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CHAPTER 1 

INTRODUCTION 

1.1 Long-Term Goals 

Analytical technologies for biological compounds have developed rapidly and 

become essential and indispensable in life science, pharmaceutical chemistry, clinical, 

and health care fields. For example, diseases are driven by molecular modifications in the 

cell, such as some cancers that result from the phosphorylational modification on amino 

acid residues of proteins.
1,2

 Analyses on the cellular levels is therefore important for 

disease diagnoses and treatment. In the real world, analysis of complex materials is 

difficult, mainly due to issues of sensitivity, dynamic range, solubility, and complexity.
 3 

Brain tissue is an example of a complex material. It is composed of lipids, peptides, 

proteins, and carbohydrates, as well as other substances
4,5 

that build up the brain structure 

and maintain brain functions. There are also numerous exogenous species accumulating 

in brain tissue, such as drugs from disease treatment or drug addiction.
6
 In addition to the 

fact that the amount of lipids in cells is overwhelmingly higher than proteins,
4,5 the 

structure diversity of lipids is much more significant than other compounds.
7,8

 Therefore 

the analysis of a compound of interest from a complex environment becomes more 

difficult. 

 A number of analytical technologies have been developed to analyze complex 

biological compounds in order to understand property/function relationships. To name a 

few, separation methods such as gas chromatography, liquid chromatography (LC), and 

thin layer chromatography were developed to separate components from complex 

mixtures, with the separation usually taking minutes to hours.
9,10

 Spectroscopy methods 
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such as ultraviolet-visible absorption spectroscopy is used to detect, identify and quantify 

atoms and molecules, but often lacks sensitivity and specificity.
9
 Nuclear magnetic 

resonance (NMR) spectroscopy elucidates structural information of organic compounds, 

but usually requires milligrams or milliliters of samples.
11

 Immunoassays are commonly 

used in clinical analyses for targeted proteins and have high specificity, but the 

development of antibodies for this purpose is costly and time consuming.
12

 

Mass spectrometry (MS) has a number of advantages for providing molecular 

information relative to other spectroscopic methods, has matched sensitivity and less cost 

for consumables than immunoassays while overcoming problems like cross-reactivity 

with metabolites,
 

and achieving higher speed than traditional separation methods 

applicable for high-throughput analyses.
9- 15  

The disadvantages of MS include the 

relatively costly instrumentation, lack of robustness, and requirement for trained 

operators and expertise.
12,16,17

 Scheme 1.1 lists the challenges that need to be addressed 

to promote MS to have further practical utility, taking clinical analyses as an example.
18

 

Higher sensitivity and dynamic range are required to observe all components from 

complex substrates.
19

 For example, signals from lipids often dominate the mass spectrum, 

while peptides, proteins, and small molecules may not be observable.
20 ,21

 Separation 

technologies prior to MS, e.g. LC-MS, can help to reduce the complexity and improve the 

dynamic range and specificity. Tandem MS with, for example, collision induced 

dissociation (CID) can improve specificity by requiring specific fragmentation transitions.  

This method can also provide structural information for e.g. peptides and drugs.
 22,23

  

Reproducibility and spatial resolution are desired for quantification and exact location, to 

differentiate e.g. the diseased tissue from the healthy area.
24

 Data acquisition of MS for 
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rapid response in, for example, emergency rooms or surgical facilities need to be fast. 

The instrumentation and consumables should be financially affordable and simple to 

use.
12,17

 Therefore, MS has particular value in biological material characterization. 

Scheme 1.1 Technology development needed to expand the use of MS for 

clinical applications [Adopted from Reference 18]. Points highlighted in red 

will be covered in this thesis. 

 

1.2 General Introduction on Mass Spectrometry and Tandem Mass Spectrometry 

The essential components of a mass spectrometer are the ionization source, the mass 

analyzer, and the detector (Scheme 1.2).  Samples can be introduced into the ion source 

by direct sample introduction. Alternatively, complex materials can be passed through 

other separation methods prior to MS and then introduced via the interface, e.g. LC-MS 

to be discussed in Section 1.3.2. Analyte molecules are converted to gas-phase ions in the 

ion source; the ions are subsequently separated in the mass analyzer according to their 

mass-to-charge ratio (m/z) and are detected by the detector. The result is displayed as a 

mass spectrum of m/z versus relative ion intensity. 

Scheme 1.2. Representation of the basic components of a mass spectrometer. 

 

A. Sensitivity and dynamic range: to observe all components (e.g., 

lipids and proteins, hydrophilic and hydrophobic, low and high 

abundance) directly from native and complex environment (e.g., tissue, 

plasma, serum, urine), improvements needed include:

1. Separation: to deal with complexity and isoforms (LC, mass 

resolution, IMS)

2. Specificity: fragmentation (MS/MS: CID, ETD) for confirmation 

and ID (bottom up, top down)

3. Reproducibility: for quantitation

4. Spatial resolution: for location (with and without a laser)

B. Speed: of data acquisition and interpretation

C. Robust, simple and cheap: automation, disposables

Ion 

source

Mass 

analyzer
Detector

Direct 

sample 

introduction

Pre-

separation 

techniques

Data 

system

Mass spectrometer
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Tandem MS is used for the ions of interest to undergo a second or more mass 

spectrometric analysis. The ions at a certain m/z are selected (MS
1
) and fragmented 

intentionally; the fragment ions are separated by the  mass analyzer (MS
2
). This process 

can be repeated several times for MS
n
 analysis. The intentional fragmentation is typically 

achieved by CID, electron-capture dissociation (ECD), or electron-transfer dissociation 

(ETD).
25

 CID employs a collision gas (e.g. N2, He) to collide with the gas-phase analyte 

ions and results in fragmentation. For example, when a peptide ion encounters the 

collision gas, the peptide N-C bonds are cleaved so that smaller peptide fragments are 

analyzed to provide structural information. This is a harsh process that fragile sites, e.g. a 

phosphate group on a peptide, is easily cleaved off; on the contrary, ETD is a softer 

dissociation process that normally retains the phosphate group on the structure.
26

 The 

radial anion of a small molecule, e.g. flouranthene, is generated and reacts with the 

analyte ions. The electron transfers from flouranthene to the analyte ion, and the excess 

energy obtained by the analyte ion leads to fragmentation. CID and ETD are frequently 

used in structural analysis such as peptide sequencing and proteomics.
26

 

This dissertation is focusing on ionization methods, and specifically coupling a novel 

ionization process with different mass analyzers. Therefore, a more detailed description 

of ionization methods and mass analyzers will be provided in the next sections.  

1.3 Ionization for Mass Spectrometry 

Any form of MS analysis can only occur when molecules are efficiently converted to 

gas-phase ions. Various ionization methods have been developed over decades. Early 

invented ionization methods include electron ionization (EI),
27

 chemical ionization 

(CI),
28

 fast atom bombardment (FAB),
29

 secondary ion mass spectrometry (SIMS),
30

 etc. 
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Matrix-assisted laser desorption/ionization (MALDI)
31 , 32

 and electrospray ionization 

(ESI),
33

  developed during the 1980’s, are currently the two most widely used “soft” 

ionization methods in MS and are capable of ionizing non-volatile compounds from 

biological materials. The inventors shared the Nobel Prize in Chemistry in 2002.  This 

section focuses on the principles of operation, sample preparation, fundamental, and 

application aspects of MALDI, ESI, and a few ambient ionization methods. 

1.3.1 Matrix-Assisted Laser Desorption/Ionization (MALDI) 

MALDI was developed as a vacuum ionization method (Scheme 1.3.A) and has been 

extended to atmospheric pressure (AP) (Scheme 1.3.B).  

Scheme 1.3.  Schematic representation of the MALDI process in vacuum (A) and at 

atmospheric pressure (B). 
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1) Vacuum MALDI  

  Traditional MALDI utilizes a ultraviolet (UV) laser in vacuum to ablate the surface 

of matrix:analyte crystals on a target plate in reflection geometry. The ions produced are 

accelerated by the voltage (~20 kV) applied on the target sample plate, and guided by 

focusing lens to the mass analyzer (Scheme 1.3.A). Initially, an inexpensive and smaller 

nitrogen laser was used in MALDI,
30,31

 but the laser repetition and life span is limited.
34

 

The demands of higher repetition rate and longer lifetime lasers in MALDI applications 

such as imaging and high-throughput are fulfilled by neodymium-doped yttrium 

aluminum garnet (Nd:YAG) lasers (wavelength ~355 nm, repetition rate >1000 Hz).
34

 

As can be seen in the scheme above, the particles do not leave the target surface at the 

same time, resulting in time dispersion of ions. Delayed extraction reduces the velocity 

distribution.
35

 Before the extraction voltage is applied, the generated ions first pass 

through a field-free region, and after a short delay (normally below a millisecond), the 

extraction voltage is turned on for subsequent time-of-flight (TOF) analysis. 

Solid organic compounds (shown in Scheme 1.4) are used as traditional UV-MALDI 

matrices. α-Cyano-4-hydroxycinnamic acid (CHCA), 2,5-dihydroxybenzoic acid (2,5-

DHB), and sinapinic acid are commonly used for peptides and proteins, 3-

hydroxypicolinic acid is for oligonucleotides, dithronal for polymers, and 9-

nitroanthracene for fullerenes. The aromatic rings in these MALDI matrices absorb light 

at UV wavelengths. 
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Scheme 1.4. Examples of common MALDI matrices. (A) α-Cyano-4-

hydroxycinnamic acid (CHCA), (B) 2,5-dihydroxybenzoic acid (2,5-DHB), (C) 

sinapinic acid, (D) 3-hydroxypicolinic acid , (E) dithranol, (F) 9-nitroanthracene. 

 

 

Traditional solvent-based MALDI sample preparation uses dried-droplet or layer 

method for sample preparation.
31,32

 Homogenous crystals are ideal for MALDI sample 

preparation to avoid the “hotspot” issue. If the laser beam strikes at the hotspot, more 

ions are generated, thus resulting in poor reproducibility from shot to shot. The analyte 

and matrix should be soluble in respective solvents that are compatible with each other.   

A solvent-free sample preparation method has been reported
36

 as an alternative to 

overcome the difficulties with insolubility of analyte, e.g. with membrane proteins
37

 and 

synthetic polymers.
38

 The matrix powder is mixed with dried analyte at higher molar ratio, 

homogenized and transferred to sample holders by a mini ball mill device.
36,37

 This 

approach overcomes the hurdles of the solubility restrictions for traditional MALDI, and 

in some cases yields even better mass spectra than solvent-based methods,
39,40

 without 

the hotspot issue, but generally with lower sensitivity.
41

 

Photoionization
42

 and cluster models
43

 are the most commonly accepted ion 

formation mechanisms in MALDI.
44

 In the photoionization model, the laser energy is 
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absorbed by the matrix, producing a plume about 10 µm above the sample surface, and 

generating primary ions.  Analyte molecules react with the primary ions in the hot plume 

and become ionized by a charge transfer mechanism. In the cluster model, charged 

matrix/analyte clusters are produced upon laser firing, and the clusters are desolvated to 

produce analyte ions. 

Dominant singly charged ions are formed from the solid state. For larger peptides and 

proteins, multiply charged ions can be produced with the matrix CHCA.
45

 However, the 

ions are metastable and dissociate during travel through the analyzer.
46

 The production of 

singly charged ions simplifies data interpretation in a straight-forward fashion. MALDI is 

commonly coupled with a TOF mass analyzer and will be discussed in more details in 

Section 1.4.1. New developments have involved coupling MALDI to other mass 

analyzers, e.g. quadrupole-TOF for tandem MS,
47

or FT-ICR for ultrahigh mass 

accuracy.
48

 More details on mass analyzer will be introduced in Section 1.4. 

MALDI is applicable to the ionization of a wide range of biological compounds such 

as peptides and proteins, lipids, carbohydrates, oligonucleotides, bacteria, etc., directly 

from solid surfaces.
49 -54

 This merit enables MALDI for mass spectrometric imaging 

applications,
55,56

 which is a technique to visualize the spatial distribution of compounds 

by their m/z values. MALDI imaging can provide spatial information of peptides and 

proteins, lipids, metabolites, etc. directly from surfaces like tissue sections.
55,57,58

  Sample 

preparation is critical in MALDI imaging, especially matrix application to the 

surfaces.
57, 59  

Progress including applying small matrix droplets
60

 and subliming dry 

matrix onto the surfaces
57

 has been made to reduce sample delocalization. The spatial 

resolution achieved by MALDI is typically ≥25 µm.
55

 Development of lasers is also 
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reported to achieve improved spatial resolution. Ablation areas with diameters <10 µm 

can be achieved by sophisticated laser focusing setup
61

 and at the expense of long 

acquisition time.
62

   MALDI imaging not only provides the location of the analyte of 

interest, but also the relative amount by color-coded display. Quantification has been 

reported by spotting internal standard on the tissue sections.
63,64 

2) AP MALDI 

About one decade after the invention of vacuum MALDI, Burlingame and co-workers 

introduced MALDI to be operated at AP (Scheme 1.3 B).
65

 With this configuration, 

common MALDI matrices (Scheme 1.4) and lasers can be used except that the target 

plate and laser ablation take place at AP.
 66

   AP MALDI greatly simplifies the operation 

procedure.
67

 It is “softer” than vacuum MALDI because of the elimination of harsh 

vacuum conditions and lower acceleration voltage (~5 kV).
65

 Galicia et al. have proposed 

laser ablation using transmission geometry to improve laser beam focusing and ion 

transmission.
68

 The ionization efficiency of this approach was reported to be poor. In 

general, the ion efficiency and thus the sensitivity of AP MALDI is lower than vacuum 

MALDI because of the reduced ion transmission from AP to vacuum. It has been 

modeled that 99% of the ions formed are lost in AP MALDI.
69

 

The disadvantages of MALDI mainly include high chemical background resulted 

from the use of matrix in conjunction with a laser,
70

 the production of singly charged ions 

limits the application of high-performance mass spectrometers, the high cost of 

commercial MALDI sources, and not being able to couple to online separation. 

 

 



10 
 

1.3.2 Electrospray Ionization (ESI) 

In contrast to MALDI as a surface ionization method, ESI ionizes analyte from 

solution.
33,71 

Scheme 1.5 presents the ionization process of ESI operating in positive ion 

mode. The analyte solution is sprayed through a metal capillary on which high voltage (a 

few kV) is applied. A “Taylor cone” is formed at the capillary tip and ejects charged 

droplets. The charged droplets undergo solvent evaporation and Coulombic explosion, 

producing bare analyte ions.
33,72

 The mechanisms for ion production currently accepted 

are the ion evaporation
73

 and charge residue models.
74

 The ion evaporation model 

suggests that ions are ejected from evaporating charged droplets.
73

 The charge residue 

model suggests that the solvent evaporates from the charged droplets producing smaller 

charged droplets, leaving bare analyte ions after a few cycles.
74

 The ions are subsequently 

extracted into the inlet of the mass spectrometer where a few volts of extraction voltage is 

applied. Negative ion mode is applicable by switching the potential on the spray capillary 

and extraction cone. Multiply charged ions are dominantly produced (from all but small 

molecules) by ESI that are beneficial for extending the mass range of high-performance 

mass spectrometers
75

 and efficient intentional fragmentation for improved structural 

characterization.
76

  

Scheme 1.5.  Schematic representation of ESI. 
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Because ESI directly ionizes analyte in solutions, it can be interfaced with 

separation techniques such as LC for online separation and analysis. The eluent eluting 

from the LC column is pushed through the electrospray capillary and the resulting gas-

phase ions ions are introduced into the mass spectrometer. This coupling requires the 

solvent of the eluent to be “sprayable”. Proteomics is one of the most important 

applications to which LC-ESI can be applied.
77

 After enzymatic digestion, large proteins 

are converted to peptides and smaller proteins. The peptide/protein mixture is separated 

by LC and then subsequently ionized by ESI. Tandem MS (CID and ETD) are commonly 

used to obtain sequence information. 

Quantification of small molecules is another application typically achieved by LC-

ESI-MS or tandem MS. The calibration curve is usually obtained by injecting a series of 

standard solutions at different concentrations, and the peak area of the ion of interest is 

plotted against concentration.   

In some cases only very limited amounts of samples are available, e.g. a few µg 

protein can be obtained for mammalian proteomics.
78

 LC and ESI
79

 at nanoliter per 

minute flow rates are necessary for better separation and sensitivity when less material is 

consumed.
80

 Ion efficiency is improved by nanoESI mainly due to the fact that smaller 

charged droplets are produced at the needle tip from which the solvent evaporates more 

rapidly in the time available. Therefore, the tip can be placed closer to the mass 

spectrometer orifice, resulting in higher ion transmission efficiency.
81

 However, the low 

flow rate will increase the time for analysis, and the fragile emitters for use in nanoESI 

with smaller diameters are considerably more expensive.
82

 The nanoESI capillary 

requires more user expertise for proper alignment and is prone to clogging. 
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1.3.3 Ambient Ionization 

A variety of “ambient ionization” techniques have been developed that ionize 

samples from their original states, with little or no sample preparation.
83-89

 To name a few, 

direct analysis in real time (DART)
83

 and atmospheric solids analysis probe (ASAP)
88

 

rapidly ionize materials by vaporizing them in the environment of heated gas (e.g. N2 or 

He). Surface analysis methods based on desorption, e.g. desorption electrospray 

ionization (DESI)
85

 and nanoDESI
89

, ionize a large variety of compounds by spraying 

ESI solvent onto the surface while collecting the desorbed and ejected ions. Direct 

surface liquid-extraction has also been used for sampling followed by ESI.
86

 Laser-based 

approaches
90-93

 have been introduced to combine the advantages of ESI and MALDI  

using solvent to collect laser-ablated materials from surfaces, and producing multiply 

charged ions. However, these AP ionization methods are subject to lower ion transfer 

efficiency due to the rim and dispersion losses as in ESI and MALDI.
69

 

1.4 Mass Analyzers for Mass Spectrometry  

Once the molecules are converted to gas-phase ions, they are guided into the mass 

analyzer and separated according to their m/z. Vacuum is critical in mass analyzers to 

provide a longer mean free path. Better vacuum means less collision occurring between 

ions before they reach the detector. Currently oil based rotary and turbo pumps are 

commonly used to provide high vacuum in mass spectrometers (<10
-7

 mbar). 

Common mass analyzers are sorted by their principle of operation as follows: 1) TOF 

used to separate pulsed ion beams; 2) scanning mass analyzers such as magnetic sector 

and quadrupole to separate continuous ion beams; 3) linear ion trap (LIT) and triple 

quadrupole separate continuous ion beams and can also trap ions; 4) trapped-ion mass 
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analyzers such as Orbitrap, and Fourier transform ion cyclotron resonance (FT-ICR). 

These mass analyzers have different duty cycles, providing mass analysis with different 

mass accuracy and resolution, sensitivity, analysis speed, and mass range. But there is no 

“ideal” mass analyzer for all applications. The principle of operation, resolving power 

(defined as the minimum mass difference between two peaks is calculated as m/Δm at the 

half-maximum peak height), mass range, and applications of several different analyzers 

that are used later in this dissertation, along with examples of hybrid mass spectrometers, 

will be discussed in more details in the following sections.  

1.4.1 Time-of-Flight (TOF)  

TOF analyzers use an electric field to accelerate ions, and the ions fly through a field-

free tube to the detector (Scheme 1.6). The ions are accelerated based on their m/z with 

approximately the same kinetic energy. The time it takes for the ions to fly through the 

field-free tube and reach the detector is measured and converted to m/z of the ions. The 

heavier ions take longer time to reach the detector. It is necessary to let the ions start their 

flight at the same time, therefore TOF is usually coupled with a pulsed ionization method 

(e.g. MALDI). The continuous ion methods (e.g. ESI) employ orthogonal extraction to 

interface to TOF.
94

 The orthogonal extraction uses a “pusher” to accelerate ions 

perpendicularly to their original direction and push them into the flight tube, so that a 

pulsed beam is produced from the continuous ion production.   

In principle, the mass range for TOF is unlimited as eventually all of the ions get to 

fly through the flight tube.
 95

  TOF was introduced as a linear tube for ions to fly through 

a certain distance before being detected. Shown in Scheme 1.6 is the TOF in both linear 

and reflectron ion detection modes, with the reflectron mode to achieve better mass 
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resolution of the smaller ions. The reflectron works as an ion mirror and is made of a set 

of grids on which potential is applied to change the directions of the ions. The use of a 

reflectron not only extends the distance for ions to fly, but also corrects the slightly 

different positions and velocity of ions with the same m/z. As a result, the mass resolving 

power of the TOF mass spectrometer is improved. It has been reported the mass resolving 

power of 80,000 at m/z=2500 was achieved by spiral TOF instrument.
96

  

Scheme 1.6.  Schematic representation of TOF analyzer in both linear and reflectron 

detection modes. The red circles represent “heavier” ions, and the blue ones are 

“lighter” ions. Ions are introduced through either 1) pulsed ion source or 2) a 

continuous ion source and are accelerated by orthogonal extraction. 

 

1.4.2 Quadrupole  

A quadrupole analyzer consists of four rods on which DC and AC voltages are 

applied (Scheme 1.7). Positive and negative potential is applied on the opposite pairs of 

rods, respectively. When ions enter the quadrupole analyzer in the z direction, only the 

ions with certain m/z that resonate with the RF voltage will oscillate and pass through the 

rods (red line), while others are filtered out (blue line). 
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Scheme 1.7.  Schematic representation of a quadrupole analyzer. The red line 

represents the path of ions that pass through the rods, and the blue line represents the 

ions that do not pass through. 

 

The quadrupole is a scanning mass analyzers thus it is not well suited to pulsed 

ionization method. The duty cycle for full scan is very low because only the ions at a 

certain m/z can be projected at a given time.
97

  

Three sets of quadrupole rods in a series (triple quadrupole mass spectrometer) can be 

used in tandem mass spectrometers. The first and third quadrupole serve as mass filters, 

and the center quadrupole works as the collision cell. The ions of interest are selected in 

the first quadrupole, fragmented in the second quadrupole, and the fragments are mass 

analyzed in the third quadrupole. Selected ion monitoring is achieved by fixing the RF 

and can provide 100% duty cycle. Therefore these are more sensitive and suitable for 

targeted analysis.
98

 

1.4.3 Linear Quadrupole Ion Trap (LIT) 

An LIT consists of three sets of hyperbolically shaped rod electrodes similar to the 

quadrupole analyzer. The front and back ends are applied with higher potential that can 

trap ions within the quadrupole region (Scheme 1.8). 
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Scheme 1.8.  Schematic representation of a linear quadrupole ion trap mass analyzer. 

 

The LTQ Velos (Thermo, Bremen, Germany) is a commercial linear ion trap mass 

spectrometer used in most of the studies in this thesis. The scanning linear ion trap 

instrument offers fast scanning speed (typically 33000 amu/s) and improved sensitivity,
 99

 

at the expense of mass resolving power
97

 (e.g. 6000 at m/z 609
100

). The mass range is up 

to m/z 4000 on the LTQ Velos. 

The capability of trapping ions enables LIT to be used for tandem MS. Collision gas 

for CID or radical anions for ETD can be introduced to the trap and react with analyte 

ions during gas-phase collisions for MS
2
. Multiple stages of ion selection and 

fragmentation can take place in the trap, therefore ion trap can achieve MS
n
 for more 

thorough structural analysis.  

1.4.4 Fourier Transform Ion Cyclotron Resonance (FT-ICR) 

When an ion enters a magnetic field perpendicular to its original velocity direction, it 

will move in a circle by Lorentz force. The angular frequency is only dependent on the 

ion’s mass, charge, and the magnetic field. The ions therefore will circulate in the 

cyclotron cell. The FT-ICR detects the ions based on the image currents the ions produce 

when they approach the electric plates. The time-domain current image is converted to 
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frequency-domain spectrum by Fourier transform, and the frequencies are subsequently 

converted to m/z values (Scheme 1.9).
101

 

Scheme 1.9.  Schematic representation of the principle of FT-ICR MS. Image current 

signals are obtained when the ions approach the electrode plate, and the signals are 

converted to a mass spectrum by Fourier transformation. 

 

The FT-ICR mass spectrometer has the highest resolving power by far. The mass 

resolving power is over 400,000 at m/z 1000.
101

 However, the mass range is limited (e.g. 

m/z 400-2000 for optimal response) and it takes longer (~ 1 s) than other instruments to 

measure ions.
101

   

1.4.5 Hybrid Mass Spectrometer  

Quadrupole time-of-flight (Q-TOF) is an example of a hybrid mass spectrometer that 

combines mass analyzers for better performance and tandem MS capability. Q-TOF 

couples a quadrupole with a TOF analyzer. TOF has a higher duty cycle than the full-

scan quadrupole, therefore Q-TOF is more sensitive than triple quadrupole except in the 

selected ion monitoring mode, and the reflectron TOF increases the mass resolving power 

at the same time.
102

 

The SYNAPT G2 (Waters, Manchester, UK) is a commercial hybrid quadrupole/ion 

mobility spectrometry (IMS)/orthogonal TOF mass spectrometer also used in the work 

reported herein. The configuration is similar to Q-TOF, but adds an IMS device between 

the quadrupole and TOF. Unlike MS, ions are separated according to their number of 
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charges, size, and shape.
103,104

 IMS-MS has advantages for extended dynamic range and 

the ability to separate isomeric compounds.
105,106

 The TriWave region also consists of a 

trap before the IMS cell and a transfer after it. Fragmentation for tandem MS is 

applicable in both trap and transfer regions.   

1.6 Motivation 

In all cases described in the previous section, ionization methods should be efficient 

to produce ions and simple to interface with mass spectrometers to utilize these advanced 

mass analyzer features. Advancement of MS towards the goal of more efficient ionization 

and simpler operation may be achieved through the development of new ionization 

methods. Ionization methods are discovered before and during my PhD period for which 

I contributed in some cases during the initial discovery phase and helped mass 

measurements, but will not be the main focus of this thesis. More details of the 

development, summary of the schemes, and fundamental understandings of these 

methods will be introduced in Chapter 3. 

