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FOREWORD 

 

In the United States 1.4 million people sustain traumatic brain injury (TBI) each 

year, resulting in 235,000 hospitalizations and 50,000 fatalities annually.  Traumatic 

axonal injury (TAI) is a serious outcome of TBI that accounts for 40-50% of 

hospitalizations due to head injury and one third of the mortality due to TBI, and it is 

difficult to diagnose and evaluate using current imaging modalities.  Pathologically, TAI 

comprises diffuse and extensive lesions of the white matter tracts.  TAI is produced by 

rapid head acceleration / deceleration during a traumatic event with consequent shear / 

tension on axons.  The Marmarou impact acceleration model has been extensively used to 

study the pathomechansims of TAI.  However, there is a paucity of published work on 

the mechanical responses induced by this model and their correlation to TAI.  Hence, a 

modified version of this model will be developed to elucidate the relationship between 

the mechanical responses induced by head impact and the consequent expression of TAI 

and other pathobiological outcomes.  

The goal of this research is 1) to characterize the kinematics of the rat head during 

dynamic impact of various severities using the modified Marmarou model; 2) to quantify 

the intensity and distribution of the axonal changes throughout corpus callosum and 

brainstem using histopathologic techniques; 3) to determine correlation between head 

impact response and TAI, and identify potential injury predictors for TAI; 4) to establish 

a panel of biomarkers to evaluate traumatic axonal injury; and 5) to investigate the  

predictive value of multiple biomarkers compared to a single biomarker. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 EPIDEMIOLOGY OF TBI AND TAI 

Traumatic brain injury (TBI) is a major public health problem in the United States, 

contributing to about 30% of all injury deaths (Faul et al., 2010).  In 2010, about 2.5 

million emergency department (ED) visits and hospitalizations were associated with TBI 

alone or other injuries in combination with TBI (CDC, 2010).  Each year, TBI contribute 

to a large number of deaths and cases of permanent disability.  Sport related TBI is also 

on the rise in the past decade.  From 2001 to 2009, the rate of ED visits for sport 

concussion or other injuries in combination with sport concussion rose 57% among 

children age 19 or younger (CDC, 2011). 

 

Figure 1-1: Leading causes of TBI (CDC, 2010). 
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The leading causes of TBI are falls, motor vehicle accidents (MVAs), 

unintentional blunt trauma (e.g., being hit by an object), and accidental impacts (CDC, 

2010). While falls are the greatest cause of TBI, MVAs cause the most hospitalizations.  

Among TBI-related deaths, falls were the leading cause of death for persons 65 years or 

older, while MVAs were the leading cause for people ages 5-24 years.  The direct and 

indirect costs of TBI are estimated to be $60 billion annually (Finkelstein et al., 2006).  

TBI typically result in either diffuse or focal injuries or a combination of both. 

Focal injuries, readily observed using standard imaging techniques, include cortical 

contusions and subdural, epidural and intracerebral hematomas.  Diffuse injuries, on the 

other hand, are associated with more widespread disruption that is usually not observable 

with standard imaging.  These injuries include concussions, diffuse axonal injury (DAI) 

and diffuse brain swelling (Gennarelli, Thibault et al. 1998).  

DAI is a well-recognized consequence of blunt head injury (Adam et al., 1982) 

and was originally described by Strich (1956) as diffuse degeneration of cerebral white 

matter (WM).  Smith and Meaney (2000) showed that the pattern of axonal damage in the 

white matter is more accurately described as ‘multifocal’ rather than diffuse in TBI case, 

thus suggested to refer it as traumatic axonal injury (TAI) instead of DAI.  Pathologically, 

TAI comprises diffuse and extensive lesions of the white matter tracts (Blumbergs, 1997).  

TAI is produced by rapid head acceleration/deceleration during a traumatic event (Adams 

et al., 1982; Kelley et al., 2006) with consequent shear / tension on axons. 

       TAI is a predominant injury in 40-50% of TBI requiring hospitalization in the 

United States and is associated with one-third of deaths in severe TBI (Meythaler et al. 
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2001).  The most common cause of TAI is car accidents, followed by falls, assault and 

other incidents involving strong inertial forces on the brain (Adams et al., 1984). 

 

1.2 PATHOBIOLOGY OF TAI AND RELATED CELLULAR MECHANISMS OF 

TBI 

       TBI is characterized by a complex pathology. Acute TBI is characterised by two 

injury phases.  The primary injury includes focal / multifocal injury, haematomas and 

contusions at the time of the initial impact.  This results in a cascade of cellular processes 

which then leads to secondary brain injury.  The major known pathways in secondary 

injuries have been summarized by Parker (2008) in Figure 1-2.  

 

Figure 1-2: The major pathways associated with the progression of secondary injury after 

a traumatic brain injury (Parker et al., 2008). 

 

Sudden head acceleration and deceleration causes tensile, shear, and compressive 

strains within the brain tissue, and leads to local Ca
2+

 influx due to altered neuron 
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membrane permeability by strains.  Abnormal calcium homeostasis plays a major role in 

the progression of secondary brain injury in both grey and white matter.  In neuronal cell 

injury, it is proved to lead to excitotoxic cell death, programmed cell death and 

postsynaptic modifications (Parker et al., 2008).  Calcium overload is also linked to early 

mitochondrial swelling (Buki et al., 2006).  Excessive influx of calcium into 

mitochondria causes its membrane to depolarize, open the membrane permeability 

transition pores and consequently release the proinflammatory cytokine and initiate the 

programmed cell death (Stefanis 2005).  Proliferation of astrocytes (astrogliosis) is also a 

characteristic of injuries to the CNS, and their dysfunction results in a reversal of 

glutamate uptake and neuronal depolarization through excitotoxic mechanisms.  In 

addition, astrocyte foot processes swelling can cause microcirculatory derangements, loss 

of microvasculature, and breakdown of blood–brain barrier (Parker et al., 2008). 

In TAI, calcium initiates a cascade of events resulting in axonal disconnection 

(Fig. 1-3).  First, influx of Ca
2+

 activates a cellular and molecular cascade ultimately 

leading to the activation of proteolytic enzymes such as cysteine proteases, calpain, and 

caspase (Pike et al. 1998; McCracken et al. 1999).  Secondly, these enzymes degrade 

spectrin, an essential component of the axon cytoskeletal network, causing a buildup of 

axonal transport proteins within axonal varicosity swellings called “retraction balls” 

(Povlishock et al., 1983; Yaghmai et al., 1992).  Other studies have shown that a 

traumatic event evokes focal alterations in axolemmal permeability which was also 

shown to be associated with significant neurofilament compaction (Povlishock, 1996). 
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Figure 1-3: Flow chart representing the consequences of TAI (Serbest et al., 2007). 

The proteolytic enzymes can also destroy the mitochondria and lead to release 

pro-apoptotic factors such as cytochrome c, and caspase enzymes, which promote 

apoptosis (Tang-Schomer et al. 2012).  Widespread axonal degeneration associated with 

a traumatic event can lead to neuronal disconnection due to downstream synaptic 

degeneration and deafferentation of target postsynaptic cells and may be attributed to the 

underlying neurobehavioral changes (Rafols et al., 2007).  These pathological changes 

are commonly found in the areas where have high white matter densities, such as the 

parasagittal white matter, corpus callosum, and the brainstem (Riddle et al. 2012).  

Depending on the pattern, severity and location, TAI is categorized into grades I, 

II and III (Gennarelli, Thibault et al. 1998).  Histology by silver staining reveals axonal 
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swellings within 15-18 h followed by reactive changes including migration of microglia, 

reactive astrocytosis and changes in capillary endothelium.  Several weeks after TBI, 

microglial accumulation, axonal fragmentation and myelin sheath breakdown are 

observed.  Figure 1-4 shows characteristic swellings and retraction balls of TAI 

pathology. 

 

Figure 1-4: Histology evidence of TAI. An image of β-APP-IR retraction balls (arrows) 

and swollen axons (arrow head) in Py (A), and a sample image of RMO-IR swellings 

(arrow head) and retraction balls (arrow) in the most caudal Py (B) (Kallakuri et al. 2012). 

  

 TAI is increasingly recognized as a huge negative impact on the quality of 

patients’ life with either severe or mild TBI.  Although extensive studies aimed at 

understanding the cellular pathway, inflammatory initiation and apoptosis following TBI 

have been done, many areas regarding the pathobiology of TBI still need to be elucidated, 

and the effective translation of basic research findings into meaningful clinical therapy 

remains a challenge. 

 

1.3 CLINICAL ASSESSMENT OF TAI 

Both structural and ischaemic changes can be detected with recent advances in 

imaging techniques.  CT scanning, which is now widely available in the emergency 
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departments of most hospitals, has the advantage of being able to rapidly image the 

patient, since time is important in evaluating the head trauma in the acute stage.  Primary 

head injury lesions seen on CT include acute extradural haematoma, acute subdural 

haematoma, subarachnoid haemorrhage, contusions, intracerebral haematoma and diffuse 

axonal injury.  However, initial CT scans is only able to detect TAI in 20%–50% of cases 

(Toyama et al., 2005).  A study by Bigler et al. has indicated that there is poor correlation 

between acute CT and prognosis, apart from those patients with brainstem injury (Bigler 

et al, 2006). 

MRI is not routinely used in the acute phase of traumatic brain injury due to 

availability.  After the patient has been stabilized, MRI can be used to obtain a clearer 

picture of the extent of injury.  MRI has a much higher sensitivity for detecting TAI 

(Bradley et al., 1993).  Recently specialized MRI techniques have further improved the 

detection of TAI.  Susceptibility weighted imaging (SWI) exploits 

the susceptibility differences between tissues (e.g., oxygenated vs. deoxygenated blood 

and iron) and uses the phase image to detect these differences (Ashwal et al., 2006).  It 

has been shown to demonstrate superior image enhancement of primary lesion sites, 

micro-hemorrhage area and axonal damage sites compared to conventional MRI (Murai 

et al., 1996).  Magnetic resonance spectroscopy (MRS) identifies individual brain 

chemicals or metabolites and measures its concentration by producing a spectrum.  It 

provides neurophysiological data that is related to structural damage/changes, neuronal 

health, and other brain functions (Arslanoglu et al., 2004; Baker et al., 2008).  MRS 

showed improved sensitivity for detection of TAI and axonal pathology in swine 

traumatic brain injuries (Mcgowan et al., 1999; Smith et al., 1998).  The directionality of 

http://en.wikipedia.org/wiki/Magnetic_susceptibility
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diffusion is called anisotropy and is measured by diffusion tensor imaging (DTI). This 

technique relies upon the difference in isotropic diffusion of water molecules in normal 

and injured brain (Huisman 2003).  DTI is now regarded as the best imaging technique 

for detecting white matter integrity/damage (Shenton et al, 2012).  It is hoped that DTI 

will be able to visualize microscopic white matter injury at specific brain tracts (e.g., 

corpus callosum, superior longitudinal fasciculus, uncinated), which are not seen on 

conventional scans, and give some information regarding prognosis both in severe and 

mild TBI. Many of the manuscripts published are case reports, but show some promising 

results (Naganawa et al., 2004; Ducreux et al., 2005; Yen et al., 2006). 

Another emerging field focuses on using biomarkers as an alternative non-

invasive clinical approach for diagnosis of TAI.  These markers could be detected in CSF 

or serum samples due to the breakdown products of neurons passing through the 

damaged blood brain barrier of TBI patients.  Potential biomarkers generally include 

proteins related to primary structural damage or proteins involved in cellular and 

molecular cascade during the secondary axonomy, which we will discuss in detail in 

Chapter 3. 

In TAI there may be a therapeutic window for treatment.  For example, 

dopaminergic blockade may be contraindicated in the early stages of TBI but beneficial 

in TAI (Meythaler et al. 2001).  While animal studies of new treatment modalities have 

been promising, clinical trials are often disappointing.  This is likely related to the 

varying mechanisms of injury in clinical studies in contrast to animal studies, where the 

mechanism of injury has been very focused.  Clinical studies are fraught with uncertainty, 

including the mechanisms of injury involved, the timing of various mechanisms, and 
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uncertainty regarding the therapeutic window of various treatments (Maas et al. 1999). 

More objective diagnostic testing is absolutely necessary to reduce this uncertainty. 

Advanced imaging procedures and protein biomarkers provide great promise in revealing 

these mechanisms in the clinical setting. 
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CHAPTER 2 

BIOMECHANICS OF TRAUMATIC AXONAL INJURY 

 

2.1 BRAIN INJURY KINEMATICS 

       Brain injury can occur through many different mechanisms.  In vehicle accident, 

head impact may or may not occur, but the head will be decelerated (accelerated) in the 

process. In the absence of direct impact to the skull, the loading to the head is inertial.  It 

is the movement of the skull that causes the brain to be subjected to various stresses and 

strains which leads to disruption of brain tissue and associated injury (King 2000).    

 

Figure 2-1: The Wayne State Tolerance Curve (McElhaney et al., 1976)     

Several head injury assessment functions have been proposed in the past 40 years 

to establish the threshold of head injury during impact (Newman, 1998).  The current 

standard for head injury protection is the Head Injury Criterion (HIC) (Versace, 1971).  

Another well-known head injury predictor is the Gadd Severity Index (GSI) (Gadd, 1966).  
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Both GSI and HIC were developed using the Wayne State tolerance curve (WSTC) 

(Figure 2-1, Lissner et at., 1960), which was derived from head acceleration data from 

animal concussion experiments and cadaveric forehead impact tests.  The WSTC predicts 

that as the duration of the effective translational acceleration of the head increases, the 

magnitude of acceleration required to produce head injury decreases.  This criterion is 

based solely on linear acceleration of the head, but in most head impacts both linear and 

angular acceleration are present.  In a vehicle impact, it is more likely that both linear and 

rotational head kinematics occur during an oblique impact (Fig. 2-2). 

 

Figure 2-2: Biomechanics of an oblique impact (lower), compared to a corresponding 

perpendicular one (upper) (Kleiven 2013). 

 

Ommaya et al. (1968) conducted experiments on monkeys to demonstrate that 

even without direct impact on the head, its rotational displacement may cause serious 

brain damage.  In their pioneering primate study, Gennarelli et al. (1982) applied scaled 
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angular acceleration to the head of primates in different directions.  They found that the 

majority of the animals that was enduring the coronal motion suffered coma lasting 

longer than 6 hours, while all animals that were accelerated in the sagittal plane had coma 

lasting less than 2 hours.  It indicated the direction of rotation can affect the injury 

serverty.  Recently, other animal models such as miniature swine (Meaney et al., 1995; 

Smith et al., 1997) and sheep (Anderson et al., 1997) were used to study the effect of 

angular acceleration to the head in the different plane.  Thresholds for brain injury have 

also been discussed in terms of rotational acceleration, rotational velocity, and pulse 

duration (Goldsmith and Ommaya, 1984; Margulies and Thibault, 1992; Pincemaille et 

al., 1989). 

However, these criteria are not injury specific, nor do they provide information on 

injury location.  Furthermore, they do not facilitate in any further understanding of the 

biomechanical factors that initiate the development of axonal pathology, which is 

responsible for most cases of poor neurological outcome after traumatic head injury 

(Gennarelli et al., 1982).  Therefore, an injury predictor specific for TAI is of great 

importance in designing safety measures either in vehicles or in sports helmets.   

 

2.2 BIOMECHANISM OF TAI 

TAI occurs during sudden acceleration and deceleration of the brain. During the 

sudden motion, the brain is subject to forces that pull compress and shear the axon.  

