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CHAPTER 1. INTRODUCTION

1.1 Background

Reliability analysis of multi-component repairable systems plays a critical role for
system safety and cost reduction. A variety of multi-component systems are subject to
competing risks (David and Moeschberger 1978, Meeker and Escobar 1998, Crowder
2010, Hong and Meeker 2014). Under competing risks, only the failure with the smallest
latent failure time can be observed. Competing risks theory seeks to provide the statistical
relations between all the latent failure times associated with different failure types that
cannot be observed directly (Bedford and Alkali 2009). In competing risks systems,
different risks can be dependent. For example, consider a vehicle’s transmission system
in which transmission fluid is used to lubricate the moving parts. The wearing out of the
transmission fluid can cause both the clutches and the gears to deteriorate significantly.
And failure of either the clutch or the gear can cause the failure of the transmission
system. Thus, the clutches and the gears suffer from dependent competing risks. In
general, ignoring the failure dependency of multiple components can result in biased
predictions of system reliability and non-optimality of the maintenance policy. In addition,
in most cases, only the failed component (e.g., either the failed clutch or the failed gear)

is repaired, and the repair can be general, including perfect replacement and minimal



repair, as well as the situations in between.

There are three prominent aspects which pose as major challenges of building a
reliability model and developing maintenance planning for dependent competing risks
systems with imperfect repair. First, when the system fails, the failure time data of the
un-failed components are right-censored. In other words, only the failure time of the
failed component is recorded, while the latent failure times of all the other components
cannot be observed due to competing risks. Second, when considering the dependency of
competing risks, one component’s failure and repair will influence other components’
lifetimes. The influence of an imperfect component repair is more complex than a perfect
repair that restores the component as good as new. Third, when considering dependent
competing risks and general repairs, complex optimization problems arise for new

maintenance policies.

1.2 Literature Review

Traditional study on repairable systems mainly focuses on reliability modes for
repairable systems with a single component under different repair actions. Kijima and
Sumita (1986) and Kijima (1989) suggested two imperfect repair models by introducing
the concept of virtual age of repairable systems. Lindqvist, Elvebakk, et al. (2003)

proposed a Trend-renewal Process (TRP) to generalize the inhomogeneous and



modulated gamma process proposed by Berman (Berman 1981), which can deal with the
imperfect repair conditions well. Other imperfect repair models for repairable systems
with a single component include the modulated renewal process (Cox 1972), the
modulated power law process (Lakey and Rigdon 1992), the arithmetic reduction of age
and arithmetic reduction of intensity models (Doyen and Gaudoin 2004), the stochastic
general repair model (Guo, Haitao, et al. 2007). A comprehensive review on statistical
methods of repairable systems is provided by Lindqvist (2006).

For repairable systems under competing risks, most of the existing research assumes
independency of component failure (Pham and Wang 2000, Langseth and Lindqvist 2006,
Wang, Chu, et al. 2009, Yang and Chen 2009, Hong and Meeker 2010, Yang and Chen
2010, 2011, Yang, Hong, et al. 2012). Thus, the reliability analysis of the entire system
subjected to competing risks can be simplified by analyzing each component
independently. The existing reliability models that consider failure dependency assume
that when a failure of one component occurs, it will result in a possible shock to the other
components with a certain probability (Jhang and Sheu 2000, Scarf and Deara 2002,
Satow and Osaki 2003, Zequeira and Bérenguer 2005a, Barros, Berenguer, et al. 2006).
Li and Pham (2005) discussed a similar system with component failure dependency, and
they assumed a binomial distribution of perfect and minimal repairs with certain

probability. Langseth and Lindqvist (2003) developed a model for systems consisting of



multiple components associated with failures caused by multiple sources. Shaked and
Shanthikumar (1986) developed statistical models and investigated properties of
repairable systems with dependent component failures. However, in their work, the
parameters estimation approach was not given and the repair actions were not considered.

In the past decades, maintenance study for multi-component system has attracted
more and more attention. The main objective of maintenance is to retain or restore a
system to perform its required functions satisfactorily. For simple system with a single
component, there has been lots of maintenance models based on different assumptions
(Lee and Rosenblatt 1989, Bunks, McCarthy, et al. 2000, Grall, Bérenguer, et al. 2002,
Marseguerra, Zio, et al. 2002, Wang 2002, Aghezzaf, Jamali, et al. 2007, Peng, Feng, et
al. 2011). The definition of multi-component maintenance is defined as: multi component
maintenance models are concerned with optimal maintenance policies for a system
consisting of several units of machines or many pieces of equipment, which may or may
not depend on each other (Cho and Parlar 1991). If there is no dependency, then we can
apply the single component maintenance policy on each component of the
multi-component system separately. However, the dependency always is not negligible;
for example, the down time of the system, which is shared among all components, will
cause the economic dependency. When components form a system structurally so that the

maintenance of failed component always involves maintenance of other components, it is



called structural dependency (Nowakowski and Werbinka 2009). In addition, Murthy
introduced three types of stochastic dependency considering failure interaction (Murthy
and Nguyen 1985a, b).

Generally, the maintenance can be divided into two main types, i.e., corrective
maintenance and preventive maintenance (Nowakowski and Werbinka 2009). Corrective
maintenance means the failed component or system will be repaired perfectly
immediately after the failure. Due to the limited maintenance resource in reality,
immediate repair is difficult to implement, which is the big disadvantage of corrective
maintenance. Preventative maintenance is used to describe the maintenance before failure
occurs (Valdez-Flores and Feldman 1989). In the literature, block replacement policy is
the most well-known preventive maintenance policy (Barlow and Hunter 1960). In such a
policy, the components are commonly replaced on periodical intervals or failures (Berg
and Epstein 1976). There are various modifications of block replacement policy (Tango
1978, Nakagawa 1986). Scarf and Deara (2002) proposed various block replacement
policies considering type I failure interaction as the stochastic dependency, i.e., either
component’s failure can induce the other’s failure in a two-component system. The major
drawback of block replacement policy is the waste of components or system replacement
even if sometimes it is not necessary. Inspection-based maintenance is another commonly

used preventative maintenance model that has been studied intensively (Hosseini, Kerr, et



al. 2000, Kallen and van Noortwijk 2005, Zequeira and Bérenguer 2005b, Wang 2009).
Under the inspection maintenance, replacement can only be done after the detection of
failures on inspections. Thus inspection maintenance policy can avoid the waste of
unnecessary replacement in block replacement. Taghipour applied the periodic inspection
maintenance for a multi-component system with non-competing risks (Taghipour and
Banjevic 2011). Compared with non-competing risks system, the reliability modeling and
maintenance planning is more complex as we cannot observe the full failure events due to
competing risks. Few studies can be found on the maintenance planning of

multi-component systems considering dependent competing risks.

1.3 Research Objectives

In this research, we focus on the repairable multi-component systems under
competing risks. The dependency of different component failures is not clear thus we do
not make any prior assumption whether different components are independent or not. The
key objectives of this research are listed as follows:

1. To establish parametric reliability models to investigate the statistical dependency of
multi-component systems under competing risks with imperfect repair.
2. To study optimal inspection-based maintenance planning for multi-component system

under dependent competing risks.



1.4 Dissertation Organization

The dissertation consists of three main chapters, preceded by an introduction in the
present chapter and followed by a conclusion. CHAPTER 2 presents a statistical model
for multi-component repairable systems under dependent competing risks with partially
perfect repair assumptions. CHAPTER 3 studies two statistical models considering
generally imperfect repair and dependent competing risks for multi-component repairable
systems. CHAPTER 4 presents two inspection-based maintenance policies based on the

proposed reliability model.



CHAPTER 2. RELIABILITY ANALYSIS OF MULTI-COMPONENT SYSTEMS
WITH DEPENDENT COMPETING RISKS UNDER PARTIALLY PERFECT
REPAIR

2.1 Data Notation

We consider a competing-risk system consisting of multiple (say X ) components.
The time scale is the time since installation. Upon each failure, only the failed component
is repaired as good as new and the other components are untouched, which is called
partially perfect repair. In general, the partially perfect repair is achieved by replacing the
failed component with a new one. The successive failure events are recorded by 7,,7,,...,
until a predetermined ending time 7 . In addition, each event is labeled with a failure
type A, €{0,1,...,K}; where A, =0 indicates there is no failure observed. We use pair
(T,A,) to represent failure information. An equivalent representation of the failure
process is in terms of the marked point process {N,(?);>0,k=1,..,K}; where k
denotes failure type and N,(#) denotes the cumulative number of failures for
component & until time ¢. We use N (t)ZZ:f=1 N,(t) to denote the total number of
failures regardless of failure type until time ¢. We assume that two failures cannot occur
simultaneously, which is a common assumption for repairable systems in the literature. In

addition, we assume the repair action is immediate and the repair time is ignored.



2.2 Statistical Modeling for Multiple Dependent Competing Risks under Partially
Perfect Repair

In the classical latent failure times model (Prentice, Kalbfleisch, et al. 1978), a
single-component system has multiple competing failure types, each of which can cause
the system’s failure. Each failure type has a failure time, but only the minimum can be
observed due to competing risks. Because of unobservable nature, the failure times are
also called conceptual or latent failure times, which are generally assumed to follow a
joint distribution to capture the dependency of competing risks.

Consider a system that consists of K new components starting to work at time 0.
Because the components are under competing risks, the system fails if any component
fails, while the failure time of all the other components cannot be observed.

Let 7,(f) be the most recent failure time of component & before time ¢ The
running time of component . at time ¢ since its last replacement, which is defined as
age and is denoted as a,(f), can be calculated as a,(¢) =¢—r, (). Note that both 7, (¢)
and g, (f) are defined as left-continuous functions. Thus, n{(t)=lij}}1%(x) if a failure
occurs at time ¢, and 7,(t)=0 if no failure occurred by time ¢ . Similarly,
a,(t)=lima,(x).

¥t
We use Z,, to denote the latent age of component &k to the system’s i" failure.

Thus, the random vector Z, =[ZU,...,ZKJ]T represents the latent ages to the system’s
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i" failure for all components. Due to competing risks, only the minimum of latent ages
to failure can be observed. Similar to the classical latent failure times model, we also use
a joint distribution 7 to model Z, like the classical latent failure times model if the
system is either new or perfectly repaired. The dependency of component failures is
captured by the joint distribution F.