ESI-like ions can be produced by novel inlet and vacuum ionization methods. Inlet 

ionization methods include laserspray ionization inlet (LSII),
75 107 , 108

 matrix assisted 

ionization inlet (MAII),
109 , 110

 and solvent assisted ionization inlet (SAII).
111 - 114

 

Ionization process occurs in the heated inlet tube linking AP and the first stage of vacuum 

in a mass spectrometer. Solid matrix/analyte (LSII and MAII) or liquid analyte solution 

(SAII) is introduced into the heated inlet tube of the mass spectrometer with (LSII) or 

without (MAII and SAII) laser ablation. ESI-like multiply charged ions are produced by 

either method with sufficient ion abundance for MS and tandem MS analysis, without the 

use of voltage or nebulizing gas. Vacuum ionization, in analogy to LSII and MAII, 
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includes laserspray ionization vacuum (LSIV)
115 , 116

 and matrix assisted ionization 

vacuum (MAIV).
117-120

 Heat is not required in vacuum ionization. With the assistance of 

proper matrix and “softer” instrument settings (e.g. low or no laser power, sample plate 

voltage removed), multiply charged ions can be produced from surfaces in vacuum.  

By the time I started my PhD research, multiply charged ions from peptides/proteins 

had already been observed by laser ablating a mixture of proper matrix and analyte from 

the solid state without using any voltage, but the mechanism of LSII was not yet clear. 

Predominantly solvent-based sample preparation was used, solvent-free preparation was 

only attempted with a vortexer that did not provide efficient homogenization.
108

 Other 

new ionization methods were developed along the way with some limitations at the initial 

discovery stage. For example, the use of a silica tube to infuse analyte solution at the 

hotspot in the capillary tube is not applicable for fast and simple operations. The inlet 

ionization methods are beneficial to mass spectrometers equipped with heated inlet (e.g. 

LTQ Velos), but many high performance mass spectrometers (e.g. Apex II FT-ICR) do 

not have this feature. Fabrication of a heated capillary has been reported by attaching a 

copper tube to the skimmer cone of a SYNAPT G2 but is less analytically useful.
121

 No 

new ionization methods have been used for quantification. These limitations will be 

overcome or at least reduced as reported in this thesis. 

1.7 Scope of This Dissertation   

This dissertation presents the instrumental development, fundamental insights, and 

initial applications of the new ionization method developed by my colleagues and me, 

towards the potential to employ the novel ionization process for their rapid, robust, and 

simple-operated analyses during the course of the work described here.  
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Chapter 2 describes the general experimental procedures including materials, sample 

preparation, instrumentation, data acquisition, software, etc. used during this research. 

More detailed experimental sections relevant to each chapter are included in individual 

chapters.  

Chapter 3 briefly states the history of novel ionization method development. Inlet 

and vacuum ionization is introduced in more detail in this chapter, along with mechanistic 

discussions. Our initial understanding of the unprecedented mechanisms of ion 

production will be revealed in this chapter. 

Chapter 4 presents a total solvent-free analysis approach using LSII-IMS-MS to 

analyze both hydrophobic and hydrophilic compounds. The total solvent-free analysis 

consists of solvent-free sample preparation and solvent-free gas-phase separation using 

IMS coupled with MS. This chapter reports the first example of highly charged 

peptide/protein ions to be produced in MS from solid state without using solvent during 

either sample preparation or separation. TissueLyzer and grinding beads are utilized to 

homogenize dry matrix compounds with dried analytes. Factors such as temperature, and 

homogenization frequency during sample preparation, and thermal requirements for 

different matrices, are investigated to discuss the multiple charging results.     

Chapter 5 reports the construction of a simple and convenient instrumental setup to 

couple LC at very low flow rates (as low as 400 nL min
-1

) with SAII. In contrast to ESI, 

it was demonstrated that no voltage or extra connection is required to interface LC to MS. 

Data dependent tandem MS is also shown in this chapter for rapid sequence analysis of 

BSA digested peptides achieved by SAII-CID. Comparable sensitivity to ESI is achieved 

by this SAII method with much less effort. 
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Chapter 6 reports the development of instrumentation and methods that allow 

multiplexing of a variety of molecules, including small drugs to larger protein. With the 

assistance of heat applied to the inlet tube, 42 samples of 7 analyte solutions in 6 cycles 

were analyzed within 5 min under the same inlet temperature. As a proof of principle, the 

sample holder was carried by an x,y-stage for automation. For convenient observation 

and fast analysis, the sample locations were mapped using the m/z of the ions by imaging 

software so that the content of each solution and relative abundance can be visually 

displayed. The map can provide the m/z for signal identity, tandem MS for specificity, 

and signal intensity for relative amounts of certain compounds in different wells of the 

96-well sample holder. 

Chapter 7 presents the development of matrix assisted ionization vacuum to FT-ICR 

mass spectrometer to establish the capability of ultrahigh performance mass 

measurements. Over 400,000 mass resolving power was achieved for proteins at m/z 800. 

Both the MALDI and ESI source on the commercial dual-source instrument were used. 

Multiply charged ions of peptides and proteins are produced in the MALDI source 

without firing the laser, and on the ESI source without voltage, sheath gas, or heat. 

Chapter 8 describes the development of simple and rapid surface assessment 

methods to quantify a schizophrenia drug from brain tissue sections of a drug-treated 

mouse. The material can be extracted either by solvent and subsequently transferred to 

the heated inlet (SAII), or by proper matrix when exposing the partially matrix-covered 

tissue section to vacuum (MAIV). Compared to the traditional quantification method, 

LC-ESI-MS/MS, similar results were obtained by SAII but at a much faster speed (a few 

minutes for SAII and over an hour for LC-ESI-MS/MS). MAIV is slower but is 
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independent of a heated inlet and more reproducible due to the continuous ion production. 

Both sampling methods demonstrate that only the material from the surface was extracted, 

independent of the tissue thickness.  
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CHAPTER 2 

MATERIALS AND INSTRUMENTATIONS 

2.1 Materials and Sample Preparation 

The analytes and matrices were purchased from Sigma Aldrich (St. Louis, MO) 

unless otherwise noted. Angiotensin I and non-β-amyloid component of Alzheimer’s 

disease (NAC) were obtained from American Peptide Co. (Sunnyvale, CA), trypsin-

digested BSA MS standard (CAM-modified) was purchased from New England BioLabs 

Inc. (Ipswich, MA, USA),  sphingomyelin was from Avanti Polar Lipids, Inc. (Alabaster, 

AL), clozapine and clozapine-d8 were from Santa Cruz Biotechnology (Santa Cruz, CA). 

Leucine enkephalin was provided by Waters Co. (Milford, MA). N-acetylated myelin 

basic protein fragment from Anaspec (Fremont, CA), and phosphopeptide standard I was 

from Protea Biosciences (Morgantown, WV). 3-NBN was from Tokyo Chemical Industry 

Co., Ltd. (Portland, OR). Solvents were obtained from Fisher Scientific Inc. (Bremen, 

Germany) unless otherwise stated. HPLC grade water was purchased from EMD 

Chemicals (Gibbstown, NJ). Microscopy glass slides were obtained from Gold Seal 

Products (Portsmouth, NH). 

Stock solutions of peptides and proteins were prepared by dissolving them in water as 

1 mg mL
-1

 concentrations. The stock solution of bovine insulin was in a 49.5:49.5:1 

MeOH:water:acetic acid solution. Lipids were in methanol, and clozapine was in ethanol. 

Peptides and proteins were diluted to desired concentration by water or 50:50 ACN:water, 

with or without 0.1% formic acid. Lipids were diluted by MeOH with 1% acetic acid. 

Clozapine was diluted by water. The matrices were prepared by dissolving 5 mg of each 

matrix in 100 µL 50:50 ACN:water unless otherwise stated.   
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For solvent-based analysis, the samples were prepared by either the droplet method or 

layer method. In the droplet method, the analyte and matrix solutions were mixed in 1:1 

volume ratio, and 1 µL was spotted on the sample holder (glass slide or MALDI plate) 

and allowed air dry. In the layer method, 1 µL analyte solution was spotted on the sample 

holder first, followed by 1 µL matrix solution and mixed with the pipet tip. For solvent-

free analysis, 10 µL analyte solution was dried overnight in a PCR tube placed in the 

Biodryer, containing 3 stainless steel beads; a spatula tip-full (amount not critical) 2,5-

DHAP powder was added to the dry analyte. Then the dry mixture was homogenized and 

transferred onto the glass slide by TissueLyzer using frequencies 5-25 Hz for 2-10 min. 

More details about solvent-free sample preparation can be found in Chapter 4. 

Mouse Brain Tissue – Mouse brain tissue sections were provided by Prof. Ken 

Mackie and Dr. James Wager-Miller from Indiana University. They were cut with a 

cryostat and mounted on microscopy glass slides. Briefly, mice were injected 

intraperitoneally with 50 mg kg
-1

 clozapine and sacrificed 60 minutes post-dosing with 

isoflurane overdose followed by perfusion of 20 mL of ice cold phosphate buffered saline. 

Brains were rapidly removed and frozen.  Tissue sections were sliced on a Cryostat 

(Leica) to 10 or 20 µm thicknesses and sections were stored at -80 °C prior to analysis.  

All animal procedures were approved by the Indiana University Bloomington 

Institutional Animal Use and Care Committee. 

2.2 Instrumentation 

2.2.1 Mass Spectrometers 

LTQ Velos. On the mass spectrometers that are commercially equipped with an inlet 

tube, e.g. LTQ Velos (Thermo Scientific Inc., Bremen, Germany), the temperature of the 
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inlet was directly heated from 50 ºC to 450 ºC. The ESI source housing was removed and 

the interlock was overridden so that free access to the inlet orifice was available. Helium 

gas was used for collision induced dissociation (CID), and a mixture of ultrapure helium 

and nitrogen (25% helium and 75% nitrogen; purity ~99.995%) was used as the reaction 

gas for electron transfer dissociation (ETD). Fluoranthene was used as electron reagent 

for ETD.  Both positive and negative ion mode were used with the following settings: the 

Auto Gain Control was on, maximum injection time was 20 ms, and each mass spectrum 

was obtained by summing up 5 microscans. The sheath gas, aux gas, sweep gas, and 

capillary voltage were all set at 0. S-lense was 65%. Mass range was set to ‘normal’, scan 

rate was ‘normal’, and scan time was ‘full’. Xcalibur 2.1.0 was used for data analysis. 

For ESI, the commercial housing was used. The capillary voltage was set at 2.5-4 kV, 

depending on the solvent system. Sheath gas around 10. CID was performed for ESI-

MS/MS experiments. 

SYNAPT G2. On those mass spectrometers that are not equipped with an inlet tube 

that can be heated, e.g. SYNAPT G2 (Waters, Manchester, UK), the skimmer cone can 

only be heated up to 150 ºC and is not efficient for inlet ionization methods. Therefore, a 

capillary was attached to the skimmer cone to help desolvation. The source temperature 

was held at 150 ºC, and the nichrome wire which wrapped the copper tube around was 

connected to a Variac for additional heat. More details about fabricating the inlet 

capillary can be found in Chapter 4. 

The SYNAPT G2 was operated in positive and resolution modes. The sample cone 

was set at 40 V and the extraction cone was 4 V. The scan time was set at 1 sec. Nitrogen 

gas was used for drift time separation at a flow of 22 mL min
-1

. The IMS wave velocity 
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was 650 m s
-1

 and wave height of 40 V. The pressure of the drift cell was 3.2 mbar. 

MassLynx 4.1 and DriftScope ver. 2.1 (Waters Corp., Manchester, UK) were used for 

data analysis. 

FT-ICR.  An Apex II FT-ICR mass spectrometer (Bruker, Bremen, Germany) was 

used for MAIV and LSIV as the application of novel ionization methods on high-

performance instruments to take advantage of its ultra-high mass resolving power. The 

dual MALDI/ESI source was used. For MAIV measurements, the laser fluence was set to 

0, and the laser beam was blocked with paper. Voltage on the sample plate (240 V-300 V) 

was applied to assist lifting up ions. For LSIV measurements on the FT-ICR mass 

spectrometer, ubiquitin was combined with 2-NPG. The arbitrary laser fluence was 50%, 

and the plate voltage was 400 V.  

MAIV from AP was performed on the dual MALDI/ESI source. The ESI source, the 

cover, and the cap over the ESI capillary were removed for direct access to the orifice of 

the ESI capillary. The capillary voltage, spray shield, nebulizing gas flow, and dry gas 

flow were all set to 0, and no override was necessary for operation. No added heat was 

applied to the ESI capillary.  

2.2.2 Ultrahigh Performance Liquid Chromatography (UPLC) 

A Waters Corporation NanoAcquity UPLC was used. Columns used include a Waters 

100 μm x 100 mm BEH130 C18 column with 1.7 μm particles, and a Waters 1 mm x 100 

mm BEH 130 C18 column with 1.7 μm particles.  

Water and ACN were used as mobile phase, the gradient can be found in more details 

in Chapters 5 and 8. 
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2.2.3 Other Equipments 

Microscopy. Optical microscopy (Nikon Eclipse LV100) was performed to observe 

droplet production upon LSII, and to determine the analyzed area in surface SAII for 

clozapine quantification. The microscope was operated at 5x magnification. 

Automated x,y-stage. A computer-controlled automated x,y-stage (Newmark Systems, 

Mission Viejo, CA) was used to carry and move sample holders in front of the mass 

spectrometer.  

2.2.4 Other Software 

BioMap 3.7.5.6 imaging software (Novartis Institution for Biomedical Research, 

Basel, Switzerland), typically used for imaging applications, was incorporated to map in 

which solution analyte was present as determined by the m/z ratio values obtained by MS 

or MS/MS. Besides mapping the location of analyte, the software allows relative 

concentrations to be displayed by color code. Thermo XCalibur .RAW files were 

converted to .IMG files using customized imaging software. 
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CHAPTER 3 

FUNDAMENTAL UNDERSTANDING 

Ionization methods are discovered before and during my PhD period. In some cases I 

have contributed during the initial discovery phase. This chapter focuses on a brief 

history of new ionization methods development and our current understanding of the 

mechanistic aspects of the novel ionization process. The experiments I participated in 

which led to the discovery and understanding so the relevant mechanism are included in 

this chapter. Figures and schemes are adopted from my co-authored publications from my 

contribution as follows:   

Inutan, E.D.; Wang, B.; Trimpin, S. Commercial Intermediate Pressure MALDI Ion Mobility 

Spectrometry Mass Spectrometer Capable of Producing Highly Charged Laserspray Ionization 

Ions. Anal. Chem. 2010, 83, 678-684.  

Trimpin, S.; Wang, B.; Inutan, E.D.; Li, J.; Lietz, C.B.; Harron, A.; Pagnotti, V.S.; Sardelis, D.; 

McEwen, C.N. A Mechanism for Ionization of Nonvolatile Compounds in Mass Spectrometry: 

Considerations from MALDI and Inlet Ionization. J. Am. Soc. Mass Spectrom. 2013, 23, 1644-

1660. 

Trimpin, S.; Wang, B.; Lietz, C.B.; Marshall, D.D.; Richards, A.L.; Inutan, E.D. Inroads to New 

Ionization Processes for Use in Mass Spectrometry. Crit. Rev. Biochem. Mol. Biol. 2013, 48, 409-

429.  

Chakrabarty, S.; Pagnotti, V.; Wang, B.; Trimpin, S.; McEwen, C.N. Ionization from Ice in Mass 

Spectrometry and a Possible Connection to Thunderstorms, Anal. Chem. 2014, 86, 7343-7350.  

Trimpin, S.; Lutomski, C. A.; El-Baba, T. J.; Woodall, D. W.; Foley, C. D.; Manly, C. D.; Wang, 

B.; Liu, C.; Harless, B. M.; Kumar, R.; Imperial, L. F.; Inutan, E. D. Magic matrices for 

ionization in mass spectrometry. Int. J. Mass Spectrom. 2014, doi: 10.1016/j.ijms.2014.07.033.  

Trimpin, S.; Wang, B. Inlet and Vacuum Ionization from Ambient Conditions, in: Ambient 

Ionization Mass Spectrometry, Royal Society of Chemistry, by Eds. Marek Domin and Robert 

Cody, 2015, 423-444.  

Reprinted with permissions from American Chemical Society, Springer Science and 

Business Media, Informa Healthcare, Royal Society of Chemistry, and Elsevier.  
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Newly discovered ionization methods at their initial developed phase are summarized 

in Scheme 3.1. The left column represents inlet ionization and right column for vacuum 

ionization. These methods will be introduced respectively in the following sections.  

Scheme 3.1. Schematic representation of: (A) Inlet ionization methods that produce 

ions with the assistance of heat and vacuum drop, ionization occurs in the inlet tube 

of the mass spectrometer (B) Vacuum ionization methods the utilize proper matrix 

occurring by exposing to vacuum. (1) Laserspray ionization that employs laser 

ablation to remove matrix/analyte mixtures from sample holder such as a glass slide; 

(2) matrix assisted ionization of which samples are introduced by mechanical force or 

matrix sublimation; (3) solvent assisted ionization that utilizes solvent instead of 

organic compounds as matrix. [Modified from 18] 
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3.1 Inlet Ionization 

LSII was developed to use a UV laser to dislodge the solid analyte/matrix mixture 

from the sample plate and transfer it into the heated inlet.
75,107,108

 The matrices were first 

thought to have similar features in MALDI that they require an aromatic benzene ring to 

absorb UV laser energy. However, if the same matrix/analyte mixture (e.g. 2,5-

DHAP/ubiquitin mixture) is ablated by UV, visible, and infrared laser respectively 

(Figure 3.1), similar mass spectra are produced indicating that LSII operates with a 

different mechanism than MALDI.
122

  

 

Figure 3.1. LSII-MS spectrum of ubiquitin (MW 8570) using 2,5-DHAP matrix. The 

matrix/analyte mixture was ablated by (A) ultraviolet (B) visible and (C) infrared 

laser at different wavelengths and produced similar ions. The numbers on the right 

top corner denote ion abundances. [Adopted from 122] 
 

Based on this observation, mechanical force, instead of laser ablation, can be 

employed to introduce analyte/matrix mixture to the heated inlet.
109,110

 SAII is a liquid 

sample introduction method that does not require organic compound as matrix and 

directly infuses analyte solution into the heated inlet.
111

 In all cases, the super heating of 
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the inlet tube is required as well as the pressure drop from AP to the first stage of vacuum 

of the mass spectrometer.
122

 Depending on the matrix (solid or solvent), up to 450 ºC may 

be required for good analyte ionization.
110,122

 In contrary to traditional ionization methods 

such as MALDI and ESI as described in Chapter 1, no voltage is used in inlet ionization. 

The ionization source of inlet ionization is the heated inlet tube in the mass 

spectrometer.
18

 Gas-phase ions are produced when compounds, preferably in a matrix or 

solvent, pass through a heated tube linking the first vacuum stage of a mass analyzer with 

AP.
122 

A unified mechanism was proposed for all three inlet ionization methods shown in 

Scheme 3.2.
122

 When matrix/analyte (organic matrix/analyte droplets or particles for LSII 

and MAII, solvent/analyte solution for SAII) enter the heated inlet tube, heat and the 

pressure drop result in charge separation that may be caused by superheating and 

bubbling carrying away surface charge into small droplets.
123

 Millions of charges can be 

generated from charge separation. In this mechanism, the progency droplets will have 

opposite charge from the remaining parent droplet. The charged droplets undergo solvent 

evaporation and coulombic fission. They also collide with the inner walls of the inlet tube 

and with each other, and finally matrix/solvent evaporation producing bare gas-phase 

analyte ions.
122

 It was proposed by Vestal in 1983, before the invention of MALDI or ESI, 

that ions are produced from charged clusters.
124

 This solvent removing process is similar 

to ESI after the analyte solution is sprayed from the ESI capillary, but in inlet ionization 

ions are produced without applying any voltage or nebulizing gas.  

Therefore, similar ions can be produced as long as the mixture of matrix (solid or 

liquid) and analyte are transferred into the heated inlet tube, and it does not matter if a 
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laser or organic matrix is used.
125

 Figure 3.2 shows the mass spectra of the myelin basic 

protein fragment peptide introduced to the instrument by LSII, MAII, and SAII, 

respectively. Identical mass spectra were produced. ETD was performed to the quadruply 

charged ions, and similar sequence coverage was obtained with all three methods (Figure 

3.2.B).  

Scheme 3.2. Schematic representation of the fundamental understanding of inlet 

ionization. SAII is displayed in the scheme by pipetting analyte solution right in front 

of the heated inlet tube linking AP and vacuum of the mass spectrometer.  

 
                 

 

Figure 3.2. MS and MS/MS spectra of myelin basic protein fragment (MW 1832) by 

(A) LSII and (B) MAII using 2,5-DHAP as matrix, and (C) SAII using water with 0.1% 

formic acid as solvent. In all cases, the inlet temperature was held at 250 ºC. 

[Adopted from 125] 
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Charge separation also occurs from freezing water droplet (Figure 3.3).
126

 Charged 

particles are produced and ejected from frozen droplet surfaces by surface splintering. 

The sublimation of dry ice helps surface splintering and can produce highly charged 

protein ions directly from a frozen droplet of analyte aqueous solution. An extended inlet 

was used and wrapped by ice bags to assist cold ionization. Up to +10 charge state was 

observed from ubiquitin in aqueous solution.  

 

Figure 3.3. Analysis of ubiquitin aqueous solution by cold ionization. (A) Picture of a 

10 µL ubiquitin aqueous solution spotted on dry ice and introduced into the cold 

extended inlet assisted by dry ice sublimation. (B) Mass spectrum of 

ubiquitin.[Adopted from 126] 

Instruments such as the LTQ Velos have a heated inlet that benefits inlet ionization, 

but many high-performance mass spectrometers are not equipped with commercial heated 

inlet. If the proposed mechanism is correct – that ions are produced from charged 

analyte/matrix clusters, more volatile matrix compounds will efficiently evaporate or 

sublime from charged analyte/matrix droplets or particles in the presence of vacuum and 

without added heat. With such a matrix, it would be necessary to have a means of 

producing the charged particles.  
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3. 2 Vacuum Ionization 

With the proper matrix with a low thermal requirement to produce LSII ions, e.g. 2,5-

DHAP, and “soft” instrument parameters (low laser power and no plate voltage), ESI-like 

ions were first produced from a mixture of lipids, peptides, and proteins employing laser 

ablation on a commercial intermediate pressure (10
-2

 mbar) MALDI-IMS-MS 

instrument.
115

 Although there is no heated inlet or external thermal energy, a pressure 

drop is present inside the mass spectrometer, and absorption of the laser beam provides 

heat. In analogy to laserspray ionization inlet, the ionization occurring in the vacuum 

source is termed laserspray ionization vacuum (LSIV). More volatile matrices, e.g. 2-

nitrophloroglucinol (2-NPG), can be used in high vacuum MALDI-TOF-TOF mass 

spectrometers of which the source is at even lower pressure (10
-6

 mbar).
116 

Among the volatile matrices, 3-nitrobenzonitrile (3-NBN) sublimes in vacuum. When 

the analyte is exposed to the matrix and vacuum, multiply charged ions from peptides and 

proteins are produced without employing the laser or applying extraction voltage.
117-120

 

This method is termed matrix assisted ionization vacuum (MAIV) and produces ESI-like 

ions from a wide range of compounds such as drugs, peptides, lipids, and proteins. A 

number of novel matrices with different functionalities have been discovered to produce 

ions.
127

 Interestingly, the crystal morphologies vary a lot according to the microscopy 

images. Their sublimation capabilities are quite different, too. Shown in Table 3.1 are 

representative microscopy images of 3-NBN, coumarin, and 2-bromo-2-nitro-1,3-

propanediol (bronopol) that sublime differently over 24 hour period. 3-NBN sublimed at 

room temperature and pressure in 3 h; coumarin was partially sublimed after a 24 h, but 

no observable sublimation occurred for bronopol. This method has been extended to 
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operate on slightly or non-modified ESI source to simplify the operation and improve 

throughput.
119 

Table 3.1. Microscopic images of 3-NBN, coumarin and bronopol showing the 

sublimation of these matrices at room temperature and atmospheric pressure. Images 

were taken right after spotting, 3 h, 6 h, and 24 h. [Adopted from 127] 
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CHAPTER 4 

PRODUCING HIGHLY CHARGED IONS WITHOUT SOLVENT USING 

LASERSPRAY IONIZATION: A TOTAL SOLVENT-FREE ANALYSIS 

APPROACH AT ATMOSPHERIC PRESSURE 

First examples of highly charged ions in mass spectrometry (MS) produced from the 

solid state without using solvent during either sample preparation or mass measurement           

are reported. Matrix material, matrix/analyte homogenization time and frequency, 

atmospheric pressure (AP) to vacuum inlet temperature, and mass analyzer ion trap 

conditions are factors that influence the abundance of the highly charged ions created by 

laserspray ionization (LSI). LSI, like matrix-assisted laser desorption/ionization 

(MALDI), uses laser ablation of a matrix/analyte mixture from a surface to produce ions. 

Preparing the matrix/analyte sample without the use of solvent provides the ability to 

perform total solvent-free analysis (TSA) consisting of solvent-free ionization and 

solvent-free gas-phase separation using ion mobility spectrometry (IMS) MS. Peptides 

and small proteins such as non-β-amyloid components of Alzheimer’s disease and bovine 

insulin are examples in which LSI and TSA were combined to produce multiply charged 

ions, similar to electrospray ionization, but without the use of solvent. Advantages using 

solvent-free LSI and IMS-MS include simplicity, rapid data acquisition, reduction of 

sample complexity, and the potential for an enhanced effective dynamic range. This is 

achieved by more inclusive ionization and improved separation of mixture components as 

a result of multiple charging. 

B. Wang, C. B. Lietz, E. D. Inutan, S. M. Leach, S. Trimpin, Anal. Chem., 2011, 83, 

4076-4084. Reprinted with permission from Copyright (2011) American Chemical 

Society. 
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4.1 Introduction 

Mass spectrometry (MS) at atmospheric pressure (AP) is of analytical interest for 

reasons ranging from rapid data acquisition to sample analysis of biological materials 

under more physiologically relevant conditions.
39,84,128

 Unfortunately, the observation of 

high-mass singly charged ions is limited by the mass-to-charge (m/z) range of most high-

performance mass spectrometers, a major drawback of AP matrix-assisted laser 

desorption/ionization (MALDI).
65

 Laserspray ionization (LSI) MS is a newly introduced 

method capable of soft ionization of small and large molecules such as lipids, peptides, 

proteins, and other high-mass compounds by laser ablation at AP.
75,107,108,121, 129 - 135

 

Advantages include small ablation areas/volumes, AP conditions, speed of analysis, and 

the production of multiply charged ions to extend the mass range of high-performance 

mass spectrometers. The ability to obtain multiply charged ions also provides enhanced 

fragmentation important for structural characterization. For example, sequence analysis 

by electron transfer dissociation (ETD) was obtained on a Thermo LTQ-ETD mass 

spectrometer providing nearly complete sequence coverage of ubiquitin and identified an 

endogenous peptide directly from mouse brain tissue.
107,134

  

LSI ions have been generated on commercial atmospheric pressure ionization (API) 

sources directly,
75,107,129,130,131,133-135

 after retrofitting with a home-built LSI desolvation 

tube,
121,130,132 

and by introducing LSI conditions on a commercial AP-MALDI source.
108

 

Initial solvent-free gas-phase separation results enabled by the ion mobility spectrometry 

(IMS) dimension showed the utility and benefits for the analysis of protein mixtures, 

even when isomeric, directly from surfaces.
121,132

 Recently, LSI has been extended to 

intermediate pressure (IP) MS applications, producing highly charged and high abundant 
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peptide and protein ions.
115

 These ions, especially in mixtures as complex as mouse brain 

tissue, are notably well-separated by IMS-MS using a solvent-based LSI approach. 