Previously, strain has been proposed as an injury indicator for subarachnoid hematoma 

and diffuse axonal injury using finite-element (FE) head models (Ruan et al., 1993; Zhou 

et al., 1994).  More recently, using a high resolution human head FE model to simulate 
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on-field accident data (Zhang et al., 2001a), both localized strain and strain rate were 

found to have significant correlations with memory, cognitive impairments, loss of 

consciousness and intervals required to return to plays sustained by concussed NFL 

players (Zhang et al., 2003; King et al., 2003; Zhang et al., 2004; Viano et al., 2005).  In 

addition, secondary insults such as increased intracranial pressure, intracranial 

hemodynamic disorders, and hematoma formation, may also lead to TAI (Bruce, et al., 

1973; Graham, et al., 1989; Zhang, et al. 2004; Manley, et al. 2006).  Various in vitro 

stretch experiments using the squid giant axon (Galbraith et al., 1993), guinea pig optic 

nerve (Bain et al., 2001), rat spinal nerve roots (Singh et al., 2006) have been performed 

to develop a proposed threshold of axonal injury from mechanical damage.   

 

Figure 2-3: TAI threshold developed for lateral rotation (Margulies et al., 1992). 

These studies, although capable of providing data related to damage in individual 

nerves or axons, cannot fully explain the complex mechanical input that the axons 

experience during an impact event, and do not consider the contribution of external forces, 
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both linear and angular acceleration, in predicting injury at different brain regions.  

Margulies et al. (1992) proposed a tolerance criterion for TAI specific to lateral rotational 

loads (Fig. 2-3).  This curve shows that if changes in peak angular velocity are small, 

high peak angular acceleration is required to produce injury, while for high values of 

peak change in angular velocity, even low peak angular acceleration could lead to injury.  

However, the criterion does not include the contribution of the linear acceleration of the 

head to injury production.  Therefore, a biomechanical model of traumatic brain injury 

that can relate mechanical parameters of head response to localized mechanical response 

at the axonal level is needed for a proper assessment of TAI. 

 

2.3 CURRENT ANIMAL MODELS FOR TBI STUDY 

2.3.1 Animal Models for TBI 

Animal models are essential for studying the biomechanical, molecular and 

cellular aspects of TBI that cannot be addressed in clinical trial.  An important 

application of the study of biomechanics in brain injury is the determination of accurate 

tissue tolerance.  An improved understanding of injury biomechanics and the resulting 

brain response will facilitate the development of improved head protective equipment.  

Determination of tolerance criteria are largely based on cadaveric studies, which may not 

accurately represent the properties of living tissue.  Animal studies, in which a defined 

mechanical insult can be applied and tissue response can be measured, therefore have an 

advantage for the determination of tissue level tolerance and then lead to improvement of 

human injury criteria.  The choice of desirable experimental model depends on both the 

research goal and underlying objectives.  A number of laboratory experimental models 
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have been developed to reproduce representative features of human TBI in an effort to 

identify cellular processes contributing to the neuropathophysiological outcomes, and has 

been reviewed by Xiong et al. (2013). 

 

Figure 2-4: Animal models of TBI (Xiong et al., 2013). 
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The fluid percussion injury (FPI) device uses pendulum to strike the piston to 

generate a fluid pulse in to the epidural space (McIntosh et al., 1987, 1989).  FPI can 

replicate pathophysiological hallmarks of human TBI, such as intracranial haemorrhage, 

brain swelling and progressive grey matter damage (Dixon et al., 1987; McIntosh et al. 

1989; Povlishock, 1983).  The controlled cortical impact (CCI) model applies an air 

driven piston to penetrate the brain at a known distance and velocity (Lighthall 1988).  

The advantage of this model over other TBI models is the mechanical factors, such as 

velocity and depth of impact, can be controlled.  It can produce acute subdural 

haematoma, axonal injury, concussion, blood–brain barrier (BBB) dysfunction and 

cortical tissue loss (Dixon et al., 1991; Smith et al., 1995).  The penetrating ballistic-like 

brain injury (PBBI) involves the transmission of high energy projectile (Williams et al., 

2005),  which produces a temporary cavity in the brain that is many times the size of the 

projectile itself and induces brain swelling, white and grey matter damage, cortical 

spreading depression and neuroinflammation (Williams et al., 2006, 2007).  In the 

weight-drop models, a free weight is droped directly onto the exposed dura (Feeney et al., 

1981) or onto a metal disk over the skull to prevent bone fracture (Marmarou et al., 1994). 

Injury severity in these models can be controlled by adjusting the drop height of the 

weight.  Marmarou’s impact acceleration model is discussed in detail in next section.  

Blast TBI model use a compression-driven shock tube to generate blast wave.  Non-

impact blast injury can cause diffuse cerebral brain oedema, extreme hyperaemia and 

neurological dysfunction (Cernak et al., 2010; Kuehn et al., 2011).  TAI was also found 

in rat during the initial 2 weeks after exposure to blast even with body shielding (Garman 

et al., 2011).  Other animal models including the inertial rotational acceleration (Meaney 
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et al., 1993; Ross et al., 1994) and nerve stretch injury model (Gennarelli et al., 1989; 

Dieterich et al., 2002; Singh et al., 2006). 

Despite differing opinions in selecting species for modeling human TBI, many 

investigators have accepted rodent as the most suitable choice for neurotrauma research 

(Cenci et al. 2002).  The advantage of using rodent includes the relatively small size and 

cost of rodents, existing techniques for measurements of morphological, biochemical and 

behavioral parameters of rodents.  However, others have suggested that the lissencephaic 

rodent cortex is not appropriate for modeling the changes in the anatomy of human cortex 

which is more complex, and the difference of physiological and behavioral responses to 

neurotrauma between rodent and human should also be taken into consideration 

(Povlishock et al., 1994).   Nevertheless, rodents remain the most commonly used animal 

model for TBI studies (Cernak, 2005).  

 

2.3.2 Marmarou Impact Acceleration Model 

A challenge to the investigation of closed head diffuse traumatic brain injury is 

the difficulty of inducing an isolated but significant degree of axonal injury without 

concomitant focal contusion and skull fracture.  Marmarou and his colleagues (1994) 

developed an impact acceleration device (Fig. 2-5) that can reliably produce axonal 

changes in a closed head injury in rodents.  Briefly, the head of the anesthetized animals 

is placed unrestrained in a prone position on a foam bed, adjusted to the end of the device, 

and a head impact is delivered via a free falling weight.  A 10 mm diameter metallic disc 

is glued on the rat skull to distribute the loading to prevent skull fracture and associated 

focal brain injury.  The drop weight and height are controllable so as to produce a graded 
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axonal injury in various white matter tracts (Marmarou et al., 1994, Foda and Marmarou, 

1994, Beaumont et al., 1999, Kallakuri et al., 2003).  The Marmarou impact acceleration 

(IA) model reliably mimics a closed head injury induced by a combined linear and 

angular head impact and is capable of producing significant TAI in discrete WM tracts 

including corpus callosum (CC) and brainstem without concomitant focal contusion and 

skull fractures in rats (Marmarou et al., 1994).   

 

Figure 2-5: Original Marmarou impact acceleration injury model (Marmarou et al., 1994). 

Since the model was developed in 1994, a total of over 150 publications were 

found upon a survey of the literature between 1994 and 2010 that used this rodent TBI 

model in a variety of studies.  Some of the studies using this model were aimed at 
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understanding cellular and molecular responses to injury (Adelson et al., 2001; Thornton 

et al., 2006; Rafols et al., 2007; Kallakuri et al., 2007) as well as apoptosis and 

regeneration of neuronal cells following TBI (Park et al., 2001; Cernak et al., 2002; 

Tashlykov et al., 2007).  Other studies were aimed at understanding the attenuation of 

IAT and neurofilament compaction (NFC) following TBI (Stone et al., 2004; Marmarou 

et al., 2006) and others studied the viscoelastic properties at pontomedullary junction and 

pyramidal decussation by combining finite element (FE) analysis with TBI induced by 

this model (Shafieian et al., 2009).  Motor and cognitive deficits induced by this model 

(Adelson et al., 1997, 2000; Schmidt et al., 2000) have been studied as well as oxidative 

stress and mitochondrial related injury (Tavazzi et al., 2005; Vagnozzi et al., 2007).  

Diagnoses and treatment after TBI using this model have also been extensively studied 

due to the graded TAI induced (Health et al., 1999; Fei et al., 2006; Sengul et al., 2008).   

Although studies illustrate the widespread utility of the Marmarou model in 

studying various aspects of TBI, there is very limited work on the mechanical responses 

of the model (Gilchrist, 2004; Wang and Ma, 2010b).  No standard procedure has been 

developed to date to measure the mechanical response in the Marmarou IA model.   

In an earlier kinematic study of the Marmarou IA device, Piper et al (1996) 

measured velocity by placing a photo-conductance cell near the bottom of the Plexiglas 

tube, and they found that the velocity of a 450 g weight dropped from a height of 2 m can 

vary by as much as 40% depending on the degree of initial friction.  They indicated the 

use of supporting fishing line through the eye of metal wing nut resulted in less variation 

in weight drop velocity with fewer episodes of line breakage or depressed skull fracture.  

Others reported that friction between metal weight and vertical tube changed over time 
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(Ucar et al., 2006; Carre et al., 2004), which can also lead to variations in velocity.   

Other system errors include stiffness of foam bed (Piper et al., 1996) and lateral 

movement of the weight inside the Plexiglas tube (Cernak, 2005).  The potential 

variations in the mechanical system described may also be major contributors to the 

varying mortality rates reported by different groups: 56.8% by Pascual et al. (2007), 78.5% 

by Ucar et al. (2006), 60% by Geeraerts et al. (2006), 35.7% by Rhodes (2002), 31% by 

Ueda et al. (2001), 20% by Fei et al. (2007), 15% by Suehiro et al. (2001) and 10% by 

Marmarou et al. (2006).  In addition, information on the relationship between measured 

rat head kinematics and the quantified axonal changes and other neuronal changes has not 

been published.  Therefore, a modified Marmarou impact acceleration model which 

accurately record various mechanical responses induced by this model could help to 

investigate the correlation between biomechanics and TAI produced by this model. 
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CHAPTER 3 

BIOMARKERS FOR TRAUMATIC AXONAL INJURY 

 

3.1 BACKGROUND OF BIOMARKERS FOR TBI 

Acute brain injuries resulting from TBI, cardiac arrest, or stroke result in lasting 

neurologic and cognitive problems to highly variable degrees (Siman et al. 2009).  

Currently, mild acute brain injuries, especially mild axonal injury, are difficult to 

diagnose and evaluate.  The brains of patients with mild brain injury usually look normal 

in CT scans, the most frequently used test after brain damage.  The lack of efficient 

prognostic methods leaves patients at great risk for developing severe and sustained 

abnormalities, and makes it difficult to evaluate the rehabilitation results.  To help 

circumvent these problems, considerable effort is being devoted to the establishment and 

validation of biochemical surrogate markers for acute brain damage. 

A biomarker is an indicator of a specific disease or biological state that can be 

measured using samples obtained from serum, CSF or directly from affected tissue (Dash 

et al. 2010).  The change of biomarker levels results from various cellular events, such as 

altered enzymatic activity, changes in gene/protein expression, post-translational 

modification, or a combination of these changes.  As a result, various strategies have 

been used to identify biomarkers including genomic profiling, proteomic profiling and 

metabolic approaches (Merrick and Bruno 2004, He 2006).  The attributes of idea TBI 

biomarkers have been summarized by Wang et al. (2005) in Table 3-1.  Basically 

potential biomarkers should be brain-originated, include information on mechanism of 

neuronal injury, and have good correlation to magnitude of injury severity and with other 
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TBI benchmarks (GCS, MRI, CT and neuropsychologic scores).  Besides, good 

sensitivity and specificity are also very important. 

Table 3-1: Attributes of ideal TBI biomarkers (Wang et al., 2005). 

 

There are numerous reports indicate that many proteins expressed in the nervous 

system changes concentration and are detectable in human biological fluid following 

acute brain injuries, including proteins that indicate axonal injury, astroglial damage, 

BBB integrity and neuroinflammation.  The most widely studied serum and CSF markers 

for TBI has been illustrated in Fig. 3-1 by Zetterberg et al. (2013), and has been reviewed 

previously (Pineda et al., 2004; Wang et al., 2005; Berger 2006; Kovesdi et al., 2010; 
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Dash et al., 2010; Zetterberg et al., 2013; Papa et al., 2013).  

 

Figure 3-1: Biomarkers of TBI in CSF and Serum (Zetterberg et al., 2013). 

Injury to neuron may lead to release neuron-specific enolase (NSE), ubiquitin 

carboxy-terminal hydrolase-1 (UCH-L1), spectrin breakdown products (SBDP).  UCH-

L1 is a marker of neuronal damage linked to TBI (Berger et al., 2012).  UCH-L1 levels in 

blood are increased by compromised BBB integrity.  In their pilot study of 96 patients 

with mild to moderate TBI, Papa et al. (2010) showed that UCH-L1 is detectable in 

serum within 1 h after TBI and its concentration is positive correlated with the Glasgow 

Coma Scale score, and damage seen on brain imaging.  αII-spectrin is one of the major 

structural components of the cortical membrane cytoskeleton. It is specifically abundant 

in axons and presynaptic terminals and is a major substrate for calpain and caspase-3 
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cysteine proteases.  The calpain-mediated cleavage of αII-spectrin results in the 

formation of calpain-signature spectrin breakdown products (SBDPs).  The N-terminal 

fragment (SNTF) was recently reported as a biomarker for mTBI patients (Siman R. 

2013). 

Among axonal biomarkers, tau protein is most abundant in thin, nonmyelinated 

axons of cortical interneurons, whereas neurofilament polypeptides (NF) is highly 

expressed in the large-calibre myelinated axons that in deeper brain layers and the spinal 

cord.  Distinct regional distributions of these two proteins in the brain might be helpful in 

determining the locations of brain damage that have been produced by TBI.  Elevated 

levels of total tau and neurofilament light chain (NFL) in CSF obtained by lumbar 

puncture have been reported in patients with mTBI, such as boxers (Zetterberg et al., 

2006, Neselius et al., 2012).  The Tau protein level has also been found increase in the 

serum of mTBI patients (Guzel et al., 2010).   Amyloid precursor protein (APP) and 

amyloid-β are transported along axon terminals and thought to be involved in synaptic 

activity and plasticity.   

Injured astroglial cells may release S100-B and GFAP into the extracellular 

matrix, while astrogliosis and post-injury neuroinflammation can lead to increased 

production of interleukins and cytokines.  GFAP has received considerable attention as 

serum biomarkers of astroglial injury, since it shows high specificity to brain tissue, and 

its serum levels does not affected by multi-trauma (Pelinka et al., 2005).  Recent work by 

Papa et al. (2012) has indicated that the concentration of GFAP break down product 

increased in the serum of mild and moderate TBI patients within a few hours of injury, 

and were correlated with GCS ratings, CT lesions, and neurosurgical interventions.  
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These proteins are currently being evaluated as serum or CSF biomarkers for 

detection of brain injury in neurologic patients (Pelsers, M.A.L. et al. 2004), and patients 

with cerebrovascular accidents (Aurrel et al. 1991), traumatic brain injury (Kobeissy et al. 

2006), stroke (Romner et al. 2000), and vascular dementia (Paraskevas et al. 2009) with 

the aim to eventually illustrate the mechanism of injury.  Among these biomarkers, a 

hypophosphorylated form of neurofilament H (NF-H) and a proteolytic fragment of tau 

are expressed in neurons predominantly within axons, and CSF alterations in these 

proteins have been proposed as indicative of axonal damage (Zemlan et al., 1999; Petzold 

et al., 2006). 