The next failure time of the system on or after time ¢ is determined as the minimum

value of {7 ()+Z, k=1,2,..,K} (N(t") denotes its left limit at time ¢) under

N

the condition that Zz >a,(t), k=1,2,..,K . Fig. 1 illustrates the first two failures in

KNG+
a competing risks system. Let vector Zz, =[ZL1,...,ZK,1]T be the realization of the latent
ages to the first system’s failure Z,. The first failure is determined by the minimal value
of z,,; k=1,..,K . Suppose the first failure is due to component / and occurs at time
t, (Fig. 1 left). Under partially perfect repair assumptions, only component / is
replaced, and the most recent failure times are updated as 7(¢)=¢,, and r (1)=0, j #1,
j=L..,K . The second failure can be calculated as the minimum value of

{z)y+1,2,,:j#1,j=1,..,K} (Fig. 1 right), where z, :[21,2,...,ZK,2]T is the realization

of the latent ages to the second system’s failure.
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1,1 Zl 2
AN
component 1 — component 1 C Y »
1(6)=0 7 (t,)=0 1
“““ Zi1 215
/,*\
component / > component / 4 —
}?(tl):O tl 0 r/(lz):tl
L Zka
N
component K > component K (- o

1 () =0 r(t,)=0

Fig. 1. Illustrations of the first (left), and the second (right) failures in a competing risks
system

Z

.1 the latent age of component & to (i+1)" system’s failure, should be larger
than the age of component k immediately after time ¢, ie., Z, ., >a (tf) (a, (tf)
denotes its right limit at time ¢), V ke{l,...K};i=1,2,.... As a result, the random
Z

vector Z. , =[Z is following a truncated distribution of F' conditional on

]T
L4122 =K ,i+l

the vector of [&, (l‘,~+ ) I (t,~+ )]T :
2.3 Parametric Forms

The joint distribution of the random vector Z, describes the statistical failure
mechanism of multiple components, and thus captures their statistical failure dependency.

In this section, parametric models are proposed to characterize the joint distribution of

Z..
As Weibull and lognormal distributions are commonly used as failure time

distributions for single-component systems (Barlow and Proschan 1975, Jordan 1978,

Prabhakar Murthy, Bulmer, et al. 2004, Pascual, Meeker, et al. 2006), they are separately



12

selected as the marginals of the joint distribution F to illustrate the proposed method in

this research. However, other proper univariate distributions can also be applied.
2.3.1 Parametric Forms for Multivariate Lognormal Distribution

When the joint distribution of random vector Z, is multivariate lognormal, the joint

probability density function (pdf) is calculated as:
flz:m )= ;exp{—l[logm ~p] =" [log(z) —u]} 1)
A (27[)1«2 |Z|1/z 9 i i .

The model parameters 0 include p and . peR*, and L eR** are the mean

vector, and covariance matrix of the multivariate lognormal, respectively.

2.3.2 Parametric Forms for Multivariate Weibull Distribution via Archimedean
Copula Function

The cumulative distribution function (cdf) of the Weibull marginal F, is:

zZ, . "
Fk(zk,i;ek)zl_exp[_(fJ \];Zk,izo (2)

where x, €(0,0) and A, €(0,0) are called shape and scale parameter, respectively.
0, =[x,,4,]" is the parameter vector of the marginal distribution F, . We can construct

the joint distribution from marginal Weibull by using Archimedean copula functions.

The Archimedean family of copulas are frequently used for the construction of

multivariate distributions due to their simple forms (Nelsen 2006)
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Cttyeantt) =y [y ) 4y () | (3)

where y is the generator of the Archimedean copula. Different generators will generate

1/

different Archimedean copulas. For example, w(t)=(1+¢)"*, and w(t)=exp(—t"")
are generators for Clayton, and Gumbel-Hougaard copulas, respectively.

In this research, the Clayton copula is selected as an example to illustrate the
application of the Archimedean copula family in the proposed reliability model. Clayton
copula contains one association parameter p that relates to the dependency

measurement Kendall’s tau 7., (Lindskog, McNeil, et al. 2003), by the relation

Teonaan = P/(P+2) (Nelsen 2006).

When the Clayton copula is selected to construct the joint distribution, the

dependency of the failure types is captured by the association parameter p . The range of
the association parameter is pe[-1,0)U(0,00) . The limiting case when p—0
represents the independent situation. In this research, we define the Clayton copula as

follows:

-1/p
max Zuk'g—Kﬂ,OH ;p#0
CClayton (ul" . "uK) = |: (k—l (4)
K .
Hk:luk p=0

where wu, = F (z,,;0,);k=1,...,K . Specifically, the multivariate Weibull cdf F(z;0)
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can be obtained by substituting u, =1- exp(—(zk,i /2 )Kk ) into (4), where
0=10,...0,,p}.

2.3.3 Parametric Forms for Multivariate Weibull Distribution via the Gaussian
Copula Function

The Gaussian copula is a special copula taking advantage of the pdf of the
multivariate normal distribution (Cherubini, Luciano, et al. 2004). Specifically, a

Gaussian copula has the form
Causs (U ooty ) = @[ (), @7 (11)] (5)

where @' is the inverse of the cdf of the standard normal distribution, and ®, is the
cdf of a multivariate normal distribution with zero mean vector, and its covariance matrix

equals its correlation matrix. The Gaussian copula density function is given as (Song

2000)

-1 T .
{ O (uy) D' ()
Coss (U5t ) = W eXpy—5 : E'-D| (6)
D (uy ) D' (u,)
where X is the correlation matrix, and 1 is the identity matrix.

When applying a Gaussian copula to construct the joint Weibull distribution, the

survival function of random vector Z, is obtained as
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S(Zi ’ 0) = J-Z1 o 'J.ZK ) fGauss (‘xl,i’ cee xK,i )dxl,i . 'de,i (7)

where f. () denotes the pdf of the joint Weibull distribution obtained by the chain

rule, i.e.,

o*C

Gauss dul duK

ou,...0u dz,,  dz, (8)
:CGauss(“l"“uK)'ﬁ(zl,i;el)"'fK(ZK,[;B[()

S Gauss (Zl,i’ S ZK,i) =

and f,();k=L..,K denotes the pdf of the marginal for Z, ..

In the multivariate Weibull distribution constructed via the Gaussian copula, the
model parameter 0=1{0,,...,0,,X}.
2.4 Parameters Estimation Based on Maximum Likelihood Method

A maximum likelihood (ML) method is developed to estimate model parameters. To
implement the ML approach, we first calculate the likelihood function. Suppose the
failure is due to component 4, and occurs at time ¢, . The latent age to i system failure
of component k& is equal to a,(¢,), while the latent ages of all other components should

be larger than « (z,);j#k,j=1,..,K . Thus, the unconditional probability to observe

failure i 1is calculated as

PHZ,, = a (), Z,, > a,(t,);j £k, j =1, K)

38 (Z00 07 )| , )
0z, ;

{Zl,i:al )02 = (8) o2 j=ag (4 )}
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Note that (10) gives the probability at a given time ¢ for a continuous random
variable. Although technically Pr(X =¢)=0 for a continuous random variable X with
pdf f(¢), Pr(X=t) can be interpreted as Pr(¢< X <t+dt)= f(¢t)dt , which is
proportional to f(¢). We ignore dt only for notational convenience in the calculation
of the likelihood function for all continuous random variables in the rest of the

dissertation.

Equation (9) only accounts for the probability of an observed failure at time ¢,
regardless of previous failure data. The conditional probability of observing failure ;
given all the previous i—1 failures is solely determined by the ages of all components
after the repair action of the (i—1)" failure. Specifically, the likelihood of failure i,

i=L2,...,N(r), conditioned on all the previous i—1 failures, can be calculated as

{Zl,i:al (6 )5 Zg = (8 )5 2 =0y (1 )} (1 0)
S(a,(t7).- - a(1))

where S(-) is the joint survival function of the latent ages to failures.

For example, consider the first two failures illustrated in Fig. 1. After the repair
action of the first failure at time ¢#,, the age of the failed component / is updated to

a,(t,7) =0, while the ages of all the other components are given as a,(1")=1¢,
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j#1,j=1,.,K . As the second failure is due to component one, and occurs at time ¢,,
the likelihood of the second failure conditioned on the first failure can be calculated as
Pr(Z,,=a/(t,).Z,,>a,(t,);j#1,j=1,...K|Z,,>0,Z,,>t;k#1,k=1,.,K) , where
a(t)=t,—t,and a,(1,)=t,;j#1,j=1,.,K.

As there is no failure observed from ¢ to the predetermined ending time 7 , the

N(r)

likelihood £ can be calculated as

N(7)+1

‘CN(r)H _ Pr{Zl,N(r)H > [T_I/i(z—)]a"WZK,N(r)H >[r—r (D]}
S(a,(ty o)y (tie))
_ S(a(t),ma, (1))
S (@t o) Gy

(11)

Combining the results in (10) and (11), the following Proposition 1 can be used to

calculate the likelihood function based on the observed failure data.

Proposition 1. Given the observed failure data, the likelihood function can be

calculated by

N(z)+

£o)=1] % (12)

i=1

where £ can be calculated based on (10), and (11) for i=12,...,N(r), and

i=N(r)+1, respectively.



18

The estimated model parameters 0 are obtained by maximizing £(0). Based on the

A

ML theory (Svensson 1990, Casella and Berger 2001), the estimated parameters 0 are

asymptotically normally distributed under the large sample assumption.
2.5 Hypothesis Testing for Dependency

Based on the proposed reliability model for the competing risks systems, statistical
hypothesis testing procedures are developed in this section to determine the component
failure dependencies. In Section 2.5.1, a dependency test based on the multivariate
lognormal distribution is proposed. Then in Section 2.5.2, a dependency test for the
multivariate Weibull distribution derived by the Archimedean copula and the Gaussian

copula are discussed, respectively.
2.5.1 A Dependency Test for the Multivariate Lognormal Distribution

In the multivariate lognormal distribution, the dependency information is captured by

the correlation matrix A, which can be calculated based on covariance matrix X :

A =——t—ij=1...K (13)

where A s and X, are the elements of the 7" row, and the j”’ columnin A,and X,

respectively. Based on the correlation matrix A a hypothesis testing procedure is
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developed to determine the statistical dependency among latent ages to failures of

components.

H ,: component failures I, are statistically independent.
(14)

H | : component failures i, are statistically dependent.

When the asymptotic result is applied, we use a normal approximation to construct

the test statistics. The test statistics W, are used to test the dependency between

component failures i and j, which equals the estimate of correlation Ai,j divided by

its estimated standard error lvar([\i,j) ,1.e.,
W, =A,,/var(A, ) . (15)

In hypothesis testing (14), H, is rejected if W, >Z where o is

al2? 1-a/2

or W, ,<Z
the test significance level, and Z,, is the upper quantile of the standard normal
distribution. Based on hypothesis testing (14), pairwise statistical dependencies between

different component failures can be tested.
2.5.2 A Dependency Test for the Multivariate Weibull Distribution

In this section, a statistical dependency test for joint distribution constructed via the
Archimedean copula is first discussed. The Archimedean copula can capture the overall

statistical dependency, which is determined by the global association parameter p. We
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developed the following hypothesis testing procedure to test the overall failure
dependency, i.e., to see whether Kendall’s tau is equal to zero.

H : all failure types are statistically independent.

(16)

H | : not all failure types are statistically independent.

Here, the asymptotic test statistic W, , , 1s constructed using the estimate of
Kendall’s tau 7,,,,, divided by its estimated standard error ./var(?,,,,) . H, is

rejected if W . >Z

overall al

, oo W . <Z ,,. As Kendall’s tau is a function of the

overall

association parameter p, the variance of the estimate of Kendall’s tau can be calculated

by using the delta method.

. dt AT
Va(Zy ) = (A0 var(p)(—Eat|
p dp (17)

=var(p)((p/ (5 +2) ~1/(5+2)))

where var(p) denotes the asymptotic variance of 0. Based on (17), the asymptotic test

statistic of the overall dependency is given as

~ A2
Tkendall " P

overall — \/Var(ﬁ)((ﬁ/(ﬁ+2)2_1/(/5-1-2))2) .