Solvent-free sample preparation/ionization operates independent of analyte 

solubility,
38

 a key advantage over any solvent-based MS method. Combined with solvent-

free gas-phase separation using IMS-MS, this provides total solvent-free analysis (TSA) 

by MS.
39,136

 Potential advantages using solvent-free LSI and IMS-MS in a TSA approach 

include simplicity, rapid data acquisition, reduction of sample complexity, and enhanced 

effective dynamic range. Justifications for exploring solvent-free approaches relate to a 

number of factors that can be broadly defined as (i) the need to perform chemical analysis 

on molecules that are difficult or impossible to solubilize, known collectively as the 

“insolubelome”;
137

 (ii) the need to avoid chemical reactions that can spontaneously 

change the structures of certain types of molecules when they are in solution; (iii) the 

need to address problems associated with extreme loss of certain analytes in solution 

during sample preparation; and (iv) the need to address diffusion of analytes within a 

complex matrix such as tissue sections for mass spectrometric imaging, where spatial 

distribution of analytes is a major variable in the analysis. The poorly soluble constituents 

of living organisms, such as membrane proteins, as well as hydrophobic compounds, 

such as lipids, metabolites, synthetic polymers, crude oil, and biofuels, need new 

analytical methods for their analysis. 

Solvent-based LSI, similar to ESI, forms singly charged ions of lipids and low 

molecular weight peptides but for higher molecular weight biological and synthetic 

macromolecules produces highly charged ions.
75,107,108,115,121,129-135

 Using a laboratory 

vortexer
138

 and 2,5-dihydroxybenzoic acid (2,5-DHB) as matrix, LSI was reported to 
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exclusively produce singly charged ions with solvent-free sample preparation and 

employing 350 °C on the heated inlet capillary of a Thermo Scientific Orbitrap Exactive 

mass spectrometer.
75

 We show here the first examples that matrix/analyte materials 

combined in the solid state can produce abundant highly charged peptide and protein ions 

and, when in mixtures, are well-separated in the solvent-free gas-phase dimension 

provided by IMS because of the successful introduction of multiple charging. Further, 

pictorial “snapshots” of this TSA experiment using the dimensions of drift time and m/z 

suggest usefulness for rapid observation of changes in relative sample composition even 

in complex samples such as crude oil without the need of extensive optimization of 

sample preparation and separation. 

4.2 Materials and Methods 

Materials. Besides the general chemicals stated in Chapter 2, oils were obtained 

from a local store. Stainless steel beads (1.2 mm) were obtained from BioSpec Products, 

Inc., Bartlesville, OK, USA.  

LSI Sample Preparation. Stock solutions were prepared as described in Chapter 2. 

For the peptide/lipid mixture, angiotensin I and sphingomyelin were premixed to a 1:1 

volume ratio using the stock solutions. 

Solvent-Free Sample Preparation. The matrix/analyte samples were simultaneously 

homogenized and transferred to the glass microscopy slide using the TissueLyser II 

(Qiagen Inc., 27220 Turnberry Lane, Valencia, CA, USA), similar to published 

procedures.
139,140

 Solutions of 10 μL of 772 pmol μL
-1

 angiotensin I in water, 10 μL of 

peptide/lipid mixture in MeOH/H2O, 3.26 μL of 307 pmol μLÀ1 NAC in water, and 5.73 

μL of 174 pmol μL
-1

 bovine insulin in MeOH/H2O with 1% acetic acid were used. 
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Identical to previous solvent-free preparation,
37,41

 the respective analyte samples were 

transferred to individual 0.2 mL PCR tubes containing three stainless steel beads and then 

evaporated in the Biodryer (BioSpec Products Inc., PO Box 788, Bartlesville, OK, USA) 

for 3 h to ensure complete dryness of the samples. The oil samples were prepared without 

solvent by pipetting 1 or 2 μL of the liquid directly to the vial to be used for 

homogenization; waxy and oily materials were previously studied by solvent-free sample 

preparation protocols.
36,138

 After the samples were completely dry, except for the crude 

oil, a spatula tip amount (this is not a critical parameter) of 2,5-DHAP matrix was added 

into each tube, identical to the previously published procedures.
139,140

 The top opening of 

the tube was then covered by the microscopy glass slide and was firmly and securely 

placed in the TissueLyser II sample holder. Each set of sample was homogenized with 

the desired frequency and time. The matrix/analyte mixtures of angiotensin I, NAC, and 

peptide/lipid mixture were homogenized for 10 min at 25 Hz, while bovine insulin and 

oils were ground at 30 Hz.  

Specific Study of Frequency and Time. Angiotensin I was homogenized with the 2,5-

DHAP matrix for time periods of 2, 5, 10, and 20 min at grinding frequencies of 15, 20, 

and 25 Hz. To ensure the most identical matrix/analyte ratio composition, the mixture 

was ground for 2 min so that a reasonably homogeneous powder was obtained before 

removing the glass slide cover with matrix/analyte powder attached. The powdered 

matrix/analyte sample on the glass surface was then analyzed by LSI-IMS-MS. The 

remaining matrix/analyte sample in the tube was covered with a new glass slide and 

rehomogenized for another 3 min to prepare the sample with the second time point (5 

min), and so on. 
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Specific Study of Temperature. Angiotensin I was homogenized with the 2,5-DHB 

matrix for 2 and 10 min and with 2,5-DHAP matrix for 10 min with a grinding frequency 

of 25 Hz. The homogenized matrix/analyte sample was initially analyzed by LSI-IMS-

MS (SYNAPT G2) at 150 °C on the skimmer cone with and without additional heat 

applied on the home-built desolvation device described previously.
121

 To gain more 

accurate temperature values, we also analyzed the homogenized matrix/analyte sample on 

the Thermo LTQ Velos instrument equipped with the commercial desolvation device 

with accurate temperature readings. Temperatures of 40, 150, 275, and 400 °C were 

applied.  

Solvent-Based Sample Preparation. The solvent-based sample preparation was 

carried out for comparison. To ensure the most direct comparison, homogenized 

matrix/analyte powder mixture that remained in each tube from the respective TSA 

experiment was used by adding 5 μL of 50:50 ACN/H2O. The powder and solvent were 

stirred by a micropipet tip. Only some of the analyte/matrix mixture was dissolved, and 

approximately 4 μL of the saturated solution was transferred to the glass slides. After 

complete evaporation of the solvent, LSI-IMS-MS analysis was performed identical to 

the solvent-free prepared samples. Solvent-based crude oil sample was prepared by 

dissolving crude oil in 2:1 toluene/methanol mixture
141

 and then was premixed with 2,5-

DHAP solution with a 1:4 volume ratio. Two times 2 μL of the crude oil/matrix mixture 

was spotted without drying between on the microscopy glass slide and then blow-dried at 

low heat. NAC and bovine insulin were prepared by solvent-based layer method similar 

to previous studies.
132

 

Laserspray Ionization. The nitrogen laser (Spectra Physics VSL-337ND-S, Mountain 
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View, CA, USA) was focused and aligned to the ion entrance of the SYNAPT G2 and 

LTQ Velos mass spectrometers as previously described.
121,135

 The fabrication of the 

desolvation device for the SYNAPT G2 was also described previously.
121

 Briefly, the exit 

end of a 3.175 mm o.d., 1.5875 mm i.d., 19.05 mm copper tube, which was wrapped with 

24 gauge nichrome wire (Science Kit and Boreal Laboratories, Division of Science Kit, 

Inc., Tonawanda, NY, USA) and coated with Saureisen P1 cement (Inso-lute Adhesive 

Cement Powder no. P1) was securely attached to the ion entrance skimmer cone of the 

Waters Z-spray source by Saureisen cement. The source temperature was held at 150 °C, 

indirectly heating the copper desolvation device. To supply additional heat to the 

desolvation device, the nichrome wire was connected to a Variac (Powerstat, the Superior 

Electric Co., Bristol, CT, USA). With analyte/matrix samples facing the mass 

spectrometer, the glass slide was placed in front of the ion entrance of the desolvation 

device using the x,y,z stage of the nanolockspray source (SYNAPT G2) or manually 

(LTQ Velos) and was slowly moved through the focused laser beam aligned with the 

orifice in transmission geometry (180° with the ion entrance capillary) and focused ~2 

mm from the orifice. For allstudies using the laser, gloves and laser safe goggles were 

worn. 

IMS-MS Instrumentation. The SYNAPT G2 HDMS (Waters Corporation, 

Manchester, UK) with a quadrupole having a high mass limit of m/z 8000 was used to 

perform LSI-IMS-MS analysis. The first generation of this instrument has been 

previously described.
142

 The instrument was operated in resolution mode at a cone 

voltage of 0 to 40 V and extraction cone of 4 V. The total acquisition time was set at 1 

min, acquiring 1 mass spectrum per second. The flow rate of nitrogen, which was used 
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for drift time separation, was 22 mL min
-1

. The IMS cell pressure was 3.13 mBar and in 

the Triwave region, wave velocity ranged from 450 to 650 ms
-1

, and wave height from 30 

to 40 V. DriftScope version 2.1 (Waters Corp., Manchester, UK) was used to plot and 

process the two-dimensional (2-D) data of drift time versus m/z using emerald forest and 

hot metal color backgrounds. For acquisitions without IMS, only the source and trap 

gases were on. Other parameter settings used were the same excluding the IMS settings. 

LTQ-MS Instrumentation. The LTQ Velos (Thermo Fisher Scientific Inc., Fitchburg, 

WI, USA) was used to perform LSI-MS for the ion entrance capillary temperature-

dependent studies. The API source housing of the instrument was removed.
133-135

 For the 

temperature-dependent studies, the total acquisition time was 1 min, summing three 

microscans using a maximum injection time of 50 ms for each acquired mass spectrum. 

The matrix/analyte produced by ablation directly enters the heated capillary of the mass 

spectrometer. The capillary temperature was set to 40, 150, 275, and 400 °C for the 

respective studies.  

Microscopy. An optical microscope (Nikon, ECLIPSE, LV 100) was used to study 

the formation of liquid droplets in the LSI plume during the ablation of 2,5-DHAP and 

2,5-DHB. Samples were prepared with the TissueLyser II as previously described in 

solvent-free sample preparation,
139,140

 but with the omission of analyte. The matrix was 

ground using 1.2 mm stainless steel beads and transferred to a glass slide using the 

TissueLyser II at a grinding frequency of 25 Hz. One batch of samples was ground for 30 

s, and a second batch was ground for 10 min. The ablated plume from a single pulse of 

the 337 nm UV laser was collected on a separate glass slide for microscopy analysis. 

Additionally, a third batch of sample was created by a vortexer (Vortex-Genie 1 Touch 
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Mixer, Scientific Industries, Inc., Bohemia, NY, USA). Each matrix was ground in a PCR 

tube with three stainless steel beads for 30 s on the vortexer similar to published 

procedures.
138

 The matrix was pressed onto a glass slide using a metal spatula to provide 

a thin coverage similar to previous protocols used with MALDI.
36-38,41,138

 

4.3 Results and Disscussion 

Method Development for the Production of Multiply Charged Ions of Peptides and 

Proteins by a Total Solvent-Free Analysis (TSA) Approach. Shown in Figure 4.1 is the 

analysis of angiotensin I using a TSA approach consisting of solvent-free sample 

preparation/ionization coupled to solvent-free gas-phase separation by IMS. In the 

extracted mass spectrum (Figure 4.1A), abundant signal intensities for both the doubly 

and triply charged ions are observed. There are no notable differences in the relative 

intensities of the charge state distribution of the multiply charged ions as compared to the  

 

Figure 4.1. LSI-IMS-MS of angiotensin I (Ang. I) with 2,5-DHAP matrix using 

solvent-free sample preparation, a TSA approach: left panel (A) mass spectrum and 

right panel (B) 2-D plot of drift time versus m/z with insets displaying extracted drift 

time distributions for charge state +2 and +3. Reference data for solvent-based ESI-

IMS-MS are included in Figure S4.1 in Appendix A. 

solvent-based LSI analysis (Figure S4.1A in Appendix A) of the identical 2,5-
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DHAP/angiotensin I mixture. Singly charged ions were not produced by either solvent-

free or solvent-based LSI-MS. However, the total abundance of the angiotensin I ions 

produced using solvent-free preparation is lower than when solvent was used. Similar 

observations of relative intensities of soluble, more hydrophilic peptides using solvent-

free sample preparation/ionization for analysis of peptides and proteins with a MALDI 

time-of-flight (TOF) mass spectrometer have been reported.
37,41

  

Figure 4.1B displays the  dataset in a 2-D plot of drift time versus m/z with false color 

plot for the ion intensity showing that the multiply charged ions of angiotensin I obtained 

by solvent-free sample preparation/ionization undergo solvent-free gas-phase separation 

according to the number of charges and cross section (size and shape). This is best seen 

when viewing the extracted drift time distributions of +2 and +3 displayed in the 

respective insets of Figure 4.1B. The TSA results are essentially identical to those 

obtained by the solvent-based LSI-IMS-MS method, as shown by the respective 2-D plot 

and extracted drift time distributions (Figure S4.1B in Appendix A).  

With increasing molecular weight (MW) of the analytes, ions with increasing number 

of charges are produced by TSA. Again, singly charged ions are not observed. Examples 

are shown in Figure 4.2 for the non-β-amyloids component of Alzheimer’s disease 

(NAC) and bovine insulin. The extracted mass spectraare displayed in the left panel, and 

2-D plots are shown in the right panel. NAC (MW 3260) produces multiply charged ions 

ranging from +2 to +5 (Figure 4.2A.1) and bovine insulin (MW 5731) from +3 to +7 

(Figure 4.2.B.1). Unexpectedly, with increasing charge state, an increasing degree of 

metal adduction of sodium cations (e.g., BI charge state +6 has 0-2 Na
+
 ions replacing H

+
 

ions) is observed. Previous LSI studies using solvent-based sample preparation primarily 
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showed protonation of peptides and proteins.
75,107,108,115,121,130-134

 Solvent-free sample 

preparation in conjunction with MALDI-TOF analysis also produces a higher degree of 

metal cation adduction to the analyte, a key benefit for hydrophobic ionization retarded 

molecules.
39,41,143

 Furthermore, oxidation has been described for ESI and solvent-based 

MALDI approaches and was diminished using solvent-free sample preparation 

employing a mini-ball-mill approach with short homogenization times of about 1 min 

using CHCA matrix.
41

 Here, however, in order to have precise control of sample transfer 

to the vial, solvent was used, followed by evaporation of the solvent, allowing oxidation 

processes to take place. We, therefore, tentatively assign one of the adduct species to 

[NACoxidized + 2H + Na]
3+

 instead of [NAC + 2H + K]
3+

.  

The TSA results were also compared with conventional solvent-based analysis 

approaches. Solvent-based LSI-IMS-MS analysis was obtained by adding 4 μL of 2,5-

DHAP matrix solution on top of 1 μL of sample spotted on a glass slide, mixed, and 

blow-dried similar to previous procedures.
132

 This procedure was applied to NAC (in 

50:50 ACN/H2O with 0.1% TFA) and bovine insulin sample (in 50:50 MeOH/H2O with 

1% acetic acid). The solvent-based LSI and the ESI-IMS-MS results for NAC also show 

protonation, metal ion adduction, and the proposed oxidation (Figure S4.2 in Appendix 

A). In contrast, the solvent-based LSI and ESI-IMS for bovine insulin only show 

protonation (Figure S4.3 in Appendix A). Most likely, for NAC, the sample is already 

partially oxidized as purchased.  
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Figure 4.2. LSI-IMS-MS of (A) non-β-amyloid component of Alzheimer’s disease 

(NAC) and (B) bovine insulin (BI) with 2,5-DHAP matrix using solvent-free sample 

preparation, a TSA approach: left panel (1) mass spectrum and right panel (2) 2-D 

plot of drift time versus m/z with insets displaying extracted drift time distributions of 

different ionizations for charge states +3 (NAC) and +6 (BI). Reference data for 

solvent-based ESI- and LSI-IMS-MS are included in Figures S4.2 and S4.3 in 

Appendix A. 

 

The relatively high degree of sodiation and oxidation are observed starting at +3, as 

seen by [M + 3H]
3+

, [M + 2H + Na]
3+

, and [Moxid + 2H + Na]
3+

, suggesting a specific 

structural change in the peptide to enhance metal cation adduction. It is therefore 

interesting to examine the drift time distributions (insets in Figure 4.2.A.2) for the 

different adducts at charge state +3 to provide some insight into the structures of NAC 

ions formed by protonation and sodiation. The charge state +3 ions of [NAC + 2H + 
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Na]
3+

 and [NACoxidized + 2H + Na]
3+

 are significantly separated in the drift time 

dimension. The sodiated ion shows drift times very similar to the protonated ion 

[NACoxidized + 3H]
3+

, while the oxidized ion shows a significantly slower drift time 

indicating a more elongated  structure. The extent of the IMS gas-phase separation of 

~7.0 (non-oxidized) and ~8.9 ms (oxidized) indicates a large difference in shape. 

Similarly, the bovine insulin ions with higher charge states show metal adducted ions 

(Figure 4.2.B.2) without a significant change in drift time (insets in Figure 4.2.B.2). This 

is in good agreement with previous investigations using an ESI-IMS-MS instrument with 

high drift time resolution
106

 that demonstrated that the drift time distributions of lipid ions 

with different metal adduction frequently fall into families with nearly identical drift 

times (isodrifts), indicating that the cation attached to the molecule has little structural 

influence.  

A motivation for producing multiply charged LSI ions from solid-state solvent-free 

preparation of the matrix/analyte is its potential application to tissue imaging. The results 

of Figures 4.1 and 4.2 show the relative abundance and ease with which the formation of 

the highly charged LSI ions can be achieved using a solvent-free approach. Compared to 

the production of exclusively singly charged LSI ions using 2,5-DHB without the use of 

solvents as described before,
75

 the important conditions for forming and increasing the 

abundance of multiply charged LSI ions without the use of solvents are described below. 

First, the homogenization conditions of the matrix/analyte were examined in terms of the 

duration and frequency of the grinding process (Figure S4.3A and Figure S4.4 in 

Appendix A). The abundances of the multiply charged ions of angiotensin I are low after 

homogenization for 2 min with 15 Hz frequency using 2,5-DHAP and increase 
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significantly with 20 min, 25 Hz homogenization (Figure 4.3.A1 versus A2). The 

abundance of multiply charged ions of angiotensin with 2,5-DHB shows the same trend, 

comparing intensity after homogenization for 10 and 2 min (Figure S4.5A versus B in 

Appendix A). Thus, the abundances of highly charged ions are enhanced when more 

vigorous conditions for the matrix/analyte homogenization are applied. These 

homogenization conditions are well beyond those that can be achieved with a simple 

vortex device.
75

 

A. Increasing Grinding Time and Frequency: DHAP 

 

B. Increasing Temperature in Desolvation Device: for DHB and DHAP matrixes 

 

Figure 4.3. Solvent-free mass spectra of angiotensin I obtained from (A) SYNAPT 

G2, a TSA approach, using a home-built desolvation device and 150 °C source 

temperature after using different grinding times and frequencies during 

homogenization of 2,5-DHAP matrix/angiotensin I: (1) 2 min at 15 Hz and (2) 20 min 

at 25 Hz; (B) LSI-LTQ-Velos at 275 °C desolvation temperature homogenized at 25  

Hz and 10 min using (1) 2,5-DHB and (2) 2,5-DHAP matrixes. More details are 

included in Figures S4.4 and S4.5 in Appendix A. 

It is of interest to obtain more detailed information by investigating the LSI plume of 

different matrixes and grinding conditions by collecting the ablated matrix on a nearby 

glass slide. Optical microscopy of the ablated material collected from the solvent-free 
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prepared 2,5-DHB and 2,5-DHAP matrixes on a second microscope slide held at ~2 mm 

distance from the matrix is shown in Figure 4.4 and Figure S4.6 in Appendix A. After 

grinding for 30 s using the TissueLyser II, both matrixes produce liquid droplets upon 

ablation (Figure 4.4). Larger droplets (~5 to 7 μm diameter) are observed for 2,5-DHB 

compared to 2,5-DHAP (~1 μm diameter). The differences in volume of these molten 

droplets correlate with the observed lower temperature required to produce the highly 

charged LSI ions from 2,5-DHAP versus 2,5-DHB matrixes. 

Increasing the grinding time to 10 min, 2,5-DHAP’s liquid droplets maintained the 

same relative size, but 2,5-DHB’s droplets became smaller (Figure S4.6 in in Appendix 

A). The third set of matrix samples were ground in a vortexer for 30 s, similar to the 

method introduced by Hanton and Parees
138 

and used previously for solvent-free LSI.
75

 

The liquid droplets collected for both matrixes are notably less abundant than the droplets 

seen in the TissueLyser II sample (Figure S4.7 in Appendix A). While multiply charged 

ions of angiotensin I were observed in all samples using 2,5-DHAP, samples using 2,5-

DHB and 30 s vortexer grinding times produced predominantly singly charged ions on 

the LTQ Velos, similar to previous observations.
75 

For the study of the thermal requirements within the atmospheric pressure to the 

vacuum transfer region on the formation of highly charged LSI ions of solvent-free 

prepared matrix/analyte samples, a LTQ Velos is used that has a commercial heated inlet 

capillary providing the ability to accurately control the desolvation temperatures (Figure 

4.3.B). We find for angiotensin I that the production of multiply charged LSI ions can be 

enhanced with 2,5-DHB, as is shown for a temperature range from 40 to 400 °C (Figure 

S4.5A,B in Appendix A). Only low abundance signal of singly charged ions can be 
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observed at 40 °C using 2,5-DHB (Figure S4.5B in Appendix A), and high abundance of 

both doubly and singly charged ions was produced when the capillary temperature was 

increased to 275 °C (Figure 4.3B.1). In contrast, 2,5-DHAP provides abundant highly 

charged angiotensin I ions at temperatures as low as 40 °C (Figure S4.5C in Appendix 

A). Increasing the capillary temperature up to 400 °C did not have a significant effect on 

the charge state distribution but did on the abundance (ion count increased from 5.10 x 

10
3
 to 1.95 x 10

5
) using 2,5-DHAP (Figure 4.3B.2 and Figure S4.5C in Appendix A). 

The 2,5-DHAP matrix shows significantly lower thermal requirements than the 2,5-DHB 

using a solvent-free approach. 

 

Figure 4.4. Microscopy images of liquid droplets produced by laser (N2) ablation 

of (A) 2,5-DHAP and (B) 2,5-DHB matrixes after the material was ground 

for 30 s in the TissueLyser II. Reference data for optical microscopy of ablated 2,5-

DHB and 2,5-DHAP after being ground for 10 min in the TissueLyser II (Figure S4.6 

in Appendix A) and 30 s in the vortexer (Figure S4.7 in Appendix A) are included. 

 

Interestingly, with all of the studies performed with angiotensin I using 2,5-DHAP, 

the SYNAPT G2 provides highly charged ions, increasing in abundance with increasing 

time and frequency of matrix/sample homogenization. Singly charged ions are not 

observed, as can be seen in Figures 4.1 and 4.3A. The LTQ Velos, however, frequently 

provides some degree of low abundant singly charged ions along with abundant multiply 
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charged ions as observed in Figure 4.3B. Because enhancement in multiply charged ion 

formation is observed with longer grinding times, higher grinding frequency, and higher 

temperature, the LTQ Velos (Thermo) results displaying both multiply and singly 

charged ions (Figure 4.3B) compare well, considering the conditions used, with the 

previously obtained Orbitrap Exactive results showing singly charged ion formation.
75

 

The SYNAPT G2 was used with and without the IMS dimension by controlling the 

helium gas (Figure S8 ion count increased from). Only low abundant singly charged ions 

are observed without the use of the IMS dimension (no helium), and abundant highly 

charged ions are observed with the use of the IMS dimension (helium on). This 

unexpected result may be related to the unique and delayed ionization phenomena 

occurring inside the ion transfer region
109

 or in the Triwave of the SYNAPT G2 with the 

IMS “on”.
115

 This could also involve an ion transmission issue. 

Applications of TSA to Mixtures of Peptides/Lipids and Crude Oil. Similar to ESI, 

under LSI conditions, lipids produce singly charged ions, thus, mixing a lipid with a 

peptide should produce both singly and multiply charged ions. The analysis of a mixture 

of angiotensin I and sphingomyelin using a TSA approach is shown in Figure 4.5. In the 

extracted mass spectrum (Figure 4.5.A), the doubly and triply charged ions of 

angiotensin I are observed in abundances similar to the pure sample along with abundant 

singly charged ions of sphingomyelin. In comparison, when the solvent ACN/H2O 

(50:50) was added to the same homogenized matrix/analyte powder, lipid ions were no 

longer detected and the signal intensity for the peptide increased (Figure S4.9A in 

Appendix A). Without the TSA analysis, this would incorrectly suggest that the lipid 

component is not present in the mixture. This result has implications for the analysis of 
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biological materials, such as tissue imaging, in which lipids and peptides (proteins) are 

present and may be analyzed simultaneously. It also demonstrates that, with the IMS 

“on”, singly charged LSI ions are transferred to the MS detector. 

 

Figure 4.5. LSI-IMS-MS of a mixture of angiotensin I and sphingomyelin with 2,5-

DHAP matrix using the solvent-free sample preparation method, a TSA approach: left 

panel (A) mass spectrum and right panel (B) 2-D plot of drift time versus m/z. 

