 1 2, , , mX X X ; therefore, for 1, , ;   
2 ji
mi Y   are independent and 

identically distributed as 
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Note {Yji; j = 1, 2, …, h; i = 1, 2, …,m} are independent. Thus, the 
likelihood function of MRSS for even set size m is given by 
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where c2 is a constant. Thus, the log likelihood function is 
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where d2 is a constant. 

The normal equations become 
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The MLEs of the parameters α and λ are the solutions of the Equations (15) 

and (16). However, the solutions are not in closed forms, in order to obtain 
estimates for α and λ, the normal equations can be solved numerically. Based on 
the MRSS {Yji; j = 1, 2, …, h; i = 1, 2, …,m}, for even set size m, the FI numbers 
of α and λ are, respectively, given by 
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The observed FI numbers are evaluated at the maximum likelihood 
estimates. 

The comparison between the resulting estimators under MRSS and SRS can 
be done using the asymptotic efficiency (see Stokes, 1995). The asymptotic 
efficiency of MRSS w.r.t SRS for estimating θ is defined by 
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Interval Estimates  

Let X1, …, Xn be a random sample from f (x;θ), where θ is an unknown quantity. 
A confidence interval for the parameter θ, with confidence level or confidence 
coefficient 1 − γ, is an interval with random endpoints 
[SL(X1, …, Xn), Su(X1, …, Xn)]. It is given by  
 

    1 1, , , , 1 .L n U nP S X X S X X        
 

The interval [SL(X1, …, Xn), Su(X1, …, Xn)] is called a 100(1 – γ)% 
confidence interval for θ. 

For large sample size, the maximum likelihood estimator, under appropriate 
regularity conditions (see Davison, 2008, p.118), has many useful properties, 
including reparametrization-invariance, consistency, efficiency, and the sampling 
distribution of a maximum likelihood estimator ˆ

MLE  is asymptotically unbiased 
and also asymptotically normal with its variance obtained from the inverse Fisher 
information number of sample size 1 at the unknown parameter θ; that is, 

 1ˆ , ( )MLE N FI    as n → ∞. Therefore, the approximate 100(1 – γ)% 

confidence limits for the ˆ
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where zγ is the γth upper percentile of the standard normal distribution. Therefore, 
the approximate 100(1 – γ)% confidence limits for the scale and location 
parameters of the EED are given, respectively, by 
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Then, the approximate confidence limits for α and λ will be constructed 

using Equation (17) and (18), respectively. 
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Simulation Study  

To investigate the properties of the maximum likelihood estimators of the scale 
and locations parameters of the EED a simulation study is conducted. Monte 
Carlo simulation is applied for different sample sizes, m = {2,3,4,5} and 
h = {10,50,100}, and for different parameter values, 
(α, λ) = {(1,1),(0.5,1.5),(1.5,2.5)}. The estimates of α and λ, the bias estimates, the 
MSEs, and the efficiency values are computed over 2000 replications for different 
cases. The results are reported in Tables 2-4. Moreover, the observed Fisher 
information matrices and the asymptotic efficiency in estimating α and λ under 
SRS and MRSS are calculated and the results reported in Table 5. The observed 
Fisher information numbers of α and λ based on SRS are denoted by FISRS ( ̂ ) 
and FISRS ( ̂ ), respectively, and the observed information numbers of α and λ 
based on MRSS are denoted by FIMRSS ( ̂ ) and FIMRSS ( ̂ ), respectively. The 
asymptotic efficiency, Aeff, for estimating α is found as the ratio  
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and for estimating λ is found as the ratio 
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Confidence intervals based on SRS and MRSS for (α, λ) = (1.5,2.5) for 
different sample sizes are constructed at 1 – γ = 0.95 level of confidence using 
Equation (17) and (18), respectively, and the results are shown in Table 5. 
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Table 2. The Bias, MSE, and Efficiency values of estimating the parameters (α = 1, λ = 1) 
under SRS and MRSS. 
 

      α = 1 λ = 1 

m h Sampling ̂   Bias( ̂ ) MSE( ̂ ) eff ̂  Bias( ̂ ) MSE( ̂ ) eff 

2 

10 
SRS 1.1731 0.1731 0.2063 

 
1.1346 0.1346 0.1490 

 
MRSS 0.7835 -0.2165 0.1270 1.6247 0.7520 -0.2480 0.1446 1.0300 

50 
SRS 1.0298 0.0298 0.0213   1.0231 -0.3187 0.1147   

MRSS 0.7075 -0.2925 0.0954 0.2228 0.6813 -0.3187 0.1147 0.1791 

200 
SRS 1.0066 0.0066 0.0044 

 
1.0090 0.0090 0.0047 

 
MRSS 0.6915 -0.3085 0.0973 0.0451 0.6626 -0.3374 0.1168 0.0401 

           

3 

10 
SRS 1.1015 0.1015 0.1038 

 
1.0782 0.0782 0.0650 

 
MRSS 1.0949 0.0949 0.0880 1.1795 1.0730 0.0730 0.0650 1.1968 

50 
SRS 1.0229 0.0229 0.0125   1.0160 0.0160 0.0117   

MRSS 1.0165 0.0165 0.0116 1.0770 1.0114 0.0114 0.0103 1.1317 

200 
SRS 1.0056 0.0056 0.0030 

 
1.0037 0.0037 0.0028 

 
MRSS 1.0052 0.0052 0.0027 1.1180 1.0036 0.0036 0.0026 1.1019 

           

4 

10 
SRS 1.0612 0.0612 0.0599 

 
1.0550 0.0550 0.0561 

 
MRSS 0.8719 -0.1281 0.0492 1.2174 0.8553 -0.1447 0.0561 0.9920 

50 
SRS 1.0154 0.0154 0.0091   1.0141 0.0141 0.0091   

MRSS 0.8298 -0.1702 0.0347 0.2612 0.8189 -0.1811 0.0396 0.2291 

200 
SRS 1.0027 0.0027 0.0022 

 
1.0034 0.0034 0.0022 

 
MRSS 0.8230 -0.1770 0.0326 0.0669 0.8122 -0.1878 0.0369 0.0600 

           

5 

10 
SRS 1.0514 0.0514 0.0474 

 
1.0460 0.0460 0.0415 

 
MRSS 1.0571 0.0571 0.0396 1.1966 1.0486 0.0486 0.0351 1.1821 

50 
SRS 1.0099 0.0099 0.0076   1.0076 0.0076 0.0074   

MRSS 1.0099 0.0099 0.0064 1.1812 1.0075 0.0075 0.0060 1.2246 

200 
SRS 1.0044 0.0044 0.0019 

 
1.0028 0.0028 0.0018 

 
MRSS 1.0025 0.0025 0.0014 1.3314 1.0014 0.0014 0.0014 1.2649 
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Table 3. The Bias, MSE, and Efficiency values of estimating the parameters (α = 0.5, 
λ = 1.5) under SRS and MRSS.  
 

      α = 0.5 λ = 1.5 

m h Sampling ̂   Bias( ̂ ) MSE( ̂ ) eff ̂  Bias( ̂ ) MSE( ̂ ) eff 

2 

10 
SRS 0.5687 0.0687 0.0349 

 
1.7938 0.2938 0.6328 

 
MRSS 0.4062 -0.0938 0.0240 1.4557 1.0823 -0.4177 0.4572 1.3842 

50 
SRS 0.5124 0.0124 0.0041   1.5499 0.0499 0.0730   

MRSS 0.3748 -0.1252 0.0178 0.2317 0.9367 -0.5633 0.3566 0.2048 

200 
SRS 0.5024 0.0024 0.0009 

 
1.5181 0.0181 0.0160 

 
MRSS 0.3680 -0.1320 0.0179 0.0493 0.9006 -0.5994 0.3676 0.0445 

           

3 

10 
SRS 0.5410 0.0410 0.0188 

 
1.6688 0.1688 0.3043 

 
MRSS 0.5366 0.0366 0.0146 1.2872 1.6565 0.1565 0.2594 1.1732 

50 
SRS 0.5100 0.0100 0.0025   1.5341 0.0346 0.0418   

MRSS 0.5067 0.0067 0.0021 1.1871 1.5246 0.0246 0.0382 1.0930 

200 
SRS 0.5024 0.0024 0.0006 

 
1.5080 0.0080 0.0099 

 
MRSS 0.5021 0.0021 0.0005 1.2382 1.5077 0.0077 0.0094 1.0532 

           

4 

10 
SRS 0.5238 0.0238 0.0110 

 
1.6165 0.1165 0.2066 

 
MRSS 0.4463 -0.0537 0.0090 1.2301 1.2424 -0.2576 0.1895 1.0905 

50 
SRS 0.5062 0.0062 0.0018   1.5284 0.0284 0.0318   

MRSS 0.4290 -0.0710 0.0062 0.2929 1.1656 -0.3344 0.1345 0.2365 

200 
SRS 0.5010 0.0010 0.0004 

 
1.5070 0.0070 0.0077 

 
MRSS 0.4263 -0.0737 0.0057 0.0775 1.1520 -0.3480 0.1263 0.0608 

           

5 

10 
SRS 0.5205 0.0205 0.0091 

 
1.5984 0.0984 0.1544 

 
MRSS 0.5219 0.0219 0.0065 1.3956 1.6029 0.1029 0.1371 1.1265 

50 
SRS 0.5041 0.0041 0.0015   1.5166 0.0166 0.0260   

MRSS 0.5039 0.0039 0.0011 1.3306 1.5160 0.0160 0.0225 1.1578 

200 
SRS 0.5019 0.0019 0.0004 

 
1.5055 0.0055 0.0062 

 
MRSS 0.5010 0.0010 0.0003 1.5124 1.5033 0.0033 0.0053 1.1736 
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Table 4. The Bias, MSE, and Efficiency values of estimating the parameters (α = 1.5, 
λ = 2.5) under SRS and MRSS. 
 

      α = 1.5 λ = 2.5 

m h Sampling ̂   Bias( ̂ ) MSE( ̂ ) eff ̂  Bias( ̂ ) MSE( ̂ ) eff 

2 

10 
SRS 1.8041 0.3041 0.6164 

 
2.7886 0.2886 0.7157 

 
MRSS 1.1505 -0.3495 0.3413 1.8061 1.9210 -0.5790 0.7692 0.9304 

50 
SRS 1.5507 0.0507 0.0575   2.5493 0.0493 0.1040   

MRSS 1.0212 -0.4788 0.2538 0.2264 1.7673 -0.7327 0.6082 0.1710 

200 
SRS 1.5119 0.0119 0.0116 

 
2.5198 0.0198 0.0238 

 
MRSS 0.9948 -0.5052 0.2605 0.0445 1.7256 -0.7744 0.6157 0.0387 

           

3 

10 
SRS 1.6762 0.1762 0.2947 

 
2.6681 0.1681 0.3835 

 
MRSS 1.6680 0.1680 0.2600 1.1336 2.6581 0.1581 0.3202 1.1976 

50 
SRS 1.5380 0.0380 0.0329   2.5341 0.0341 0.0589   

MRSS 1.5285 0.0285 0.0320 1.0270 2.5245 0.0245 0.0520 1.1341 

200 
SRS 1.5092 0.0092 0.0078 

 
2.5080 0.0080 0.0145 

 
MRSS 1.5088 0.0088 0.0074 1.0628 2.5078 0.0078 0.0130 1.1103 

           

4 

10 
SRS 1.6086 0.1086 0.1688 

 
2.6194 0.1194 0.2785 

 
MRSS 1.2888 -0.2112 0.1343 1.2568 2.1679 -0.3321 0.2911 0.9568 

50 
SRS 1.5267 0.0267 0.0241   2.5311 0.0311 0.0461   

MRSS 1.2173 -0.2827 0.0951 0.2531 2.0889 -0.4111 0.2045 0.2255 

200 
SRS 1.5049 0.0049 0.0057 

 
2.5074 0.0074 0.0113 

 
MRSS 1.2054 -0.2946 0.0901 0.0636 2.0742 -0.4258 0.1897 0.0594 

           

5 

10 
SRS 1.5897 0.0897 0.1286 

 
2.5990 0.0990 0.2071 

 
MRSS 1.6012 0.1012 0.1160 1.1095 2.6059 0.1059 0.1740 1.1900 

50 
SRS 1.5169 0.0169 0.0201   2.5163 0.0163 0.0375   

MRSS 1.5172 0.0172 0.0181 1.1081 2.5160 0.0160 0.0307 1.2210 

200 
SRS 1.5073 0.0073 0.0050 

 
2.5063 0.0063 0.0093 

 
MRSS 1.5041 0.0041 0.0040 1.2501 2.5030 0.0030 0.0072 1.2845 

 
  



ESTIMATION FOR PARAMETERS OF THE EED USING MRSS 

234 

Table 5. The observed Fisher information matrix, the variance-covariance matrix, a 95% 

confidence interval of the parameters (α = 1.5, λ = 2.5), and the asymptotic efficiency 
under SRS and MRSS. 
 

    
Fisher Information 

Variance-
Covariance 95% CI 

m h Sampling   ̂  ̂  Aeff ̂  ̂  Lower Upper Width 

2 

10 

SRS 
̂  8.67 -4.23 3.60a 0.2067 0.1870 0.9130 2.6952 1.7822 

̂  -4.23 4.68 2.17b 0.1870 0.3830 1.5756 4.0016 2.4260 

MRSS 
̂  31.26 -12.88 

 
0.0670 0.0851 0.6432 1.6578 1.0147 

̂  -12.88 10.15 
 

0.0851 0.2065 1.0303 2.8117 1.7813 

200 

SRS 
̂  177.59 -89.25 3.37 0.0111 0.0110 1.3054 1.7184 0.4130 

̂  -89.25 90.67 2.16 0.0110 0.0218 2.2304 2.8094 0.5788 

MRSS 
̂  597.86 -257.35 

 
0.0039 0.0051 0.8724 1.1172 0.2448 

̂  -257.35 195.78   0.0051 0.0118 1.5127 1.9385 0.4258 

            

3 

10 

SRS 
̂  13.31 -6.53 1.91 0.1389 0.1299 0.9457 2.4067 1.4610 

̂  -6.53 6.98 2.00 0.1299 0.2649 1.6593 3.6769 2.0176 

MRSS 
̂  25.45 -15.57 

 
0.1235 0.1376 0.9793 2.3568 1.3776 

̂  -15.57 13.98 
 

0.1376 0.2249 1.7286 3.5876 1.8590 

200 

SRS 
̂  266.10 -134.32 1.92 0.0075 0.0073 1.3395 1.6789 0.3395 

̂  -134.32 136.78 2.04 0.0073 0.0145 2.2720 2.7440 0.4720 

MRSS 
̂  512.14 -320.54 

 
0.0070 0.0080 1.3448 1.6728 0.3280 

̂  -320.54 278.70   0.0080 0.0128 2.2861 2.7296 0.4435 

            

4 

10 

SRS 
̂  17.86 -8.77 3.73 0.1052 0.1002 0.9729 2.2443 1.2714 

̂  -8.77 9.22 2.98 0.1002 0.2039 1.7344 3.5044 1.7701 

MRSS 
̂  66.59 -36.32 

 
0.0540 0.0714 0.8333 1.7443 0.9109 

̂  -36.32 27.45 
 

0.0714 0.1309 1.4588 2.8770 1.4183 

200 

SRS 
̂  355.82 -179.45 3.74 0.0056 0.0055 1.3582 1.6516 0.2933 

̂  -179.45 182.44 2.99 0.0055 0.0109 2.3028 2.7120 0.4093 

MRSS 
̂  1329.79 -734.72 

 
0.0029 0.0040 1.0999 1.3109 0.2111 

̂  -734.72 545.12   0.0040 0.0072 1.9079 2.2405 0.3326 

            (continued)          
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5 

10 

SRS 
̂  22.49 -11.06 2.79 0.0843 0.0811 1.0206 2.1588 1.1382 

̂  -11.06 11.49 3.06 0.0811 0.1651 1.8026 3.3954 1.5928 

MRSS 
̂  62.70 -41.62 

 
0.0748 0.0886 1.0651 2.1373 1.0721 

̂  -41.62 35.12 
 

0.0886 0.1335 1.8898 3.3220 1.4323 

200 

SRS 
̂  443.02 -223.87 2.88 0.0045 0.0044 1.3758 1.6388 0.2630 

̂  -223.87 227.76 3.11 0.0044 0.0087 2.3235 2.6891 0.3656 

MRSS 
̂  1277.40 -854.20 

 
0.0041 0.0049 1.3786 1.6296 0.2510 

̂  -854.20 707.46   0.0049 0.0073 2.3355 2.6705 0.3349 

 

*Note: a) Aeff ( ̂ MRSS, ̂ SRS), b) Aeff ( ̂ MRSS, ̂  SRS) 

Conclusion 

The method of maximum likelihood estimation for estimating the shape and scale 
parameters of the EED is studied in the MRSS framework. The new obtained 
estimators are com-pared with the conventional estimators obtained by SRS. The 
relative efficiency are calculated for comparing the estimators. The amount of 
information available from the MRSS about the parameters of the EED is 
evaluated. Confidence intervals for the parameters are constructed using SRS and 
MRSS. More specifically, we have the following conclusions. 
 

1. From Tables 2-4 it can be concluded that: 
 
a. For each sampling method, the MSEs of the estimators decrease 

as the set size increases and as the number of cycle increases.  
b. It is clear, from the biases, that MRSS overestimate and when the 

set size is odd and underestimate and when the set size is even.  
c. The biases of the estimators based on MRSS when the set size is 

odd decrease as the number of cycle increases. When the set size 
is even the biases of the estimators based on MRSS increase as 
the number of cycle increases.  

d. The efficiency is always greater than 1 when the set size is odd; 
that is, MRSS is more efficient than SRS in estimating the 
parameters of the EED.  

 
2. From Table 5 it can be concluded that: 
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a. Fisher information numbers obtained from MRSS are greater 

than that from SRS.  
b. The asymptotic variances of the estimators decrease as the set 

size increases and as the number of cycle increases.  
c. The interval width of the estimators decreases as the set size 

increases and as the number of cycle increases.  
d. The interval width obtained by MRSS is narrower than the one 

obtained by SRS.  
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Micceri (1989) examined the distributional characteristics of 440 large sample general 
education achievement and psychometric measures. All the distributions were found to be 
statistically significantly different from the normal distribution. In this study, 395 special 
education datasets were examined. Although there were some normally distributed 
datasets, most were not, and some were markedly different in shape from those found by 
Micceri (1989). Implications for statistical testing and making special education policy 
decisions were given. 
 
Keywords: Nonnormal data sets, statistical testing, special education  
 

Special education distributions 

Micceri (1989) conducted an investigation of the distributional characteristics of 
440 large sample educational achievement and psychometric measures. The data 
sets were obtained from general education and the behavioral and social sciences, 
including ability tests, achievement tests, criterion or mastery level tests, 
psychometric measures, and pre- and post-intervention scores. All were found to 
be non-normal based on the Kolmogorov-Smirnov test with nominal α = 0.01. 
Factors that contributed to a non-Gaussian error distribution in the population 
include (a) subpopulations within a target population, (b) ceiling/floor effects, and 
(c) variability in the items within a measure. This has implications in terms of 
statistical testing, because classical parametric tests require normality in order to 
maintain acceptable robustness and comparative power properties (Sawilowsky & 
Blair, 1992). If ignored, costly errors may occur in making policy decisions. 

The prevalence of non-normally distributed data permeates many fields. 
Previous studies that demonstrated this include Bradley (1977, 1982), Hill and 
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Dixon (1982), Ito (1980), Pearson and Please (1975) and Tan (1982). However, 
they, as well as Micceri (1989), did not have special education and disability 
assessments as a focus. 

Assessment of students in special education is frequently different than for 
students in general education, because often the focus is on process or progress as 
opposed to specific learning outcomes. This may include adaptive behavior, 
development, and screening. Adaptive behavior skills are those skills that are 
useful in daily functioning. Developmental skills pertain to fine- and gross-motor, 
communication and language, social, cognitive, and self-help skills. Screening 
helps find children who might be below the norm in different areas (Rosenberg, 
Westling, & McLeskey, 2010). 

Purpose of the study 

Given the paucity of representation of special education data sets in the studies 
mentioned above, the purpose of this study is to canvass that literature to 
determine the distributional shape commonly encountered. This will help inform 
the appropriate statistical method (i.e., parametric or nonparametric) to be used in 
measuring the progress of students in special education. 

Methodology 

The distribution patterns of special education data sets were obtained from 
published, peer-reviewed journal articles from the years of 2007-2011. In addition, 
research studies that focused on special education assessment were considered for 
inclusion. A Google Scholar search with the key terms “special education” and 
“data” returned 396,397 related publications. 