(18)

For the multivariate Weibull distribution constructed via the Gaussian copula, the

correlation matrix determines the pairwise dependencies of latent ages to component
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failures. Thus, the test procedure is the same as that discussed for the multivariate
lognormal distribution.

The test statistics for Multivariate Weibull via the Gaussian copula has the same form
as (15). Thus, hypothesis testing (14) can be used here to test the pairwise statistical

dependencies among different failure types.

2.6 Conclusion

In this Chapter, a general statistical reliability model is proposed for repairable
multi-component systems considering statistical dependent competing risks under a
partially perfect repair assumption. For the reliability analysis of repairable
multi-component systems, most of the research in the literature assumes component
failure statistical independency. The failure mechanism (marginal distribution) of each
component can thus be estimated individually based on its failure data.

In the developed model, copula functions are used to model the joint distribution of
component failure times. Specifically, two types of copulas, i.e., the Archimedean copula,
and the Gaussian copula, are applied to study the overall dependency, and pairwise
dependencies among different components, respectively. Although the copula function
method is also applied in the literature to study non-repairable systems, or systems under

perfect repair action (replace the whole system when a failure happens), the problem
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studied in this paper is much more complex than those in the literature. When the whole
system is replaced after a failure, the system will have the same failure mechanism as the
original one. In contrast, when only the failed component is replaced, replacement of
failed component affects the failure mechanism of the other components when
considering failure dependency. Thus, the methods in the literature cannot be directly
applied.

Under competing risks assumptions, only the failed component is recorded as the
latent ages to failures of other components cannot be observed. After a repair action
under the partially perfect repair assumption, the failure mechanism of the new system
and components will be changed. Thus, for a single repairable system in which the failure
data can only be collected from a single realization, model parameters estimation is
challenging. To tackle this problem, an ML method is developed in this research, and the
ML function is calculated based on conditional probability.

The partially perfect repair action is useful for many complex multi-component
engineering systems when only the failed component is repaired, and the repair action is
a replacement due to high labor cost.

Hypothesis testing is developed to test the statistical dependency of component
failures. The obtained statistical failure dependency provides more accurate information

for reliability predictions, which can be used for system maintenance.
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The proposed methodology in this Chapter has been published in a journal article

(Yang, Zhang, et al. 2013).
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CHAPTER 3. RELIABILITY ANALYSIS OF MULTI-COMPONENT SYSTEMS
REPAIRABLE SYSTEMS WITH DEPENDENT COMPETING RISKS UNDER
IMPERFECT REPAIR

In previous Chapter, statistical model for repairable multi-component systems with
partially perfect repair is proposed. However, in most cases, the repair conditions are
unknown. Thus, the partially perfect repair assumption may not always hold. Thus, in this
Chapter, we extend the model proposed in previous Chapter from partially perfect repair
conditions to generally imperfect repair conditions. Specifically, two models are proposed,
i.e., the generalized dependent latent age model and the copula-based trend-renewal

process model.

3.1 Generalized Dependent Latent Age Model

The generalized dependent latent age model (GDLA) model generalizes partially
perfect repair model proposed in CHAPTER 2 by extending Kijima’s virtual age models
(Kijjima and Sumita 1986, Kijima 1989) from repairable single-component systems to
multi-component systems.

In this research, we are interested in repairable K -component systems under
competing risks. The failures of the same component are regarded as one type of failures.
After each failure, the failed component is repaired and other components are untouched.

The repair conditions for the failed components are imperfect, including the two extreme
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cases, i.e., minimal repair and perfect repair. The partially perfect repair condition
discussed in CHAPTER 2 is a special case of the imperfect repair conditions.

To deal with generally imperfect repairs of multi-component systems, we first extend
Kijima’s virtual age models from single-component systems to multi-component systems

and then combine it with the partially perfect repair model to develop the GDLA model.
3.1.1 Extended Virtual Ages for Multi-component Systems

Two virtual age models are developed for repairable single-component systems in
(Kijima and Sumita 1986, Kijima 1989). Let ¢,t,,..., denote the failure time series
(t,=0), and let x, =t —¢_;i=12,..., denote the inter-arrival times of failures. The
virtual age is used to describe the system state. Specifically, after the i” repair, the
virtual age v, in Kijima model I and II is defined as v,=v,_ +¢g-x, and
v.=q-(v,, +x) respectively, where ¢ <[0,1] is the repair effectiveness factor. g=0
and g =1 correspond to the two extreme repair cases, i.e., perfect repair and minimal
repair respectively; and g € (0,1) corresponds to the imperfect repairs.

For the repairable K -component system, we extend the Kijima model II to describe
the state of multiple components. Let 7;i=1,2,..., denote the observed failure time of the
th

i failure (#,=0), and let r,(¢);/€{l,...,K} be the most recent failure time of

component / before time 7. The virtual age of component / attime ¢ is defined as:
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v,(t)=0;if =0
vi(t)=q,-v,(t" );ift=r(t")and >0 (19)
V() =v, (i) + (= r(O))if 1> 7 (")

where v,(¢) is right-continuous and v,(z") denotes its left limit at time ¢, and ¢,
represents the repair effectiveness factor of component ;. In (19), t=r,(¢") indicates
that there is a failure from component ; which occurs at time ¢. It is worthwhile to note
that the age q,(f) defined in CHAPTER 2 is left-continuous, compared with the
right-continuous virtual age v,(?).

As the repair effectiveness factors are not necessary to be the same for different
components, we use a constant vector q =[g,,...,q, ]’ to denote the repair effectiveness
factor for the entire system. As g, €[0,1], the extended virtual age model for
multi-component systems can deal with generally imperfect repairs, including the perfect
replacement and minimal repairs. Ideally, when the repairs are either perfect or minimal,
the repair effectiveness factors can be directly recorded. However, under many situations
the repair effectiveness is difficult to be quantified. Thus, it is more reasonable to assume
q=[q--q¢]" 1s an unknown vector which also needs to be estimated from the failure
data. The estimated repair effectiveness factors can be further used in the maintenance

planning.
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3.1.2 Model Building

Based on partially perfect repair reliability model and the extended virtual ages, we
propose the GDLA model to deal with both generally imperfect repairs and dependent
competing risks.

We use the term initial ages to represent the virtual ages of all components after the
system’s " repair, which are denoted as [v (tl.),...,vK (ti )]T . For i=0,
[vl(tl.),...,vK (ti)]T =1[0,...,0]"; and for i=12,..., [vl(ti),...,vK (ti)]T can be calculated

as a function of repair effectiveness factor q =[g,,...,q, 1"

according to (19).

The GDLA model assumes that once a component’s virtual age reaches a
corresponding threshold, the component fails, which causes the entire system’s failure.
Thus, the random threshold corresponds to the latent age to failure concept which has
been used in CHAPTER 2. We still use Z, , to denote the latent age of component & to
the system’s i” failure which is defined in the partially perfect repair reliability model,
and the random vector Z, =[Z,,,...,Z K,i]T represents the latent ages to the system’s i"
failure for all components. Due to competing risks, only the minimum of latent ages to
failure can be observed. In the GDLA model, we also use a joint distribution F to
model Z, like the partially perfect repair model. The dependency of component failures
is captured by the joint distribution F. However, if the i" repair is imperfect, the

system has non-zero initial ages [v, (ti), ce Vi (ti )]T . Thus, any component’s latent age to
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failure must be larger than its initial age, ie., Z,, >v,(7), Vie{l,.,K}. In other
words, the latent ages to the (i+1)" system’s failure Z., are following a truncated
distribution conditional on the initial ages [v (t,.),...,vK (li )I' . When the failed
component is repaired as good as new, the GDLA model degenerates to the reliability
model proposed in CHAPTER 2 under partially perfect repair conditions.

An example that illustrates the extended virtual ages and the proposed GDLA model
is given in Fig. 1, where paired (#,5,) denotes the failure time ¢, and the failed
component &, forthe i” failure. The first observed failure comes from component 1 at
t,, since the age of component 1 reaches its latent age to failure Z, before the age of
component 2 reaches Z,,. The second observed failure comes from component 2 at ¢,,

since Z,, is reached ahead of Z ,. The next failure still comes from component 2 as

Z,, i1s reached first.
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Fig. 2. Illustration of the GDLA model using a two-component repairable system

We construct the joint distribution in the way as the partially perfect repair model.
More specifically, the Weibull and lognormal distributions are separately selected as the
marginals of the joint distribution /" and copula functions are used to construct the joint
distribution to illustrate the proposed method in this research.

When the marginal is chosen as lognormal, the multivariate lognormal distribution is
generally used as the joint distribution F'. The proposed model parameters are denoted
by 0={q.n, X}, where peR” is the mean vector and X is the KxK covariance
matrix, respectively.

The cdf of the joint Weibull distribution constructed via Gaussian copula is:

Fy(2ens i, 18)= @y (07 1, )oes @71, (20)

where U); =1—€Xp(—(Z,,l»/ /L)k’) is the Weibull marginal cdf; ®, is the cdf of a
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multivariate normal distribution with a zero mean vector requiring its covariance matrix
be equal to its correlation matrix; and @' is the inverse cdf of the standard normal
distribution. The parameters for the reliability model with the Gaussian copula function
and marginal Weibull are denoted by 0={q,A,x,X}, where A= [21,...,/11( ]T and
K= [K‘l,...,K‘K]T are the scale and shape parameters of Weibull distribution respectively;

and X is the correlation matrix in @, .

3.1.3 Parameter Estimation for the GDLA Model

We estimate the parameters in the GDLA model using the maximum likelihood
estimation (MLE) method. The overall likelihood function for n observed failure events

equals:
c(e)=]1« (21)

where £, denotes the likelihood function of the i” failure conditional on the initial
ages of components after the (i —1)" failure and the corresponding repair. Proposition 2
is developed to calculate the likelihood function L.

Proposition 2. Suppose the i” failure comes from component j; the initial ages
[vl(tl.fl),...,vK (tH)]T can be obtained by (19) as a function of unknown repair
effectiveness factor q =[q,,....q, 1" - Then the likelihood function of the i failure

given can be calculated as:
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L
=Pr{ZLi>v1(t;),...,Zj’i=vj(t) o Zier > ()2 > v (80) s Ziy > vie (1)

Pr{Z >v1( ),. (l‘) >VK(ti:)}

Pr{Zl,i>vl(ti ). oLy >V( ) >VK(ti—l)} (22)
aS(ZLi,...,ZK’i)
- oz,

e —
S(Vl (ti—l)""’vj (li—l)""’vK (ti—l))

where S(:) is the joint survival function of the latent ages to failure.

Presenting a two-component system as an example, the first failure observed at time
5 came from component 2, and the second failure observed at time 20 came from
component 1. Then, the likelihood for the first failure is calculated as
L= Pr(Z]’I >5,72,,=5 ‘Zm >0,7Z,, > 0). For the repaired system, the latent ages to the
first system’s failure for component 1 was exactly 20 given its initial age 5, while that for
component 2 was larger than (15+¢, -5) given its initial age g¢,-5. Thus, the likelihood
for the second observed failure £, = Plr(Zl’2 =20,7Z,,>(15+gq, -5)‘21,2 >5,Z,,>q, ~5) .