However, several of these markers, such as S100B, suffer from a lack of 

specificity, often being induced or released into the serum in response to other diseases or 

bodily injuries.  This lack of specificity has hampered the effort to identify markers of 

mild TBI, especially in the context of polytrauma (Dash et al., 2010).  Given the 

extracranial sources of biomarkers and the failure to find a single biomarker that satisfies 

the criteria for reliable use as an accurate screening tool, some investigators have 

examined combinations of biomarkers to improve outcome prediction (Berger et al., 2005, 

2008, Lo et al., 2009, Siman et al., 2009).  For example, Lo et al. (2009) examined the 

predictive capacity of multiple biomarkers from different mediator families to determine 

whether combinations of two serum biomarkers could achieve better outcome prediction 

than individual biomarker levels in 28 children with TBI.  Eight different neurospecific 

and inflammatory biomarkers (S100B, NSE, interleukin (IL)-6, IL-8, IL-10, SICAM, l-

selectin, and endothelin) were quantified using ELISA on day 1 and compared with 

outcome assessed at 6 months after injury. None of the eight biomarkers evaluated 
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individually achieved an area under the ROC curve (AUC) of 0.95 for predicting TBI, but 

five of the 20 biomarker pairs assessed achieved this high degree (more than 0.95) of 

outcome predictability.  Two combinations of biomarkers, S100B and L-selectin, as well 

as S100B and IL-6, achieved an AUC of 0.98, and their specificity and sensitivity for TBI 

prediction were 96% and 100%, respectively.  They concluded that prognostic pairs 

combining serum levels of two biomarkers (inflammatory mediators and brain specific 

proteins) improved prediction for unfavorable outcome after childhood brain trauma 

compared to single markers.  Siman et al. (2009) hypothesized that a large panel of brain-

enriched proteins may greatly improve the diagnosis and clinical evaluation of acute 

brain injuries. They developed a panel of biomarkers originally released from 

degenerating cultured neurons, and subsequently verified in rodent models of TBI and 

ischemia. 

These pilot studies lead us to believe that combinations of markers may be better 

suited to guide management, warn of secondary injury, and help prognosticate in TBI, 

considering the limitations of individual markers and the heterogeneity of various factors 

that influence outcome in TBI. 

 

3.2 CHALLENGES OF BIOMARKER STUDIES 

Unfortunately, owing to limitations in sensitivity, specificity, and standardized 

quantification across multiple laboratories and studies, none of the existing proteins has 

emerged as a widely accepted diagnostic or prognostic clinical tool or a validated 

biomarker for brain damage (Svetlov et al. 2009).  The common practice of 

dichotomizing outcome to “good or bad” or “dead or alive” severely limits the ability to 
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accurately assess the clinical usefulness of the biomarkers (Berger et al. 2006).  Another 

limitation relates to the calculation of cut-off values to predict poor outcome/mortality.  

In many of the studies in the literature, cut-off values were determined retrospectively in 

order to maximize specificity and sensitivity.  It is essential that investigators begin to 

evaluate potential clinically relevant cut-off values in a prospective manner (Berger et al. 

2006). 

A disadvantage of current clinical examination is that the population being 

studied has not experienced similar level of TBI.  Other characteristics, including age, sex, 

and race, are also not homogenous.  In addition, acute non-trauma brain insults such as 

posttraumatic seizures or hypoxemia, chronic non-trauma brain insults such as strokes, 

and acute noncranial injuries such as bone fractures can all change CSF and serum 

biomarker level therefore affect predictive outcome of biomarkers (Berger et al. 2006).  

For example, although serum levels of S100B correlates with mortality and morbidity, as 

well as long-term neurologic outcome, the protein also markedly increases in serum 

during surgical procedures or in disorders unrelated to acute brain injuries (Anderson et 

al., 2001; Siman et al., 2008).  Consideration of extracranial injuries and their effect on 

functional outcome is also an important issue that should be addressed in future studies. 

As discussed above, there is still significant work that needs to be done before 

biomarkers can be used to guide clinical decision making.  A lack of unified models with 

defined injury criteria has contributed significantly to existing controversies.  The use of 

large, homogenous study populations with appropriate control populations, consistent and 

refined outcome measures, and prospectively defined cut-off values for the biomarkers 
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are all important considerations for future studies.  Therefore, a well-controlled animal 

model could facilitate the development of potential TBI biomarkers before clinical trials. 
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CHAPTER 4 

SIGNIFICANCE OF THIS STUDY 

 

4.1 MODIFIED MARMAROU IMPACT ACCELERATION MODEL 

  In spite of the widespread utility of the Marmarou model in studying various 

aspects of TBI there is very limited work on the mechanical responses of the model 

(Gilchrist, 2004; Shafieian et al., 2009; Wang and Ma, 2010b).  As part of the current 

study, the model has been modified and expanded to monitor velocity, displacement into 

the foam, head linear kinematics and head angular kinematics during impact injury of 

various severities (Chapter 5).  Results from this study offer for the first time the 

relationship between measured rat head kinematics and the quantified axonal changes 

(Chapter 6), and between kinematics and biomarker change in both CSF and serum 

(Chapter 7).  

  The lack of control over precise conditions of impact can result in a high degree 

of variability in the original Marmarou model, making injury response hard to reproduce 

between different investigators and laboratories.  In order to standardize the use of this 

model, especially when TAI severity needs to be quantified, we recommend monitoring 

the following parameters: 1) weight drop velocity， it can be obtained either by velocity 

trap device (Piper et al. (1996) or high-speed video analysis (in our study); 2) foam 

stiffness, the elastic properties of foam bed need to be pre-determined and tracked 

periodically (Piper et al. 1996), and foam bed is suggested to be changed after 10 impacts 

based on our previous study (Zhang et al. 2005); 3) impactor-helmet interface, since 

lateral movement of impactor and helmet surface angles may potentially cause uneven 
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distribution of the impact energy, and increase variability of outcomes, a laser beam 

could be used in our study to guide the positioning of rat head under the Plexiglas tube 

and high-speed video could be checked to confirm the two surfaces of impactor and 

helmet are parallel at initial impact; 4) post-injury behavior, such as loss of consciousness, 

may indicate injury severity and help to exclude outliers.  We also strongly suggest to 

monitor dynamic response of the rat head if applicable, which correlates with injury 

severity and can enable comparison of TAI levels between different research groups. 

  On the other hand, assessing which characteristics of an impact (force, energy, 

acceleration etc.) best predict the risk of TAI is of particular importance in developing 

injury criteria used by regulatory agencies that provide standards in the design and 

manufacture of safety equipment and motor vehicles.  The Wayne State Tolerance Curve 

(WSTC) demonstrated that the severity of head injury was dependent both on the 

magnitude and duration of average or effective impact acceleration.  The average head 

acceleration is also the basis of the existing Head Injury Criterion (HIC) used by most 

regulatory agencies in assessing the safety of motor vehicles (Prasad and Mertz, 1985).   

Accordingly, we attempted to directly correlate rat kinematics with TAI level, and seeked 

to identify the best injury predictor for TAI and investigate injury threshold based on 

additional measured biomechanical parameters. 

 

4.2 QUANTIFIED IMMUNOHISTOCHEMICAL TECHNIQUE 

A more detailed quantification of TAI in CC was undertaken in this study than in 

previous studies using the Marmarou AI device.  One silver impregnation study reported 

profiles of TAI as swellings, retraction balls and axons with vacuoles in four sections 
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through CC for each rat, using three rats at each drop height (Kallakuri et al., 2003).  

Another study (DiLeonardi et al., 2009) identified TAI in 2D panoramic images of CC 

from three anatomic locations, and described temporal and spatial progression of TAI at 

these locations, but TAI counts were not reported.  Furthermore, by utilizing 12-14 

sections across the entire CC, the spatial profiles of TAI maps revealed non-uniform 

distribution longitudinally along the CC, with the area directly under the helmet (bregma 

0.60/0.84 mm) showing higher density of TAI in some rats.   

Smith and Meaney (2000) showed that the pattern of axonal damage in the white 

matter is more accurately described as ‘multifocal’ rather than diffuse.  Therefore TAI 

from a limited number of selected locations may not be an accurate representation of 

injury profiles in the entire CC.  Utilizing the quantified data from many sections in our 

study, 3D injury maps were constructed and graded for the entire CC, permitting an 

element-by-element correlation with the mechanical response (such as the brain strain 

along with the rate at which the strain is applied) predicted at that location by the FE rat 

head model. 

FE models provide a promising technique to study the mechanical response of the 

human brain to blunt trauma and the stresses and strains in brain tissue that lead to brain 

injury. Cadaver tests have been used to validate the mechanical response of FE models 

(King et al., 1995; Zhang et al., 2001, 2004).  However, cadavers lack viable neural tissue, 

and although precise mechanical input can be measured, TAI cannot be assessed.  The 

TAI injury maps developed in the current rat study are being correlated to tissue level 

stresses and strains in a rat head FE model. Hence, this will allow determination of tissue 

thresholds for TAI.  Such tissue thresholds can later be translated to human head models 
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and therefore will enhance the capability of the human head model in predicting brain 

injury. 

 

4.3 A PANEL OF BIOMARKERS 

In this study, quantitative and qualitative TAI findings in specific white matter 

tracts were correlated with biomarker assays using a well-established rat impact-

acceleration head injury model. 

The modified impact acceleration model has some noticeable advantages over 

human clinical study: 1) our model is able to closely monitor the mechanical parameters 

that produce the injury; 2) the TAI quantification in CC region by β-APP enables 

accurate evaluation of the outcome of axonal injury; 3) our animal model restricts 

evaluations to CSF biomarker levels measured at exactly 24 h and only in isolated 

accidental brain trauma.  These advantages help to eliminate the uncertain factors in 

human study, and standardize quantification across multiple laboratories and studies.  

Our study also allows us to screen reliable biomarker in short time period before 

translating it into clinical trials. 

Many potential TBI biomarkers have been reported, but few previous studies have 

described outcome prediction using combinations of biomarker levels. Previous studies 

using individual biomarkers rarely yielded sensitivity and specificity of more than 85% 

(as reported here) for unfavorable outcome prediction.  A recent report (Jain 2008) 

pointed out the need for multiple biomarkers and their correlation.  We aim to evaluate 

multiple biomarkers from different cell type and to determine whether combinations of 
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two CSF biomarkers may achieve higher predictive values than individual biomarker 

levels. 

 

4.4 HYPOTHESES AND SPECIFIC AIMS 

Hypotheses:  1) TAI is produced by linear and/or angular acceleration. TAI severity can 

be quantified by histologic technique and is correlated to mechanical responses.  2) TAI 

is a subsequence of a cascade of cellular changes after impact. TAI severity is correlated 

to the concentration of biomarkers which are released to the CSF and serum by the 

cellular changes in the brain after injury.  

 

Specific Aim I: Develop an improved head impact acceleration device for quantifying 

head biomechanical responses in a rodent model of traumatic axonal injury. This was 

accomplished by: 

1. Investigate the biomechanical performance of the original Marmarou impact 

acceleration model. 

2. Develop an improved head impact acceleration device for quantifying head 

biomechanical responses. 

3. Compare the new impact model with the original Marmarou model. 

 

Specific Aim II: Investigate correlation between impact mechanics and traumatic axonal 

injury in a rodent model of traumatic axonal injury.  This was accomplished by: 

1. Characterize the kinematics of the rat head during dynamic impact of various 

severities. 
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2. Quantify the intensity and distribution of the axonal changes throughout the corpus 

callosum and brainstem  using histopathologic techniques. 

3. Determine correlation between head impact response and traumatic axonal injury, 

and identify potential injury predictors for traumatic axonal injury. 

 

Specific Aim III: Establish a panel of biomarkers to assess the level of traumatic axonal 

injury in a rodent impact acceleration model. This was accomplished by: 

1. Determine correlation between individual biomarker levels after impact and TAI 

counts and identify potential reliable biomarker for TAI.  

2. Investigate if the combination of multiple biomarkers can provide better predictive 

value for TAI.  

3. Study correlation between biomarker levels after impact and head impact responses.  

4. Identify potential biomarkers for mild traumatic brain injury. 

To our knowledge, results from this study offer for the first time the comparison of 

various mechanical parameters with TAI, the signature injury induced by this model. The 

quantitative and qualitative techniques to characterize TAI will help to identify potential 

biomarkers for TAI.  
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CHAPTER 5 

AN IMPROVED HEAD IMPACT ACCELERATION DEVICE FOR 

QUANTIFYING HEAD BIOMECHANICAL RESPONSES IN A RODENT 

MODEL OF TRAUMATIC AXONAL INJURY 

 

5.1 INTRODUCTION 

  A number of laboratory experimental models have been developed to reproduce 

specific features of human traumatic brain injury (TBI) in an effort to identify cellular 

processes contributing to the neuropathophysiological outcomes.  A challenge to the 

investigation of closed head diffuse traumatic brain injury is the difficulty of inducing an 

isolated but significant degree of axonal injury without concomitant focal contusion and 

skull fracture.  Marmarou and his colleagues (1994) developed an impact acceleration 

device that can reliably produce axonal changes in a closed head injury in rodents.  

Briefly, the head of the anesthetized animals is placed unrestrained in a prone position on 

a foam bed, adjusted to the end of the device, and a head impact is delivered via a free 

falling weight.  A 10 mm diameter metallic disc is glued on the rat skull to distribute the 

loading to prevent skull fracture and associated focal brain injury.  The drop weight and 

height are controllable so as to produce a graded axonal injury in various white matter 

tracts (Marmarou et al., 1994, Foda and Marmarou, 1994, Beaumont et al., 1999, 

Kallakuri et al., 2003).  Since the model was developed in 1994, a total of over 150 

publications were found upon a survey of the literature between 1994 and 2010 that used 

this rodent TBI model in a variety of studies.  These included but were not limited to the 

understanding of impaired axonal transport and neurofilament compaction (Stone et al., 
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2004; Marmarou et al., 2006), motor and cognitive deficits (Adelson et al., 1997, 2000; 

Schmidt et al., 2000) oxidative stress and mitochondrial changes (Tavazzi et al., 2005; 

Vagnozzi et al., 2007) as well as the diagnoses and treatment after TBI (Fei et al., 2006; 

Sengul et al., 2008). 

  The impact energy calculated from the known mass and impact velocity of the 

weight for a given height is commonly used as a measure to imply injury severities.  The 

actual velocity of the weight prior to impacting on the rat skull/helmet, however, can be 

affected by the drag force and frictional force between the weight and the plexiglass tube 

where the weight is falling through (Carre et al., 2004, Ucar et al., 2006).  Additionally, 

the stability of the drop stand and the alignment of the tube with respect to the ground 

surface can induce variability in drop velocity from test to test. In the literature, velocity 

of a 450-g weight dropped from a height of 2m can vary as much as 40% (Piper et al., 

1996) and some studies suggested minimizing the friction between the cylindrical weight 

and the plexglass tube (Carre et al., 2004; Ucar et al., 2006).  Despite the potential loss of 

velocity during drop, previous studies used drop height to define impact velocity.  The 

actual impactor velocity has not been directly monitored and the degree of the velocity 

loss has not been quantified.  Since the kinetic energy is proportional to the square of 

velocity, velocity change could lead to amplified changes in impact energy.   

  Biomechanically, the head kinematics in response to the impact force affects the 

internal brain responses, therefore affecting the severity and pathology of brain injury.  In 

this rat impact model, the falling weight impacts the helmeted head, driving the head and 

compressing the underlying foam a considerable degree. Both the alignment of helmet 

center with the cylindrical weight prior to the impact and the head orientation can 
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introduce variability to the head motion during impact.  Up to now, the precise kinematic 

response to the rat head, including the impactor force and the linear and rotational motion 

during the head impact has not been reported.  Knowing the head kinematics will help in 

the understanding of the underlying biomechanical causes of brain injury in this model 

and provide the correlates for severity and extent of axonal pathology.  No standard 

procedure has been developed to date to measure and quantify the mechanical response 

of the rat head in the Marmarou impact acceleration model.  Without precise 

biomechanical measurements the relationship between the head kinematics and 

neuropathological changes following impact cannot be defined in this rodent TAI model. 

  The current study reports an improved rodent head impact device that was 

designed to monitor velocity, displacement into the foam, head linear acceleration, and 

head angular velocity through attached miniature sensor and high speed video analysis 

during impact injury of various severities.  The new measuring systems which can 

directly monitor the impact energy and kinematics of the head during the entire dynamic 

impact were developed to in order to characterize the biomechanical response involved in 

brain injury production in this rodent model.  