To construct a confidence level of 95% and margin of error of ±5%, a 
sample size of 384 data sets was needed from that population. It was estimated a 
return response rate of 25% was needed to accommodate lack of responses, and 
therefore 1,540 survey requests were made from selected authors of those 
published studies. Assessment data sets were also solicited from various state 
departments of education. Requests were made via email and telephone. The 
request included instructions to de-identify student information. Initial contact via 
email and phone was made from October - December, 2012. Follow-up phone 
calls and email messages were made in January, 2013. 
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Criteria for inclusion 
Potential studies were reviewed to determine if the instrument used to collect data 
was supported by adequate reliability and validity information. However, there 
was no preset type or minimum reliability index or validity methodology required 
for inclusion. 

Reliability is “the consistency that a test measures whatever it measures” 
(Sawilowsky, 2007, p. 516). As noted by Sawilowsky (2000), reliability is a 
psychometric property of a test. If the test produces similar results under 
consistent conditions then it is considered reliable. There were different types of 
reliability information obtained: 
 

 Internal consistency, which is the extent items on an instrument 
relate to each other. 

 Test-retest, which is the consistency over time (i.e., stability) of an 
instrument. 

 Inter-rater reliability, which is the degree of agreement among raters. 
 

Validity is “the degree that a test measures what it purports to measure 
(Sawilowsky, 2007, p. 166). There are different types of validity, including 
content-related validity, construct validity, and predictive validity (Cicchetti, 
1994): 
 

 Content-related validity, which is how well the content of the test 
relates to what is being assessed. 

 Construct validity. “A construct is a fiction that is used to explain 
reality” (Cuzzocrea & Sawilowsky, 2009, p. 215), such as aptitude, 
intelligence, or self-determination. Hence, construct validity is the 
degree that a test measures that fiction used to explain reality. 

 Predictive validity, which is the extent a test predicts some criterion 
measure. 

Results 

There were 744 authors contacted via email. Note that many authors had obtained 
multiple data sets in their study, exceeding the 1,540 data set requirement. 
Follow-up phone calls and emails were conducted where necessary after 3 months. 
There were n = 333 data sets collected from journal article authors, as compiled in 
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Table 1. In addition, academic achievement special education assessment test 
scores were requested from state education departments. Twenty four state 
departments of education, randomly selected, were contacted from which an 
additional n = 62 data sets were obtained from Alaska, Florida, Michigan, 
Minnesota, Missouri, and South Carolina, as compiled in Table 2. Thus, there 
were a total N = 395 data sets. Based on an estimated accessible population, the 
obtained sample size yielded a confidence level of 95% with a ±4.25% margin of 
error. 
 
 
Table 1. Summary of Canvassed Authors (744) and Data Sets (4,362) 
 

  Total Total % of Articles 

Acceptable Reliability 1760 40.30% 

Acceptable Validity 1600 36.70% 

Acceptable Articles* 1002 23.00% 
Acceptable Data Sets 333 7.60% 

 

*Note: An acceptable article required acceptable reliability and validity evidence. 
 
 
Table 2. Data Sets from State Departments of Education 
 

Florida 16   Minnesota 19 

South Carolina 8  Alaska 15 

Missouri 3   Michigan 1 

      Total 62 
 
 
Cronbach alpha coefficients for the instruments used to obtain these data sets 
ranged from .70 to .93. Test-retest reliability coefficients ranged from .65 to .97, 
and alternate-forms reliability ranged from .91 to .92. Concurrent validity indices 
ranged from .70 to .89, and predictive validity indices ranged from .65 to .86. 
(The author of one study used Item response theory (IRT) in a measurement 
model (i.e., Rasch one-parameter logistic (1PL) partial credit model for 
polytomous scoring). 

Distribution shapes 

The histograms was analyzed and categorized. Histograms that resembled 
Micceri’s (1986) distributions were named accordingly. Histograms that did not 



SPECIAL EDUCATION DISTRIBUTIONS AND ANALYSIS 

242 

resemble Micceri’s distributions were given a name based on the shape of each 
distribution. Figure 1 contains typical shapes obtained from the data sets. The 
types of distributions and the percentage of each distribution that were collected 
are indicated in Table 3. There were 258 (65.31%) special education data sets that 
were different and 137 (34.67%) similar to Micceri’s (1989) shapes. 

The data sets were also analyzed for normality and compared with Micceri’s 
data sets. Based on the Kolmogorov-Smirnov and Shapiro-Wilks tests, 318 (81%) 
data sets were non-normally distributed and 77 (19%) data sets were normally 
distributed. Recall that Micceri (1986, 1989) found 100% of the distributions to 
be significantly non-normally distributed at the α = .01 level. There were 19 out 
of 440 distributions, or 4.3%, that were considered reasonable approximations to 
the Gaussian distribution only in the sense that they were smooth symmetric with 
light tails. As compared with Micceri’s (1986, 1989) results, this study shows 
special education assessment data sets were somewhat more likely to be normally 
distributed, but the number of different data sets shapes was higher than those 
found by Micceri (1986, 1989). 
 
 
Table 3. Type, Number, and Percentage and Distribution Shapes 
 

Type of Distribution Number Percentage 

Extreme Bimodality 106 26.84% 

Equimodal 96 24.30% 

Unimodal and Smooth 79 20.00% 
Bimodal and Smooth 31 7.85% 

Slight Asymmetry 25 6.33% 

Multimodal and Lumpy 19 4.81% 
Unimodal and Slightly Smooth 10 2.53% 

Extreme Asymmetry 6 1.52% 

Slightly Asymmetric and Digit Preference 6 1.52% 
Digit Preference 4 1.01% 

Unimodal and Slightly Lumpy 4 1.01% 

Equimodal and Symmetric 3 0.76% 
Extreme Mass at Zero 2 0.51% 

Mass at Zero 1 0.25% 

Smooth Symmetric 1 0.25% 
Equimodal and Slight Asymmetry 1 0.25% 

Slightly Smooth and Symmetric 1 0.25% 
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Dataset 1. Skew = 2.090, PATM Pre-test 

 
Dataset 2. Skew = 1.340, PATM Post-test 

 

 
Dataset 3. Skew = -.111,  

CAAVES Reading Assessment 

 
Dataset 4. Skew = -.080,  

CAAVES Math Assessment 
 

 
Dataset 5. Skew = -.246, Pre-test 

Tomlinson’s differentiated instruction 
strategies adapted assessment 

 

 
Dataset 6. Skew = -1.543, Post-test 
Tomlinson’s differentiated instruction 

strategies adapted assessment

 
Dataset 7. Skew = 1.291 

Grade 2, Dyslexiacriteria, Spring 

 
Dataset 8. Skew = .896 

Grade 1, Fluency Word Recognition, Fall 
 
Figure 1. Special Education Data Sets 
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Discussion 

There were more classifications of special education data sets as extreme 
bimodality (n = 106, uni-modal, and smooth and equimodal than found in other 
disciplines. There were 106 extreme bimodality distributions and 57%, or 60 data 
sets, were non-normal. There were 46 distributions that were normal. There were 
79 unimodal and smooth distributions and 29%, or 23 data sets, were non-normal. 
The remaining category, which had a large amount of distributions, is the 
equimodal category. There were 96 distributions and 70%, or 67, were non-
normal. Thirty percent of the equimodal distributions were normally distributed 
based on the Kolmogorov-Smirnov and/or Shapiro-Wilks normality tests. 

These data sets that were non-normally shaped pertained to curriculum-
based assessments in writing, alternative assessments, applied problem solving, 
calculations, mathematics operations, reading, letter-word identification, 
segmenting words, and letter naming. Assessments of achievement, and fine- and 
gross-motor skills tended to be shaped normally.  

In terms of policy, it is important to consider statistical robustness and 
comparative power when analyzing special education assessments. The results of 
this survey confirm the importance of considering nonparametric alternatives to 
parametric methods. As has been conducted throughout the Monte Carlo literature 
of the past century for data in many disciplines (e.g., general education, 
psychology, medicine, nursing), a study is warrant to determine the extent to 
which robustness and power of parametric tests may be compromised when 
analyzing special education data. 

The new special education data shapes in this study may overlap with 
Micceri’s (1989) data shapes. Due to the small sample size of the special 
education data sets, some of the shapes were different than Micceri’s data shapes, 
but a larger sample sizes may show the data converges to one of Micceri’s shapes. 

For example, consider the data sets from the Florida Alternate Assessment. 
They were separated by grade level and a distribution was created for each data 
set, because the achievement of students in special education is measured based 
on a set of academic standards for each grade level. However, if the sample size is 
increased by combining a single grade with all grade levels, the resulting shape, 
identified by Micceri (1989) as a discrete mass at zero with gape, will result, as 
noted in Figure 2. 
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Figure 2. Concatenated Florida Alternate Assessment Special Education Data Set for All 
Grade Levels 
 
 
 

In summary, Micceri’s (1989) seminal article on 440 real data sets from 
general education achievement and psychometric constructs, shockingly, found 
them all to be non-normally distributed. This led to a major overhaul in 
techniques for analyzing quantitative data, as is known in the statistical literature, 
in those fields. Unfortunately, progress in revising and updating statistical 
strategies into other fields has been slow. Workers have the tendency to hold fast 
to techniques learned many years prior in graduate school, and furthermore, with 
the uptick in qualitative research, the lessons learned from Micceri (1989) obtain 
little voice until such surveys are replicated in their fields. On the basis of 395 
special education data sets obtained in this study, differences from Micceri’s 
(1989) rubric were noted, particularly the emergence of new non-normal 
distribution shapes. We believe this survey will help motivate quantitative 
workers in the special education field update their data analytic choices. 
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Appendix: Journals used in the survey 

Journals marked with an “*” were used in the survey. The data is available from 
the first author of this study. 
 
*American Annals of Deaf 
*American Educational Research Journal 
*American Journal on Intellectual and Developmental Disabilities 
*Annals of Dyslexia 
*Applied Measurement in Education 
Australasian Journal of Special Education 
Behavioral Disorders 
British Journal of Special Education 
Career Development for Exceptional Individuals 
Child Development Perspectives 
Developmental Psychology 
Early Childhood Research Quarterly 
Education and Training in Mental Retardation and Developmental Disabilities 
*Education and Treatment of Children 
Educational Assessment 
*Educational and Psychological Measurement 
*Elementary School Journal 
*Exceptional Children 
*Exceptionality: A Research Journal 
International Journal of Disability 
*Journal of Adolescent and Adult Literacy 
*Journal of Applied Behavior Analysis 
Journal of Applied Developmental Psychology 
Journal of the Association for Persons with Severe Handicaps 
Journal of Attention Disorders 
*Journal of Autism and Developmental Disorders 
Journal of Deaf Studies and Deaf Education 
*Journal of Disability Policy Studies 
*Journal of Early Intervention 
Journal of Educational Psychology 
Journal of Educational and Behavioral Statistics 
Journal of Educational Measurement 
*Journal of Emotional and Behavioral Disorders 
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Journal of Intellectual Disability Research 
*Journal of the International Association of Special Education 
*Journal of Learning Disabilities 
Journal of Policy and Practice in Intellectual Disabilities 
*Journal of Positive Behavior Interventions 
*Journal of Psychoeducational Assessment 
Journal of Research and Development in Education 
*Journal of School Psychology 
*Journal of Special Education 
Journal of Speech and Hearing Research 
*Journal of Visual Impairment and Blindness 
*Learning and Individual Differences 
*Learning Disability Quarterly 
*Learning Disabilities Research and Practice 
Mental Retardation 
Peabody Journal of Education 
*Preventing School Failure 
*Psychology in the Schools 
*Reading and Writing 
Reading Psychology 
Reading Research Quarterly 
*Remedial and Special Education 
Research in Developmental Disabilities 
*Review of Educational Research 
*School Psychology Quarterly 
*School Psychology Review 
Teachers College Record 
Teaching Exceptional Children 
*Volta Review 
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This paper presents power analysis tools for multiple regression. The first takes input of 
correlations between variables and sample size and outputs power for multiple predictors. 
The second addresses power to detect significant effects for all of the predictors in the 
model. Both employ user-friendly SPSS Custom Dialogs. 
 
Keywords: Power, sample size, simulation, SPSS, multiple regression, Power(all) 
 

Introduction 

Power analysis came to prominence with Jacob Cohen's seminal work on the 
topic (e.g., Cohen, 1988). Since that time, an extensive literature and several 
software packages and other resources focused on power (e.g., PASS, nQuery, 
Sample Power, G*Power, PiFace) emerged. Despite these advances, surveys 
across fields such as abnormal psychology (e.g., Sedlemeier & Gigerenzer, 1989), 
consulting, clinical, and social psychology (Rossi, 1990), and neuroscience 
(Button et al., 2013) suggest that low power remains common in published 
literature. 

One explanation for the persistence of underpowered studies, suggested by 
Cohen is that "researchers find too complicated … reference material for power 
analysis (1992, p. 156)." The development of software approaches for power 
analysis allows researchers to move beyond some of the difficulties in 
understanding power analysis for many designs. With regard to power analyses 
for multiple regression designs, many approaches exist for estimating adequate 
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power for multiple R2 (often termed R2 model) based on considerations such as 
the number of predictors and sample size (see Algina & Olejnik, 2003; Dunlap, 
Xin, & Myers, 2004; Krishnamoorthy & Xia, 2008; Mendoza & Stafford, 2001; 
Murphy & Myors, 2004; Shieh & Kung, 2007). 

Although many tools exist for power analyses focused on R2 model, power 
analyses focused on multiple regression coefficients remains challenging. 
Existing resources for detecting power for coefficients are of limited utility, as 
most require input of complicated statistical values. For example, G*Power (Faul, 
Erdfelder, Buchner, & Lang, 2009) provides protocols to address power for an 
individual predictor. This approach is accurate but requires that users input either 
partial R2 or its components. The partial R2 is a function of the proportion of 
variance uniquely explained by the predictor (squared semi-partial correlation) 
and the variance explained in the dependent measure by the other predictors in the 
model. This value is not particularly intuitive, nor is it commonly provided by 
most commercial packages. Similarly, the PiFace regression applet (Lenth, 2006-
9) also provides a complex approach that requires entry of the variance inflation 
factor (VIF) and several other values. The VIF is an index of overlap between 
predictors. Although common to most statistical packages, the VIF statistic, 
reflecting one divided by the residual variance from an analysis regressing the 
predictor of interest on the other predictors, is also not intuitive to most 
researchers. Additionally, both approaches require separate estimates for each 
predictor of interest. That is, to get accurate power estimates, users must repeat a 
complex set of calculations for each predictor. It is my impression that most 
researchers find it difficult to estimate values such as partial R2 and VIF 
accurately for power analysis. These tools are well designed and accurate; 
however, the complexity of the required inputs limits their usability. 

The estimates required by these protocols are "endpoint” values. Endpoint 
values are statistical values that require extensive computation for accurate 
estimation. Endpoint values such as the partial R2 and VIF are a function of the 
correlation between the predictors and the dependent variable and the strength of 
correlations between the predictor of interest and other predictors in the model 
(i.e., a correlation matrix). Although partial R2 and VIF are difficult to estimate, 
the zero-order correlations that produce these values are not. A researcher basing 
power analyses on previous work on the variables of interest is far more likely to 
find presentation of zero-order correlations between variables than VIF or partial 
R2 statistics. For this reason, the protocols introduced in this paper focus on input 
of correlations as the primary statistical values for power analysis.  
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Another explanation for low power in designs with multiple predictors is a 
lack of attention to power for detecting a set of outcomes. Researchers using 
multiple regression models with three predictors commonly want to detect 
significant coefficients for all of the predictors. However, applications of power 
analyses for designs with multiple predictors typically yield an estimate of power 
for each predictor (e.g., Aberson, 2010), but not power to detect all of them in the 
same study. Problematically, power to detect multiple effects differs considerably 
from power for individual effects. In most research situations, power to detect 
multiple effects is considerably lower than the power for individual effects. The 
lack of attention to this form of power is a likely source underpowered research in 
the behavioral sciences (Maxwell, 2004).  

The paper introduces tools to calculate simultaneous power estimates for 
two or more multiple regression coefficients (MRPower), power for detecting 
significant effects on all coefficients in a model (MRPower Simulate), and 
presents analyses using a series of SPSS Custom Dialogs based on the syntax 
found in Appendices A and B and available from 
http://users.humboldt.edu/chris.aberson/Index.html. All tools require entry of 
zero-order correlations with several additional optional values. 

Equations for power calculations 

Power for multiple regression coefficients is a function of the regression 
coefficient and its standard error with these values being a function of the 
correlations among variables in the model. The calculation of the standardized 
regression coefficient (Eq.1) involves both the correlations between the predictors 
(represented with numbers) and the criterion or dependent variable (represented 
with y). In this equation, ry1 is the correlation between the first predictor and the 
dv, ry2 is the correlation between the second predictor and the dv, and r12 is the 
correlation between the first predictor and the second predictor. 
 

 1 2 12
1.2 2

121
y y

y

r r r
b

r






  (1) 

 
A simplified explanation of Equation 1 is that the coefficient is larger when 

correlations between the predictor and DV are large but becomes smaller when 
predictors correlate in the same direction as in the second 
predictor-dv relationship. In terms of the influence on power analysis, larger 
coefficients produce more power. 
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The standard error of the standardized regression coefficient (Eq. 2) is a 
function of the total variance explained by the two predictors in the analyses 
(often termed R2 model, represented as 2

.12yR ) and the squared correlation of the 
two predictors ( 2

12r ). The standard error is smaller when the variables explain 
more variance, when the correlation between predictors is smaller, and when 
sample size (n) is larger. 
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Calculation of the standard error requires R2 for a model with all the 

predictors (Eq. 3). This value increases as correlations between predictors and the 
DV increase and gets smaller as correlations between predictors rise, provided that 
correlations all run in the same direction. 
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The ratio of coefficient to standard error produces the non-centrality 

parameter (δ). Larger δ values represent more power. This value allows for 
calculation of power. Power calculations require application of non-central 
distribution probability density functions that are beyond the scope of simple 
calculations. However, SPSS and other packages provide the calculation (see next 
section for application).  
 

 
*

*
1.2y

b

b
se

    (4) 

 
These formulae demonstrate several important concepts relevant to power 

analysis with multiple predictors. First, larger regression coefficients (i.e., larger 
effect size) promote more power. Larger coefficients result from stronger 
correlations between predictors and the DV. Correlation between predictors drives 
coefficient size downward and thus reduces power. Broadly this means that 
collinearity (or with three or more predictors, multicollinearity) reduces statistical 
power.   
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Power for two predictors 
This section presents calculations of power for a two predictor example and then 
introduces the MRPower SPSS program to perform power calculations. 

Calculation example 
This example predicts voting intentions relevant to a hypothetical proposition to 
continue or discontinue affirmative action (on a scale where 0 = Absolutely will 
vote to eliminate to 10 = Absolutely will vote to continue) from beliefs that AA is 
fair and rejection of the merit principal. For the predictors, higher scores mean 
more fairness and stronger perceptions that merit should not be the only 
consideration in hiring. Based on earlier work, the example uses for ry1 = .5 (the 
correlation between fairness and intention), ry2 = .4 (the correlation between merit 
and intention), and r12 = .3 (the correlation between fairness and merit). The 
section that follows demonstrates calculation of power for a sample of n = 50. 
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With alpha = .05, Power x1 = .90 (fairness) and Power x2 = .57 (merit). To 
obtain these values, provide SPSS with the following syntax for the first 
predictor: Compute Power = 1 - NCDF.T (2.012, 47, 3.309). The value 2.012 
represents the critical value of t for rejection of the null, using two-tailed α = .05. 
The value 47 represents degrees of freedom and 3.309 is δ. 
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Two predictor power using MRPower 
The MRPower Two dialog provides a user-friendly interface that takes input of 
correlation values and sample size and returns power for each coefficient and R2 
model. The interface also allows users to enter labels for each variable, desired 
Type I error level for tests of the model and for coefficients, and the directory for 
files generated by the analyses. These values are optional. Figure 1 demonstrates 
entry of values into MRPower Two. Figure 2 presents the output from the dialog, 
yielding values consistent with calculations as well as an estimate for R2 model 
power. The output provides power for all coefficients simultaneously. To obtain a 
desired level of power, increase sample size until reaching the target value. 
Power ≥ .80 for both coefficients requires a sample of 83, whereas Power ≥ .90 
for both coefficients requires 110 participants.  
 
 

 
 
Figure 1. MRPower two interface demonstrating calculation of power for two individual 

predictors. 
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Figure 2. MRPower two output for the analysis specified in Figure 1 

 

Models with three predictors 
Calculations for two predictor models are relatively straightforward. Models with 
three or more predictors require approaches that are substantially more complex. 
For three or more predictions, calculations involve matrix inversion and other 
approaches that likely go beyond the backgrounds of most researchers (see Cohen, 
Cohen, West, & Aiken, 2003 for calculator approaches). The syntax and custom 
dialogs presented in this paper provide researchers with tools to obtain power 
estimates for multiple regression designs with three variables through a simple 
extension of the approach employed in the two predictor section. Although not 
demonstrated in this paper, dialogs for four through ten predictors (named 
MRPower Four, MRPower Five, etc.) are in development.  

