DIGITALCOMMONS

— @WAYNESTATE— Wayne State University

Wayne State University Dissertations

1-1-1990

Product and process design optimization by quality
engineering

Guangming Chen

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations

Recommended Citation

Chen, Guangming, "Product and process design optimization by quality engineering /" (1990). Wayne State University Dissertations.
Paper 1188.

This Open Access Dissertation is brought to you for free and open access by Digital Commons@WayneState. It has been accepted for inclusion in

Wayne State University Dissertations by an authorized administrator of Digital Commons@WayneState.


http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1185&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1185&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1185&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1185&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations/1185?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1185&utm_medium=PDF&utm_campaign=PDFCoverPages

PRODUCT AND PROCESS DESIGN OPTIMIZATION
BY QUALITY ENGINEERING

by
GUANGMING CHEN

DISSERTATION
Submitted to the Graduate School
of Wayne State University,
Detroit, Michigan

in partial fulfillment of the requirements

for the degree of
DOCTOR OF PHILOSOPHY
1990

MAJOR: INDUSTRIAL ENGINEERING

Approved by:

R faxh (RS, §/12/90

"

oS

%’S{. e =

O



© COPYRIGHT BY

GUANGMING CHEN
1990
All Rights Reserved



To my wife Wenjuan Lu and my son Rantao Chen

To my mother Shen Dong Xiu and my father Chen Wen Xin



ACKNOWLEDGEMENTS

I am deeply indebted to my adviser Dr. Kailash C. Kapur for his
guidance, enthusiasm and encouragement throughout this research. I
am iucky to have a nice adviser who is concerned about both my
professional progress and my personal life.

I thank Dr. Donald R. Falkenburg for serving as a member of
my committee and his valuable comments on the thesis. I thank Dr.
Vinod K. Sahney and Dr. Tze-Chien Sun for serving as members of my
committee, reading the thesis and giving valuable suggestions. I
thank Dr. Leonard R. Lamberson for serving as a member of my
committee before he accepted a dean's position at Western Michigan
University.

My thanks are extended to Dr. Robert L. Thomas for the encou-
ragement and the financial support and extended to Ms. Pat Dickson
for the convenience she provided. This research was funded by the

Institute for Manufacturing Research at Wayne State University.



TABLE OF CONTENTS

DEDICATION :eemeereeerssrssesrasonnncesasnscecessiosesinssisistsnnitattisiceiiiissiiiniiiseiisisistisesataseiion il
ACKNOWLEDGEMENTS :+e+essetsssssssssassnsscsssestssssssesesssrstsisesssssassesssssssssssnssessissassnsansss iii
LIST OF TABLES -rtere-vseesresesssettttancercssoscrosssssesstitncssnstinniiiiianssisssaniainiasoostmasitonse vil
LIST OF FIGURES :+eesteesenressucsaccsrcaccraoncerans P A PP T PP TP TR TP TR PP O viii
CHAPTER 1 INGOAUCLION v-eesseereesrersecrecrentenssctersententasstastsnsttstestsistestosmasnsassiosensisce i
§ 1.1 QOVEIVIEW rreorevsesersrssssnronnnatttiancsracsatsrsastisseseititoccsssisnsensisionastorassenssssse 1
§ 1.2 Objective and Outline of the Researciy «reereserssesseesenaccennenn: 11
CHAPTER 2 Quality Evaluation System Using Loss Function -e-eeeeeeeeeeee 15
§ 2.1 Introduction reeeressreeessreesercnrsosenccnanaee st 15
§ 2.2 Quality Evaluation System ........................................................ 17
§ 2.3 Qlladl'atic Quality Loss FUunction srerereseereeresccsscrinnnnncsnncinicenanes 21
§ 2.4 Linear Quality LoSS FUNCHION rorererererecerreresinenceianiciarentenininscasaes 26
§ 2.5 Other Univariate Quality Loss Function ««::seseeeeseeeesseeesnceneeees 29
§ 2.6 Multivariate 1.oSS FUNCLION sereerrrereeerermcmsrniisiiniiciitiiiininetnnicanen. 32
CHAPTER 3 Optimization Criteria For Dynamic System «::oceeoseeeseneeecees 39
§ 3.1 Dynamic System and Dynamic Characteristic -:-wrwoereeeeee 39
§ 3.2 Motivation of Optimization Criteriq ----e-wes-rreeeresssesnriecinceiens 43
§ 3.3 Signal-to-Noise Ratio for Dynamic Characteristic -« 48



§ 3.4
§ 3.5
CHAPTER 4
§ 4.1
§ 4.2
§ 4.3
CHAPTER 5
§ 5.1
§ 5.2
§ 5.3
§ 5.4
CHAPTER 6
§ 6.1
§ 6.2
§ 6.3
§ 6.4
§ 6.5
§ €.6
CHAPTER 7

§ 7.1

Validity and Limitations of Signal-to-Noise Ratio -+ 49
Signal Factor Has Impacts On Random-effect Term :----- 56
Optimization OF DyNamic System -ewwserssrmrssririee 58
Optimization Model for Dynamic System ---ereeeereeeseseneneneae. 58
Computation of SN Ratio for Dynamic System -:-:ss-seeeeeeee 64
o )L — 68
Optimization Measure For Discrete Dynamic System ---- 75
Discrete Dynamic CharaCteristic «+ s sssserssesssmminesssessannes 75
SN Ratio for Sensory and Reliability Test ««--coeeeeeesecerenneans 76
On-0ff CONLIOL SYSLEm +eeeesessrssasssssscusiniartssssussssnisisse s ssesasanaas 78
TWO-type EITOr SyStem s wsessssessssssssssssscsmssiassenssnsssensssesssssnsse 81
Teclerance Design For Components And Subsystems ----- 87
IﬂtrOdUCtion eeeesasaer e esaneatetlteNstetrEsINtssNIstItEansasesactanacaseotnsreoretntannostan 87
Simulation of the NOise FACLOrs s++sseserrssessesssseseissnscsusssennaas 00
VTE for Linear-Effect Model s ++s-sssererrsressssssmsnssssnsssssessiseanes 94
VTE for Nonlinear-Effect Model « - rreesssrresesssresesressesnecssiseas 98
Optimization Model for Tolerance Design ««wseeeeeeereseesnne 106
Example for Tolerance Design w s sssessssssssssssssssasnaseinnncens 109
Tolerance Design To Balance Quality And Cost -e-ecceeeeese 116
Optimization Model for Tolerance Design «:ersesseeerenseeneees 116



§ 7.2 Manufacturer's Tolerance for Shipping -:eoeorerreeseeessesesneens 118
§ 7.3 Tolerance Design for Lower-level Characteristic -« 122
§ 7.4 Tolerance Design for Deterioration Characteristic === 126

CHAPTER 8 Summary & Recommendation for Further Research --:+132

§ 8.1 Summary and Contribution of the Research -wereeeeeeeeeeee 132

§ 8.2 Recommendation For Further Research -wweeeeeeseeeseneesanees 125
APPENDII A ++veseesessessessrsssessessssastsssessssessssessassssssssesssessassssessstssessssssssssessassssssssns 137
APPENDI B ++reeressessessssssssrsssessessissssssssssassssssssssssssssssssessasasssssssasessossestasasssssessasasses 138
APPENIDIX € #+reeseressssssesesssessssssssssssesssesssssssssssssssssssssesssssssssssssstosssssssissssestsssssssassas 143
APPENDLIX DD re0v0esstssestassssnossansnsssssesssssssssessntsssassssssstassasssssssorssssioressssssssssossssssssassasse 145
APPENDIK E seevesrerseeectrecrarctarcrcrarnentanincisttosnaiitsstsiosstsissssrtostesttatasssnsiitsessssasssesses 147
APPENDILX F ++veesessessssssesssesassesarmmsssarssssssssentsssssasssssssssssassssssssssassasssssassesssssssassasens 145
REFERENCES :+++++recesessessssrssessessssararsssssescssasessassassassssrssssnsnsssssnsasssssessssssesssnsaassessanass 154
BIBLIOGRAPHY «1reertrreeetsnettnentntitinntiiiiiionenniienioiosiiiiiiiieniiiiisiinetiieitieiie 158
ABSTRAT -+eeserssssesssesssssassassssssssssssosssssssssassssssssssessastassssssssssssssasssssassssasssssesssssassans 170
AUTOBIOGRAPEICAL STATEMENT :+e+eeeeessassessasesessessessseseasesssscsnsassasassassess 172

Vi



Tabie

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

2.1

3.1

4.1

4.2

4.3

4.4

5.1

5.2

5.3

6.1

6.2

6.3

6.4

6.5

6.6

LIST OF TABLES

COSt corresponding to bias Of V and F ..................................... 37
The experimental data for the dynamic system ................ 44
Nominal values & noise factors for R, Ry, R «eooevecicnniccninnns 72
The computation of the SN TatiQ w+wrssseesersssrsssssssessassusessnssens, 72
ANOVA on the SN ratio using the inner array -«ccooocoreeereeeess 74
SN ratios for various level combinations of R;, R,, R --.-... 74
ANOVA for sensory and reliability test - essesssssssssssernees 77
The data Of input Vs, output ....................................................... 82
The data of input vs. output in terms of p and q =rreereeeeeee 84
Coefficients fOr @ 32 FACIOIIAl w+++++err-rereeserresresresssanseranressrvessnsns 100
ANOVA for two-component system ...................................... 103
The noise levels associated with R, L, and C -ereeeeereneereeeeeens 110
Responses for different noise level combinations -:-«e 110
ANOVA fOT the TESPONSES *+rr+rsseesrerssersssssssmsssssssssemssssssssssnsinsns 112
IHustration of the computation Of SS; | o -oeereererereereesneiennn 112

vii



Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure

Figure

1.1

2.1

2.2

23

24

2.5

2.6

3.1

4.1

4.2

4.3

4.4

4.5

5.1

5.2

5.3

6.1

6.2

LIST OF FIGURES

Taguchi's Tobust design procedure « - wsesseesserssrssesceneeninsinss 3
QLF transfers deviations to a quality loss in dollars - 16
Traditional quality evaluation sreeresrersersrereccessicntarsesiaicitatacaanes 18
Quality evaluation using 10ss function «w-s-s-sssssssesesesessnsenn: 20
L(y,y) is asymmetrical about yg = --ssweesssssssemssssanssssnsseness 24
E[L] is unchanged when moving f(y) and L{y,yg) === 28
MLF transfers muitiple deviations to a loss in dollars----33

Relationships between yg(M), y(M) and Y(M,e) «eweeveeeeeeeee 41
A flow chart for dynamic characteristic ««««-=sessevreessrereneeeeees 59
Inner & outer arrays for dynamic characteristic «::«::e:e--- 62
A flow chart for optimization of dvnamic system -oeoeeee 63
A nORinverting amplifier s ssrsssessmrsssessssississnssisssassiaees 69
Simulation data using the inner and outer arrays --------* 71
Temperature COﬂtTOl Wlth hystereSiS .................................... 81
The distribution of the input variable for p=zq -w-eoeeeeeemeeees 86
The distribution of the input variable for p=q --eooeereeeeeees 86
Tolerance control cost vs. tolerance G --:c.o.oceeeueemsseninnuennn. 106
Optimization model for tolerance design -:eerrereeeresenrerereense 108

viii



Figure

Figure

Figure

Figure

Figure
Figure

Figure

Figure

Figure

Figure

Figure

Figure

6.3

7.1

7.2

7.3

7.4

7.5

7.6

7.7

B.1

B.2

B.3

B.4

The comparison of o;2 and MS; for various h values ----115

Balance of quality loss and cost increase ««we=wssresessesererssenes 117
Best Manufacturer's tOlErANCE A -«--s+weessressesssssessessnssnnesansarans 120
Tolerance A is larger than A -wewseeeseesersessssmsssessisisenscenecs 121
Tolerance A~ iS SMAlIET tham A coeresseeserssressrssnnsenssensaesssnsssieses 121
y=P(x) transforms lower-level characteristic x to y - 123
Tolerances for the lower-level characteristic x «weeseeeeses 125
An explanation of the best tolerance Ag for f «e-rarereree 131
Distributions of discrete random variables Y; & Y, ---- 141
Distributions of discrete random variables Y, & Y, ----- 141
Distributions of discrete random variables Y; & Y, ... 142
Distributions of discrete random variables Y; & Y, ... 142



CHAPTER 1

INTRODUCTION

§ 1.1. Overview

Challenges to improve quality during the "quality revolution”
over the past few decades have brought exciting and interesting
developments in the methodology of quality design. Japan has shown
the world that improving quality leads to improved productivity at
no cost increase. Dr. Genichi Taguchi, a Japanese quality control
expert, has been credited for his contribution to the Japanese quality
engineering. In America, Taguchi's quality control philosophy and
methods have attracted extensive attention of quality engineers and
statisticians. Many successful applications of Taguchi's method have
been published (Bandurek et al 1988, Bendell 1988, Kacker and
Shoemaker 1986, Lin and Kacker 1985, Phadke 1986, Phadke et al
1983). However, much controversy has arisen about the efficiency
and the theoretical basis of his engineering and statistical techniques,
such as signal-to-noise ratio, minute accumulation analysis, quality
loss function, etc (Box 1988; Box, Bisgaard and Fung 1988; Nair 1986;
Leon, Shoemaker and Kacker 1987; Ryan 1988).

Traditional quality control is concerned with the downstream

1



side of the process, with an emphasis on control charts and
inspection schemes. The emphasis now is on moving upstream to the
design and development stages of products. The concept of robust
design as proposed by Taguchi (Taguchi 1986, Taguchi and Wu 1980,
Kacker 1985, Barker 1986) is based on making a system insensitive
or robust to manufacturing variation, deterioration over time and
environmental disturbance. Philosophically, robust design is an
economical way to improve quality, because it builds good quality
into products and processes without using high-grade components.
Basically, the method consists of three steps (Taguchi 1986, Taguchi
and Wu 1980, see also Figure 1.1).

(1) System Design

The objective is to obtain a workable prototype model of the system
or the process. Much of the previous and the current effort in the
United States is concentrated on this step.

(2) Parameter Design

This is the most important and effective step in the method. In this
step, engineers are intended to design a system whose performance
is insensitive to variations by selecting the optimal level setting for

control factors (with no impact on system cost).



[- Innovation of a workable prototype system

SYSTEM
DESIGN

.

Knowledge about science and engineering

 Preliminary selection of components and materials

 Selection of the best level setting for contre! factors

PARAMETER
DESIGN

« Optimization and design of experiments methodology

« Making the system insensitive to noises without cost
increase

[» Balancing quality and cost

TOLERANCE
DESIGN

|« Quality loss function

1- Further improvement of quality at the expense
of cost increase

Figure 1.1. Taguchi’'s robust design procedure.



(3) Tolerance Design

If parameter design cannot achieve the required small performance
variation, tolerance design can be used to reduce the variation by
tightening tolerance levels. In this step, designers balance the quality
loss due to the variation effects and the cosi increase due to the
control of tolerances.

The discussion in this thesis will primarily focus on parameter design
and tolerance design techniques.

Depending on the naiure of the target performance, a sysiem
can be classified as static or dynamic. The static quality characteristic
has a fixed target value. The effort in design and manufacturing is to
bring the quality characteristic to the target value. For dynamic
characteristics, we Go not have a fixed target vaiue. The iargei is a
variable which depends on the intention of the customer. Our effort
is to reduce the undesirable deviation from the target funciion.

Compared with on-line quality contrcl that is the quality control
activities on a production line, off-line quality control brings quality
control activities into design and development stages. The mission is
to design robust systems or to build good quality into products and

processes, instead of trying to inspect bad quality out. A classification



of various factors for the optimization process is given as follows
(bold letters are vector quantities unless otherwise specified):

e Signal Factor (M)

For static systems, the target value of the performance is fixed. We
do not need a signal facter to adjust the system performance. For
dynamic systems, however, a signal factor is used by a user or an
operator to dynamically control the system performance. A signal
factor is not a design factor and it is not controlled by the design
engineer. In the example for calibration of gauge systems, the
reference sample value can be considered as a signal factor. Other
examples of this factor are the steering angle for the drivability of
trucks, the volume control and the tune equalizer for a stereo sound
system. For the example in Chapter 4, the input voltage V; is also a
signal factor.

* Design Factors

To design a system, we have many design parameters. These
parameters are controlled by design engineers and are called design
factors. In some cases, the design factors can be partitioned into the
control factors Z and the scalingl/leveling factors R.Z is a vector

quantity of the controllable parameters. Each control factor may take



one of the several levels which are comsirained in design spaces.
Parameter design is used to search for the best levels for control
factors so that the system performance is less sensitive to noise
factors. Since the control factors take discrete values, some
adjustable design factors may be needed to be adjusted continuously
to achieve desired functional relationships between the signal factor
and the performance variable for dynamic systems, in case the
desired relaticnships cannot be obtained by the levels combination of
the control factors. R is a vector quantity of these continuous design
factors. Examples are the gearing ratio in the steering mechanism
and the threshold voltage in digital circuits. For static characteristics,

these factors can be used to adjust the mean to the target value. For
the example in Chapter 4, resistors R;, R, and R, are the controllable

parameters and called control factors. We can select the best levels
for these factors to make the amplifier insensitive to the variations.

While, resistor R is an adjustable resistor which can be continuously
adjusted to achieve the required B value.
* Noise Factors (e).

A perfect system is desired to implement the ceriain task. In the real

world, however, manufacturing variation, environmental conditions,



wear and deterioration over time may result in deviations of the
performance from the target. These undesired and unpredictable
impacts are called noise factors. The goal in robust design is to make
the system insensitive to these factors. Noise factors include internal
noises (such as manufacturing variation and deterioration over time),
external noises (such as environmental variations & use conditions).

Engineers are someiimes interested in the effects of some
specific factors (D), which are called indicative faciors. The goal is to
evaluate the system performance for various values of these factors,
rather than to select the best levels for them. For instance, if we need
to evaluate the performance of a car under different speeds, we can
classify the speed as an indicative factor. This kind of factor is not a
control factor, because we cannot reduce the performance sensitivity
to noise factors by setting the best levels for indicative factors.
instead, the values of these factors is automatically constrained. It
should be indicated that it is not necessary for all factors to exist in
every system.

For the cases where a symmetrical quadratic quality loss
function (QLF) is appropriate, thz expected quality loss is given by

(Chen and Kapur 1989)



E[L(Y,yp)l = 8% + c,2 (1.1)
where & is the difference between the target value y, and the mean
of characteristic Y, and o,2 is the variance of Y. To reduce the
expected quality loss, the optimization can be done by minimizing o2

with the assumption that & can be adjusted to zero. As a result, a
two-step procedure of optimization is proposed to reflect the idea of

Taguchi's parameter design using signal-to-noise (SN) ratio:

(1) Find the optimal levels setting for Z to maximize the SN ratio.

(2) Adjust R to set the mean response to the target value.