 

5.2 MATERIALS AND METHODS 

5.2.1 Design of the head impact device 

  The original design of the impact acceleration rodent TAI device described by 

Marmarou et al. (1994) was modified and improved for the current study.  In the original 

design, the impactor (drop weight) is made of a series of brass cylindrical segments at a 

diameter of 18 mm with each weighing 50 grams.  The impactor is held at a desired 
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height by a string and then released through a 20 mm-diameter plexiglass tube (Fig. 5-

1A).  In the new design, a 2.5 m long and 57 mm in diameter plexiglass tube is used and 

attached to a rigid drop tower frame made of 80/20 3”x2” extruded aluminum bolted  

 
Figure 5-1: Comparison of the original Marmarou device (A) and the modified impact 

acceleration injury model with instrumentation (B-E). 1: original Marmarou device; 2: 

modified impact device; 3: high-speed camera; 4: solenoid automatic releases device; 5: 

old 450 g impactor; 6: new 450 g impactor; 7: accelerometer; 8: accelerometer cable; 9: 

aluminum cylinder; 10: brass impact end; 11: impactor; 12: helmet; 13: angular rate 

sensor; 14: accelerometer. 
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to a heavy steel base anchored to the floor (Fig. 5-1B). The impactor consists of a solid 

brass cylinder and an aluminum tube (Figs. 5-1E, F).   

  The lower end of the brass cylinder directly impacts the helmet/rat head and has a 

diameter of 19 mm to create an impact interface similar to the original design.  The top 

surface of the brass impactor has a large diameter to provide a mounting surface for a 

small piezoelectric accelerometer 8084 (Kistler Instrument Corp., NY).  The aluminum 

cylindrical tube (51 mm diameter) is threaded on the upper end of the brass cylinder to 

accommodate this mounted accelerometer.  The accelerometer cable is connected to the 

data acquisition system through the opening of the top surface of the aluminum tube.  The 

accelerometer allows recording of the impactor acceleration and to derive the velocity 

change of the impactor.  The entire impactor weighs 450 grams.  A custom-made 

solenoid automatic release device is installed on the top of the drop tower to release the 

impactor from any given height (Fig. 5-1C).  

 

5.2.2 Comparison of impact velocities between the existing and new devices 

The actual velocity of the impactor (weight) just prior to impacting the rat head 

was measured using a custom made velocity timer laser system (KME Company, MI).  

The laser beam was aligned at 20 mm below the bottom of the Plexiglass tube when the 

impactor contacts the helmet on the skull of the rat head.  A series of tests (N=5 for each 

group) were conducted by dropping the impactor from 2 m height into the helmeted head 

of a freshly expired rat to measure impact velocity.  The consistency/repeatability of the 

pre-impact velocity produced by the current new device and original device were 

assessed and reported.   
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The interaction of the impactor with the helmet and the motion of the rat head 

during impact were recorded by a high-speed digital video camera (MotionXtra HG-

100K, Redlake MASD, CA).  The camera was placed at 0.5 m from the side of the 

animal head and aligned to the surface level of the helmet/head. The digital video data 

captured at frame rate of 10,000 frames/second (fps) were then analyzed using 

ImageExpress software (MotionPlus, SAI, NY) to track the displacement of the marker 

placed on the impactor.  The pre-impact velocity was then calculated from video 

displacement data.  The accuracy of the pre-impact velocity analyzed from video footage 

was assessed in comparison to the velocity measured directly from the velocity timer. 

The velocities recorded for a 450g-weight dropped from 2 m height were 

compared between two group tests conducted using Marmarou’s original device and 

newly designed impact acceleration device with various impactor release mechanisms 

(N=5 for each subgroup).  For group A, all tests were conducted using the original device 

but with two different weight hold-release mechanisms.  In subgroup A1, the weight was 

held and released through an attached cotton line through a pulley installed at the top of 

the Plexiglass tube.  In subgroup A2, the weight was held at the same height and released 

using a nylon fishing line.  For group B, all tests were conducted using the new impact 

acceleration device.  In the subgroups B1 and B2, the impactor release mechanisms were 

the same as those used in the subgroups A1and A2, respectively. In subgroup B3, the top 

of the impactor was held in place by an automatic release system via a pair of clamps and 

was then released through an in-house electronic control unit.  No string was used for 

subgroup B3.  For B1-B3 subgroups, the cable which connects the accelerometer (seated 

inside of the impactor) to the data acquisition system was disconnected from the 
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accelerometer.  In subgroup B4, the entire test configuration was the same as that of 

subgroup B3 except for the addition of the accelerometer cable (5 m long) which was 

attached to the top of the sensor mounted inside of the impactor.  Each test condition was 

repeated five times. Upon release of the impactor, the cable fell through the tube as the 

impactor traveling downward within the tube. Test subgroup B4 was compared B3 to 

determine the existence of the cable drag on the falling velocity of the impactor.  

 

5.2.3 Impact velocity as a function of drop height using new device 

In published TBI studies using Marmarou device, 1.0, 1.5, and 2 m drop heights 

were chosen to deliver controlled mechanical insult to produce varying severities of 

traumatic axonal injury.  The current study determined the differences between measured 

pre-impact velocity in all groups tested above and the theoretical values for each height. 

The corresponding heights required to achieve desired velocities or kinetic energies were 

also investigated.  To do so, a series of drop tests were conducted at 1, 1.25, 1.5, 1.75, 2 

and 2.25 m to obtain corresponding pre-impact velocities from each of the impact heights.  

The test setup was the same as that used in the subgroup B4 in which the accelerometer 

within the impactor was connected to the cable and cable fell through the tube with the 

impactor.  Five repeated tests were performed at each height.  Velocity vs drop height 

was fitted to a linear regression function so that the desired rat head impact velocity could 

be determined from a known height by using this new device. 
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5.2.4 Rat head kinematics measurements 

To measure the acceleration and angular rate of the head during the impact, a 

miniature-sensor system was designed to fit on the rat skull. This miniature sensor system 

included a modified accelerometer 7269 (Endevco Corporation, San Juan Capistrano, CA) 

and an angular rate sensor ARS-12k model (DTS, Seal Beach, CA) (Fig. 5-1G).  The part 

of the mounting case of the 7269 accelerometer was removed to reduce the size and 

weight. The modification to the ARS sensor included the removal of the sensor enclosure 

followed by the proper sealing of the sensor to reduce the weight and size. The ARS 

sensor was rigidly secured to the top surface of the accelerometer using cyanoacrylate.   

Recently expired rats (394±11 grams) were used and the stainless disc with size 

of 10 mm in diameter was attached to the rat skull between the bregma and lambda using 

cyanoacrylate.  Then the base of the accelerometer was attached to the midline of the 

dorsal surface of the skull at 5 mm anterior to the bregma by cyanoacrylate (Fig. 1G).  

The instrumented expired animals (N=17) were placed prone on an open-cell flexible 

polyurethane (PU) foam bed (12x12x43 cm, Foam to Size Inc., Ashland, VA) fitted in a 

Plexiglas box.  The foam bed was then placed under Plexiglass tube. A laser pointer was 

used to guide the positioning of helmeted head to ensure that the impactor hit the center 

of the stainless steel disc (helmet).  The high-speed video camera was used to record the 

impact event at 10,000 fps.  Rats were impacted from 1.25 m at impact velocity of 5.51 

m/s (N=6) and 2.25 m at impact velocity of 6.15 m/s (N=11). 

The accelerometers and angular rate sensor signals were collected at a sampling 

rate of 50 kHz by a TDAS data acquisition system (DTS, Seal Beach, CA).  The solenoid 
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release device, the sensors, the camera and the data acquisition systems were 

synchronized through an in house trigger switch during each experiment. 

The displacement of the impactor and the helmeted head was obtained digitally by 

tracking the attached target using an image tracking software (ImageExpress) assuming 

2D sagittal motion.  Velocity change (dV) was determined from the derivative of the 

displacement-time histories of digitized video data.  The velocity change in the rat head 

was also derived by integrating the head linear acceleration-time history measured from 

the transducer.  A reliable measurement of the rat head motion was ascertained when 

head dV from the integrated acceleration signals reasonably matched to the head dV from 

video tracking, indicating that the sensors were rigidly attached to the skull during impact. 

 

5.2.5 Statistical analysis 

     Given values were mean ± standard deviation (SD). Linear regression were used 

to evaluate the correlation between   drop height and impact velocity. 

 

5.3 RESULTS 

5.3.1 Pre-impact velocity 

The theoretical terminal velocity of the impactor falling from 2 m height is 6.26 

m/s.  The actual terminal velocities from 2 m height measured from various test 

conditions were found to be consistently lower than the theoretical values in all test 

groups.  In all group A tests, the mean (±standard deviation, SD) velocity was 5.840.05 

m/s for subgroup A1 and 5.920.02 m/s for subgroup A2.  The corresponding velocity 

reduction was 6.74% for subgroup A1 and 5.37% for subgroup A2.  For group B tests 
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using the new device, the mean velocity was found to be 5.90.02, 6.01 and 

6.07 m/s, respectively using cotton line (subgroup B1), fish line (subgroup B2) and 

automatic release mechanisms (subgroup B3).  The corresponding velocity reductions 

were 5.81%, 4.03% and 3.10%, respectively.  For subgroup B4, the mean velocity and 

percentage velocity reduction was 5.79m/s and 7.44%m/s, respectively.  

Comparing the velocity produced by subgroup B4 to subgroup B3, the use of the 

accelerometer cable significantly slowed down the impact velocity. This was largely due 

to the cable dragging against the side of the tube during the fall of the impactor/cable.  

Table 5.1 Comparison of pre-impact velocity from 2 m drop height between various 

devices and release mechanisms 

2m Drop Original Device New Device 

 A1 A2 B1 B2 B3 B4  

Sample Size (N)       

Mechanism of Weight 

Release  

Cotton 

Line 

Fishing 

Line 

Same 

as A1 

Same 

as A2 

Automatic 

Release 

B3  

+ Cable 

Mean 

(±SD)(m/s) 

5.84 

 (0.05) 

5.92 

(0.02) 

5.90 

(0.02) 

6.01 

(0.04) 

6.07 

(0.02) 

5.79 

(0.03) 

Theoretical Velocity 

(m/s) 

6.26 6.26 6.26 6.26 6.26 6.26 

Velocity Lose (%) -6.74% -5.37% -5.81% -4.03% -3.10% -7.44% 

Coefficient of Variance 0.0083 0.0031 0.0028 0.0059 0.0030 0.0047 

 

 

5.3.2 Drop height and impact velocity relationship 

The measured impact velocities from 6 different drop heights using the new 

device with automatic release mechanism (subgroup B4) are plotted in Fig. 5-2. When 

compared to the theoretical velocity of the impactor calculated for the respective height, 

the velocity reduction increased as drop height increased.  A linear regression fitted to 

data showed a significant correlation between the height and measured velocity (R
2
= 

0.99).  The linear function between the impact velocity and drop height therefore is 
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expressed by: velocity (m/s)=1.541 height (m)+2.710.  By using the equation, the desired 

velocity can be achieved based on the adjusted height.  For an example, to achieve the 

velocity of 6.26 m/s (2m), the adjusted height would be 2.29 m using the current new 

device.  The measured actual velocities from a series of repeated drop tests at 1.25 m and 

2.25 m were 4.61±0.05 m/s and 6.15±0.04m/s, respectively which were in good 

agreement with those calculated from the equation above (<0.5% error).  

 

Figure 5-2: Impact velocity as a function of drop height determined for the new impact 

acceleration device 
 

5.3.3 Measurements of rat head kinematics  

The incidence of skull fracture was 20.4% from all 2.25 m impacted rats and was 

absent in 1.25 m impacted rats.  Fig. 5-3A showed a series of snapshots of the impact  
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Figure 5-3: Rat head impact event. (A) Snapshots of impacted rat head at various time 

points during the 80-90 ms event produced by a modified rat head impact acceleration 

injury device.  The head reached the maximum excursion into the foam at about 30 ms 

before rebounding to the foam surface at about 80 ms.  (B) The head displacements 

tracked from the video footage captured at 10,000 frames/second for 2.25 and 1.25 m 

impacts. 

 

event from a high-speed video camera that recorded the impacted rat head at various 

stages over 80 ms before the head rebounded upward above the initial position.  The 

amount the rat head displaced into the foam upon impact and rebound from the foam 

surface after impact were analyzed and quantified from the video data.  Fig. 5-3B showed 
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the time histories of quantified head displacements in the vertical direction (z axis) 

resulting from 2.25 m and 1.25 m tests.  The average peak displacement and time when 

the rat head compressed into the foam was 89.7±1.7 mm and 28.9±0.49 ms for 2.25 m, 

and 71.3±1.4 mm and 28.2±0.47 ms for 1.25 m drops, respectively.  The average time 

before the rat head rebounded to the pre-impact position was about 83 ms for 2.25 m and 

76 ms for 1.25 m.  

 

 
Figure 5-4: (A) Rat head impact acceleration measured on impactor over 60 ms duration 

and (B) during first 6 ms where peak acceleration magnitude occurs.   

 

 

Figure 5-5: Typical time-history traces of (A) translational acceleration and (B) rotational 

velocity measured on the rat head in the sagittal plane in 1.25 and 2.25 m head impacts, 

respectively.  
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The maximum deceleration of the impactor in all 2.25 m impact tests ranged 48 to 

96 g, with an average of 69.9 g.  Fig. 5-4 showed the acceleration-time histories 

measured by the sensor within the impactor from 2.25 m impact.  The initial high g 

deceleration pulse of the impactor resulted from the initial metal on metal impact.  This 

initial acceleration pulse peaked at about 0.9 ms and lasted approximately 2 ms.  The 

second deceleration pulse was mainly caused by the resistance of foam.  It started 2 ms 

after initial impact with the rat helmet, reached a peak value of 25 g at about 12-13 ms, 

and lasted about 50 ms.  During the deceleration process, the velocity of impactor 

gradually reduced to zero, and then the impactor started to rebound back from the foam 

bed. 

Fig. 5-4 and 5-5 shows the typical head translational acceleration and rotational 

velocity time histories measured from the sensors on the rat head subjected to two impact 

severities.  The rat head sustained linear acceleration of 918±281 g and 609±142 g, 

respectively from 2.25 m and 1.25 m impacts.  The corresponding peak rotational 

velocity on the rat head was 116±45 rad/sec, 98±31 rad/sec, respectively at the two drop 

heights. The average acceleration peak time was 0.49 (0.2) ms.  The rotational velocity 

peaked at about 2.5-3 ms after initial impact with the major response pulse lasting about 

25 ms. 

 

5.4 DISCUSSION 

The Marmarou impact acceleration model has been one of the most widely used 

TBI animal models and the most relevant closed head injury model that mimics human 

pathology after TBI.  An improved impact acceleration rodent TBI model which retains 
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the major characteristics of the original design has been developed and tested. The new 

system incorporated a number of design improvements, including enhanced structural 

rigidity for the drop stand, the use of a larger diameter tube for improved flexural rigidity 

and the addition of an automatic release mechanism. By monitoring the impact velocities 

between two designs, it was discovered that the actual terminal velocity of a 450 g 

impactor falling within the tube was consistently lower than the theoretical value 

calculated from a given height.  One of the factors responsible for the velocity loss was 

likely the frictional effect between the wall of the plexglass tube (~0.7 coefficient of 

friction) and the cylindrical impactor. The existence of the friction problems was also 

reported by Ucar et al. (2006).  Carre et al. (2004) suggested replacing the plexiglass tube 

with a metal tube to reduce the friction.  Another influential factor is that in the previous 

design, the impactor was released from a string through the pulley, which could add 

additional friction as well as induce additional lateral instability inside of the tube 

(Cernak et al., 2004) leading to further reduction in terminal impact velocity.  The 

variability of impact velocity produced by the original form of the Marmarou device was 

reported as high as 40% from a 450-g weight dropped from 2 m height (Piper et al., 

1996).  Up to now, none of above studies measured the actual velocities from different 

falling mechanisms and quantified the velocity loss inherent in the systems.  With the 

new design, the impact velocity and energy were more consistent and repeatable than the 

original design (Table 1).  Furthermore, a linear relationship was established between any 

given impact height and actual impact velocities.  This relationship is of importance for 

designing the test that allows the control of desired severities for trauma on the animal 
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head. The current new device improved consistency, reproducibility and reliability in 

terms of impact energy imparted to the rat head.  