The parameters in the proposed model can be estimated by maximizing the overall
likelihood function obtained in (21). Under a large sample assumption, the maximum
likelihood estimates are asymptotically normally distributed, and the covariance matrix
can be calculated by the inverse of the observed Fisher information matrix (Casella and
Berger 2001). Due to the complexity of the likelihood function (21), the analytical

maximum likelihood estimate is intractable. To overcome this difficulty, we apply a
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numerical optimization method, i.e., the simulated annealing algorithm to maximize (21)

(Bélisle 1992).
3.1.4 System Reliability Prediction

The reliability of the system after the i” repair can be predicted using the proposed

th

reliability model. Let 7 . denote the inter-arrival time between the " repair and the

(i+1)" failure, and let F;  denote the cdf of the random variable T, . The system

reliability at time ¢ since the i” repair is calculated as:

Rl 0 0) - S ettt

where [v, (t,.),. e Vi (Z‘ )]T are the initial ages and S(-) is the joint survival function of

1

(23)

latent ages to failure. When the joint distribution of latent ages is selected as multivariate

lognormal, the joint survival function S(-) is calculated by integrating its pdf.

3.1.5 Simulation Study

To verify the proposed reliability model and parameter estimation method, we
conduct a simulation study for a two-component system. The failure data are simulated
according to the GDLA model with joint distribution constructed with Gaussian copula
and Weibull marginal. We consider failure dependency with different repair effectiveness
factors in scenario I and II, whose parameters are listed in Table 1 and Table 2,

respectively.
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Table 1. Parameter setting in simulation Scenario I

Repair effectiveness Joint distribution
factor (Gaussian copula + Weibull marginal)
Component q h Y Correlation
K (shape) | & (scale) ean matrix
1 0.20 2.00 3.00 0 1.00 0.50
2 0.20 2.00 3.00 0 0.50 1.00
Table 2. Parameter setting in simulation Scenario 11
Repair effectiveness Joint distribution
factor (Gaussian copula + Weibull marginal)
Component Correlation
q K (shape) | & (scale) | Mean )
matrix
1 0.20 2.00 3.00 0 1.00 0.50
2 0.60 2.00 3.00 0 0.50 1.00

In each simulation scenario, we estimate the parameters with failure events n =100,
200, 500 and 1000 respectively. For each n, we conduct the simulations with 1000
replicates to obtain the coverage probabilities for the 95% confidence intervals and
mean squared errors (MSE) for the parameter estimates. The simulation results of two

scenarios are shown in Fig. 3 and Fig. 4, respectively.
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Fig. 4. Simulation results with parameter setting in Table 2
In Fig. 3 and Fig. 4, it can be seen the coverage probabilities for the estimated
confidence intervals are approaching 95% and the MSEs are approaching zero as the

number of failure/maintenance events increases, which validates the parameter estimation
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method of proposed reliability model.

3.1.6 Case Study using GDLA Model

The developed GDLA model is applied for a cylinder head assembling cell in a major
automobile power-train plant in the United States. The system can be treated as a
competing risks system, as several stations are working together, and the failure of any of
them would result in the failure of the entire system. In order to illustrate the proposed
methodology, we consider the two stations of the system; these two stations are denoted
as station 1 and 2 to protect proprietary sensitive information. During the data collection
period, the assembling cell adopted run-to-failure policy, i.e., maintenance action was
performed when there was a failure. Thus, we recorded the exact failure times. Fig. 5
shows the original failure time data that have been processed to eliminate all the

downtime due to failures and maintenances.
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Fig. 5. Failure data of two stations from an assembling cell

We first estimate the parameters of the GDLA model using the collected failure data.

The repairs of each component keep the same although the repair effectiveness are

difficult to be quantified. The marginal distribution in the proposed model is chosen as

lognormal and Weibull, respectively. When the marginal is lognormal, a bivariate

lognormal is directly used as the joint distribution. Table 3 lists the estimated parameters

0= {q,, X} by maximizing the overall likelihood in (21).

Table 3. Estimated parameters and the standard errors when using bivariate lognormal

distribution

Parameter estimates

Standard errors

failure

type | q B ) q 0 )
1 0.007 | 2.48 4.93 2.11 0.02 0.68 1.59 1.02
2 0.031 | 4.15 2.11 2.93 0.04 0.60 1.02 1.06

When Weibull is chosen as the marginal, a Gaussian copula with Weibull marginal is
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applied. Using the MLE method, the estimated parameter 0= {q, i,fc,)i} and standard

errors are listed in Table 4.

Table 4. Estimated parameters and the standard errors when using bivariate Weibull
constructed via Gaussian copula

failure Parameter estimates Standard errors

type q ) R ) q VR 3
1 9.64e-13 | 49.00 | 0.55 | 1.00 0.39 | 1.14e-9 | 1.93 | 0.07 | - 0.13
2 1.39¢-07 | 143.60 | 0.69 | 0.39 1.00 | 2.39¢-5 | 428 | 0.11 | 0.13 -

In the literature, log-likelihood or Akaike information criterion (AIC) values are
commonly used to evaluate the model fitting (Akaike 1974, Akaike 1980). As both the
bivariate lognormal and the Gaussian copula have the same numbers of parameters, the
comparisons using log-likelihood values and AIC values are consistent. The
log-likelihood values for a bivariate lognormal and a Gaussian copula with Weibull
marginals are -514.05 and -502.69, respectively. As a larger log-likelihood value indicates
better modeling fitting, the reliability model based on the Gaussian copula with Weibull
marginals is selected. Since the estimated repair effectiveness factors are quite close to
zero, the repairs of failed components can be treated as perfect.

Based on the estimated parameters, the system reliability that depends on the elapsed

time and both components’ initial ages since last repair can be calculated using (23). Fig.
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6 (I) and (IT) show the calculated system reliability after the i repair under two special

cases, i.e., component 2 and component 1 were replaced, respectively.

Fig. 6. System reliabilities after a repair vs. time and initial ages (I: the initial age of

component 2 is zero; II: the initial age of component 1 is zero).
3.2 Copula-based Trend-renewal Process Model
In this section, we propose a copula-based Trend-Renewal process (CTP) model to
analyze the multiple-component repairable systems under dependent competing risks.
The failed component is subject to general repair actions, including perfect and minimal
repairs as well as situations in between. In the GDLA model, the repair conditions are
quantitatively described by Repair effectiveness factor. While in the CTP model, the

repair conditions are modeled by the trend functions.

3.2.1 Trend-renewal Process Model for A Single Component

The trend-renewal process (TRP) model (Lindqvist, Elvebakk, et al. 2003) is a

statistical model to model the single-component repairable system under general system
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repair actions from perfect to minimal, in which both perfect and minimal repairs are
included as two extreme cases. The basic idea of the TRP model is to apply a trend
function A(¢) to transform the original failure times into a new time domain so that the
transformed failure times can be modeled by a renewal process following a renewal

distribution.

3.2.2 A General Reliability Model for Imperfect Component Repair Actions

In this section, the TRP model is extended for systems consisting of multiple
components that can fail dependently. The partially perfect repair reliability model
developed in CHAPTER 2 is further extended for systems with imperfect component
repair actions with time transformation.

In the partially perfect repair reliability model, the system failures are only
determined by the last failure times of all the components because the repair actions of
failed components are assumed to be perfect. When the repair action is imperfect,
however, the component failures are affected by the effect of imperfect component repair
accumulated from the all the repair history, which are coupled with the effect of failure
dependency of other components in a complex manner.

To overcome this difficulty, we propose a multiple transformation procedure in this

research by applying the TRP model to transform the failure times of individual
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components to separate transformed time domains in which the effect of imperfect repair
can be eliminated. Specifically, as shown in Fig. 7, the failure times of component &

(denoted by T, T,,,...) are transformed into the k™ transformed time domain using a

k22"

trend function A, (). Based on the properties of the TRP model, the transformed failure

times of component k&, A(T.,), A(T,,) ... are following a renewal process

characterized by a renewal distribution F), .

Transformed time

-
-

domain K

Transformed time Ay (chl) A(T,) A, (Tk 3)=
domain & / /

Transformed time /

\/

domain 1 /

/
/

/

Original time / |
domain (T,.1,k) (Tk,zak) (T} 5,k)

Fig. 7. lllustration of the multiple transformation procedure based on different trend
functions for different failure types

According to the properties of the renewal process, the accumulated effect of
imperfect repair in the original time domain is eliminated in the transformed domain.
Thus, the failures time in the transformed time domains can be modeled in a similar way
to capture component failure dependency. We assume component k;k =1,...,K has a
latent age to failure, defined as a random variable and is denoted by v, ,, in the k"

transformed time domain after the (i —1)" system failure and the corresponding repair
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action. When considering the first system failure from installation, v, =[V,,,...V, ] is
modeled by a joint distribution / whose marginal distribution equals £ , the renewal
distribution of the k" component in the transformed time domain. Let a,(¢) and 7, (¢)
be the component age and the most recent failure time for component % in the original
time domain, respectively. Let b,(f) denote the age of component k in the k"
transformed time domain. When the i system failure occurs at time point ¢,, the failed
component can be treated as perfectly replaced in the corresponding transformed time
domain according to the properties of renewal process. Hence, b, (t)=A,(#)—A, (%, (?)).
Because components may have a none-zero age right after a system failure and the

corresponding repair, the (i+1)" latent age to failure of component k in the k"

transformed time domain, denoted by V, should be larger than b, (ti*), ie.,

J+l 0

Viin >b, (tf), Vk e{l,..,K}. As a result, the random vector V. =[V,

Li+lo°"*

’VK,m]I are
following a truncated distribution of F conditional on the vector of [, (t;),...,bK (t;r )]T.

It can be seen that the partially perfect repair model is a special case of the general CTP

model, when the trend function is the identity function, i.e., A, (¥)=¢.
3.2.3 Parametric Forms

The proposed copula-based TRP model is determined by the trend function and the

joint distribution F'. In this research, the copula functions are used to build the joint
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distribution F' based on the marginal distributions. Thus, the model parameters include

those from the trend function, the marginal distribution, and the copula function.
3.2.3.1 Trend Function

The power law relationship, which is generally used in the trend function of the TRP
model, is also used in the multiple transformation procedure. In particular, the power law

intensity function A4, (-) for failure type £ has the following form:

B -1
460, )= ﬁ(ﬂ (24)

where 0, , =[B,,n,] is the parameter vector of intensity function A4, (). We use

0, = {91’ PPTE A} to denote the parameters in all trend functions.

3.2.3.2 Renewal Distribution

We choose Weibull distribution (2) as the marginal distribution of the joint
distribution F . However, other distributions can also be applied in the model. The joint
distribution is constructed by using copula functions that are introduced in section 2.3.2
and 2.3.3.

Similar to the traditional TRP model for single-component systems, in our model the
marginal expectations are restricted to one in order to reduce the degree of freedom of the
model, because if a trend function is multiplied by a constant then we can modify the

corresponding marginal distribution accordingly by scaling the time. In practice, we add a
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constraint that A, -I'l+1/x,)=Lk=1,..,K, where I'(:) isthe gamma function.