The concept of the two-step optimization was first proposed to
explain Taguchi's parameter design by Phadke (1982). To illustraie
why the SN ratio is used as a criterion for selecting control factors Z,

he explains:

Frequently, as the mean decreases the standard deviation also
decreases and vice versa. In such cases, if we work in terms of the
standard deviation, the optimization cannot be done in two steps, i.e.
we cannot minimize the standard deviation first and then bring the

mean on target.



This probably is a motive of using the SN ratic for static systems. The
goal in design is to minimize the expected quality loss by selecting
the best levels setting for Z and adjusting R in the design space. The
basic tools are quality loss function, design of experiments (DOE),
orthogonal arrays, statistics and optimization methodology (Barker
1985, Box et al 1978, Hicks 1982, Logothetis and Wynn 1989,
Montgomery 1984, Ross 1988, Taguchi 1987).

It is obvious that the two-step procedure can simplify the
optimization. The first step can be conducted using the classical DOE
methodology by assigning the control factors into the inner array and
assigning the noise factors as well as the signal factor into the outer
array. The second step can be completed by adjustments. However,
this two-step procedure results in much discussion. One of the
questions addressed is the use of the SN ratio. Based on the research
about the SN ratio, Leon et al (1987) conclude that the SN ratio may
become inefficient for some models and the above two-step
procedure may not lead to an optimal solution. For instance, they

present a model as follows:
Y =o(R,Z) + B(R,Z)M + &(Z,e) (1.2)

For this model, the SN ratio, which is given by B%(R,Z)/Var[e(Z,.e)], is
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not independent of adjustment factors R. As a result, the two-step
procedure may not lead to the minimal value of the expected
quadratic quality loss by using the SN ratio. Instead, they develop
the Performance Measure Independent of Adjustment (PerMJA) as
an optimization criterion to substitute for the SN ratio. The two-step
optimization is amended and developed as many two-step
procedures. For further details, see Leon et al (1987). However, to
derive a PerMIA, one must know the model. If an analytical model is
unknown, it seems difficult to find a PerMIA. In addition, as revealed
in Section 3.4, a performance measure defined only by "independent
of adjustment” is not assured to be an efficient optimization criterion
without any further explanation or restriction. This issue will be
discussed in-depth for dynamic systems later.

One of the conventional approaches to tolerance design is based
on Taylor's series (Spence and Soin 1988). The tolerance levels for
compenents are evaluated based on the impacts on the system
performance. To conduct tolerance design for components and
subsystems, Taguchi uses an equation to transfer the variations in
components to the variations in the system performance with the

assumption of no interactions between components (Taguchi and Wu
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1980; Wu and Moore 1986). In an effort to improve Taguchi's
method for tolerance design, D'Errico and Zaino (1988) revise the
assignment of the levels of the noise factors to make the simulation
of the noise factors more realistic. Regardless of the difficulty in
assigning the noise factors into the outer array, D'Errico and Zaino's

method can give a more realistic simulation of the noise factors.

§ 1.2." Objective And Outline Of The Research

Product and process design cptimizaiion by quality engineering
discussed here is related to the parameter design and the tolerance
design. Our goal is to investigate, reveal and explore the engineering,
mathematical and statistical basis of Taguchi's robust design, to
improve and extend the methodology, with an emphasis on dynamic
systems and tolerance design.

Taguchi's economic optimization and balancing is evaluated by
quality loss functions (QLF). Chapter 2, entitled quality evaluation
system using loss function, is concerned with various QLF, including
the symmetric QLF and the asymmetric QLF. For many systems, the
quadratic QLF is a good approximation based on the underlying

causes of variations and the attempt to reduce ihe estimation errors.
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In practice, many systems have several quality characteristics rather
than a single characteristic. To evaluate quality for such systems, we
must develop a multivariate QLF.

In Taguchi's robust design, the SN ratio is used as a criterion
for optimization. However, the use of the SN ratio results in much
controversy (Box 1988, Box et al 1988, Kapur and Chen 1988, Leon et
al 1987, Phadke and Dehnad 1988). Leson et al propose a criterion
called Performance Measure Independent of Adjustment (PerMIA)
as a substitute for the SN ratio. In Chapter 3, we will examine the
motivaiion and the effectiveness of the SN ratio for dynamic systems
and make necessary modification of the SN ratio for the model where
its use is questionable.

In Chapter 4, we present a generic optimization model for
dynamic systems, in order to reduce the undesired effects of noise
factors. The dynamic characteristic does not have a fixed target
value. The optimization is performed by maximizing the objective
function or the quality measure with the parameters of the dynamic
function subject to the desired values. A sysiemaiic approach to
dealing with dynamic systems is also provided in this chapter.

If either or both of the signal factor and the performance of a
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system is discrete, the system is classified as discrete in natwre. A
control system is a typical discreie dynamic system, where the
performance of the system is on or off. To make the performance of
such systems insensitive to noise factors, we can use the approaches
similar to those for continuous dynamic characteristics. Procedures of
experiments and optimization are given in Chapter 5.

The objective of tolerance design is to balance quality loss due
to variations and cost increase due to control of variations. A system
may consist of many components and subsystems. Variations in the
parameters of these components and subsystems can be transferred
to the variations in the system performance. To reduce variations, we
rances of the components but that will lead to a
cost increase. To eliminate the conflict of this, an optimization model
is proposed to balance quality and cost. Chapter 6 deals with the
method to specify the tolerances for components and subsystems to
achieve the above goal.

A machined part to be processed by a manufacturing process
may use different quality characteristics before it is processed and
after it is processed. For instance, a stamped product manufactured

from steel plates may use the dimension as a quality characteristic,
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but the plates may use hardness and thickness as quality
characteristics. The former is named as a higher characteristic and
the latter is named as a lower characteristic. In Chapter 7, we
present the methods to find tolerances for these characteristics, as
well as the tolerances for deterioration characteristics.

In Chapter 8, we give a summary for the contributions of this
research to the techniques of Taguchi's quality engineering and we

make a recommendatiocn for further research.



CHAPTER 2

QUALITY EVALUATION SYSTEM USING
LOSS FUNCTION

§ 2.1. Introduction

The traditional quality evaluation system deals with the
conformance to specifications. The system focuses only on the
nonconforming units and cost of quality is defined as the cost of
nonconformance. A better evaluation systerm is to evaluate the
quality of all the items, both within as weli as outside the
specifications. We evaluate total population using a quality loss

function as the characteristics deviate from an ideal or target value
¥o- The following quality evaluation system proposed by Taguchi

reflects this idea (Taguchi and Wu 1980, Taguchi 1986, Kacker 1985)

The quality of a product is the (minimumj} loss imparted by the

product to the society from tke time the product is shipped.

This is a more holistic view point of quality that relates quality to
cost and loss in dollars, not just to the manufacturer at the time of
production, but to the consumer and thus to the whole society. The

quality activities must focus on the reduction of this loss.

15
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The undesirable and uncontrollable factors that cause a
functional characteristic to deviate from its target value are called
noise factors (Figure 2.1). Noises adversely affect quality. However,
eliminating noise factors may be expensive. Instead, we can try to
reduce the effect of the noise factors. Taguchi's philosophy of robust
design is intended to reduce the loss due to variations of the
performance from the target value and is based on the quality loss
function, the SN ratio, the optimization and design of experiments
methodology (Box 1988, Hicks 1982, Kapur and Chen 1988, Leon, et

al 1987, Montgomery 1984, Taguchi 1987).

Noise

factors
Reai
Performance

Quality loss
— ] \ Quality in dollars
| ’ B Loss L >

Ideal
Performance

Figure 2.1. QLF transfers deviations to a quality loss in dollars.
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The objeciive of this chapter is to develop various loss
functions that can be used to evaluate quality for many systems. We
give an overview of the quality evaluation system. We illustrate how
to use the loss function to evaluate quality. Various univariate loss
functions are presented, including symmetrical and asymmetrical,
linear and quadratic loss functions. The reason for using the popular
quadratic loss function is also explained. For these loss functions, the
expected value and the variance of the quality characteristic is
determined to minimize the expected quality loss. Many systems
have several quality characteristics and the optimization of these
characteristics may conflict with each other. To deal with such
systems, we develop the multivariate loss function. An example with
two characteristics is given to demonstrate the application of the

multivariate loss function.

§ 2.2. Quality Evaluation System

The traditional quality evaluation system 1is based on
specification limits. If the characteristic for the product is within the
specification limits, the product is classified as good or conforming

and no loss is incurred. Otherwise, the product is nonconforming and
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results in a certain amount of economic loss, say K; or K, dollars

depending on whether the nonconforming product is to be scrapped
or reworked (Figure 2.2). This binary evaluation system is very
simplistic. Assume we have two values of the quality characteristic
around a specification limit, one within the limit and the other
a certain amount of dollar loss, even if the difference is as smali as it

can be identified.

Quality * f(y)
Loss f(y)
Loss of K
dollars Loss of K
dollars
No Loss T .

LSL 4y, USL y

Figure 2.2. Traditicnal quality evaluation (the shaded area is
nonconforming portion)
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The quality evaluation system using loss function evaluates
quality on a continuous basis. Kapur (1988), Kapur and Wang (1987)
illustrate the development of the specification limits using a quality
loss function. Actually, the loss function is nothing but a means to
transfer the variation of the characteristic to a monetary scale.
According to the design goal, the engineer wants to design a system
to meet the customer's requirement. However, due to manufacturing
and environmental variations, the performance of a real system may
deviate from the ideal performance. This results in a quality loss. A
loss function (Figure 2.3) can be used to evaluate this quality loss,
which is given by

Loss = L(y, yg) 2.1)
where y is the quality characteristic and y, is a target value.

In practice, a product may have several characteristics rather
than a single characteristic. If these characteristics are independent
of each other and there is no interaction between their effects, then
the total quality loss is the sum of the loss caused by each
characteristic. But for many real systems, the total quality loss can
not be expressed as the sum of the loss for each characteristic.

Instead, we must develop a measure to evaluate such systems with
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multiple characteristics. This is the motivation of the multivariate
loss function that we will be discussing later in this chapter.

The manufacturing variation and the environmental variation
may adversely affect a system so that the quality characteristic is a
random variable. To evaluate quality for the total population, we can

use the expected quality loss that is given by

I J L(y,y pf(y)dy ify is continuous
all y

(2.2)
l 2 L(y,.y,)p, ify is discrete

all i

f(y) L(y,yo)

f(y)

Figure 2.3. Quality evaluation using loss function
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In eq. (2.2), f(y) is the probability density function for the random
variable Y and p; is the probability that Y takes value y;. Quality
engineers are interested in the reduction of the expected quality loss
by designing the population parameters for Y, such as the location
effect or the mean, the dispersion effect or the variance, efc. In this
chapter, the discussion is based on continuous characteristics, but it

is applicable to discrete quality characteristics.

§ 2.3. Quadratic Quality Loss Function

The quadratic loss function is a good approximation for many

systems based on the underlying causes of variation. The generic loss
function (2.1) can be expanded at y, using Taylor's series, with the
assumption that it has derivatives up to the fourth order and it is

given by

, L'(y 0¥ o) 2
L=L(yo,Y o) *L (Y0¥ JY~Y o) + —3——(¥Y=Y,)

" (4)
L"(y 0¥ o 3 L (&yyp 4

+ 31 (y—yo) + a1 (y_yo) 2.3)
where & is a value between y, and y.

The target y, is developed such that the quality loss achieves a
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minimum at this point. Hence, the first derivative of the loss function

at y, is zero. Our goal is to investigate the quality loss due to the
deviation from y, and to minimize this loss. Moreover, in the
neighborhood of y,, the quadratic term in eq. (2.3) can dominatc the
higher order terms. Thus, the quality loss due to the deviation from
yo can be estimated by
L(y,yp) = K(y-yo)? (2.4)

Since y, is a minimum of the loss function, then K=L"(y;,y()/2>0. The
unknown value of K can be determined by substituting the data of

the quality loss at one point. For example, if the deviation A, from y,

causes a quality loss Aj, then Ay=K(Ag)? or K=Ay/(A()2. It should be

indicated that if the loss function (2.1) is known, it can be used
directly.

Since the individual quality characteristic y may be far away
from the target value y,, the higher order terms may become large.

It is reasonable to use the expected value of the quality loss, bzcause

most products have a quality characteristic close to the target. Let u,

be the mean of Y and d=y,-pu,. The expected quality loss is given by
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2
HUYy )]~ | Kiy-yy) Ky)dy=K(? +8) @.5)
all y
As a result, minimizing 6,2 and 82 is equivalent to minimizing the

expected quality loss. To estimate the error due to the ignored 3rd or

higher order terms, we consider the following two cases with the
assumption that y,=u..
(1) L(y.yy) Is Symmetrical About y,.

Since L(y,y,) is symmetrical about y,, the 3rd order term in eq.

(2.3) vanishes. The expected value of the error is given by

K
Er=|HL(Y, y,)]- ko3 = i—!‘al{ yL(4)(§,y Dy -y N dysgiu, @6

where K, is the maximal value of IL®)(y,y,)! in the domain of y and

B, is the 4th moment of y about the mean. The last inequality uses
the fact (hat (y-y0)4f(y) is greater than zero for all y.
(2) L(y,yy) Is Asymmetrical About y,.

A quadratic loss function is a typical quality ioss function. In

practice, a loss function may be modeled as asymmetrical about y,.

For instance, a shaft has a dimension of 2.000+0.002 inches for the
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diameter. An oversized shaft has smaller loss than an undersized

shaft even if they have the same absolute value of deviations from

the target 2.000 inches, because the oversized shaft can be reworked
while the undersized shaft must be scrapped. As a result, L(y,y,) is
asymmetrical about y, for this situation. The asymmetric L(y,y,) can

be divided into two parts (Figure 2.4) and given by

[Ll(y’yO) ify<y,
(y,y 0) =i

(2.7)
L(y,yg ify2y,

Quality Loss

Figure 2.4. L(y)y,) is asymmetrical about y,
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We extend the definition of L,(y,y,) to y>y, and the definition
of Ly(y,y,) to y<y, (as the dotted curves in Figure 2.4). We can do this
to make L,(y,y,) and L,(y,y,) symmetrical about y,. Furthermore,
L,(y,y9)» La(y,yg) can be expanded separately using Taylor's series

with the 4th order remainder at yj,:

Ly oY o) 2

L=L(yo¥yo) +L/(¥o¥ )Yy =Y + =7 —(¥y-V¥o)

(4
L.y oY o 3 LGy 4 )
+ (Y=Y ) *———(y -, (i=1,2)  (2.8a)

Simplifying eq. (2.8a) as we did for eq. (2.3), we have

2 .
Kl(y_yo) lfySYO
L(y,y o) = , (2.8)
Ky -yy) ify 2y,
where K =L,;"(y0,¥9)/2, K;=L;,"(y0,¥0)/2>0. The unknown values of K,
and K, can be determined by substituting the data of the quality loss
at one point for both y<y, and y>y,. Forexample, if a deviation A; from

yo results in a quality loss A; (i=1,2), then A;=K;(A;)? or K;i=A /(A))?

(A<0, A,>0). Since the 3rd order terms for L, and L, vanish, the
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expected value of the error for using eq. (2.8) is given by

| Ay -y )f(y)dy
VA

| B K
(Y- yo) f(y)dy s T (2.9)
YZYO

4
where K4'=max(‘L(1 )(y
all y

§2.4. Linear Quality Loss Function
In many situations, the quality loss has a linear relationship to
the deviation of the quality characteristic from the target value. In

other words, the quality loss is proportional to the bias of the quality

characteristic from the target y,. This deviation may result in a
different quality loss for y<y, from that for y>y,. Thus, the loss

function is asymmetrical about y, and given by

[Klly—yol ify<y,

L(y.y ) = (2.10)

1K2Iy-yo| ify 2y,
where K,, K, > 0 are constants that can be determined in the same

way as the quadratic loss function. The loss function is symmetrical
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about y, if K;=K,. The expected quality loss is given by

HLl= | K(y,-f(y)dy+ [ K(y-ypf(y)dy (2.11)
¥<¥, y2y0

We wish to design to minimize the expected quality loss.
gn Ky P q y

This can be achieved as follows: since the expected quality loss is a
mean value for the population, E[L] has the same value for graph (i)

and graph (ii) in Figure 2.5, provided that the relative positions of
L(y,y,) and f(y) are not changed. This motivates us to fix My first, and
then take y, as a variable to find y,* such that E[L'(y,y,*)] is a
minimum. Afterwards, we move f'(y) to f(y) and L'(y,yg) to L(y,yy) so

that y,*=y, (Figure 2.5). The corresponding uy* is an optimal solution

for Hy The advantage to do this is that we can take the explicit
derivative of E[L] with respect to y, to find y,* without the
knowledge of f(y), because f(y) is not related to yj,.

It can be analytically verified that E[L(y,yy)] is unchanged if
f(y) and L(y,y,) experience an identical translation. Let y'=y+(yy*-y,).

Thus, f(y)=f(y') as well as L(y,yy)=L'(y',yo*), and we have
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4
loss® f(y) f(y) with p*
v y

f(y) withp

/
Yo Hy y
(ii)

Figure 2.5. E[L] remains unchanged when moving f(y) and L(y.y,)
simultaneously

HLl= [ L'(y.ypf'(y)dy'= [ Uy, yp)f(y)dy'= [ Ly,yf(y)dy
all y all y’ all y

Thus, E[L] is unchanged if f'(y) is moved to f(y) and L'(y,y,) is moved
to L(y,yg)-
Taking the derivative of eq. (2.11) with respect ic y, and
setting it to zero, we have
F(yo*) = Ky/(K,+K,) (2.12)
where F(y) is the cumulative distribution function of Y. Setting

Yo*=yo, We can find a p * by using equation F(yp)=K,/(K;+K,). p,* can
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minimize the expected quality loss. If K,=K,, y,* is equal to the
median of y. Moreover, if f(y) is symmetric about the mean, then the

median or y, is equal to the mean. Besides, since (K,;+K,)f(y,*), the

2nd derivative of E[L(y,y,)] with respect to Yo, is greater than zero,

the solution gives a minimal expected quality loss that is given by

HU(Yy )l=-(K;+K,) [yf(y)dy+Kpu, (2.13}
_ RAT

If Y has a normal distribution, then E[L(Y,y,)]=(K,+K,)o 2f(y,) (see
0 1 2/Vy 0

Appendix A).

§2.5. Other Univariate Quality Loss Function
In addition to the linear and the quadratic loss functions, there
are other univariate loss functions that can be used in various

situations.
(1) "Smaller the Better" Loss Function.