    Using the original Marmarous device, different mortality rates were reported 

between different research groups including 56.8% by Pascual et al. (2007), 78.5% by 

Ucar et al. (2006), 60% by Geeraerts et al. (2006), 35.7% by Rhodes (2002), 31% by 

Ueda et al. (2001), and 10-20% reported by the Marmarou group (Marmarou et al., 1994; 

Foda and Marmarou, 1994).  There were several factors that likely contribute to the 

variability of injury severities sustained by the animals from different groups using the 

same device.  Firstly, the velocities quantified from the current study ascertained the 

inherent variability of impact velocity in the original device and therefore contribute to 

the differences in resulting injury severities. Secondly, the different body weight/ages of 

animals used by different groups (ranging from <300 to 400 g body mass) could also 

affect the mechanical responses of the head to the same impact. The skull thickness and 

head mass associated with body weight of the rodent increase with advancing age, 

resulting in differing mechanical responses and tolerances to a given insult.  Thirdly, the 

foam bed in Marmarou model serves as an energy absorber and helps lengthen the impact 

duration.  The degradation of mechanical properties of the foam during cyclic loading has 

been reported in our previous study (Zhang et al., 2011a).  The study recommended that 

adequate foam recovery time would be essential to maintain the same energy absorbing 

capability if the foam would be repeatedly used in the subsequent impact test.  In addition, 

marked difference in stress-strain relationship as high as 30% was observed between a 

used foam and a new foam.  This implied that the changes of foam mechanical properties 
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could potentially affect the mechanical loads transmitted to the head and thus the degree 

of injury sustained by the rat (Piper et al., 1996; Li et al., 2011a,b; Zhang et al., 2011a).   

In the original Marmarou model, the peak acceleration of rat head was estimated 

from a mathematical damper-spring system (Marmarou et al., 1994). The reported 

acceleration lasted approximately 0.2 ms from peak to zero, with peak magnitudes of 900 

g for 2 m and 630 g for 1 m impact.  The current study utilizing a miniature sensor 

system allows direct measurements of both the translational and rotational motion 

experienced by the rat head during each impact.  The measured data revealed that the 

head underwent significant translational acceleration in the first 3ms followed by large 

rotational motion occurring around 5ms.  Results from our current study showed similar 

average peak linear acceleration of 918 and 609 g for 2.25 and 1.25 m drop, respectively, 

albeit with a longer duration of approximately 2ms compared to the mathematical model 

results of Marmarou.  The longer duration in acceleration from the current study may be 

related to differences in material properties of the rat head compared to those spring-

damper properties assumed in the mathematical model.  The average peak rotational 

velocity was 116 rad/s and 98 rad/s with for 2.25 and 1.25 m, respectively. The calculated 

mean peak angular acceleration was 180 krad/s
2
 (2.25 m) and 161 krad/s

2 
(1.25 m) by 

Marmarou et al (1994).  The values at 2.25 m from the current study were lower than 

those reported by Fijalkowski et al. (2007) in their concussion rodent injury model 

subjected to prescribed average angular accelerations of 368 krad/s
2
.  Another rat model 

combining linear and angular accelerations of 137±12 krad/s
2
 resulted in brain injury but 

not with angular acceleration alone (Wang et al., 2010).  
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The measured head kinematics from the use of the new impact device revealed 

variation between repeated tests.  In the new design, a laser beam was added to assist in 

alignment of the helmet center with the impactor center before each test.  However, a 

slightly misalignment or offset of the impactor surface with respect to the helmet surface 

at the initial impact could still exist.  A computer model simulation was therefore 

conducted to help identify the degree of the influences of helmet surface angles on the 

resulting head kinematics.  The model simulation results showed that as the helmet tilted 

about 5 degrees from horizontal in the coronal plane, the condition resulted in 56%, 17%, 

and 10% increases in posterior-anterior, ventral-dorsal direction and resultant 

accelerations, respectively, with additional lateral acceleration of 400 g as compared to 

the helmet surface aligned at a perfectly horizontal level.  Similarly, in head rotational 

acceleration, the angled impact resulted in a decrease of rotational acceleration in the 

sagittal plane and induced an additional rotation in coronal plane.  The model simulation 

along with the measurements of test results (918±281 g and 116±45 rad/sec) imply that 

the initial impactor/helmet contact condition could affect the consistency of the head 

kinematics sustained by rats from the same impact velocity and this could be a major 

contributor to variability in injury outcome among tests at the same drop height.  Such 

results were found in the tests conducted on anesthetized rats (Li et al., 2011a,b).  Future 

tests will include a tri-axial angular rate sensor to capture the head kinematics in all axes.  
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CHAPTER 6 

CORRELATION BETWEEN IMPACT BIOMECHANICS AND TRAUMATIC 

AXONAL INJURY 

 

6.1 INTRODUCTION 

In the United States, 1.4 million people sustain TBI each year, resulting in 

235,000 hospitalizations and 50,000 fatalities annually.  The leading causes of TBI are 

falls, motor vehicle accidents (MVAs), accidental impacts and assaults.  The direct and 

indirect costs of TBI are estimated to be $60 billion annually (Finkelstein et al., 2006).  

TAI is a predominant injury in 40-50% of TBI cases requiring hospitalization in the 

United States and is associated with one-third of deaths in severe TBI (Meythaler et al., 

2001).  There is a need to develop a better understanding of axonal injury tolerance in 

TBI so that car crash dummies and finite element models can more accurately be used to 

design safety devices that reduce the consequences of both linear and rotational brain 

motion in vehicles crash or in sports impact. 

TAI is an important consequence of severe brain injury.  TAI results from tension 

or shear on the axons in the white matter tracts of the brain and is produced by rapid head 

acceleration/deceleration during blunt head impact as described in Chapter 2.  Several 

previous studies examined the relationship between axonal injury and mechanical loading 

in species other than rat.  Gennarelli et al. (1982) published one of the earliest studies on 

the relationship between mechanical response of the tissue and axonal injury in primates 

subjected to acceleration injury.  They found the amount of TAI strongly correlated with 

the direction of the head angular motion, with motions about the coronal plane producing 
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highest TAI magnitude and duration of coma.  Further studies suggested that increased 

TAI severity was related to rotational kinematics, including angular velocity (Meaney et 

al., 1995), angular acceleration (Margulies and Thibault, 1992) and duration of 

acceleration (Gennarelli et al., 1982) using non-impact rotational acceleration models.  

Anderson et al. (2003), using a sheep blunt impact acceleration model, suggested that the 

most reliable predictors for the extent of axonal injury were peak linear velocity and peak 

angular velocity.   

However, studies aimed at correlating biomechanical responses with injury level 

in rat IA models are limited.  Most previous studies assess TAI level based on drop 

height (Sawauchi et al., 2004; Czeiter et al., 2008; Vagnozzi, 2005) but do not quantify 

the mechanical response of the head.  Results from our study showed that in spite of 

minimal variation in impactor velocity, biomechanical responses in rat head can vary 

widely within the same drop height.  This may be related to small variations between the 

angle of impactor surface and the helmet surface, variations in head shape and size, 

eccentric line of action of the contact force, and thickness of the skull.  On the other hand, 

assessing which characteristics of an impact (force, energy, acceleration etc.) best predict 

the risk of TAI is of particular importance in developing injury criteria used by regulatory 

agencies that provide standards in the design and manufacture of safety equipment and 

motor vehicles.   

Therefore, a biomechanical model of traumatic axonal injury was developed in 

our lab (Chapter 5) to record various mechanical responses induced by this model and 

their correlation to TAI produced by this model.  As part of this investigation, both linear 

and angular acceleration of rat head were measured, and injury-specific tolerance criteria 
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for TAI at different brain regions was established.  Overall, this study provides further 

insight into the mechanical input that produces TAI and may aid in developing 

preventative strategies for brain trauma. 

 

6.2 METHODS 

6.2.1 Animal Handling and Preparation 

Thirty-one anesthetized male Sprague-Dawley rats (392 ± 13 grams) were used.  

All rats were administered Buprenex (0.3 mg/kg) subcutaneously 20 minutes prior to 

impact.  Fifteen minutes prior to impact, rats were placed in a sealed acrylic chamber.  

Anesthesia was induced and maintained by a mixture of Isoflurane (3%) and oxygen (0.6 

L/min).  The skull was then exposed by a midline dorsal incision of the skin and a round 

stainless steel disk (helmet) of 10 mm in diameter and 3 mm in thickness was positioned 

midline between bregma and lambda and affixed to the skull vault using cyanoacrylate 

(Elmer’s Products, Columbus, OH).  All animal surgical procedures were approved by 

Wayne State University Animal Care and Use Committee. 

 

6.2.2 Instrumentation and Experimental Preparation:   

The modified weight drop device previously described in Chapter 5 was used in 

this study to record various biomechanical parameters.  Briefly, TBI was induced by 

dropping a custom-made 450 gram impactor housing a miniature accelerometer (Kistler 

8044) (Fig. 6-1B, C) from a height of 1.25 m (n = 15) and 2.25 m (n = 16) respectively to 

induce mild or severe TBI (Fig. 6.1).  The heights of 1.25 m and 2.25 m, although higher 

than those used in the original Marmarou model, were chosen to compensate for the loss 
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of velocity caused by the accelerometer cable dragging against the tube and the friction 

between impactor and the Plexiglas tube (Zhang et al., 2010a).  At these increased 

heights, the actual impact velocities of 4.54 ± 0.06 m/sec and 6.14 ± 0.07 m/sec are close 

to the theoretical velocities of 4.43 m/sec and 6.26 m/sec, respectively from drop heights 

of 1 m and 2 m reported originally by Marmarou et al (1994).  Linear and angular 

responses of the rat head were measured with an accelerometer (Endevco 7269) along the 

z axis and an angular rate sensor (DTS AR12k) in the yz plane glued to the skull 

approximately 5 mm anterior to the helmet using cyanoacrylate (Fig. 6-1D).  The entire 

impact event was captured at 10,000 fps by a high-speed video camera (MotionXtra HG-

100K) placed 0.5m away from the animal (Fig. 6-1E), and the image resolution in the yz 

plane was 0.41 ± 0.02 mm/pixel.  Signals from all of the transducers were acquired at a 

sampling rate of 50,000 Hz using the TDAS1R4 data acquisition system (Diversified 

Technical Systems, Inc, Seal Beach, CA).   

 

Figure 6-1: Diagrams of the modified 

impact-acceleration injury model and 

instrumentation setup. 1 = Plexiglas 

tube; 2 = aluminum pole; 3 = 

accelerometer (Kistler 8044); 4 = brass 

impact end; 5 = accelerometer cable; 6 

= aluminum cylinder part of impact 

housing accelerometer; 7 = brass 

impactor end with tracking label; 8 = 

helmet; 9 = angular rate sensor (DTS 

AR12k); 10 = accelerometer (Endevco 

7269); 11 = IR laser pointer; 12 = high 

speed camera (MotionXtra HG-100K 

HG-100k) 
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6.2.3 Induction of Traumatic Brain Injury 

The instrumented animals were placed prone on an open-cell flexible 

polyurethane foam bed in pre-cured shape (12x12x43 cm, Foam to Size Inc., Ashland, 

VA) in a Plexiglas box under a 2.5 m long and 57 mm in diameter Plexiglas tube, with 

the helmet centered directly under the lower end of the tube.  A laser beam was used to 

guide the positioning of the helmeted head to ensure that the impactor hits the center of 

the stainless steel disc (helmet) (Fig. 6-1E).  Just prior to impact, the anesthesia was 

turned off and the rats were subjected to TBI by dropping the impactor from either 1.25 

m or 2.25 m.  Immediately after the impact, the Plexiglas box was manually removed to 

avoid a second impact to the rat head.  After the removal of stainless steel helmet and the 

transducers, the skull was examined for fractures and then the skin was closed by staples.   

 

6.2.4 Head impact data processing and analysis  

The displacement of the impactor and the helmeted head in z direction were 

obtained digitally by tracking the attached target on the impactor using an image tracking 

software (ImageExpress MotionPlus, SAI, Utica, NY), since the impactor remained in 

close contact with the rat head during the impact.  The velocity at the end of the initial 

acceleration pulse was calculated from both digitized video data and accelerometer curve.  

From the displacement-time histories of the helmeted head, the velocity (V) of the 

impactor and the helmeted head were calculated as the slope of displacement vs. curve.  

From the acceleration-time histories, the velocity (ΔV) of the head was calculated as the 

area under the curve of the initial acceleration pulse (Fig. 6-2A).  A reliable measurement 

of the rat head motion was ascertained when the ΔV from accelerometer matched V from 
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the video tracking (within two standard deviation of the mean of V), indicating that the 

sensors were rigidly attached to the skull during impact.  

 

Peak instantaneous linear acceleration amax and average linear acceleration aavg of 

the head were determined from the acceleration-time curve recorded from the head-

mounted accelerometer.  amax was the maximum absolute value of the negative portion of 

the head acceleration curve, and aavg was the area under the negative portion of the curve 

divided by the time interval of that portion (Fig. 6-2A).  Peak angular velocity max and 

average angular velocity avg were determined from the angular velocity-time history 

curves.  max was the maximum absolute value of the negative portion of the curve 

(counter-clockwise rotation when rat nose tipping downward) and avg was the area 

under the negative portion (ΔS, radians) divided by the time interval of that portion (Fig. 

6-2B).   

 

Figure 6-2: Diagrams illustrating 

data processing from 

accelerometer and velocity 

sensors. (A) Methodology for 

calculating peak and average 

linear acceleration from linear 

acceleration time history curve. 

(B) Methodology for calculating 

peak and average angular 

velocity from angular velocity 

time history curve. 
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The angular velocity-time curve recorded from the angular rate sensor was 

filtered with SAE (Society for Automotive Engineers) Channel Frequency Class 1,000 

Hz (SAE J211) and angular acceleration was obtained from the derivative of the angular 

velocity with respect to time.  Peak max and average avg angular acceleration were then 

determined from the angular acceleration curve.  max was the maximum absolute value 

of the negative portion of the curve and avg was the area under the negative portion of 

the curve ( V divided by the time interval ( T) of that portion.  

Head Injury Criterion (HIC) value was calculated using HIC software (UDS HIC, 

version: 1,2,4,5, NHTSA).  HIC is widely accepted as a measure of head injury tolerance 

to translational mechanical impact and used by most regulatory agencies in assessing the 

safety of motor vehicles (Prasad and Mertz, 1985).  The HIC is defined by the analytic 

expression: 
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where t1 and t2 are the initial and final time (in seconds) of the interval during which HIC 

attains a maximum value, and acceleration a is measured in g’s. 

      Power is an expression that is proportional to the rate of change of kinetic 

energy.  In the equation below the mass term, which is considered constant, is removed 

and the equation reflects the rate of change of translational kinetic energy:  

TVPower  /2

    (2) 

where T is the time duration of effective acceleration, and V is the change of velocity 

of the head in this period.  Power provides the basis for a hypothesis that head injury 
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severity correlates to the magnitude of the rate of change of kinetic energy that the head 

undergoes during an impact (DiLorenzo, 1976; Newman et al., 2000).  

Time to surface righting (SR) is the time spent by an animal to regain a normal 

ventral position after being placed on its back after impact.  It is used as an indicator of 

duration of unconsciousness of rats (Adams 1986). 