Three predictors with MRPower 

The example that follows demonstrates use of MRPower to determine adequate 
sample size. This example takes results from Aberson (2007) and uses those 
values to determine power for a new study involving three predictors of general 
attitudes toward affirmative action. The predictors are diversity valuation, belief 
in the need for affirmative action, and personal experiences of discrimination with 
their expected population correlations shown in Table 1. 

Figure 3 demonstrates the MRPower Three interface. In this example, to 
obtain power of .80 or greater for each predictor requires a sample size of 129. 
Specifically, as shown in Figure 4, the analysis reports power of .94 for 
diversity, .82 for belief in need, and .80 for experience of discrimination. 
 
 
Table 1. Correlations between variables in three predictor example. 

 
 General Policy Diversity Belief in Need 

General    

Diversity  .45 (ry1)   

Belief in Need -.39 (ry2) -.42 (r12)  

Exp of Disc -.31 (ry3) -.22 (r13) .11 (r23) 
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Figure 3. MRPower Three interface demonstrating calculation of individual power for 

three predictors. 

 

 
 

 
 
Figure 4. MRPower Three output for the analysis specified in Figure 3. 

 

Power for detecting significant effects for all predictors in the model 

Often researchers using multiple regression want to detect significant effects for 
all of the predictors in a model. However, existing power analysis approaches 
only address power for individual predictors. This section details how power to 
detect effects for all of the predictors in a model differs from power to detect 
individual effects and present tools for addressing this form of power. The 
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primary issue relevant to detecting significant effects for multiple predictor 
variables is the role of Beta error inflation (or Familywise Beta error; see 
Maxwell, 2004 for a technical discussion). This issue is similar to inflation of α or 
Type I error. When conducting multiple significance tests, Type I error rates for 
the family of tests (a.k.a., familywise alpha) increase. Equation 5 provides an 
estimate of familywise α error for multiple comparisons and is the conceptual 
basis for development of tests such as the Bonferroni adjustment. According to 
the formula, with three tests using a pairwise alpha (αpw) of .05, familywise alpha 
(αfw) is .14.  
 
  1 1

c

fw pw      (5) 

 
The same process is at work with regard to the familywise probability of 

making a β or Type II error (Equation 6), a value referred as βfw throughout the 
paper. For example, take a study designed for β of .20 (called βind for Beta 
individual) for each of its three predictors (a.k.a., Power = .80 for each predictor). 
The likelihood of making a single β error among those three tests is substantially 
higher than the error rate of .20 for the individual tests. Just as with α error, 
multiple tests inflate the chances to make a single β error among a set of 
significance tests. The βfw value easily converts to power to detect all of the 
effects in the design by taking 1 - βfw. Throughout the paper, this value is referred 
to as Power(All).  
 
  1 1 c

fw ind      (6) 
 
 

Table 2. Familywise Type II error (Beta) rates for predictors using βpw = .20 (Power = .80) 

 

Number of Predictors  βfw Power(All) 

2 .360 .640 
3 .488 .512 
4 .590 .410 
5 .672 .328 
6 .738 .262 
7 .790 .210 
8 .832 .168 
9 .866 .134 

10 .893 .107 
 

* Note. All predictors uncorrelated. This table is not accurate for correlated predictors.  
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Table 2 shows βfw and Power(All) for two through 10 predictors. One clear 
result here is that in models with four predictors or more, if the researcher designs 
for Power = .80 for each individual predictor, the study will more likely than not 
fail to find significance on at least one of the predictors. This table is useful for a 
conceptual understanding of βfw, however these results (and Eq. 6) are only 
accurate for calculations where all tests have the same power and predictors are 
uncorrelated. 

Power(All) for designs with correlated predictors 
Calculation of βpw and Power(All) is straightforward for situations where 
predictors are uncorrelated. However, in most multiple regression applications 
predictors do correlate. How this influences Power(All) is a function of the 
strength and direction of correlations between predictors. Broadly, when 
predictors correlate positively with each other, Power(All) decreases. If predictors 
negatively correlate, Power(All) increases.  

Calculations of Power(All) given correlated predictors are best handled by 
simulation. Simulations draw a large number of independent samples (e.g., 
10,000) from a population with parameters used in the power analysis (defined by 
a correlation matrix). From those samples, count how many allow rejection of null 
hypotheses relevant to all of the predictors in the study. The proportion of samples 
producing results allowing for rejection of all hypotheses reflects Power(All).  

Table 3 demonstrates the impact of predictor correlations on Power(All) for 
a two predictor model. Power for each predictor is constant across each situation 
at .80 (the correlation between the predictors and DV changes to create this level 
of power) and the sample size is 50. The Reject All column reflects Power(All) 
estimates derived by simulation of 10,000 samples drawn from a population with 
the given correlations. Since this approach is empirical, there is some deviation 
from theoretical probabilities. For example, Power(All) for two predictors with 
Power = .80 and no correlation between predictors is theoretically .64. The 
simulation provides a value of .6348. Although not exact with 10,000 replications, 
the simulated values provide a clear demonstration of the patterns of expected 
results. The range of values for Power(All) is roughly .59 to .72 with more power 
generated as correlations between predictors move from strongly positive to 
strongly negative.  

These values suggest that negative correlations between predictors are 
advantageous. However, is important to recognize that it is unlikely to find 
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predictors that correlate strongly in the negative direction when both predictors 
have a consistent (i.e., all positive or all negative) relationships with the DV. 
 
 
Table 3. Power(All) for two predictors with power = .80 and varying levels of correlation. 

 
Correlation between 

predictors 
Required x-y 
correlations 

Reject 
None 

Reject 
One 

Reject 
All 

-.80 .1274 .1294 .1492 .7214 
-.60 .1891 .1074 .2029 .6897 
-.40 .2445 .0816 .2458 .6726 
-.20 .2999 .0564 .2912 .6524 
 .00 .3594 .0463 .3189 .6348 
 .20 .4266 .0279 .3518 .6203 
 .40 .5070 .0190 .3708 .6102 
 .60 .6102 .0102 .3864 .6034 
 .80 .7561 .0033 .4107 .5860 

 

* Note. Required x-y correlation is the correlation between each predictor and the dv to produce Power = .80 
with n = 50. 

 
 

Table 4 demonstrates Power(All) for models with three predictors. In each 
situation, Power = .80 for each predictor and the sample size is 100. One striking 
finding here is that Power(All) can be as low as .44 for a model with strongly 
correlated predictors, despite the relatively high level of power for individual 
predictors. As with the two predictor model, Power(All) rises as correlations 
among predictors move from positive to negative. However, Power(All) tends to 
be smaller with more predictors. For two predictors, Power(All) ranges from .59 
to .72 whereas with three predictors, Power(All) goes from .44 to .64. 
 
 
Table 4. Power(All) for three predictors with power = .80 and varying levels of correlation. 

 
Correlation 

between 
predictors 

Required x-y 

correlations 
Reject None Reject One Reject Two Reject All 

-.80 n/a     
-.60 n/a     
-.40 .0804 .0793 .1030 .1800 .6377 
-.20 .1692 .0268 .1129 .3046 .5557 
.00 .2583 .0091 .1005 .3678 .5226 
.20 .3569 .0033 .0892 .4251 .4824 

.4 .4703 .0008 .0678 .4681 .4633 

.6 .6057 .0001 .0506 .5000 .4493 

.8 .7747 .0000 .0435 .5211 .4354 
 

* Note. Required x-y correlation is the correlation between each predictor and the dv to produce Power = .80 

with n = 100. 
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Also of note is that some values in Table 4, represented as n/a, are not 
possible. For example, there is no predictor-DV correlation where it is possible to 
have correlations of -.60 or -.80 between the predictors (given n = 100). 
Additionally, models with substantial positive correlations among multiple 
predictors likely violate regression assumptions regarding multicollinearity.  

MRPower Simulate dialogs 

The previous section demonstrated how correlations between predictors impact 
Power(All). However, the values presented in those tables are limited as they 
reflect situations wherein correlations between predictors and power for 
individual predictors are constant. Practically predictors might show different 
levels of power and varying levels of correlation. The MRPower Simulate dialogs 
allow for such input and address Power(All) for designs with two to ten predictors.  

In the example from the previous section, power exceeded .80 for three 
predictors with a sample of 129. However, power for detecting significant effects 
for all three predictors in the same sample [termed Power(All)] is likely 
substantially smaller. The MRPower Simulate dialog creates a population based 
on user-supplied correlations. Next, the program takes a sample of size n from the 
population (n is specified by the user) and generates an analysis predicting the DV 
from the set of IVs for that sample. The results of the analysis are output to a 
datafile (stored in the directory c:\temp as a default). The program repeats this 
process 10,000 times. Finally, the program compiles rejection rates and provides 
output representing power for individual coefficients (total times rejecting null 
divided by total number of replications) and power for rejecting zero to all 
coefficients. 

The number of replications and population size are modifiable. Although 
population is theoretically infinite, a finite population of 100,000 is, for most 
purposes, large enough to produce an accurate result. In testing the dialog, there 
was little difference between the default settings and simulations using larger 
populations (e.g., 10 million) and more replications (e.g., 100,000). However, 
more replications substantially increased processing time. If sample sizes begin to 
approach even a small percentage of population size, it would likely be beneficial 
to increase the population size. For quick analyses (e.g., trying to determine 
whether the sample size for Power(All) = .80 is closer to 300 than 400), 
replications might be reduced initially then increased in subsequent runs for a 
precise result. 
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MRPower Simulate example. 

Figure 5 demonstrates the MRPower Simulate dialog using a sample of 129 and 
the correlations from Table 1. As shown in Figure 6, this analysis generates 
Power(All) = .6056 to detect all three effects in the same model. The output also 
indicates the number of samples rejecting null hypotheses for zero, one, or two 
coefficients. On a positive note, the likelihood of finding no significant effects 
is .0001. 
 
 

 
 
Figure 5. MRPower Simulate three interface for calculation of Power(All). 

 

 
 

Figure 6 also presents power for each individual predictor. This value is the 
number of times rejecting the null for the predictor over total number of 
replications. These values provide a useful check against the results of the 
MRPower Three dialog. In this case, power for Diversity (.9387 vs. .9444), Power 
for Belief in Need (.8154 vs. .8194), and Power for Personal Experience 
(.8039 vs. .8005) are all consistent with the MRPower estimates. If these values 
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are not consistent, it suggests incorrect specification of the parameters of the 
model (i.e., something not entered correctly in the dialog).  
 

 
Figure 6. MRPower Simulate three output for Power(All) and individual predictors given 

specification from Figure 5. 

 

 

A final question is how large a sample is necessary for Power(All) of a 
specific value (e.g., .80). Using the simulation tool, Power(All) hits .80 with 
n = 171. For n = 171, power for the individual predictors are .98, .91, and .90 
respectively. This represents an increase of roughly one-third of the original 
sample size estimate. 
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Appendix A 

MRPower Three Syntax 
 
*Values noted with %% are user supplied values from the dialog. For example if n 

= 60 is entered *in the dialog, the %%n%% is replaced by 60 for analyses.  

 

*OMS command suppresses output 

OMS SELECT ALL 

 /DESTINATION VIEWER=NO. 

 

*Creates correlation matrix for analysis 

*Means are set at 1, 2, 3, and 4 to facilitate SPSS processing.  

*0s sometimes cause SPSS to terminate 

MATRIX DATA VARIABLES = ROWTYPE_  y x1 x2 x3. 

BEGIN DATA 

Mean 1 2 3 4 

STDEV 1 1 1 1 

N %%n%% %%n%% %%n%%  %%n%%  

Corr 1 

Corr %%ry1%% 1  

Corr %%ry2%% %%r12%%  1 

Corr %%ry3%% %%r13%%  %%r23%% 1 

END DATA.   

DATASET CLOSE %%dir%%\resultsC.sav.  

 

*Captures coefficient and R2 values for power calculations 

OMS SELECT TABLES  

 /destination format = sav numbered = "Table_Number" outfile = 

"%%dir%%\resultsC.sav"  

 /if commands = ['regression'] subtypes = ['Coefficients']  

 /tag = "reg".  

OMS SELECT TABLES 

 /destination format = sav numbered = "Table_Number" outfile = 

"%%dir%%\resultsC.sav"  

 /if commands = ['regression'] subtypes = ['ANOVA']  

 /tag = "regF". 
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*Runs regression to obtain non-centrality parameter values (equivalent to F and 

t) 

REGRESSION 

  /MATRIX=IN(*) 

  /STATISTICS COEFF OUTS R ANOVA 

  /CRITERIA=PIN(.05) POUT(.10) 

  /NOORIGIN 

  /DEPENDENT y 

  /METHOD=ENTER x1 x2 x3 . 

OMSEND. 

OMS SELECT ALL 

 /DESTINATION VIEWER=NO. 

GET FILE "%%dir%%\resultsC.sav". 

 

*Extracts test statistic 

FILTER OFF. 

USE ALL. 

SELECT IF ( ~ NMISS(Sig)). 

EXECUTE. 

IF (nmiss(t)) lambdaF=F. 

IF  (nmiss(F)) lambdaC=t*t. 

EXECUTE. 

 

*Computer power from non-centrality parameter, df, and alpha 

COMPUTE pred = 3. 

COMPUTE dfe=%%n%%-pred-1.  

COMPUTE sample = %%n%%.  

COMPUTE F_critM = IDF.F(1-%%alphaR%%,pred, dfe) . 

COMPUTE F_critC = IDF.F(1-%%alphaC%%,1, dfe) . 

COMPUTE PowerF = 1-NCDF.F(F_critM,pred, dfe, lambdaF) . 

COMPUTE PowerC = 1-NCDF.F(F_critC,1, dfe, lambdaC) . 

If (nmiss(lambdaC)) Power = PowerF. 

If (nmiss(lambdaF)) Power = PowerC. 

COMPUTE ID=$CASENUM. 

EXECUTE. 

If (ID = 3) PowerX1=PowerC. 

If (ID = 4) PowerX2=PowerC. 

If (ID = 5) PowerX3=PowerC. 
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EXECUTE . 

OMSEND. 

 

*Creates output for power analysis 

CTABLES 

  /VLABELS VARIABLES=sample PowerF PowerX1 PowerX2 PowerX3 DISPLAY=NONE 

  /TABLE BY sample [MAXIMUM 'Sample Size' F40.0] + PowerF [S][MAXIMUM 'Power R-

squared' F40.4] + PowerX1 [S][MAXIMUM 'Power %%x1lab%%' F40.4]  

    + PowerX2 [S][MAXIMUM 'Power %%x2lab%%' F40.4] + PowerX3 [S][MAXIMUM 

'Power %%x3lab%%' F40.4]. 

 

*Deletes files created to run analysis 

OMS SELECT ALL 

  /DESTINATION VIEWER=NO. 

NEW FILE. 

ERASE FILE ='%%dir%%\resultsC.sav'. 

OMSEND. 
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Appendix B 

MRPower Simulate Three Syntax 
 
*Values noted with %% are user supplied values from the dialog.  

*This command suppresses output 

OMS SELECT ALL 

/DESTINATION VIEWER=NO. 

*The data generation approach used here modifies syntax presented in an IBM SPSS 

support  

*file at http://www-01.ibm.com/support/docview.wss?uid=swg21480900 . Based on 

personal *correspondence and references to edstat-l archives, I believe this 

approach was developed *by David Nichols. 

matrix data variables=v1 to v4 

/contents=corr. 

begin data. 

1 

%%ry1%% 1 

%%ry2%%  %%r12%%  1 

%%ry3%%  %%r13%%  %%r23%%  1 

end data. 

save outfile='%%dir%%\corrmat.sav' 

/keep=v1 to v4. 

 

*Generate raw data. Loop # generates desired population size. 

*Vector x() and #j reflect number of variables (1 dv, 3 predictors in this 

example) 

new file. 

input program. 

loop #i=1 to %%popsize%%. 

vector x(4). 

loop #j=1 to 4. 

compute x(#j)=rv.normal(0,1). 

end loop. 

end case. 

end loop. 

end file. 

end input program. 

http://www-01.ibm.com/support/docview.wss?uid=swg21480900
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execute. 

 

*FACTOR procedure generates principal components, which will be uncorrelated and 

have *mean 0 and standard deviation 1 for each variable.  

factor var=x1 to x4 

/criteria=factors(4) 

/save=reg(all z). 

 

matrix. 

get z /var=z1 to z4. 

get r /file='%%dir%%\corrmat.sav'. 

compute out=z*chol(r). 

save out /outfile='%%dir%%\giant_datafile.sav'. 

end matrix. 

 

*End data generation portion 

*Gets the generated data and test correlations.  

get file='%%dir%%\giant_datafile.sav'. 

 

*Rename variables 

RENAME variables col1 = y. 

RENAME variables (col2 to col4=x1 to x3). 

COMPUTE ID=$CASENUM . 

SAVE OUTFILE='%%dir%%\giant_datafile.sav' 

  /COMPRESSED. 

 

*This piece draws random samples of size n. Creates number of samples equal to 

reps. 

*Puts everything in one file then splits it by sample number 

INPUT PROGRAM . 

LOOP SAMP=1 to %%reps%%. 

LOOP V = 1 to %%n%%. 

COMPUTE ID=TRUNC(UNIFORM(%%popsize%%)) + 1. 

END CASE. 

LEAVE SAMP. 

END LOOP. 

END LOOP. 

END FILE. 
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END INPUT PROGRAM . 

SORT CASES BY ID . 

MATCH FILES / FILE * / TABLE  '%%dir%%\giant_datafile.SAV' / BY ID . 

SORT CASES BY SAMP. 

SPLIT FILE BY SAMP. 

DATASET CLOSE %%dir%%\boot1.sav.  

*Runs regression on each sample. Outfile command saves results in datafile 

called boot1.sav 

 

REGRESSION 

  /MISSING LISTWISE 

  /STATISTICS COEFF OUTS R ANOVA 

  /CRITERIA=PIN(.05) POUT(.10) 

  /NOORIGIN 

  /DEPENDENT y 

  /METHOD=ENTER x1 x2 x3 

  /OUTFILE=COVB('%%dir%%\boot1.sav'). 

 

USE ALL. 

GET 

  FILE='%%dir%%\boot1.sav'. 

DATASET NAME boot1 WINDOW=FRONT. 

 

**Takes the information saved in the outfile and does some analyses based on the 

sig of each test 

**After that, just count up how many results were significant out of 10,000 - 

that's the power 

USE ALL. 

COMPUTE filter_$=(ROWTYPE_="SIG"). 

VARIABLE LABEL filter_$ 'ROWTYPE_="SIG" (FILTER)'. 

VALUE LABELS filter_$  0 'Not Selected' 1 'Selected'. 

FORMAT filter_$ (f1.0). 

FILTER BY filter_$. 

EXECUTE . 

COMPUTE Sig_Coeff1 = 0 . 

EXECUTE . 

IF (x1<%%alpha%%) Sig_Coeff1 = 1 . 

EXECUTE . 
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COMPUTE Sig_Coeff2 = 0 . 

EXECUTE . 

IF (x2<%%alpha%%) Sig_Coeff2 = 1 . 

EXECUTE . 

COMPUTE Sig_Coeff3 = 0 . 

EXECUTE . 

IF (x3<%%alpha%%) Sig_Coeff3 = 1 . 

EXECUTE . 

COMPUTE Total_reject=Sig_Coeff1 + Sig_Coeff2 + Sig_Coeff3. 

EXECUTE. 

COMPUTE b1pct=(Sig_Coeff1 / %%reps%%)*100. 

COMPUTE b2pct=(Sig_Coeff2 / %%reps%%)*100. 

COMPUTE b3pct=(Sig_Coeff3 / %%reps%%)*100. 

VARIABLE LEVEL b1pct b2pct b3pct(SCALE).  

EXECUTE. 

 

OMSEND. 

 

*Custom Tables to produce individual power and Power(All) 

CTABLES 

  /VLABELS VARIABLES=b1pct b2pct b3pct DISPLAY=NONE 

  /TABLE BY b1pct [SUM 'Power %%x1lab%%' F40.2] + b2pct [SUM 'Power %%x2lab%%' 

F40.2] + b3pct [SUM 'Power %%x3lab%%' F40.2] 

  /TITLES 

    TITLE='Power for Individual Coefficients' 

    CAPTION='Power Represented As %. Sample size = %%n%%'. 