Many quality characteristics have a target value zero and they
have the positive values. For these characteristics, engineers usually
have an upper specification limit. Examples are wear, degradation,

deterioration, shrinkage, noise level, harmful effects, and the level of



30

pollutants, etc. The loss function is given by
L(y) = Ky? y>0 (2.14)

The expected value of the quality loss is given by
EIL(Y)] = K(c_sy2+ py2) (2.15)

To reduce the expected quality loss, we should reduce o, and p,.

y
(2) "Larger the Better” Loss Function

The ideal value for this kind of characteristic is infinite. For this
characteristic, engineers usually have a lower specification limit.
Examples. of this are strength, reliability, maintainability, etc. The
quality loss function is given by

L(y) = K/y? y=d>0 (2.16)

To estimate the expected quality loss, we expand eq. (2.16) using a

Taylor's series at y=H,, because most products have a characteristic

close to My Thus, we have

2
K[ 2y-ny) 3(y-ny
L(y)= 21— + —————— (217)
”ﬂ_ Hy ns

If Hy is much larger than the absolute value of the (y-uy), the first

three terms can dominate the 3rd or higher-order terms. By taking

the expected value with the assumption that the 3rd or higher order
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terms can be ignored, we have
E[L(Y)] = (K/u,2)[1+30,2/n,2] (2.18)

Large My and small 6.2 can reduce the expected quality loss. If we

y

consider the terms up to the 4th order in expression (2.17), then the
expected quality loss is given by
E[L(Y)] =~ [K/u,21[1+30,2/p 2-4y,6,3/n3+5(v,+3)0 4 4] (2.18a)

where vy, is the skewness and y, is the kurtosis. For the same Hy and

c,, positive y; and small y, can reduce the expected quality loss. This

y!
is somehow interesting. Several numerical examples in Appendix B

can verify this conclusion.
(3) Polynomial Loss Function

If a number of quality loss values are known for various

deviations from the target, we can fit a polynomial model

uy,yo)=:>:ll<i(y “y o) 2.19)

If m pairs of y, and loss value are known, K; can be determined by

either using regression methods (Draper 1981, Gunst and Mason

1980) or solving a system of n simultaneous linear equations if n=m.

The expected value of L(y,y,) is given by
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HL(Yy )= S K, £ ()n (-9 (2.20)
=1 j=0

where p; is the jth moment of y about the mean and 8=y0-uy. If =0,

we have
n
HI(Y,y 0)]=j§1 ij'j (2.21)

§ 2.6. Multivariate Loss Function (MLF)

In the real world, a system or a product may have several
quality characteristics rather than a single characteristic. For
instance, TV sets have picture quality, tone quality, efc. Each quality
characteristic may cause a quality loss. Moreover, these quality
characteristics may be dependent on each other. Therefore, in order
to evaluate quality for such systems, we are motivated to develop
the multivariate loss function (MLF). Suppose that the multivariate

loss function for a system is given by a function
Loss = L(y;5 « ¥p3 t1s o £y) (2.22) -
where y,, ... y, are the quality characteristics of the system and t,, ...

t, are the respective target values (see also Figure 2.6).

In some cases, the loss function can be decomposed as the sum

of the quality loss for each characteristic, or
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Noise
factors

Real
Performances

Quality loss

Multivariate in dollars

Loss Function

(MLF)

ldeal
Performances

Figure 2.6. MLF transfers multivariate deviations to a loss in dollars

L=Li(y;,t)+ .. +L(yp t) (2.23)

The e<xpected valne of the total quality loss is the sum of the

expected quality loss for each characteristic. Each characteristic can
use a univariate loss function to evaluate quality.

For some systems, the total quality loss is the product of the

quality loss for each characteristic, or
n
L=TLy,t) (224)
i=

In this case, if y; is independeni of y; (for izj), then the expected

value of the total quality loss is the product of the expected quality
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loss for each characteristic. If y;'s are not independent of each other,
the expected logarithmic value of the total quality loss can be used
by performing logarithmic transformation and taking the expected
value of eq. (2.24)

Eflog(L)] = E[log(L)] + - + E[log(Ly)] (2.25)
which can be used as a criterion to evaluate quality for such systems.
(1) Quadratic Multivariate Loss Function

For the generic muitivariate ioss fuiiciion, we can rewrite eq.
(2.22) using vector notations as follows: (bold symbols are vector
quantities unless otherwise specified)

L =L(Y,T) (2.26)
where Y=[y; ... y,IT is a vector of quality characteristics, T=[t, ... t,]T is
a vector of the target values. Expanding eq. (2.26) as a Taylor's series
at Y=T, we have

L= L(T,T)+VL(T,T)(Y-T)+(Y-T)TH, (T)(Y-T)/2 + ... (2.27)
where H [ (T) is the "Hessian matrix" for L, which is the second
derivatives of L with respect to Y at T. Since L has a minimal value
at Y=T, the gradient VL(T,T)=0. Moreover, we are interested in the

major variable terms in (2.27). Thus, ignoring the constant terms and
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the 3rd or higher order terms, we have
L = (Y-T)TH (T, T)(Y-T)/2 (2.28)

In summation notations, we have

L=% ZK(y —t )Xy~ t) (2.29)
i=l j=1

L L .
where Kii-i(ayjl(v =T,V i and K (Wia—y—})(Y=T,Vl¢]).

Kj's can be determined by using the regression method (Draper
1981, Johnson and Wichern 1982) or solving a system of linear
equations. If m; is the mean of y; and 8;=t;-m;, the expected value of L
is given by

n i-1

HL]"EK(G +8)+ Ez}lK[Cov(y y)+88] 230
= J_

where ;2 is the variance of y; , Cov(y;,y;) is the covariance of y; and
y;- If y;and y; are indepenc st of each other for all i#j, then

n il

HL]—ZK(G +5)+ 22 ZKSS (231
= _]_l

Furthermore, if the mean is equal to the target for all i, then

HL= 3 K, o 232

i=1
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(2) "Smaller the Better" MLF
A good approximation to the MLF for "the smaller the better”

quality characteristics is the following quadratic function

n i
Ky, Yo oo Yp)=2X 2 Kyy. (2.33)

The expected quality loss is given as follows

n i-1
Hi= 3K (2+md)+ 3 3K, [Cow(y ,y )+ mm ] (2.34)
i=1 1 1 1 l=2_|=1 1) 1 1 )

If y; and y; are independent for all i%j, then

n n i-1
HL]= SK.(6?+m?)+ ¥ TK.m.m, (2.35)
i‘-‘—'l 11 1 1 l=2 j=l l_] 1 _]

(3) "Larger the Better” MLF

For a generic multivariate loss function of "larger the better"

quality characteristics, we can describe it by

LYy Ya)= T 2 5o (2.36)

where K; is constant values (V i and j). If Kij=0 for all i#j, the function
can be separated into the sum of the quality loss for each quality
characteristic. The expected value of the total quality loss is the sum

of the expected quality loss for each characteristic. We expand eq.
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(2.36) as a Taylor's series at y,=m; for all i (m; is the mean of y;).

Taking its expectation with the assumption that the 3rd or higher

order terms can be ignored, we have

=L@l 3§ | mYy e mim i=2j=1mfm§
j2i

n i Kij n 3Kii n Kij 2 n i-l1 Kij
HL]= X X ma + Z T+ < —3 o+ X X va(yi,yj) 2.37
If y; and y; are independent for all i#j, we have

n i Kl_) n 3K n Kl_]
HL]= % % +3—3+ Z 2 (2.38)

=1 = Mmoo g m“i = m’m .
j

jei
(4) Example for Multivariate Loss Function

A high-frequency sine-wave signal generator is an electronic
instrument that has two characteristics: voltage V and frequency F. If
V, F or both are outside the interval of +10% of the nominal value
(the target value), the instrument must be adjusted or sent for

repair. There is a set of statistical data about the repair cost related

to the bias of V and F (Table 2.1).

Table 2.1. Cost corresponding to bias of V and F

V bias (%) O 0O -20 30 -60 40 20 20 -10 -10
F bias (%) -15 10 0 0 -10 20 -20 -5 -5 5

Cost 45 40 20 20 100 8 70 30 10 12
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We can fit a multivariate loss function. The target for F or V is
zero. If a quadratic loss function is appropriate, then it is given by
L(V,F) = K, V2 + K,,F? + K,, VF
Using the least square method, we can obtain the following normal

equations (Draper 1981, Johnson 1982, Gunst and Mason 1980)

168.3 K, + 11.7 K,, + 32.4 K,, = 5.607
117 K, + 39.25 K,, + 21.75 K,, = 8.5425

324 K, + 21.75 K,, + 117 K,, = 9.29

Solving the equations, we have K,,;=0.028, K,,=0.15, K,;=-0.025.
To test for the goodness of fit, we can compute the coefficient
of determination r? or the multiple correlation coefficient r.

Total sum of squares about mean = 13246.8
Regression sum of squares = 12077.49

Residual (error) sum of squares = 1169.315

Thus, r2=0.912, r=0.955. The model can be considered as "fitted well".

If V has a2 mean my=0 as well as a variance o2=36, F has a mean
mg=0 as well as a variance 6z2=9.0, and V & F have a correlation

coefficient py g=0.1, the expected quality loss is given by

E[L] 0.028(0v2+mv2)+0.15(0F2+mF2)-0.025[cov(V,F)+mva]

2.31



CHAPTER 3

OPTIMIZATION CRITERIA FOR DYNAMIC SYSTEM

§3.1. Dynamic System And Dynamic Characteristic

By "dynamic", here we do not mean the presence of time factor.
Instead, it is meant that the ideal performance of a system is not a
fixed value and it can be adjusted by a signal factor based on the
customer's intention. This kind of system is called dynamic in nature.
The performance or the characteristic of a dynamic system is called a
dynamic characteristic.

Philosophically, the ideal relationship between the signal factor
and the dynamic characteristic is desired by either the customer or
the designer of the system. In the real world, however, a random
deviation may be present due to manufacturing and environmental

variations, use conditions, wear, aging and deterioration over time,
etc. If y, is the dynamic target and M is the signal factor, then y, is a
function of M for the given values of the design factors, that is

Yo = Yo(M) (3.1a)
In practice, the dynamic system is usually designed as a linear model

of the signal factor, because it is easier to be controlled by a user or

39
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an operator. Hence, the ideal performaince is given by the following

linear function

where @ is the ideal intercept and B, is the ideal slope. They reflect

a desired relationship between the signal factor and the performance
variable.

The intercept and the slope for a real system may differ from

those of the ideal system due to improper adjustments of o and B.

Hence, the mode! of the real system may be given by
y(M) = a + M (3.2a)
where o and B méy differ from o and B,. Both o and B are controlled

by the design factors. The nonlinear effects can be combined into the
error term. Due to noise factors e, the actual performance can be

modeled by

Y(M,e) = o + BM + €(e) (3.2)
where e(e) is the effect of the noise factor, with a mean zero and a
variance ¢,2. To understand the relationships between y,(M), y(M)

and Y(M,e), see Figure 3.1.



' §
§ y(M)
a
o
o flelM)
Y ,(M)
>
M
(a) Signal factor
% y(M)
a /
g M, Y(M,e))
Q- [ ]
o

e(e){

M, (M)

M
Signal Factor

(b)

Figure 3.1. The relaticnships between yy(M), y(M) and Y(M,e)
where Ay(M)=a-o)+(B-By)M.

41
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If a quadratic quality loss function is appropriate, the quality

loss due to variations from the target is given by
L(M.,e) = K[Y(M,e)-y,(M)]2 (3.3)
The expected quality loss is given by the following integration:

HLM,e)l= [ | I{Y(M,e)—-yO(M)]zfm's(M,s)dea
all Malle

= | II{a—a0+(B-—BO)M+e(e)]2fm’£(M,e)dee
allMall e

[ad 2 2
—k{[o-ag+ B-Bouy] + BBy ol f +KE (34
fne(M,g) is the joint density function of M and e(e). py is the mean of

M and o2 is the variance. 6.2 is the variance of the random effect
e(e). Here for simplicity, €(e) is assumed to be independent of M and
hence f [e(e)IM]=f [e(e)].

The expected quality loss consists of two parts: the first part is

the result of the deviation of the mean performance from the target

or the improper adjustments of a and B; the second part is caused by
the noise factors. Our goal in design is to minimize this quantity by
selecting the best levels setting for control factors Z and adjusting

scaling/leveling factors R.
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§3.2. Motivation Of Optimization Criteria

The optimization can be done by selecting control factors Z and
adjusting scaiing/leveling factors R simulianeously to minimize
E[L(M,e)], but it is an intuitive approach to optimization and the
method is not simplified. The seleciion of Z and the adjustment of R
can be separated as a two-step optimization procedure. If we select Z
to minimize E[L(M,e)] directly in the first step, the solutions may be
obtained by reducing the first part in eq. (3.4) that is supposed to be

eliminated by adjusting R in the second step. Since R may have

effects on e(e), 6.2 cannot be used as a criterion for the selection of Z.

When we adjust R in the second step, o2

may be inflated to a
solution that is not optimal.

To eliminate the conflict of this, we can select Z to minimize the
adjusted quality loss (AQL) in the first step and then adjust R to set o

and B to the ideal values in the second step. AQL is the quality loss
caused by the actual responses with the assumption that the real
system has been adjusted to the ideal model.

Imagine that the real system has been adjusted to be identical

with the ideal model. Thus, the adjusted actual response can be
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modeled by Y3(M,e)=(B,/B)[Y(M,e)-a]+o and the AQL is given by

2
ElLMe)l= | | K[Y'Me)-y M) f,, (M,dMde

all M all &
B 2
= ] | 1<{—Bi’-a(e)] f . {(M,e)dMde
all M all ¢
xS (3.5)
B

where K'=KB, is a constant value. We want to select Z to minimize

AQL or to maximize B2/c. 2. This is a motivation of the signal-to-noise
ratio from the engineering viewpoint.
For a real system, a, p and 6,2 may be unknown. They can be

estimated by performing experiments. If experiments are performed
on m levels of M and repeated n times for each level of M, the data is

given in Table 3.1.

Table 3.1. The experimental data for the dynamic system.

signal Level Experimental data

M, Yy Y2 Yin
M, Yy Y2 You
Mp Y1 Yo seseee Yo
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The linear model of Yj; is given by

Yij=oz+BMi+ Eij 3.6)

where €;; is the effect of the noise factors that is an i. i. d. random
variable with a mean zero and a variance ¢ 2. Using the least square

method, we can find the maximum likelihood estimators of o and B,

which are given by

—
™M
M=
w

E
i
3
(SO

Y.. is the average of the experimental data. M is the average of the

signal levels. A regression function is given by
A
Y.=6+BMm, (3.7)

Since the probability density function of M is unknown, the

average quality loss can be used for this set of experiments, that is,

QL= Knmg %.[ yO(M)] nmE i[a—a0+(B—Bo)Mi+£ij]2

i=l 1 i=1 j=I

-

Z[a o +(B B )MJZ(—:
Ko : K@ i=1
EZ[a ay+ (B -BOM; ]+ 7 ZZez 2K — (3.8)

Moy U




46
The expected value of QL is given by

K m 2
HQU =g 2 [0 - g+ B-BM;] + Koy (3.9)
Similar to eq. (3.4), the first part of E[QL] is a result of the improper
adjustments of o and B, and the second pari is caused by the noise
factors. We would like to reduce this quantity. The objective in using
factor R is to adjust o and B to oy and B,. The discussion is similar. If

the minimization of E[QL] is used directly as an objective for selecting
Z in the first step, we may get an optimal solution that is given by
reducing the first part which is supposed to be eliminated by

adjusting R in the second step. If the minimization of the second part

is used as an objective, it may be inflated as o or B is adjusted to o

or B, in the second step, because adjusting o and § may have effects

on the error terms.

We want to minimize the adjusted quality loss by eliminating

the improper effects of o and P in the first step, and later we can

adjust o and B to oy and B, in the second step. Imagine that the

expected value of the real system (3.6) has been adjusted to be

coincident with the ideal function (3.1). The adjusted response is
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modeled by

Bo
Y‘}J.: B (Y- + g (3.10)
The adjusted quality loss (AQL) is caused by the noise factors with

the assumption that the real system has been adjusted to the ideal

model, and AQL is given by

mn - 2
AQL=Kgz X X [ Y-y (M)

m n [P 2
=Kgqp2 X FO(Yij_a)-HxO_yO(Mi)]

2 .65
= 2228..=K—2 (3-1 1)

where K'=K(BO)2 is a constant value.
We can select the best levels for control factors in the first step

to minimize AQL or to maximize P2/Var(e), which is also a motivation
of the signal-to-noise ratio from the engineering viewpoint. In the
following section, we will give a definition of the signal-to-noise

ratio.
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§3.3. Signal-To-Noise Ratio For Dynamic Characteristic

In communication theory, generally speaking, a signal-to-noise
(SN) ratio is a ratio of the predictable change of the output caused by
a signal to the unpredictable change due to noises (Morris 1984). To
prevent SN ratio from becoming negative, the square value can be
used. The SN ratio (n) for dynamic characteristics is a ratio of the
square value of the.predictable change of performance caused by a
unit change of signal to the expeciecc square value of the
unpredictable change caused by noises. In other words, the SN ratio
is the ratic of the square value of the predictable change of
performance caused by a unit change of the signal factor to the
variance of the errors. This is because the mean value of the errors
is assumed to be zero and hence the expected square value of the

unpredictable change due to the noise is the variance of the error

denoted by o,2.

Thus, the SN ratio for dynamic systems can be defined as the
ratio of the square value of the predictable change of performance
caused by a unit change of the signal factor to the variance of the

error, or
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(3.12)

3
mq*’l m“

The motivation of this is based on the discussion in last section.

The two-step procedure of optimization is the selection of Z to
maximize m as the first step and then the adjustment of o and B by

using R as the second step. This two-step procedure can simplify the

optimization.

§3.4. Validity And Limitations Of Signal-To-Noise Ratio

To observe the validity of the SN ratio for dynamic systems, we
can consider the following situations:
(I) R has same effects on the signal factor as on the error term

In this situation, if we adjust R to achieve a desired functional
relationship between the signal factor and the predictable response,
the effects of R on the error term will change at the same rate as
those of R on the predictable response change. The model can be

given as follows
Y = (R, Z)+B(R,Z)M+B(R,Z)e'(Z,e) (3.13)
where €' is a random effect due to e and independent of R. The gauge

system with a sensor and a transforming mechanism is considered to

be such a model by Leon et al (1987). The sensor transfers signal M
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to a mechanical signal M'=y(Z)M+¢"(Z,e), and the mechanism transfers
M' to meter reading Y=o(R,Z)+B,(R,Z)M' where B(R,Z)=B,(R,Z)Y(Z), and
£'(Z,e)=¢"(Z,e)/y(Z). For model (3.13), the SN ratio (n) is B2/Var(e)=
1/Var[e'(Z,e)] which is independent of R. Hence, adjusting R does not

affect m. As a result, the two-step optimization procedure gives the
optimal solutions Z* and R* as follows (V(¢) is a variance and

equivalent to Var(e) unless otherwise specified):

In step 1, find Z*:
Z*= {Z*: nZ*) = mgx[n(b] or Vle'(Z*e)] = mzin{V[s' (Z,e)]}}
In step 2, find R*: R*={R*: o(R*,Z* )=o), B(R*,Z*)=P,}.