 

6.2.5 -amyloid precursor protein (-APP) immunostaining  

After TBI, rats were allowed to recover and monitored for at least 6 hours.  Rats 

with skull fracture or those exhibiting signs of severe distress were euthanized and were 

not used in this analysis.  After a 24 h survival period, each rat was euthanized with an 

overdose of sodium pentobarbital (120 mg/kg, intra peritoneal) and exsanguinated.  Rats 

were then transcardially perfused with heparinized (500 units/ml) normal saline followed 

by cold 4% paraformaldehyde in phosphate buffered saline (0.1 M PBS, pH 7.45).  The 

brain was then carefully removed and post fixed (4% paraformaldehyde in 30% sucrose), 

after which the cerebral hemispheres were coronally cut into 40 m thick frozen sections 

from the genu of the CC （+2.3 mm anterior to the bregma (0.00 mm)) through the 

splenium of the CC （ -5.2 mm posterior to the bregma）based on the rat brain 

stereotactic atlas (Paxinos and Watson, 2007, Figs. 6-3A, B).  The rest of the cerebral 

hemispheres (-6.0 mm posterior to bregma) with the entire brainstem still being attached 

were processed for the analysis of TAI in the pyramidal tract.  For this purpose, two 

bilateral longitudinal cuts were made in the brainstem ensured inclusion of regions 

encompassing midbrain, pons and pyramidal tract.  Then serial sagittal sections of 

brainstem (40m) were collected (Fig. 6-3A).  All the coronal and sagittal sections 
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sections were individually placed in 1x PBS filled multi-well plates and stored at 4
o
C till 

further processing.      

 

 

       A set of successive coronal sections (13-15) spaced 0.48 mm apart were selected 

for investigating TAI in along the entire anterior to posterior aspects of corpus callosum.  

To assess TAI in pyramidal tract, a set of 7 sagittal sections, comprising midline (0 μm), 

±200 μm, ±600 μm, ±1000 μm, were selected.  These sections were processed for antigen 

retrieval by incubation in a citrate buffer (pH6.0) at 90
o
C for 1 h and then washed 3 times 

in 1x PBS and allowed to be cooled to room temperature.  They were subsequently 

immersed in 0.3% H2O2 for 1 h to quench endogenous peroxidase activity.  This was 

followed by an overnight incubation (at room temperature) in C-terminus specific APP (1 

µg/ml; rabbit anti-C-terminus β-APP; cat #51-2700; Zymed, San Francisco, CA) 

antibody in 2% normal goat serum (Vector Laboratories, Burlingame, CA) and 1% 

bovine serum albumin.  The following day, sections were washed 3 times for 5 minutes 

in 1x PBS and then incubated in goat anti-rabbit IgG secondary antibody (Vector 

Laboratories, Burlingame, CA) for 1 h.  Sections were visualized via incubation in avidin 

biotin peroxidase complex (Vectastain ABC Standard Elite Kit, Vector Laboratories, 

Figure 6-3: Illustration of corpus callosum (CC) and pyramidal tract (Py) in rat brain 

(highlighted in black). (A) Sagittal view demonstrating cut direction of Py; (B) 

Coronal view demonstrating cut direction of CC. Modified from Paxinos and 

Watson, 2007.  
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Burlingame, CA) and were developed by brief incubation in 3, 3’-diaminobenzidine 

(DAB) and hydrogen peroxide.  Finally, the sections were washed, dehydrated and cover-

slipped using Permount.  Negative control incubations were performed in the absence of 

primary antibody.   

 

6.2.6 Quantitative analysis of TAI 

 

The total number of -APP reactive axonal swellings and retraction balls 

(considered as total TAI counts) in CC or Py from all stained sections from each animal 

were quantified by a blinded observer.  Each section was observed under a light 

microscope (Leica DMLB, Leica Microsystems Ltd, Heerburg, Switzerland) to visualize 

-APP reactive axonal swellings and retraction balls.  Then serial photomicrographs (x10 

magnification) encompassing the whole CC or Py structure were taken with a digital 

Figure 6-4: A representative panoramic 

view of corpus callosum used to 

quantify β-APP reactive (+) axonal 

(arrow) profiles. The number at left 

lower corner indicates TAI count in 

each box. 

 



63 
 

 

 

camera system (ProgRes C7, JENOPTIK Laser Optik Systeme, GmbH) for each section.  

These photomicrographs were taken at a single focal plane and were combined into a 

single panoramic image using Photoshop CS2 (Adobe Systems Incorporated, CA).  Then 

grids measuring 200 x 200 m were superimposed on each constructed panoramic image 

(Fig. 6-4).  This enabled a direct correlation of the number of retraction balls and 

swellings to the level of mechanical strain in corresponding elements of the same 

resolution (~ 200 x 200 m) in an anatomically detailed finite element (FE) model of the 

rat head (Zhang et al., 2010, 2011b).  All -APP reactive swellings and retraction balls in  

each grid were counted using ImageJ software (http://rsb.info.nih.gov/ij/), and added to 

obtain total TAI counts per section.  The total TAI in CC or Py for each rat was the sum 

of TAI from panoramic images of all stained sections.  In order to compare TAI level 

between rats with different section numbers, TAI counts were normalized based on 

equation 3.  14 was used as a normalizing constant in CC, since the majority of rats (18 

out of 31) had 14 coronal sections.  Similarly, 6 was used as the normalizing constant in 

Py, since 16 out of 28 rats had 6 quantified sagittal sections.  The potential reason for 

variability in the number of sections stained may be related to minor variations in the 

selection of first section (starting after disappearance of forceps minor and beginning of 

genu of CC) and the last section (at end of splenium and appearance of forceps major), 

resulting in some variation in the total length of CC longitudinally. In addition, small 

variations in the volume and dimensions of rat head and brain may contribute to small 

variations in length of CC. 

Normalized TAI = (Total TAI / Number of section) x Normalizing constant    (3) 

 

http://rsb.info.nih.gov/ij/
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6.2.7 Statistical analysis 

Given values are presented as mean ± standard error of the mean (SEM).  A p 

value < 0.05 was considered to be statistically significant.   

Logistic regression is a form of regression which is used when the dependent 

variable is a dichotomy and the independent variables are continuous, categorical, or 

both.  Logistic regression estimates the probability of occurrence for a given event.  In 

this study, a logistic regression analysis was conducted to determine strong injury 

predictors and to establish injury tolerance or criterion for severe TAI.  To form the 

regression model, the dichotomous dependent variable was the occurrence of severe TAI 

after impact.  In the Marmarou model, the 2 m drop height is considered to lead to severe 

TAI because of the high mortality rate (Marmarou, et al. 1994).  The axonal injury in this 

group can be categorized as having a grade 3 diffuse axonal injury (Adams, et al., 1989), 

where axonal abnormalities were more global and included the cerebellum as well as 

hemorrhages in the brain stem.  Similarly in our tests, the 2.25 m drop height produced 

the highest levels of TAI and the longest time for surface righting.  Therefore the critical 

value of severe TAI was determined as the lower limit (LL) of 95% confidence interval 

of normalized total TAI count in 2.25 m impact group, defined as: 

Lower limit = NsNtMean /)1,(       (4) 

where t() is the test statistic, N is the sample size, α is the desired significance level, 

which is 95% in our case and s is the sample standard deviation.  All rats with TAI 

number higher than the LL were grouped into category 1.  All rats with TAI number 

lower than the LL were grouped into category 0.   
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    The independent variables tested were: peak and average head linear and angular 

accelerations, peak and average head angular velocities, HIC, Power and time to surface 

righting.  Various univariate and multivariate models were assessed to find a single 

predictor variable, or a combination of the variables, which best explained the data. To 

determine whether relationships between outcome and the predictor variables were 

statistically significant, -2Log Likelihood ratio, Wald Chi-Squared and H-L test were 

performed.   

 

       Receiver operating characteristic curve (ROC) analysis and area under ROC were 

also used to assess and compare the outcome prediction performance between single and 

paired combinations.  The optimal threshold (specificity and sensitivity) for each 

individual and paired predictor was determined, which was defined as the point closest to 

the left upper corner of the ROC curve.  The Logistic analysis and ROC analysis were 

performed using SPSS 13 (SPSS Inc. Chicago, Illinois).  

 

6.3 RESULTS 

6.3.1 Head Kinematics  

The measured or calculated mechanical responses and post-injury behavior from 

1.25 m and 2.25 m impacts are summarized in Table 6-1.  The biomechanical and 

behavior responses were significantly different between the 1.25 m and 2.25 m groups (p 

< 0.05), except peak linear acceleration and peak angular acceleration (p > 0.05).    
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Table 6-1: Mechanical Responses of Rat Head in 1.25m & 2.25m Weight Drop 

 

 

Figure 6-5: Correlation between linear component and angular component of head 

response in 2.25 m impact. 

 

Both linear and angular responses had large variation.  In 2.25 m drop, the peak 

linear acceleration and average linear acceleration ranged from 321 to 2313 g and 172 to 

711 g, respectively.   The peak angular velocity and average angular velocity ranged from 

58 to 181 rad/sec and 29 to 95 rad/sec, respectively.  But the linear responses showed a 

negative relationship pattern with angular responses (Fig. 6-5), although they had no 

statistical significant correlation (p = 0.27), suggesting the total energy transferred to rat 

head during impact was similar at the same drop height. 

 Linear Biomechanical Responses, mean ± SEM 
Angular Biomechanical Responses, mean ± 

SEM 
Behavior 

Test 

Peak 

Linear 

Acc. 

(g) 

ΔV 

(m/

s) 

ΔT 

(ms) 

Average 

Linear 

Acc. (g) 

Power 

(m2/sec3) 
HIC 

Peak 

Angular 

Vel. 

(rad/sec) 

Average 

Angular 

Vel. 

(rad/sec) 

Peak 

Angular 

Acc. 

(krad/sec2) 

Average 

Angular 

Acc. 

(krad/sec2) 

Time to 

Surface 

Righting 

(min) 

2.25m 

(n=16) 

855  

± 118 

5.29 

± 

0.23 

2.27 

±0.27 

296 ± 

41 

14.59 

±1.72 

4612 

±1031 

132 ± 

11 
67 ± 5 187 ± 14 80 ± 7 24 ± 2 

1.25m 

(n=15) 

660 ± 

44 

3.96 

± 

0.19 

3.10 

±0.34 

153 ± 

12 

5.69 ± 

0.36 

1911 

±239 
95 ± 6 47 ± 4 169 ± 10 51 ± 8 16 ± 1 
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6.3.2 TAI assessment and quantification  

 

 

-APP immunocytochemistry revealed axonopathy in the form of reactive axonal 

swellings and retraction balls across entire CC or Py.  In each panoramic section of CC, 

the TAI injury count was determined in each 200 x 200 μm grid.  Over 370 injury maps 

of the CC, and more than 180 injury maps of the Py were constructed for thirty-one rats 

(Fig. 6-6).  The normalized total TAI counts per rat in CC were 186 ± 230 for 2.25 m 

group and 20 ± 13 for 1.25 m group.  In Py, the normalized total TAI counts per rat were 

942 ± 881 for 2.25 m group and 162 ± 321 for 1.25 m group.  The normalized total TAI 

count was significantly higher in the 2.25 m group compared to the 1.25 m group (p < 

0.05) in both regions. 

 

Figure 6-6: Representative injury map showing TAI distribution in CC (A) and Py 

(B).  Different colors were assigned for varying TAI counts. Light grey = 0-3 TAI 

counts; dark grey = 4-6 TAI counts; black > 6 TAI counts. 
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The spatial profiles of TAI maps revealed a non-uniform distribution 

longitudinally along the CC, with the area directly under the helmet, in particular from 

0.12 to 2.04 mm posterior to bregma, showing higher density of TAI (Fig. 6-7A).  TAI 

maps also indicated a non-uniform distribution in Py, with the most caudal region of the 

pyramidal tract representing high levels for TAI (Fig. 6-7B). 

 

 

Figure 6-7: TAI distribution along the rostro-caudal direction in 2.25 m impacted 

rats. Relative position of the 10mm diameter helmet is also shown. The bar charts 

show average TAI number at given anatomical locations along the rostro-caudal 

direction in CC and Py.  
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6.3.3 Injury predictor for severe TAI  

 

Figure 6-8: Logist plots of the predicted severe TAI probability in CC based on average 

linear acceleration (A), power (B), and time to perform surface righting (C). 

 

       The injury predictors for severe TAI evaluated in this study were biomechanical 

parameters, including existing head injury criteria, and post-injury behavior.  Single and 

paired potential predictors were tested in CC and Py, respectively.  In CC, 8 out of 16 rats 

in 2.25 m impact had severe TAI, whereas none of the 1.25 m impact rats had severe 

TAI.  The best single predictor for severe TAI was the average linear acceleration, 

followed by the Power Index and time to surface righting (Appendix Table A1). The 

estimated average linear acceleration levels were 228, 270, and 325 g for 25%, 50%, and 

80% probability of severe TAI (Fig. 6-8).   The combination of average linear 

acceleration plus time to surface righting showed improved predictive ability than any 
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individual predictor.  A multivariate model using these two combined predictors achieved 

an area under the ROC curve of 0.949, compared to 0.889 for average linear acceleration 

and 0.823 for time to surface righting.  The optimal specificity and sensitivity of this 

model for severe TAI were 88.9% and 90.9%, respectively (Fig. 6-9). 

 

Figure 6-9: Specificity and sensitivity for predicting severe TAI in CC. The highest 

outcome predictive value for severe TAI was achieved when average linear acceleration 

was paired with time to surface righting. 

 

In Py, 7 out of 16 rats in 2.25 m impact had severe TAI, whereas none of the 1.25 

m impact rats had severe TAI.  Angular components of head kinematics showed better 

predictive results than linear components.  The occurrence of TAI was best predicted by 

time to surface righting, followed by peak angular velocity and average angular velocity 

(Appendix Table A2).  The estimated peak angular velocity levels were 133, 154, and 

180 rad/sec for 25%, 50%, and 80% probability of severe TAI (Fig. 6-10).   The 

combination of peak angular velocity plus time to surface righting slightly improved the 

predictive results.  The multivariate model achieved an area under the ROC curve of 

0.898, compared to 0.881 for peak angular velocity and 0.818 for time to surface righting.  

The optimal specificity and sensitivity of these two combined predictors for severe TAI 

were 78.2% and 87.5%, respectively (Fig. 6-11). 
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Figure 6-10: Logist plots of the predicted severe TAI probability in Py based on peak 

angular velocity (A), average angular velocity (B), and time to perform surface righting 

(C). 

 

Figure 6-11: Specificity and sensitivity for predicting severe TAI in Py. The highest 

outcome predictive value for severe TAI was achieved when peak angular velocity was 

paired with time to surface righting predictor. 

 

A predictor for severe TAI in both brain regions can be determined by defining 

the dependent variable as “1” in logistic model if severe injury occurred in either CC or 
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Py.  By this definition, 11 out of 16 rats in 2.25 m impact had severe TAI, whereas none 

of the 1.25 m impact rats had severe TAI.  In terms of univariate models, power showed 

best predictive result, followed by time to surface righting. There was also statistically 

significant relationship between TAI and average linear acceleration, average angular 

acceleration, peak angular velocity, average angular velocity (Appendix Table A3).  The 

critical value of all potential predictors to predict 25%, 50%, and 80% probability of 

severe TAI are summarized in Table 2.  However we observed that the risk curve for 

prediction using power is much steeper than that of other single predictors, which 

indicate it is a more sensitive predictor of severe TAI in CC and Py combined (Fig. 6-12).  

The paired predictors were tested using the multivariate model.  The combination of 

power and time to surface righting, as well as average linear acceleration and average 

peak velocity showed better predictive results than other combinations (Appendix Table 

A3).  The combined power and time to surface righting achieved an area under the ROC 

curve of 0.943, compared to 0.904 for power and 0.818 for time to surface righting.  The 

optimal specificity and sensitivity of these two combined predictors for severe TAI were 

89.5% and 91.7%, respectively (Fig. 6-13A).  The combination of average linear 

acceleration and average angular velocity achieved an area under the ROC curve of 0.928, 

compared to 0.833 for average linear acceleration and 0.739 for average angular velocity.  