In the 2-D plot of drift time versus m/z (Figure 4.5.B), well-separated singly charged 

lipid (8.3 ms) and multiply charged peptide ions (4.2 ms for +2, 2.9 ms for +3) are 

observed. Previous IMS-MS studies using MALDI showed that lipid and peptide ions fall 

into respective charge state families (trend lines) with some separation.
144

 Further, the 

solvent-based LSI-IMS-MS study (Figure S4.9B in Appendix A) shows in the 2-D plot 

abundant doubly charged angiotensin I ions and a low abundant feature in the area where 

sphingomyelin singly charged ion and doubly charged ion of metal adducted dimer are 

expected based on the results observed in Figure 4.5.B. Without a prior knowledge of the 

sample composition, these ions would not be noticed in the mass spectrum (Figure 

S4.9A in Appendix A). More detailed DriftScope analysis of the solvent-based results 

verifies the identity of the singly charged sphingomyelin ions, demonstrating the 
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enhanced effective dynamic range achieved by incorporating the drift time separation in 

an IMS-MS experiment. The comparison of results of solvent-free and solvent-based 

LSI-IMS-MS analyses of this model mixture demonstrates the more inclusive ionization 

without the use of solvents during sample preparation/ionization. 

Additional samples known to ionize exclusively by singly charged ion formation in 

LSI were used to compare the relative ability of the SYNAPT G2 using the IMS 

dimension versus the LTQ or Orbitrap mass spectrometers to determine if ion 

transmission discrimination by charge state exists. Here, the applicability of TSA by LSI 

for oil samples is examined. These samples are notoriously sticky and of extreme 

complexity and therefore prone to sample loss.
145

 Furthermore, the ionization of crude oil 

samples is frequently limited to ESI, atmospheric solids analysis probe (ASAP), or 

atmospheric pressure photoionization (APPI).
146-148

 MALDI performs poorly because of 

the chemical background introduced with the matrix in the mass range of the oil sample 

and, most notably, the tendency of gas-phase aggregation and coalescence due to use of 

higher laser fluence, as shown with these and similar systems.
146,149-154

 Additionally, 

solvent-based separation approaches for the reduction of sample complexity are difficult, 

so the analyses are predominantly obtained using ultrahigh mass resolution Fourier 

transform ion cyclotron resonance (FT-ICR) instrumentation
145,146,148,153

 and more 

recently by IMS-MS.
146,147

 

The analyses of liquid oils from various origins were prepared and analyzed by the 

TSA approach using LSI with 2,5-DHAP as matrix. Typical examples are shown in 

Figure 4.6 and Figure S4.10 in Appendix A. The 2-D plot of drift time versus m/z shows 

abundant signals in the expected mass range of m/z 200 and 800 and demonstrates that 
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laser-induced aggregates are not observed, even though the laser fluence is higher using 

LSI compared to MALDI.5 Aggregation and “clustering” have 

 

Figure 4.6. LSI-IMS-MS of crude petroleum oil with 2,5-DHAP matrix using 

solvent-free sample preparation, a TSA approach: left panel (A) mass spectrum and 

right panel (B) 2-D plot of drift time versus m/z with insets displaying extracted drift 

time distributions of m/z 205.18 and 205.24. Reference data for other oily and sticky 

materials are included in Figure S4.10 in Appendix A. 

been reported for laser-based analyses such as MALDI and LDI of crude oil and similar 

materials.
146,149-152

 The LSI-TSA approach does not show aggregation or clustering. The 

chemical background introduced by the matrix is also insignificant using the LSI-TSA 

approach. The lower chemical background has been described for solvent-free ionization 

approaches for a number of low molecular weight systems including efficient ionization 

of fatty acids, pigments, and polycyclic aromatic hydrocarbon compounds.
36,143,154

 A 

comparison with solvent-based LSI-IMS-MS shows some chemical background related 

to the use of solvent (Figure S4.11 in Appendix A). Again, the observation of singly 

charged ions under LSI conditions with the IMS “on” suggests that transmission 

discrimination is not a detrimental issue. The solvent-free gas-phase separation of small 

structures of isobaric composition is delineated by the extracted drift time distributions of 

m/z 205.18 and 205.24 in the inset of Figure 4.6.B. An initial study on TSA using a 
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MALDI approach delineated isobaric tissue composition at m/z 863.3 to 863.7.
136

 When 

comparing the different oil samples relative to each other, the differences are evident 

(Figure 4.6 and Figure S4.10 in Appendix A). Both the pure vegetable oil and the motor 

oil exhibit the presence of more low mass species, while crude oil shows a more complex 

nature with more abundant high mass species. This indicates the useful nature of the 2-D 

plots when using the snapshot approach as previously indicated for the analysis of 

synthetic polymers.
 155

 

4.4 Discussion  

The preparation of supersaturated 2,5-DHAP solution is crucial for the success of 

LSI, though the solubility of 2,5-DHAP is low in most solvents.
132 

As shown here, the 

solvent-free sample preparation is more streamlined, and the solubility of 2,5-DHAP or 

deposition procedure to the sample holder is no longer a setback for obtaining similar and 

in some cases improved mass spectra as compared to solvent-based sample preparation.  

The ability and simplicity of preparation and ionization of even sticky oil samples 

relates well with previous studies of sticky and liquid polymeric samples using a solvent-

free MALDI approach
.36,138,154

 The disadvantage of the solvent-free sample preparation 

used here as well as other solvent-free sample preparation methods developed for surface 

analysis
136

 is the larger sample requirement relative to solvent-based LSI sample 

preparation, which showed sensitivities in the low femtomole range for insulin and mid-

attomole range for peptides.
 75 

The ability to produce highly charged ions without the use 

of a voltage
75,107,108,121,129-135

 is of analytical utility but is also of fundamental importance. 

Previous work showed that the ion production occurs inside the capillary in the AP 

vacuum pressure drop region and that desolvation processes of the matrix occur, leaving 
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behind the multiply charged ions similar to ESI-like processes at AP.
107,131

 Multiply 

charged ions were previously obtainable only by using ionization methods that involve a 

solution state such as in ESI
156

 or solvent-based sample preparation for LSI.
 

75,107,108,115,121,130-134
 Interestingly, adding a drop of solvent to a sample prepared solvent-

free using a vortexer for homogenization of matrix/analyte converts the singly charge 

ionization observed using that procedure to the sole production of multiply charged ions, 

suggesting that analyte incorporation in MALDI might be important in forming multiply 

charged LSI ions.
75

 Here, we show that solvent is also not a necessity to produce multiply 

charged ions of peptides and proteins. The solid matrix/analyte mixture prepared and 

homogenized without employing solvent when ablated from a surface forms molten 

droplets upon the absorption of the laser energy similar to solvent-based LSI 

observations.
131

 Garrison et al. modeled matrix droplets in vacuum laser ablation of solid 

matrix.
 157,158

 

Initial solvent-free results show that multiply charged ions from solvent-free sample 

preparations are easily obtained on the SYNAPT G2 (Figures 4.1 and 4.2), but that the 

reproducibility between instruments and relative to published work
75 

on the Orbitrap is 

low. Exploring different preparation (e.g., grinding time and frequency) and instrument 

parameters (e.g., orifice temperature, IMS gas) on two different mass spectrometers (LTQ 

Velos, SYNAPT G2) elucidated a number of important mechanistic aspects to solvent-

free and multiply charged ion formation (Figure 4.3). 2,5-DHAP solvent-free sample 

preparations are readily obtained and reproducible on the LTQ Velos and SYNAPT G2, 

but the DHB results notably vary between instruments. To elucidate the differences, an 

approach similar to that of published work
131

 on solvent-based LSI-MS was used that 
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showed that significant amounts of matrix/analyte materials are transformed by the 

impact of the laser on the solid matrix/analyte to liquid droplets collected on a glass slide 

2 mm distant from the matrix holding glass slide and visualized by microscopy. Here 

(Figure 4.4, Figure S4.6 and S4.7 in Appendix A), ablating solid matrix material from 

the surface shows that both the DHAP and the DHB matrixes produce droplets, though 

not to as large of an extent as with solvent-based sample preparation, and that the droplet 

sizes are significantly different for both matrixes prepared solvent-free. DHAP produces 

small droplets under all tested preparation methods that do not significantly change in 

size using various grinding conditions. However, the size of DHB’s droplets are large 

relative to the droplets formed from DHAP and are inversely proportional to grinding 

time in the ball-mill device. The smaller droplets likely require less energy for efficient 

desolvation in the ion transfer region and consequently enhance the ease and thus the 

abundance for forming multiply charged ions. The always small sized DHAP droplets 

(Figure 4.4A) also offer a sound argument for the reproducibility of the solvent-free 

experiment using DHAP. Microscopic results are in agreement with our mass 

spectrometric observations. We cannot assert a causal relationship between smaller 

matrix/analyte droplets and the formation of more abundant multiply charged ions, but 

there is a correlative connection. A correlation appears to exist between the production of 

multiply charged LSI ions and the abundance of small liquid droplets formed from 

ablated matrixes. In the case of the DHB matrix, this is achieved with longer grinding 

times (10 min) on the Velos at a temperature of 275 °C for which the doubly charged ion 

is now the base signal relative to the singly charged ion (Figure 4.3). 

Relating the microscopy data to the mass spectrometric results of DHB and DHAP 
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matrixes seems to suggest that the production of highly charged ions is more effcient 

from materials that form smaller droplets. A droplet of ~2 μm (DHAP) versus ~8 μm 

(DHB) diameter has 64 times more matrix material. The difficulty of desolvation of the 

larger droplets may explain the higher temperature requirements in the transfer capillary 

of the mass spectrometer for DHB. It is possible that the thermal energy requirement for 

producing the multiply charged ions is only suffcient for the smaller droplets. Small 

droplets can be achieved from appropriate matrix material by laser ablation at AP from 

samples that were not “incorporated” into the matrix in a conventional way but by the 

grinding forces. Extended grinding times (SYNAPT G2; Velos) and high desolvation 

temperatures (Velos) allow highly charged LSI ions to be formed in the source region as 

well as downstream of the mass spectrometer (SYNAPT G2). 

LSI is a subset of MAII
109 

in which a laser is used to transfer the matrix/analyte 

material to the ion transfer capillary for ionization. Other means of MAII are the use of, 

for example, a center punch or simply a spatula giving identical results as compared to 

LSI. Clearly not all MAII methods start with small molten droplets but produce multiply 

charged ions. Important to success is effcient heating (Figure 4.3.B1 and Figure S4.5A,B 

in Appendix A), low thermal requirements (Figure 4.3.B2 and Figure S4.5C in Appendix 

A), and homogeneity (Figure 4.3A and Figure S4.4 in Appendix A). The singly charged 

ions previously produced using a solvent-free LSI approach are a result of non-

incorporating vortexing conditions.
75

  

Previous MALDI studies discussed ionization, incorporation of analyte into the 

matrix, morphology changes in solvent-free and solvent-based sample 

preparation/ionization for analysis,
36,39,159-166

with some indication that the solvent-free 
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method enhances the effciency of MALDI ion production of compounds diffcult to 

protonate because the analyte and metal cations get close in the solid state through the 

grinding process.
39,41,143,154,157

 Solvent-based LSI-MS and LSI-IMS-MS provides little 

evidence for producing Na
+
 adduction to peptides or proteins similar to MALDI or ESI-

MS, probably because of segregation that occurs upon crystallization on removal of 

solvent. It seems possible that the more aggressive homogenization in solvent-free 

MALDI produces smaller and better mixed matrix/analyte(/metal cation) particles which 

produce the desired “incorporation” and molten state, thus accounting for the observation 

of multiply charged ions formed by proton and metal cation attachment. In contrast to 

MALDI and LDI, the chemical background in TSA by LSI is relatively low and analyte 

aggregation
146,149-152

 is not observed, similar to ESI-IMS-MS, but provides the ability for 

fast, solvent-free, and surface analyses independent of analyte or matrix solubility. 

The structural changes observed in the IMS dimension for protonation versus 

sodiation are small based on the drift time separation, whereas the structural changes of 

oxidized and non-oxidized NAC are significant, demonstrating the potential of structural 

diff erentiation of ions directly from the solid state. Because ESI-IMS-MS gives the same 

results, the oxidation or structural changes are not related to one ionization method. 

Morphology changes during sample preparation to produce small molten droplets and the 

absence of sodiation in ESI and LSI-IMS-MS measurements lead us to conclude that the 

attachment of metal cation(s) is a direct result of the homogenization process of the 

matrix/analyte. 

4.5 Conclusion 

We report the first observation of multiply charged ions produced from the solid state 
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using solvent-free matrix/analyte sample preparation. Combined with IMS-MS, this TSA 

approach provides greatly improved IMS separation of compound classes that differ by 

charge states (e.g., lipids and peptides). Other advantages of a TSA approach include 

one-step sample preparation and deposition on the target plate, rapid data acquisition for 

simplifying sample complexity relative to ESI and LC-MS, reduction of sample artifacts 

caused by the use of solvents, and enhancement of the effective dynamic range by the 

IMS dimension. The ability to observe multiply charged ions using LSI from solvent-free 

sample preparation will have immense benefits if it can be translated to solvent-free 

matrix deposition for tissue imaging where the use of solvent is detrimental to retaining 

spatial integrity of the more soluble compounds. 
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CHAPTER 5 

A NEW APPROACH TO HIGH SENSITIVITY LIQUID 

CHROMATOGRAPHY-MASS SPECTROMETRY OF PEPTIDES USING 

NANOFLOW SOLVENT ASSISTED INLET IONIZATION 

Liquid chromatography (LC) solvent assisted inlet ionization (SAII) mass 

spectrometry (MS) was previously reported to give good chromatographic resolution and 

MS detection injecting 66 ng of a BSA tryptic digest. In analogy to nano-electrospray 

ionization (nESI), we extend SAII LC/MS to nano-SAII (nSAII) operating at nL min
–1

 

flow rates and demonstrate good quality ion chromatograms and mass spectra from 

injection of as little as 0.7 ng of BSA digest onto a capillary LC column. Data dependent 

fragmentation is demonstrated for injection of 7 ng of a BSA digest. This method has 

advantages over nESI in ease of use and low cost as it requires no voltage and is 

operational without the necessity of connectors or fragile nESI emitters, although similar 

constricted tips can be helpful in nSAII to stabilize the signal at low nanoliter flow. At a 

flow rate of 0.8 μL min
–1

, the only requirement for nSAII is that the exit-end of 

the capillary LC column be adjusted near the aperture of the heated inlet of the mass 

spectrometer.  

 

 

 

 

 

 

B. Wang, E. D. Inutan, S. Trimpin, J. Am. Soc. Mass Spectrom. 2012, 23, 442-445. 

Reprinted with permission from Springer Science and Business Media. 
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5.1 Introduction 

Modern liquid chromatography/mass spectrometry (LC/MS) almost exclusively uses 

electrospray ionization (ESI) except for low polarity compounds which use atmospheric 

pressure chemical ionization (APCI).
167 ,168 ,169

 For analyses where sample amount is 

limited, ESI LC/MS is performed at nanoliter (nL) min
–1

 mobile phase flow 

rates.
78,170,171,172

 This approach, called nano-ESI (nESI),
173

 is especially important for 

peptide and protein analyses. Because ESI is a concentration sensitive method, lower 

flow rates produce similar signal to higher flow but with consumption of less material.
80

 

However, the low flow condition also enhances ionization, presumably by producing 

smaller solvent droplets with increased charge, thus reducing ion suppression and 

ionizing a wider range of compounds. Because of the importance of nESI, ion sources are 

commercially available. Recently, Smith and coworkers
174 , 175

 reported on nESI at 

subambient pressure using ion funnel technology. However, nESI has a number of 

shortcomings. The low solvent flow greatly increases the time for a complete LC run 

relative to higher flow rates, and achieving a stable ion current is notoriously difficult. 

Special spray emitters are available to help address this issue,
82

 but the emitter tips are 

fragile and add considerable cost to nESI. The sharp tips also reduce the voltage range 

over which a stable ESI spray is observed: too high voltage produces a corona discharge. 

Technical issues generally limit the use of nESI to problems that need its additional 

capabilities. 

Recently, inlet ionization methods have been introduced that have the potential to 

compete with both matrix assisted laser desorption/ionization (MALDI) and ESI. 

Methods that utilize a solid phase matrix similar to those used in MALDI are laserspray 

ionization inlet (LSII)
75,107,121,129,132,135 

and matrix assisted inlet ionization (MAII).
109
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Solvent assisted inlet ionization (SAII) is the equivalent of ESI in that similar mass 

spectra are produced from solvent/analyte solutions introduced into the mass 

spectrometer inlet and ionized.
111

 Just as in ESI, SAII can be used for ionization in 

LC/MS.
112

 It was shown that introducing the LC mobile from a 1 mm i.d. LC column 

directly into a heated inlet transfer tube of the mass spectrometer produced a high quality 

ion chromatogram and corresponding mass spectra with injection of ca. 70 ng of bovine 

serum albumin (BSA) tryptic digest. Here, we extend the applicability of inlet ionization 

to nanoliter flow rates by positioning the LC effluent just outside of the mass 

spectrometer inlet aperture and demonstrate similar results from injection of just 0.7 ng of 

BSA digest. 

5.2 Materials and Methods 

Materials. Chemicals were stated in Chapter 2. 

Methods. 

SAII-MS. One end of a 40 cm length of 25 μm i.d. fused silica tubing (Polymicro 

Technologies, Phoenix, AZ, USA) was connected to a syringe and the exit end taped on 

an x,y,z-stage to control the alignment and distance of the exit end relative to the inlet 

aperture of the heated atmospheric pressure (AP) to vacuum inlet tube of the mass 

spectrometer. A study of the optimum distance of the fused silica exit from the inlet 

orifice was performed by pumping a 1:1 ACN:water 0.1 % FA 1 pmol μL
–1

 angiotensin 

I solution through the fused silica tube at a flow rate of 1.2 μL min
–1

. The x,y,z-

stage was used to adjust the exit end of the fused silica from 0.4 mm on the AP side to 

0.2 mm on the vacuum side of the mass spectrometer inlet aperture. 

NanoSAII and nanoESI LC-MS and MS/MS. A Waters Corporation NanoAcquity 
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UPLC was used with a Waters 100 μm×100 mm BEH130 C18 column with 1.7 μm 

particles. Water and ACN both containing 0.1% FA was used as the mobile phases in all 

studies. A 35 min gradient of 1 to 85% ACN was used at mobile phase flow rates varying 

from 0.4 to 0.8 μL min
–1

, and a 12 min gradient at a flow rate of 1.2 μL min
–1

. For 

0.4 μL min
–1

 flow rate, a 6.35 cm long 360 μm o.d. × 20 μm i.d. (with 10 μm i.d. at 

the tip) pre-cut PicoTip emitter (Waters) was employed as an extension to the end of LC 

capillary column and mounted on the x,y,z-stage to be positioned about 0.1–0.2 mm 

outside of the mass spectrometer inlet for optimum results. At flow rates of 0.8 μL min
–1

 

and higher, the exit-end of the LC capillary column (100 μm i.d. × 360 μm o.d.) was 

used without need of a special emitter or any tubing connections. A Thermo LTQ-Velos 

mass spectrometer with the inlet tube heated to 300 °C was used for LC-nSAII-MS and 

MS/MS. Data dependent MS/MS was obtained using collision induced dissociation 

(CID) with 35 V collision energy. A three point boxcar smoothing was used for the LC 

chromatogram display. A Waters SYNAPT G2 mass spectrometer
109,112,121,132

 was used 

for LC-nESI-MS for relative comparison. The skimmer cone was heated to 150 °C. The 

voltage applied on the nESI capillary is 3.06 kV. BSA tryptic digest solution, 1 μL of a 

100 fmol μL
–1

, was analyzed using the same LC gradient at a mobile phase flow of 

0.8 μL min
–1

 and 0.4 μL min
–1

. 

5.3 Results and Discussion  

SAII was recently interfaced with LC/MS at a mobile phase flow rate of 55 μL min
–1

 

with chromatographic resolution comparable to ESI LC/MS and produces good 

signal-to-noise with injection of 1 pmol of a BSA digest.
112

 This work was accomplished 

on a LTQ-Velos, which has a heated inlet tube linking AP with the first vacuum region of 
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the mass spectrometer. The higher flow rates used in the previous study requires that the 

exit-end of the fused silica capillary be stripped of its polyimide coating and inserted into 

the heated inlet tube of the mass spectrometer to a ‘sweet spot’ for ion production. Here, 

we demonstrate, in analogy to nESI, that nanoliter mobile phase flow rates are also 

compatible with SAII. The initial ‘tuning’ for the low flow rate was achieved by 

delivering an angiotensin I solution using an infusion pump to the exit end of the fused 

silica tube (25 μm i.d.) so that it could be adjusted (Figure S5.1 in Appendix B) for the 

best stability and abundance of the signal from the triply charged angiotensin I ion (m/z 

433). For flow rates of a few microliters and lower, the best position of the fused silica 

capillary exit-end was found to just at the inlet entrance aperture, and no longer requiring 

the removal of the coating. A stable signal with good sensitivity was achieved with the 

mass spectrometer inlet tube temperature set to 300 °C. The flow of air into the vacuum 

region of the heated mass spectrometer entrance inlet is sufficient to nebulize the solution 

at the tip of the fused silica, sweeping the ensuing mist of solvent droplets into the inlet 

where ions are generated with the assistance of heat and vacuum.  

Laserspray ionization (LSII), potentially useful for imaging at high spatial 

resolution,
75,107,121,129,134,135  

is a subset of matrix assisted inlet ionization (MAII)
109

 in 

which a laser is used to transfer the matrix/analyte mixture to the mass spectrometer inlet 

where ions are produced in the heated pressure drop region having similar charge states 

to ESI.  We hypothesize that ion formation is vacuum and thermal assisted.
107,110,121,122,131

 

SAII
111,112

 is similar to the other inlet ionization methods of LSII 
75,107,121,129,134,135 

and 

MAII
109

 in which any means of introducing matrix/analyte into the heated inlet produces 

ions similar to ESI. In the case of SAII
111

 where the matrix is a solvent, it can be shown 
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(Figure S5.2 in Appendix B) that ions are not produced by a sonic spray mechanism as is 

evident by the requirement that the inlet be heated to produce ions:  heat is not a 

requirement for sonic spray.
176,177

 There are also significant differences between inlet 

ionization with a solvent and thermospray ionization
124

 in addition to the high charge 

states, low flow rates and the high sensitivity achievable with SAII, as was recently 

pointed out.
112

   

Without the need to place the fused silica inside the heated mass spectrometer inlet, it 

is possible to use the exit of the capillary LC column and eliminate all connections, 

unlike in our previous LC-SAII study.
112

 By attaching the exit of the LC column to an 

x,y,z-stage with tape, the end of the LC column capillary tubing is visually adjusted near 

the entrance of the mass spectrometer inlet for optimum ion current stability (Figure 5.1A 

and Figure S5.3 in Appendix B). This procedure can be accomplished in a couple of 

minutes. This arrangement provides stable ion current at flow rates from 0.8 μL min
–1

 

(Figure S5.4A in Appendix B) to at least 1.2 μL min
–1

 (Figure S5.4B in Appendix B). 

However, the signal is not sufficiently stable with this arrangement at 0.4 μL min
–1

 for 

good quality LC/MS. Observationally, it appears that the instability is the result of larger 

droplets exiting the fused silica tubing rather than a fine spray. A stable signal is achieved 

by attaching the LC column to a Waters PicoTip emitter (Figure 5.1B), as is done in 

nESI. Because SAII operates without the requirement for a voltage and at high nanoliter 

flow rates without the necessity of a fragile emitter, it is exceptionally easy to implement. 
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Figure 5.1. Pictures showing the setup for LC-nSAII. Side view of MS inlet in which 

the tip of the fused silica capillary tube of the LC column is placed about 0.1 mm out 

of the orifice inlet entrance of the mass spectrometer (A) directly or (B) by use of a 

“PicoTip” attached to the end of the fused silica capillary tube. Front view of the LC 

and mass spectrometer setup is displayed in Figure S5.3 in Appendix B. 

Using the simple set-up (Figure 5.1A and Figure S5.3 in Appendix B) requiring no 

emitter connected to the LC column and a mobile phase flow rate of 0.8 μL min
–1

, 

injection of 100 fmol (7 ng) of BSA digest produces roughly equivalent results to those 

reported
112

 for ca. 70 ng injected at 55 μl min
–1

. The base peak chromatogram for the 100 

fmol injection is shown in Figure S5.5A in Appendix B. The mass spectrum from the 

peak eluting at 17.8 min shows doubly and singly charged analyte ions (Figure S5.5B in 

Appendix B). In order to have a relative comparison, nESI LC/MS was acquired using 

the commercial nESI source on the SYNAPT G2 mass spectrometer at a mobile phase 

flow rate of 0.8 and 0.4 μL min
–1

 using the same gradient and injecting 100 fmol of the 

same BSA digest used in the SAII study (Figures S5.4 and S5.6 in Appendix B). 

Additionally, data dependent fragmentation for the 100 fmol SAII injection on LTQ 

Velos also produces excellent LC/MS/MS fragmentation as is demonstrated by the high 

sequence coverage using MASCOT for the BSA peptide fragment at m/z 740 having the 

sequence LGEYGFQNALIVR (Figure 5.2). MASCOT identified the protein as BSA 

from this single MS/MS spectrum with a score of 103. The first nSAII LC/MS and 

A. B. 
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MS/MS results, without the necessity of special connections, tips, or voltage, produce 

roughly equivalent results to nESI and in much less set-up time for the experiment. 

 
Figure 5.2. LC-nSAII-MS/MS mass spectrum of 100 fmol μL

–1
 BSA tryptic digest 

with 1 μL injection at a flow rate of 800 nL min
–1

 using the setup shown in 

Figure 5.1(A). The sequence shows the Mascot coverage providing a MASCOT score 

of 103. 

Injection of just 10 fmol (0.7 ng) of BSA digest using SAII at 0.8 μL min
–1

 produces 

the base peak chromatogram in which only the most abundant ions are observed. 

However, connecting the exit of the LC column to a 20 μm i.d. PicoTip with 10 μm i.d. 

on the tip allows a stable signal to be obtained at a flow rate of 0.4 μL min
–1

. Under these 

conditions, injection of 0.7 ng of BSA digest produced the base peak chromatogram 

shown in Figure 5.3. The signal-to-noise was calculated by the data system for the peak 

eluting at m/z 582 is 277. 
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Figure 5.3. nSAII-LC/MS base beak chromatograms of 10 fmol μL
–1

 BSA tryptic 

digest with 1 μL injection at a flow rate of 400 nL min
-1

 using the “PicoTip” 

extension shown in Figure 5.1(B). 