Z* and R* can minimize the expected quality loss based on a

symmetric quadratic loss function, because

VIe(R*,Z%e)] = B VIe'(Z*,)] =B, min{ VIE(Ze)]}

= Min{ V[e(R,Ze)]: R, =0y, BR,Z =B, ) (3.14)

If we minimize V[e(R,Z,e)] directly in the first step and adjust

B(R,Z)tc Byinthe second step, solutions R' and Z' can be given as

follows:
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In step 1, find Z':
Z= {z': Vle(R,Z ,e)] = mzin{V[e(R,Z,e)]}}
Instep 2, find R": R'={R’: o(R",Z’)=a), B(R"Z')=P,)}.

Z' and R' may not minimize the expected quality loss or the variance

of the error, because

VIeR',Z' )] =By VIE @' e)] 2B VIe'@*0)] = V[e(R*Z%e)]  (3.15)
(2) Effects of R on the signal factor and the error term are different

Under this situation, the model is given as follows:

Y = a(R,Z)+B(R,Z)M+e(R,Z,¢e)
= (R, Z)+B(R,Z)M+B,(R,Z)e(Z,e) (3.16)

where B, is a function of R and Z.

This is a generic model for dynamic characteristics, because the
impact of R on € and the effect of e can usually be decomposed into a
product form. Let fB(R,Z)=[3(R,Z)/B1(R,Z) which is the ratio of the
effect of R on the signal factor to the effect of R on the error term.

We can expand it as a Taylor's expansion at R or the initial value of

R as follows:

fR.B=f Ry, D+ ViR DR-R) + R - RO)TH fB[E_,](R— R,) (3.17)
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where & is a vector quantity between R, and R (bold letters are
vector quantities or matrices unless otherwise specified). In practice,
the effect of R on B is approximately proportional to the effect of R
on the random error term €. In other words, fﬁ(Ro,Z) is much larger
than the other variable terms of the zbove expansion. Hence,

B1(R,Z) = B(R,Z)/f3(R(,Z) (3.18)
Thus, the SN ratio for this model is given as follows:

2
_ pPra [f(ReD)]
M=VleR Ze) ~VIe(Ze)]

(3.19

which is independent of R. Hence, adjusting R does not affect n. As a
result, the two-step procedure gives the following optimal solutions

Z* and R*:

In step 1, find Z*:

7= {Z*: n(Z*) = mzzlx[n(Z)] or X@M - min{w}}

2 2
Z
F(R , Z%) (R,
In step 2, find R*: R*={R*: o(R*,Z*)=0, B(R*,Z* )=}

Z* and R* can minimize the expected quality loss based on a

symmetric quadratic loss function, because
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Vle(R*,Z*,e)] = V[BI(R*,Z*)&:'(Z*,e)]

[ BR*Z¥) |
—V[We(z*,e)]

2 €(Z*,e)
= B0V|:_Tn—]
IR 2

= rgig{V[e(R,Z,e)]: e(R,2) = 04> B(R,2) = BO} (3.20)

This leads to the minimization of the expected quadratic quality loss.

It should be noted that we can not use Var[e'(Z,e)] as a criterion
to find the optimal solutions of Z, although it could be a Performance

Measure Independent of Adjustment factors. Otherwise, we would

obtain the following solutions:

In step 1, find Z':
7= {Z’: Vie'(Z',e)]l = m%n{V[E'(Z,e)]}}
In step 2, find R": R'={R": «(R"Z’)=0y, B(R"Z’)=B,}.

Z' and R' may not be optimal, because

V[ B,(R'.Z)e @' 0)] = BJ(R", Z)min{ V[&'(Ze)]}

min{V[e'(Z,e)]}
_p2_Z
“Fo

2 '
£(Ry,Z")
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5 ﬂf) m%n{V[e'(Z,e)]}

2
£(R,,2)

= nlg’i;{V[e(R,Z,e)]: a(R,D=a,,(R2H=p, } 3.2)

It should be observed that if B, can not be represented by eq.

(3.18), then the optimization problem can not be decomposed as a
two-step procedure and it must be solved in a single step, because it
is difficult to find a SN ratio which is independent of R or an efficient
PerMIA. The optimization problem is more complicated. If each
scaling/leveling factor can only take one of the several levels, we can
assign R to the inner array. If R can be adjusted con;inuously, for

each level combination of the control factors, we can find a R* so that
o and B are equal to the desired values. Thus, we zan find Z* or the

best levels setting of the control factors to minimize V(g). If the mean

performance is not satisfactory, we can finely adjusi R to reduce the

deviations of o and B from the desired values under the best ievel

setting or Z*. The fine adjustment of R will not change the optimal

solutions. Thus, the optimization procedure is given as follows: for
each levels combination of Z, find a R* to be such that a(R*,Z)=0a,, and
B(R*,Z)=B,; minimize V[e(R*,Z,e)] or maximize n(R*,Z) by selecting the

best levels setting for Z. That will lead to the minimization of
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Vie(R,Z,e)] or the expected quality loss or

_ By
o = Min{Vie®~ Lo}

MZEIX{H(R*,Z): o(R*,9 =0, ,p(R*,Z)= (.22

(3) R has no effect on the random error term
In this situation, R does not appear in the error term of the

model, that is,
Y =a(R,Z) + B(R,Z)M + &(Z,e) (3.23)
For this specific model, we can define the SN ratio as (BO)Z/V[e(Z,e)]

or 1/V[e(Z,e)]. Since B, is a constant vaiue and R has no effect on
V[e(Z,e)], maximizing m can minimize the expected quadratic loss and

bringing o, B to the desired values does not affect V[e(Z,e)].
(4) Scalinglleveling factors (R) do not exist.
If R is not available to adjust the predictable performance to

the desired value, each level combination of the control factors must
give the same o and B which are equal to the desired values o, and

Bo. Otherwise, this level combination is an infeasible solution for the

generic optimization model given in Chapter 4, because the constraint

is not satisfied. Eq. (3.2) can be rewritten down as follows
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Y= o(Z)+B(Z)M+e(Z,e) (3.24)

The optimization can be completed in a single step:
Mzax{n} or Mzin{Val{E(Z,e)]}

with o(Z) and B(Z) subject to the desired values. Both criteria lead to

the same optimal solution which minimizes the expected quality loss.

§3.5. Signal Factor Has Impacts On Random-Effect Term

For the models discussed early in this chapter, &€ is assumed to
be independent of M. Under certain circumstances, however, the
signal factor may have impacts on the random-effect term. Thus, € is
not independent of M. To ensure the validity of the discussions in
last several sections, we observe that the expected quality loss is

given by

2
E[LM,e)] = | | KYM,e)-y (M]f (MedMde
all ¢ all M

= | | Ka-ay+@-BM +e(M,e)]2fm,s(M,e)de£
all ¢ all M

k][0 - g + B = Boiyy] + (B-Bg) 0d+ o+

+ | K(B—BO)Me(M,e)fm'E(M,e)dee} (3.25)
ali ¢ al M
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For simplicity, the mean of e(M,e) can be assumed to be zero for any

value of M, namely pu (M)=0 (VYM). As a result, the expected quality

loss can be simplified as follows:

E[L(M,e)] = K{[(x —oy+ (B- ;so)uM]z +B- BO)ZGZM} + Ko (3.26)

where o2= | | e(M,e)f, (M,e)dMde
all € all M

The expected quality loss can be still decomposed into two
parts: the first part is the result of the improper adjustment of o and

B; the second part is the effect of the noise factors. The discussions in
last three sections are applicable here. Since M is not a design factor,
its presence in the random-effect term doesn't affect the selection of
the levels of the control factors and the SN ratio can be defined in the
same way.

So far, we have discussed the optimization criteria for dynamic
systems. In next chapter, we will be talking about the optimization

model, the use and the computation of the SN ratio.



CHAPTER 4

OPTIMIZATION OF DYNAMIC SYSTEM

§ 4.1. Optimization Model For Dynamic System

Our goal is to investigaie the deviation of quality characteristics
from the target or the ideal value. Minimizing this deviation can
minimize quality loss. We present the generic optimization model for
dynamic systems and the approach for development of the signal-to-
noise (SN) ratio as a measure for quality improvemeni. An example
is given to illustrate the methods. The SN ratio was originally
developed in communication theory. To evaluate the noise content of
an amplifier, the SN ratio is defined as the ratio of the information
signal at the output to the undesired noise at the output {Morris
1984). The calibration of gauge systems is viewed as a dynamic
characteristic and will be discussed later.

Depending upon the nature of the target, quality characteristic
can be classified as static or dynamic. For the static characteristic, the
target value is fixed. It does not change during the performance
period. For the dynamic characteristic, the target value is changing
and the performance can be controlled by a signal factor. If either or

both of the signal factor and the response variable is discrete, the

58
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system is classified as discrete in nature. We will be talking about
discrete dynamic systems in the next chapter.

In Figure 4.1, the user sets the signal factor at certain value to
achieve the intended performance. Due to the effects of noise factors,
the aciuai performance of the system may deviate from the target
value. This results in a quality loss. The model for the behavior of the
system may be known or unknown. If there is no sufficient

knowledge about the model, we can perform experiments to collect

data.
Noise
Factors
Real System Real
Signal Performance _ Quality
Factor Quality Loss
_— Loss

Function
|deal H
Ideal System Performance

Figure 4.i. A flow chart for the dynamic characteristic
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To minimize the expected quality loss given by a quadratic loss
function, we must minimize the variance of the error. Thus, a generic

optimization model for dynamic systems is given by

Mir;zirrzlize{ Varle(R,Z,e)] }

[ a(Z,R)=qa,
Subject to
1B(z,R>=BO (4.1)

To simplify the optimization, a two-step procedure can be used with

the assumption that design factors can be partitioned into control
factors Z and scaling/leveling factors R. In the first step, set R=R,, an
initial value of R, and maximize the SN ratio with Z as controllable
variables. In the second step, adjust the expected performance to the
ideal value, or m other words, adjust o and B to the desired values.
However, Leon et al (1987) show that the above two-step procedure
may not iead to the optimal solution for some specific models. They
propose the performance measure independent of adjustment
(PerMIA) as a substitute for Taguchi's SN ratio. The disadvantage of
PerMIA is that one must derive the PerMIA based on the knowledge

of the model. Moreover, as the discussion has revealed in case (2) of
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Section 3.4, a performance measure defined only by "independent of
adjustment” is not sufficient to be an optimization criterion, and it
cannot assure the minimization of quality loss if there is not any
restriction or further explanation. The slight modification of the SN
ratio for the specific models can ensure scientific use of the SN raiio
(Chapter 3).

The objective for the first step of the two-step procedure is to
maximize M in the domain of the control factors. Hence, the
optimization for the selection of Z is given by

n*= max {n} 4.2)
The SN ratio may become inefficient if it is not independent of R
(Leon et al 1987).

The inner array and the outer array for the optimization of
dynamic systemsiusing the SN ratio are given in Figure 4.2. The outer
array is used to compute a SN ratio for each level setting of the
control factors. The signal factor and the noise factors are assigned to
the outer array. The control factors are assigned to the inner array.
For each level combination of the control factors or each row of the
inner array, we can compute a SN ratio. By performing ANOVA on

the SN ratio, we can find the significant effects of the control factors.
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Furthermore, we can find the best level setting of the control factors
to maximize the SN ratio. To sum up, we give a flow chart to

illustrate the generic optimization procedure for dynamic systems in

Figure 4.3.
Runs | 1 2« ¢« o
Noise :1
Factors Ly 2 Outer Orthogonal
And Signa‘!/ : Array
Factor .
M
R Control factors SN
nslz z L. Ratio
1 2
1 Tl1
o Inner Orthogonal Array Experimental Data n,

Figure 4.2. Inner & outer orthogonal arrays for dynamic
characteristic.
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Study the system to
obtain knowledge as
much as possible

v

X

Perform experiments or simulation by using the inner
and the outer arrays, with the control factors assigned
in the inner array, the noise factors and the signal
factor assigned in the outer array. Set R=R, if R exists

R has effects on
the error term ?

can be Yes r B 2 Bz
simplified as _ - -0
eq. (3.18) ? n=101log {ﬁ] n= 1010g[62]
€ €

‘ Compute  for each levels settin
Follow the optimization pufe 1 g

procedure as for eq. (3.22) of the control factors

!

Perform ANOVA on the data of n
Find the best levels setting of the
control factors to maximize n

Yes

R exists ?

Adjust R to make the expected
performance equal to the desired
performance

v >l

(Obtain the optimal solution )

Figure 4.3. A flow chart for the optimization of dynamic systems
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§ 4.2. Computation Of SN Ratio For Dynamic System

The calibration of gauge systems can be viewed as a dynamic
characteristic probiem. The reference samples to be tested are the
signals. The reading on the meter or the tester is the response
characteristic. This example is used to present the development of
the SN ratio for dynamic systems.

The calibration with an equal replication number for each
signal level is referred to as the balanced calibration. Otherwise, the
calibration is called unbalanced. The balanced calibration is only a
special case of the unbalanced calibration. We will discuss the

unbaianced calibration. Assume that the response is a linear function

of the signal factor and for the ith signal level M; (i=1,2 ... k) and the
jth replication (j=1,2 ... rj), the response is Y;; and ihe random error is

g; that is an i. i. d. random variable with a mean zero and a variance

o.2. The linear function (3.2) can be rewritien as follows:

Y;:

j=m+ BM;-M) + ¢ (4.3)

where M=(1;M[+1,My+ e +1, M )/(11 41+ o+ +13), m=a+BM. The

maximum likelihood estimators of parameters m and P are given as

follows
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ko1 Kk 7
rﬁ=[2 ZYij]/[Zri

=1 =l i=1

1 (4.4)
k 5 —
[2 ) Yij(Mi—M)

i=1 j=1

A
=t

k _
where r = Zri(Mi— M)2
i=1

Since the predictable change of the response Y due to a unit

change of the signal factor is B, the SN ratio for model (4.3) is given

by (in decibel value)
n = 10 log(B2/c2) (4.5)
We can show that ]"32 is not an unbiased estimator of B2. Instead,

A
E[B2]=p2+c 2/t (see also Appendix C). In order to find the SN ratio by
performing ANOVA, we compute the total corrected sum of squares
k T kot k k
S5.=2 % Y?.—-(E ZY..)/[Zr.] (d.f.= Zr.—l) 4.6)
=1 ¥ \i=1j=t ¥ L A i=t !
To compute the sum of squares for the lst order variaiion, we would

like to remove the unknown constant m from the expression. Hence,

we use u;=M;-M (i=1, 2, ‘- k) as the coefficients of a linear contrast.

Multiplying eq. (4.3) by u; and taking the sum for all i and j, we have
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kr kr

ZZuY B):.ru +22ue

4.7
i=l j=1 i=1 j=1 ij ( )

This is a linear contrast. The sum of squares for this linear contrast is

given by (see Appendix D)

2

k r
[2 Zu Y} ‘ 2
s, = L= ]

=Hz M, - MY,

Li=1

B k 2
[Elr i i]

where Y,;, is the sum of all readings Yij for the given signal level i.

(d.f.=1) 4.8)

Obviously, SSB=rf32. The sum of squares for the error is given by

SS .= SST—SS (d f.= E T, —2) (4.9)
: B ]

Since E[ﬁ2]=[32+0€2/r, then E[MSB]=E[rﬁ2]=rB2+o€2. Also, we can show
that E[MS_ ]=0.2 (Appendix C) where MS, is the mean sum of squares

for the error. Thus, Bzz(MSB-MSe)/r and the SN ratio can be estimated

by

101 M5y~ MSe 101 - ms, 410
n=10log| — g —[=101°¢ —rms, (410

Eq. (4.6) through eq. (4.10) can be used to compute the SN ratio for

linear dynamic systems.
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If the intercept of a linear dynamic system is zero, then the

model is called proportional equation calibration and given by

Y;; = BM; + g G=1, .. k; j=1,..17) (4.11)
Again we can use eq. {(4.6) through eq. (4.10) to compute the SN ratio,
with M=0.

The confidence interval for the expected value of the real
performance or the response of the true model can be derived with
the assumption that the error term is normally distributed with a
mean zero and a .variance c.2. For the ith level of the signal factor and
the jth replication (i=1,2, ... a; j=1,2, ... n), the actual response is given
by

Y;:

j

For the ith signal level M;, Y,;=a+BM; is the mean response value of the
system. The estimated value of the response is given by Y, =(Y;+Y o+
=+ Y. ?i,-Yi=(e“+ei2+ “+ + g, )/n is normally distributed with a
mean zero, a variance o,2/n. Hence, n(Y,;.-Y;)?/c,2 has a Chi-square

distribution with one degree of freedom. Moreover, f.MS /o 2 has a

Chi-square distribution with f, degrees of freedom, where f, is the
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degree of freedom for the errors. Consequently, n(Yi,-Yi)Z/MSe is

distributed by a F(1,f,) distribution. Thus, the confidence interval for

Y; =a+BM,; is given by

£ (4.13)

§ 4.3. Example
A noninveriing amplifier consists of an operational amplifier

and several resistors (Figure 4.4, Savant et al 1987). The output
voltage V, is a linear function of the input voltage V;, which is given

as follows:

In this linear model, @=0 and B=(1+R/R,)R,/(R;+R,). R is an adjustable

resistor. If the ideal function is V,=100V;, then (=0 & B,=100. Each

resistor has two levels (Table 4.1). As suggested by Taguchi (Taguchi
1986, Taguchi & Wu 1980), lower-priced components should be used

in selecting the best levels setting for control factors. Assume that
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the standard deviation for the lower-priced components except R is
1.67% of the nominal value. As a result, three levels can be used to
simulate the noise factors associated with the resistors: zero and
+2.04% away from the nominal value (Table 4.1), because \/?3_/2_ o is
equal to 2.04% of the nominal value. V, is considered as the signal

factor whose domain is defined as a range of 0.00 to 0.10 volt.

=

1

Figure 4.4. A noninverting amplifier.
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We use this example to demonstrate the two-step procedure

for optimization and the use of SN ratio. We want to select the best

level setting for R;, R,, R, and adjust R to minimize the expected
quality loss. In the first step, we maximize the SN ratio with R;, R,
and R, as the variables. In the second step, we adjust R to achieve

B=100. We can show that the SN ratio for this model is independent

of the adjustable factor R. Although signal factor V; has effects on the

error term, it doesn't affect the selection of the levels of R;, R, and R,
(Appendix E).