CTABLES 

  /VLABELS VARIABLES=Total_reject DISPLAY=NONE 

  /TABLE BY  Total_reject [C][ROWPCT.COUNT PCT40.2]  

  /SLABELS VISIBLE=NO 

  /CATEGORIES VARIABLES=Total_reject ORDER=A KEY=VALUE  

    EMPTY=EXCLUDE 

  /TITLES 

    TITLE='Number of Coefficients Rejected' 

    CAPTION='Power(All) is % for Three. Sample size = %%n%%'. 

 

*Delete all files created.  

OMS SELECT ALL 
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/DESTINATION VIEWER=NO. 

New File.  

DATASET CLOSE boot1.  

Erase File='%%dir%%\corrmat.sav'. 

Erase File='%%dir%%\giant_datafile.sav'. 

Erase File='%%dir%%\boot1.sav'. 

Omsend. 
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Free web-based resources or popular software to assess six data features recommended 
by the What Works Clearinghouse: Procedures and Standards Handbook (IES, 2013 
February) to determine intervention effects in a single-case study (Lambert, Cartledge, 
Heward, & Lo, 2006) are demonstrated. Lambert et al. (2006) employed a reversal (or 
ABAB) design and visual inspection to investigate the effectiveness of the report-card 
treatment in reducing disruptive behaviors in students. In our demonstration, we assessed 
each of the six data features separately; then integrated six assessments into one 
comprehensive analysis of the intervention effect. A simple approach to the 
determination of intervention effects illustrates how researchers and practitioners can be 
empowered to interpret data comprehensively and formulate evidence-based conclusions 
logically from well-designed and well-executed single-case studies. 
 
Keywords: algorithm, intervention effect, single-case studies, level, trend, variability, 
immediacy, overlap, effect size, Spearman rank correlation, Page test, confidence interval 
 

Introduction 

Horner et al. (2005) defined a single-case design (SCD) as a “rigorous, scientific 
methodology used to define basic principles of behavior and establish evidence-
based practice.” (p. 165). SCDs are particularly important to clinical studies in 
which detailed information about aspects of a few participants’ behavior is 
gathered over an extended period of time in order to determine effects of an 
intervention. Yet determining intervention effects in SCD studies presents unique 
challenges due to the small sample size, the correlated nature of outcome 
measures, and the difficulty of applying statistical methods to SCD data. Visual 
inspection has been traditionally used by researchers and practitioners to assess an 

mailto:peng@indiana.edu
mailto:litchen@indiana.edu
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intervention effect. Indeed, according to the Institute of Education Sciences’ 
publication, What Works Clearinghouse: Procedures and Standards Handbook 
(IES, 2013 February, hereafter abbreviated as the WWC Handbook), “Single-case 
researchers traditionally have relied on visual analysis of the data to determine (a) 
whether evidence of a relation between an independent variable and an outcome 
variable exists, and (b) the strength or magnitude of that relation.” (p. E.5).  

The subjectivity associated with visual analysis and its lack of a theoretical 
framework for testing a scientific hypothesis have hampered the generalizability 
of SCD findings. The WWC Handbook actually recommends the examination of 
six data features both within and between phases in order to determine the 
effectiveness of an intervention effect. The six data features include: level/level 
change, trend, variability, immediacy of the effect, overlap, and consistency of 
data in similar phases. These six features should be assessed collectively to 
determine if (1) the observed pattern of data in the intervention phase is indeed 
due to the intervention effects and (2) the observed pattern of data in the 
intervention phase is different from the predicted pattern of data, predicated from 
data collected in the baseline phase. The WWC Handbook further recommends 
that a measure of the strength of the relation between an independent variable and 
an outcome be computed and reported to accompany the assessment of that 
relation. 

Given the importance of the WWC’s initiative “to be a central and trusted 
source of scientific evidence for what works in education.” (IES, 2013 February, 
p. 1) and the intended purpose of the WWC Handbook to provide “a detailed 
description of the standards and procedures of the WWC” (IES, 2013 February, p. 
2), it is imperative that researchers and practitioners be empowered to evaluate 
evidence of intervention effects in any SCD study according the WWC standards 
and recommendations. In this paper, we demonstrate how to assess each of these 
six features in a real world data set (Lambert et al., 2006). In our demonstration, 
we assessed each of the six data features separately first. We subsequently 
integrated six assessments into one comprehensive analysis of the intervention 
effect. These assessments were conducted using free or commercially available 
software. The computing algorithms for these assessments appear in Appendices 
A to C. We conclude this paper by discussing relative advantages of our simple 
and straightforward approach, compared to visual analysis or complex statistical 
modeling and methods. 
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The Lambert data set 

The Lambert data set was first reported and analyzed in Journal of Positive 
Behavior Interventions by Lambert et al. (2006). In Lambert et al. (2006)’s study, 
nine students from two classrooms were observed in baseline (the single-student 
responding or SSR) phase and the treatment (the response card or RC) phase for 
their disruptive behaviors during the teacher’ instruction. A disruptive behavior, 
such as engaging in a conversation, provoking others, laughing or touching others, 
was recorded in 10 intervals of a study session (p. 89 of Lambert et al., 2006). The 
study employed a reversal (or an ABAB) design with two baseline phases (SSR1 
and SSR2), each followed by an intervention phase (RC1 or RC2). The number of 
intervals in which a disruptive behavior was recorded was the outcome or the 
dependent measure. Figure 1 presents the findings reproduced from pp. 93-94 of 
the Lambert et al. (2006) article with permission. Using visual analyses, Lambert 
et al. (2006) concluded that the use of report cards was successful in decreasing 
disruptive behaviors for these nine students. 
 
 

 
Figure 1. Number of intervals of disruptive behaviors during single-student responding 
(SSR) and response card (RC) condition. Adapted from “Effects of Response Cards on 
Disruptive Behavior and Academic Responding During Math Lessons by Fourth-Grade 
Urban Students,” by Lambert et al., 2006, Journal of Positive Behavior Interventions, 8, 
pp. 93-94, Copyright 2006 by Sage Publications. Used with permission. 
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Notice that there are breaks in Figure 1 due to student absences (p. 93 of 
Lambert et al., 2006). These breaks were ignored in the reanalysis of this data set 
by the special issue of Journal of School Psychology (Shadish, 2014). In this 
paper, we treat these breaks as missing data in order to retain the initial structure 
of this data set. Because there were different numbers of sessions implemented in 
the two baseline phases (SSR1 and SSR2) and the intervention phases (RC1 and 
RC2) in Classrooms A and B, we decided to analyze the two classroom data sets 
separately. Data collected from four students (A1 to A4) in Classroom A are 
hereafter referred to as the Lambert-A data set. B1 to B5 students’ data from 
Classroom B are referred to as the Lambert-B data set. Both Lambert-A and -B 
data sets were systematically analyzed using SAS (Appendix A), a free web-based 
calculator (Appendix B; Vannest, Parker, & Gonen, 2011), and SPSS (Appendix 
C). 

Assessment of level/level change 

The WWC Handbook defines “level” as the mean score for data within a phase 
(2013, p. E.6). A level change between phases therefore indicates a change in the 
outcome measure due to the intervention. To assess the level and level change, we 
applied six paired-samples t-tests to means obtained from adjacent phases in 
Lambert-A and -B data sets (Table 1). The SAS computing codes for assessing 
levels and level changes are shown in Part A of Appendix A. The t-statistics and 
their corresponding p-values were further verified by two free web-sites located at 
http://www.statdistributions.com/chisquare/ and 
http://www.graphpad.com/quickcalcs/ttest1.cfm, respectively. 

According to Table 1 results, the three paired-samples t-tests for Lambert-A 
data ranged from 18.57 to −16.99 with df = 3 (or 4−1). For Lambert-B data, the 
three paired-samples t-tests ranged from 8.52 to −6.70 with df = 4 (or 5−1). All 
six paired-samples t-tests were statistically significant at α = .05 (one-tailed), 
suggesting that there was a level change between phases for both data sets. And 
the level changes supported the effectiveness of the intervention, namely, the 
report card treatment.  

http://www.statdistributions.com/chisquare/
http://www.graphpad.com/quickcalcs/ttest1.cfm
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Table 1. Means, SDs, t-tests of differences between phases in Lambert-A and –B data 
sets 
 

 SSR1-RC1 RC1-SSR2 SSR2-RC2 

 Set A Set B Set A Set B Set A Set B 

Meana 6.45 5.46 −7.26 −4.01 6.19 4.21 
SDb 0.69 1.43 0.85 1.34 0.70 1.62 

mc 4 5 4 5 4 5 
t-testd 

 
18.57 
(df=3) 

8.52 
(df=4) 

−16.99 
(df=3) 

−6.70 
(df=4) 

17.81 
(df=3) 

5.82 
(df=4) 

p-value 0.00015 0.0005 0.0002 0.0013 0.0002 0.00215 
 

Note. a Means are computed as an average of individuals’ difference score over sessions between  
the two adjacent phases. Missing scores are left as missing. 
b SDs are computed as the square root of the variance of individuals’ difference scores. Missing scores are left 
as missing. 
c m = number of participants. 
d t-test of adjacent phases, df = m−1. 

Assessment of trend 

“Trend refers to the slope of the best-fitting straight line for the data within a 
phase,” according to The WWC Handbook (2013, p. E.6). Because a best-fitting 
straight line is a narrow definition for trends, we elected to assess monotonic 
trends in the Lambert data set using the Page test. A monotonic trend can be either 
increasing or decreasing. It is more general than a linear trend because a 
monotonic trend incorporates different slopes throughout a data pattern to reflect 
an upward (or increasing), or a downward (or decreasing), trend in data. 
Marascuilo and McSweeney (1977) and Page (1963) recommended the Page test 
for testing monotonic changes over time in SCD. The type of measurement 
required by the Page test is ranks of data or ranked data. Marascuilo and Busk 
(1988) and Busk and Marascuilo (1992) effectively applied the Page test to assess 
trends in the simple AB design, the multiple-baseline AB designs and replicated 
ABAB designs across participants. Recently, Peng and Chen (2014) proposed a 
measure of effect sizes (ES) and its confidence interval (CI) to accompany the 
Page test. Both the ES and its CI are derived from the Page test statistic to further 
determine an increasing, or a decreasing, trend in data.  

To assess trends in the Lambert data set, we conducted six Page tests, 
computed six corresponding ES measures and their CIs. These results appear in 
Tables 2-7. SAS computing codes for assessing trends in Lambert-A data are 
shown in Part B of Appendix A. 
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Six Page tests of trends 
The Page test was applied to three adjacent phases (SSR1-RC1, RC1-SSR2, 
SSR2-RC2) in both Lambert A and B data sets. A total of six Page tests were 
performed. According to Lambert et al. (2006), the RC intervention should 
minimize a student’s disruptive behavior. Therefore, for two of the three adjacent 
phrases (i.e., SSR1-RC1 and SSR2-RC2), we proposed to test the null hypothesis 
of no trend against the alternative of a monotonic decreasing trend. For the RC1-
SSR2 adjacent phrases, the null hypothesis is the same as before; yet the 
alternative hypothesis states that there is a monotonic increasing trend. Thus, all 
alternative hypotheses were directional. For demonstration purposes, we describe 
the Page test of the SSR1-RC1 phases from the Lambert-A data first (Table 2). 
The results of the other two adjacent phases from Set A are presented in Tables 3 
and 4. Parallel analyses of the Lambert-B data appear in Tables 5-7. 

For data obtained from the SSR1-RC1 phases in Lambert-A data, the 
following null and alternative hypotheses are specified, in (1) and (2), 
respectively: 
 
 0 1 2 14:H R R R     (1) 
 
 1 1 2 14: ,H R R R    with at least one strict inequality. (2) 
 

Note that the null and alternative hypotheses specify mean ranks of students’ 
scores only. Furthermore, the rejection of H0 requires no more than one inequality 
in the ranked data, a decline in this case. In order to apply the Page test to test H0 
in (1), the raw data in the upper panel of Table 2 were converted to ranks for each 
student, shown in the middle panel of Table 2. Ranks are assigned from high to 
low within each student. If scores were tied, we broke the tie by averaging the two 
corresponding ranks, such as assigning the rank of 10.5 to the two 7s for Student 
A1 in both Sessions 1 and 5 during the SSR1 phase. Missing data were treated 
conservatively in the sense of supporting the null hypothesis, instead of the 
alternative hypothesis. Thus, if the H0 of no trend can be rejected at α = .05 with 
this conservative approach, it can be rejected at the same or a lower α level, if the 
missing data were replaced by a score in support of the alternative hypothesis. 
Thus, for Student A1 in Session 11 in the RC1 phase (upper panel of Table 2), we 
treated the missing score, shown as a period (.), with a score of 2, appearing in 
parenthesis. The score of 2 was the highest score of Student A1 in the RC1 phase. 
Replacing the missing score by 2 supported the null hypothesis of no trend, more 
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than other scores taken from Student A1 for this phase. This replacement led to a 
rank of 5.5, shown in parenthesis, in the middle panel of Table 2. Likewise, for 
Student A2 in Session 3 in the SSR1 phase, we treated the missing score with 6, 
in parenthesis. The score of 6 was the lowest score of Student A2 in the SSR1 
phase. Other missing data were treated similarly in either the SSR1 or the RC1 
phase. 
 
 
Table 2. Number of intervals of disruptive behaviors and their ranks in 8 sessions (1 to 8) 
of the SSR1 phase and 6 sessions (9 to 14) of the RC1 phase of Class A (Lambert et al., 
2006) 
 
  SSR1   RC1 

Session 1 2 3 4 5 6 7 8   9 10 11 12 13 14 

A1 7 9 8 6 7 4 5 10  2 0 .(2) 1 0 0 

A2 8 7 .(6) 7 8 6 7 9  3 1 0 4 0 0 

A3 10 .(6) 6 .(6) 6 9 6 10  .(1) 0 1 1 0 0 

A4 10 .(4) 6 4 8 8 9 10  3 6 0 0 .(6) 1 

Mean 8.75 6.5 6.5 5.75 7.25 6.75 6.75 9.75  2.25 1.75 0.75 1.5 1.5 0.25 

SD 1.5 2.08 1 1.26 0.96 2.22 1.71 0.5   0.96 2.87 0.96 1.73 3 0.5 

  SSR1 Ranks   RC1 Ranks 

Session 1 2 3 4 5 6 7 8   9 10 11 12 13 14 

A1 10.5 13 12 9 10.5 7 8 14  5.5 2 (5.5) 4 2 2 

A2 12.5 10 (7.5) 10 12.5 7.5 10 14  5 4 2 6 2 2 

A3 13.5 (9) 9 (9) 9 12 9 13.5  (5) 2 5 5 2 2 

A4 13.5 (5.5) 8 5.5 10.5 10.5 12 13.5  4 8 1.5 1.5 (8) 3 

 

Total Rank Rj
i=1

m=4

å
æ

èç
ö

ø÷

  
50 37.5 36.5 33.5 42.5 37 39 55  19.5 16 14 16.5 14 9 

Expected Rank (Yj) 14 13 12 11 10 9 8 7  6 5 4 3 2 1 

H0  H0 : R1 = R2 =…= R14
 m, n 4, 14 Standardized 

L (or z) z = 5.06c 

H1 
  

H1 : R1 ≥R2 ≥ ...≥ Rn,
w / ≥ 1 strict inequality

  χ2(df=1) 25.60 b z-upper 7.02d 

Page L  L = 3788.5a p-value < .0001 z-lower 3.10d 
 

Note: Missing data are denoted as a period (.). Its rank is based on the score shown in parenthesis next to the 
period (.). The score in the parenthesis is assigned a rank, also shown in parenthesis, based on the lowest 
score of SSR1 phase or the highest score of the RC1 phase, in support of the H0. Tied scores are assigned the 
average rank of the corresponding ranks.  
a        

         

         

14 4

1 1

14 50 13 37.5 12 36.5 11 33.5

3788.5 10 42.5 9 37 8 39 7 55 6 19.5 .

5 16 4 14 3 16.5 2 14 1 9

n m

j j
j i

L Y R
 

 

       
   

                
    

          

 
  

b  

  

 

   

 
2 22 2 2

2
2 2 2 2

12 3 1 12 3788.5 3 4 14 14 1 45462 37800 5870624425.60 25.60014129.
4 196 195 15 22932001 1 4 14 14 1 14 1L

L mn n

mn n n


                   
        

  

c 25.06 25.60014129 5.059658.Lz       
d  95% CI for Standardized L 1.96 5.06 1.96 3.10,7.02 .z       
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Table 3. Number of intervals of disruptive behaviors and their ranks in 8 sessions (15 to 
22) of the SSR2 phase and 9 sessions (23 to 31) of the RC2 phase of Class A (Lambert 
et al., 2006) 
 
  SSR2   RC2 

Session 15 16 17 18 19 20 21   22 23 24 25 26 27 28 29 30 31 

A1 8 8 8 6 10 10 10  8 3 4 1 3 2 4 0 1 0 

A2 8 9 10 7 9 10 8  10 1 1 0 5 3 6 0 0 2 

A3 5 7 10 .(5) 5 10 9  10 4 6 5 7 0 0 0 0 . (7) 

A4 3 8 10 .(3) 10 10 10  5 6 1 5 0 . (6) . (6) 0 0 1 

Mean 6.00 8.00 9.50 5.25 8.50 10.00 9.25  8.25 3.50 3.00 2.75 3.75 2.75 4.00 0.00 0.25 2.50 

SD 2.45 0.82 1.00 1.71 2.38 0 0.96   2.36 2.08 2.45 2.63 2.99 2.50 2.83 0.00 0.50 3.11 

  SSR2 Ranks   RC2 Ranks 

Session 15 16 17 18 19 20 21   22 23 24 25 26 27 28 29 30 31 

A1 12.5 12.5 12.5 10 16 16 16 
 

12.5 6.5 8.5 3.5 6.5 5 8.5 1.5 3.5 1.5 

A2 11.5 13.5 16 10 13.5 16 11.5 
 

16 4.5 4.5 2 8 7 9 2 2 6 

A3 7.5 12 16 (7.5) 7.5 16 14 
 

16 5 10 7.5 12 2.5 2.5 2.5 2.5 (12) 

A4 6.5 13 15.5 (6.5) 15.5 15.5 15.5 
 

8.5 11 4.5 8.5 2 (11) (11) 2 2 4.5 

Total Rank 38 51 60 34 52.5 63.5 57 
 

53 27 27.5 21.5 28.5 25.5 31 8 10 24 
Expected 

Rank 17 16 15 14 13 12 11   10 9 8 7 6 5 4 3 2 1 

H0  H0 : R1 = R2 =…= Rn
 m, n 4, 17 Standardized 

L (or z) z2 = 5.08c 

H1 
  

H1 : R1 ≥R2 ≥ ...≥ Rn,
w / ≥ 1 strict inequality

 

χ2 (df=1) 25.77 b z-upper 7.04d 

Page L  L2 = 6543.5a p-value < .0001 z-lower 3.12d 
 

Note: Missing data are denoted as a period (.). Its rank is based on the score shown in parenthesis next to the 
period (.). The score in the parenthesis is assigned a rank, also shown in parenthesis, based on the lowest 
score of SSR2 phase or the highest score of the RC2 phase, in support of the H0. Tied scores are assigned the 
average rank of the corresponding ranks. 
a          

         

       

       

17 4

1 1

17 38 16 51 15 60 14 34 13 52.5

12 63.5 11 57 10 53 9 27 8 27.5
2 6543.5

7 21.5 6 28.5 6 28.5 5 25.5

4 31 3 8 2 10 1 24

n m

j j
j i

L Y R
 

 

         
 
             

       
           
         

 

  

b  

  

 

   

 
2 22 2 2

2
2 2 2 2 2

12 3 1 12 6543.5 3 4 17 17 1 78522 66096 15440547625.77 25.76557694.
4 289 288 18 59927041 1 4 17 17 1 17 1L

L mn n

mn n n


                   
        

  

c 2
22 5.08 25.76557694 5.075980392.Lz       

d  95% CI for StandardizedL2 2 1.96 5.08 1.96 3.12,7.04 .z       
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Table 4. Number of intervals of disruptive behaviors and their ranks of 6 sessions (9 to 
14) of the RC1 phase and 8 sessions (15-22) of the SSR2 phase of Class A (Lambert et 
al., 2006) 
 
  RC1   SSR2 

Session 9 10 11 12 13 14   15 16 17 18 19 20 21 22 

A1 2 0 .(2) 1 0 0  8 8 8 6 10 10 10 8 

A2 3 1 0 4 0 0  8 9 10 7 9 10 8 10 

A3 .(1) 0 1 1 0 0  5 7 10 . (5) 5 10 9 10 

A4 3 6 0 0 .(6) 1  3 8 10 . (3) 10 10 10 5 

Mean 2.25 1.75 0.75 1.50 1.50 0.25  6.00 8.00 9.50 5.25 8.50 10.00 9.25 8.25 

SD 0.96 2.87 0.96 1.73 3.00 0.50   2.45 0.82 1.00 1.71 2.38 0.00 0.96 2.36 

 RC1 Ranks   SSR2 Ranks 

Session 9 10 11 12 13 14   15 16 17 18 19 20 21 22 

A1 5.5 2 (5.5) 4 2 2   9.5 9.5 9.5 7 13 13 13 9.5 

A2 5 4 2 6 2 2  8.5 10.5 13 7 10.5 13 8.5 13 

A3 (5) 2 5 5 2 2  8 10 13 (8) 8 13 11 13 

A4 5 8.5 1.5 1.5 (8.5) 3  5 10 12.5 (5) 12.5 12.5 12.5 7 

Total Rank 20.5 16.5 14 16.5 14.5 9  31 40 48 27 44 51.5 45 42.5 

Expected Rank 1 2 3 4 5 6   7 8 9 10 11 12 13 14 

H0  H0 : R1 = R2 =…= Rn
 m, n 4, 14 Standardized 

L (or z) z3 = 5.22c 

H1 
  

H1 : R1 ≥R2 ≥ ...≥ Rn,
w / ≥ 1 strict inequality

 

χ2 (df=1) 27.27 b z-upper 7.18d 

Page L  L3 = 3809a p-value < .0001 z-lower 3.26d 
 

Note: Missing data are denoted as a period (.). Its rank is based on the score shown in parenthesis next to the 
period (.). The score in the parenthesis is assigned a rank, also shown in parenthesis, based on the lowest 
score of SSR2 phase or the highest score of the RC1 phase, in support of the H0. Tied scores are assigned the 
average rank of the corresponding ranks. 
 
a          

         

       

14 4

1 1

1 20.5 2 16.5 3 14 4 16.5 5 14.5

3 3809 6 9 7 31 8 40 9 48 10 27 .