5.4 Conclusion 

Inlet ionization is a new method for producing mass spectra equivalent in charge state 

to those produced by ESI but from solid (LSI or MAII) or solution (SAII) states without 

the need for a laser or voltage for ionization. The sensitivity of inlet ionization is 

demonstrated by the production of good quality base peak chromatograms and clean mass 

spectra with high signal-to-noise with injection of as little as 0.7 ng of a BSA digest using 

nSAII LC/MS. Data-dependent fragmentation was shown for injection of just 7 ng of 

BSA digest using a mobile phase flow rate of 800 nL min
–1

. These results suggest the 

potential of SAII for proteomics and most likely other areas where sample amounts are 

limited. Detailed mechanistic discussion relative to inlet ionization is addressed in a 

forthcoming paper.
122
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CHAPTER 6 

HIGH THROUGHPUT SOLVENT ASSISTED IONIZATION 

INLET (SAII) FOR USE IN MASS SPECTROMETRY 

In this work we developed a multiplexed analysis platform providing a simple high-

throughput means to characterize solutions. Automated analyses, requiring less than 5 s 

per sample without carryover and 1 s per sample, accepting minor cross contamination, 

was achieved using multiplexed solvent assisted ionization inlet (SAII) mass 

spectrometry (MS). The method involves sequentially moving rows of pipet tips 

containing sample solutions in close proximity to the inlet aperture of a heated mass 

spectrometer inlet tube. The solution is pulled from the container into the mass 

spectrometer inlet by the pressure differential at the mass spectrometer inlet aperture. 

This sample introduction method for direct injection of solutions is fast, easily 

implemented, and widely applicable, as is shown by applications ranging from small 

molecules to proteins as large as carbonic anhydrase (molecular weight ca. 29 000). 

MS/MS fragmentation is applicable for sample characterization. An x,y-stage and 

common imaging software are incorporated to map the location of components in the 

sample wells of a microtiter plate. Location within an x,y-array of different sample 

solutions and the relative concentration of the sample are displayed using ion intensity 

maps. 

B. Wang, S. Trimpin, Anal. Chem. 2014, 86, 1000-1006.
1
 Reprinted with permission 

from Copyright (2014) American Chemical Society. 

                                                           
1 This publication has been converted to a provisional patent and later to a patent application, 

pending. “Multiplexing system used to allow high throughput analysis of samples using solvent 

assisted ionization inlet comprises ionizing system for solvent assisted ionization inlet, x,y-stage 

or x,y,z-stage, and software program at maps samples” US2014166875-A1, Trimpin, S. 
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6.1 Introduction 

High-throughput screening is an important need of the pharmaceutical industry 

including drug design and clinical applications.
178-180

 Commonly used technologies are 

fluorescence,
181

 electrophoresis,
182

 and mass spectrometry (MS).
183

 While electrospray 

ionization (ESI) has a number of advantages, matrix-assisted laser desorption/ionization 

(MALDI) is the faster ionization method by simply increasing the frequency of the laser 

used for desorbing/ionizing the matrix/analyte (e.g., 20 kHz).
184

 Work on increasing the 

speed of ESI technology is based on using multiple inlets,
185,186

 an automated chip-based 

work flow (e.g., Nanomate),
187-191

 or segmented flow.
192,193

 Recent years have seen a 

renaissance for ionization approaches used in MS. One result has been many clever ways 

to analyze materials under ambient conditions,
84

 thus providing a convenient and direct 

means of sample analysis.
89, 194

 The novel methods that are capable of ionizing 

nonvolatile compounds are frequently based on ESI.
33,156 

A series of inlet ionization methods
107,109,111

 have been discovered recently that 

produce ESI-like mass spectra from the solution or solid state. Ionization occurs in a 

heated pressure drop region linking atmospheric pressure (AP) with the first vacuum 

stage of a mass spectrometer. The simplicity of inlet ionization methods is that neither a 

high voltage nor a laser is required, and the natural gas flow through the inlet replaces the 

necessity of a nebulizing gas. Multiply charged ions produced by these methods extend 

the mass range of highper formance mass spectrometers,
107

 enhance separations by 

charge states in ion mobility spectrometry (IMS),
132

 and allow advanced fragmentation 

using electron-transfer dissociation (ETD).
134

 Several modes of analyzing surfaces and 

solutions are available with inlet ionization, some providing high spatial resolution or 
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high-speed imaging.
195

 These ionization methods, even in their early development, are 

highly sensitive as has been shown for bovine insulin and steroids.
111,196

 

Solvent assisted ionization inlet (SAII) is the liquid introduction variant of the family 

of inlet ionization operating without a laser or a voltage and capable of coupling with a 

liquid chromatography (LC)
112,196

 and nano-LC/MS/MS
197

 with high sensitivity (7 ng of 

bovine serum albumin (BSA) tryptic digest injected on column,
197

 and low femtograms 

for steroids
196

). Because in SAII, the exit end of a fused-silica capillary is placed inside 

the inlet, a pressure differential drives the flow of solvent into the mass spectrometer 

without the need of a pump.
111

 The best sensitivity was achieved in the initial approach 

by aligning the fused-silica tube to a “hot spot” within the inlet tube.
111

 Subsequent SAII 

work showed that for nanoliter flow, good sensitivity (e.g., 10 fmol of a BSA digest by 

LC/MS), is achieved simply by placing the LC outlet in front of the inlet aperture of the 

mass spectrometer.
197

 Solution is swept into the inlet in the flow of air, and analyte is 

ionized in the inlet. 

Here, we present a flexible SAII approach based on direct injection and use of 

disposable pipet tips for the analyses of compounds independent of molecular weight and 

volatility. This method can be used to conveniently map solution content, location, and 

relative quantities in a high-throughput manner. 

6.2 Materials and Methods  

Materials and Sample Preparation. 

 Clarithromycin tablet (500 mg) was obtained from local pharmacy and ground to fine 

powder by mortar and pestle. Other general chemicals were stated in Chapter 2. For the 

experiments using directly pipetting, the phosphorylated peptide mixture was prepared in 
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50:50 acetonitrile:water with 0.1% formic acid for positive mode acquisition at 150 °C, 

and in 0.5% ammonia for negative mode acquisition at 400 °C.  Myoglobin and carbonic 

anhydrase were diluted in water with 0.1% formic acid and analyzed at inlet temperature 

of 250 ºC.  In the pH study, bovine insulin and lysozyme solutions at pH of about 3, 4.5, 

6, and 9 were tested.  Bovine insulin stock solutions were prepared in 50:50 

methanol:water with 1% acetic acid and 50:50 methanol:water with 1% ammonia.  Then 

the acidic solution was diluted with methonal:water with acetic acid or water, and the 

basic solution was diluted with methanol:water with ammonia or water.  Lysozyme was 

prepared by dissolving lysozyme in 1% formic acid, 50:50 acetonitrile:water with 0.1% 

formic acid, 50:50 acetonitrile:water with 0.05% formic acid, water, and 0.1% ammonia, 

respectively.  Carbonic anhydrase was diluted in water with 0.1% formic acid. 

For the experiments using the 8-channel pipette, leucine enkephalin and galanin were 

prepared in water with 0.1% formic acid, and ubiquitin was in 50:50 acetonitril:water 

with 0.1% formic acid. Clozapine was diluted by methanol to desired concentrations.  For 

the analysis of tablets, 8 wells in the first row of the 384-well microtiter plate (Greiner 

Bio-One Inc., Monroe, NC) were filled with 100 µL methanol. A pipette tip was used to 

dip into the tablet powder, transferred random amount of the powder and swirled them 

into the second, fifth, and eighth well (Scheme S6.2 in Appendix C). The tablet solutions 

were then diluted 100 fold by methanol in the second row of the microtiter well plate, and 

the diluted tablet solutions were diluted again 100 fold in the third row (Scheme S6.2.A 

in Appendix C).   

For experiments using the 96-well plate, analytes were diluted from their stock 

solutions using the following solvent systems: clozapine was in methanol, sphingomyelin 
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was in methanol with 1% acetic acid, bovine insulin in 50:50 methanol:water with 1% 

acetic acid, and all the others were in 50:50 acetonitrile:water with 0.1% formic acid. 

Methods. 

The SAII-MS and SAII-MS/MS experiments were carried out on an LTQ Velos mass 

spectrometer (Thermo Fisher Scientific, Bremen, Germany), from which the ESI source 

was removed and interlocks overridden as described previously.
135

 The inlet of the mass 

spectrometer was heated between 150 to 450 °C depending on solvent and its pH.  To 

avoid cross contamination, pipet tips filled with only solvent, used for dissolving the 

analyte in the previous pipet tip, were added to alternate pipet tips.  Mass spectra were 

displayed as a single acquisition, generally by acquiring 1 microscan and with the 

maximum injection time of 100 ms for pipetting, 1 microscan and 300 ms maximum 

injection time for multiplexing, unless otherwise stated. Collision induced dissociation 

(CID) and electron transfer dissociation (ETD) were employed for characterization of 

certain analytes by selecting the parent ion using a mass tolerance of 1 m/z unit. Similar 

to a previous study,
198  

 the CID MS/MS spectra were obtained using a normalized 

collision energy setting between 20 to 30 depending on the analyte, and ETD using an 

activation time of 100 ms. 

For these experiments, pipet tips (10 μL micropipet tips, Fisher Scientific, Pittsburgh, 

PA) are aligned with the MS inlet by having them held in an 8-channel pipet holder or the 

96-pipet tip holder in which new pipets are shipped. Solutions containing sample, or 

blank, were loaded by simultaneously dipping the pipet tips into a 96 multivial or well 

plate containing the various analyte solutions; ~3 μL of each solution is drawn into the 

pipet tip by capillary action (based on acetonitrile/water solution). The holder was affixed 
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on the x,y-stage with the first pipet tip (typically empty) placed in close proximity (~0.1 

mm at low inlet temperatures and ~0.5 mm at high inlet temperature) to the inlet aperture. 

Using the control of the x,y-stage, rows of pipet tips were moved automatically in front 

of the inlet aperture so that the solution containing the analyte exits the pipet tip under the 

influence of the pressure differential when the tip is in close proximity with the inlet 

aperture of the mass spectrometer. The x,y-stage movement was continuous, and rate of 

movement was controlled from 1.5 to 18 mm s
−1

. Data were acquired in the mass-to-

charge (m/z) range of 150−2000, unless otherwise stated. Mass spectra were displayed as 

a single acquisition, generally by acquiring 1 microscan and with a maximum injection 

time of 100 ms for pipetting, 1 microscan and 300 ms maximum injection time for 

multiplexing, and 1 microscan and 500 ms maximum injection time for quantitative 

studies. Biomap imaging software (Novartis Institution for Biomedical Research, Basel, 

Switzerland), typically used for imaging applications,
135,195,199

 was incorporated to map in 

which solution analyte was present as determined by the m/z ratio values obtained by MS 

or MS/MS. Besides mapping the location of analyte, the software allows relative 

concentrations to be displayed by color code. 

6.3 Results and Discussion  

Initial results were obtained using a single pipet and purchased standards. Sample 

solution was introduced for mass analysis from a pipet tip held close to the inlet aperture 

of the mass spectrometer. For ease of operation, the source housing was removed and 

interlocks overridden. Analyte ions were observed as soon as the pipet tip was close, but 

not touching, the heated (150 °C) inlet tube entrance of the LTQ Velos and solution was 
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drawn into the inlet (Scheme 6.1A). Standards, and standard mixtures, of varying 

concentrations were run to acquire initial benchmark results for ongoing improvements. 

Scheme 6.1. Pictures of the SAII source setup using (A) a single pipet, (B) an 8-

channel pipet, (C) a 96-pipet array; loading of the samples through use of the 96 

sample plate is displayed in Scheme S6.1 in Appendix C. (B) and (C) are automated 

by mounting the pipet holder on a xy-stage and mapping of the location is achieved 

through inclusion of the Biomap program.  

 

With phosphorylated peptides, both positive (Figure 6.1A) and negative (Figure 

6.1B) ions were produced using this method without the loss of phosphorylation. 

Fragmentation using collision-induced dissociation (CID) provides good sequence 

coverage of each phosphorylated peptide dispensing 1 μL of a 2.5 pmol μL−1 solution 

(Figure S6.1 in Appendix C). Proteins as large as myoglobin and carbonic anhydrase are 

efficiently ionized and detected using this approach (Figure S6.2 in Appendix C). The 

angle of the pipet relative to the inlet had little effect so long as solution was drawn into 

the inlet. Results from this study demonstrated that SAII is operationally simple and 

tolerant of a wide range of solvents, such as 100% water (Figure S6.3A in Appendix C), 

chloroform (Figure S6.3B in Appendix C), or 90% acetonitrile (Figure S6.3C in 

Appendix C). 

inlet tips x,y-stage
inlet

tips

96-well plate

B.
pipet tip

inlet

A. C.
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Figure 6.1. A mixture of phosphorylated peptides (angiotensin II, molecular weight 

(MW) 1125; cholecystokinin (10-20), MW 1330; and calcitonin (15-29), MW 1800) 

was pipetted into the inlet (Scheme 6.1A).  1 µL of 2.5 pmol µL
-1 

solution was used 

for each acquisition.  Mass spectra of the mixture were obtained in (A) positive 

acquisition mode at 150 °C and (B) negative acquisition mode at 400 °C.  The 

MS/MS spectra (CID) of each peptide are shown in Figure S6.1 in Appendix C.  

Data were acquired in the m/z range of 50-2000 for positive mode and 155-2000 for 

negative mode. 

A pH study using bovine insulin and lysozyme was carried out at an inlet temperature 

of 250 °C showing higher charge state ions were obtained in acidic solutions and that the 

highest intensity for the most abundant charge state was obtained at pH ∼4.5 for 

lysozyme (Figure S6.4 in Appendix C). Basic pH decreased the charge states of bovine 

insulin. A temperature study using bovine insulin and lysozyme solutions is shown in 

Figure S6.5 in Appendix C. Similar charge states but increasing ion abundance are 

observed at higher temperatures (100 °C increments from 150 to 450 °C) as expected 

from previous SAII studies on an Orbitrap with the solution introduced inside the inlet 

tube.
111

 Over a wide range of temperatures, the method shows analytical utility. Higher 

temperature is required to produce abundant ions when less volatile solvent, e.g., water, is 

used (Figure S6.6 in Appendix C). However, “signal tailing” is observed using pure 

water and at high temperature indicating the undesired adduction of sodium cations to the 
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protein. Metal adduction is prevented through the addition of acids (Figure S6.5II in 

Appendix C), as noted in previous SAII studies.
111,114 

The accumulation of results show 

that, although the optimum inlet temperature is somewhat different for certain analytes 

and sample preparation methods, sufficient ion abundance for analytical utility is 

obtained over a wide range of conditions. As is the case with the traditional methods of 

ESI and MALDI, smaller molecules are more easily detected than the larger nonvolatile 

molecules. The optimal inlet temperature of the LTQ Velos is lower than those reported 

for an Orbitrap Exactive in which solution was introduced inside the mass spectrometer 

inlet.
111

 

An advantage of the approach used here is that the volume of solution introduced to 

the inlet can be better controlled using pipet tips relative to using fused-silica tubing, and 

because the tips are disposable, cross contamination caused by sample adhering to the 

walls of the fused silica is eliminated. The initial automation experiment with pipet tips 

used an 8-channel pipet. The setup, designed to operate with the capillary inlet source of 

the LTQ Velos, is shown in Scheme 6.1B. Three microliters of solutions containing 

leucine enkephalin (2.5 pmol μL
−1

), galanin (1 pmol μL
−1

), and ubiquitin (1 pmol μL
−1

) 

were simultaneously drawn from multisample well plates into alternate pipet tips with 

pure solvent between each solution. The dispenser was fastened to an x,y-stage, and each 

tip was sequentially moved in front of the inlet of the mass spectrometer. The setup was 

previously aligned so that all plotting the total ion chronogram (TIC) (Figure 6.2A), 

from which mass spectra of leucine enkephalin, galanin, and ubiquitin were extracted. 

Good ion abundance was observed for each sample without cross contamination (Figure 

6.2B.1−D.1). The Biomap software displays the location of any selected m/z in the 
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sampled multisample well plate, as is commonly performed with imaging of tissue 

sections.
135,195,199

 This is exemplified in Figure 6.2B.2−D.2 for leucine enkephalin (+1, 

m/z 556), galanin (+3, m/z 1053), and ubiquitin (+7, m/z 1224) using 150 °C inlet 

temperature. The mass spectra from the same set of analytes tested at different inlet 

temperatures (250, 350, and 450 °C) are similar (Figure S6.7 in Appendix C).  

 

Figure 6.2. Multiplexing SAII-MS using the 8-channel pipet (Scheme 6.1B) at an 

inlet temperature of 150 °C.  The analysis of 5 tips filled (3 uL) with 3 different 

samples with solvent (S) between each two samples.  (A) Total ion chronogram (TIC): 

(1) Mass spectra and (2) mapping of the location of individual analytes: (B) 2.5 pmol 

µL
-1 

leucine enkephalin (LE, m/z 556), (C) 1 pmol µL
-1

galanin (Gal, m/z 1053), and 

(D) 1 pmol µL
-1

 ubiquitin (Ubi, m/z 1224).  Data were acquired in the m/z range of 

300-2000. 

However, split peaks are observed in the TIC at 350 and 450 °C because the pipet tips 

needed to be further from the inlet to prevent pipet melting which caused the solutions to 

be drawn inconsistently and slowly so that, instead of a liquid stream, droplets are drawn 

into the inlet. The pipet tip size is not critical, but with the present setup, the smaller tips 
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are more difficult to align properly with the inlet. It is interesting to note that the speed of 

the x,y-stage has little impact for any given size of pipet tips tested. As soon as the 

solution is exposed to the vacuum, it is drawn into the mass spectrometer and analyte 

rapidly ionized. However, even smaller size tips than explored here are expected to slow 

the speed of solution exiting the pipet, as has been demonstrated for the picotips using 

nano-ESI.
197

 

The rate of analyses can be paced by adjusting the movement of the x,y-stage and can 

be as short as one sample/s, accepting some cross contamination between samples. In 

principle, one could also actively stop the x,y-stage movement at the expense of time 

requirements. Figure S6.8 in Appendix C displays the analysis of three analytes 

(angiotensin I, bovine insulin, and ubiquitin) in only 2 s with some acceptable carryover 

between samples. For high-throughput screening this performance may already be 

sufficient. Using this construction, three solutions of an antipsychotic drug clozapine at 

25, 250, and 500 fmol μL
−1

 were mapped for relative amounts (Figure 6.3I). Two 

solvents were used between each two analyte solutions. Different clozapine solutions or 

pure methanol solvent were filled in the tips as indicated in Figure 6.3IA. MS/MS was 

used to enhance the specificity of the experiment. The protonated ion (m/z 327) was 

selected and fragmented by CID. The mass spectral data of the transition, 327 → 

270,
23,200

 is visualized by a mapping display using Biomap (Figure 6.3IB). The color 

trace correctly displays the location of the analytes with little or no carryover in the 

methanol acquisitions. The color code also reflects the relative analyte concentration, 

with blue at lower concentrations and red at higher concentrations. Figure 6.3II shows 
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the TIC (Figure 6.3IIA) and mass spectra with ion abundances (Figure 6.3IIB) for each 

of the samples.  

 

Figure 6.3. Mapping using the 8-channel pipette (Scheme 6.1B). (I): (A) Schematic 

representation of content in each pipette tip. Red boxes indicate tips filled with 2 µL 

clozapine solutions at 25 fmol µL
-1

, 250 fmol µL
-1

, and 500 fmol µL
-1

, respectively; 

grey boxes represent pure solvent methanol; (B) The mapping of m/z 270 peak. (II): 

(A) TIC and (B) Mass spectra extracted from (1) 0.02 min, (2) 0.17 min, and (3) 0.34 

min of the TIC.  Data were acquired in the m/z range of 200-500. 

Using the same approach and concentrations, the more concentrated analyte may have 

an effect on the less concentrated samples as is seen in the mapping display of the 

methanol solutions (Figure S6.9 in Appendix C). If necessary, more tips containing 

methanol blank solutions can be employed to reduce cross contamination between 

samples for quantitative analyses. Using this approach, a 1 μL solution of 1 fmol μL
−1

 

clozapine was readily detected (Figure S6.10 in Appendix C). This automated method is 
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therefore sensitive, rapid, simple, and robust and can characterize small and large 

molecules. 

The comparison of introducing the same amount of ubiquitin (3 μL) by either 

manually injecting or vacuum drawing (Figure 6.4) shows that both methods produce 

nearly identical results. A tip-to-inlet distance of ca. 0.5 mm allows solution transfer 

without concern for the tip melting at higher inlet temperature, but increasing distance 

beyond this makes drawing the entire content of each pipet problematic. The ability for 

the sample to be dispensed for ionization only when the tip of the pipet is close to the 

entrance aperture, to make use of the mass spectrometer vacuum for sample introduction, 

suggests a simple means for high-throughput sampling. 

 

Figure 6.4. SAII mass spectra of ubiquitin at inlet temperature of 250 °C.  Solutions 

of 3 µL of 1 pmol µL
-1

 were introduced by (A) manually pipetting and (B) vacuum 

drawing (Scheme 6.1A). Data were acquired in the m/z range of 150-2000.  

The number of samples which can be analyzed in a single automated analysis was 

therefore extended using a commercial 96-pipet holder (Scheme 6.1C) to affix the pipet 

tips for sampling 96-well plates. Because of the physical limitations of our x,y-stage 

relative to the mass spectrometer inlet, only 84 samples of the possible 96 positions were 

in the range of the x,y-stage motion. Sample loading is straightforward because the pipet 

tips only need to be placed into the well of a multisample plate containing the various 
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solutions and capillary action loads the pipet tips with approximately the same volume of 

each solution/solvent (Scheme S6.1 in Appendix C) providing the solvents used are of 

approximately the same composition, especially in water content. On the basis of a 1:1 

acetonitrile:water solution, and the pipet tips used in the experiment, ca. 3 μL are drawn 

into each of the pipet tips. Different pipet tips are expected to load different volumes, and 

higher viscosity solvents, such as water, are more problematic using this approach so that 

organic solvents such as acetonitrile or methanol were added to lower viscosity. Again, to 

avoid the possibility of carryover, solvent was placed between any two samples. 

A typical TIC is shown in Figure 6.5I in which 42 tips out of 84 were analyzed with 

seven different analyte solutions providing six analyses of each solution. This 

corresponds to 1 sample per 5 s for the analyses of liquid samples using this approach. 

Individual mass spectra of clozapine, leucine enkephalin, sphingomyelin, galanin, bovine 

insulin, ubiquitin, and lysozyme (Figure 6.5II) are observed with little or no cross 

contamination. Because of multiply charging, proteins can also be analyzed on a limited 

m/z mass spectrometer. The minimal chemical background allows small and large 

molecules to be characterized at subpicomole concentration using an inlet temperature of 

250 °C. All six mass spectra for bovine insulin extracted from each cycle are displayed in 

Figure S6.11 in Appendix C showing poor reproducibility as indicated by the ion 

intensity. We attribute this to the difficulty with our home-built approach to properly 

align all 84 pipet tips in the same position relative to the inlet aperture. 
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Figure 6.5. SAII-MS using 84 tips mounted on a 96-well pipet tip holder (Scheme 

6.1C) with the inlet temperature at 250 °C acquired in ~5 min. (I) Total ion current. 

(II) Mass spectra of (A) 1 pmol µL
-1

 clozapine (in methanol), (B) 2.5 pmol µL
-1 

leucine enkephalin (in acetonitrile:water with formic acid), (C) 1 pmol µL
-1 

sphingomyelin (in methanol with acetic acid), (D) 1 pmol µL
-1 

galanin (in 

acetonitrile:water with formic acid), (E) 5 pmol µL
-1 

bovine insulin (in 

methanol:water with acetic acid), (F) 1 pmol µL
-1 

ubiquitin (in acetonitrile:water with 

formic acid), and (G) 10 pmol µL
-1 

lysozyme (in acetonitrile:water with formic acid). 

Data were acquired in the m/z range of 150-2000. 

Figure S6.12 in Appendix C provides the TIC and mass spectra of the same set of 

samples at lower speed. All 84 pipet tips (42 samples) were analyzed in ∼10 min by 

reducing the x,y-stage movement to 1.5 mm s
−1

. No cross contamination was observed, 

but at the expense of longer analysis time. This approach is also less reproducible for 

larger molecules. However, in these experiments we used compounds ranging in 

molecular weight from 326 to ∼14300. In practice, better reproducibility and higher 

sensitivity is obtained if one only needs to look at a specific mass range for certain 
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compound types such as drugs or peptides. For example, analyzing for the drug clozapine 

in four different substantially lower concentrations (0.5−30 fmol μL
−1

) using MS/MS and 

mapping m/z 270, the location and the relative amount present are correctly displayed for 

each vial (Figure S6.13 in Appendix C). 

Higher capacity microtiter plates are widely used in pharmaceutical industry. A 384-

well plate was used to analyze the drug clarithromycin in form of a tablet obtained from a 

local pharmacy. Random amounts of tablet powder were dissolved and diluted in the 

microtiter plate wells (Scheme S6.2 in Appendix C) and analyzed using CID with 

solution introduction using the 8-channel pipet approach (Figure 6.6I). The major 

fragment ion at m/z 590
201

 was mapped using Biomap software. The map correctly 

displays the locations where drug was present (Figure 6.6II). The first well with the first 

sample contains the highest amount of tablet and the fourth well with the second sample 

contains the least based on the color code of the map. 

For the pipet tips used in this study, the speed of sample introduction is greatly 

influenced by the exposure to the vacuum, and thus on the distance of the pipet exit to the 

inlet aperture of the mass spectrometer, the scanning nature of the mass spectrometer, and 

little if at all on the speed of movement of the x,y-stage. With increasing numbers of 

samples, reproducibility becomes more challenging to achieve because of alignment 

issues with the current method. Another possible issue is the pulsed nature of the 

ionization, which may be improved using the appropriate analyzer with ion trapping 

synchronized with the ionization event similar to the challenges previously observed with 

MALDI.
202,203

 It is expected that this can be optimized using shorter ion trapping and 
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multiple microscans. Narrower scan windows will increase reproducibility as is the case 

for any targeted ESI analyses approach.
204,205

 

 

Figure 6.6. Mapping of clarithromycin from tablet in a 384-microtiter plate using the 

8-channel pipette (Scheme 6.1B). (I) Picture of loading tablet solution and pure 

solvent from microtiter plate to pipette. (II)(A) Schematic representation of content in 

each pipette tip. Red boxes indicate tips filled with solutions containing 

clarithromycin tablet (CLA); grey boxes represent pure solvent methanol (S); (B) The 

mapping of a major fragment at m/z 590.3.  Data were acquired in the m/z range of 

205-1000. 