In the first step, we use Lg(27) as the inner array and Ly(34) as
the outer array. The noise factors for resistors can be found in Table

4.1. If we set V, at 3 levels: 0.01, 0.04, 0.07 and start with an initial

value Ry=150 KQ, the simulation data is given in Figure 4.5. In Table

4.2, the SN ratio for each level combination is computed by using eq.
(4.6) through eq. (4.10). The ANOVA of the SN ratio is given in Table

4.3.
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Table 4.1. The nominal values and the noise factors associated with

RI'RZ’ Ra
Nominal Noise Factors_

Factor Level Value (kQ) Level 1 Level 2 Level 3
R, 1 5 4.898 5.000 5.102

2 10 9.796 10.00 10.204
R, 1 100 97.96 100.00 102.04

2 200 195.92 200.00 204.08
R, 1 1 0.9796 1.000 1.0204

2 2 1.9592 2.0G0 2.0408

Table 4.2. The computation of the SN ratio

Run  SS; SS SS, MS, n (db)
1 111.845 111.733  0.112 0.016 ,61.09
2 28.329 28.301 0.028 4.03x10°3  61.14
3 117.363 117.245  0.118 0.017 61.10
4 29.729 29.699 0.029 4.20x10°3  61.17
5 101.910 101.805  0.105 0.015 61.00
6 25.819 25.792 0.026 3.75x103  61.05
7 111.845 111.733  0.112 0.016 61.09
8 28.329 28.301 0.028 4.03x10°3  61.14
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Since the significant factors are the effects of R,, R,, R, and

the interaction of R; and R,, the model is given by

Yljk =u-+ T + B_] + Yk + (TB)U + eijk

where p is the overall mean and it is estimated by Y

7; is the effect of Ry and it is estimated by Y,..- Y...;

eee?

B; is the effect of R, and it is estimated by ?,j,- Y...;

ese?

Yk is the effect of R, and it is estimated by Y, - Y

.
s0e?

(tB)ij is the effect of the interaction of R, and R, and it is

estimated by Yij,- Y. Y.+ Y... (i=1,2; j=1,2; k=1,2).

As a result, the estimated value of Yijk is given by
Yijk = ?ij- + Y..k - Y...
Hence, ine estimates of the SN ratios for various level combinations
of Ry, R,, and R, are given in Table 4.4. The best levels setting for
control factors is: R;=5, R,=200 and R,=2, because these parameters

can maximize the SN ratio. Adjusting R to 203 kQ, we can achieve

B=100 or V,=100V..



Table 4.3. ANOVA on the SN ratio using the inner array

Source SS MS F,

R, 6.38x10-3 6.38x10-3 157.5 ***
R, 6.38x10-3 6.38x10-3 157.5 ***
R, 5.51x10-3 5.51x10-3 136.0 ***
RxR,  2.11x10-3 2.11x10°3 52,1 #h
R;xR, 4.05x10-5 4.05x10-5

R,xR, 4.05x10°5 4.05x10-5

Errors 4.05x10°5 4.05x10°5

(Errors) (1.22x107%) (4.05x10-5)

Total 2.93x10-3

0.0205

*** Significant at 1%.

Table 4.4.SN ratios for various level combinations of R}, R,, R,

R,=100 R,=200
R,=1 R,=2 R,=1 R,=2
R,=5 61.09 61.14 61.11 61.16*
R,=10  61.00 61.05 61.09 61.14




CHAPTER 5

OPTIMIZATION MEASURES FOR DISCRETE
DYNAMIC SYSTEM

§5.1. Discrete Dynamic Characteristic

The optimization of the continuous dynamic characteristic has
been discussed for quality improvement in last chapter. Depending
on the nature of the signal factor and the performance, dynamic
characteristic problems can be further classified as four types
(Taguchi and Phadke 1984, Kapur and Chen 1988). If either or both
of the signal factor and the performance is discrete, we classify the
quality characteristic as discrete in nature. The control system is a
typical discrete dynamic system.

In general, a discrete dynamic characteristic problem can be
transferred to a continuous probiem. The approach developed in last
two chapters can be applied to the discrete dynamic characteristic.
This is the topic in this chapter. We will be developing the SN ratio
for several discrete dynamic systems. The optimization procedure is
similar to the continuous cases and is performed on levels settings of

the design factors.
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§5.2. SN Ratio For Sensory And Reliability Test

As a coin is inserted in a slot of an automatic vending machine,
a product should emerge as a response. If not, the machine fails to
perform the intended function. For this system, the response is a
measure of performance, and feeding the coin is a signal. Let Y be the

response and
[O if a product does not emerge
Y=1 .
1 if a product emerges
In order to tes. the reliability of the vending machine, we
insert the coin n times, and the point estimator for the reliability p is
given by
R=(Y;+Y,+ ...... +Y,)/n (5.1)
The sum of squares for this linear equation is given by
SSg = R?/{n(1/n)?} = nR?2 (d.f.=1) (5.2)
If p is the population mean, then E[nR]=np, Var[nR]=np(1-p), because
nR=Y;+Y,+ .. +Y, has a binomial distribution. As a result, we have
E[(nR)?] = Var[nR]+{E[nR]}? = np(1-p)+(np)? (5.3)
as well as

E[SSg] = (1/m)E[(nR)?] = p(1-p) + np? (5.4)
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The total sum of squares is given by

S Y, (5.5)

Sr= i% Y? =
and SS_=SS-SS;=nR(1-R). Thus, we have

E[SS.] = E(SS1)-E(SSR) = (n-1)p(1-p) (5.6)
The degree of freedom for SS, is n-1. The ANOVA table for this

problem can be developed as Table 5.1.
Obviously, the change of the output due to a unit change of the
signal is the population mean p and the variance of the error is

p(1-p). Thus, the SN ratio for this problem is given by

p?
= 5.7
"=pa-p) 7
Table 5.1. ANOVA for sensory and reliability test
Source df SS MS EMS
R 1 nR? nR2 p(1-p)+np2
error n-1i nR-nR?2 nR(1-R)/(n-1) p(1-p)

Total n nR
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It is observed in Table 5.1 that n can be estimated by

1
1 (MS,-MS.,)
n R e/ R _17__R
Ms, ~r-rl'~7R) "T-F ©-82)
or in decibel, we have
n=-10log(k - 1) (5.8)

The logarithmic expression (5.8) is called the decibel unit for R
(Taguchi 1987). This is also called omega transformation.

For the sensory and reliability test of the machine, we can
insert the coin n times, and record Y,, Y,, ... Y to calculate R. The

objective is to maximize the SN ratio given by eq. (5.8) over the

design space of the machine.

Maximizing m leads to the maximization of R. Hence, m is

consistent with R as a measure of performance which is used in the

field of reliability. If a machine has a SN ratio n and countermeasure

A can obtain a SN ratio gain of 1, , the SN ratio for the machine after

adopting countermeasure A is n+m, (Taguchi 1987).

§5.3. On-Off Control System

An on-off control system has a continuous signal and a discrete
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response. It can be divided inio two types depending on the presence

or the absence of hysteresis.

(1) Absence Of Hysteresis.

The control system will turn on a switch as a characteristic
value is greater than or equal to a critical value Y_. Otherwise, it will

turn off the switch. That is

YRR L\ B T - . -1 -r .
on (i) if ihe characteristic value 2

Switch=
off (0) if the characteristic value< Y,

Y. is controlled by a certain factor which can be classified as a signal

factor. Assume that the critical value has a linear relationship with
the signal factor (nomlinear terms can be combined with the errors).

Thus, for the ith signal level and the jth replication, we have the
function Yc=m+ﬁ(Mi-M)+sij. The analysis is similar to the continuous

dynamic systems in last chapter. Setting different levels for the
signal factor, we can collect performance data by measuring the
characteristic value when the switch is turned on or off. Thus, the SN
ratio can be computed by using eq. (4.6) through eq. (4.10).

(2) The Presence Of Hysteresis

To design a stable system, hysteresis is often introduced to
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prevent the system from oscillating. The hysteresis makes the

control switch turn on or off at different critical values. That is,

[is turned on (0 —» 1),

if the characteristic increases to YC;
1

is turned off 1 — 0),

if the characteristic decreases to YC ]
()

Obviously, unless Y, is greater than Yq, the system would not work

properly. The critical values Y; and Y, are controlled by the signal

factor.
One example of this is an air-conditioner. The air-conditioner
can be set at a particular temperature by turning the control switch

(signal factor), say 80 °F. Due to the hysteresis, the power is not
turned on (0— 1) until ihe temperature increases to a quantity larger
than 80 °F (Y(,). When the switch is on, it is not turned off (1-0)
until the temperature drops to a value lower than 80 °F (Yeo) (Figure

5.1). As a result, tiie system has two SN ratios, one for shift 0—1 and

the other for shift 1— 0. Which one is taken as the optimization

criterion depends on the nature of the practical problem.
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Figure 5.1. Temperature control with hysteresis

§5.4. Two-Type Error System

In hypothesis testing, if the hypothesis is really true but it is
rejected, a type-one error has been committed. If the hypothesis is
accepted when it is not true, then a type-two error has been made.
In digital communication systems, it is possible to mistake input "1"
for output "0" and also to mistake input "0" for output "1". This is

called a two-type-error system.

For the data given in Table 5.2, ny O's are sent as inputs but ny,
0's and ny, 1's are received as outputs, and n; 1's are sent as inputs

but n;; 1's and n,, O's are received as outputs.
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Table 5.2. The data of input vs output

Output
Input 0 1 Total
0 Noo Mo, Do
1 Mo ny, n,
Total To T n

Let y; (y;=1 or 0; i=1,2, ... n;) represent the output when input

is "1", and X; (x;=0 or 1; j=1,2, ... ny) represent the output when input
is "0". To see how accurately the input signals can be identified in the

output data, we consider the foilowing contrast
1§ 1 B Mo,
L='n—'z y.—'ﬁ—z, x.=(T- — —n— (59)

which represenis the significance between the response to input "1"
and the response to input "0". The larger the contrast L is, the more
accurate the system is. The sum of squares for this linear contrast is

given by
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so,- [ 2o (2T 2 )]

2
_ (R oo"11=M01"10)
nonln

(5.10)

For input "0", the sum of squares for the error is ng;[1-(ng;/ng)]
(binomial distribution) and for input "1", the sum of squares for the
error is ny;[1-(n;;/n;)]. The sum of both terms is given by

SS, = ny;[1-(ng/mp)] + nyy[1-(ny /ny)] (5.11)
The total sum of squares is given by

SSt =SS, + 8§, =1 -172/n (5.12)
By comparison with SS;, MS,=SS/(n-2) is so small that SS;-MS_ =SS, .
The proportion of the signals in the total output is termed a percent

contribution ratio p (O<p<1)
P =(SSL-MSC)/SST =(n00n11- n01n10)2/(r0r1n0n1) (5.13)

A large value of p is desired. The perfect system has p approaching

one. Similar to the sensory and reliability testing, the SN ratio for this

system can be computed in terms of p rather than R:

n=-10log( - 1) (5.14)
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Table 5.3. The data of input vs output in terms of p and q.

Output
Input 0 1 Total
0 1-p P 1
1 q 1-q 1
Total 1-p+q 1+p-q 2

If the data of input and output is given as p=ny,/n, as well as
q=n,y/n; (Table 5.3), then by substituting p and g, we have

p = (1-p-@?/{(1-p+q)(1+p-q)} (5.15)
The SN ratio can be computed using eq.(5.14). If p=q=0, we substitute
1/(2ny) for p and 1/(2n,) for q, to prevent the SN ratio from being
infinite.

In practice, it is impossible for a variable to have an exact "0"
or "1" value. The variable to represent "0" or "1" is a random variable
with a distribution around O or 1 (Figure 5.2). If an input value is
greater than a threshold value, it is classified as 1. If the input value
is smaller than the threshold value, the input is received as O.

Let p be the probability that the input is O but it is greater
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than the threshold value. Let q be the probability that the input is 1
but it is smaller than the threshold value. In communication systems,
it is desirable t6 have p=q. Taguchi (1987) suggests using an omega
transformation to adjust p=q based on the fact that if the decibel unit
for p is increased (or decreased) by K db, then the decibel unit for g
will decrease (or increase) by K db. If p' and q' are the probabilities
after adjustment (Figure 5.3), by increasing the decibel unit of p by K

db and reducing the decibel unit of q by K db, we have

—1010g(%—1)+K=—1010g(—1q——1)—K (5.16)

or K=——1010g\/(%1——1)/(13-—1)

Thus, the decibel unit for p' and q' after adjusting by K db is given by

_ 1 _1H=- 1 _q1y=_ 1_yi_
1010g(p, 1) 1010g(q, 1) 1()log\/(p 1)(q 1) (5.17
Consequently, p'=(1-2p')? and the SN ratio is given by

n=—1010g(§—1) (5.18)

Again, the system can be optimized using n as a measure of the

performance of the system.
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Figure 5.2. Distribution of the input variable for p#q
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Figure 5.3. Distribution of the input varigble for p'=q’

86



CHAPTER 6

TOLERANCE DESIGN OPTIMIZATION FOR
COMPONENTS AND SUBSYSTEMS

§6.1. Introduction

In Taguchi's parameter design, the experiment or the computer
simulation is conducted to search for the optimal level setting for
design faciors so that the system performance is less sensitive to the
noise factors without cost increase. However, if the system variations
can not meet the quality requirement, the components or subsystems
must be upgraded to balance the quality loss due to variations and
the cost due to control of tolerances. To do this, Taguchi uses an
equation to transfer the variations of the components to the system
variations with the assumption of no interaction between the
components (Taguchi and Wu 1980; Wu and Moore 1986). This
equation can be wnnderstood intuitively but no theoretical basis is
given and interactions between components are not considered.

In this chapter, we will be presenting the optimization model
for tolerance design. Also, we will be discussing the theoretical basis
of the variation transmission equation (VTE) which transfers the

variations of the components to the system variations, regardless of

87
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the significance of the interactions between components. Based on
the quality loss function (QLF) and the VTE, we can perform the
economic analysis for tolerance design to optimize the total cost
which consists of the quality loss due to variations from the target
and the cost due to control of the tolerances.

There are many conventional approaches for tolerance design
(Spence and Soin 1988), one of which is based on the Taylor's series.
Assume that a system consists of n components. A characteristic Y of
the system is a function of the parameters of these components and
Y is given by

Y = (X, X, =, X)) (6.1)
where X, X, X, are the parameters of the components. By

considering Taylor's series representation of eq. (6.1) truncated after

the first order term at the point (j,, pj, « H,), the variance of Y can

be found to be

2 n nfof(r,...n) of(p,, ...t p)
ozy=E(Y2)—[E(Y)1zzz[ L }[ L.

JCO\(Xi, X) (6.2
i=1 j=1 i i

where p; is the mean of X; (Vi), and Cov(X;, Xj) is the covariance of X;

and Xj. In practice, X;, X,, -+ X are independent random variables.
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Hence oyz can be reduced to

2
n|of(p,,1,,...
02=Z[ (bpphy ”n)]ozi (6.3)

Y ia axi

where o;2 is the variance of X; (Vi). This conventional method has a

good mathematical explanation, but the disadvantage is that we need
an analytical model and the computation of derivatives. Moreover, it
may lead to a less accurate result, because the higher order
derivative terms are not considered.

The parameter of a component may have a random variation

from the nominal value due to noise factors. This variation results in
a deviation of the system characteristic from the target value y, and

a quality loss is incurred. The traditional quality evaloation systems
focus on the conformity to the specificationsi while QLF evaluates
quality in terms of the deviation from the target value. The iwadratic
QLF is a good approximation for many systems based on the
underiying causes of variation and the attempt to reduce the error of
the estimation (Chen and Kapur 1989). Eq. (2.4) can be rewritten as

follows:

Loss = K(y-y,)? (6.4)
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where K can be determined as follows: if the deviation A, from y,

causes a quality loss A, then Ay=K(A;)? or K=Ay/(Ay)%. The expected
quality loss can be obtained by taking the expectation of eq. (6.4).

E[Loss] = K(o,2 + L) (6.5)
where & is the difference between y, and the mean of Y. The quality
design can be conducted by making the performance robust io noise
factors or reducing o2 and then adjusting the mean of Y to y,. 0y2 is

affected by the variaiions of the components or subsystems.

The objective of tolerance design is to decide the tolerances of
the components or the subsystems to balance the quality loss due to
variations and the cost due to controlling the tolerances of the
components. We will limit our approach for the system where only
linear and/or quadratic effects of the components are significant.
However, the approach can be extended to the cubic or higher order

effects.

§6.2. Simulation Of The Noise Factors

It is well known in design of experiments (DOE) that the

responses on three levels of a factor can evaluate the linear effect
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and the quadratic effect of the factor. The linear effect of a
component can be evaluated by the difference between the response
values for the high level and the low level of the component. The
quadratic effect can be evaluated by contrasting the response values
among the three levels of the component (Hicks 1982; Montgomery
1984). Thus, to evaluate the linear and the quadratic effects of a
component on the system, we must assign three levels to the
component to represent the component from the nominal value, or
the noise factor associated with this component.

Since the actual performance of experiments may be expensive,
it is inefficient to set too many levels to represent the noise factors.

Assume that the nominal or the mean parameter of the component is

p and the standard deviation of the noise factor associated with this

component is o. For the noise factor with a symmetrical distribution,

we can assign the following three levels to the component:

the 1st level=p—-ho
the 2nd level=p (6.6)
the 3rd level=p+ ho

where h is a constant value. To perform experiments or simulations,

we assign each component with these three levels to an orthogonal
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array (either full factorial or partial factorial). These three levels
appear at the same number of times in the orthogonal array. Thus, it
is reasonably implied that under this discrete distribution, the
parameter of the component has an equal probavility 1/3 to take
each value of the above three levels.

To make the mean and the variance of this discrete distribution

equal to those of the true distribution of the noise factor, Taguchi
suggests using h=V(3/2) (Kacker 1985; Taguchi 1986; Taguchi and

Phadke 1984). D'Errico and Zaino (1988) propose other selections of

the noise levels such as h=V3 to give a better approximation to the
true distribution. Under the assumption that the component has a
probability 1/6 to take the value of the 1st ievel or the 3rd level, a
prebability 4/6 to take the value of the 2nd level, this discrete
distribution can match up to the 5th moment of the true distribution
(D'Errico and Zaino 1988). However, it is difficult to assign the three
levels to an orthogonal array to conduct experiments or simulations
to imply that the probabilities are 1/6, 4/6, 1/6 respectively rather
than 1/3, 1/3, 1/3 at the three levels. In other words, if these three
levels appear in the orthogonal array the same number of times, it

will be implied that the probability is 1/3 at each level and the



variance of this discrete distribution is 202 rather than o2, which is

not what we want. The example discussed later in this chapter has

revealed tﬁe fact that V3 is not a good value for h. If the three levels
appear in the orthogonal array at different number of times, the
number of experiments will be significantly increased. Our objective
in simulating noise factors is to make the distribution of Y as close as
possible to the true one or the moments of Y as close as possible to
those of the true distribution.

In Taguchi's parameter design, experiments are first performed
on low-priced éomponents with large variations to determine the
robust parameter level setting. If the parameter design can not meet
the quality requirement in terins of the variance of the response
variable, we must upgrade the tolerances or variation levels of the
components. We will derive the variation transmission equation
(VTE) which makes it possible to estimate the variance of Y if the
variances of the components are known. For simplicity, we consider a
two-component system. The response Y is given by

Y = f(A,B) (6.7)
where A is the parameter of component A, and B is the parameter of

component B.
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Model (6.7) may be known or unknown. For the unknown
model, we can perform experiments to collect data. Let p, or pg be
the nominal value of component A or component B respectively, and

6,2 or og2? denote the variance of A or B respectively. In the following

two sections, we will be discussing VTE.