The optimal specificity and sensitivity of these two combined predictors for severe TAI 

were 83.3% and 90.0%, respectively (Fig. 6-13B).   
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Figure 6-12: Logist plots of the predicted severe TAI probability in combined CC 

and Py brain regions based on average linear acceleration (A), power (B), peak 

angular velocity (C), average angular velocity (D), average angular acceleration and 

time to perform surface righting (E). 
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Table 6-2. Critical values of all potential predictors to predict 25%, 50%, and 80% 

probability of severe TAI in global brain. 

  Injury Probability 

Predictor 25% 50% 80% 

Power (m
2
/sec

3
) 9.2 10.9 13.1 

Surface Righting (min) 16.9 21.8 26.7 

Average linear Acc (g) 156 245 332 

Peak Angular Vel (rad/s) 87 142 198 

Average Angular Vel (rad/s) 42 71 100 

Average Angular Acc (rad/s2) 44 88 131 

 

 

Figure 6-13: Specificity and sensitivity for predicting severe TAI in combined CC 

and Py brain regions. The highest outcome predictive value for severe TAI was 

achieved when power was paired with time to surface right, as well as average linear 

acceleration was paired with average angular velocity. 
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6.3.4 Injury tolerance for severe TAI  

Logistic regression analysis described above shows that TAI severity correlates 

not only to the magnitude of acceleration but also to how long the acceleration is applied. 

Also both linear and angular acceleration contribute to TAI production during an impact.  

In order to develop the injury tolerance curve for severe TAI, two independent 

approaches were employed.  Firstly, the combination of average linear acceleration and 

the duration of effective acceleration were plotted to define the asymptotes of the 

tolerance curve (Fig. 6-14A).  The expression a
2
T = 100, which is in a similar form of an 

approximation of WSTC, reasonably separated the injury and non-injury data.  The 

tolerance curve has a straight line with a negative slope of 2, which is the exponent in the 

expression, if it is plotted on a log-log scale (Fig. 6-14B).  It suggests short pulses of high 

acceleration can produce TAI and lower accelerations require longer pulses to produce 

TAI in rat, similar to the relationship for head injury tolerance in humans based on 

WSTC and HIC.  Loads above this tolerance curve would be capable of producing severe 

TAI. 

 

Figure 6-14: Severe TAI tolerance for rat head impact based on average linear 

acceleration and time duration. Solid points represented rats with severe TAI (category 1 

in logistic regression), hollow points indicated mild or no injury (category 0 in logistic 

regression). 
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A second consideration was an injury tolerance curve based on average linear 

acceleration and average angular velocity (Fig. 6-15A). This curve showed that the brain 

can tolerate higher linear accelerations if the angular velocity was lower, and vice versa.  

The tolerance curve is expressed by expression a
2
ω=15000, which represents a threshold 

of severe TAI in a closed rat head impact model.  Similarly, the exponent 2 in the 

expression was determined in the log-log plot (Fig. 6-15B). 

 

Figure 6-15: Severe TAI tolerance for rat based on average linear acceleration and 

average angular velocity. Solid points represented rats with severe TAI (category 1 in 

logistic regression), hollow points indicated mild or no injury (category 0 in logistic 

regression). 

 

6.4 DISCUSSION 

6.4.1 Model development 

Development of injury criteria for TAI is difficult because the cause of injury is 

often unknown, and the pathology is difficult to quantify using current imaging 

techniques.  In cadaver studies, true neurological injury is not produced.  Therefore, 

animal models are useful to validate TAI criteria.  The Marmarou IA model is one of the 

most widely used preclinical models to study diffuse brain injury using rats.  The lack of 

control over precise conditions of impact can result in a high degree of variability in this 

model, making injury response challenge to replicate between different investigators and 
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laboratories (Piper et al., 1996; Cernak, 2005; Wang et al., 2010; Li et al., 2011).  As part 

of the current study, the model was modified and expanded to monitor velocity, 

displacement into the foam, head kinematics and post-injury behavior of two different 

impact severities.   

A more detailed quantification of TAI in CC and Py was undertaken in this study 

than in previous studies using the Marmarou AI device.  Smith and Meaney (2000) 

showed that the pattern of axonal damage in the white matter is more accurately 

described as ‘multifocal’.  Therefore TAI from a limited number of selected locations 

may not be an accurate representation of injury profiles in the entire CC.  Utilizing the 

quantified data from multiple sections across white matter tracts as in our study, 3D 

injury maps were constructed for the entire CC and Py.  Furthermore, the spatial profiles 

of TAI maps revealed non-uniform distribution longitudinally along the CC and Py, 

enabling further investigation of injury biomechanics during impact at different brain 

region.  

The modified injury model quantitatively monitors the inherent mechanical 

response variability during an impact acceleration event.  The comprehensive map of 

axonal damage throughout the CC and Py makes it possible to establish more accurate 

TAI criteria.  These detailed injury data and biomechanical response can be used as 

references for future studies both in animals as well as in finite element simulations to 

develop tissue level injury criteria. 

Because of the small size of the rat head, one limitation of this study was that only 

one accelerometer was used to record the linear head acceleration.  Since the linear 

acceleration was measured in the local frame, it is not exactly the acceleration in the 
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laboratory vertical axis, which is the cosine of actual measurement due to rotation.  

However, in current study, this error is relatively small, and can be neglected.  During 

initial linear acceleration pulse, the rat head rotated 7.2 (±6.0) and 5.3 (±3.1) degree, 

respectively, for 2.25m and 1.25m impacts.  Thus the error levels of linear acceleration 

are approximately 0.8% (±0.5%) and 0.4% (±0.1%).  Another potential limitation is the 

accelerometer was not located at the center of gravity (C.G.) of the head and thus is not 

the acceleration at the C.G.  Ideally, two accelerometers placed on the rat head at equal 

distance anterior and posterior to the C.G. could be used to calculate the linear 

acceleration at C.G. But there is not enough bony area posterior to ensure a rigid 

attachment of accelerometer in practice.  Future tests will include a tri-axial angular rate 

sensor to capture the head kinematics in all axes, and therefore the resultant acceleration 

at surface can be transformed to the C.G.. 

This study focused on impaired axoplasmic transport (IAT) by analyzing β-APP 

immunoreactivy of axons. IAT does not represent all the injured axons.  Mechanistic 

insults to the brain may initiate other cellular changes in neurons (Geddes-Klein, et al. 

2006).  These changess include impaired restoration of ion homeostasis (Stiefel, et al. 

2005), increased intracellular free calcium levels, increased extracellular potassium levels 

(Reinert, et al. 2000), or the promotion of cytokine production (Hadjigeorgiou, et al. 2005; 

Woiciechowsky, et al. 2005), which in turn lead to necrosis, apoptosis or both.  Therefore, 

additional staining methods targeting other cellular events in the future will help us fully 

understand the relationship between mechanical input and the subsequent cell death after 

TBI.   
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6.4.2 Injury mechanics in different brain regions 

TAI can result from angular as well as linear acceleration of the head (Gennarelli 

et al., 2003; McLean, 1995; King, 2000; Zhang et al., 2001b).  However, there is debate 

on what role the linear or angular accelerations play during impact.  Several studies have 

proposed angular acceleration as the main condition responsible for TAI (Gutierrez et al., 

2001; Smith et al., 2003; Zhang et al., 2006), and TAI tolerance based on angular 

acceleration was proposed (Margulies et al., 1992).  Others suggested that high non-

impact rotational acceleration alone may not be sufficient to produce TAI (Prange et al., 

2003), and showed by FE stimulation that linear acceleration can also induce TAI 

(Nishimoto et al., 1998).  In this model, the center of the impact was not perfectly in the 

center of gravity of the brain; hence the brain was exposed to a combination of linear and 

angular accelerations.  Our study suggested that TAI in different brain regions may result 

from different mechanical input and loading modes.  One factor that causes the TAI in 

CC could be the strain in the cortical tissue under the impact site, which is caused by the 

depression in its superficial layers.  Marmarou et al. (1994) reported that the skull 

undergoes a maximum of 0.3mm deflection during a 2 m impact.  Pai et al. (2006) found 

axonal injury in well-defined areas of cortical layers IV and V under the impact site using 

their weigh drop model.  Since the axons in CC run perpendicular to the impact force 

vector, a sudden stretch in the cortical tissue under impact site may contribute to the 

development of the axonal damage.  Another significant factor to consider is intracranial 

pressure.  Sudden increase in intracranial pressure at the impact site of the brain has been 

reported previously (Denny-Brown and Russell, 1941) in experimental cerebral 

concussion.  Manley et al. (2006) showed intracranial pressure immediately increased 
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following controlled cortical impact and the value increased with increasing depth of 

depression.  Zhang et al. (2004) indicated intracranial pressure had the highest correlation 

with translational acceleration, while strain had the highest correlation with rotational 

acceleration in their FE analysis.  In a dynamic cortical deformation model, sudden 

changes in intracranial pressure were reported to cause morphological damage to 

the rat brain and causing the axonal damage.  These axonal injuries were observed in the 

subcortical white matter and in the ipsilateral internal capsule, but not in the contralateral 

hemisphere or in any remote regions (Shreiber et al., 1999).  These studies suggest that in 

the current study increased pressure under the impact site may be related to the higher 

density of TAI in the CC region directly under the helmet (Fig. 6-7).   

Interestingly, previous studies (Witelson, 1989; Hofer and Frahm, 2006) in the 

human brain showed that the axonal fibers with a relatively small diameter are most 

pronounced in the anterior and posterior third of the CC and fibers with a larger diameter 

are more frequent in the midbody of the CC and gradually reduce laterally.  The 

distribution of larger diameter axon is somehow in agreement with the distribution of β-

APP stained axon after injury (Fig. 7).  This finding might suggest that the thick axonal 

fibers are more sensitive to rapid head acceleration compared to thin fibers.   

Secondly, the bundles of neural fibers in CC connect the left and right cerebral 

hemispheres, and pass through the mid-sagittal plane vertically (Xu et al., 2002; Hofer 

and Frahm, 2006), parallel to the axis of sagittal rotation.  Thus the induced tensile forces 

by rotation aligning with the axonal fiber orientation were expected to be small.  Similar 

observation was found by Gutierrez et al. (2001) in their rabbit’s rotational acceleration 

model to study diffuse brain injury.  They indicated that the astrocytosis was absent in the 

http://en.wikipedia.org/wiki/Cerebral_hemisphere
http://en.wikipedia.org/wiki/Cerebral_hemisphere
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corpus callosum after injury, since the rotation was in the sagittal plane.   Therefore, 

linear acceleration showed higher predictive value for TAI in CC.   

On the other hand, the Py is located on the ventral aspect in the brainstem, 

between the cerebral cortex and the spinal cord.  In sagittal plane rotation, the caudally 

projecting axons in brainstem are perpendicular to the axis of rotation in the Marmarou 

impact model, producing greater tensile strains and shear forces compared to the CC.  

The correlation of TAI in Py to angular velocity/acceleration is consistent with this 

mechanism of loading to the brainstem.  Smith et al. (1997) reported that axonal injury 

was primarily found in the brainstem, the only region in which severe axonal damage was 

demonstrated following head rotation in pigs.  Sheng et al. (2000) also suggested that the 

axonal injuries were most severe in the brainstem in their rat’s lateral head rotation model.  

These results indicate that the combined linear and angular accelerations may produce 

higher TAI than linear or angular acceleration alone.  The preliminary simulation of rat 

head impact using a new rat head FE model showed relatively moderate principal strain 

in the CC compared to that on the brainstem region (Zhang et al., 2010, Zhang et al., 

2011b).  The role of tissue level biomechanical correlates to TAI occurrence and severity 

in various regions needs further FE analysis in this TBI model.  Taken together, our study 

provides further understanding of the contributions of linear and angular response to 

traumatic brain injury.  These findings indicate that different impact sites, the direction of 

linear acceleration and the axis of head rotational acceleration may result in different TAI 

distributions and injury types.  Thus, TAI is not necessarily a diffuse injury (Smith and 

Meaney, 2000), but rather a reflection of the mechanism of loading to the brain.   

 

http://en.wikipedia.org/wiki/Cerebral_cortex
http://en.wikipedia.org/wiki/Spinal_cord
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6.4.3 Head kinematics-based predictors for severe TAI  

Previously, several tissue-level injury tolerance criteria were proposed to predict 

TAI.  These measures of injury include pressure (Ward et al., 1980; Gennarelli et al., 

1982; Deck et al., 2008), von Mises stress (Zhang et al., 2004; Deck et al., 2008), 

maximum principal strain (Strich 1961; Margulies et al. 1992; King et al., 2003; Zhang et 

al., 2003; Bandak and Eppinger, 2005; Viano et al., 2005; Kleiven et al. 2007), and 

angular motion (Margulies et al., 1992; Maxwell et al., 1993).  However the details of the 

motion in most of the previous studies have been derived from accident reconstructions 

or national football league (NFL) data where there is always a degree of uncertainty 

whether the data accurately represent the mechanical response of the head in the accident.  

Newman et al. (2005) reported a potential error in the relative velocities of the NFL data 

of 11% as well as maximum errors of 17% for the linear accelerations and 25% for the 

angular accelerations.  Secondly, some previous studies used concussion as an indicator 

of mild TAI as it was difficult to detect the structural signature of TAI in humans.  

However, our model is not constrained by such limitations and provides an accurate 

comparison between mechanical parameters and the observed brain pathology.   

 

   Figure 6-16: Logist plots of the predicted severe TAI probability in combined CC and 

Py brain regions based on Power and HIC.  The dot line shows the 95% confidence 

intervals. 
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      In our study, the loading condition was well characterized, and the biomechanical 

responses were measured directly from head motion.  Furthermore, our quantification 

technique enabled us to correlate potential predictors to the actual magnitude of TAI 

pathology.  Based on logistic regression analysis, power, as a function of average linear 

acceleration and duration, was the best single predictor for severe TAI.  It has better 

predict value (Table A3) and narrower confidence intervals (Fig. 6-16) compared to HIC, 

which is used by most regulatory agencies as a criteria in assessing TBI.  This finding 

suggested an alternative injury predictor specific for TAI is needed in designing safety 

measures either in vehicles or in sports helmets.  However, considering the difference of 

brain structure between rat and human, and the limitation in HIC calculation described 

previously, more work is required to justify this conclusion. 

       Our results also provided the possibility to establish a TAI tolerance curve based 

on both linear and angular velocity/acceleration (Fig. 6-15).  In addition, we proposed 

that combined biomechanical and behavior responses could achieve better predictive 

value for severe TAI for the first time.  Glasgow Coma Scale (GCS), which is also an 

indication of the physiological state of the patient after injury, has been frequently used to 

predict the severity of TBI (Teasdale and Jennett, 1974; McNett, 2007).  However, a low 

GCS score does not always accurately predict the outcome of severe TBI (Lieh-Lai, et al. 

1992).  Gill et al. (2004) showed only modest agreement between ED staffs assessing 

GCS.  The GCS has also been criticized from a purely mathematical point of view by 

Bhatty and Kapur (1993).  By combining with the mechanical inputs when possible, the 

GCS, as well as other scoring systems assessing behavior after TBI, may achieve better 
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predictive results regarding recovery and may provide further information on injury 

mechanisms and guide treatment selection.  

       One of the limitations of logistic regression and ROC analysis is that the data 

must be divided into two states.  Since the TAI counts in our study are on a 

continuous scale, the selection of the cutoff value separating severe and non-severe TAI 

is crucial.  The ROC area may vary as the cutoff varies.  Another possible limitation of 

our study is the sample size.  Logistic regression usually requires large samples (Bland, 

2000), at least 10 in each category (Peduzzi et al., 1996).  The sample size of ROC 

analysis must also be large enough for the effects to be real and significant (Beck, 1986).  