At the current stage of development, automation of the SAII method provides a 

simple high-throughput analysis approach for compounds regardless of mass, volatility, 

or “sprayability”. With this approach potentially 4000 samples that can be analyzed per 

day per instrument using profile mode without significant cross contamination. Such an 

achievement will require more reproducible control of sample position relative to the 

mass spectrometer inlet. Higher throughput is envisioned with larger well plate numbers.  
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6.4 Conclusion  

Mapping of select compounds in microtiter plate wells is an obvious application of 

this new technology, but any area in which fast analyses are valued such as proteomics, 

metabolomics, and lipidomics could be impacted. It is our expectation, based on current 

performance, that some of these new ionization technologies in conjunction with 

IMSMS,
206-208

  ETD,
209,210

 and LC,
211-214

 will have considerable advantages relative to 

current analytical methods. The potential of these methods for direct analyses of complex 

mixtures will be achieved using high mass resolution available with Fourier transform 

instruments.
215
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CHAPTER 7 

MATRIX ASSISTED IONIZATION VACUUM FOR HIGH 

RESOLUTION FOURIER TRANSFORM ION CYCLOTRON 

RESONANCE MASS SPECTROMETERS 

Matrix-assisted ionization vacuum (MAIV) produces charge states similar to 

electrospray ionization (ESI) from the solid state without requiring high voltage or added 

heat. MAIV differs from matrix-assisted laser desorption/ionization (MALDI) in that no 

laser is needed and abundant multiply charged ions are produced from molecules having 

multiple basic sites such as proteins. Here we introduce simple modifications to the 

commercial vacuum MALDI and ESI sources of a 9.4 T Fourier transform-ion cyclotron 

resonance (FTICR) mass spectrometer to perform MAIV from both intermediate and 

atmospheric pressure. The multiply charged ions are shown for the proteins bovine 

insulin, ubiquitin, and lysozyme using 3-nitrobenzonitrile as matrix. These are the first 

examples of MAIV operating at pressures as low as 10
−6

 mbar in an FT-ICR mass 

spectrometer source, and the expected mass resolving power of 100000 to 400000 is 

achieved. Identical protein charge states are observed with and without laser ablation 

indicating minimal, if any, role of photochemical ionization for the compounds studied. 

 

 

 

 

 

B. Wang, E. Tisdale, C. L. Wilkins, S. Trimpin, Anal. Chem. 2014, 86, 6792-6796. 

Reprinted with permission from Copyright (2014) American Chemical Society.  
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7.1 Introduction  

High-field Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry 

(MS) is an important tool used in the analyses of biological materials because of the high 

mass resolving power.
216

 Frequently FT-ICR mass spectrometers are coupled with 

electrospray ionization (ESI)
91

 to take advantage of multiply charged analyte ions which 

bring the mass-to-charge (m/z) within instrumental limits. ESI requires analyte to be 

desolved in a “sprayable” solvent and hundreds of volts applied to achieve analyte 

ionization.
33

 Vacuum matrix-assisted laser desorption/ionization (MALDI) produces gas-

phase ions from the solid state using a vacuum stable matrix that has absorption at the 

laser wavelength.
31,35,217-219

 An advantage of ionization at vacuum is that ion transmission 

losses
65,220

 common with atmospheric pressure ionization (API) methods is mitigated. 

Inlet ionization is an alternative method producing ESI-like multiply charged gas-

phase ions from the solid state with the assistance of a matrix (e.g., 2,5-dihydroxybenzoic 

acid, 2,5-DHB), vacuum, and heat.
18,107,109

 Ionization is initiated in the heated inlet tube 

without use of voltage or laser ablation.
121

 The first examples of coupling laserspray 

ionization inlet (LSII) and matrix-assisted ionization inlet (MAII) to high field FT-ICR 

MS were achieved on a home-built LTQ 14.5 T FT-ICR mass spectrometer by heating a 

∼10 cm long inlet capillary to 350 °C.
215

 Myoglobin (17 kDa) was detected by MAII. 

The need for applicability on mass spectrometers that do not use a heated inlet tube, 

initiated a quest for more volatile matrix compounds that might operate at lower inlet 

temperature.
110

 

The discoveries of more volatile matrices led to vacuum ionization, which unlike inlet 

ionization, is dependent on matrices that do not require a heated inlet tube to produce ions 
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having ESI-like charge states. The ability to produce highly charged ions by laser 

ablation of the matrix 2,5-dihydroxyacetophenone (2,5-DHAP) was first developed on a 

commercial intermediate pressure (0.21 mbar) MALDI ion source of an ion mobility 

spectrometry-mass spectrometer (SYNAPT G2).
115

 The more volatile matrix, 2-

nitrophloroglucinol (2-NPG), was later shown to produce multiply charged ions from 

proteins upon laser ablation on a high vacuum (10
−6

 mbar) MALDI-TOF mass 

spectrometer.
116

 Charge states observed at high vacuum are lower than at intermediate 

and atmospheric pressure. A similar vacuum (10
−6

 mbar) is used on MALDI sources 

coupled to FT-ICR mass spectrometers.
221

 

One of the more volatile matrix compounds discovered, 3-nitrobenzonitrile (3-NBN), 

produces ions having ESI-like charge states when used as a matrix and introduced with 

incorporated analyte into the intermediate pressure vacuum MALDI source of a 

SYNAPT G2 mass spectrometer without laser ablation.
117

 This method, which eliminates 

the need of a laser, is termed matrix-assisted ionization vacuum (MAIV). MAIV ionizes 

a wide range of compounds, including bovine serum albumin (66 kDaA). 3-NBN is 

amenable to sample introduction from atmospheric pressure with tube or skimmer inlets 

and produces ions at atmospheric pressure simply using mild heat.
119,222

 Working from 

atmospheric pressure, proteinssuch as lysozyme (14.3  kDa) and carbonic anhydrase (28 

kDa) are ionized, and the methods tolerance of salts enables direct analysis of urine and 

blood.
117,120

 

MAIV matrices are hypothesized
117,118

 to require sublimation as well as charge 

separation through the fracturing process that produces triboluminescence; 3-NBN fulfills 

both of these proposed requirements.
223 - 225

 Here, we describe the implementation of 



92 
 

MAIV using both the vacuum MALDI and atmospheric pressure ESI sources of a 9.4 T 

FT-ICR mass spectrometer and discuss the role of vacuum in the ionization process. 

7.2 Materials and Methods 

Materials and Sample Preparation. Chemicals were obtained and stock solution 

prepared as stated in Chapter 2. The peptide mixture was prepared by mixing leucine 

enkephalin, angiotensin I, bombesin, allatostatin, and bovine insulin with the volume 

ratio of 3:3:1:1:1. The angiotensin mixture contains 1 mg mL
−1

 of angiotensin I, 

angiotensin II, and angiotensin (1−9) fragment in water solution. The MAIV matrix 3-

nitrobenzonitrile (3-NBN) was prepared by dissolving 5 mg in 50 μL (concentrated) 

identical to the previous study,
117

 or 500 μL (diluted) acetonitrile with 0.1% formic acid. 

The LSIV matrix 2-nitrophloroglucinol (2-NPG) was prepared by dissolving 5 mg in 100 

μL 50:50 acetonitrile:water identical to previous work.
116

 For MAIV experiments on the 

MALDI source, angiotensin I and bovine insulin were prepared by spotting 1 μL of 

analyte on a AnchorChip plate (Bruker, Bremen, Germany) followed by adding 1 μL 

concentrated matrix solution; 3 μL ubiquitin was spotted on 384 ground steel plate 

(Bruker, Bremen, Germany), and 1 μL diluted matrix solution was added. Samples were 

allowed to air-dry before loading the plate to the vacuum source. For LSIV experiments, 

all analytes were premixed with the matrix 2-NPG in a 1:1 volume ratio on AnchorChip 

target plates. For MAIV experiments from atmospheric pressure using the ESI source 

inlet aperture, angiotensin, bovine insulin, ubiquitin, and lysozyme were premixed with 

the concentrated 3-NBN matrix solution in a 1:1 volume ratio and stir-mixed using a 

pipet tip. The matrix:analyte mixture, 2 μL, was drawn into a pipet tip and allowed to air-

dry at its tip. 
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Vacuum Ionization on FT ICR Mass Spectrometer. The commercial high vacuum 

MALDI and ESI sources on a 9.4 T Apex FT-ICR mass spectrometer (Bruker, Bremen, 

Germany) were used for MAIV and LSIV studies. The source pressure of the high 

vacuum MALDI source was 2.0E−6 mbar. Bruker DataAnalysis was used to determine 

resolving power. 

MAIV from High Vacuum. The sample plate was loaded after the samples were air-dried. 

The laser fluence was set to 0, and the laser beam was blocked with paper. The plate 

voltage was optimized at 240 V for angiotensin I, and 300 V for bovine insulin and 

ubiquitin. Acquisition was started once the matrix:analyte mixture spotted on the target 

plate was loaded. The acquisition size was 2 million points, and the mass spectra are 100 

acquisitions summed for angiotensin I and bovine insulin. For ubiquitin, acquisition was 

stopped when thebackground started to increase; in this case, about 20 acquisitions were 

averaged. 

LSIV from High Vacuum. Ubiquitin solution was mixed with 2-NPG matrix solution and 

spotted on a target plate. The sample plate was loaded after the samples were air-dried. 

For LSIV of ubiquitin, the arbitrary laser fluence was 50%, and the plate voltage was 400 

V. The acquisition size was 512 K points for higher signal abundance. Twenty 

acquisitions were averaged to obtain a mass spectrum. 

MAIV from Atmospheric Pressure. The commercial ESI source housing was removed, as 

well as the cover and the cap on the ESI capillary so that direct access to the capillary 

orifice was obtained. The capillary voltage, spray shield, nebulizing gas flow, and dry gas 

flow were all set to 0. On this dual ESI/MALDI source, the voltage on the MALDI plate 

was set at 300 V and the MALDI source was disabled. The capillary temperature was 
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kept at room temperature without additional heat. The dried matrix:analyte crystals on the 

pipet tip were introduced into the vacuum of the mass spectrometer by gently contacting 

the capillary opening. Acquisition lasted for about 2 min until the crystals were consumed 

from the pipet tip.  

7.3 Results and Discussion 

Inlet ionization methods were previously demonstrated on a high field FT-ICR mass 

spectrometer having a home-built heated inlet tube.
215

 Meanwhile, matrix compounds 

were discovered that produce multiply charged gas-phase ions spontaneously without a 

laser or heat, other than the ambient heat available in the matrix and target plate, when 

exposed to low pressure conditions. Furthermore, the matrix, 3-NBN, produces abundant 

analyte ions when introduced from atmospheric pressure to the subambient pressure inlet 

aperture of a mass spectrometer without the necessity of a heated inlet tube.
119

 Previous 

studies have suggested that pressure may be an important variable in MAIV. The Bruker 

Apex 9.4 T FT-ICR mass spectrometer MALDI source operates at 2E
−6

 mbar, well below 

the source pressure of previous MAIV studies
118

 and provides the opportunity to 

determine if MAIV is compatible with high vacuum and ultrahigh mass resolving power. 

The mass spectrum of ubiquitin (Figure 7.1A), with 3-NBN as matrix, produces a 

measured resolving power of 403000 at +9 (m/z 952.5206) using the vacuum MALDI 

FT-ICR source. The +4 charge state (m/z 1434.1586) of bovine insulin had a mass 

resolving power of 254000, and the +2 charge state of the peptide angiotensin I (m/z 

648.8432) had a resolving power of 185000. The MAIV mass spectra acquired using the 

MALDI source produce the high resolving power characteristic of this FT-ICR mass 

spectrometer.
226
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Figure 7.1. Mass spectra of ubiquitin using 3-NBN as matrix obtained on the high 

vacuum MALDI source of the Apex FT-ICR mass spectrometer (A) without (MAIV) 

and (B) with the use of a laser (LSIV) for matrix:analyte ablation. 

In similar experiments using the intermediate pressure (0.21 mbar) MALDI source of 

a SYNAPT G2 mass spectrometer, the 3-NBN matrix produced analyte ions for ca. 2 min 

after the sample was loaded (3 min, including loading time).
117

 The time over which 

ionization is observed relates to the rate of sublimation of the matrix. In the lower 

pressure MALDI source (2E
−6 

mbar) coupled to the Apex FT-ICR mass spectrometer, 

sublimation of the matrix occurred over a 30 min period. Ions could be observed during 

this time but in lower abundance. 

In contrast to the SYNAPT G2 vacuum MALDI source in which the protein bovine 

serum albumin (66 kDaA) was analyzed using MAIV,
117

 ubiquitin was the largest 

molecule analyzed on the FT-ICR vacuum MALDI source. The most abundant and 

highest charge state ions for ubiquitin were lower on the FT-ICR than SYNAPT G2 for 
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the same compound. The most abundant ion shifts from +10 to +8, and the highest charge 

state shifts from +12 to +10. 

The differences observed with the MAIV analysis using the MALDI source of a 

SYNAPT G2 and Apex FT-ICR logically relates to the pressure difference the sample 

experiences in the two instruments. Under vacuum conditions, sublimation cools the 

surface and at lower pressure heat transfer from the ambient environment is inefficient. 

Thus, an ionization process dependent on sublimation will be inhibited under cooling 

conditions. The higher pressure of the SYNAPT G2 MALDI source counters the cooling 

effect of sublimation through heat transfer to the matrix surface from the residual gas. A 

means of adding thermal energy is therefore expected to reduce the time over which 

ionization occurs, increase the ion abundance, and expand the compounds that act as 

matrices without need of a laser. This concept is supported by three independent studies. 

In the first study, the target plate of the SYNAPT intermediate pressure source was 

cooled, simultaneously inhibiting sublimation and ionization,
118

 but second, warming the 

inlet used with atmospheric pressure sample introduction reduces the time of 

ionization.
127

 In a third study, a warmed gas flow (75 °C) was used to dislodge the 

matrix/analyte from the substrate holder to initiate analyte ionization.
222

 Under the 

current conditions of the high vacuum source of the FT-ICR, proteins larger than 

ubiquitin may not be observed because they cannot be removed from the surface under 

the cooler conditions, or once removed they are not able to shed the matrix that 

accompanies them into the gas phase.
122

  

Although the 3-NBN matrix absorbs 355 nm photons poorly, a Nd:YAG laser was 

used to ablate the matrix crystals over several minutes. Even though the rate of removal 
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of the matrix was increased, no change in charge states and only a small increase in ion 

abundance was observed for ubiquitin (Figure 7.1B). The minimal influence of the laser 

fluence on ionization strongly suggests that the nitrogen discharge related to 

triboluminescence of this matrix
224,225

 is not directly involved with ionization. In other 

words, it is the charge separation that causes triboluminescence that is important and not 

the dinitrogen discharge.  

The 2-NPG matrix was previously shown to produce ESI-like charge states of analyte 

by UV laser ablation using the SYNAPT G2 MALDI source.
116

 This matrix, however, 

performs poorly relative to the more volatile 3-NBN matrix on the FT-ICR MALDI 

source. Both the charge state and ion abundance are lower with the less volatile 2-NPG 

than with the most volatile 3-NBN matrix. For example, FT-ICR of ubiquitin in 2-NPG 

using laser ablation produced up to the +4 charges with +2 as the most abundant (Figure 

S7.2 in Appendix D), while MAIV of the same analyte solution and mass spectrometer 

using 3-NBN as matrix with or without the laser provided up to +10 charges (Figure 7.1) 

and with higher ion abundance and signal-to-noise ratio. The vacuum Apex FT-ICR 

results are similar to high vacuum laser ablation on a MALDI TOF mass spectrometer of 

ubiquitin using the 2-NPG matrix where the most abundant charge state is +3.
116 

The 

experimental observation of dependence of matrix and volatility has been proposed to be 

related to the inability to evaporate matrix from the charged matrix:analyte clusters in the 

time available before mass separation.
110,122

 These results relate well with the 

observations that chemical structure of the matrix is not critical
127

 so long as volatility of 

the matrix is sufficient to remove the matrix from the charged matrix/analyte 

clusters.
110,122

 As observed with inlet ionization,
227

 less energy is needed to remove 
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matrix from smaller compounds which agrees with the ability to readily analyze peptides 

using MAIV on the FT-ICR as shown for a mixture in Figure S7.1 in Appendix D. 

However, for the FT-ICR, the time available for desolvation is much longer than with 

MALDITOF and suggests that pressure may be a more important parameter in producing 

bare ions.  

In the present experiments, different plate voltages (240 and 300 V) and data 

acquisition sizes (2 million and 512 thousand) were examined for MAIV. Nearly 

identical charge state distributions and ion intensities were obtained for bovine insulin 

(Figure S7.2 in Appendix D). Angiotensin I showed some plate voltage dependence 

(Figure S7.3 in Appendix D), with 240 V being optimal forming +2 charge state ions 

with +3 being observed in low abundance (Figure S7.3.II.C in Appendix D). With 200 

(Figure S7.3.I.C in Appendix D) and 500 V (Figure S7.3.I.E in Appendix D) no ions 

were observed for this peptide. Interestingly, at 400 V (Figure S7.3.I.D in Appendix D), 

an abundant singly charged ion is observed. The voltage dependence is in agreement with 

intermediate and atmospheric pressure LSI studies in which the charge states can be 

altered by instrument parameters; lower charge states correspond to increased energy 

input.
108,122

  

Although the continuous ion formation of over 30 min using MAIV with the FT-ICR 

mass spectrometer may benefit some applications (e.g., fragmentation methods for 

characterization),
227 

the inefficiency in ionization at the low source pressure as well as the 

∼1 min sample plate loading time are not favorable for many analytical applications. 

Directly introducing the MAIV matrix from atmospheric pressure into the inlet aperture 

of a mass spectrometer has been shown to be an effective means for rapidly analyzing 
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samples using MAIV matrices.
119,222

 Therefore, introducing the matrix:analyte sample 

from atmospheric pressure on the FT-ICR mass spectrometer provides an intermediate 

pressure region to produce ions and a direct comparison with MAIV on the high vacuum 

MALDI source of the same instrument. Figure 7.2 illustrates the approach. 

 

Figure 7.2. Picture of MAIV operating on the ESI source of the Apex FT-ICR mass 

spectrometer. 

Shown in Figure 7.3 are representative isotopic distributions of ubiquitin (Figure 

7.3A) and lysozyme (Figure 7.3B) obtained when the individual 3-NBN:analyte crystals 

were  introduced to thesource by gently touching the capillary orifice so the vacuum of 

the mass spectrometer can draw the matrix:analyte into the glass inlet tube held at room 

temperature. Each mass spectrum was obtained in less than 2 min until the crystals were 

consumed from the pipet tip. Similar to MAII on an LTQ FTICR instrument using the 

matrix 2,5-DHAP,
215

 the most abundant charge state for ubiquitin using 3-NBN is +8. In 

MAIV, the matrix:analyte introduced into the inlet experiences decreasing pressure as 

well as the natural airflow from atmospheric pressure to the first vacuum region. Under 

these conditions, the charge states and ion abundance of peptides and small proteins are 

ESI-like. This increase in charge state makes larger proteins applicable (e.g., lysozyme, 

Pipet tip Matrix/analyte

mixture

ESI capillary



100 
 

14303 Da, Figure 7.3B as compared to ubiquitin, 8560 Da Figure 7.1A on the high 

vacuum MALDI source) using the same solutions. Further, MAIV from atmospheric 

pressure provides equivalent mass resolving power for insulin (255000, +5 at m/z 

1147.5279) and ubiquitin (376000, +9 at m/z 952.6316) to vacuum conditions, and 

206900 for the +10 charge state of lysozyme (m/z at 1431.4889). Because of multiply 

charging in MAIV, the mass range of the mass spectrometer is extended or compounds 

analyzed from the solid state, as is the case with ESI from solution. 

 

Figure 7.3. MAIV mass spectra of (A) +9 charge state of ubiquitin and (B) +10 

charge state of lysozyme using 3-NBN as matrix obtained on the ESI source of the 

Apex FT-ICR mass spectrometer. 

7.4 Conclusion 

This study indicates the potential utility of MAIV and its applicability to high-

performance FT-ICR mass spectrometers. The results presented here indicate that this 

simple and easy to use ionization method can be widely adapted with a minimum effort. 
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The importance of pressure conditions using MAIV is demonstrated. Because of the 

multiply charging, electron capture dissociation (ECD)
228 , 229

 and electron transfer 

dissociation (ETD)
107,117,134, 230

 of ions sublimed directly from a surface should be 

possible with FT-ICR. Because of the high resolving power, these methods are 

potentially useful in the analysis of complex materials such as tissue and blood.
117,120

 

While the experiments reported here used the standard ESI inlet and MALDI vacuum 

sources, adaptation specifically for MAIV is expected to greatly improve sensitivity. 
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CHAPTER 8 

DRUG DETECTION AND QUANTIFICATION DIRECTLY FROM 

TISSUE USING NOVEL IONIZATION METHODS FOR MASS 

SPECTROMETRY  

Solvent assisted ionization inlet (SAII) and matrix assisted ionization vacuum 

(MAIV) were used to rapidly quantify an antipsychotic drug, clozapine, directly from 

surfaces with minimal sample preparation. This simple surface analysis method based on 

SAII- and MAIV-mass spectrometry (MS) was developed to allow detection of 

endogenous lipids, metabolites, and clozapine directly from mouse brain tissue sections. 

Rapid surface assessment was achieved by SAII with the assistance of heat on the mass 

spectrometer inlet, and MAIV showed capability on heat-limited instruments with better 

reproducibility. In addition, isotope dilution and standard addition were used without 

sample clean-up, and the results correlate well to liquid chromatography (LC)-tandem 

MS with sample work-up. Using the simple surface methods, standard solutions 

containing clozapine and deuterated internal standard (clozapine-d8) at different 

concentration ratios were used to extract and quantify clozapine from brain tissue 

sections of a drug-treated mouse at different thicknesses. The amount of clozapine 

extracted by these surface methods was independent of tissue thickness.  

 

 

 

 

 

 

B. Wang, C. L. Dearring, J. Wager-Miller, K. Mackie, and S. Trimpin, submitted. 
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8.1 Introduction 

An ideal analytical method should be fast, simple, able to quantify material with 

minimal effort, and provide spatial resolution. However, those ideals are difficult to 

achieve in combination. Characterization methods based on mass spectrometry (MS) 

have gained popularity in pharmaceutical industry for speed of analysis, sensitivity, 

selectivity, and the ability to be coupled with separation methods such as liquid 

chromatography (LC).
231,232

 In addition to identification, rapid quantification of drugs is 

important in drug discovery. Quantifying drugs and their metabolites in biological tissue 

is an even more arduous task. MS alone is a semi-quantitative method, since ion intensity 

values can vary significantly during acquisition.
233

 However, the signal ratio with an 

isotopically labeled internal standard is reasonably reproducible.
233

 Isotope dilution is 

commonly used in MS-based quantification methods
234,235

 (e.g. LC tandem MS
236,237

). 

The traditional LC-MS method requires sample work-up,
238,239

 which can be time and 

labor-intensive, and removes the analyte from its native environment, such as a surface. 

MS has been used to provide chemical information directly from surfaces.
55, 240

 

Information on relative amount of analytes from surfaces is achieved by MS 

imaging
241,242

 using the mass to charge ratio (m/z) and a heat map of the ion abundances 

detected. In addition, MS imaging provides location of compounds within a surface. 

Quantification has been reported by spotting internal standard on the tissue section.
63,64

  

Matrix-assisted laser desorption/ionization (MALDI) is widely used in molecular 

imaging, providing relative amount and spatial information for peptides, proteins,
56,243

 

lipids,
57

 and metabolites,
58

 etc. from surfaces such as tissue sections. Critical to the 

success in MALDI-MS is the matrix sample preparation which may result in sample 
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adulteration
244

 and potential chemical delocalization if the surface wets during matrix 

application.
245

 Ambient surface analysis methods, such as desorption electrospray 

ionization (DESI)
85

 and nanospray desorption electrospray ionization (nanoDESI)
89

 

operate without the use of matrix compounds, allowing surface samples to be analyzed at 

atmospheric pressure with no or minor sample preparation and less chemical 

background.
246-248

 For example, the antipsychotic drug clozapine from mouse brain tissue 

has been imaged using DESI
23,233

 with a typical spatial resolution of ~200 µm.
249

 Notable 

exceptions are those that make use of a laser providing improved spatial resolution 

measurements and some with ease in instrumental setup.
24,61,135,195, 250 ,

 Hours and 

sometimes days are required for MS imaging especially at high spatial resolution using 

sophisticated laser focusing setups.
62,251

 

Spatial resolution can be useful, but is often not required. If the exact location of 

surface analytes is not required, a liquid microjunction surface sampling probe can be 

used to extract analytes employing a liquid junction formed between a probe and the 

surface in a more rapid manner.
189

 A solid-phase tissue sampling method achieved by 

thermal evaporation provided rapid volatile analyte identification capabilities.
252

 Some of 

the ionization methods involve critical connections and precise alignments of the 

ionization apparatuses, requiring considerable user expertise to obtain reliable 

performance.
16 

The recently developed solvent assisted ionization inlet (SAII)
111

 and matrix assisted 

ionization vacuum (MAIV)
117

 produce mass spectra similar to electrospray ionization 

(ESI) without the use of any external voltage or a laser. SAII has sensitivity comparable 

to ESI when the position of the capillary, which introduces samples to the mass 
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spectrometer inlet, is at the “hot spot” inside of the heated inlet.
111,112,114 

A recent study 

showed ESI-like ions can be produced when the analyte solution was pipetted near the 

entrance aperture of a heated mass spectrometer inlet tube.
197,253

 MAIV was demonstrated 

to produce ESI-like ions directly from a surface, e.g. mouse brain tissue sections, by 

simply spotting a MAIV matrix on tissue and exposing it to vacuum without the 

requirements of additional heat, voltage, or a laser.
117,120

 

Here, we report the development of SAII and MAIV for rapid surface analysis of the 

drug clozapine from brain tissue sections of drug-treated mice along with endogenous 

lipids and other small molecules. Isotope dilution and standard addition were employed 

for quantification. 

8.2 Materials and Methods 

       Materials 

 All chemicals and mouse brain tissue sections were obtained as stated in Chapter 2.   