§6.3. VTE For Linear-Effect Model

For the linrear model, the components have significant linear
effects on Y. Since the levels of noise factors associated with A and B
are fixed in terms of eq. (6.6), the model is a fixed model (Hicks
1982; Montgomery 1984). Assume the model is given as follows for

A at the ith level, B at the jth level and the kth repetition:

Yi = B+ oy + B + (0f);; + g5 (6.8)
where «; is the effect of A at the ith level and it may be represented
by kp(A;-p,)s ﬂj is the effect of B at the jth level and it may be

represented by kB(Bj-pB); (oc[.?»)ij is the interaction between the effect

of A at ihe ith level and the effect of B at the jth level, and it may be

represented by ya;B; (Montgomery 1984); g, is the experimental
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error assumed to be normally distributed with a mean zero and a

variance ©.%; k,, kg and y are constants; A; and B; are the values of A

at the ith level and B at the jth level respectively.

Let a and b be the numbers of the levels for the noise factors
associated with A and B. Let n be the number of repetitions for each
combination of the levels. The levels foi the noise factors associated
with A and B are given in terms of eq. (6.6). Hence a=b=3. The total
sum of squares for Y can be partitioned as the sums of the squares

for the effects of the components.
SSt =88, + SSg + 5S,,5 + SS, (6.9)

Since the model is a fixed model (Hicks 1982; Montgomery 1984), the

expected mean square (EMS) for each sum of squares can be found

by substituting A;and B; (i, j=1,2,3) into the following equations:

a 2
b “E[k A(A i “A)]

& 2.2
EMS,_ =o2+ —! T =cl+ bnk’ h'a?
b R
an.Zi[kB(Bj-uB)] 2 5
—_ J= = 2
EMS, = o2+ IS =02+ ankzh“o?
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a b 2
n B[vk \k5(A; ~k )B;-up)] )
_ i=l j= = 2 2
EMS . =c2+ TERTEE o+nykk h'o2 0%

axp

EMS, = 6,2
These EMS values can be estimated by MS values in the

ANOVA table. Since the three levels of the component are used to

simulate the noise factors associated with the component, then the
variance of Y can be estimated by MS; and also EMS;=0,2 As a

result, by taking the expected value of eq. (6.9), we have

(a-1)bnk, h202+(b l)ank h o2+(a- (b - Dk, thZ 2 52
EMS = abn- D B+ (610

Let p be the percent contribution ratio defined as follows:

(a- 1)bnk’,h’c>
PAT "(abn- DEMS;

(b - Dankyii’c%

PR= "(abn- 1)EMS

(a- 1)(b- Dnyk kb o 0%
P axs ™ (abn— 1)EMS

Pe= 652/ o-yz =1-pa-Pp-Paxs
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Referred to the expressions for the EMS values, we can observe that

Pa» Pp and py g can be estimated by the following equations:

_(a-1)XMS,-MS,)
Pa= SS.,

(b-1)(MS; ~MS,)
Pp= SS.

(a=1)(b~1)(MS ;- MS,)
AxB~ S5,

We can perform experiments and ANOVA on the responses for

a set of tolerances of the components and estimate the above

contribution ratios. Let the notations with a prime such as EMS;', 6,',
op' represent the existing or present values. We can estimate EMS;

for any oiher values of 6,2 and 652 by using the following VTE which
is derived from eq. (6.10):
2 2 2 2
. Ca Op OASB
EMST=EMSJpA{7]+ px{"z" +Pas| 2 2 | Pe (6.11
GO Op G ACB
EMS; can be considered as 0y2, because levels given by eq. (6.6)

are used to simulate the noise factors. For ithe system with three or
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more components, the VTE can be derived in the same way.

§6.4. VTE For Nonlinear-Effect Model

The problem arising in practice usually is not so simple as the
linear-effect model mentioned above. Instead, the nonlinear effects
of the factors are significant where the nonlinear model must be
used. Although we limit our discussion to the linear and quadratic
effects, the method can be applied to the model with the cubic or
higher order effects, as long as we set appropriate noise levels for
components and choose appropriate factorial coefficients.

First, we consider a two-component system (6.7) and then we
extend it to a n-component system. Assume the levels for simulation
of noises are given by eq. (6.6). Hence a=b=3. For A at the ith noise
level, B at the jth noise level and for the kth repetition, the response

for the quadratic model is given by

2 2
Yijk:m+kAlAi-t-kAin+kBlBj+kB Bj+ kmAiBj

q

+k _AB +k (6.12)
Xq 1 ] q

2 2.2
A
xl“iBj+kqquiBj+ €.

jk

where m and k,;, ** k., are constant values depending on the model.

The total sum of squares for Y can be decomposed into SS,, SSy and
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SS,,p that can be further decomposed as follows:

SSp = S8 +58 +SSp; +5Sp+58, +88),+5S4 +58,,+8S,  (6.13)

S$S,; is the sum of squares for the linear effect of A and it can

be computed by a contrast C,; =L ;Y. Here L, is the row vector of the

coefficients of the contrast for the linear effect of A and it can be

found in the first row of Table 6.1. Y is a vector of the response totals

Y ... for each level combination of A and B (similar notations will be

ije
used in the context and bold letters are vector quantities unless
otherwise specified). The sum of squares for this linear contrast is

given as follows (Appendix D):

2 2

3
(1Y) (B
, = =tF 6.14)

SS, = F
1 LAlLAx 6n

Using eq. (6.12) and eq. (6.6) as well as taking the expectation of eq.

(6.14), we can find (For mathematical details, see Appendix F)

EMSA1=FA102A+02€ (6.15)

, e
where FA1= 6nhlk, 1+2kAquA +k +2kqxluAuB+(klxq +2k i ) g+ 3
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Table 6.1. Coefficients for a 32 Factorial (Hicks 1982)

Level Combination * SS for
coefficients

Factors 11 12 13 21 22 23 31 32 33 LLT=nZZ.‘.cij2
v

A -1 -1 -1 0 0 0 +1 +1 +1 6n
A(1 +1 +1 +1 -2 -2 -2 +1 +1 +1 18n
By -1 0 +1 -1 0 +1 -1 0 +1 6n
Bq +1 2 +1 +1 2 +1 +1 -2 +1 18n
AxBj +1 0 -1 0 0 0 -1 0 +1 4n
Aleq -1 +2 -1 0 0 0 +1 -2 +1 12n
Aqul -1 0 +1 +2 0 -2 -1 0 +1 12n
Aquq +1 -2 +1 -2 +4 -2 +1 -2 +1 36n

( * use the same coefficient for each repetition of the same level
combination; Repetition Number=n for each level combination)

SSp, is the sum of squares for the linear effect of B and it can be
computed by a contrast Cp=Lp,Y. Similarly, the expected value of

MSp; can be given by

EMS  =F, 0%+ 0% 6.16)
1 |
) ) ZhZOiW
where Fy l=6nh kBl +2k, qu +k By +2klxqp.A;¢B +(kqxl+ ququ‘B) ny + 5 )

SSaq is the sum of squares for the quadratic effect of A and it

can be computed by a contrast C, =L, Y. Here L, is the row vector
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of the coefficients of the contrast for the quadratic effect of A and it
can be found in the second row of Table 6.1. The sum of squares for

this contrast is given by

2

3

[E'I(Y;;j.'*‘ Yy - 2Y2j.)]

sS, = = 6.17)
q 18n

Again, using eq. (6.12) and eq. (6.6) as well as taking the expectation

of eq. (6.17), we can find (Appendix F)
EMSAq=FchA4+c£2 (6.18)

”

2.2
4 ) 2h oy
where FAq=2nh kAq+ kqx]uB+kqxq Hp+ .

3
Similarly, the expected value of MSBq can be given by
EMSg, = Fg op4 + o 2 (6.19)
2

2 2
4 ) 2h o9,
where FBq=2nh kBq+ klxquA+kqxq HH + 3 .

SS,, is the sum of squares for the interaction between the
linear effect of A and the linear effect of B. It can be computed by a

contrast C;=L,,;Y. Here L,; is the row vector of the coefficients of the
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contrast for the interaction A;xB, and it can be found in the 5th row
of Table 6.1. The sum of squares for this linear contrast is given by

2

Y, . +Y,, -Y .. -Y,..

Sslxl=[ 11 33 13 31] (620)
4n

Using eq. (6.12) and eq. (6.6) as well as taking the expectation of eq.

(6.20), we can find (Appendix F)
EMS,,; =F, 652052+ 6,2 (6.21)
where Fi=4nh?[k; +2(k g +K it )4k, 1ol 1%,

SSixq is the sum of squares for the interaction between the
linear effect of A and the quadratic effect of B. It can be computed

by a contrast Cp, =L Y. Here L, is the row vector of the coefficients

of the contrast foi interaction AxB . Similarly, we have (Appendix F)
EMS,,  =F, 052054 + 6,2 (6.22)
where leq=(4nh6/3)(klxq+2kqxq na)2. And
EMS | =F,; 6,4 0p2 + o 2 (6.23)
where qul=(4nh6/3)(kqxl+2kqxq pp)?. And

EMS,, = F . 0p4 054 + 0,2 (6.24)
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where quq=(4nh3/9)(kqxq)2.

The corresponding ANOVA is given in Table 6.2. In practice, o,
or oy, which represents the noise level associated with A or B, is
much smaller tha;n Hp of pg. Thus, Fyy, = Fgo» Figpp = Fyq can be

considered as independent of o, and og. In other words, the changes

of 0, and oy do not affect these F-coefficients.

Table 6.2. ANOVA For Two-Component System

Source df SS MS EMS * Estimated p ®

Al 1 SSa, MSapl  oZ+Fa 0p° (SSAI-MSQ)/SST  pa;/oaZ
Aq 1 SSag MSpq  oe2+Faqoat (SSAq'MSo)/SST  pAgloa?

By 1 SSp; MSp o 2+Fpop? (SSpMS. /SST  pry /op2

By 1 SSgq MSpq  G¢™Fpq op? (SSpq"MSe)/SSt  pBg/oB*
ApB] 1SSy MSy o 2+FiopZop?  (SS|xI-MSe)/SST  pixifoaZop?
ApBg 1 SSixq MSixq  Oc>+FixqoaZop®  (SSixgMSe)/SST  pixg/oaZop?
AgxBj 1 SSqx1 MSgxi1 0'32+qu1 O'A4 0‘32 (Squ]-MSe)ISST pqx1/GA4632
Error 9(n-1) SS, MS, o2 1-Z above ratios pe

Total 9n-1  SST MST** o2 1.00

(*Fq F qxq 9re constants related to the specific model;

** Since the levels of the components are used to simulate the noise
factors, then MSy can be taken as the estimator of o2, while for a

general ANOVA, MSyhas no meaning)
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For the existing tolerances o,' and o', we can estimatec the
percent contribution ratios p,), " Pgxq and EMS;'. For other values of

o, and og, EMS; can be found by using the following VTE (6.25) that
is derived by taking the cxpectation of eq. (6.13) and substituting the

EMS values:

_ ' 4
EMST—EMST[mAlci‘+ mchA + mB102B+ mqu“B+ m1x1°2A°23

4

+ @), 0,0+ O

4 4
x1h 0%+ 0axgTa0h+ Pe] (6.25)

= 2 _ 4 14 .
where @, =p1/0,4', o quq_pqxq/(GA og'?). These w-values are given
in Table 6.2. The insignificant terms can be combined with the error.

Finally, it is observed that w, and w,, confain ng2+(2h?/3)o52 or
Hg2+opg? if h=V(3/2), and also wg,; and Wgg contain uA2+(2h2/3)cA2. As a
result, the changes of 6, and oy may affect W,;, ®5q, ©p) and @gg,

unless 6, or oy is much smaller than the mean value p, or pg.

If all the interactions are insignificant, the percent contribution
ratios for these interacticns are zeros. The VTE is reduced to the
model without interactions, which is used in Taguchi's tolerance
design (Taguchi 1986; Taguchi and Wu 1980).

The method can be applied to the system with more than two
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components, say, for a system with n components and with the
assumption that the interactions between three or more components
are insignificant, the VTE can be derived as follows:

As we consider the sum of squares for an effect of a component
or an interaction between two components, the responses under

different levels of other components not included in this effect or
interaction are considered as repetitions. For instance, for SS,.,g,, the

responses under the different levels of other components except A

and B are considered as repetitions and the sum of the responses is a

response total Yj;,. Thus, it can be shown that the VTE is given by

—EMS’ 4 4
EMST—EMS_l{o)'loft.. mqnczn+m‘lxi20f022+...co anon_lcn+pe] (6.26)

q n-1

where o, .. 6, are the tolerance levels of component 1 through

component n, and 4, ... are w-values which are defined in a

@q, xq,
similar way to the w-vaiues in eq. (6.25). These w-values can be
obtained from the ANOVA table which is based on a set of tolerances

c'y - o'y, Using eq. (6.26), we can estimate EMSy for any values of o,

- o,. If true ¢ '2 is available, substituting cy'2 into (6.26) for EMS'y,

y

we will have a better estimation of cy2 than EMS..
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§6.5. Optimization Model For Tolerance Design

The goal of tolerance design is to minimize the total cost which
consists of quality loss and the cost increase due to control of
tolerances for the components and the subsystems. For a system with

n components, the tolerance control cost for the ith component is a
function of its tolerance level or the standard deviation o;, and is

modeled by d;(c;)=c;/c,ai (Figure 6.1) where c; and a; are positive

constant values.

Tolerance
control cost

A

d (c)
1 1

| T~

Figure 6.1. Tolerance control cost vs tolerance o;
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If EMS; can be considered as o2, the following optimization

model can be obtained (see also figure 6.2):

n C.
Minimize {'IC =3 + Kozy}
cx’°2'”’°n i=1 Gil
(% = VTE(c},0%,.. 0) £ V
Subject to (6.27)
161,62,...(5“ >0

where V is the maximum value for cy2 based on the requirements of

the customer.

This is a nonlinear programming (NLP) problem. Many NLP
algorithms can be used to solve this problem (Bazaraa and Shetty
1979, Mangasarian 1969, Martos 1975). However, since the model
consists of posynomials, geometric programiiing (GP) can be applied
to this problem (Duffin et al 1967). In next section, an example is
given to numerically illustrate the tolerance design methodology for
components and subsystems. For this example, we formulate the

optimization model and use the GP method to solve the problem.
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Figure 6.2. Optimization for tolerance design
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§6.6. Example For Tolerance Design
Let us consider a hypothetical RLC circuit where the response

variable is the current given by

Y= 110 6.28)

2
2 -1
\/R +(120“L 120nc)

Suppose the target value of Y is 2.00. The quality loss function (QLF)

is given by

Loss = K(Y-2.00)?2 (6.29)
where K=250. Using this example, we will demonstrate the concept of
tolerance design for ine components based on QLF, VTE, DOE and GP
methcdslogy.

Assume that the cost functions for tolerance control are given

d (og) =0.80/0 ¢

d;(6,)=0.017/c, [ (6.3 0)

-6
dc(oc)=6.0x10 /s .
Suppose the nominal values of R, L and C after parameter
design are given by: R=40, L=0.17 and C=100x106. We investigate

the linear and the quadratic effects of the components as well as the

interactions. For 05'=2.666, 6, '=0.01133 and 0.'=6.67x10"5, we can use
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eq. (6.6) for the noise representations for each component with

h=V(3/2). Thus, the noise levels associated with R, L and C are given

in Table 6.3.

The three-way layout for the response variable Y for different

noise level combinations is given by Table 6.4 (Generally, this layout

and the ANOVA may be available from the parameter design step if

parameter design is done before the tolerance design).

Table 6.3. The noise levels associated with R, L and C

Component 1st level 2nd level 3rd level
R R,;=36.735 R,=40.000 R;=40.265
L L,=0.1561 L,=0.1700 L,=0.1839
C C,=91.83x10¢  C,=100x10-6 C3=108.17x10'6

Iable 6.4. The responses for different noise level combinations

2.32 2.25 2.19
2.20 2.14 2.09
2.09 2.04 1.99

2.16 2.09 2.04
2.06 2.00 1.96
1.97 1.92 1.88

2.01 1.95 1.90
1.93 1.88 1.83
1.86 1.81 1.77
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For these responses, we can perform ANOVA to find the
significant effects and the significant interactions (see Table 6.5). The

insignificant terms have been combined with the error. We illustrate

the computation of S8, as follows (see also Table 6.6):

The contrast of LixC, is Z_I?Jcinij,. The sum of squares for this
Oy

contrast is given by

2
3 Xc. Y.
205 (6.61-6.27-5.8+5.5)"

= = =0.00013
L xC n):i%czij 3[12+(_1)2+(_1)2+ 12]

SS

The VTE for any o, of, and o is given by

I 9
EMS = EMS,'{0.0385502 + 1.98x1 0% + 480302 + 1820507 +2.23x1 0o

+1.5200768 +8.66Ec? + 2.16x1 0's2 o + 3.5x1 0 %2 +0.0005} (6.3

Since Table 6.4 is obtained by simulating the noise factors associated
with the components, EMS;' can be considered as cy'z, and estimated

by MS;' in Table 6.5, which is 0.019464.

Our goal is to minimize the total cost consisting of tolerance
control and expected quality losses due to variations from target. The

optimization problem can be modeled by (6.32) as follows:



112

Table 6.5. ANOVA for the responses (subscript l represents the
linear effect; subscript q represents the quadratic effect)

Source SS df MS F, p ®

R, 0.13869 1 0.13869 18565 *** 0.2740 0.03855
R, 0.00007 1 0.00007 9.37 **  0,0001 1.98x10-6
L, 0.31205 1 0.31205 41770 ***  0.6166 4803.0
L, 0.00015 1 0.00015 20.1 #**  0.0003 18205.0
G 0.05014 1 0.05014 6712 ***  0.0991 2.23x10°
Cq 0.00015 1 0.00015 20.1 ***  0.0003 1.516x10!7
RxL;, 0.00403 1 0.00403 539 **x  0.0079 8.660
RxC, 0.00053 1 0.00053 70.9 ***  0.0010 3.16x106
LxC, 0.00013 1 0.00013 17.4 ***  0.0002 3.50x1010
Errors .000127 17 .00000747 0.0005 0.0005
Total 0.506067 26 0.019464 1.0000

**% Sjonificant at the level 0.01.

Table 6.6. Illustration of the computation of SSpci

Levels 11 12 13 21 22 23 31 32 33 LLT=nzz;;2

c;i* 1 0 -1 0 0 0 -1 0 1 4n

Y. ** 6.61 6.43 6.27 6.19 6.01 5.88 5.88 5.645.50
b

* ¢;jis from Table 1
* Yy ds the sum of the responses for the three levels of R, namely,
the three levels of R can be considered as repetitions, then n=3.
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Minimize {'IC= d o )+d (o) +d (o) + K*VTE(G%,GZL, 0'2()}

r'%1%c

with subject to o% = VTE(c%,0},06%) <V and oy,0,,6,>0 (6.32

where V is the maximum allowable value for cy2, which is 0.00100.