11 44 12 51.5 13 45 14 42.5

n m

j j
j i

L Y R
 

 
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4 196 195 15 22932001 1 4 14 14 1 14 1L

L mn n
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

                  
        

 

c 2
33 5.22 27.27039246 5.222106133.Lz       

d  95% CI for StandardizedL3 3 1.96 5.22 1.96 3.26,7.18 .z      

  



PENG & CHEN 

285 

Table 5. Number of intervals of disruptive behaviors and their ranks in 10 sessions (1 to 
10) of the SSR1 phase and 6 sessions (11 to 16) of the RC1 phase of Class B (Lambert 
et al., 2006) 
 
  SSR1   RC1 

Session 1 2 3 4 5 6 7 8 9 10   11 12 13 14 15 16 

B1 10 6 9 4 5 9 6 10 9 9  4 3 4 4 1 0 

B2 7 4 5 .(4) .(4) 7 8 4 8 8  0 0 0 0 .(0) .(0) 

B3 6 .(6) 6 .(6) .(6) 8 9 10 9 8  0 1 2 1 1 0 

B4 8 1 4 6 6 7 8 8 0 2  0 .(6) 0 0 2 6 

B5 9 5 4 2 3 10 4 10 8 8  0 2 1 3 0 0 

Mean 8.00 4.40 5.60 4.40 4.80 8.20 7.00 8.40 6.80 7.00  .80 2.40 1.40 1.60 .80 1.20 

SD 1.58 2.07 2.07 1.67 1.30 1.30 2.00 2.61 3.83 2.83   1.79 2.30 1.67 1.82 0.84 2.68 

 SSR1 Ranks  RC1 Ranks 

Session 1 2 3 4 5 6 7 8 9 10   11 12 13 14 15 16 

B1 15.5 9.5 12.5 5.5 8 12.5 9.5 15.5 12.5 12.5   5.5 3 5.5 5.5 2 1 

B2 12.5 8.5 11 (8.5) (8.5) 12.5 15.0 8.5 15 15  3.5 3 3.5 3.5 (3.5) (3.5) 

B3 9 (9) 9 (9) (9) 12.5 14.5 16 14.5 12.5  1.5 4 6 4 4 1.5 

B4 15 5 8 10.5 10.5 13 15 15 2.5 6.5  2.5 (10.5) 2.5 2.5 6.5 10.5 

B5 14 11 9.5 5.5 7.5 15.5 9.5 15.5 12.5 12.5  2 5.5 4 7.5 2 2 

Total Rank 66 43 50 39 43.5 66 63.5 70.5 57 59  15 26.5 21.5 23 18 18.5 

Expected Rank 16 15 14 13 12 11 10 9 8 7   6 5 4 3 2 1 

H0  H0 : R1 = R2 =…= Rn
 m, n 5, 16 Standardized 

L (or z) z4 = 4.82c 

H1 
  

H1 : R1 ≥R2 ≥ ...≥ Rn,
w / ≥ 1 strict inequality

 

χ2 (df=1) 23.25 b z-upper 6.78d 

Page L  L4 = 6726.5a p-value < .0001 z-lower 2.86d 
 

Note: Missing data are denoted as a period (.). Its rank is based on the score shown in parenthesis next to the 
period (.). The score in the parenthesis is assigned a rank, also shown in parenthesis, based on the lowest 
score of SSR1 phase or the highest score of the RC1 phase, in support of the H0. Tied scores are assigned the 
average rank of the corresponding ranks. 
 

a            

         

         

16 4

1 1

16 66 15 43 14 50 13 39 12 43.5 11 66

4 6726.5 10 63.5 9 70.5 8 57 7 59 6 15

5 26.5 4 21.5 3 23 2 18 1 18.5

n m

j j
j i

L Y R
 

 

           
   

                
    

          

 
  

b 
 

  

 

   

 

22

2
4 2 2

22 2

2 2

12 3 1
23.25

1 1

12 6726.5 3 5 16 16 1 80718 69360 129004164 23.24902033.
5 256 255 17 55488005 16 16 1 16 1

L

L mn n

mn n n


  
  

 

           
      

  

c 2
44 4.82 23.24902033 4.821723792.Lz       

d  95% CI for StandardizedL4 4 1.96 4.82 1.96 2.86,6.78 .z      
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Table 6. Number of intervals of disruptive behaviors and their ranks in 7 sessions (17 to 
23) of the SSR2 phase and 11 sessions (24 to 34) of the RC2 phase of Class B (Lambert 
et al., 2006) 
 
  SSR2   RC2 

Session 17 18 19 20 21 22 23   24 25 26 27 28 29 30 31 32 33 34 

B1 3 5 8 10 10 10 6  3 0 2 4 1 0 1 3 0 1 0 

B2 5 7 6 4 .(4) 6 5  .(2) 0 0 0 2 0 0 .(2) 0 0 0 

B3 2 4 4 5 8 8 7  1 0 3 .(3) 1 0 1 0 .(3) 1 0 

B4 5 6 5 8 4 0 2  1 2 6 0 2 0 1 1 .(6) .(6) .(6) 

B5 .(0) 3 0 2 7 7 2  0 .(4) 1 0 2 2 4 0 0 1 1 

Mean 3.00 5.00 4.60 5.80 6.60 6.20 4.40  1.40 1.20 2.40 1.40 1.60 0.40 1.40 1.20 1.80 1.80 1.40 

SD 2.12 1.58 2.97 3.19 2.61 3.77 2.30   1.14 1.79 2.30 1.95 0.55 0.89 1.52 1.30 2.68 2.39 2.61 

 SSR2 Ranks   RC2 Ranks 

Session 17 18 19 20 21 22 23   24 25 26 27 28 29 30 31 32 33 34 

B1 10 13 15 17 17 17 14   10 2.5 8 12 6.0 2.5 6 10 2.5 6 2.5 

B2 14.5 18 16.5 12.5 (12.5) 16.5 14.5  (10) 4.5 4.5 4.5 10 4.5 4.5 (10) 4.5 4.5 4.5 

B3 9 13.5 13.5 15 17.5 17.5 16  6.5 2.5 11 (11) 6.5 2.5 6.5 2.5 (11) 6.5 2.5 

B4 11.5 15 11.5 18 10 2 8  5.0 8 15 2 8 2 5 5 (15) (15) (15) 

B5 (3.5) 14.0 3.5 11.5 17.5 17.5 11.5  3.5 (15.5) 8 3.5 11.5 11.5 15.5 3.5 3.5 8 8 

Total Rank 48.5 73.5 60 74 74.5 70.5 64  35 33 46.5 33 42 23 37.5 31 36.5 40 32.5 
Expected 

Rank 18 17 16 15 14 13 12   11 10 9 8 7 6 5 4 3 2 1 

H0  H0 : R1 = R2 =…= Rn
 m, n 5, 18 Standardized 

L (or z) z5 = 4.42c 

H1 
  

H1 : R1 ≥R2 ≥ ...≥ Rn,
w / ≥ 1 strict inequality

 

χ2 (df=1) 19.51 b z-upper 6.38d 

Page L  L5 = 9283a p-value < .0001 z-lower 2.46d 
 

Note: Missing data are denoted as a period (.). Its rank is based on the score shown in parenthesis next to the 
period (.). The score in the parenthesis is assigned a rank, also shown in parenthesis, based on the lowest 
score of SSR2 phase or the highest score of the RC2 phase, in support of the H0. Tied scores are assigned the 
average rank of the corresponding ranks. 
 
a            

           

           

18 5

1 1

18 48.5 17 73.5 16 60 15 74 14 74.5 13 70.5

5 9283 12 64 11 35 10 33 9 46.5 8 33 7 42 .

6 23 5 37.5 4 31 3 36.5 2 40 1 32.5
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                  
    

            

 
  

b 
 

  

 

   

 
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2
5 2 2

22 2
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12 9283 3 5 18 18 1 111396 97470 193933476 19.50660294.
5 324 323 19 99419405 18 18 1 18 1

L

L mn n

mn n n


  
  

 

           
      

  

c 2
55 4.42 19.50660294 4.416628005.Lz       

d  95% CI for StandardizedL5 5 1.96 4.42 1.96 2.46,6.38 .z       
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Table 7. Number of intervals of disruptive behaviors and their ranks of 6 sessions (11 to 
16) of the RC1 phase and 7 sessions (17-23) of the SSR2 phase of Class B (Lambert et 
al., 2006) 
 

 RC1  SSR2 
Session 11 12 13 14 15 16 

 
17 18 19 20 21 22 23 

B1 4 3 4 4 1 0   3 5 8 10 10 10 6 

B2 0 0 0 0 . (0) .(0)  5 7 6 4 .(4) 6 5 
B3 0 1 2 1 1 0  2 4 4 5 8 8 7 
B4 0 .(6) 0 0 2 6  5 6 5 8 4 0 2 
B5 0 2 1 3 0 0  .(0) 3 0 2 7 7 2 

Mean .80 2.40 1.40 1.60 .80 1.20  3.00 5.00 4.60 5.80 6.60 6.20 4.40 
SD 1.79 2.30 1.67 1.82 .84 2.68  2.12 1.58 2.97 3.19 2.61 3.77 2.30 

 RC1 Ranks  SSR2 Ranks 

Session 11 12 13 14 15 16   17 18 19 20 21 22 23 
B1 6 3.5 6 6 2 1  3.5 8 10 12 12. 12 9 
B2 3.5 3.5 3.5 3.5 (3.5) (3.5)  9.5 13 11.5 7.5 (7.5) 11.5 9.5 
B3 1.5 4 6.5 4 4 1.5  6.5 8.5 8.5 10 12.5 12.5 11 
B4 2.5 (11) 2.5 2.5 5.5 11  8.5 11 8.5 13 7 2.5 5.5 
B5 3 8 6 10.5 3 3  (3) 10.5 3 8 12.5 12.5 8 

Total Rank 16.5 30 24.5 26.5 18 20  31 51 41.5 50.5 51.5 51 43 
Expected Rank 1 2 3 4 5 6   7 8 9 10 11 12 13 

H0  H0 : R1 = R2 =…= Rn
 m, n 5, 13 Standardized 

L (or z) z6 = 4.44c 

H1 
  

H1 : R1 ≥R2 ≥ ...≥ Rn,
w / ≥ 1 strict inequality

 

χ2 (df=1) 19.74 b z-upper 6.40d 

Page L  L6 =3707a p-value < .0001 z-lower 2.48d 
 

Note: Missing data are denoted as a period (.). Its rank is based on the score shown in parenthesis next to the 
period (.). The score in the parenthesis is assigned a rank, also shown in parenthesis, based on the lowest 
score of SSR2 phase or the highest score of the RC1 phase, in support of the H0. Tied scores are assigned the 
average rank of the corresponding ranks. 
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10 50.5 11 51.5 12 51 13 43
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c 2
66 4.44 19.74283299 4.443290784.Lz       

d  95% CI for StandardizedL6 6 1.96 4.44 1.96 2.48,6.40 .z       

 
 

Next, we computed the total rank for each of the 14 sessions. The total ranks 
4

1

m

ij
i

R




 
 
 
  were subsequently weighted by their expected ranks (Yj), suggested by 
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H1. The product of the total rank weighted by its expected rank was subsequently 
summed over all 14 sessions into the Page statistic, L, according to (3) below: 
 

 
       

         
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1 1
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

 

  (3) 

 
where, n = the number of sessions, m = the number of students/participants, Yj = 
the expected rank of the jth session, and Rij = the observed rank of the ith student’s 
score in the jth session.  

The exact significance level of the L statistic can be obtained from Page 
(1963), if n ranges from 3 to 10 and m ranges from 2 to 50. Given the present 
values of n = 14 and m = 4, the significance level can be approximated by a chi-
square distribution with df = 1, according to (4) below (Page, 1963, p. 224): 
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  (4) 

 
The above chi-square statistic is statistically significant at p < .0001 leading 

to a rejection of H0 of no trend at α = .05 (one-tailed), specified in (1) above. We 
therefore concluded that there was a monotonic decreasing trend across these 14 
sessions, as specified in H1 of (2). 

The large-sample approximation to the sampling distribution of Page’s L 
statistic yields acceptable Type I error rates for a directional Page test, as long as 
n > 11 for α = .05, or n > 18 for α = .01, according to Fahoome (2002). An 
acceptable Type I error rate was defined in Fahoome (2002) as within 10% of the 
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nominal α rate, in reference to Bradley (1978)’s work. Page (1963) also suggested 
that the large-sample chi-square approximation be used under one of three 
conditions: (1) for m > 20 with any n, (2) for m > 12 and n ≥ 4, or (3) for any m 
when n ≥ 9. Because m = 4 and n = 14, the Page test result and its statistical 
significance level were judged to be acceptable, according to Bradley (1978), 
Fahoome (2002), and Page (1963). 
 
Summary of six Page tests of trends.  The Page test was applied 
similarly to two other adjacent phases from Lambert-A data and to the three 
adjacent phases from Lambert-B data. Results of these Page tests are summarized 
in Tables 3 to 7, including their corresponding H0s and H1s. All six Page tests 
shown in Tables 2 to 7 were statistically significant at p < .0001, rejecting all H0s 
at α = .05 (one-tailed) and confirming a trend as specified in the corresponding 
H1s. For data in the SSR1-RC1 and the SSR2-RC2 adjacent phases, the Page test 
results of L, L2, L4, and L5 suggested a monotonic decreasing trend from the 
baseline phase (i.e., SSR) to the intervention phase (i.e., RC) in both Lambert-A 
and -B data sets. For data in the RC1-SSR2 adjacent phases, the Page test results 
of L3 and L6 suggested a monotonic increasing trend from the intervention phase 
(i.e., RC1) to the baseline phase (i.e., SSR2) again for both A and B data sets. 

Six ES measures derived from Page’s L  
The L statistic defined in (3) is conceptually and algebraically equivalent to the 
average Spearman rank correlation coefficient (ρ) between Students’ ranked 
scores (i.e., the frequency of disruptive behaviors) and the expected ranks 
according to a monotonic decreasing or increasing trend (Page, 1963; van de Wiel 
& Di Bucchianico, 2001). It is an unstandardized ES measure of a monotonic 
trend in data. To convert L into a standardized ES, one divides Page’s L (i.e., the 
average ρ) by its standard deviation (Lyerly, 1952; Page, 1963, p. 227) to yield a 
standardized normal z, as in (5): 
 

   21 25.60 5.06Lm n z
SD


           (5) 

 
where 2

L  is defined in (4) above. This normalized z statistic is similar to Cohen’s 
d, in the sense of being scale-free and ranging from negative to positive values 
without bounds. They differ, however, in their assumptions. Cohen’s d and its 
population parameter δ assume normality and equal variances for underlying 
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populations (Cohen, 1988), whereas the standardized L, or the normalized z in (5), 
does not, because the latter is based on ranks of the data.  

CI for the standardized ES derived from Page’s L 

Since the standardized L, or z from (5), follows a standard normal 
distribution (e.g., Fahoome, 2002; Lyerly, 1952), a nondirectional 95% CI for the 
standardized L can be constructed using (6) below: 
 
  95% CI for Standardized 1.96 5.06 1.96 3.10,7.02L z       (6) 
 

Because the upper and the lower limits of the 95% CI are both positive, the 
95% CI supports the earlier rejection of the H0 of no trend at α = .05, in favor of a 
monotonic decreasing trend across the 14 sessions from the SSR1-RC1 phases of 
the Lambert-A data. 
 
Summary of six ESs and six CIs.  The standardized ESs (or zs) and 
their corresponding CIs further confirmed the rejection of the H0 of no trend and 
in favor of the H1 of a monotonic trend. Taken together, the six Page test results, 
their corresponding ESs and CIs provided multiple evidence for monotonic 
decreasing trends in students’ disruptive behaviors due to the intervention. 

Assessment of variability 

According to the WWC Handbook (2013), “Variability refers to the range or 
standard deviation of data about the best-fitting straight line.” (p. E.6). Even 
though we did not fit a straight regression line to the Lambert data, the variability 
of scores was assessed within and between phases using SAS—see Part A of 
Appendix A; results are presented in Table 1. In five out of six instances, the 
intervention phases (RC1 and RC2) yielded less variability than their 
corresponding baseline phases, namely, SSR1 and SSR2 respectively. The only 
exception occurred in Lambert-A data set between SSR2 and RC2. We did not 
test the differences in variability because these statistical tests (e.g., Levene’s F’ 
test) are not robust under nonnormal conditions, which might be the case for the 
Lambert data.  
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Assessment of immediacy of the effect 

According to the WWC Handbook (2013), “Immediacy of the effect refers to the 
change in level between the last three data points in one phase and the first three 
data points of the next. The more rapid (or immediate) the effect, the more 
convincing the inference that change in the outcome measure was due to 
manipulation of the independent variable.” (p. E.6). Applying this definition to 
Figure 1 using the visual analysis, we determined that data patterns in the 
intervention phases (i.e., RC1 and RC2) exhibited an immediate decreasing effect 
on disruptive behaviors, compared to data patterns in the baseline phases (i.e., 
SSR1 and SSR2). Even though the last three data points of Student B4’s from the 
SSR2 phase, compared to the first three data points of the RC2 phase, suggested 
an exception, the overall profile of this student’s data supported a decline in 
disruptive behavior during the intervention phase. Thus, we concluded that there 
was an immediacy effect due to the intervention in both A and B data sets.  

Assessment of overlap 

According to the WWC Handbook (2013), “Overlap refers to the proportion of 
data from one phase that overlaps with data from the previous phase. The smaller 
the proportion of overlapping data points (or conversely, the larger the separation), 
the more compelling the demonstration of an effect.” (p. E.6). To assess this data 
feature, we computed the degree of nonoverlap for all data pairs (NAP) in 
adjacent phases for each student (Table 8). NAP is defined as the number of pairs 
of data showing no overlap between a baseline phase and an intervention phase, 
divided by the total number of pairs (Parker & Vannest, 2009). Each NAP 
corresponds to two adjacent phases, such as SSR1 and RC1. Values of NAP range 
from 0 to 1. A value of 0 indicates that all data points in phase A (e.g., SSR1) are 
greater than the points in phase B (e.g., RC1). In contrast, a value of 1 indicates 
that all data points in phase A (e.g., RC1) are smaller than the points in phase B 
(e.g., SSR2). According to Table 8, all NAP results were statistically significant at 
α = .05 (two-tailed), except for two students (B4 and B5) in two adjacent phases 
(RC1-SSR2, and SSR2-RC2). We therefore concluded that there was a 
statistically significant lack of overlap in students’ outcome measures between 
phases, supporting the effectiveness of the intervention in decreasing disruptive 
behaviors. The NAPs and their corresponding statistical significance were 
computed using a free web-based calculator from 
http://www.singlecaseresearch.org/. The web-based calculator was developed by 

http://www.singlecaseresearch.org/
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Vannest, Parker, and Gonen (2011) and its functionalities are shown in Appendix 
B. The NAP results were subsequently verified by SPSS, shown in Appendix C. 
 