Instrumentation 

The LTQ Velos mass spectrometer (Thermo, Bremen, Germany) was used for SAII 

and LC-ESI studies. For ESI, the voltage was 3 kV, sheath gas was 8, and inlet 

temperature at 275 ºC.
254

  For SAII, the ESI source of the LTQ Velos instrument was 

removed for direct access to the inlet as previously described.
135

 The temperature of the 

inlet can be adjusted through the commercial temperature control of the inlet. In this 

study the inlet tube was operated at 200 ºC to avoid peak broadening while ensuring 

sufficient ion intensity. The sheath gas, auxiliary gas, sweep gas, and capillary voltage 

were all set at 0. The mass spectra were acquired with automatic gain control on, with 5 

microscans maximum injection time of 20. For tandem mass MS, collision energy of 35 
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was applied for collision induced dissociation (CID) to fragment the isolated molecular 

ion. 

The SYNAPT G2 (Waters, Manchester, UK) mass spectrometer was used for MAIV 

study. For MAIV on the MALDI source, the commercial intermediate pressure MALDI 

was used with “LSIV” settings as previously reported.
115

 Briefly, the sample plate voltage 

was set to 0, the laser power was 0 and was not initiated. An extraction voltage of 10 V 

was applied. For MAIV operating at atmospheric pressure, the LockSpray ESI source 

was removed and overridden.
117

 A modified skimmer cone was used as previously 

introduced to provide better vacuum, with a notch to allow air flow.
255

 

A nanoAcquity UPLC system (Waters, Milford, MA) equipped with a 1 mm x 50 mm 

column packed with 1.7 µm C18 BEH particles was used for LC-ESI-MS/MS 

quantification. A 3 min gradient using ACN/H2O/0.1% formic acid (organic composition 

from 40% to 95%) was employed similar to a previous study using the same system.
112

 

An optical microscope (Nikon, ECLIPSE, LV 100) was used to determine the 

diameters of the surface areas analyzed. Luxol fast blue was doped into extracting solvent 

and matrix solution to enhance the optical microscopic image by leaving the blue color 

on the extraction area. 

Sample Preparation 

Sample Preparation and Clozapine Quantification using LC-ESI-MS/MS 

Half of a tissue section was scraped from the glass slide holding the tissue and 

dissolved in 50 µL MeOH. The mixture was vortexed for 1 min before being loaded in 

centrifuge for 5 min. The supernatant was used for quantification. The other half was 

reserved for surface analysis (Scheme 8.1.I and II.C). 
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The calibration curve was obtained by LC-ESI-MS/MS using clozapine standard 

solutions at concentration of 10, 25, 50, 100, and 200 fmol µL
-1 

plotted
 
against peak area. 

For sample work-up, 1 µL supernatant was diluted by 20-fold and 1 µL was injected onto 

the UPLC column. For the comparison with surface SAII quantification, 1 µL MeOH was 

used to extract material from the tissue section from drug-treated mouse. The 1 µL 

solution was diluted by 147-fold before injected into UPLC system. All the LC-MS/MS 

analyses were performed in triplicates. 

Surface Sample Introduction Methods based on SAII 

Surface SAII in discontinuous mode. Solution of 0.3 µL of MeOH hanging from a 

pipet tip was touched to a control mouse brain tissue section to allow the droplet to 

extract material from the surface (Scheme 8.1. II.A). The MeOH droplet was held still 

touching the surface of the mouse brain tissue for about 3 seconds before it was drawn 

back into the tip. The solvent-containing extracted material was subsequently directly 

transferred into the heated inlet capillary of the LTQ Velos by placing the pipet tip near 

the entrance aperture where the droplet was drawn immediately into the inlet by the 

vacuum of the mass spectrometer, inducing ionization in the inlet tube.  

Surface SAII in continuous mode. Two pieces of 20 cm long fused silica tube (75 µm 

i.d., 360 µm o.d., Polymicro Technologies, Phoenix, AZ) were taped near the ends at 

~90º to keep a distance of about 1 mm between the two ends. Methanol was pumped 

through one piece of fused silica tube by a syringe pump (Fusion 400, Chemyx Inc., 

Stafford, TX) at 5 µL min
-1

 flow from the non-taped end. The non-taped end of the other 

piece of fused silica tube was inserted about 0.2 mm inside the mass spectrometer inlet. A 

liquid junction bridge of the solvent was formed between the tips of the silica tubes with 
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the assistance of the vacuum in the mass spectrometer. A constant flow of MeOH was 

created between the tips so that the formed liquid junction droplet touched against the 

drug-treated mouse brain tissue section. Material from the surface was continuously 

extracted by the liquid junction, and the solvent containing the extracted material was 

transferred to the mass spectrometer through the second fused silica tube (Scheme 8.1. 

II.B).  

Quantification by SAII 

Isotope dilution and standard addition were used to quantify clozapine from drug-

treated mouse brain tissue. Stock solutions of clozapine and clozapine-d8 were prepared 

in EtOH and acetone at 1 mg mL
-1

, respectively. The stock solution was diluted to 20 

pmol µL
-1

 by water, and MeOH was used for further dilutions. Five standard solutions 

were prepared. In each single solution, the concentration of clozapine-d8 was held 

constant at 2 pmol µL
-1

 and the concentration of clozapine was varied. The final 

clozapine:clozapine-d8 molar ratios were 0:1, 0.5:1, 1:1, 1.5:1, and 2:1. 

For the quantification from solution, 0.5 µL of each solution was drawn into the 20 

µL pipet tip (Fisher Scientific, Pittsburgh, PA) and directly introduced into the heated 

inlet tube of the LTQ Velos. Eight repetitive measurements were performed from each 

clozapine/clozapine-d8 standard and the ion intensities of the singly charged protonated 

ions from clozapine (m/z 327) and clozapine-d8 (m/z 335) were recorded. The intensity 

ratio at m/z 327:335 was calculated for each measurement and averaged. The average 

intensity ratio at m/z 327:335 is plotted versus the concentration ratio of m/z 327:335, and 

the standard deviation was used to represent the error bar. 
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For the quantification from mouse brain tissue, 1 µL of each solution was drawn into 

a long-tailed ultra micro gel tip (Genesee Scientific, San Diego, CA) and carefully 

deposited on the sample surface. About 0.8 µL of the standard solution was picked up by 

the same pipet tip after ~3 seconds and introduced into the heated inlet. The signals were 

plotted the same way as using solution directly from the vial. The amount of clozapine 

extracted from the surface is determined by extending the calibration curve to find the 

intersection with the X-axis. Both the vehicle and drug-treated mouse brain tissue 

sections were analyzed with the vehicle mice serving as the control. 

Scheme 8.1. Schematic representation of the workflow of SAII and typical LC-

tandem MS methods. (I) Half of the brain tissue section from drug-treated mouse was 

scraped off from the glass slide, the other half was preserved for surface analysis. (II) 

From the preserved tissue section, surface SAII was performed in (A) discontinuous 

mode – extracting materials by solvent-droplet hanging at the pipet tip, and (B) 

continuous mode – extracting by liquid junction formed at the end of two pieces of 

silica tube. MS and MS/MS were performed in continuous mode. (C) Typical sample 

work-up was performed with the scraped tissue, the supernatant after vortex and 

centrifugation was analyzed by either LC-ESI-MS/MS
 
or SAII direct injection.   
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Surface Analysis and Quantification by MAIV 

MAIV operating from intermediate pressure vacuum: A series of standard mixtures of 

clozapine:clozapine-d8 at different concentration ratios were used. The concentration 

ratios were the same as in SAII (0:1, 0.5:1, 1:1, 1.5:1, 2:1), but at double the 

concentration. The standard clozapine:clozapine-d8 mixture was pre-mixed with a 3-

NBN solution made by dissolving 5 mg in 100 µL ACN at 1:1 volume ratio. A solution 

of 0.5 µL matrix/clozapine:clozapine-d8 mixtures was spotted on the tissue section. The 

tissue section was loaded into the vacuum of the MALDI source after spotting each 

standard, and data acquisition was started as soon as the sample plate was indexed in the 

source. The mass spectrum was acquired for about 2 min. Brain tissue sections from both 

control and drug-treated mice were analyzed the same way. 

Scheme 8.2. Schematic representation of workflow of MAIV methods. (A) The solution 

of 0.5 µL 3-NBN/clozapine:clozapine-d8 mixture was spotted on tissue surface and 

loaded into the vacuum of an intermediate pressure MALDI source. (B) Four 1 µL 3-

NBN/clozapine:clozapine-d8 solutions were spotted on the tissue surface covering half of 

the tissue section, and exposed to vacuum of a modified skimmer cone of the overridden 

ESI source. 
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MAIV operating from atmospheric pressure: The calibration curve was obtained 

using control mouse brain tissue sections. A series of standard solutions of 

clozapine:clozapine-d8 were prepared at the concentration ratio of 0:1, 1:1, 2:1, 3:1, with 

the concentration of clozapine-d8 held at 4 pmol µL
-1

. The standard clozapine:clozapin-

d8 solution was also pre-mixed with the 3-NBN solution. Four 1 µL 

matrix/clozapine:clozapine-d8 mixtures were spotted on the tissue surface. Half of the 

tissue section was covered by this procedure. The tissue with half of it covered by the 

matrix/clozapine:clozapine-d8 mixture was exposed to vacuum. This was accomplished 

by holding the glass slide against the modified skimmer cone where it was held by the 

vacuum for 10 minutes. For the quantification from the brain tissue section of drug-

treated mouse, half of the tissue section was covered by the mixture of 3-NBN and 4 

pmol µL
-1

 clozapine-d8 at 1:1 volume ratio. The signal intensity ratio at m/z 327:335 was 

recorded and the amount of clozapine was quantified by standard addition method from 

the calibration curve.  

8.3 Results and Discussion 

SAII has been reported to produce ESI-like ions by injecting analyte solution into a 

heated inlet of a mass spectrometer.
197,253

 For analytes on a surface, such as tissue 

sections, liquid extraction using proper solvents can be employed prior to SAII. The 

material on the surface of a 20 µm-thick brain tissue section of a drug-treated mouse was 

extracted by a MeOH droplet hanging from the pipet tip followed by transfer to the 

heated inlet tube (Scheme 8.1.II.A). Data acquisition of the software was initiated before 

surface extraction, therefore the total ion chronogram (TIC) reflects the entire duration of 

sample analysis from exposure of solvent to surface to the ionization in inlet, which was 
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only about 25 seconds as shown in Fig. 8.1A. The mass spectrum having good ion 

abundances is dominated by phosphatidylcholines along with protonated clozapine and 

alkali-adducted cholesterol (Fig. 8.1B). The lipid peaks were assigned according to 

previously published data
256

 and no phosphocholine head group fragment (m/z 184) was 

observed, unlike MALDI.
257

 Tandem MS using CID was performed on the most 

abundant lipid peak at m/z 798. MS
2
 on the parent ion produced mainly a loss of 59, and 

MS
3
 on the major fragment ion at m/z 739 generated a fragment with a loss of 183 

(Figure S8.1 in Appendix E). The loss of trimethylamine (Δm/z=59) and phosphocholine 

head group (Δm/z=183) are characteristic for sodiated phosphatidylcholines.
258

 The inset 

spectrum shows clozapine with its characteristic isotopic distribution. Brain tissue section 

from a drug-treated mouse, which was from the same batch but had been stored frozen 

for months at -80 °C, was analyzed in the same manner. The protonated clozapine ions 

were observed at lower ion abundance, likely because the drug has degraded over time 

(Figure S8.2 in Appendix E).  One of the major clozapine metabolites, clozapine N-

oxide,
259

 was also observed having the characteristic chlorine isotopic distribution. 

Sodiated and potassiated cholesterol were assigned similar to an ambient infrared 

MALDI surface study.
260
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Figure 8.1. Fast surface assessment using a SAII method employing surface 

extraction by 1 µL of MeOH in discontinuous mode as shown in Scheme 8.1. II.A. 

(A) TIC of the entire duration of sample analysis including exposure of solvent to 

surface to ionization in inlet. (B) Mass spectrum extracted from the TIC with the inset 

showing the isotopic distribution of protonated clozapine ions. The blue number on 

the top right corner denotes ion abundance. 

The material was sampled directly from the tissue surface at ambient conditions, and the 

mass analysis was obtained without the requirement of any voltage or extra connections 

between surface sampling and sample introduction. The analysis was soft enough to 

maintain the intact analyte structures with less chemical background. Neither cholesterol 

fragment with the loss of water nor water clusters was detected as observed with 

ionization methods employing matrix and/or a laser.
240,260

 This method is discontinuous 

as solvent/lipid droplets are analyzed individually, yet it is a very simple sampling and 

ionization approach.  
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A continuous surface SAII sampling method was achieved by the configuration 

shown in Scheme 8.1. II.B. A liquid junction is formed at the mouse brain tissue surface 

by interfacing two pieces of fused silica tubing. Here, the glass plate containing the 

mouse brain tissue section was hand held and manually moved over the surface to 

analyze different areas. The TIC in Figure 8.2A shows the constant ion production for 

about 1 min acquisition time. The mass spectrum from time point 0.37-0.86 min was 

extracted from the TIC (Figure S8.3 in Appendix E) showing similar ions from lipids 

and clozapine as discussed above, but at lower ion abundance. This may be due to the 

shorter time the liquid remains on the surface, so that less material is extracted. Structural 

characterization of clozapine present in the drug-treated mouse brain tissue was 

confirmed by fragmenting the peak at m/z 327 (Figure 8.2B.1) using CID. The fragment 

ions produced at m/z 270 and 296 were identical to those of a purchased standard (Figure 

8.2B.2).
23

 

The method development using direct pipetting SAII for quantification of drugs was 

first established using standard clozapine:clozapine-d8 solutions from vials. The solution 

of 0.5 µL clozapine and clozapine-d8 mixture at a certain concentration ratio was directly 

introduced into the inlet of the mass spectrometer. As shown in Figure S8.4 in Appendix 

E, at a concentration ratio of 0.5:1, the protonated peak height of clozapine (m/z 327) 

versus clozapine-d8 (m/z 335) is approximately 0.54 (Figure S8.4A in Appendix E), 

while a 1:1 concentration ratio results in the ion intensity ratio of approximately 1.08 

(Figure S8.4B in Appendix E).  
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Figure 8.2. Fast surface assessment using the SAII method employing surface 

extraction by 1 µL of MeOH in continuous mode as shown in Scheme 8.1. II.B. (A) 

TIC of the whole analysis for ~1.4 min. (B) SAII-CID-MS of the protonated 

clozapine ions (1) directly extracted from tissue surface and (2) from synthesized 

clozapine chemical solution. The blue numbers on the top right corner denote ion 

abundances. 

The average of the signal intensity ratio from 8 repetitive measurements of each standard 

was plotted against the concentration ratio of clozapine:clozapine-d8 in Figure 8.3A. The 

high regression coefficient (R
2
=0.9929) and small error bars demonstrate the 

reproducibility of the SAII method for quantification. Using this calibration curve, an 

unknown sample from a tissue section of a drug-treated mouse was analyzed. One µL 

supernatant from half of the tissue section scraped off the glass slide was mixed with 1 

µL of 4 pmol µL
-1

 clozapine-d8 solution producing a mixture containing 2 pmol µL
-1

 

clozapine-d8. This solution was injected into the heated inlet. A signal intensity ratio of 

0.694:1 at m/z 327:335 was obtained, reflecting the concentration of clozapine in the 1 

µL extraction solution to be 1.27 pmol µL
-1

. In comparison, another 1 µL of the same 

supernatant was further diluted by 20-fold and quantified by LC-MS/MS (Figure 8.3B). 
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The concentration of the supernatant was determined to be 1.33 pmol µL
-1

. The total 

analysis time spent on the SAII approach was only about 1 min for 5 replicates, where the 

LC-MS/MS method took more than 30 min for triplicate analyses. 

 

Figure 8.3. Calibration curves of clozapine (A) using SAII by pipetting standard 

clozapine:clozapine-d8 solutions at different concentration ratio with clozapine-d8 at 

2 pmol µL
-1

, signal intensity ratio is plotted against concentration ratio; and (B) using 

LC-ESI-MS/MS with standard clozapine solutions at different concentration, peak 

area of the fragment ion at m/z 270 is plotted against concentration. 

The other half of the 20 µm-thick tissue section was analyzed by surface analysis 

methods. The same series of standard solutions of clozapine:clozapine-d8 were used to 

extract material from the surface instead of pure MeOH solvent. As a control experiment, 

the control tissue, for which the mouse was not treated with clozapine before sacrificing, 

was analyzed first. When the solution of 1 µL clozapin:clozapine-d8 mixture at the 

concentration ratio of 0.5:1 was used to extract material by contacting the surface for ~ 3 

s and then transferred to the mass spectrometer inlet, the signal intensity ratio at m/z 

327:335 obtained was 0.52:1 (Figure S8.5A in Appendix E), indicating no external 

clozapine was detected after extraction. When the tissue section from drug-treated mouse 

y = 197x - 2470
R² = 0.994

0

10000

20000

30000

40000

50000

0 100 200 300

B. LC calibration

Concentration of clozapine

(fmol µL-1)

P
e
a
k
 A

re
a

y = 1.05x + 0.0251
R² = 0.993

0

0.5

1

1.5

2

2.5

0 1 2 3

A. pipet SAII calibration

Concentration ratio of 

clozapine:clozapine-d8

S
ig

n
a
l 
in

te
n
s
it
y
  

ra
ti
o
 o

f 
3
2
7
/3

3
5



117 
 

was extracted by the same standard clozapine:clozapine-d8 mixture, the signal intensity 

ratio increased to 2.20:1 (Figure S8.5B in Appendix E). The concentration ratio (X) was 

plotted against the ion intensity ratio (Y) (Figure 8.4) with control tissue (red square) and 

drug-treated tissue (blue triangle). The curve from drug-treated tissue has a significant 

increase, indicating clozapine was extracted from the surface by the standard solutions. 

Although only one measurement was taken from each standard solution, the linearity 

(R
2
=0.9374) was confirmed by the high reducibility of this method (Figure 8.3A). The 

amount of clozapine extracted by 1 µL solution was calculated by extending the 

calibration curve to the x-axis. The intersection shows 2.68 pmol of clozapine was 

extracted from the surface area of about 1.5 mm in diameter (Figure 8.4 inset) as 

determined using optical microscopy. For a comparison with the LC-MS/MS method, 

one µL pure MeOH was used to extract clozapine from the surface and analyzed by LC-

MS/MS after a 147-fold dilution. The amount of clozapine extracted by the 1 µL MeOH 

was calculated as 2.58 pmol from the calibration curve. 

The amount of clozapine quantified from surface extraction of the right half of the 

tissue section is similar between SAII-MS and LC-MS/MS methods (2.68 pmol using 

SAII vs. 2.58 pmol using LC-MS/MS from surface extraction), indicating the reliability 

of the SAII method but at much faster analysis speed. However, the amount from 1 µL 

solvent extraction on the right half is not reflective of the results obtained from the 1 µL 

supernatant using traditional sample work-up and LC-MS/MS of the left half of the 

section (2.68 pmol using SAII from surface extraction vs. 1.33 pmol using LC-MS/MS 

from supernatant). We hypothesize that only the clozapine on the surface of the tissue 

section was extracted by the surface extraction method. In contrast, when tissue section 
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was scraped off, vortexed and centrifuged, the extracted clozapine is not limited to the 

surface. To test our hypothesis, another set of tissue sections that were 10 µm-thick from 

a drug-treated mouse were analyzed in the same manner.  

 

Figure 8.4. The right half of a 20 µm brain tissue section from drug-treated mouse 

was quantified by SAII method in discontinuous mode as shown in Scheme 8.1. II.A. 

Solution of 1 µL of each of the four standard clozapine:clozapine-d8 mixtures at 

different concentration ratios was used for surface extraction and then pipetted into 

the heated inlet of the mass spectrometer. Calibration curves were obtained by 

plotting the signal intensity ratio against the concentration ratio. A brain tissue section 

from a normal mouse was used as control. The inset shows an optical microscopy 

image to illustrate the extracted area. For enhanced image, 1 µL MeOH was doped 

with Luxol fast blue and the droplet was not removed from surface. 

Table 8.1 shows the comparison of 10 µm and 20 µm-thick tissue sections, using both 

the typical sample work-up and the novel surface SAII method. Thicker tissue results in 

more clozapine extracted by vortex and centrifugation. The amount obtained from the 20 

µm-thick tissue is approximately twice that of the 10 µm tissue as determined by LC-

MS/MS using the traditional tissue work-up. In contrast, the amount of clozapine 

extracted from the surface was not significantly different (2.84 pmol for 10 µm and 2.68 

pmol for 20 µm). This result indicates that the amount of clozapine determined by surface 
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SAII is the amount per unit area that was extracted, and was not limited by tissue 

thickness, at least for sections of 10 µm or greater.  

Table 8.1. Amounts of clozapine quantified by typical LC-ESI-MS/MS (Scheme 8.1. 

II.C) and surface SAII in discontinuous mode (Scheme 8.1. II.A). 10 µm and 20 µm 

tissue sections were analyzed. For LC-ESI-MS/MS, the left half of the tissue section 

was scraped off, dissolved in 50 µL MeOH, vortexed and centrifuged, results showed 

the amount in pmol per µL supernatant. For surface SAII, results showed the amount 

in pmol per µL solution used for surface extraction.  

Thick-

ness 

 

LC-ESI-MS/MS from 

scraped tissue 

Amount of clozapine in  

1 µL supernatant 

Surface SAII 

 

Amount of clozapine extracted 

by 1 µL standard solution 

10 µm  0.725 pmol 2.84 pmol 

20 µm  1.33 pmol 2.68 pmol 

 

SAII used in surface analysis and quantification is a simple and fast assessment but 

limited to mass spectrometers equipped with a heated inlet tube. On instruments without 

a commercially available heated inlet, MAIV has been demonstrated to produce ESI-like 

ions directly from surfaces, including mouse brain tissue sections.
117,120

 The 

quantification of clozapine using MAIV was first achieved on the intermediate pressure 

vacuum MALDI source of a SYNAPT G2 instrument. The mixture of individual standard 

clozapine:clozapine-d8 solutions mixed with 3-NBN matrix solution was spotted on the 

control and drug-treated tissue sections and loaded into the vacuum using a MALDI plate 

loader but without use of the laser. From each single matrix/clozapine:clozapine-d8 spot, 

the mass spectrum was extracted over the sublimation period of time (ca. 2 min). An area 

of about 1 mm
2
 covered by 3-NBN matrix was analyzed: matrix uncoated parts of the 

tissue do not produce ions. The signal intensity ratio at m/z 327:355 was plotted against 
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the concentration ratio of clozapine:clozapine-d8 from the standard solution (Figure 8.5). 

The amount of clozapine from each spotted area was determined as 1.48 pmol from the 

plots. Miniaturization of the tissue area covered by the matrix can be employed to 

improve the spatial resolution of the analysis.
117

  

 

Figure 8.5. 20 µm brain tissue sections from drug-treated and control mice were 

analyzed by MAIV operating at intermediate pressure. Solution of 0.5 µL 3-

NBN/clozapine:clozapine-d8 mixture was spotted on the tissue section and the 

sample was loaded into the commercially available vacuum chamber (Scheme 8.2.A). 

The matrix sublimed in approximately 2 min. The ion intensities of clozapine and 

clozapine-d8 were averaged over the 2 min acquisition, and the intensity ratio was 

plotted against concentration ratio. Insets show the microscopy images of the 

matrix/clozapine:clozapine-d8 spotted on tissue section before and after MAIV 

analysis. 

MAIV on the vacuum source produced better linearity (R
2
=0.9797) than SAII, 

because the average ion intensity summarized over a longer period of time provides 

better reproducibility. However, the operation of MAIV on the commercial vacuum 

MALDI source is time consuming and a significant amount of analyte is potentially 

wasted in the 2 min loading time.
117

 Only one matrix/clozapine:clozapine-d8 mixture can 

be spotted for each loading, otherwise all the spots would sublime simultaneously. To 

achieve the goal of simpler assessment from the surface, the ESI source was overridden 
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and employed for MAIV operating from atmospheric pressure as described previously.
119

  

The source temperature was held at 80 ºC, and a sealed vacuum outer skimmer cone with 

a notch
115

 to allow air flow was used for operation. Four 1 µL clozapine:clozapine-d8 

solutions mixed with 3-NBN were spotted on a tissue section (control and drug-treated, 

respectively) and covered half of the tissue section completely. The glass slide tissue 

holder was sealed to the notched cone by the vacuum for a 10 min analysis. The total 

analysis results of the 10 µm-thick brain tissue from drug-treated mouse are shown in 

Figure S8.6 in Appendix E as an example. The matrix sublimed over this 10 min period 

of time as shown in the TIC (Figure S8.6.I in Appendix E). Extracted clozapine, the 

standard clozapine-d8, cholesterol, and lipids were observed from the total mass 

spectrum and the two-dimensional plot of drift time vs. m/z (Figure S8.6.II in Appendix 

E). Particularly, lipids were not directly observed from mouse brain tissue sections in 

positive mode and the same heat-limited mass spectrometer.195  The nested dataset
106

 

extracted from the two-dimensional plot (Figure S8.6.II.B insets in Appendix E) allows 

the identification of clozapine and clozapin-d8 without additional time requirement. The 

calibration curve was obtained using four standard clozapine:clozapine-d8 mixtures of 

different concentration ratios on control tissue sections (Figure 8.6). The amount of 

clozapine was determined by the standard addition method by spotting four 1 µL 3-

NBN/clozapine-d8 mixture on half of the tissue section. The quantification of this 

method from 10 µm- and 20 µm-thick tissue sections did not show much difference (20.0 

pmol for 10 µm and 19.4 pmol for 20 µm), indicating that the same amount of matrix 

also extracts similar amount of clozapine only from the surface, regardless of the tissue 

thickness.  
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Figure 8.6. Calibration curve obtained by spotting 4 µL 3-NBN/clozapine:clozapine-

d8 mixture on control mouse brain tissue sections. The glass slide holding the half-

covered tissue was then sealed to the vacuum on a modified skimmer cone and let 

sublime for 10 min (Scheme 8.2.B). Ion intensity ratio was plotted against 

concentration ratio. The red triangle and hollow square show the results obtained 

from 10 µm and 20 µm tissue sections, respectively, from the drug-treated mouse 

using standard addition method. The inset shows a picture of the modified skimmer 

cone and a half-covered tissue section. 