Using the geometric programming and the computer program

given in Kuester and Mize (1973), we obtain the solutions as follows:
or*=0.459, o *=0.00255, o©-*=2.325x10-6

For this set of tolerances, the estimated value of EMS; given by VTE

is 0.00100.

It should be observed that if the tolerance control cost for each
component is not given by a function like (6.30), but by several
discrete values associated with different tolerance levels or gradés,
we can minimize the total cost by balancing the expected quality loss
and the cost due to the tolerance control.

Taking the firsi order approximation for the Taylor's series of

eq. (6.28) and in terms of eq. (6.3), the variance of Y is given by
0y2= 7.10x104 og2 + 88.90;2 + 4.40x107oc2 (6.33)

also, if we ignore the quadratic terms and the interactions in the VTE

(6.31), we have
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c2= 7.50x10* 052 + 93.50, 2 + 4.34x1070 2 (6.34)

The values of the respective coefficients in eq. (6.33) and eq. (6.34)
are close to each other.
To find a realistic value of h to represent the effect of the noise

factors, we performed computer simulation for different h values to

find the true values of py and c,2. The results indicate that for

h=+(3/2), MSq is very close to the ¢ ,2 given by the Monte Carlo

y

simulation (see Figure 6.3) and h has very small effects on the mean

of Y. As a result, h=V(3/2) is suggested if the noise factors in the

outer array are represented by three levels.

It is interesting to observe that the MS; for h=V3 is about twice

as large as the o 2 given by Monte Carlo simulation. As discussed

y
before, h=v3 gives a variance of the noise factor two times the true
variance. In this example, the linear effects dominate the variable
part of the response, or the contribution ratios of the linear effects in
Table 6.5 are much larger than the other contribution ratios. Thus,

twice the variances of the components leads to twice the variance of

Y.
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0.0030
—— MS fortherespsctive h value
T

° Variance given by Monte Carlo simulation
2 0.0020
8
@
>
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=
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h >

Figure 6.3. The comparison of 6,2 and MS for various h values (The

result of the Monte Carlc simulation is based on 2000
times of simulation and the assumption that all noise
factors are normally distributed).



CHAPTER 7

TOLERANCE DESIGN TO BALANCE QUALITY AND COST

§7.1. Optimization Model For Tolerances Design

Tolerance design is performed to balance gquality loss due to
variations from the target and the cost due to control of tolerances
(precision or allowances). In last chapter, we present the approaches
to tolerance design for components and subsystems. We also develop
the variation transmission equation (VTE) which transfers variations
in the parameters of components to the variations in the system
performance. Our goal is to balance the quality loss due to variations
of the components and the cost for controlling tolerances.

In this chapter, we present an optimization model and the
tolerance design for the quality characteristic of a system as well as
the lower-level characteristic, even if the higher-level characteristic
has a nonlinear relationship with the lower-level characteristic. We
will be discussing tolerance design for the deterioration characteristic
over time. In the context, we give scientific illustrations as the proofs
for the optimal property of these approaches.

The objective of tolerance design is to minimize the total cost

which consists of quality loss due to variations (QLV) from the target

116
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and the cost increase (CI) due to control of tolerances. That is,

Minimize{ QLV + CI} (7.1)

where A is the tolerance level.

Traditionally, QLV can be considered as a quadratic function of

A or Kqu, which can be derived from a quadratic QLF with the

assumption that the process mean has been adjusted to the target. CI
can be considered as a negative power function of A or Ko/A? (a>0,
Krishnamoorthi 1989). K, and K are constant values. The objective of

tolerance design is to find an optimal solution A* (see Figure 7.1).

Loss or
Cost

QLV+CI

Figure 7.1. Balance of quality loss due to variations and
cost increase due to control of tolerances.
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If both QLV function and CI function are known, we¢ can find
the optimal solution A* by taking the derivative of QLV+CI with

respect to A and setting it to zero. As a result, we have

1
K a+2
2K,
If a=2, then A*:(KC/Kq)1/4, which is the point where QLV:CI=V(KCKq).
For many systems, we know the cost related to scrap or rework
of a nonconforming product, rather than a cost function associated
with the tolerance levels. In the following sections, we will be

discussing tolerance design based on the quality loss function and the

cost for scrap or rework of a nonconforming unit.

§7.2. Manufacturer's Tolerances For Shipping

The tclerance A fér a characteristic y of a product for shipping
can be designed based on the quality loss function and the cost for
scrap (or rework, degradation) of a nonconforming product. Assume
that the quadratic loss function (2.4) is appropriate where K can be

determined by AOI(AO)2 (see Section 2.3), and A is the cost increase

for repairing or replacing a defective item before shipping. The
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manufacturer's tolerance A can be given by finding an economic

equilibrium point or letting A=K(A)2. As a result, we have
A =V(A/K) = \J(A/AO)AO (7.2)
A is smaller than A,. Hence, A is smaller than A.

To see why A is a best tolerance for y, look at Figure 7.2. Since
a product with a y outside manufacturer's tolerance is not shipped,
the value of QLV is zero for y outside the tolerance. However, a
defective item results in a loss of A for the manufacturer, as
indicated in Figure 7.2 (b). By adding these two parts, we obtain the
adjusted loss function or QLV+CI which is the solid curve in Figure

7.2 (c), denoted by LO(y,y).

If we have a tolerance A+ which is larger than A, as indicated in

Figure 7.3, we can obtain the adjusted loss function as the solid curve
in Figure 7.3 (c), denoted by L*(y,y,). Obviously, L*(y,y) 2L°(y,y0)20

for all y. Thus, we have E[L*(Y,yp)I>E[LO(Y,yo)]. As a result, A is a

better tolerance than A®.
If we have a tolerance A- which is smaller than A, as indicated

in Figure 7.4, similarly, the adjusted loss function is given by the

solid curve in Figure 7.4 (c), denoted by L(y,yy). Obviously, L (y,yg) 2
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LOy,yo) 20. Consequently E[L-(Y,yy)I>E[LO(Y,y()]. Thus, A is a better
tolerance than A-. In conclusion, A is the best tolerance for Y, because

for this tolerance, the expected quality loss achieves a minimum with

the tolerancz lIevel as a variable.

Figure 7.2. Best manufacturer’s tolerance A.
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QLv Cl QLV+Cl  L(y,y 0)
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Yo Y&
>
{a) (b) (c)
Figure 7.3. Tolerance A* is larger than A.
 § ' '}
QLv Cl QLV+Cl L(y,y o)
+ = -
Ltyy,)
Al Al—0

_>
0 R F
y
(a) (b) (c)

Figure 7.4. Tolerance A" is smaller than A.
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§7.3. Tolerance Design For Lower-level Characteristic

A product may use different quality characteristics for various
manufacturing processes. For instance, a stamped component made
from steel plates uses the dimension as a characteristic, while plates
use hardness or thickness as a characteristic. The characteristic of a
product before processing is called lower-level »characteristic and the
characteristic after processing is called higher-level characteristic
which is affected by the lower-level characteristic (Taguchi 1986).

The tolerance for a lower-level characteristic is specified at the
economic equilibrium point where the quality loss for a lower-level
characteristic outside its tolerance is equal to the quality loss based
on the quality loss function for the higher-level characteristic. In
other words, there is no economic difference no matter whether or
not we replace the product with a lower-level characteristic outside
the tolerance. Suppose that

y is a higher-level characteristic and y, is the target value;

x is a lower-level characteristic and x; is the target value;

A, or A, and A, are the tolerances for x.

A, is the cost for scrap (rework or degradation) of a unit if x is

outside the tolerances before processing.
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A manufacturing process (Figure 7.5) transfers the lower-level
characteristic x to the higher-level characteristic y by a function
y=P(x). In practice, this is a one-to-one mapping. Hence, y=P(x) is
strictly increasing or strictly decreasing. Thus, x=P-l(y), the inverse
function of P(x), is a monotone increasing or decreasing function.

If a quality loss function for x is known, the tolerance of x can
be obtained by finding the economic equilibrium point in the same

way as in last section. However, if we do not have a loss function for
x, the tolerance of x can be developed based on L(y,y,), the loss

-~

function of y, which is assumed to be a quadratic function and given

by eq. (2.4).

A manufacturing process

\ Higher-level

characteristic

Lower-level
characteristic

Figure 7.5. y=P(x) transfers tke lower-level characteristic x to the
higher-level characteristic Y.
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Due to the nonlinear effect of P(x), we may have to develop the

asymmetrical tolerance limits for x. For the lower-side tolerance of x,
we can find an economic equilibrium point by A =K[P(xy-&,1)-yol?. If
y is an increasing function of x, then P(xy-A,;)<y, and we have
yO-P(xO-Ax1)=W/—K—)- By simplifying, we can find the lower-side
tolerance limit for x as follows:
Ay =X - P‘l[yo-\/m (7.3)
For the higher-side tolerance of x, we can find an economic
equilibrium point by Ax=K[P(x0+Ax2)-y0]2. Similarly, we can obtain
the higher-side tolerance of x as follows:
A,y = Py V(ALK - xq (7.4)
To see why A,, and A, are the best tolerances for x, look at
Figure 7.5 and consider A,, first. Function y=P(x) transfers x value to
y vailue and the quality loss is evaluated by L(y,y0)=K(y-y0)2 on the
deviation of y from the target value. Since a product with a x value
outside xy+A,, is scrapped or degraded with a loss of A,, the adjusted

quality loss function is given by the solid curve in Figure 7.6,

denoted by LY.
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If a tolerance Ax2 is smaller than A,,, the corresponding

adjusted loss function is denoted by L~ (see Figure 7.6). Obviously,
L->L0. Thus, A,, is a better tolerance than A’xz. If a tolerance A*xp is
larger than A_,, the corresponding adjusted loss function is denoted
by L* (Figure 7.6). It is obviously that L¥>L0. Thus, A , is a better
tolerance than A+,,. In conclusion, A,, is a best higher-side tolerance

for x. Based on a similar discussion, we can conclude that A, is a best

lower-side tolerance for x.

Quality
Loss

y -

Figure 7.6. The tolerances for the lower-level characteristic x.
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Here we take a cubic function as an example. Suppose that we

have y=P(x)=y,+b(x-xy)® where b is a constant. Then

x=Pl(y) = 34[(Y'Y0)/b]+xo

Hence,

x1

Xo - P1lyo-V(A,/K)]

V(A /K)/ 3Vb
Ayy = Plyg+V(A/K)] - xg
= 6V(A,/K)/ 3b

For this example, A,,;=A,,. If K is given by A,/A,2, then we have

Ay 1=0,,=5V(A/A}) 3V(A,/b).
Especially for a linear system or y= y0+b(x-x0)3, we have
A=Ay, = \/(Ax/AO)(AO/b) (7.5)

Furthermore, if x=g(z) where z is another lower-level characteristic,

the tolerance for z can be determined in a similar way.

§7.4. Tolerance Design For Deterioration Characteristic
The effect of deterioration can cause the quality characteristic

to deviate from target as time increases. For instance, the resistance
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of a resistor will increase due to aging of the material. In general, the
deterioration linearly depends on time. On an average, for a system

that has lasted for t units of time, its quality characteristic is
Y (t)=Y(0)+Bt where B is the deterioration rate and Y(0) is the value of

Y at t=0 or at the time of shipping.

Assume that a nonconforming unit results in a loss of Ag due to

B outside tolerances (to be scrapped, degraded or reworked). Since
the quality loss is a quadratic function of the deviation from the

target, then the quality loss during one unit of time at time t is given
by Ll[Y(t),y0]=k[Y(t)-y0]2, where k is a constant value which is equal
to the quality loss due to one unit of deviation for one unit of time.

Hence, the expected value is given by
E{L,[Y(1),y5l}= E{ k[Y(0)+Bt-y,)?}
=k[ 0,2 + 82 - 28pt + (Bt)? ] (7.6a)
where 8=y,-u, or the difference between the target and the mean of
Y at the time of shipping. Taking the derivative of E{L,[Y(t),yo]} with
respect to & and setting it to zero, we can obtain 3*=BT/2. Since the

second derivative of E{L,[Y(t),y,]} is 2k (>0), then &* gives a minimal
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value of E{L,[Y(t),yy]}. The target value of B is zero. Thus, the ideal
value of & is zero. If & is designed to be zero, we havz

E{L,[Y(t),yol} = ko2 + k(pt)? (7.6)
The 1st term is independent of t and is caused by manufacturing
variations. The 2nd term is caused by the deterioration over time.
(1) Characteristic Y Can Not Be Reset BY Customers
Exampies of this are the resistance of a resistor and the output
voltage of a power circuit in a TV set. In this case, once the product is
shipped, Y can not be reset. If T is the design life time, then the

quality loss for the whole life time is given by
T 2
QLY = [K[c% + (B0 |dt
0

-Ko? + XD’ (7.7

where K=kT is equal to the quality loss due to one unit of deviation

for T units of time.

We are discussing the quality loss due to deviation or K(BT)?%/3.
By finding the economic equilibrium point or AB=K(B*T)2/3, we can

obtain the manufacturer's tolerance for P before shipping:
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3A 3A, A
_ _1 B _ B ~o
AB—IB*I-T‘/ X _\/Ao 7 (7.8)

where K=A(/A,2 and A, is the quality loss if Y is outside customer's

Ve aae’

tolerance yytA,. Any product with a Bl greater than Ag needs

reworking, degrading or scrapping.
(2) Characteristic Y Can Be Reset By Customers

An example of this is the time of a watch or a clock. In this

case, a customer can adjust Y to the target at a certain cost ag, if Y is

outside customer's tolerance yy*A,. The quality loss due to variations

from the target for one unit of time is given by
1 2
QLY,= K[ + (B1) Jat
0

2
=ko? + -1;—[3 (7.92)

where k=ay/A,2 (see Section 2.3). The quality loss due to variations
for life time T is given by

QLV=T-QLV,

=Ko, 2 + KB?/3 (7.9)
where K=kT is equal to the quality loss due to a unit of deviation for

T units of :iine.
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We are discussing the quality loss due to deviation or KB2%/3. By
finding the economic equilibrium point or AB=K(B*)2/3, we can obtain

the manufacturer's tolerance for B before shipping:

3A‘3 3A‘3
AB=IB*I= T = A, A, (7.10)

where K is given by Ao/(AO)2 and Ay=a,T. Any product with a IBi

greater than Ag needs reworking, degrading or scrapping.
To see why the equilibrium point gives a good tolerance for

deterioration rate B, look at Figure 7.7. In Figure 7.7 (a), the tolerance
is Ag. Any product with a IRl greater than Ag will be adjusted,
degraded or scrapped at a cost of Ag. Thus, the quality loss due to
deterioration is given by L(B) as the solid curve in Figure 7.7 (a). If a
tolerance for B is larger than Ag such as Ag, in Figure 7.7 (b), the
quality loss due to deterioration is given by L*(B). Obviously, L(B) is

smaller than L*(B). Hence, AB is a better tolerance than Agy- If a

tolerance for P is smaller than Ag such as Ag. in Figure 7.7 (c), the

quality loss due to deterioration is given by L-(B). It is obvious that
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L(B) is smaller than L°(B). Hence, Ag is a better tolerance than Ag_.. In

conclusion, A‘3 is the best tolerance of the deterioration characteristic.

)
K@ T)/3 K@ )3
Cost ?Loss : Cost ?Loss + .
L(B)

L(B)

(c)

Figure 7.7. An explanation of the best tolerance Ag for B.



CHAPTER 8

SUMMARY AND RECOMMENDATION
FOR FURTHER RESEARCH

§8.1. Summary And Contribution Of This Research

Traditional quality control is concerned with the downstream
side of a process. The goal is to inspect bad quality out and eliminate
or remove the assignable sources of variations. Quality engineers and
the management today have realized that a better way for quality
improvement is to build good quality into products and processes by
design engineering. The objective of the robust design proposed by
Taguchi is to design a system whose performance is less sensitive to
manufacturing and environmental variations, deterioration over time
and changes in use conditions. As a result, the effects of these noise
factors can be reduced by finding the better values for the design
factors. This research is regarding the improvement and extension in
some aspects of Taguchi's quality engineering methodology, with an
emphasis on the optimization of dynamic systems and tolerance
design.

Quality loss due to variations from the target value can be

evaluated by a loss function. Various quality loss functions (QLF) are

132
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presented in Chapter 2, including the symmetric QLF and the
asymmetric QLF. Based on the underlying causes of variations and
the desire to reduce the error of estimation, the quadratic QLF is a
good approximation as a quality measure. QLF is nothing but a means
to transfer the variation to a loss value in dollars so as to quantify
the quality loss. Many systems have several quality characteristics.
To evaluate quality for such systems, we develop multivariate loss
functions which may be used as a measure for the optimization of
the multivariate systems.

The goal of robust design for dynamic systems is to minimize
deviations of the real system from the ideal model. The optimization
can be done by finding the best values for Z and R simultaneously to
minimize the expected quality loss. This is possible but sometimes
difficult or even impossible to be implemented, especially for the
cases where an analytical model is unknown. The optimization can be
simplified by decomposing the selection of Z and the adjustment of R
into a two-step procedure. In the first step, if we select Z to minimize
the expected quality loss, we may find a solution of Z by reducing the
first part in eq. (3.4) that is supposed to be eliminated by adjusting R

in the second step. The variation part or the second part in eq. (3.4)
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could be used as an optimization criterion for the seleciion of Z.
However, the variation part may be inflated as we arc adjusting R to
set the first part to zero in the second step, because the adjustment
of R may have effects on the variation part. The conflict of this can
be eliminated by using an efficient SN ratio as a criterion for the
selection of Z.

The validity and limitations of the SN ratio have been examined
for various models. Necessary modifications of the SN ratio are
suggested for the specific models. A generic model and a systematic
approach to dealing with dynamic systems are provided. For discrete
dynamic characteristics, we present the development of the SN ratio.
As long as a SN ratio has been developed for discrete dynamic
characteristics, the optimization can be performed in a procedure
similar to the continuous dynamic characteristics.

The objective of tolerance design is to balance quality loss due
to variations and cost due to control of variations by specifying best
tolerance levels for products and components. If a system consists of
many components, variations in the parameters of the components
will be transferred to the variations of the system performances by a

transfer function. As a result, a quality loss is incurred. To reduce
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this quality loss, we can control the tolerances of the components.
However, that results in an increase in cost. To balance this, an
optimization model is proposed based on the variation transmission
equation that is developed in Chapter 6, regardless of the significance
of the interactions between components. In Chapter 7, we present
the approaches to tolerance design for deterioration characteristics as
well as lower-level quality characteristics, regardless of a nonlinear
relationship between the higher-level characteristic and the lower-
level characteristic. The illustrations given in Chapter 7 can convince

us of the efficiency of the tolerance design.