3.2.4 Parameter Estimation and Statistical Inference

3.2.4.1 Construction of Likelihood Function

The maximum likelihood (ML) approach is used to estimate the model parameters,
including those in the joint distribution and those in the trend functions. To implement the

ML approach, the likelihood function is firstly calculated.

Let 7 = {(Tl,Al),...,(T A Nm)} , which contains all the paired failure times and

N()?
failure types until, but not include, time 7. Thus, the whole dataset can be denoted by

F,=F_U{(z,0)} . Given the failure data set F , the likelihood function can be

decomposed according to the conditional probability as follows:
N(r)+1

co|r)=11 £ (25)

where L denotes the conditional likelihood function of failure ; given all previous

failures. The parameter set 6 ={0,,0,.} denotes all parameters in our model, where 0,
and 0, are parameters in trend functions and those in joint distributions, which are

defined in Section 3.2.3. Specifically,

Pr(7; =t,,A, =9,) fori=1
L =<PuT =t,A =6,|T, =t,,A,=6;;j=1,...,i—1) for i=2,..,N(7). (26)

J

Pr(T; =7,A,=0[T,=t,,A;=6,;j=1,...,N(7)) for i = N(7) +1

J

In equation (26), we slightly abuse the notation of Pr(X =x). Theoretically,
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Pr(X =x) is zero when X 1is a continuous random variable. Here we interpret
Pr(X =x) as Pr(x <X <x+dx)= f(x)dx, which is proportional to the density f(x).
For convenience of notation, we ignore dx in the likelihood functions.

Due to the cumulative effect of imperfect repair and component failure dependency,
L, in (26) is difficult to be calculated in the original time domain as it dependents on the
entire failure history. To overcome this difficulty, we calculate the likelihood function in
the transformed time domains, in which the cumulative effects of imperfect repair are
eliminated so that £ only depends on the most recent components’ failures. However, it
needs to be noted that the likelihood function in (26) is constrained by the sequence of the
failures happened in the original time domain. This constraint needs to be taken into
account in the transformed domains correspondingly.

The following Proposition 3 shows the calculation of £, in the transformed time
domains. The detailed proof of Proposition 3 is available in Appendix 3.
Proposition 3: the conditional likelihood function of failure i given all previous failures,

i.e., L ,1is given as follows,

1

vy, V,._W,,,,...,b,((,,ﬂ'}iﬁf “ @7)
i S[b,(t ), b ()]

{ OS5 Vs 07 15 Vi)
L =

where S(-) denotes the survival function of V,; 4, (z) is the derivative of trend

function that is used to transform the probability density from the original time domain to
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a transformed domain; and b, (1)=A,(#)— A, (7, (?)).

When i=N(z)+1, as there is no failure observed from ¢, to the predetermined

ending time 7 , the conditional probability can be calculated as:

s SIh@e b @]
O TS 1 bl T

(28)

3.2.4.2 Maximization of Likelihood Function

Model parameters can be estimated by maximizing the likelihood function obtained
in the previous subsection. In practice, however, several issues need to be addressed.

When the Gaussian copula is used, two constraints exist: (a) the covariance matrix
needs to be positive definite; and (b) the covariance matrix is equal to its correlation
matrix. Constraint (b) is satisfied by directly fixing the diagonal elements of the
covariance matrix as one. To satisfy constraint (a), we apply the nearest correlation
matrix method (Higham 2002). Specifically, at each iteration of the optimization process,
the estimated correlation matrix is approximated by the nearest correlation matrix that is
positive definite. In practice, the correlation matrix only needs to be approximated by the
nearest correlation matrix at the first several iterations. After a number of iterations, the
output correlation matrix will automatically become positive definite as the estimated
correlation matrix converge to the real correlation matrix.

The first order derivative of the survival function in (27) needs to be evaluated many
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times during the process of optimizing the likelihood function. In order to speed up the
parameter estimation process, we evaluate the first order derivative of survival function

of Gaussian copula as follows:

_OS(Vses Vi eens Vi)
W,

:fk(Vk,i)SNormal(yl’”"yj""’yK);j # k (29)

where  f,(v,,) 1is the pdf of random variable v, ;. In this paper, we consider f, (v, ,)

as Weibull marginal distribution. However, equation (29) still holds for other marginal
distributions. Here, S,,,,.,() 1is the survival function of a K -1 dimensional

multivariate normal, and y, = ®'(u,), where u; denotes the cumulative density of the
™ marginal. The proof of (29) is given in Appendix 4.

Under a large-sample assumption, the ML estimate 0 is asymptotically normally
distributed based on ML theory (Casella and Berger 2001). Thus, the asymptotic

A

covariance X, for ® can be calculated from the observed Fisher information matrix
I(é), ie., )iézl(é)’l, where I(0) is the negative of the Hessian matrix H(0)

_ 0’ log(£(8))

evaluated at 0=0 ,ie., I(é) = T
0000

0=0
3.2.5 Statistical Hypothesis Test

Dependency information of different component failures is important for the

maintenance of complex systems and their design. In addition, distinguishing subsets of
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components which fail independently can simplify the reliability model and efficiently
reduce the parameter dimension.

In this section, we propose hypothesis testing procedures to determine the
dependency among different component failures based on the proposed model. The

likelihood ratio test statistic is calculated as follows,

| sup{L,}
D=-2 1n{—sup{£f}j (30)

where £ indicates the likelihood values for the null model; and L, indicates the
likelihood values for the full model that includes both the null and the alternative models.

The likelihood ratio test statistic in (30) follows a x> distribution with the degrees
of freedom @; where @ is the difference between the number of parameters in the full
model and that in the null model. The null and alternative hypotheses, in practice, depend
on the specific copula function that is used to construct the reliability model. In this
research, hypothesis tests for statistical model via Clayton copula and that via Gaussian

copula are developed in Sections 3.2.5.1 and 3.2.5.2, respectively.
3.2.5.1 Hypothesis Test for Clayton Copula

When the Clayton copula is selected to construct the reliability model, the overall
dependency among all failure types can be tested using the following hypothesis test.

H : all failure types are independent (31)
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H | : not all failure types are independent.

Hypothesis test (31) can be tested based on the likelihood ratio test statistic that is
defined in (30). In (30), sup{L,} can be obtained by maximizing (26), while sup{L, }
can be obtained by maximizing (26) with a constraint that the association parameter p

is fixed as zero.
3.2.5.2 Hypothesis Test for Gaussian Copula

When the Gaussian copula is selected to construct the reliability model, the pairwise
dependency among all failure types can be tested. The following test is proposed:

H : failure types i, are independent.
(32)
H , : failure types I, are dependent .
Similar to hypothesis test (31), hypothesis test (32) can be tested based on the
likelihood ratio test statistic that is defined in (30). Under this situation, sup{L } can be

obtained by maximizing (26), while sup{{ } can be obtained by maximizing (26) with

a constraint that the correlation for stations i,/ in the Gaussian copula is fixed as zero.
3.2.6 Simulation Study

A comprehensive simulation study is conducted to verify the developed model. We
consider five scenarios. Scenario I-IV are used to examine the effect of different copula

functions, different degree of dependency, different marginal distributions, and different
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trend functions, respectively; while Scenario V is used to verify the parameter estimation
method. To keep the setting simple, we consider a two-component system for Scenario
I-IV and a three-component system for Scenario V. For each scenario, the failure data are
simulated based on the proposed CTP reliability model. The detailed procedure for data

simulation is described in Appendix 5.

3.2.6.1 Parameter Setting

1) Scenario I: examine the effect of form of copula.

We use the Weibull marginal distribution and the power law trend function with
increasing trend. We consider two copula functions with moderate dependency: Gaussian
copula and Clayton copula. The parameters of the copula functions are chosen such that
the copula functions have the same overall dependency. When the Gaussian and Clayton

copulas are chosen, the parameters are listed in Table 5 and Table 6, respectively.

Table 5. Parameter setting in simulation Scenario I (Gaussian copula)

Joint distribution

Trend functi
rend function (Gaussian copula + Weibull marginal)

Component Corrolati
orrelation
n K (sh A le) | M
B (shape) | a (scale) | Mean atrix
1 1.200 1.000 2.000 1.128 0 1.000 0.500
2 1.200 1.000 2.000 1.128 0 0.500 1.000
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Table 6. Parameter setting in simulation Scenario I (Clayton copula)

) Joint distribution
Trend function ) )
(Clayton copula + Weibull marginal)
Component Association
n K (sh A 1
b (shape) (scale) parameter
1 1.200 1.000 2.000 1.128
1.000
2 1.200 1.000 2.000 1.128

2) Scenario II: examine the effect of dependency in copula.

We use the Weibull marginal distribution, power law trend function with increasing
trend, and the Gaussian copula. By choosing different values of the copula, we consider
three situations: component failure independency, moderate failure dependency, and
strong failure dependency. For the moderate dependency case, the simulation parameters
setting are the same as listed in Table 5. For independency and the strong dependency
cases, we set the values of the correlation coefficients to be 0 and 0.9, respectively, while
all other parameters are the same as those in Table 1.

3) Scenario III: Examine the effect of marginal distribution:

We use the power law trend function with increasing trend and Gaussian copula. We
consider two marginal distributions: the Weibull and the lognormal distribution. For the
Weibull case, the parameters are the same as listed in Table 5. The parameters for the

lognormal distribution case are listed in Table 7.
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Table 7. Parameter setting in simulation Scenario III (lognormal marginal)

) Joint distribution
Trend function ) )
(Gaussian copula + lognormal marginal)
Component
B n n 6 | Mean | Correlation matrix
1 1.200 1.000 | -0.125 | 0.500 0 1.000 0.500
2 1.200 1.000 | -0.125 | 0.500 0 0.500 1.000

4) Scenario I'V: examine the effect of trend function:

We use the Weibull marginal distribution and Gaussian copula function. We consider
three situations of the power law trend function: increasing trend, constant, or decreasing
trend. For increasing trend function case, the parameters are the same as those in Table 5.
For constant and decreasing trend functions, we set p=[1.0,1.0] and B=[0.8,0.8],
respectively, while all the other parameters are the same as those in Table 1.

5) Scenario V: validate the parameter estimation method:

We use the Weibull marginal distribution, Gaussian copula function, and the power

law trend function with increasing trend. A three-component system is considered, and

the parameters are given in Table 8.
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Table 8. Parameter setting in simulation Scenario V

Trend function Joint distribution
(Gaussian copula + Weibull marginal)
Component
B n K (shape) | A (scale) | Mean Correlation matrix
1 1.200 1.000 2.000 1.128 0 1.000 0.100 0.400
1.200 1.000 2.000 1.128 0 0.100 1.000 0.800
3 1.200 1.000 2.000 1.128 0 0.400 0.800 1.000

3.2.6.2 Parameter Estimation

In the simulation study, we vary the value of stopping time 7 to obtain different
values of the expected number of events. We think it is more informative to show the
number of events, instead of the value of 7. We consider four different numbers of
events for each scenario, i.e., 100, 200, 500 and 1000 respectively.