 
Table 8. Nonoverlap of All Pairs (NAP) between phases in Lambert-A and -B data sets 
 

  SSR1-RC1 RC1-SSR2 SSR2-RC2 
  NAP a p-value b NAP p-value NAP p-value 

Student A1 0.0000 0.0034 1.0000 0.0034 0.0417 0.0015 
Student A2 0.0000 0.0027 1.0000 0.0019 0.0000 0.0005 
Student A3 0.0000 0.0062 1.0000 0.0045 0.0982 0.0092 
Student A4 0.0429 0.0094 0.9286 0.0149 0.0714 0.0073 

Student B1  0.0250 0.0020 0.9167 0.0124 0.0260 0.0009 

Student B2 0.0000 0.0066 1.0000 0.0105 0.0000 0.0015 

Student B3 0.0000 0.0027 0.9881 0.0034 0.0079 0.0010 
Student B4 0.1800 0.0500 0.7571 0.1439 0.2232 0.0728 
Student B5  0.0333 0.0024 0.7778 0.1093 0.2167 0.0652 

 

Note: Missing scores are left as missing. 
a NAPs were computed using a web-based calculator developed by Vannest, Parker, and Gonen (2011)—see 
Appendix B, and verified by SPSS’s Receiver Operator Characteristics module—see Appendix C. 
b p-values were obtained from the web-based calculator developed by Vannest, Parker, and Gonen (2011)—
see Appendix B, and verified by SPSS’s Receiver Operator Characteristics module and its option called Area 
Under the Curve (AUC)—see Appendix C 

Assessment of consistency of data in similar phases 

According to the WWC Handbook (2013, p. E.6), “Consistency of data in similar 
phases involves looking at data from all phases within the same condition… and 
examining the extent to which there is consistency in the data patterns from 
phases with the same conditions. The greater the consistency, the more likely the 
data represent a causal relation.” To determine the consistency of data, we 
employed the visual analysis of the Lambert-A and –B data sets and determined 
that data patterns were similar in the same phase between these two sets. 
Furthermore, we applied four independent-samples t-tests to each phase between 
means of sets A and B, whether it was baseline or intervention (Table 9). 
According to Table 9, the t-test was not statistically significant for any phase at 
α = .05 (two-tailed with df = 7 = 4+5−2). These statistically insignificant t-test 
results suggested that the mean scores obtained from sets A and B were not 
statistically significantly different from each other. Thus, we concluded that there 
was consistency of data patterns within similar phases for both data sets. SAS 
programming codes for assessing consistency in the Lambert-A data are shown in 
Part C of Appendix A.  
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Table 9. Means, SDs, t-tests of differences within phases in Lambert-A and -B data sets 
 
  SSR1   RC1   SSR2   RC2 
  Set A Set B   Set A Set B   Set A Set B   Set A Set B 

Meana  7.53 6.68  1.08 1.22  8.34 5.23  2.15 1.02 
SDb  3.48 =1.87   5.76 = 2.40  

  2.67 =1.63   2.41=1.55  
  4.23 = 2.06   5.91= 2.43  

  5.83 = 2.42   1.76 =1.33  

mc  4 5  4 5  4 5  4 5 
nd 8 10  6 6  8 7  9 11 
|t|e  0.5824 (SE=1.468)  0.1317 (SE=1.063)  2.0345 (SE=1.529)  0.8978 (SE=1.259) 

p-value 0.579  0.899  0.081  0.4 
 
a Means are computed as an average of individuals’ mean score over sessions within each phase. Missing 
scores are left as missing. 
b SDs are computed as the square root of the averaged variance of individuals’ variances of scores within each 
phase. Missing scores are left as missing. 
c m = number of participants or students. 
d n = number of sessions. 
e two-tailed t-test of Set A vs. Set B with df = 7. 
 

Conclusions based on six assessments 

The analyses summarized in Tables 1-9 and interpreted above collectively 
examined all data features recommended by the WWC Handbook (2013) for 
documenting an intervention effect. These assessments led to the same conclusion, 
as Lambert et al. (2006) did based on visual analysis alone. Next, we discuss the 
simplicity and rationality of the demonstrated approach, compared to visual 
analysis or complex statistical modeling and methods for determining intervention 
effects. 

Discussion 

In this paper, we demonstrated how to use free web-based resources or popular 
software to assess six data features recommended by the WWC Handbook (IES, 
2013 February) to determine intervention effects in a single-case study (Lambert 
et al., 2006). The six data features are level and level change between phases, 
trend, variability, immediacy of the effect, overlap, and consistency of data in 
similar phases. Lambert et al. (2006) employed a reversal (or ABAB) design to 
collect data on the effectiveness of the report-card intervention in reducing 
students’ disruptive behaviors in classrooms. The intervention was judged to be 
effective by Lambert et al. (2006) based on visual inspection alone. Our approach 
was to assess each of the six data features separately; then integrate six 
assessments into one comprehensive analysis of the intervention effect. 
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Among the six data features, the assessment of trends is probably most 
discussed but least agreed upon in the literature. To assess trends in the Lambert 
data, we employed the Page test and computed its ES and CI, proposed by Peng 
and Chen (2014). The Page test has been shown in the literature to be applicable 
to a variety of SCD contexts, such as, the simple AB designs, multiple-baseline 
AB designs, or replicated ABAB designs. They are equally applicable to one 
participant as well as to multiple participants, to one study as well as to multiple 
studies in a meta-analytic framework. The versatile Page test requires only ranked 
data. It can be computed and interpreted even when data have no variance 
(namely, there is uniformity in scores), display ceiling or floor effects, or are 
incomplete (Peng & Chen, 2014). Likewise, its proposed ES and CI are 
interpretable as they are direct derivatives from Page’s L statistic. The proposed 
ES is a meaningful measure of intervention effects and its precision is expressed 
by the CI (Peng & Chen, 2014). Both ES and CI can be computed simply using 
SAS algorithms shown in Appendix A. The reporting of ES and its precision, 
expressed as CI, have been required or highly recommended by refereed journals 
and professional organizations, such as the American Psychological Association 
(APA) and American Educational Research Association (AERA) (AERA, 2006; 
APA Publications and Communications Board Working Group on Journal Article 
Reporting Standards, 2008; APA, 2010; Peng, Chen, Chiang, & Chiang, 2013).  

The Lambert et al. (2006) data were recently reanalyzed in five articles 
published in a special issue of Journal of School Psychology (Shadish, 2014) to 
demonstrate alternative ways of analyzing and reporting SCD data, beyond the 
initial visual analysis. Each article published in that special issue employed 
complex statistical models (such as, the hierarchical linear modeling) and/or 
methods (such as, the Bayesian approach). These complex models and methods 
are often difficult to conceptualize or implement by practitioners not specially 
trained for these methodologies. In our demonstration, we assessed each of the six 
data features separately; then integrated six assessments into one comprehensive 
analysis. The separate assessments and the final integration were carried out using 
tools free from the Internet, or from the popular statistical software, such as SAS 
and SPSS. Thus, our approach to the determination of intervention effects is both 
simple and comprehensive. It illustrates how researchers, clinicians, teachers, 
parents, or policy makers can be empowered to interpret data efficiently and 
formulate evidence-based conclusions logically from well-designed and well-
executed single-case studies. 
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Appendix A: SAS Program for Assessing Level/Level 
Change, Trends, Variability, and Consistency in Lambert-A 
Data 
*------------------------------------------------------------------------------------------------ 
*Data came from Lambert et al., (2006) with two Classrooms, A and B. 
*Class A data are analyzed in this program. Class B data can be analyzed similarly. 
*Each class has two baselines, SSR1 and SSR2, each followed by an intervention: RC1 and RC2. 
*Class A has 4 participants, A1 to A4 and 31 sessions: 1-8 in SSR1, 9-14 in RC1, 15-22 in SSR2,  
* sessions 23-31 in RC2. 
*Class B has 5 participants, B1 to B5 and 34 sessions: 1-10 in SSR1, 11-16 in RC1, 17-23 in SSR2, 
* sessions 24-34 in RC2. 
* 3 Page tests, their Chi-square tests, and p-values are computed in this program, for class A.  
*  
*-----------------------------------------------------------------------------------------------; 
 
OPTIONS LS=80 PAGENO=1; 
TITLE ‘Lambert A Data analyzed using Page test’; 
 
DATA A;                        /*Classroom A data of 4 students*/ 
     INPUT id $ score1-score31; 
 
*Class A has 4 participants, A1 to A4 and 31 sessions: 1-8 in SSR1, 9-14 in RC1, 15-22 in SSR2, 23-31 
in RC2; 
 
     minssr1=min (OF score1-score8); 
     maxrc1=max (OF score9-score14); 
     minssr2 = min (OF score15-score22); 
     maxrc2=max (OF score23-score31); 
  
*Compute the mean of each student for each phase--------------------------------------; 
 
     meanssr1=mean(OF score1-score8); 
     meanrc1=mean(OF score9-score14); 
     meanssr2=mean(OF score15-score22); 
     meanrc2=mean(OF score23-score31); 
 
*Compute differences of adjacent phases-----------------------------------------------; 
 
     diff_ssr1_rc1=meanssr1-meanrc1; 
     diff_rc1_ssr2=meanrc1-meanssr2; 
     diff_ssr2_rc2=meanssr2-meanrc2; 
 
*Compute the variance of each student for each phase----------------------------------; 
 
     varssr1=VAR (OF score1-score8); 
     varrc1=VAR (OF score9-score14); 
     varssr2=VAR (OF score15-score22); 
     varrc2=VAR (OF score23-score31); 
 
* Create new variables for single imputation missing data------------------------------; 
 
     ARRAY score{*} score1-score31; 
     ARRAY new{*} new1-new31; 
 
     DO i = 1 to 31 by 1; 
        new{i} = score{i};            
     END; 
 
DATALINES; 
A1 7  9  8  6  7  4  5 10  2  0  .  1  0  0  8  8  8  6 10  10 10   8  3  4  1  3  2  4  0  1  0 
A2 8  7  .  7  8  6  7  9  3  1  0  4  0  0  8  9 10  7  9  10  8  10  1  1  0  5  3  6  0  0  2 
A3 10 .  6  .  6  9  6 10  .  0  1  1  0  0  5  7 10  .  5  10  9  10  4  6  5  7  0  0  0  0  . 
A4 10 .  6  4  8  8  9 10  3  6  0  0  .  1  3  8 10  . 10  10 10   5  6  1  5  0  .  .  0  0  1 
; 
 
* Compute descriptive stat. in the data set---------------------------------------------; 
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* Part A -------------------------------------------------------------; 
 
PROC MEANS DATA=A; RUN; 
 
* Replace missing scores in each phase by the min or max of that phase for each participant from 
Lambert-A data set -------------; 
 
DATA A1; SET A; 
         ARRAY score{*} score1-score31; 
         ARRAY new{*} new1-new31; 
         Do i = 1 to 31 by 1; 
            session = i; 
                IF 1<= session <= 8 THEN phase = 'SSR1'; 
                ELSE IF 9 <=session <=14 THEN phase = 'RC1'; 
                ELSE IF 15<= session<=22 THEN phase = 'SSR2'; 
                ELSE IF 23<=session <=31 THEN phase = 'RC2'; 
                 
                IF phase = 'SSR1' AND new{i}=. THEN new{i}=minssr1; 
                ELSE IF phase = 'RC1' AND  new{i}=. THEN new{i}=maxrc1; 
   ELSE IF phase = 'SSR2' AND new{i}=. THEN new{i}=minssr2; 
                ELSE IF phase = 'RC2' AND  new{i}=. THEN new{i}=maxrc2; 
 
         END;               
         KEEP id new1-new31; 
 

*Create three data sets for two adjacent phases for Lambert A data set -------------------------; 

 
DATA A_SSR1_RC1; set A1; KEEP id new1-new14; 
DATA A_SSR2_RC2; set A1; KEEP id new15-new31; 
DATA A_RC1_SSR2; set A1; KEEP id new9-new22; 
 
*Rank data in SSR1-RC1 phases from SAS data set A_SSR1_RC1 of Lambert A data set ---------------; 
 
PROC TRANSPOSE DATA=A_SSR1_RC1 OUT=Table1;         
/* transpose the data matrix in order to rank scores*/ 
     ID id; 
RUN; 
 
PROC RANK DATA=Table1 OUT=Table1; 
     VAR A1-A4; 
 
PROC TRANSPOSE DATA=Table1 OUT=Table1 PREFIX=rank;   /* transpose the ranked data back */ 
 
* Compute total ranks for 14 sessions in SSR1-RC1 phases from SAS data set A_SSR1_RC1 of Lambert A 
data set ----------; 
 
PROC MEANS DATA=Table1;                           /* compute the total of rank1 to rank14 */ 
     VAR rank1-rank14; 
     OUTPUT OUT=Table1 SUM=sum1-sum14; 
 
PROC PRINT DATA = Table1; RUN; 
 
* Part B--------------------------------------------------------------------; 
 
* Compute Page L, chi-square, z and CI of z for SSR1-RC1 phases from Lambert A data set -------; 
 
*Page test for SSR1-RC1 phases in Lambert A data set-------------------------------------------; 
 
DATA L_1; SET Table1; 
 
L1 = 
14*sum1+13*sum2+12*sum3+11*sum4+10*sum5+9*sum6+8*sum7+7*sum8+6*sum9+5*sum10+4*sum11+3*sum12+2*sum13+1*
sum14;   /*Page L stat */ 
m = 4; 
n = 14; 
n1= n+1; 
p = (n1)**2;        /* n+1 squared */ 
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q = n**2;           /* n squared */ 
q1 = n**2 - 1;      /* n squared -1 */ 
 
Chi1= ((12*L1 - 3*m*n*p)**2)/((m*q)*q1*n1); 
chi_p1 = probchi(Chi1,1); 
z1 = sqrt(chi1);    /* 95% of z CI for L1  */ 
   
z1_lower = z1-1.96;  /* Lower bound of z    */ 
z1_upper = z1+1.96;  /* Upper bound of z    */ 
 
PROC PRINT DATA=L_1; RUN; 
 
*Page test for SSR2-RC2 phases in Lambert A data set------------------------------------------; 
 
*Rank data in SSR2-RC2 phases from SAS data set A_SSR2_RC2 of Lambert A data set -------------; 
 
PROC TRANSPOSE DATA=A_SSR2_RC2 OUT=Table2;         
/* transpose the data matrix in order to rank scores*/ 
     ID id; 
RUN; 
 
PROC RANK DATA=Table2 OUT=Table2; 
     VAR A1-A4;RUN; 
 
PROC TRANSPOSE DATA=Table2 OUT=Table2 PREFIX=rank;   /* transpose the ranked data back */ 
 
* Compute total ranks for 17 sessions in SSR2-RC2 phases from SAS data set A_SSR2_RC2 of Lambert A 
data set ----------; 
 
PROC MEANS DATA=Table2;                           /* compute the total of rank23 to rank31 */ 
     VAR rank1-rank17; 
     OUTPUT OUT=Table2 SUM=sum15-sum31; 
 
PROC PRINT DATA = Table2; RUN; 
 
* Compute Page L, chi-square, z and CI of z for SSR2-RC2 phases from Lambert A data set --------; 
 
DATA L_2; SET Table2; 
 
L2 = 
17*sum15+16*sum16+15*sum17+14*sum18+13*sum19+12*sum20+11*sum21+10*sum22+9*sum23+8*sum24+7*sum25+6*sum2
6+5*sum27+4*sum28+3*sum29+2*sum30+1*sum31;   /*Page L stat */ 
m = 4; 
n = 17; 
n1= n+1; 
p = (n1)**2;        /* n+1 squared */ 
q = n**2;           /* n squared */ 
q1 = n**2 - 1;      /* n squared -1 */ 
 
Chi2= ((12*L2 - 3*m*n*p)**2)/((m*q)*q1*n1); 
chi_p2 = probchi(Chi2,1); 
z2 = sqrt(chi2);    /* 95% of z CI for L2  */ 
   
z2_lower = z2-1.96;  /* Lower bound of z2    */ 
z2_upper = z2+1.96;  /* Upper bound of z2    */ 
 
PROC PRINT DATA=L_2; RUN; 
 
*Page test for RC1-SSR2 phases in Lambert A data set-------------------------------------------; 
 
*Rank data in RC1-SSR2 phases from SAS data set A_RC1_SSR2 of Lambert A data set --------------; 
 
PROC TRANSPOSE DATA=A_RC1_SSR2 OUT=Table3;         
/* transpose the data matrix in order to rank scores*/ 
     ID id; 
RUN; 
 
PROC RANK DATA=Table3 OUT=Table3; 
     VAR A1-A4; 
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PROC TRANSPOSE DATA=Table3 OUT=Table3 PREFIX=rank;   /* transpose the ranked data back */ 
 
* Compute total ranks for 14 sessions in RC1_SSR2 phases from SAS data set A_RC1_SSR2 of Lambert A 
data set ----------; 
 
PROC MEANS DATA=Table3;                           /* compute the total of rank9 to rank22 */ 
     VAR rank1-rank14; 
     OUTPUT OUT=Table3 SUM=sum9-sum22; RUN; 
 
PROC PRINT DATA = Table3; RUN; 
 
* Compute Page L, chi-square, z and CI of z for SSR2-RC2 phases from Lambert A data set --------; 
 
DATA L_3; SET Table3; 
 
L3 = 
1*sum9+2*sum10+3*sum11+4*sum12+5*sum13+6*sum14+7*sum15+8*sum16+9*sum17+10*sum18+11*sum19+12*sum20+13*s
um21+14*sum22;     /*Page L stat */ 
m = 4; 
n = 14; 
n1= n+1; 
p = (n1)**2;        /* n+1 squared */ 
q = n**2;           /* n squared */ 
q1 = n**2 - 1;      /* n squared -1 */ 
 
Chi3= ((12*L3 - 3*m*n*p)**2)/((m*q)*q1*n1); 
chi_p3 = probchi(Chi3,1); 
z3 = sqrt(chi3);    /* 95% of z CI for L3  */ 
   
z3_lower = z3-1.96;  /* Lower bound of z3    */ 
z3_upper = z3+1.96;  /* Upper bound of z3    */ 
 

PROC PRINT DATA=L_3; RUN; 
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Appendix B: Assessing Overlap in Lambert-A Data Using a 
Web-Based Calculator (Vannest, Parker, & Gonen, 2011) at 
http://singlecaseresearch.org 
 
 

 
 
Figure B1. Web-based calculator for single-case studies developed by Vannest et al. 
(2011) 
 
 
 

http://singlecaseresearch.org/
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Figure B2. Data entry for student A1 of Lambert-A data set in web-based calculator for 
single-case studies developed by Vannest et al. (2011) 
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Figure B3. Compute NAP of SSR1-RC1 for student A1 of Lambert-A data set in web-
based calculator for single-case studies developed by Vannest et al. (2011)  
 
 
 

Click 

Check  
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Figure B4. Obtain NAP of SSR1-RC1 for student A1 of Lambert-A data set from web-
based calculator for single-case studies developed by Vannest et al. (2011)  
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Appendix C: Assessing Overlap in Lambert-A Data Using 
SPSS (Version 21) 
 

 
 
Figure C1. Compute NAP using SPSS Receiver Operator Characteristics module 
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Figure C2. Dialogue window after selecting ROC Curve 
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Figure C3. Obtain NAP of SSR1-RC1 for student A1 of Lambert-A data set from SPSS 
21.0 
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Large scale Monte Carlo applications need a good pseudo-random number generator 
capable of utilizing both the vector processing capabilities and multiprocessing 
capabilities of modern computers in order to get the maximum performance. The 
requirements for such a generator are discussed. New ways of avoiding overlapping 
subsequences by combining two generators are proposed. Some fundamental 
philosophical problems in proving independence of random streams are discussed. 
Remedies for hitherto ignored quantization errors are offered. An open source C++ 
implementation is provided for a generator that meets these needs. 
 
Keywords: Random number generation, SIMD, vector processors, multiprocessors, 
parallel generation, combination of generators, quantization errors, theoretical proofs, 
philosophy of science 
 

Introduction 

The exponential increase in the computing power of mainstream microprocessors 
over several decades, known as Moore's Law, has made large scale Monte Carlo 
applications feasible and common. The current trend in microprocessor 
technology goes towards parallel processing of data in mainly two ways: 1) 
microprocessors have vector registers that can do arithmetic operations on a 
whole vector with a single CPU instruction (Single Instruction Multiple Data, 
SIMD), and 2) microprocessor chips have multiple CPU cores that can execute 
multiple threads simultaneously. The design of pseudo-random number generators 
(PRNGs) has been improved considerably in recent decades, but few of the 
published designs are suitable for utilizing the parallel processing capabilities of 
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today's microprocessors in large scale computations (Manssen, et al., 2012; 
Passerat-Palmbach, Mazel and Hill, 2011). The construction of pseudo-random 
number generator software capable of utilizing both vector processing and multi-
threading for the fast generation of large amounts of pseudo-random numbers of 
high quality, using the newest microprocessor technology are considered. 