- §8.2. Recommendation For Further Research

In practice, many systems have several quality characteristics
rather than a single characteristic. Under certain circumstances, the
quality of such systems .may be evaluated by measuring these
characteristics separately. However, if the optimization of these
characteristics conflicts with each other or if they are not
independent of each other, the multiple objective decision making
(Bell et al 1977, Hwang and Yoon 1981) may be used to determine

the best levels setting of the control factors. We have proposed the
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multivariate loss function (MLF) as a quality measure that combines
the multiple attributes into a single criterion. If a suitable MLF can
be developed, it is possible to use the MLF as a substitute for the
optimization criteria. Unfortunately, a systematic approach is not
available. Anyway, it seems to be valuable to investigate the
application of the multiple decision making in the optimization of
such systems. That may make a contribution to the extension of
robust design for more realistic and sophisticated systems.

Although We have investigated the optimization criteria for
dynamic systems, the optimization criterion for static systems is also
very important and worth further research. If a criterion is not
efficient, the optimization model as well as the method is
meaningless.

The optimizaticn model (6.27) for tolerance design can be
solved by either geometric programming or nonlinear programming.
However, due to the structure of the model, it is possible to develop a
simpler algorithm to solve the model. Alsc, this is a worthwhile

further research.
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APPENDIX A

If a random variable Y has a normal distribution, then we have

2
_(y'“Y)
yo y 202y
[yf(ydy= | e d
ysy)(; d ~ V2n o, y
2 2
_(*y) (%)
Yo y-u 26% Yo 262
y n o
= J(____)_e y dy+ j y e y dy
0 21t0'y B chy
2
(Yo*y)
02y 2031 )
=T Vamo, +IF(y ) =-0%fly 9 +BF(y) (A D)

Thus, the expected quality loss given by eq. (2.13) for the linear loss

function can be simplified as follows:

HUY,y)]=-(K;+K,) [Jyfy)dy+Kyn,
' Y<Y,

== K+ K)[- 2 f(yy) + 1, F(y ]+ Ky
=(K, +K,) o’ f(y ) (A.2)

where f(y) is the probability density function of Y and F(y) is the

cumulative distribution function of Y.
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The objective of this appendix is to verify the conclusion that

positive skewness vy, and small kurtosis y, can reduce the expected

quality loss for "the larger the better" QLF, if Ry and o, remain

unchanged. For simplicity, a few discrete examples are used as the

numerical illustration of this.

B.1. Discrete Case One

Random variables Y, Y, have the probability density functions

f,(y,) and f,(y,) respectively (Figure B.1). They have the same

values of the mean and the variance. However, Y, has a v,=0.579 but

Y, has a v,=-0.579. According to eq. (2.2), the expected quality loss

for Y, is given by

E[HYI)]=K(07'25 + 08'3 + (;'22)=0.01736K

The expected quality loss for Y, is given by

o 02 03 05
i(Y.) =K( + + )=0.01745K
BLY,)] 6.42 7.4° 8.4°

Thus, E[L(Y,)]<E[L(Y,)]. The conclusion for this example is correct.
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B.2. Discrete Case Two
Similarly, if two random variables Y,, Y, have the distributions

with the same values of the mean and the variance as indicated in
Figure B.2 , the expected values of the quality loss for them in terms

of eq. (2.2) are given respectively as follows:

E[qu)]=K(O°f + 04,02, 0'21)=0.0691K
3 5

0.1 02 . 04 0.3
LY. =x( + + + )=0.074K
BLY)] 222 322 422 5.°

Thus, E[L(Y,)I<E[L(Y,)]. The conclusion for this example is correct.

B.3. Discrete Case Three

If two random variables Y,;, Y, have the distributions with ihe

same values of the mean and the variance as indicated in Figure B.3,
the expected values of quality loss for them are given respectively as

follows:

0.2 .03 02,02, 0.1
L(Y) =K( + + + + ):0.1066K
E{ 1] 22 32 42 52 62

E{I(YZ)]=1<(°-12+ 02, 02, 93, 0'22)=0.1254K
14° 2.4° 3.4 44" 54

Thus, E[L(Y,)I<E[L(Y,)]. The conclusion for this example is correct.
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B.4. Discrete Case Four

In this example, we want to verify that the smaller y, can
reduce the expected quality loss. Assume that two random variables
Y, and Y, have the discrete distribution functions as in Figure B.4 (a)
and Figure B.4 (b) respectively. They have the same values of the

mean and the variance. However, Y, has a y,=1.167, but Y, has a

Y,=-1.5. The expected values of the quality loss for them are given as

follows:

E[L(Y )]= K(Olz + 076, 012) 0.0158055K
7 8 9

2

E[L(Y,)]= K((1/3) L 0/3))=0.0158024K
8.6

Thus, E[L(Y,)]>E[L(Y,)]. The conclusion for this example is correct or

the smaller y, has a smaller expected quality loss if other parameters

of the distribution remain unchanged.
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LY )b . Mean=77 fly o) |- Mean = 7.7
. variance = 0.61 _ variance = 0.61
0.6 0.6
05 [~ 05
0.4 [~ 0.4 [
0.3 [~ 03 ™
0.2 | 0.2 [
0.1 [ o1 [
7 8 9 6.4 7.4 8.4
> >
Y, Y,
(a) (b)

Figure B.1. Distributions of discrete random variables Y; and Y.
(a) Positive skewness, v, = 0.579.
(b) Negative skewness, v, = -0.579.

f1 (y 1) — Mean = 4.1 fa(y 2) — Mean = 4.1
variance = 0.89 | variance = 0.89
0.6 [~ 0.6 |~
0.5 | 0.5 ™
0.4 | I 0.4 [
0.3 [~ 03 [
0.2 [~ 0.2 I
o1 [ | o1 [T |
3 4 5 6 22 32 4.2 5.2
> >
y1 y2
(a) (D)

Figure B.2. Distiibutions of discrete random variables Y, and Y.
(a) Positive skewness, v; = 0.5145.
(b) Negative skewness, v; = -0.5145.
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f1(y1) — Mean = 3.7 f2(y2) - Mean = 3.7
| variance = 1.61 - variance = 1.61
0.6 0.6
0.5 I~ 0.5
0.4 I 0.4 ™
0.3 [ 0.3 |
o2 = | || ] 0.2 [ L
o.1 L1 1] 0.1 L P01
23 4 5 6 14 24 34 44 54
Y, > Y, —>

(a) (b)

Figure B.3. Distributions of discrete random variables Y jandy,.
(a) Positive skewness, Y =0282.
(b) Negative skewness, 1 =-0282. ‘

f Mean = 8.0 f
1(y 1) variance = 0.24 2(y 2) Mean = 8.0
- . variance = 0.24
0.76
v.6 0.6 -
0.5 P~ 0.5 M~ 1/3
0.4 | 0.4 I 1/3 1/3
0.3 [ 0.3 I~
0.2 0.12 0.12 0.2 1™
0.1 | | 0.1
7 8 9 74 8 86
y1 ’ y2 —
(a) (b)

Figure B4. Distributions of discrete random variables Y, and Y,
(a) Large kurtosis, y, = 1.167.
(b) Small kurtosis, y, = -1.500.
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APPENDIX C

A
We want to show that the expected value of B2 is not equal to

B2. Since

Z Z Y. (M - M)
i=1 _]—1

Zr(M ~M)’

A
p=
by substituting eq. (4.3) into the above equation, we have

62 l_ElEi(m+B(M M)+eu)(M M)

.zlri(Mi —M)
1=

[2 (M, M)Ze ]‘! Z(M M)ze
=[32_*- i=l j=1 . +2B1—l =l . (C.l)

Eron-w] [Eren-w]

i=1

Taking the expected value of eq. (C.1), we have

gp’]- B2+ — o _Bz+ o 1 (C2)
Z r(M. - M)
i=1

Since MSB=rﬁ2, we have

E[MSg] =182 + 6,2 (C.3)
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r

k Ui
1 21611 k

Let §,,= —/—— = J_ . Thus, E[(e,,)z] ot/ Xr. and E[ei.€ ] o2/ Z T
Z T, i=l ) i=1

i=1 !

Thus, the expected value of the total sum of squares is given by

K -
B[SS,]=E|3 % (Yij-Y,,)z]

=E|T (|3(M -M)+¢g,-E, )}

1—1 j=l

— B3 r (M.~ ) +o(zr-1] (C.4)

i=1 i=1

and

E[SS.] = E[SS 1- E[SS] (Zr —2) (C.5)

or E[MS,l=c2. It should be noted that the degree of freedom for SS, is

Zr -2 and r-)_‘,r(M M)
i=1 i=l
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APPENDIX D

Assume that a model is given by

Y= t+ g (i=1,2, - m;j=1,2, - m) (D.1)

where p; is the mean of Yij (for any j) and &j; is an i. i. d. random error
that is assumed to have a normal distribution with a mean zero and a
variance ©, 2. We want to show that the sum of squares for a linear

contrast L is given by the following equation:

SS; = L2%/(nD) (D.2)

m

L= X CY, is a Linear contrast. C is the coefficient of this linear
i=1

m n m
contrast where _ZICi=O, Yi.=.ZlYij and D=_E1 C2l
i= = i=

Obviously, L has a normal distribution with a mean of a(C,u,+ -

+C ) and a variance of nDo 2. If (Cip,+ ++ +C_u_)=0 or this linear
€ 1%1 m®m

mp'm
contrast is insignificant, then L has a mean of zero. Consequently,
L2/(nDo,2)=SS, /0, 2=MS /o 2 has a Chi-square distribution with one

degree of freedom. While, since MS./c 2 has a Chi-square distribution

with a degree of freedom f, (f, is the degree of freedom for SS,), then
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Fy=MS;/MS, is a F statistic that has a distribution of F(1, f,).

If (Cypu,+ - +C_pn_)#0 or L is a significant linear contrast, the

expected value of MS; can be found by

2
nZCu+Z ZCe
i7ij
S5
R
2
(nECp)
=—HTD_+°% ®.3)

In contrast, E[MS,]=c.2. As a result, Fy= MS, /MS_ tends to be greater
than one. Intuitively it can be observed that the more significant L is

or the larger (Cyp,+ - +C_u 1 is, the greater F, tends to be. Hence, F,

can be used to do F test for this linear contrast L. and the sum of

squares for L is given by eq. (D.2).
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APPENDIX E

For very small x, 1/(1+x)=1-x. Since a manufacturing deviation

is much smaller than the nominal value of a resistor such as ¢;/R,,

e,/R, or e,/R, is much smaller than one, the actual response variable

for model (4.14) can be simplified. By considering the noise factors
associated with the resistors, we have the actual response value of

the output voltage that is given as follows:

R, +e

R 2 2
V,=|1+ ]V.
° [ Ra+ea][(R1+R2)+(el+°2)_, i

_ R(, ©a R, ]r 23 e, +e,
~[1+Ra\1—R )][R1+R |1+R 1——R ¥R, \A (E.1)

where R,, R, or R, is the nominal value of the resistor and e,, e, or e,

is the respective deviation from the nominal value.
Eq. (E.1) can be expanded and simplified as a linear dynamic
model. Since the product term of two or more ratios of the deviation

to the nominal value [such as (e;/R;)(e,/R,)] is much smaller than

the other terms, these product terms can be ignored. Hence, eq. (E.1)

can be simplified as follows:
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R R e e, +e Re
Vo:(“TzR“YR R )Vi“* (R R T(” 151'1?2"" R1+R2)‘ 2 |V
aAR;+R, Y aA®, ®+R, ) R
=BVi+ e(Vi,el,ez,ea) (E.2)

where € is not independent of the signal factor V,. In addition, the

variance of € is given by

a a

2 o2 2 42 262 R%G2
2 6o + c c
Varle]= (—Rz—) (1 + —R—) ezz b —1 622 - “2 + 4e“

x(u%,‘+c%,i) (E.3)
1
where py; and oy;2 are the mean value and the variance of V.

Since R/R, is much larger than one, the SN ratio is given by

_ B
M= Vare
2 —]1
0%1 Rl 0";2 e, 2 -
= 5+ — 5+ — (uv_+02v.) (E.4)
(R;+R)" R,(R,+R) R, i i

which is independent of adjustable factor R. Adjusting R has no effect
on 1. In addition, for any levels setting of R;, R, and R,, (1y;2+0v;2) is
a constant value. It has no effect on the selection of the levels of R,

R, as well as R,.



149

APPENDIX F

To derive eq. (6.15), we substitute eq. (6.12) into eq. (6.14) and

thus, we have

3 X i
SSA1=|:j§1(Y3j. —Ylj’)] /6n =[3n(kAl(A3—Al)+ kAq(A3_A1))+

3

3
2 2 2 2
n(A3 _Al)jﬁ(klxlBj +k lquj) + n(A3 - Al)jg(kqxlBj +k qquj)
2
3 n
+ j§1 k§1(83jk_81jk):| /6n (F.1)

It is observed by considering eq. (6.6) that

(A,-A,=2ho,

2 2
JA3—A;=4hp,0,

3 %, 2 2 2 9
kj§18j=3pB and j.=_1.Bj=3uB+ 2h"c%

Substituting these equations into eq. (F.1) and taking the expectation,

we have
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2 .
E[SS A1]= 6nh [k A + Zkqu.A +k Mgt 2k axiH ak p HK 1xq+ 2k gxqhta)

2
, ) . |3 . ’
x{np+—3 o4 +E El k§=:1(e3jk—e1jk) /6n

=F, &+ ¢ (F.2)

Similarly, it can be shown that eq. (6.16) is true.
To derive eq. (6.18), we substitute eq. (6.12) into eq. (6.17) and

thus, we have

2
3
SSAq =L)=:1 (Y3j.+ Ylj. —2Y2j.)] /18n
2 2 2
=[3n(kAl(A3 +A =28 +k, (Aj+ A, —2A2))
+(AA2A§kBkB2 A2+ AT oA
MAz+ A, = 2)j=1( wBjtK By +n(A;+ A -2A0)
3 2

3 n
2
X2 (kg Byt kguB) + T X @t ey - 2e2jk)] /18n (F.3)

It is observed by considering eq. (6.6) that
[A3+A1—2A2=0

2,2 2.2
1A3+Al—2A2-2h G,
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As a result, by taking the expected value of eq. (F.3), we have

2
4 2 ZhZG% 4
E{SSAq]= 2nh kAq+kqx1”B+kqxq et —3 )| %a
3 g 2
+ [})31 k§1(£3jk+ € Zezjk)) /18 |= FAqd‘A + 62 (F.4)

Similarly, it can be shown that eq. (6.19) is true.

To derive eq. (6.21), we substitute eq. (6.12) into eq. (6.20) and

thus, we have

2
85 =[Yu1. * Va3 = Yy5. ~ Y5, ] /4m

33
. 2 2,2
=["(A3 - Al)(k w(By =B +k lxq(B 3 'Bﬁ) + nkqxl(AS ~A)B,-B)

2
2 2.2 n
+ nkqxq(As_Alef'Bi)* kzd(ellk+£33k—£13k-£31k):|/4n (F.5)

It is observed by considering eq. (6.6) that

( 2
(A3 - Al)(B3 - Bl) =4h G,0p

2 2 2
(A;-A))B;-B)=8h"pyo,0,
P,

2 2 2
(A;-A)B,-B)=8h"u 0,0,

2 2,2 2 2
L(A3 -AXB; -B)=16h"} ,u0,04



As a result, by taking the expected value of eq. (F.5), we have

2
4
E[ssl"’]=4nh [k it 21(lxq”B +2k axit A T4k ggt A”B] 0'2A°2B

2
= 242 4 o2
EJ{Z(& Sk—e3lk))/4n:|—lechc + 0%

llk B

1562

(F.6)

To derive eq. (6.22), we substitute eq. (6.12) into S§;,  and

thus, we have
2
Sslxq=[(2Y32- Y3 m Y330 - (2Y - Yy, ‘Yls)]/l 2n
2 2
=[“(k xf(Az = ApP+k (A _Al))(ZBZ_ B,-By)

2 2 2 2 2
+n( xg(As=A)+ kqxq(As—Al))(ZBz—Bl—Bs)

+ k2_3(2£ TE3y T Eaact Bpypt €3 T 280 | /120

It is observed by considering eq. (6.6) that
[ZBZ—BI—B3=O
1773

2 2 2 2 5
12B2—B -B,=-2h0o}

As a result, by taking the expected vaiue of eq. (F.7), we have

(F.7)
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2
6
E[ss,xq]= (4nh /3)[k xq * 2kqxqp.A] o 0%+ o%

= lechoB + 0'2 (F.8)

Similarly, it can be shown that eq. (6.23) is true.
To derive eq. (6.24), we substitute eq. (6.12) into SS,,, and

thus, we have

2
o (Y0 = 2¥p0 + Y5, =27, + 47, =27, + Y, =27y, + ¥y, ]

axq 3 6n

[k (2a2-A2 - AD@B. -B2-B) + % 2 2
=|nkgxg(2A3 - A5 - A))2B, - B, - 3)+k=1(811k‘ 1okt Er3k T 282k

2

+ 4822k—2823k+831k_283?_k+833k):|/36n (E.9)

It is observed by considering eq. (6.6) that
2 2 2 2 5
J2A2—A1—A3-—2h o2
2 2 2 2 5
[2B2—B1—B3-—-2h c
As a result, by taking the expected value of eq. (F.9), we have

E[S qxq] (4nh /9)1<qxq A+ ok

=quq A (F.10)
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This research is concerned with product and process design
optimization by quality engineering based on the work of Dr Taguchi,
with emphasis on the optimization of dynamic systems and tolerance
design. Various quality loss functions are presented in this thesis
which can be used for quality evaluation. The goal of robust design
for dynamic . systems is to reduce the deviations of quality
characteristics for the real system from an ideal target which can
change based on the requirements of the customer. The optimization
can be simplified by deccmposing the selection of control factors Z
and the adjustment of scaling/leveling factors R into a two-step
procedure. The first step is selecting levels for factors Z to maximize

the signal-to-noise (SN) ratio that is supposed to be independent of
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the adjustment of factors K. The second step is used to adjust the real
system to a desired model. A systematic approach to optimization is
provided for dynamic systems. The motivation of the SN ratio is
given and the validity of the SN ratio is examined for various
systems. However, for the specific models where the use of the SN
ratic is questionable, the necessary modification is suggested. In
addition, discrete dynamic characteristics are discussed. The
objective of tolerance design. is to balance quality loss due to
variations and cost increase due to control of variations. Based on the
variation transmission equation developed in this thesis, the best
tolerance levels are specified for componenis and subsystems. The
tolerance design approach is presented for quality characteristics
which may deteriorate over time. Also, a method is presented to
develop the tolerances for lower-level quality characteristics based
on the tolerances for higher-level quality characteristics, to reflect
the vcice of the customer. Illustrations are given to demonstrate the

efficiency of the tolerance design methodology.
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