To evaluate the performance of the parameter estimation method, we calculate both
the MSEs of estimators and the coverage probabilities for the 95% confidence intervals
based on 1000 replicates under each parameter setting. Fig. 8 — Fig. 15 plot the MSEs
(left) and coverage probabilities (right). From Fig. 8 - Fig. 15, we can see that when the
sample size is large enough, the MSEs are approaching to zero, and the coverage
probabilities of 95% confidence intervals for the unknown parameters are approaching

95% . Thus, the estimators of the parameters perform well.
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Scenario 1: Clayton copula Scenario 1: Clayton copula
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Fig. 8. Simulation results for scenario 1 with Clayton copula
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Fig. 9. Simulation results for scenario 1 with Gaussian copula
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Fig. 10. Simulation results for scenario 2 with independent failures

Scenario 2: high dependence 0.9

e Py
o= By
SA My
-+ M2
-X-- Kq
SO K2
v P

200 400 600 800 1000

Number of events in each replicate

Coverage probability

1.00

0.95

0.90

0.85

0.80

Scenario 2: high dependence 0.9

/ -A- My
v - M2
-X-- Kyq
-0 K2
. P
T T T T T
200 400 600 800 1000

Number of events in each replicate

Fig. 11. Simulation results for scenario 2 with high dependency
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Scenario 3: Lognormal marginal Scenario 3: Lognormal marginal
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Fig. 12. Simulation results for scenario 3 with lognormal marginal
Scenario 4: constant trend function Scenario 4: constant trend function
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Fig. 13. Simulation results for scenario 4 with constant trend function
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Scenario 4: decreasing trend function
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Fig. 15. Simulation results for scenario 5 with 3 stations

3.2.6.3 Case Study

In this case study, we apply the proposed CTP model for the assembling cell data. In

addition to the two stations’ failure history data used in section 3.1.6, we further another
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stations’ failure history. And these three stations are denoted by stations A, B, and C in

this section.

9 )
© O Station A
A Station B
+ Station C o
o 3 8
p &
S £
= ANo
© A, 7O
N o §O
5 ¢ 5,3
[ §o S
(]
o) % + +
o |
E = 48 F
c K i
() qgﬁ +t
> o5 +
— o _| & A ° [¢] $
L o N ++
> A o) —+
E £ § L +F
3 +
> A R +
O e- FNE:
A&
A
P
o +
T T T T
0 2000 4000 6000

time /hours

Fig. 16. Failure data from stations A, B and C

We first apply the developed method to the three-station assembling process. The
overall likelihood is obtained by substituting (27) and (28) into (26). The parameters are
estimated by maximizing the likelihood function. When applying the Clayton copula, the

estimated parameters and the standard errors are listed in the following Table 9.
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Table 9. Parameter estimates and standard errors (values in the bracket) when
choosing the Clayton copula

Trend function Joint distribution
failure type A N R R Association
ﬁ 1 K A parameter p
A 1.17(0.27) 254.73(208.22) | 0.64(0.07) | 0.72(0.09)
B 1.22(0.32) 387.44(312.43) | 0.52(0.07) | 0.54(0.12) 0.0001(0.003)
C 0.98(0.23) 223.27(190.84) | 0.74(0.11) | 0.83(0.10)

When applying the Gaussian copula to obtain the joint distribution, the estimated

parameters and the corresponding standard errors are listed in Table 10.

Table 10. Parameter estimates and standard errors (values in the bracket) when
choosing the Gaussian copula

failure Trend function Joint distribution

type - . ) . .
P n K A z

A 1.26(0.29) | 192.24(160.78) | 0.53(0.08) | 0.56(0.14) | 1.00 0.11(0.17)  0.40(0.13)
B 1.24(0.31) | 348.52(301.17) | 0.50(0.08) | 0.50(0.15) | - 1.00 0.01(0.23)

C 1.03(0.27) 208.62(179.38) 0.69(0.12) 0.78(0.14) - - 1.00

Hypothesis tests are applied in the case study to examine the failure dependency
structure of the stations. When applying hypothesis test (31) to test the overall failure
dependency, sup{L,} equals -768.4394 and sup{L,} equals —768.4388. Based
on (30), test statistic Dis calculated as 0.001, As D follows a chi-square distribution

with degree of freedom, 10-9 =1, the p-value is obtained as 0.97. Thus, H, in
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hypothesis test (31) cannot be rejected, which indicates that all failure types are
independent.

When applying hypothesis test (32) on the case study to test the pairwise dependency,
Table 11 lists the maximum log-likelihood values for the full model and those for the null
model. Based on (30), test statistics D are calculated, and the corresponding p-values

are listed in Table 12.

Table 11. Maximum log-likelihood values for pair-wise dependency tests

Null model
Full model
Independent A, B Independent A, C Independent B, C
-764.991 -765.183 -767.993 -765.016

Table 12. p-values for dependency test from Gaussian copula

Station A B C
A - 0.54 0.01
B - - 0.82
C - - -

From Table 12, it can be seen that Stations (A, B) and Stations (B, C) are independent
while Stations (A, C) are dependent. By consulting the process engineers, it is found that
the same part of the working piece is processed in both stations A and C. As the tools in
station A degrades, the assembled part, called part I, tends to have a large deviation to the

desired position. When the working piece reaches station C, as the assembled part contact
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part I, the large position deviation of part I can apply an undesired force or vibration to
the assembling tool in station C, which accelerates its degeneration.

By comparing the log-likelihood values in Table 11, we can see there is significant
improvement when considering the station failure dependency. However, the reliability
model via the Clayton copula shows overall station failure dependency. This can be
explained as two out of three pairs’ stations show independency in the reliability model
via the Gaussian copula. In practice, when the pairwise dependency is more interesting,

Gaussian copula is preferred rather than Clayton copula to construct the reliability model.

3.3 Conclusion

In this chapter, two reliability models for multi-component systems subject to
competing risks considering imperfect repair conditions are proposed based on the
partially perfect repair model proposed in CHAPTER 2.

First, we initially propose a generalized dependent latent age model for repairable
multi-component systems under dependent competing risks. In the proposed model, after
an imperfect repair the initial ages of components change so that the new latent ages to
failure follow a truncated joint distribution conditional on the initial ages. The
dependency of component failures is then captured by the joint distribution which can be

constructed via copula functions. In the meanwhile, the imperfect repairs are quantified
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by the repair effectiveness factors. The parameters in the proposed model are estimated
using the MLE method.

Second, a CTP model which is an extension of traditional trend-renewal process
model from single-component system to multi-component systems, to deal with
imperfect component repair from perfect to minimal, and to capture the dependency
among different failure types. Specifically, we extend the TRP model for
single-component systems to competing-risk systems by transforming original failure
times into new time domains for each component respectively. Then, the dependency of
different component failures is captured by a joint distribution established from marginal
in the transformed time domains. The model parameters are estimated using the ML
method. The dependency is further examined by the suggested hypothesis tests.

For both proposed reliability models, simulation studies and case studies are
conducted for verification and illustration.

The presented GDLA model has been accepted for publication (Zhang and Yang

2014).



62

CHAPTER 4. INSPECTION-BASED OPTIMAL MAINTENANCE PLANNING
4.1 Developed Maintenance Policies

Based on the GDLA reliability model proposed in section 3.1, we develop
inspection-based maintenance policies at both the system level (MP I) and the component
level (MP II) for repairable multi-component systems under dependent competing risks.
Inspection-based maintenance is a commonly used maintenance model in the literature
(Nakagawa 1984, Scarf 1997, Chen, Chen, et al. 2003, Wang, Chu, et al. 2009, Wang and
Pham 2011). Under an inspection-based maintenance policy, replacement can be
implemented only after the detection of a failure upon inspections. Specifically,
periodical inspections are scheduled at discrete times iw;i=1,...,n in the developed
policies. We assume the time of inspection is negligible and all failures can be detected
by inspections correctly.

The developed MP I assumes that once a failure is detected the entire system will be
replaced perfectly. In contrast, only the failed component will be repaired imperfectly
with certain repair effectiveness factor once a failure is detected in MP II. We assume the
repair effectiveness factor is fixed during the entire operation period. Fig. 17 illustrates
how we implement MP I (left) and MP II (right) based on the GDLA model for a simple

two-component system. The entire system is immediately replaced once failures are
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detected on inspections at Fig. 17 (left), and the ages of both components in the renewed
system return to zero. At Fig. 17 (right), only the component with a detected failure is
imperfectly repaired and its initial age is reduced according to the repair effectiveness

factor.
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VA 21
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System >
t,2)20 ++++e 0 ) o (1,,2) 20 +oeer

System o -
0 (tl > 1) w

Fig. 17. MP I (left) and MP II (right) for a two-component system
4.2 Optimization of Maintenance Policies

We use the average long run cost rate denoted by (@) as the maintenance planning
criteria, since it is generally used in the literature (Yeh 1988, Grall, Dieulle, et al. 2002, Li
and Pham 2005). The objective of maintenance planning is to find the optimal inspection
interval @, so that the average long run cost rate is minimized. Let C(¢) denote the

cumulative maintenance cost until time . The average long run cost rate can be

calculated as 7(w) = lim{E [C (t)] / t} . The costs incurred in periodic inspections include
—



64

the single inspection cost C,, the downtime cost per unit time C,, and the repair cost
Cy, for component /;/=1,...,K . The repair cost C,,=C, ,+C,,, where C, , is the
material cost and C,, is the labor cost. For MP I, C,,,=C,, where C, is the cost of a
new component /. For MP II, the material cost depends on both the price of a new
component and the repair effectiveness factor according to the relation C,,, =(1-g,)-C,.
We also assume the labor cost does not change with respect to different repair
effectiveness factors. In addition, we assume the repair cost C, for the entire system

. . . K
equals the summation of costs to repair each component, i.e., C, = . Cy, -
4.2.1 Optimization of MP I

Under MP 1, the entire system will be replaced once a failure is detected on
inspections. Thus, the renewal process can be used to model the failure and maintenance
process (Pham and Wang 1996, Li and Pham 2005, Ross 2006). According to the renewal

theory, the average long run cost rate is calculated as:

E(C)
E(L)

where L is the length of a renewal cycle which is defined as time interval from the

r(w) = }i_{g{E[C(t)]/t} = (33)
beginning to the first replacement or the time interval between two consecutive system
replacements; C, 1is the overall maintenance cost in one renewal cycle; and E(L) and

E(C,) denote the expectation of L and C, respectively.
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As the system can only be replaced on inspections, the length of a renewal cycle L
has to be iw;i=1,2,.... Let E(N,) denote the expected number of inspections in one
renewal cycle; then E(L)=w-E(N,). Generally the number of inspections i required
in a renewal cycle is constrained by (i—-1)w<T , <iw, where T is the inter-arrival
time between a replacement and the next failure, which was defined in Section 2.4. We

calculate the expected number of inspections required in one renewal cycle as follows:

E(N,):gi-Pr(N, =)

Pr((i-Dw<T,, <io) (34)

[me (i0)-F, ((i—l)a))]

>
i=l
20
i=1
where F, (1)=1-R(t|v,(1,)=0,...,v, (1) =0) can be calculated from (23). Based on

(34), the expected length of a renewal cycle is obtained as:

E(L)=Yio| F,, (i0)-F, ((-Do)] . (35)

||||||||||

Given the inspection number i in one renewal cycle, the downtime 77 equals
io—T . . Hence the expected downtime in one renewal cycle can be calculated as

follows:
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la) T i)-Pr(( l)a)<T <la))

mm min

MS

‘§ oy ey [ )P )]
i j io—1t)dF, (f)

Because the maintenance <cost €, in a renewal cycle equals

E(N,)-C,+E(n)-C,+C,, the average long run cost rate in (33) can be rewritten as:

E(CL) _ E(N1)'C1 +E(77)'CD +CR
E(L) E(L) '

lim{ E[C(1)]/1] = (37)
Substituting (34), (35) and (36) into (37), the objective function is further written as a

function of the inspection interval @ as follows:

) il F (io)-F, ((-Do)|-C,+>" j :’_l)w(iw—z) dF, (1)-C,+C, |
> o F_ (i0)-F,_((-Do)]

(38)

It is challenging to obtain a closed-form solution of the optimal inspection interval

@, that can minimize (38). Instead, we calculate the optimal inspection interval of MP 1

using numerical optimization methods, i.e., a simulated annealing method (Van

Laarhoven and Aarts 1987, Bélisle 1992).
4.2.2 Optimization of MP II

Under MP 11, as only the failed component is repaired, the entire system cannot be
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modeled by a regenerative process, making the optimization of MP II more challenging
than that of MP I. To overcome this difficulty, we propose an iterative simulation-based

optimization method as illustrated in Fig. 18.

simulated cost rate 7, (®)

v
Simulation Stochastic

process optimization
A

candidate inspection interval @
Fig. 18. Simulation-based optimization method with stochastic approximation

In the developed simulation-based optimization method, we utilize a simulation
process to approximate the objective function r(w) instead of evaluating the exact
objective function. Specifically, a designed simulation process will simulate the average
cost rate 7,(w) given the inspection interval @ in a finite time horizon [0,7]. When
T goes to infinite, the expectation of the simulated cost rate E[r, (a))] is approaching
the true average long run cost rate 7(®). The simulated cost rate 7,(w) will be fed to an
optimization method as input. Considering that the simulated 7, (@) is a random variable,
a deterministic optimization method cannot be applied. In this research, we apply the
finite difference stochastic approximation (FDSA) algorithm (Fu, Glover, et al. 2005) as

the optimization method to deal with the random input 7,(®). Specifically, the FDSA
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algorithm would stochastically estimate the minimum of a function, which is the
expectation of the simulated cost rates in our problem. The FDSA algorithm will update
the candidate inspection interval and then pass it to the simulation process. Under
appropriate conditions, the FDSA algorithm can convergence in probability (Spall 2003).
This iterative simulation-based optimization process will stop when the maximum
number of iterations is reached.

To simulate the average cost rate (@) on a finite time horizon [0,7] within the
simulation process, first the useful simulation statistics such as the number of
replacements are initialized. Second, a random vector of the dependent latent ages
conditional on their initial ages is generated to determine the next failure time; then the
required number of inspections needed to detect the next failure is calculated. Afterwards,
the initial ages will be updated according to MP II. Step two will be repeated until the
whole time horizon is spanned by inspections. The detailed simulation process is
described in the following algorithm:

Algorithm 1:
1. Let i=0. Initialize the cumulative number of component failures of each component

Ny, =0;/=1,...,K , and the cumulative downtime 7,,=0; set the initial ages
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. . T .
2. Let i=i+1. Generate the latent ages to the i" failure [Zu,...,ZK’[] ~F given

Z,.>v(t,):l=1...K : solve k e N* according to
(k=)o <min(Z,=v, (1), . Zg, —vg (1)) S koo : if
min(Z, —v, ()5 Ze, —ve (64))=Z, = (1) . then Ny, =Np +1
T, =T, +[ko—(Z, v (1,))] , v(t)=2,-q, and

vj(tl.) =vj(ti_l)+(Z,J. —v,(tl._l)),j;tl;

3. Repeat step 2 until Zi kao>T ; and then calculate

r (a))=(ziki~c, 35 Ny -Coy+T, -CD)/T.

An important step in Algorithm 1 is to generate the random latent ages conditional on
the initial ages. When F is chosen as a multivariate lognormal distribution, it can be
conducted by sampling from a multivariate normal distribution (Robert 1995), and then
taking the logarithm of the samples. If F is a general joint distribution constructed by a
Gaussian copula, we developed algorithm 2 to generate the latent ages to failure
conditional on the initial ages, which is given in Appendix 1.

The simulated cost rate obtained from Algorithm 1 is passed on to the FDSA
algorithm. The FDSA algorithm mimics the gradient descent algorithm for deterministic
optimization problems, i.e., during each step the gradient of the objective function is
estimated in order to find the local minimum. Specifically, the iterative procedure of

FDSA algorithm is described in algorithm 3 in Appendix 2.
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4.3 Case Study

In this section, we apply the developed maintenance policies for the two stations in
the assembling cell introduced in section 3.1.6, where the model parameters have been

estimated based on the developed GDLA model.

4.3.1 Optimal Maintenance Policies

The cost parameter setting used in the maintenance planning is listed in Table 13.

Table 13. Cost parameter setting in the maintenance

. Downtime cost per .
Inspection cost . Repair cost of each component
unit time
New component cost Labor cost
C,=$10 C,=5%50
! P Cl = Cz =$80 CL,I = CL,Z =520

1) Optimal solution for MP I:

To minimize the objective function r(®) given in (38), we apply the simulated
annealing method to obtain the optimal inspection interval @,=4.63 and optimal average
long run cost rate r(a)o)z 8.07. The expected number of inspections in one renewal
cycle E(N,) given in (34) equals 12.03, and the expected downtime E (77) given in
(36) equals 2.59.

2) Optimal solution for MP II:
Under most situations including the problem in this case study, only limited number

of repair effectiveness factors can be used for the maintenance. For example, the
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materials or parts used in the repairs for the failed component can have different qualities
due to the manufacturers and prices, which may result in different levels of repair
effectiveness. In the case study, both the estimated repair effectiveness factors for the two
components are greatly close to zero. Thus, we select zero as one level of repair
effectiveness. In addition 0.2 is selected as another level which corresponds to imperfect
repair. In total, we have two levels of repair effectiveness and four combinations of these
two levels for the two-component system.

To obtain the optimal solution for MP II, we apply the simulation-based optimization
method on a finite time horizon [0, 50000]. Table 14 lists the optimal inspection intervals
and cost rates obtained for four combinations of repair effectiveness, which are optimized

by using the simulation-based optimization approach.

Table 14. Optimal MP II results with four combinations of repair effectiveness levels

Repair effectiveness
P 3,=0,q,=0 | ¢=04=02 | ¢=02¢=0 | ¢=02¢,=02

factors
timal 1 ti
Op 1rr%a mspection 6.47 6.91 7.41 7.70
interval
Optimal 1
ptimal average long run $4.06 $3.73 $3.41 $3.21

cost rate

Comparing with the optimal cost rate of MP I, MP II that considers different repair
effectiveness factors has result of smaller average long run cost rates. Within these four

combinations of repair effectiveness in MP 1II, [g,,¢,] =[0.2,0.2] leads to smallest

optimal average long run cost rate.
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4.3.2 Comparison of Maintenance Planning Results with and without Considering
Failure Dependency

In order to verify the necessity of considering failure dependency in the proposed
method, we apply the MP I for a two-component system. First we simulate 1000 failure
events using the parameters which are near the estimated parameters in the case study.
Then the parameters of the proposed model are estimated with and without failure
dependency. When we estimate parameters without dependency, the correlation
coefficient of the Gaussian copula is fixed to zero. The real parameters used in the data

simulation and estimated parameters with and without dependency are listed in Table 15.

Table 15. Real and estimated parameters with and without considering failure

dependency
Estimated Estimated
Real parameters ) )
. ; parameters with parameters without
used in simulation i ;
failure dependency | failure dependency
Shape ’ ' '
P [0.55 0.70] [0.57 0.66] [0.69 0.80]
parameters
Scale ’ ' '
parameters [50 140] [52 124] [119 264]
C"”e?ati"f“ 1.00  0.40 1.00 0.41 1.00  0.00
t
et o 0.40 1.00 0.41 1.00 0.00 1.00
Gaussian copula

We apply MP I for these three sets of parameters and obtain the optimal inspection

intervals listed in Table 16.
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Table 16. Optimal inspection intervals for different parameter sets

For estimated For estimated
For real parameters . .
. ) parameters with parameters without
used in simulation , )
failure dependency | failure dependency

Optimal
Inspection 4.65 4.59 5.82
interval

From Table 16, the optimized inspection interval that was obtained using parameters
estimated with failure dependency is more close to the optimal interval obtained using
real parameters. When the inspection intervals are 4.59 and 5.82, the corresponding cost
rates calculated from real parameters used in simulation equal $8.01 and $8.11,
respectively. Thus, by considering the failure dependency, the optimal maintenance
planning is more economical than that without considering failure dependency based on

the proposed methodology.

4.4 Conclusion

Based on the proposed GDLA model in section 3.1, we develop both system level
and component level inspection-based maintenance policies for multi-component systems
under dependent competing risks. The developed maintenance policies utilize the
dependency information and repair effectiveness factors estimated from the reliability
model. An analytical optimization method is given using the renewal theory for the

system level maintenance policy. Due to the complex characteristics of both the failure
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process and maintenance process, we propose a simulation-based optimization approach
to find the optimal solution for component level maintenance policy. A case study is
conducted to apply the proposed methodology to a multi-component system in an
automobile power-train plant.

As conducted in the paper, the first concern to select the appropriate maintenance
policy from the two proposed policies is the average long run cost rate. Thus, the
maintenance decision maker would choose the best maintenance policy which provides
lower average long run cost rate. For the case study, MP Il is better than MP I regarding
the average long run cost rate. However, under some specific situations the
multi-component system has structural correlation. As a result it would be much more
difficult to replace a single component rather than to replace the entire system. A simple
example is the union formed by a bicycle chain and a cassette, which should always be
replaced as an entirety (Nicolai and Dekker 2008).

The presented methodology in this Chapter has been accepted for publication (Zhang

and Yang 2014).



75

CHAPTER S. GENERAL CONCLUSIONS

In this dissertation, we developed general statistical methodology for reliability
modelling of multi-component systems subject to dependent competing risks with
different repair conditions. Based on one of the proposed model, optimal maintenance
planning is also studied.

In CHAPTER 2, a general statistical reliability model is proposed for repairable
multi-component systems considering statistical dependent competing risks under a
partially perfect repair assumption. Maximum likelihood estimation of model parameters
is developed. Based on the proposed reliability model, hypothesis tests for components’
failure dependency are established.