Choice of hardware 

Several hardware platforms are available for parallel processing:  

Mainstream CPUs for the PC market 

These CPUs are quite powerful. They are universally available and cheap because 
of high production volumes. The size of vector registers in the common x86 
family of microprocessors has grown exponentially in recent years, as illustrated 
in Table 1. 
 
 
Table 1. Vector register size of x86 family microprocessors. 

 

Year introduced Instruction set for integer vector 
operations Vector size, bits 

1997 MMX 64 

2001 SSE2 128 

2013 AVX2 256 

expected 2017 AVX-512 512 

 
 

Vector sizes of 1024 bits and perhaps 2048 bits can be expected in 
mainstream CPUs in the coming years. However, the vector size will probably not 
keep growing exponentially because of diminishing returns and because the size 
of mask registers used for conditional execution is limited to 64 bits, 
corresponding to 64 elements of 32 bits each = 2048 bits, in current specifications 
from Intel (Intel, 2014a). 

The high-end CPUs are currently available with 8 or more cores and a clock 
frequency of 3 – 4 GHz. Some models are capable of running two threads in each 
core, but this may not be useful for CPU-intensive code because both threads are 
competing for the same hardware resources (Fog, 2014a). 
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Graphic processors. 
Graphics Processing Units (GPUs) are included in many PCs and designed mainly 
for the purpose of computer games. Contemporary GPUs are available in many 
different configurations with hundreds or thousands of parallel streams and clock 
frequencies ranging from 200 to 1600 MHz. GPUs have increasingly been applied 
to general computation tasks that involve large amounts of parallel data. Software 
libraries for random number generation in GPUs are available (Manssen, et al., 
2012; Demchik, 2011; Barash and Shchur, 2014; Nandapalan, et al., 2012). 

A serious limitation of GPUs is that each stream has access to only a small 
amount of RAM memory, and communication between streams is expensive. We 
have to consider that random number generation is typically only a small part of 
an application, using only a small part of the total CPU time. The other parts of a 
typical application, the ones that consume the random numbers, will typically be 
running in the same units that produced the random numbers and be subject to the 
same limitations on memory use and communication between streams. This is 
limiting the usefulness of GPUs for large scale Monte Carlo applications. 

Many-core coprocessors 

Intel's current Many Integrated Core (MIC) Xeon Phi coprocessor codenamed 
Knights Corner has up to 61 cores with 512-bit vector registers and a clock 
frequency of 1.2 GHz (Chrysos, 2012). The throughput per core is much lower 
than for a general purpose CPU, and the total throughput is rarely more than a few 
times the throughput of the best mainstream CPU configurations. In some cases, a 
mainstream CPU can even outperform the Knights Corner (Saule, Kamer and 
Çatalyürek, 2013; Chan, 2013; Karpiński 2014). The Knights Corner has its own 
instruction set, which makes it less attractive for portable software. The 
announced successor, codenamed Knights Landing, is expected to be faster and it 
will be using the same instruction set (AVX-512) as future mainstream CPUs 
(Anthony, 2013). This will make it possible to use the same software on MIC 
processors and mainstream CPUs. 

Similar products from other vendors include Nvidia Tesla and AMD 
FireStream. These processors have more in common with GPUs. 

Large vector processors 

For most applications, clusters of general microprocessors have largely replaced 
the large and expensive supercomputers that were used decades ago for 
demanding scientific purposes. 
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Parallel generation of pseudo-random numbers in vector 
processors 

A PRNG generally uses a generating function f of the form (L’Ecuyer, 1994) 
 
  1 2f , , ,i i i i nx x x x     
 
where each new value xi is a function of the previous n values. The successive 
values xi may be used directly as random numbers, or they may be transformed by 
an output function g of the form 
 
  1g , , ,i i i i ny x x x    
 

Not all of the values xi−1, xi−2, ..., xi−n need to be included in f. We will say 
that f has a feedback path of length φ if f depends on xi−φ. The function f can be 
implemented in a vector processor with registers of size v bits if v ≤ wφ for all 
feedback paths φ, where w is the number of bits needed to represent each xi. For 
example, for a vector size v of 256 bits and a word size w of 32 bits, the shortest 
feedback path φ must be at least 8 for an efficient vectorized implementation of f. 
If φ ≥ 8 and n ≥ 8 then we can calculate 8 successive values of xi with a vectorized 
function f of the form: 
 
    7 6 1 2, , , , , ,i i i i i i nx x x x x x     f   
 

If v > wφ then the vectorized function f needs to implement multiple steps of 
the generating function f. This is usually so complicated that it offsets the 
advantage of vectorized calculation. 

The last n values of xi are stored in a circular buffer, called the state buffer, 
which is updated by each call of the generating function f or f. The initial value of 
the state buffer is a function of an arbitrary number called the seed. This function 
is the so-called seeding procedure. 

The size of the state buffer is at least wn and often extended to the nearest 
multiple of the vector size v. The implementation is most efficient if wφ and wn 
are multiples of the vector size v. 

Most of the commonly used PRNGs have a feedback path φ = 1, which 
makes them unsuited for vectorized calculation. Preferred generators are those 
with feedback paths corresponding to the largest vector size there is access to in 
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available vector processors. A generator designed to match 128-bit vector 
registers has been published under the name SIMD-oriented Fast Mersenne 
Twister (SFMT) (Saito and Matsumoto, 2008, 2009). 

Parallel generation of pseudo-random numbers in 
independent streams 

The construction of generators suitable for vector processors has received 
relatively little attention in the literature, but the simultaneous generation of 
multiple pseudo-random streams has been discussed in several publications. Five 
different methods for producing independent streams have been proposed 
(L’Ecuyer, 1994; Salmon, 2011; L’Ecuyer, Oreshkin and Simard, 2014; Bauke 
and Mertens, 2007): 
 

1. Use multiple instances of the same generator with different seeds. 
We want to avoid overlap between the generated subsequences. 
Assume that we are generating k subsequences of length ℓ from a 
generator with total cycle length ρ. If the seeding procedure is 
sufficiently random then we can calculate the probability that any of 
the subsequences are overlapping as (L’Ecuyer, Oreshkin and 
Simard, 2014) 
 

  
1 21 1 / /kp k k 


      
 
If the total cycle length ρ is sufficiently long then this probability can 
be very small. For example, for a Mersenne Twister MT19937 
(Matsumoto and Nishimura, 1998) with cycle length ρ = 219937−1, 
k = 1000 and ℓ = 1010, we have p = 2∙10−5986. This means that we can 
safely ignore the risk of overlapping subsequences in such cases. 

2. Use a generator with a jump-ahead feature. We use this jump-ahead 
feature to generate each stream as a subsequence of the same 
generator at an offset q ≥ ℓ relative to the preceding stream 
(L’Ecuyer, 1994; L’Ecuyer and Côté, 1991). The jump-ahead feature 
is usually quite complicated and requires a significant amount of 
computing resources. Regularly spaced starting points may cause 
inferior randomness for some generators (Durst, 1989).  
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3. A variant of the jump-ahead method is to put all the randomness in 
the output function g, while the generating function f is a simple 
counting xi = xi−1 + 1 mod 2w (Salmon, 2011). This makes it trivial to 
generate non-overlapping subsequences. The output function g is 
borrowed from cryptology. Instructions for AES encryption are 
implemented in hardware in many computers, using a vector size of 
128 bits, but not higher (Intel, 2014b). 

4. Leapfrogging. The first of k streams uses outputs xi, xi+k, xi+2k, ... The 
next stream uses xi+1, xi+1+k, xi+1+2k, ... and so on. This is useful when 
the k streams form a vector generated by a single vector processor. It 
is more complicated to use leapfrogging when the streams are 
generated in separate processors. Known multiprocessor 
implementations use prime modulus (Bauke and Mertens, 2007), 
which leads to quantization errors (see below). 

5. Use different generators based on the same principle but with 
different sets of parameters in the generating function. If we have 
many streams then we need to either store many pre-calculated 
parameter sets, or include the necessary code to search for good 
parameter sets on the fly (Matsumoto and Nishimura, 2000). This so-
called dynamic creation method requires a lot of computational 
resources, possibly even more than the resources needed to generate 
the random number streams, and it has been reported to make 
inferior parameter sets in some cases (Passerat-Palmbach, Mazel, 
Mahul and Hill, 2010). 
 

There is disagreement among theorists about whether method 5 can be 
recommended. One would intuitively assume that random streams generated by 
different generators with different parameter sets are statistically independent, but 
some have argued that we have no theoretical proof that there is no unwanted 
correlation between such random streams (Passerat-Palmbach, Mazel and Hill, 
2011; L’Ecuyer, 1994). However, those who make this objection seem to ignore 
that the same argument can be made about subsequences from the same generator. 
Perhaps they rely on the implicit (and arguably false) assumption that the most 
recommended generators are perfect, and conclude that non-overlapping 
subsequences from the same generator are statistically independent.  

However, if subsequences are spaced by an offset of e.g. q = 1015 and 
experimental tests for randomness have included no sequences longer than 
ℓ = 1010 then we have no experimental proof that all subsequences are 
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independent, and no theoretical proof either (Bauke & Mertens, 2007). It is 
reasonable to assume that the probability of unwanted correlations between 
sequences from different generators (with different seeds) is not bigger than the 
probability of unwanted correlations between subsequences of the same generator. 
We will return to a more general discussion of theoretical proofs below. 

 
6. A sixth method of making independent pseudorandom streams is 

now proposed. It involves the combination of two different PRNGs. 
We will have two different generators, G and H, and initialize them 
with seeds s1G and s1H, respectively. G generates a pseudorandom 
sequence x1Gi and H makes another sequence x1Hi, where each x is an 
integer of w bits, and 0 ≤ i < ℓ. The two sequences are now combined 
into one stream by means of a bitwise XOR operation or addition 
modulo 2w, e.g. x1i = x1Gi + x1Hi mod 2w. The combined stream x1i 
now depends on both seeds s1G and s1H. We can make a second 
combined stream (indicated by superscript 2) x2i by changing the 
seed for G, s1G to s2G and keeping the seed for H constant: 
s1G ≠  s2G ∧  s1H = s2H. The second combined stream is 
x2i = x2Gi + x2Hi = x2Gi + x1Hi mod 2w. Now consider the unlikely event 
that the seed s2G generates a sequence x2Gi that is offset from x1Gi by 
a distance q < ℓ, perhaps because of a bad seeding procedure. In this 
case, the sequences x1Gi and x2Gi have a partial overlap of length 
ℓ − q because x2Gi = x1Gi + q. However, the contribution from H is 
x2Hi = x1Hi ≠ x1Hi + q, except for random i-occurrences with expected 
frequency 2−w. Therefore, the first and second combined sequences 
x1i and x2i will be statistically independent, even in the unlucky event 
that the G component of the sequences have a partial overlap. 

7. A variant of method 6 is to change both seeds: 
s1G ≠ s2G ∧ s1H ≠ s2H. To see if this method is safe from overlaps, 
consider the coincidence of three unlucky events: 1) The sequence 
x2Gi is offset from x1Gi by a distance |qG| < ℓ so that the G-sequences 
have a partial overlap; 2) the sequence x2Hi is offset from x1Hi by a 
distance |qH| < ℓ so that the H-sequences have a partial overlap; and 
3) the two overlaps are equal qG = qH. The two combined sequences 
x1i and x2i have a partial overlap only in this contrived scenario. This 
is a theoretical possibility, but it can only happen at the coincidence 
of three unlucky events, all of which are extremely unlikely. The 
probability of this coincidence happening between any of k 
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combined sequences is approximately k2ℓ / (ρGρH) where ρG and ρH 
are the cycle lengths of G and H, respectively. With large cycle 
lengths, this probability is so low that there is room for human errors. 
Even in the event that both seeding procedures are seriously flawed, 
the coincidence of the three unlikely events seems no more than a 
theoretical possibility. 
 

Method 7 has the advantage that the difference between two combined 
streams di = x2i – x1i depends on both generators G and H, while di depends only 
on G if method 6 is used. This gives improved randomness in applications where 
differences between streams are involved. The possible improvement in 
randomness by combining two different generators is discussed in the next section.  

Advantages of combined generators 

The technique of combining two or more PRNGs is often used in order to 
improve randomness and cycle length. The cycle length of a combined generator 
is the least common multiple of the cycle lengths of the individual generators. 

There are different opinions on the merits of combining two or more PRNGs. 
L'Ecuyer has argued that the combined output of two generators may conceivably 
be less random than the individual sequences (L’Ecuyer, 1990, 1994), while the 
acknowledged handbook Numerical Recipes emphasizes: "An acceptable random 
generator must combine at least two (ideally unrelated) methods" (Press, 2007, p. 
342). 

The combination of two random streams can only be less random than its 
components if the two streams are correlated in a certain way. The next section 
will discuss whether it is possible to prove that such an unfortunate correlation 
between two random streams does not exist. 

It has been observed that the combination of two or more PRNGs produces a 
stream that is more random than either component. In fact, many good random 
generators have been made by combining inferior ones. Pragmatically speaking, 
we may say that if generator G has some defects and generator H has some other 
defects, then the combination of G and H has neither of these defects, as long as 
the defects of G and H are of different kinds. This is not a universal law of nature, 
of course, and it requires a more specific analysis to determine whether a 
particular kind of defect can be eliminated by combination of generators. There is 
plenty of theoretical evidence that various defects in random generators can be 
eliminated by combining with other generators that do not have the same kind of 
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defects (Matsumoto and Nishimura, 2000; Deng, Lin, Wang and Yuan, 1997; 
L’Ecuyer and Granger-Piché 2003; Marsaglia, 1985). Experience shows that 
combining two generators is a very efficient way of improving randomness. For 
example, if generator G has a bias that makes certain values more frequent than 
others, and generator H has no such bias, then the combined output of G and H 
will have no bias. If Generator H has a correlation between subsequent numbers 
and generator G has no such correlation, then the combined output will be free 
from such correlations. The two generators should preferably be very different in 
their design in order to avoid that they both have the same kinds of defects (Press, 
2007). 

Combining two or more generators is also useful in applications where 
security is important. It is possible to reconstruct a complete sequence from a 
subsequence in many generators. This becomes very difficult or impossible when 
multiple generators are combined and only the combined output is accessible to 
the attacker. 

How much can be proven? 

It has been argued above that it is unreasonable to demand a theoretical proof that 
streams from different PRNGs are uncorrelated as long as we cannot even prove 
the same thing for different substreams of the same generator. This opens up a 
much more general discussion about what kind of proofs are actually possible in 
relation to PRNGs. There are three kinds of claims that we would like to prove for 
generators: 
 

a) A particular generator G has no unwanted correlation with an 
application A, i.e. a correlation that would make A produce results 
that are significantly different from what perfectly random numbers 
would give. 

b) There is no correlation between non-overlapping subsequences from 
the same generator G. 

c) There is no correlation between the outputs of two different 
generators G and H. 

 
Claims of type (a) are made implicitly or explicitly whenever a particular 

PRNG is recommended. Such claims may later be falsified when a particular 
weakness in a generator is discovered. For example, Linear congruential 
generators which have been widely used in commercial software were found after 
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many years to have serious defects (Entacher, 1998). The popular and often 
recommended Mersenne Twister has the flaw that it can produce long sequences 
with more 0's than 1's if it comes into a state where the state buffer contains 
mostly 0's. This flaw was reported only after the Mersenne Twister had been the 
preferred generator for several years (Saito and Matsumoto, 2008). A tiny bias in 
the Multiply-with-carry generators was discovered a few years after this kind of 
generators had been recommended (Couture and L'Ecuyer, 1997). In fact, one 
defect reported by Bauke and Mertens (2004) applies to a large part of all known 
PRNGs. 

The possibility cannot be ruled out that more such discoveries will be made 
in the future, no matter how good we believe that our generators are. Claims that a 
PRNG is good should therefore be regarded as falsifiable propositions in 
accordance with Popper's (1963) philosophy of science. The claim that a 
generator produces random output is never true in the strictest sense, because the 
output is deterministic. It may be proven experimentally that the output of a 
PRNG passes certain tests for randomness, but the possibility that it will fail some 
test if a larger sample size is used cannot be ruled out. If the sample size is 
increased to the entire cycle length then the total sample is no longer random 
because, typically, all output values occur the same number of times in a full 
cycle. 

In science, theoretical proofs are often regarded as stronger than 
experimental proofs. However, for PRNGs there is a dilemma. If it is possible to 
prove theoretically that a PRNG has a certain desirable property, then the 
theoretical insight that allowed this analysis may also be used in the construction 
of an experimental test that defeats the same generator. For example, the 
construction of generators in the Mersenne Twister family usually relies on the 
Berlekamp-Massey algorithm for verification of the cycle length (Saito and 
Matsumoto, 2008). Therefore, it is no surprise that the Mersenne Twisters fail a 
test based on the Berlekamp-Massey algorithm, the so-called linear complexity 
test (L’Ecuyer and Simard, 2007). If a chaotic behavior with no recognizable 
mathematical structure is what characterizes a good PRNG, then perhaps the best 
generators are the ones that are most difficult to prove good (Fog, 2001). On the 
other hand, attempts to produce PRNGs without any theory have led to very bad 
results (Knuth, 1998). 

Claims of type (a) are generally the easiest to falsify. Most of the generators 
described in the literature have weaknesses that have been discovered by either 
experimental of theoretical methods. 
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Claims of type (b) have occasionally been falsified. Durst (1989) 
demonstrated a correlation between regularly spaced subsequences of linear 
congruential generators. 

Claims of type (c) are the most difficult to falsify. The more different two 
generators are, the more difficult it is to construct a mathematical framework that 
allows the simultaneous analysis of both, and the more unlikely it is that they 
have a common structural property that can produce a correlation (Press, 2007). A 
given generator is more likely to correlate with an application, which can have a 
lot of regularity, than with another generator that was designed with the goal of 
avoiding correlations. 

The dilemma that mathematical tractability is good for theoretical analysis 
but bad for randomness seems to prevent us from making the best random 
generators, or at least from knowing which generators are best. Fortunately, we 
can get along with less than perfect generators as long as we can eliminate known 
defects by combining two different generators. This means that we can live with 
minor imperfections in (a) and (b) as long as we can rely on claims of type (c). 

It is unreasonable to demand a theoretical proof of type (c) for three reasons. 
The first reason is that it is not clear what kind of theoretical proof is expected to 
prove the randomness of a pseudo-random sequence of numbers. The second 
reason is that the philosophy of science does not allow absolute proofs of this kind, 
only evidence and falsifiable hypotheses. And the third reason is that the 
mathematical tractability that would allow such a proof, would also defeat it. 

All evidence, theoretical as well as experimental, supports the claim that we 
can improve randomness by combining the outputs of two or more very different 
generators. We will rely on this claim as long as it has not been falsified, because 
it is the best method we have so far for producing deterministic pseudo-random 
numbers. A more general philosophical discussion is needed about what kind of 
proofs are possible or desirable in relation to PRNGs. 

Quantization effects 

The minimum difference between two floating point numbers in the interval 
[½, 1] is δ = 2−24 for single precision, and 2−53 for double precision according to 
the IEEE-754 standard, which all modern computers support (IEEE Computer 
Society, 2008). The minimum difference for single precision is 2−25 in [¼, ½], 2−26 
in [⅛, ¼], and so on. Many applications require random floating point numbers 
with uniform distribution in the interval [0,1). If we require equidistant points 
with the best possible resolution in single precision, then we will have 224 possible 



AGNER FOG 

319 

values in the interval [0,1). For this, we need a generator capable of giving 224 
different values, all with the same frequency. If the generator outputs e.g. a 32-bit 
word then we can simply use 24 of these bits and discard the remaining 8 bits. 

For most generators, the generating function f gives an integer output xi in 
an interval [0, m). Typically f is some arithmetic function modulo m. If m is a 
power of 2 then we can easily extract the desired number of random bits. 
Unfortunately, many of the generators that are described in the literature have a 
modulus m which is not a power of 2. Often m is a prime because functions with 
prime modulus have advantageous mathematical properties. When converting a 
pseudorandom integer xi modulo m to a floating point number in [0,1) it is 
common to just divide xi by m. Unfortunately, this does not give equidistant 
points with equal frequency. If m < 224 then there will be some of the possible 
values that never occur. If m > 224 then some values between 0.5 and 1 will occur 
more frequently than other, and values less than 0.5 can be spaced less than 
δ = 2-24 apart. Such quantization effects can lead to systematic errors in 
applications that depend on the probability that a random number falls within a 
certain narrow interval. 

For example, consider a generator with prime modulus m = 232−5 (e.g. 
L'Ecuyer, 1999). A floating point output from this generator will have the value 
0.6 with frequency 255/m, while the next value 0.6 + δ occurs with frequency 
256/m. The value 0.2 occurs with frequency 63/m while the next value 0.2 + δ/4 
occurs with frequency 64/m. 