In comparison to SAII using liquid extraction, the amount of clozapine extracted by 

MAIV is much higher. This is not only due to the fact that larger area was covered by 

matrix, but also that more material was extracted for the same unit area when matrix was 

employed. To further confirm our observation, the tissue, after surface extraction by SAII 

and MAIV, was cut through the center breaking the glass slide, and the cross section was 

examined under the microscope to determine the depth of droplet and matrix penetration 

(Figure S8.7 in Appendix E). SAII on the 20 µm-thick tissue section, only ~3 µm had the 

color from the doped Luxol fast blue dye indicating the wet area indicating the surface 

extracted area in SAII (Figure S8.7.A in Appendix E). MAIV provides a result with 

larger amount of clozapine than SAII, indicating that the matrix/clozapine:clozapine-d8 

mixture went deeper into the tissue than solvent-extraction. Previous studies have shown 

that MAIV can be destructive to tissue sections,
117
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image shows a deeper extraction for about 7 µm (Figure S8.7.B in Appendix E), more 

than twice as deep compared to SAII liquid extraction.   

8.4 Conclusion 

Rapid and efficient surface assessment is achieved by surface SAII and MAIV 

ionization methods. The surface quantification methods demonstrated in this work are 

potentially useful where fast analysis is valued, e.g. disease diagnosis or drug screening; 

one just needs to have the criterion of amounts of analyte per unit area of the surface 

(instead of per unit weight tissue, or volume) from healthy and diseased/treated tissue.  In 

this case the thickness of the sample (>10 µm) has little impact on the analysis. With this 

approach, the tissue need not be sectioned to a certain thickness for quantification. 
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Chapter 9 

CONCLUSION AND FUTURE PROSPECTUS 

Novel ionization methods have been developed to produce ESI-like ions of biological 

materials from AP and vacuum conditions for use in MS. The newly developed ionization 

methods have been interfaced to a variety of commercially available mass spectrometers 

from different vendors to utilize their features.  

Inlet ionization methods operate from AP and are beneficial for the instruments 

equipped with a heated inlet capillary. Ionization occurs in the heated inlet, with the 

assistance of the pressure drop from AP to the first vacuum stage of the mass 

spectrometer, regardless how the analyte is introduced into the inlet, with or without the 

use of a laser, from the solid or solution state. The first example of total solvent-free 

analysis by LSI-IMS-MS showed the production of multiply charged ions from solid state. 

Insoluble compounds, e.g. membrane proteins from brain tissue, could benefit from the 

solvent-free sample preparation.    

For solution samples, the independence of any extra connection or voltage greatly 

simplified the sample introduction method. Comparable sensitivity can be achieved by 

nanoLC-SAII as by nanoESI, with much less labor force and expense. NanoLC-SAII 

could potentially be employed for e.g. mammalian proteomics where the amount of 

proteins that can be obtained is limited. The automated analysis by multiplexing SAII and 

the mapping approach may potentially advance in any field that fast analyses are valued, 

e.g. pharmaceutical or clinical analyses, for the merit of its simple of use, low 

consumables cost, and little expertise required.  
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Although a liquid sample introduction method, SAII also shows its application in fast 

surface assessment by incorporating liquid-surface extraction. This ionization method is 

not only fast but also softer than traditional ionization techniques. The typical isotope 

dilution and external addition methods were well suited in this SAII approach to quantify 

the drug from drug-treated tissue surface. Comparable results were obtained by SAII and 

typical LC-ESI, but SAII takes much shorter time.   

Vacuum ionization methods operating at AP or vacuum makes use of proper matrix 

and the vacuum which any mass spectrometer has to produce ESI-like ions from solid 

state. High performance mass spectrometer was used to obtain multiply charged ions 

from solid state while maintaining the high mass resolving power. The mass resolution 

achieved by FT-ICR is beneficial for e.g. proteomics by this hyphenated method with 

MAIV, especially for those the solubility in sprayable solvent is restricted. The 

instantaneous and continuous ion formation is favored by electron capture dissociation 

that is currently available on FT-ICR instruments, too.   

 In summary, new ionization methods have shown advantages such as simple of use, 

low cost, and ready to be coupled with other analytical techniques, etc. that provide the 

potential for real world application. As listed in the “Holy Grail” in Scheme 1.1, for 

example, sensitivity and dynamic range should be extended, so that some component in 

low abundance from a complex environment, such as proteins from brain tissue, can be 

detected besides the dominant lipids. The hyphenation of novel ionization methods with 

other analytical techniques and high performance instrument is valuable for the analysis 

of complex materials, e.g. interfacing UPLC with IMS-MS by MAIV could also free the 

ionization from the restriction of spray conditions. Coupling the mentioned techniques 
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with high mass resolution instrument and tandem MS could be greatly advantageous for 

proteomics. Reproducibility should be improved for direct quantifications, ideally 

without the need to add external standards. The spatial resolution of the surface analysis 

approaches should be improved by employing a laser or miniaturizing solvent/matrix 

deposition, so that the methods could be utilized for diagnoses of diseased tissue from the 

healthy. The speed, simplicity, robustness, automation, low-cost will always be favorable 

for e.g. pharmaceutical industry and drug discovery. With these being said, we have just 

begun scratching the surface, there are a lot more needed to be studied. 

Scheme 1.1 Technology development needed to expand the use of MS for 

clinical applications [Adopted from Reference 18]. Points highlighted in blue 

will need further investigation. 

 

 

 

  

A. Sensitivity and dynamic range: to observe all components (e.g., 

lipids and proteins, hydrophilic and hydrophobic, low and high 

abundance) directly from native and complex environment (e.g., tissue, 

plasma, serum, urine), improvements needed include:

1. Separation: to deal with complexity and isoforms (LC, mass 

resolution, IMS)

2. Specificity: fragmentation (MS/MS: CID, ETD) for confirmation 

and ID (bottom up, top down)

3. Reproducibility: for quantitation

4. Spatial resolution: for location (with and without a laser)

B. Speed: of data acquisition and interpretation

C. Robust, simple and cheap: automation, disposables
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APPENDIX A 

TOTAL SOLVENT-FREE ANALYSIS SUPPLEMENTAL INFORMATION 

 

 

Figure S4.1. Solvent-based LSI-IMS-MS analysis of angiotensin I. (A) Total mass 

spectrum and (B) 2-D plot of drift time versus m/z. 
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Figure S4.2. (A) Solvent-based LSI-IMS-MS analysis and (B) ESI-IMS-MS of NAC. (1) 

Total mass spectrum and (2) 2-D plots of drift time versus m/z. 
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Figure S4.3. (A) Solvent-based LSI-IMS-MS analysis and (B) ESI-IMS-MS of BI. (1) 

Total mass spectrum and (2) 2-D plots of drift time versus m/z. 
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Figure S4.4. Total solvent-free analysis spectra of angiotensin I using 2,5-DHAP matrix 

under different grinding time and frequency on SYNAPT
TM

 G2 instrument. 
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Figure S4.5. Total solvent-free analysis spectra of angiotensin I using (A) and (B) 2,5-

DHB matrix, (C) 2,5-DHAP under 25 Hz, different grinding times and capillary 

temperature on LTQ-Velos instrument. 
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Figure S4.6. Microscopy of liquid droplets produced by the ablation of (A) 2,5-DHB and 

(B) 2,5-DHAP after the matrix had been ground for 10 minutes in TissueLyser II. 

 

 

 

Figure S4.7. Microscopy of the ablation plume from 2,5-DHB after the matrix was 

ground for 30 seconds in (A) TissueLyser II and (B) Vortexer.  
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Figure S4.8. Solvent-free LSI-MS mass spectrum of angiotensin I acquired (A) with IMS 

and (B) using TOF mode only (without IMS). 
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Figure S4.9. Solvent-based LSI-IMS-MS analysis of a lipid (sphingomyelin, SM) and a 

peptide (angiotensin I) mixture. (A) Total mass spectrum and (B) 2-D plots of drift time 

versus m/z. 
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Figure S4.10. Solvent-free LSI-IMS-MS analysis of (A) vegetable oil and (B) motor oil.     

(1) Total mass spectrum and (2) 2-D plots of drift time versus m/z. 
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Figure S4.11. LSI-IMS-MS of (A) crude petroleum oil using solvent-free sample 

preparation with 2,5-DHAP matrix; (B) crude oil using solvent-based sample preparation 
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with 2,5-DHAP matrix and (C) 2:1 toluene/methanol solvent with 2,5-DHAP matrix; left 

panel (1) Total mass spectra and right panel (2) 2-D plots of drift time versus m/z. 
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APPENDIX B 

LC-SAII SUPPLEMENTAL INFORMATION 

 

 

 

Figure S5.1. Ion intensity changes with the distance between the silica tube tip and the 

entrance of the inlet to the mass spectrometer.  
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Figure S5.2. SAII-MS of ubiquitin.  The liquid solvent/analyte droplet is placed with a 

pipette tip (10 uL plastic tip) vertically just outside of the mass spectrometer inlet and 

slowly pipetted off.  The droplets formed are vacuum drawn into the inlet of the mass 

spectrometer where inlet ionization of the analyte occurs.  Solutions of 5 pmol ubiquitin 

(10 µL) were used.  Depending on the solution conditions and inlet temperature the 

abundance of the highly charged ubiquitin ions varies; less volatile solvent conditions 

require higher inlet temperatures:  (A) ubiquitin in 100% water solution and (1) 300 °C 

and (2) 450 °C and (B) ubiquitin in 50:50 ACN/H2O in 1% formic acid solution and (1) 

50 °C and (2) 300 °C applied on the inlet of the mass spectrometer. In pure water, Na
+
 

adducts are in high abundance lowering the overall intensity of any single peak.  Addition 

of formic acid as shown in B almost eliminates the Na
+
 adducts.  
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Figure S5.3. Picture showing the setup for LC-nSAII:  Front view of Waters 

NanoAcquity liquid chromatography, Thermo LTQ-Velos mass spectrometer and, here, 

an automated x,y,z-stage for alignment of tip (Figure 1a) and the “picotip” extension 

(Figure 1b) of the fused silica capillary tube of the LC column placed about 0.1 mm out 

of the orifice inlet entrance of the mass spectrometer.   
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Figure S5.4. LC-SAII-MS of 100 fmol µL
-1 

BSA tryptic digest acquired on the Thermo 

LTQ Velos mass spectrometer. (A) The base peak chromatogram of 1 µL injection at 0.8 

µL min
-1 

flow rate; (B) the base peak chromatogram of 1 µL injection at 1.2 µL min
-1 

flow rate. The m/z of the most intense peak from the mass spectra of each LC 

chromatographic peak is labeled at the top of the peak. The mass range for MS data 

acquisition is 555-1600.  
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Figure S5.5.  A 50 min LC run injecting 1 µL of a 100 fmol µL
-1

 BSA tryptic digest 

solution analyzed by LC-nSAII-MS at a mobile phase flow of 800 nL min
-1

.  (A) A 

section of the base peak chromatogram.  The start trigger for the mass spectral acquisition 

was the same as for the LC so that the inject time is included in the X-axis.  The most 

intense m/z obtained on the mass spectra for each chromatographic peak is labeled.  (B) 

Mass spectrum of the chromatographic peak at 17.8 min.    
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Figure S5.6.  Base beak chromatogram of LC-nESI-MS of 100 fmol µL
-1

 BSA tryptic 

digest on Waters SYNAPT G2 mass spectrometer. The skimmer temperature is held at 

150 ºC. (A) The base peak chromatogram of 1 µL injection at 800 nL min
-1 

flow rate; (B) 

the base peak chromatogram of 1 µL injection at 400 nL min
-1 

flow rate. Peaks are 

labeled with m/z values.  
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APPENDIX C 

HIGH THROUGHPUT MULTIPLEXING SAII SUPPLEMENTAL 

INFORMATION 

 

 

 

Scheme S6.1. Pictures of sample loading for SAII multiplexing using a 96-well plate. (A) 

Vials (1) or wells (2) filled with analyte solutions or pure solvents in a 96-well plate 

format. (B) Empty pipette tips mounted on another 96-vial plate (1). (C) Dip the tips into 

the sample vials. (D) Tips filled with about 3 µL solutions by capillary action and are 

ready to mount on the xy-stage.  

  

A. 1 B.

D.C.

E.

A. 2



145 
 

 

Scheme S6.2. Pictures of sample loading for SAII multiplexing using a 384-well 

microtiter plate. (A) The workflow of sample preparation of clarithromycin tablet in the 

microtiter well plate. (B) 1 µL of each tablet solution and pure solvent was drawn into the 

8-channel pipette. (C) The pipette is mounted on the xy-stage with the tips aligned with 

the inlet orifice. 
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Figure S6.1. A mixture of phosphorylated peptides (angiotensin II, cholecystokinin (10-

20), and calcitonin (15-29)) was pipetted into the inlet (Scheme 1A) which was heated to 

250 °C. MS/MS spectra from the mixture of the doubly charged ions using CID are 

shown in this figure. (A) phosphorylated angiotensin II at collision energy 30, data 

acquired in the mass range of 155-2000; (B) phosphorylated cholecystokinin (10-20) at 

collision energy 20, data acquired in the mass range of 180-2000; and (C) phosphorylated 

calcitonin (15-29) at collision energy 20, data acquired in the m/z range of 245-2000;. 1 

µL of 2.5 pmol µL
-1 

solution was used for each acquisition. 
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Figure S6.2. SAII mass spectra of (A) 1 µL 2.5 pmol µL
-1

 myoglobin and (B) 1 µL 5 

pmol µL
-1

 carbonic anhydrase obtained by pipetting the solution into the inlet (Scheme 

1A) at an inlet temperature of 250 °C.  The blue number in top right corner denotes the 

ion intensity.  Data were acquired in the m/z range of 600-2000. 
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Figure S6.3. SAII mass spectra of (A) 5 pmol µL
-1 

angiotensin I in water at 150 °C, (B) 5 

pmol µL
-1 

 clozapine in chloroform at 250 °C with matching isotopic distribution, data 

acquired in the mass range of 100-1000.and (C) 1 pmol µL
-1 

ubiquitin in 90:10 

acetonitrile:water at 400 °C inlet temperatures.  1 µL solution of each solution was 

pipetted into the inlet (Scheme 1A).  Data were acquired in the m/z range of 150-2000.  
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Figure S6.4. pH study of (I) 5 pmol µL
-1

 bovine insulin and (II) 10 pmol µL
-1

 lysozyme 

using SAII-MS at an inlet temperature of 250 °C: pH: (A) 3 to 3.5, (B) ~4.5, (C) 6 to 6.8, 

(D) 9 to 9.3.  2 µL solution was pipetted into the inlet (Scheme 1A).  Data were acquired 

in the m/z range of 150-2000.  
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Figure S6.5. SAII mass spectra of (I) 5 pmol µL
-1

 bovine insulin in 50:50 

methanol:water with 1% acetic acid and (II) 10 pmol µL
-1

 lysozyme in 50:50 

acetonitrile:water with 0.1% formic acid at different inlet temperatures: (A) 150 °C, (B) 

250 °C, (C) 350 °C, and (D) 450 °C.  2 µL solution was pipetted into the inlet (Scheme 

1A).  Data were acquired in the m/z range of 150-2000. 
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Figure S6.6. SAII mass spectra of 10 pmol µL
-1

 lysozyme in water at different inlet 

temperatures: (A) 150 °C, (B) 250 °C, (C) 350 °C, and (D) 450 °C. 2 µL solution was 

pipetted into the inlet (Scheme 1A).  Data were acquired in the m/z range of 150-2000. 
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Figure S6.7. Multiplexing SAII-MS using the 8-channel pipette (Scheme 1B) at different 

inlet temperatures: (I) 250 °C, (II) 350 °C, and (III) 450 °C in a total of ~15 seconds. (A) 

The TIC and (B) mass spectra of the analysis of tips filled with (1) 2.5 pmol µL
-1

 leucine 

enkephalin, (2) 1 pmol µL
-1

 galanin, and (3) 1 pmol µL
-1

 ubiquitin with solvent between 

each two samples. 2 µL analyte/solvet was drawn into each pipet tip.  The maximum 

injection time was 100 ms.  Data were acquired in the m/z range of 150-2000. 
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Figure S6.8. SAII-MS using the 8-channel pipette (Scheme 1B) and an inlet temperature 

of 150 °C.  All three analytes were analyzed in a total of ~2 seconds. (I) The TIC of 5 tips 

filled with angiotensin I, bovine insulin, and ubiquitin with pure solvent between each 

two analytes. (II) Mass spectra extracted from (A) 0.26 min for 1 pmol µL
-1
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I, (B) 0.28 min for 5 pmol µL
-1

 bovine insulin with some angiotensin I cross 

contamination, and (C) 0.29 min for 1 pmol µL
-1

 ubiquitin.  2.5 µL analyte/solvent was 

drawn into each pipet tip.  The maximum injection time was 500 ms.  Data were acquired 

in the m/z range of 150-2000.  
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Figure S6.9. Mapping using the 8-channel pipette (Scheme 1B). The solutions were 

scanned from (I) low to high and (II) high to low concentrations. (A) Schematic 

representation of content in each pipette tip.  Red boxes indicate tips filled with 2 µL 

clozapine solutions at 25 fmol µL
-1

, 50 fmol µL
-1

, and 100 fmol µL
-1

, respectively; grey 

boxes represent pure solvent methanol. (B) The mapping of m/z 270 peak.  Note that the 

methanol solutions (grey boxes) furthest to the right in (I) and (II) are more intense than 

the prior methanol solutions (second last) suggesting that carryover are neglectable in 

both cases for the sample (samples solutions furthest to the right, red boxes).  Data were 

acquired in the m/z range of 90-345.  
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Figure S6.10. SAII-MS/MS of clozapine using the 8-channel pipette (Scheme 1B).  The 

protonated ions were selected and fragmented by CID using normalized collision energy 

of 30.  The maximum injection time was 100 ms. (A) 1 µL of 1 fmol µL
-1

 clozapine and 

(B) 3 µL of 0.5 fmol µL
-1

 clozapine was drawn into the pipette tip.  The inlet temperature 

was 250 °C.  Data were acquired in the m/z range of 100-400.   
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Figure S6.11. All six mass spectra (A to F) of 5 pmol µL
-1 

bovine insulin (in 

methanol/water with acetic acid) extracted from the repetitive six cycles of SAII 

multiplexing using a 96-vial plate (Scheme 1C) at the inlet temperature of 250 °C.  The 

numbers in blue in the top right corner indicate the ion intensity.  Data were acquired in 

the m/z range of 150-2000.  
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Figure S6.12. SAII-MS using 84 tips mounted on a 96-vial plate (Scheme 1C) when the 

inlet temperature was held at 250 °C in a total of ~ 10 min. (I) Total ion current. (II) 

Mass spectra of (A) 1 pmol µL
-1

 clozapine (in methanol), (B) 2.5 pmol µL
-1 

leucine 

enkephalin (in acetonitrile:water with formic acid), (C) 1 pmol µL
-1 

sphingomyelin (in 

methanol with acetic acid), (D) 1 pmol µL
-1 

galanin (in acetonitrile:water with formic 

acid), (E) 1 pmol µL
-1 

bovine insulin (in methanol:water with acetic acid), (F) 1 pmol µL
-

1 
ubiquitin (in acetonitrile:water with formic acid), and (G) 1 pmol µL

-1 
lysozyme (in 

acetonitrile:water with formic acid).  Data were acquired in the m/z range of 150-2000.  
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Figure S6.13. Mapping using the 96-sample plate shown in Scheme 1C. (A) Schematic 

representation of content in each pipet tip.  Red boxes indicate tips filled with clozapine 

solutions at 0.5, 5, 15, and 30 fmol µL
-1

, respectively; grey boxes represent pure solvent 

methanol. (B) The mapping of m/z 270 peak obtained by selecting the m/z 327 ([M+H]
+
 

ion) for CID fragmentation using normalized collision energy of 30.  The maximum 

injection time was 100 ms.  Data were acquired in the m/z range of 90-345.   
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APPENDIX D 

MAIV ON FT-ICR SUPPLEMENTAL INFORMATION 

 

 

 

 

Figure S7.1. MAIV mass spectrum of a mixture of peptides and proteins including: 

leucine enkephalin (Leu-enk), bombesin, allatostatin, and bovine insulin (BI).  The inset 

shows the +5 charge state of bovine insulin. 

  

[BI+4H]4+

[BI+5H]5+

[allatostatin+H]+

[bombesin+2H]2+

[Leu-enk+H] +

556.2765

810.4144

969.5149

1147.7289

1434.1586

2474.2640

500 1000 1500 2000 2500 3000 m/z
0

2

4

6

x106
Intens.

1147.1270

1147.3280

1147.5280
1147.7289

1147.9293

1148.1306

1148.3284

1146.0 1148.0 m/z
0.0

0.5

1.0

1.5

x106

Intens.

+5



161 
 

 

Figure S7.2. MAIV mass spectra (I) and the +4 inset (II) of bovine insulin using 

different plate voltages and data acquisition sizes. (A) 300 V plate voltage and 2 million 

acquisition size; (B) 300 V plate voltage and 512 thousand acquisition size; and (C) 240 

V plate voltage and 512 thousand acquisition size. 
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Figure S7.3. MAIV mass spectra of angiotensin mixture using different plate voltages 

and data acquisition sizes. (I) With 2 million acquisition size at (A) 0 V, (B) 200 V, (C) 

I. 2 million acquisition size II. 512 thousand acquisition size
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300V, (D) 400 V, and (E) 500V; (II) with 512 thousand acquisition size at (A) 210 V, (B) 

230 V, (C) 240 V, (D) 250 V, and (E) 300 V.   
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Figure S7.4. LSIV mass spectrum of 100 pmol ubiquitin using 2-NPG matrix 

summarizing 20 scans.  The laser power was 50%, the voltage applied on the target plate 

is 400 V, and data acquisition size was 512 thousand. 
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APPENDIX E 

QUANTIFICATION SUPPLEMENTAL INFORMATION 

 

 

Figure S8.1. Characterization of phosphotidycholine (34:1) extracted from the brain 

tissue section of a drug-treated mouse and pipetted into the heated inlet (Scheme 8.1. 

II.A). (A) MS
2 

by fragmenting the most abundant peak from Figure 8.1. B ([PC 34:1 + 

K]
+
) and CID was performed with CE=28. (B) MS

3
 by fragmenting the most abundant 

product ion at m/z 739 using CID with CE=28. The blue numbers on the top right corner 

denote ion intensities. 
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Figure S8.2. Inset mass spectrum showing clozapine and one major metabolite, clozapine 

N-oxide, obtained by surface extraction of an aged brain tissue section from drug-treated 

mouse followed by SAII method in discontinuous mode (Scheme 8.1. II.A). The blue 

number on the top right corner denotes ion intensities.  
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Figure S8.3. Mass spectrum obtained by SAII in continuous surface extraction mode 

(Scheme 8.1. II.B).  A brain tissue section of drug-treated mouse was analyzed. The 

mass spectrum was extracted from 0.37 to 0.86 min from the TIC shown in Figure 8.2A. 

The blue number on the top right corner denotes ion intensity.  The peaks were assigned 

according to previous studies. No cholesterol fragment with the loss of water (at m/z 369) 

or water cluster background was detected as observed in typical MALDI analysis.  
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Figure S8.4. Mass spectra using SAII by pipetting 1 µL standard clozapine:clozapine-d8 

solution from the vial into the heated mass spectrometer inlet. The concentration ratio of 

clozapine:clozapine-d8 is (A) 0.5:1 and (B) 1:1 with the clozapine-d8 at 2 pmol µL
-1

. The 

ion intensity ratio at m/z’s 327:335 is approximately (A) 0.54:1 and (B) 1.08:1. The blue 

numbers on the top right corner denote ion intensities. 
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Figure S8.5. Mass spectra using SAII in discontinuous mode (Scheme 8.1. II.A). The 

material was extracted by using 1 µL standard solution (clozapine:clozapine-d8 at 0.5:1 

with the clozapine-d8 at 2 pmol µL
-1

) from tissue section surfaces of (A) control and (B) 

drug-treated mouse and pipette into the heated mass spectrometer inlet. The ion intensity 

ratio at m/z’s 327:335 is approximately (A) 0.52:1 and (B) 2.20:1. The blue numbers on 

the top right corner denote ion intensities. 
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Figure S8.6. Half of a tissue section covered by four 1 µL matrix/clozapine:clozapine-d8 

mixture and analyzed by MAIV operating at atmospheric pressure (Scheme 8.2.B). The 

glass slide holding tissue section was sealed to the modified skimmer cone, and the 

matrix sublimed over 10 min. (I) TIC showing continuous ion formation from a MAIV 

analysis. (II): (A) Total mass spectrum, clozapine, clozapine-d8, cholesterol, and lipids 

were observed; (B) two dimensional plots of drift time vs. m/z with insets showing 

extracted (1) nested dataset and (2) mass spectrum from the blue-boxed area. The ion 

intensity ratio at m/z’s 327:335 is approximately 3.02:1. 
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Figure S8.7. Microscopy images of the glass slides holding 20 µm-thick tissue section 

after (A) solvent-droplet extraction (Scheme 8.1. II.A) and (B) 3-

NBN/clozapine:clozapine-d8 mixture sublimation for 10 min (Scheme 8.2.B). The tissue 

section and the glass slide were cut through the center, and the images show the cross 

section. The scale bar represents 50 µm, and a scale bar representing 20 µm is included to 

indicate the thickness of the tissue section.  
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Inlet ionization and vacuum ionization are novel ionization methods to produce 

electrospray ionization (ESI)–like ions from the solid or liquid states, operating from 

atmospheric pressure (AP) or vacuum, without the use of voltage or the necessity of high 

energy input such as a laser or particle beam. The fundamental aspects were probed for 

better understanding of the novel ionization processes. Initial applications were attempted 

to utilize the novel ionization methods for fast, robust, and quantitative analyses.  

For inlet ionizations (laserspray ionization inlet, LSII; matrix assisted ionization inlet, 

MAII; and solvent assisted ionization inlet, SAII), small (e.g. drugs) to large (e.g. 

proteins) non-volatile molecules are ionized with the assistance of heat and pressure drop, 

and are operated from AP. The ease of operation, rapidness of data acquisition, and 

simplicity of coupling with other techniques achieved by SAII, have enabled the inlet 

ionization for high throughput multiplexing analyses, hyphenation with liquid 

chromatography (especially at low flow rates), and fast surface assessment and drug 
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quantifications. LSII has been utilized together with solvent-free sample preparation and 

solvent-free gas-phase separation for total solvent-free analysis.   

The production of multiply charged ions from solid states by vacuum ionization was 

utilized to encompass the advantages from ESI and matrix-assisted laser 

desorption/ionization (MALDI), for better characterization from surfaces and extending 

the mass range of high performance mass spectrometers. Operating from AP provides the 

potential for vacuum ionization to be applied in high throughput analysis. The continuous 

ion formation also benefits matrix assisted ionization vacuum (MAIV) for drug 

quantification with better reproducibility. 
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