In CHAPTER 3, we proposed two statistical reliability models, i.e., GDLA model
and CTP model for repairable multi-component systems considering both statistical
dependent competing risks and the generally imperfect repair conditions. For both models,
maximum likelihood estimation methods are developed to estimate the model parameters.
Simulation studies are conducted to assess the performance of both models. And case
studies using failure history data collected from an automobile plant are given for
illustration. It is worthwhile to note that the partially perfect reliability model proposed in

CHAPTER 2 can be treated as extreme cases for both GDLA model and CTP model.
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In CHAPTER 4, based on the proposed GDLA reliability model, both system and
component level periodic inspection-based maintenance polices are considered for
repairable multi-component systems that are subject to dependent competing risks. Under
the system level maintenance policy, the entire system is restored to as good as new once
a failure is detected. While under the component level maintenance policy, only the failed
component is repaired imperfectly. We obtain the optimal solution of the system level
policy by using renewal theory. The optimal solution of the component level policy,
however, cannot be obtained analytically, due to its complex failure and repair
characteristics. We developed a simulation-based optimization approach with stochastic
approximation to solve the optimization problem for the component level policy. The
developed methods are illustrated by using a cylinder head assembling cell that consists

of multiple stations.
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APPENDIX 1. Generation of Latent Ages to Failure from Truncated Distribution
Constructed via Gaussian Copula

Conditional on the initial ages [v, (ti_1 ),. co Vi (ti_1 )]T, the following algorithm can be
used to generate the latent ages to failure [ZU,. A K’i]T from joint distribution F .
Algorithm 2:

T
set [Zy0-nZg, | =0;
while 3/ e{l,....K},Z,, <v,(t,):
generate [U,,...,U,]" from N(0,X);
vie{l,...K},p,=®U,),Z,=F'(p,.9,);
end
T

return [Zlﬁi,...,ZK,i]
where X is the correlation matrix in the Gaussian copula function; ®(-) denotes the
standard normal cdf; and F~'(-) denotes the inverse cdf of the marginal distribution for

component [ with parameters 0,.
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APPENDIX 2. FDSA Algorithm Applied in MP II for Optimization
Algorithm 3:
1. Initialize @,;
2. Calculate the estimate of the gradient of E[r, (&,)], i.e.,

r (@, +c/i+1y )=r,(&,—c/+1))

gAi( Ai):

2¢/(i+1)
and update @ according to
. . a A
o, =0 -———3¢ (o
i+1 i (i+1+A)a g;( 1)

3. Repeat step 2 until the maximum number of iterations is reached
where a,A,c,a and y are constants, which should be selected to satisfy certain

conditions so that @,, will almost surely converge to the optimal solution (Spall 2003).
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APPENDIX 3. Proof of Proposition 3

Note that V,, is defined as the latent age to failure of component k after the

(i—1)" failures in the k" transformed time domain. Let W, be the corresponding

random variable for the age to failure of component k after the (i—1)" failure in the

original time domain. Suppose that the i system failure occurs at time point ¢, in the

original time domain. Because 7 (¢,) is left continuous, 7, (¢,)=r(¢",). Thus,

Vk,i =A, [VV/” +r.(E)]= A [ ()] = Ak[VVk,i +7 (t:1)] - Al (titl)]

As b (t.)=A,(t)—A,[r(t)],and b, (¢) isalso left continuous. Thus,

by (ti+—1) =A,[aq, (ti+—1) +r (ti+—l N=Alr (titl N=A () = A (@)

Note that

W, >a,@)=oW , +r@)>a,)+n(t)
S MW, +1.@)]> Ala () +1,.(2)]
S AW+ 1)1 = A (01> Ala () + 7. ()] = Ay [1.(1)]
SV >b(t).

Similarly,

W..>a, (t )=V, >b ().

In addition,

39)

(40)
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W, =a@)=at)<W, <a/(t)+dt
< a (t)+n@) < W, +r.(t) <a.(t)+r@t)+dt

< Ala () +7.()]< Ak[VVk,i +r ()] <Ay la (@) +r(5) +dr]
< Ak[ak(ti)+rk (tl.)]—Ak[l"k (ti)] < Ak[Wk,i +7 (ll.)]—Ak[l"k (ti)]

<A la,(t)+r@)+dt]— A [r @)]

< b () <V, <A fa (6)+1, @)1+ Ala, (&) +r.(4)]dt = A [, ()]

& b(t) <V, <b,(t,)+ A, (1,)d1.

From (26), we have

L =Pl =t,A=6,|T,=t;,A,=6;j=1-,i-1) ;i=1--,N(7)
=PI, , = a, ()W, > a ()] % 6, | Wy, > a, (1 )ik =1+, K]
Pr[W, , = a, (1,1, > a,(t,);1 # 5]
TP, >a (t])k =1 K]

Substituting (39), (40), and (41) into (42), we obtain

o PrlBy ()< Vy, <by () + Ay (4)de V> (01 %0

" PV, >b(t )k =1, K]

aS(vl,i’“.’Vb‘[,i"..’vK’i) /1 (t)
ov, . v (b @] [0
i ol

SUb (")), b (8]

where v, =(v,,...,v,)";and S(-) denotes the survival function of V.

When i=N(7)+1, the conditional probability can be calculated as:

Ly =Py, =0,A,=0|T, =t,,A, =5 j=1,-,N(7)]

(z)

:Pr{Wk,N(r) >a (7);k =L, K|W vy >ak[t;(r)];k:1’...’K} '

Substituting (39) and (40) into (43), we obtain

(41)

(42)

(43)
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PUV, v > b (0)sk =1, K]

N(r)+Hl
Pr{Vk,N(T) > bk[t;(r)];k =1,---,K}

_ S(bl(z-)a"':bK(T))
S(bl[t;/(r)]»' a abK[t;/(r)]) '
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APPENDIX 4. Proof of Equation 29

We use y, to denote @ '(u,),ie., u,=®d(y,). Based on (5), the Gaussian copula

function can be written as Cg,,. (u, ,...,ux ) = Py (,,...,7) . Thus, the pdf of Gaussian

copula becomes:

K
fGauss(Vl’---,VK;eF): 0 CGWSS (dﬂ/l ' d}/Kj

0y,..07 \ dv,  dv,
_ dy, dyg
¢(71,.--,7K)(dvl --~—de ,

where @) denotes the pdf of multivariate normal distribution ®, . In particular, we use
2, and X, to denote the covariance of [y,,...,7,,...y],j#i and the covariance
between [y,,....7,,....7c]j#i and y,, respectively. Here [y,,....y ...y ] j#i 1is the
vector without y, . By using the result in Eaton (1983), the pdf of multivariate normal
distribution can be calculated by conditional probability, ie.,
G s 7 )= &) h(Fysees¥ 1aes ¥ )i Jj # 0, Where 2() denotes the standard normal pdf,

and /() denotes a Kk -1 dimensional multivariate normal with a mean vector of

.., and a covariance vector of X, —X ,-X/,. Thus, the first order partial derivative

of the survival function becomes:
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Gawss Visea Vi3 O vy dvy s j#

a9 Wy av dve;j=i
dv,  dvy ’

_ dy * dy, d]/_. dyy C s
_{g(yi)d—vl}{f I J. {h(}/l, ¥ joe ,}/K)[d1 mdv; mde avy..dv;.dv; j#i

= g(%)(j; S )}{f o TR A L2 dmﬁl}

g(%)h(%, oV o w)(

Il

C—y
~ 8
,_/% ~—

{20 (&UD)" O} Sy (s 75700 S #1
= fi(vi)SNormal(}/l""’ jocte }/K)’] #1i

where f;(-) denotes the i’ marginal distribution in the Gaussian copula;

S vomat (V1327 js-s Vi )3 J # 5 18 the survival function of a multivariate normal distribution

whose pdfis i(y,,....y, ..y )ij# i
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APPENDIX 5. Procedure to Simulate the Failure Data of A K -component System
Based on the Proposed CTP Model

In this simulation procedure, we generate the failure data set
{(T;,A),(T,,A,),....(T,,Ay)} ; where N is the total number of failures. We use
.15 1 and T'=[T/,..,T/ 1 to denote the failure times of component
Il 6{1,...,K} in the original time domain and those in the corresponding transformed
time domain, respectively; where 7, denotes the number of failures for component ;. In
addition, we use m;, to denote the number of generated failures of component i. At the
beginning of the simulation procedure, we initialize 79 =0, 7, =0 and m, =0 for all

i . The detailed simulation procedure is listed as follows:

Step 1. Generate the first failure event:

a. Generate the first latent age vector Vv =[V, ..V, ] from the joint
distribution constructed by copula function, which is in the transformed time
domain.

b. Determine which component contributes to the first failure by transforming
vV, =[V,,...V;, I back to the original time domain. If

A;I(Vi,l)=min{A;1(Vu),...,A2(VK’I)} , we update Zj:Ai_l(Vu) ,

T =V, and m,=m;+1, where A;'(-) denotes the inverse of A,(-). Asa

result, (7,,A))=(T,%,1).
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Step 2. Generate the ;" failure event based on the failure history until the (j—1)"
failure:

a. Generate the ;" latent age vector V., =[V,,..Vy,;] from the joint
distribution in the transformed time domain until A’ (K i +];fmi) > T, for
all ;;iedl,...K}.

b I A(Y, +7}fmi):min{Al‘l(Vl,j T, Yo AR (Vi + T )} we  update

0 -1 o -
+T:~,tm’_7 T;,_jZAi ( i,j+7;fmi)9 mj:mj+1’and (Tj,Aj)Z(T;-,j,l)-

Repeat step 2 until all the N failures are generated.
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ABSTRACT

RELIABILITY ANALYSIS AND OPTIMAL MAINTENANCE PLANNING FOR
REPAIRABLE MULTI-COMPONENT SYSTEMS SUBJECT TO DEPENDENT
COMPETING RISKS

by
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May 2015

Advisor: Dr. Qingyu Yang
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Degree: Doctor of Philosophy

Modern engineering systems generally consist of multiple components that interact
in a complex manner. Reliability analysis of multi-component repairable systems plays a
critical role for system safety and cost reduction. Establishing reliability models and
scheduling optimal maintenance plans for multi-component repairable systems, however,
is still a big challenge when considering the dependency of component failures. Existing
models commonly make prior assumptions, without statistical verification, as to whether
different component failures are independent or not. In this dissertation, data-driven
systematic methodologies to characterize component failure dependency of complex
systems are proposed. In CHAPTER 2, a parametric reliability model is proposed to

capture the statistical dependency among different component failures under partially
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perfect repair assumption. Based on the proposed model, statistical hypothesis tests are
developed to test the dependency of component failures. In CHAPTER 3, two reliability
models for multi-component systems with dependent competing risks under imperfect
assumptions are proposed, i.e., generalized dependent latent age model and copula-based
trend-renewal process model. The generalized dependent latent age model generalizes the
partially perfect repair model by involving the extended virtual age concept. And the
copula-based trend renewal process model utilizes multiple trend functions to transform
the failure times from original time domain to a transformed time domain, in which the
repair conditions can be treated as partially perfect. Parameter estimation methods for
both models are developed. In CHAPTER 4, based on the generalized dependent latent
age model, two periodic inspection-based maintenance polices are developed for a
multi-component repairable system subject to dependent competing risks. The first
maintenance policy assumes all the components are restored to as good as new once a
failure detected, i.e., the whole system is replaced. The second maintenance policy
considers the partially perfect repair, i.e., only the failed component can be replaced after
detection of failures. Both the maintenance policies are optimized with the aim to
minimize the expected average maintenance cost per unit time. The developed

methodologies are demonstrated by using applications of real engineering systems.
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