Such inaccuracies may be unimportant in small applications, but in large 
applications that use billions of random numbers, the accumulated errors may 
actually be statistically significant. It is possible to eliminate the quantization 
errors by means of a rejection method, but this is quite costly in terms of 
efficiency (See below for an example of a rejection method). Alternatively, the 
quantization error may be tempered by an appropriate output function that uses 
multiple elements in the state buffer. 

Why is the output interval half open? 

The half-open intervals [0,1) and (0,1] can both be divided into 224 equidistant 
points with the maximum resolution δ = 2−24 for single precision floating point 
numbers. This makes it easy to generate a uniformly distributed variable from 24 
random bits. We will have quantization errors, as explained above, if we map a 
24-bit random number to one of the symmetric intervals [0,1] and (0,1), which 
have 224 + 1 and 224 − 1 equidistant points, respectively. 
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A Monte Carlo application can generate an event with probability p ∈ [0,1] 
by testing x < p, where x ∈ [0,1) is a uniform random variable. If x is quantized 
as 224 equidistant points in [0,1) with equal frequency and p is similarly quantized 
by δ = 2−24 then the event x < p will occur with the exact frequency p. If x ∈ (0,1] 
then x ≤ p will also occur with the exact frequency p. A uniformly distributed x in 
one of the symmetric intervals [0,1] or (0,1) will give rise to tiny rounding errors 
in the frequency of x < p. 

A disadvantage of the half-open intervals is that the mean is not exactly ½, 
but (1−δ)/2 and (1+δ)/2, respectively. This is acceptable for most purposes since it 
will take a sample size of 8∙1014 to estimate the mean of x with enough precision 
to get a statistically significant error of 3 standard deviations. 

Requirements for good generators 

Consider some requirements that are important for the choice of PRNGs for large 
applications using vector processors, multicore processors and CPU clusters. 
 

1. The generator should pass experimental tests for randomness. 
2. The cycle length should be so high that the risk of overlapping 

subsequences is negligible, but not so high that the state buffer uses 
an excessive amount of data cache. 

3. Good equidistribution, as determined by theoretical or experimental 
methods (L’Ecuyer, 1994). 

4. Good diffusion. This is obtained if each bit in the state buffer 
depends on multiple bits in the previous state (Panneton, L'Ecuyer 
and Matsumoto, 2006). Diffusion is closely related to the concept of 
bifurcation in chaos theory (Fog, 2001; Černák, 1996). A good 
diffusion means highly chaotic behavior, which is a desirable 
property for a PRNG. 

5. The shortest feedback path should be long enough to fit the largest 
available vector register. However, a long feedback path means poor 
diffusion. Therefore, the shortest feedback path should not be longer 
than necessary. 

6. The modulus m should be a power of 2 to avoid quantization effects 
and rounding errors. 

7. The generator should be reasonably fast. 
8. It should be possible to generate independent streams from multiple 

instances of the generator. 
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Construction of a generator satisfying these requirements 

There are many PRNGs described in the literature, but few that satisfy all the 
requirements listed above. Parallel generation has relied more on multiprocessors 
than on vector processors (L’Ecuyer, Oreshkin and Simard, 2014). The only 
generator explicitly designed for vector processors is the "SIMD-oriented Fast 
Mersenne Twister" (SFMT), which relies on 128-bit vectors (Saito and 
Matsumoto, 2008, 2009). Unfortunately, the feedback path of this generator does 
not allow implementations in larger vector registers, and there are no plans for an 
extended version (Saito, 2014). The general Mersenne Twisters have long 
feedback paths (Matsumoto and Nishimura, 1998; Nishimura, 2000) so that they 
can easily be implemented in vector processors. These generators have poor 
diffusion and slow recovery from a state of mostly 0's. The recently published 
variant "Mersenne Twister for Graphic Processors" (MTGP) (Saito and 
Matsumoto, 2013) has somewhat improved diffusion properties, and this appears 
to be the best choice. The chosen version has the Mersenne exponent 11213, 
which gives a state buffer size of 351 x 32 bits. The cycle length is ρ = 211213−1. 
This is more than enough to avoid overlapping subsequences, and higher values 
would be a waste of data cache. Smaller versions have not been published. The 
shortest feedback path is 84 x 32 bits, which makes implementation in large 
vector registers possible.  

This generator has known weaknesses, which are common to the Mersenne 
Twister family: It is vulnerable to tests based on  algebra; it has relatively poor 
diffusion; and it has subsequences with more 0's than 1's. These weaknesses 
should be eliminated by combination with a second generator that does not have 
the same weaknesses. 

Other generators with long feedback paths are difficult to find in the 
literature. The RANROT generator is a lagged Fibonacci generator with bit 
rotation (Fog, 2001). This generator is simple and fast, it can be constructed with 
any feedback path length, and most versions pass all tests for randomness. 
However, this is an example of a generator that is difficult to analyze theoretically. 
Assumptions about the cycle lengths of RANROT generators are based on 
extrapolations from experimental measurements on very small generators. The 
RANROT may be a good generator, but more research is needed before we can 
rely on this generator for demanding applications. 

No other generator was found with a sufficiently long feedback path suitable 
for our purpose. Multiply-with-carry generators with lag have been described, but 
they have an extra feedback path of length 1 in the carry (Marsaglia, 2003). It 
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may be possible to construct a multiply-with-carry generator where the carry 
feedback is also lagged. 

Because no suitable candidate for the second generator has been found with 
a feedback path that allows vectorization, we have instead to rely on multiple 
parameter sets for the same kind of generator (method 5). Each vector position 
will have its own independent generator with different parameters for each. After 
rejecting generators with prime modulus, the best candidate we found was a 
multiply-with-carry (MWC) generator (Goresky and Klapper, 2003). This 
generator is relatively simple, it has excellent randomness and very high diffusion 
or bifurcation. Nine good multipliers for MWC are listed by Press (2007). Eight 
of these are used in order to implement eight generators of 64 bits each in a 512 
bit vector. The output function is a 64-bit XOR-shift method as recommended by 
Press (2007). Unfortunately, there are not enough good multipliers for future 
implementations in larger vector registers. Each MWC generator delivers a 64-bit 
output which is divided into two 32-bit random numbers. 

The eight MWC generators have different cycle lengths, ranging from 5∙1018 
to 9∙1018. This is not enough to completely rule out overlapping subsequences in 
large applications when the MWC generator is used alone, but the MTGP 
generator has prime cycle length so that the cycle lengths are multiplied when the 
MWC and MTGP generators are combined. 

The MWC generator has a very slight bias in the upper bits (Couture and 
L'Ecuyer, 1997). The bias is too small to have practical significance, and it is 
removed by the output function or by the combination with the MTGP generator 
anyway. 

It can be concluded that the MTGP and MWC generators both have known 
defects, but they have no defects in common. There are no known defects in any 
of these two generators that cannot be removed by combination with the other 
generator. Therefore, it is expected that the combined output of these two 
generators is suitable for even the most demanding applications. Multiple 
independent streams can be generated from multiple instances of the combined 
generator by changing the seed of one or both generators, in accordance with 
method 6 or 7. 

Practical implementation 

It was decided to make an implementation that is suitable for the forthcoming 
AVX-512 instruction set, which will be common to the most relevant hardware 
platforms in a near future. Existing instruction sets with vector sizes smaller than 
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512 bits are supported by dividing the data into smaller vectors. C++ is the 
obvious choice of programming language for code that needs to be portable to 
several platforms and operating systems, highly optimized, and needs overloaded 
operators for vector operations. The code is integrated into the vector class library 
(VCL. Fog, 2014b) which provides efficient vector operators for the generator as 
well as for the application that uses it. Supported platforms include Windows, 
Linux and Mac OS with Microsoft, Intel, Gnu and Clang compilers. 

The generator, named RANVEC1, is implemented as a C++ class so that an 
application can make a separate instance for each thread in a multiprocessor 
environment. Each instance can deliver random number vectors of up to 512 bits 
with integer or floating point elements. 

The fastest way of generating a uniform floating point output with 
equidistant points from random bits is to set the exponent of a single precision 
floating point number in the IEEE-754 representation to (0+bias) and set the 
mantissa to 23 random bits. This gives a uniform random number in the interval 
[1,2). Subtracting 1 then gives a number in the desired interval [0,1) (Saito and 
Matsumoto, 2009). This method gives a resolution of 2−23. The maximum 
resolution of δ = 2-24 can be obtained from 24 random bits by first using 23 bits to 
make a random number in the interval [1,2) as above, and then subtracting either 
1 or (1−δ) depending on whether the last bit is 0 or 1. It is possible to make a 
double precision random number with the maximum resolution of 2−53 by the 
same method, but the current implementation gives only a resolution of 2−52 for 
double precision because it was decided that the last bit will have no significance 
for applications with a realistic sample size. 

Many applications need a random integer u with uniform distribution in an 
interval [a,b] of length d = b-a + 1. This can be obtained from a random 32-bit 
unsigned integer x by a 64-bit multiplication: 32/ 2u a xd     . However, this 

method is subject to a bias similar to the quantization error discussed above when 
the interval length d is not a power of 2. Floating point calculation methods give 
the same error because of the mapping of an interval of a power-of-2 length to 
another interval of incommensurable length d. Most standard random generator 
libraries have this error. The error may be negligible when d is small, but it can be 
quite serious for large d. The worst case is d = 3∙230. In this case, values of (u − a) 
that are divisible by 3 occur twice as frequent as other values. This can obviously 
lead to serious errors in applications that happen to depend on u mod 3. This error 
can be eliminated by using a rejection method. Confine x to r possible values 
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where r is a multiple of d. 322 / .r d d     If xd mod 232 ≥ r then reject the value 

and generate a new x. 
Rejection methods are also used for generating random variables with other 

distributions than uniform (Devroye, 1986). Algorithms that involve rejection 
methods may be implemented in vector processors as follows. First generate a 
random vector and execute the steps in the algorithm necessary to determine 
rejection. If any elements of the vector are rejected, then generate another random 
vector and repeat the calculations. Replace any rejected elements in the first 
vector by accepted elements from the second vector. Continue like this until we 
have a vector of only accepted elements. If calculations are expensive and not 
dependent on changing parameters then we may save any remaining accepted 
elements for the next round. If exact reproducibility across platforms is required 
then we must keep the vector size constant. 

Tests of the constructed generator 

The randomness of the generator outputs were tested using the powerful BigCrush 
battery of tests in the TestU01 software suite of experimental tests for randomness 
(L’Ecuyer and Simard, 2007). The MWC generators were tested in various 
configurations: each of the eight generators separately, the lower or upper 32-bit 
half of each generator output, as well as all eight generators in a round robin 
fashion. All tests were passed. The MWC generators failed several tests when the 
XOR-shift output function was removed. 

The MTGP generator failed the linear complexity test as expected, but 
passed all other tests in the BigCrush battery of tests. The MTGP generator also 
failed a binary matrix rank test where the matrix size was increased to 
12000×12000. The test results were the same when the output function (so called 
tempering) was removed. The combination of the MWC and MTGP generator 
passed all tests, with or without tempering. 

The speed of the random generators were tested after compiling with 
different compilers and different vector register sizes. The test measured the time 
required to generate 214 random 32-bit integers and computing their sum. The 
calculation time depends on the CPU clock frequency, which varies a lot due to 
the power-saving features of the CPU. In order to get consistent and reproducible 
time measurements, it was decided to use the core clock count as time unit. This 
time unit is defined by the frequency that the execution unit in the CPU is actually 
running at. Core clock counts were measured using the TESTP test program (Fog, 
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2014c). The calculation speed was measured for the MWC and MTGP generators 
as well as for the SFMT generator and the original Mersenne Twister (MT). The 
results are given in Table 2. 
 
 
Table 2. Random number generation times for various generators using different 

compilers and register sizes. The unit is core clock cycles per 32 bits, single thread. 
 

  

Compiler 

Generator Register size bits Gnu Clang Intel Microsoft 

MWC 
128 4.1 4.0 3.6 3.0 

256 1.8 2.2 2.6 3.1 

MTGP 
128 8.9 10.3 8.8 18.4 

256 4.0 4.5 4.5 43.1 

MTGP w/o tempering 256 3.1 3.5 3.6 18.9 

MWC + MTGP 
128 10.4 12.4 10.4 20.3 

256 5.0 5.7 6.1 46.4 

MWC + MTGP w/o 
tempering 

256 3.9 4.6 5.1 20.7 

SFMT 128 2.0 1.8 2.0 1.9 

MT 32 9.3 14.2 8.5 12.8 
 

Configuration: Intel Haswell microprocessor, 3.4 GHz. Windows 7, 64 bits. Gnu C++ compiler v. 4.8.3 Cygwin. 

Clang C++ compiler v. 3.4.2 Cygwin. Intel C++ compiler v. 15.0. Microsoft C++ compiler v. 17.0.  

 
 

Notice that the combined generator takes 5 – 6 clock cycles per random 
number using a vector size of 256 bits when the Gnu, Clang or Intel compiler is 
used. This corresponds to approximately 6∙108 random numbers per second per 
thread on a 3.4 GHz processor. This number can be multiplied by the number of 
cores in the CPU when each core is running one thread. It is possible to run two 
threads per core on some CPUs, but this may not be optimal if the two threads are 
competing for the same execution resources (Fog, 2014a). 

Most Monte Carlo applications take much more time than this to process the 
random numbers, so that the random number generation will account for only a 
small fraction of the total execution time. A few clock cycles more or less is 
hardly important in this context. Therefore, we can afford the luxury of using a 
combined generator of very high quality. The convenient availability of random 
numbers as vectors can make it easier to vectorize the applications that use the 
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random numbers, possibly leading to very significant speed gains for some 
applications. 

The RANVEC1 code also supports a register size of 512 bits. This was 
verified using Intel Software Emulator version 7.1.0, but no meaningful speed 
measurement was possible because no microprocessor with the AVX-512 
instruction set is available yet. 

The SFMT generator is faster than the MTGP generator because the former 
is designed specifically for vector processing while the MTGP is designed for 
graphics processors. Unfortunately, the SFMT generator cannot be implemented 
with vector sizes higher than 128 bits. 

Conclusion 

There are two main principles for parallel processing: vector processing and 
multicore processing. Large Monte Carlo applications need to utilize both in order 
to get the maximum performance out of modern computers. A literature search 
revealed only one generator specifically designed for vector processing, and none 
that fits the growing vector size of modern processors. Fortunately, it is possible 
to utilize vector processors by adapting other generators with sufficiently long 
feedback paths or by implementing multiple similar generators in parallel. The 
combined generator described here (RANVEC1) utilizes both methods. A C++ 
implementation of this combined generator is available as part of the vector class 
library (VCL) at http://www.agner.org/optimize/#vectorclass. 

As Monte Carlo applications get larger they also put higher demands on the 
quality of random number generators. The following qualities must be considered: 

 
1. Quality of randomness. 
2. Speed. 
3. Avoid overlapping sequences. 
4. Equidistant points with perfectly uniform distribution. 
5. Portability among platforms. 
6. Reproducibility. 

 
The quality of randomness (1) can be improved by combining two 

generators with fundamentally different design. This enables us to overcome the 
flaws caused by the unsolvable dilemma between the need for mathematical 
tractability and the desire for chaotic behavior. 

http://www.agner.org/optimize/#vectorclass
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The speed (2) of the available generators is so high that the generation of 
random numbers accounts for only a small fraction of the total calculation time of 
a typical application. However, there is a pitfall when measuring the speed of a 
generator in isolation. The larger Mersenne Twister generators are consuming 
considerable amounts of data cache whereby they may slow down the 
applications that use them. The size of the state buffer should be a compromise 
between long cycle length and low data cache use. 

The risk of overlapping sequences (3) gets higher as the number of 
simultaneous random streams is increasing. This risk can be made negligible by 
using a generator with an extremely long cycle length, or we can eliminate it 
completely by combining two different generators. 

Quantization effects are often ignored in standard PRNG libraries, which 
makes them deviate from the perfectly uniform distribution (4). Undesired 
quantization effects are seen when the output of a generator with prime modulus 
is mapped onto an interval with power-of-2 modulus and when the output of any 
generator is used for generating a random integer in an interval of arbitrary 
(incommensurable) length. These undesired effects can be eliminated by avoiding 
generators with prime modulus or by using a rejection method. 

Portability (5) is generally obtained by using a standardized programming 
language. The RANVEC1 generator is designed for the vector extensions to the 
x86 instruction set. This fits the most commonly used computer platforms today, 
as well as prospected future processors with 512-bit vectors. It cannot be used on 
platforms with other instruction sets without major reprogramming, and the target 
platform must have similar vector processing capabilities. 

Reproducibility (6) is useful for replaying an interesting simulation event, 
for verifying results and for debugging. It is always possible to reproduce a 
random number stream by using the same generator again with the same seed. 
However, problems may arise when vector sizes change. For example, consider a 
simulation application that uses both integer and floating point random number 
vectors. First, it generates a vector of 8 integers, then a vector of 8 floats, then 8 
integers, 8 floats, etc. If we now update the hardware to a processor that supports 
bigger vectors, we may generate first 16 integers and then 16 floats, etc. This 
means that the numbers are generated in a different order so that the simulation 
results will be different even though we have used the same seed. A remedy 
against this problem is to generate numbers in batches that correspond to the 
biggest possible vector size. The RANVEC1 software uses batches of 512 bits to 
fit the future AVX-512 instruction set, but the reproducibility will be lost in case 
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of future extensions to 1024 bits or more. Reproducibility can also be lost in case 
of outputs that use a rejection method when the vector size is changed. 

Scope for future research 

We have found an acceptable solution to our needs for a good PRNG that utilizes 
both vector processing and multiprocessing, but we can predict the future need for 
a generator that fits larger vector sizes. We would also like a more efficient 
solution even though the speed is acceptable for current purposes. 

The vector implementation of the MTGP is slower than the SFMT even 
though it can use a larger vector size. The difference in speed can be explained by 
the following factors. 
 

 The size of the state buffer in the MTGP is not divisible by the 
vector size. Extra code is needed to handle the wrap-around situation 
where a vector spans part of the end of the buffer and part of the 
beginning. Memory access is misaligned for the same reason. 

 The output function in the MTGP, called tempering, consumes a 
large fraction of the code and CPU time. The purpose of the 
tempering is to improve equidistribution, but this improvement is not 
visible in the test results. The SFMT generator obtains good 
equidistribution by an appropriate choice of parameters without a 
tempering function. 

 The MTGP algorithm has longer dependency chains than the SFMT. 
 The SFMT can use the state buffer also as output buffer in a block 

generation scheme. This is not possible with the MTGP because its 
tempering function needs to read two parts of the state buffer for 
each output value. 

 
A better solution would have a state buffer size that is a multiple of the 

largest vector size we expect to be available in a reasonable future. It is possible 
to increase the state buffer size beyond the Mersenne exponent either by having 
some bits without feedback or by using the same method as the SFMT (Saito and 
Matsumoto, 2008, 2009). The state buffer size should not be excessive because of 
the data cache use. Parameters should be adjusted to give satisfactory 
equidistribution in order to eliminate the need for a tempering function. 

The shortest feedback path should be at least as long as the largest possible 
vector size. There is a tradeoff here because a large feedback path is reducing the 
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diffusion in the generator. The diffusion is already low in many variants of 
Mersenne Twisters because they use sparse matrixes in the algorithm. There are 
various ways to make more dense matrixes without excessive computation time. It 
is possible to implement a 4×32 bit  matrix multiplication with a single 512-bit 
vector permutation instruction, and this method is used in the RANVEC1 code. 
Another possibility, which has not been utilized so far, is to use carry-less 
multiplication. Modern x86 processors have such an instruction. The carry-less 
multiplication instruction multiplies two 64-bit vectors to give a 127-bit product 
(Intel, 2014b), and this corresponds to a dense matrix multiplication in . 
Unfortunately, there is no version of this instruction with larger vectors, but the 
result can easily be broadcast into a larger vector in order to increase diffusion. 

The second generator in our combination, the MWC, cannot easily be 
expanded to larger vectors than 512 bits. There are nine known good multipliers 
for a 64-bit MWC (Press, 2007) and we have used eight of these for implementing 
eight parallel MWC generators. Future implementations with larger vector sizes 
need another generator with more good parameter sets—perhaps a variant of 
MWC with an addend, an extra term or a short lag. 

These are very practical problems, which can definitely be solved. On a 
more philosophical level, we need a clarification of the role of proofs in PRNG 
research. Is it possible to prove that a generator has no defects? What kind of 
evidence can we accept? If all we have is falsifiable propositions, does it make 
sense to say that some propositions have more value than others if it is more 
difficult to find examples that falsify them? Does it make sense to require 
theoretical proofs, e.g. that two random number streams are statistically 
independent, when it is impossible to even prove the more fundamental 
assumptions about randomness of a single stream? 
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