In our study, the injury cases in either CC or Py are less than 10, although injury cases 

exceeded 10 when combining both regions to identify predictors of combined injury.  In 

addition, more data points are required to establish a more reliable injury tolerance curve 

(Fig. 6.14A, 6.15A).   It should be emphasized that the head rotation occurring in the 

current rat head impact model was predominately in the sagittal plane.  The complex 

multi-planar motions often seen in real-world cases can induce different distributions of 

injury location from a non-uniform head impact. A thorough investigation of TAI 

responses from a combination of translational and rotational acceleration in three-

dimensional fashion is needed before a generalized mechanical threshold can be 

determined with high confidence.   
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CHAPTER 7 

CORRELATION BETWEEN BIOMARKERS AND TRAUMATIC AXONAL 

INJURY 

 

7.1 INTRODUCTION 

       Traumatic axonal injury (TAI) accounts for 40-50% of the 500,000 new cases of 

traumatic brain injury (TBI) each year and is responsible for one third of mortalities 

resulting from TBI (Meythaler et al., 2001).  Current research has identified TAI to be an 

ongoing process, in which the mechanical forces that cause axonal deformation also 

induce continued biological responses (Gennarelli et al., 1998; Povlishock, 1995).  The 

gradual degeneration of the axon suggests that TAI could be treated therapeutically (Büki 

and Povlishock, 2006; Sandler et al., 2010).  To accurately determine various treatment 

options and to assess the risk for continued axonal degeneration, a clear diagnosis and 

prognosis of TAI is essential.  However, considering the microscopic nature of this type 

of injury, current imaging modalities are limited in their capabilities to sufficiently 

diagnose TAI (Gennarelli et al., 1998; Sandler et al., 2010) and leaving a need for 

improved sensitive diagnostic methods.  

       A growing number of biomarkers in serum and CSF have been studied and 

proposed for assessing brain injury (Wang et al., 2005; Berger et al., 2007; Sandler et al., 

2010; Dash et al., 2010).  Although many biomarkers have been investigated and proven 

to reflect some quantitative association with TBI severity, secondary pathologies and 

patient outcomes, and issues of specificity and sensitivity of individual biomarker persist 

(Pineda et al., 2004; Siman et al., 2004; Dash et al., 2010).  This has lead researchers to 
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investigate panels of biomarkers that may be appropriate for assessing TBI (Berger et al. 

2005, 2008, Lo et al. 2009, Siman et al. 2009).  These biomarkers range in size, function 

and molecular structure. Some proposed biomarkers are specific to brain tissue and others 

are not.  Given the large range of biomarkers associated with TBI, comparisons between 

different studies are essential to determine the most useful biomarkers and combinations 

for clinical diagnosis and prognosis. 

       Currently, there are two general approaches to assessing biomarkers.  One relies 

on clinical evaluations and the other involves the use of animal models (Wang et al., 

2005).  The clinical models use samples of CSF, serum, urine and/or the brain 

parenchyma to evaluate biomarker expression (Winter et al., 2004; Zemlan et al., 1999). 

Correlations between patient outcome and biomarker expression are then determined.  

The main limitation of clinical models is the inability to fully understand the 

circumstances of the injury, which results in an inability to quantitatively correlate the 

severity of the injury to biomarker expression.  Furthermore, in clinical settings, 

correlations are usually drawn based on less specific measures such as the Glasgow 

Coma Scale, CT scans and the number of days the patient was hospitalized.  In contrast to 

clinical models, animal models provide advantage with regard to their reproducibility.  

TBI in animal models which utilized measured mechanical input can be induced in a 

well-controlled laboratory environment, and it is possible to detect injuries from defined 

brain regions (Wang et al., 2005; Saatman et al., 2008) by histological analyses.  

       The Marmarou impact acceleration (IA) model reliably mimics a closed head 

injury induced by a combined linear and angular head impact and is capable of producing 

significant TAI in discrete WM tracts including corpus callosum (CC) and brainstem 
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without concomitant focal contusion and skull fractures in rats (Marmarou et al., 1994).  

The linear and angular acceleration of the head are the clinical cause of TAI (Adams et 

al., 1982; Gennarelli et al., 1998; Povlishock, 1995).  Previous studies have quantitatively 

linked linear and angular responses to the severity of TAI (Adams et al., 1982; Li et al., 

2011).  Although there is strong evidence that TAI severity could be graded by several 

biomarkers, published research to date has not correlated the severity of mechanical 

inputs to the head with biomarker expression.  An animal model which can precisely 

measure mechanical response in mild to severe TBI can facilitate the development of 

reliable biomarkers before clinical trials.   

                   

Figure 7-1: Origins of CSF and serum biomarkers 

Biomarkers of TBI are usually evaluated in CSF and serum using ELISA. In TBI 

events, biomarkers in the cytoplasm leak through the damaged cellular membrane into 

the adjacent extracellular fluid (ECF).  These biomarkers then diffuse into the CSF 
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(Petzold et al., 2007).  In the case of BBB damage or breakdown during TBI, biomarkers 

can directly enter into blood from ECF (Fig. 7-1). 

Biomarkers may be released specifically in response to brain injury or may be 

associated with inflammation or other biochemical and physiological processes not 

specific to the injured brain.  The release of brain specific markers has been associated 

with neuronal degeneration and regeneration, excitotoxicity, oxidative stress, 

inflammation, cerebral blood flow dysregulation, apoptosis and cell death (Zemlan et al., 

1999; Ingebrigtsen and Romner, 2002; Papa et al. 2008; Mondello et al., 2011).  In this 

study, we aimed to evaluate a panel of biomarkers related to neuronal injury, astrocytosis 

and neuroinflammation.   

Axonal NF-H, one of the four subunits of axonal neurofilaments (Marszalek et al., 

1996; Shaw et al., 1998), undergoes phosphorylation of the serine residues after 

neurofilament compaction, a component in the pathology of TAI (Strong et al., 2001) that 

is unique to axonal NF-H.  In contrast, dendritic and perikaryal forms of NF-H are not 

normally phosphorylated (Sternberger et al. 1993).  The distinctive form of NF-H after 

axonal injury suggests that this biomarker may be a good indicator of axonal injury and 

degeneration (Shaw et al., 2005; Anderson et al., 2008).  Siman et al. (2009) found that 

pNF-H rises significantly in both CSF and serum of TBI patients.  Zurek et al. (2011) 

showed that patients showing TBI in initial CT scans had significantly higher levels of 

pNF-H in serum compared to those without TBI.  Furthermore, patients who died within 

6-month follow up showed significantly higher levels of pNF-H at admission than those 

who survived.  Serum pNF-H also showed correlation with complete and incomplete 

sensorimotor loss in spinal cord injury (Hayakawa et al., 2012).  More recently, Gatson et 
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al. (2014) reported that pNF-H levels in serum significantly increase up to 3 days in 

mTBI patients compared to non-injured controls.   

In TBI, β-APP accumulates in injured axons due to TBI-induced disruption of 

axonal transport (Pierce et al., 1996).  Post-injury enzymatic cleavage of APP can 

generate Aβ peptides, a hallmark finding in Alzheimer’s disease (Price et al., 1995; 

Masters et al., 2006).  In a rotational acceleration DAI model in miniature swine, Aβ 

accumulation in injured axons were observed (Smith et al., 1999; Chen et al., 2004).  In 

autopsy studies, Roberts et al. (1994) reported that Aβ plaques were found in as many as 

30% of TBI victims (including children). Remarkably, these Aβ deposits may occur less 

than 1 d after TBI (Ikonomovic et al., 2004). It has also been reported that interstitial 

fluid Aβ concentrations correlated with neurological function in TBI patients, with Aβ 

accumulating as an indicator of neurological function improvement in the days after TBI 

(Brody et al., 2008). 

GFAP is an intermediate filament protein found specifically in astroglia, which 

participate early in the cascade of cellular responses triggered by TBI (Honda et al., 

2010).  Metting et al. (2012) demonstrated that serum GFAP levels increased in mTBI 

patients with abnormal CT findings, compared to those with normal CT. They also found 

that serum GFAP level was elevated in patients who were diagnosed with TAI by MRI at 

three months post-injury.  Similarly, Papa et al. (2012) found serum GFAP was 

significantly higher in mTBI patients with intracranial lesions on CT, compared to those 

with normal CT. McMahon et al. (2014) showed that serum GFAP had very good 

predictive ability (AUC= 0.87), and demonstrated significant discrimination of brain 

injury severity.  More important, GFAP levels were not significantly affected by the 
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presence of fractures in TBI patients (Papa et al., 2014). Although GFAP expression has 

been correlated to outcome and imaging result in TBI patients, this biomarker on its own 

cannot predict individual patient outcome (Nylen et al., 2006; Vos et al. 2004; Metting et 

al. 2012).  However, GFAP may be particularly useful clinically, especially in 

combination with other markers, because extracranial contribution to GFAP is minimal, 

even in multiple trauma cases (Pelinka et al. 2004).  In addition to brain specific markers, 

central nerve system (CNS) immune cell production of chemokines and cytokines also 

provide useful information (Petrova et al., 2000).   

IL-6 is one such proinflammatory cytokine produced by activated microglia after 

TBI (Petrova et al., 2000; Wang et al., 2002).  In the CNS, neurons, astrocytes, microglia 

and endothelial cells are the essential sources of IL-6.  The level of IL-6 is low under 

normal conditions, but upon certain stimuli such as TBI, significant amounts of IL-6 will 

be secreted.  In human peripheral blood, monocytes are the main source of IL-6 (Aarden 

et al., 1987). Endothelial cells, fibroblasts and T cells can also produce IL-6 in response 

to a wide range of stimuli including endotoxins, viruses and cytokines (Sironi et al., 

1989).  Although IL-6 is not exclusively expressed in the CNS, it does exhibit a 

significant upregulation following TBI (Winter et al., 2004; Dash et al., 2010).  It has also 

been suggested that IL-6 is a neuroprotective cytokine (Winter et al., 2004).  

Hergenroeder et al. (2010) observed significant increase of serum IL-6 levels in TBI 

patients within the first 24 h of injury.  More recently, Ferreira et al. (2014) indicated that 

IL-10, -8 and -6 levels were elevated significantly in non-surviving TBI patients 

compared to the survivors in the first sample (study entry) and in the subsequent sample 
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(24 h later).  Andruszkow et al. (2014) also found that increased serum IL-6 levels during 

hospital admission were associated with injury severity in 59 traumatized children. 

In the current study the levels of pNF-H, Aβ, GFAP and IL-6 were quantified in 

both CSF and serum at 24 hrs after impact.  Previous studies showed that the levels of 

these biomarkers were significantly elevated at this time point.  In a rat CCI model, 

Anderson et al. (2008) detected a rise in serum pNF-H 6 h after impact, peaking at 24–48 

h before gradually decreasing to baseline. The rise was significantly higher in more 

severe injuries, and correlated with injury levels determined by volumetric analysis of 

spared cortical tissue.  This pattern has also been recorded following blast TBI (Gyorgy 

et al., 2011). Woertgen et al. (2002) showed that GFAP serum levels were significantly 

elevated up to 24 h after trauma compared to the control group using a rat CCI model.  In 

a mouse CCI model, David et al. (2009) showed that TBI resulted in accumulation of 

endogenous mouse Aβ peptide in the ipsilateral cortex within 24 hrs, and Aβ levels 

increased by almost 120% at 3 d after injury before normalizing by 7 d. Similarly, using a 

mouse CCI model, Washington et al. (2014) showed that TBI resulted in rapidly 

increased levels of both soluble and insoluble Aβ40 and Aβ42 in the injured cortex at 1 

day post injury.  Using the Marmarou model, Hans et al. (1999) showed that the 

expression of IL-6 increased at 1 h and remained elevated through the first 24 h, returning 

to normal afterwards. 

The goal of this study is to determine if the panel of biomarkers described above 

is correlated to the measured mechanical inputs during impact and to the quantified TAI, 

and therefore to screen for reliable biomarkers in helping to determine TBI injury 

severity. 
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7.2 METHODS 

7.2.1 Animal handling and preparation  

       Twenty-four anesthetized male Sprague-Dawley rats (395 ± 15 grams) were used.  

All rats were administered Buprenex (0.3 mg/kg) subcutaneously 20 minutes prior to 

impact.  Fifteen minutes prior to impact, rats were placed in a sealed acrylic chamber.  

Anesthesia was induced and maintained by a mixture of isoflurane (3%) and oxygen (0.6 

L/min).  The skull was then exposed by a midline dorsal incision of the skin and a round 

stainless steel disk (helmet) of 10 mm in diameter and 3 mm in thickness was positioned 

midline between bregma and lambda and affixed to the skull vault using cyanoacrylate 

(Elmer’s Products, Columbus, OH).  All animal surgical procedures were approved by 

the Wayne State University Animal Care and Use Committee. 

 

7.2.2 Instrumentation and experimental preparation  

       The modified weight drop device previously described by Li et al. (2011) and 

Zhang et al. (2012) was developed to study the kinematics of the rat, and as described in 

detail in Chapter 6.  Briefly, TBI was induced by dropping a custom-made 450 gram 

impactor from a height of 1.25 m (n = 8), 1.75 m (n=8) and 2.25 m (n = 8), respectively, 

to induce TBI of three different impact severities.  Linear and angular responses of the rat 

head were measured with an accelerometer (Endevco 7269) along the local anatomical z 

axis (vertical) and an angular rate sensor (DTS AR12k) about the local anatomical y axis 

(lateral) glued to the skull approximately 10 mm anterior to the helmet using 

cyanoacrylate.  The entire impact event was captured at 10,000 frames per second by a 

high-speed video camera (MotionXtra HG-100K) placed 0.5 m away from the animal.  
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Signals from all of the transducers were acquired at a sampling rate of 50,000 samples 

per second using the TDAS1R4 data acquisition system (Diversified Technical Systems, 

Inc, Seal Beach, CA).  The automatic weight release system, the data acquisition system 

and the camera system were synchronized through a trigger switch during the experiment. 

Table 7-1: Experiment matrix 

 

 

 

 

 

 

7.2.3 Induction of traumatic brain injury 

       The instrumented animals were placed prone on an open-cell flexible 

polyurethane foam bed (12x12x43 cm, Foam to Size Inc., Ashland, VA) in a Plexiglas 

box under a 2.5 m long and 57 mm diameter Plexiglas tube, with the helmet centered 

directly under the lower end of the tube.  A laser beam was used to guide the positioning 

of the helmeted head to ensure that the impactor hit the center of the stainless steel disc 

(helmet) (Fig. 4E).  Rats were taken off anesthesia just prior to the impact, and then were 

subjected to TBI by dropping the impactor from a height of 1.25 m, 1.75 m or 2.25 m.  

Immediately after the impact, the Plexiglas box was manually removed to avoid a second 

impact to the rat head.  After the removal of the stainless steel helmet and the transducers, 

the skull was examined for fractures and then the skin was closed by staples.   

 

 Impact Height (m) 

Test 1.25 2.25  

Group 1 8   

Group 2  8  

Sham   8 

Total   24 
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7.2.4 Head impact data processing and analysis  

       Head biomechanical responses were obtained from the head-mounted 

accelerometers and angular rate sensor as previously described in chapter 6.  Briefly, 

peak linear acceleration (amax) and average linear acceleration (aavg) of the head were 

determined from the acceleration-time curve.  Peak angular velocity (ωmax) and average 

angular velocity (ωavg) were determined from the angular velocity-time history curves.  

The angular velocity-time curve recorded from the angular rate sensor was filtered with 

Society for Automotive Engineers (SAE) Channel Frequency Class 1,000 Hz (SAE J211) 

and angular acceleration was obtained from the derivative of the angular velocity with 

respect to time.  Peak angular acceleration (αmax) and average angular acceleration (αavg) 

were then determined from the angular acceleration curve.  Power was also determined 

for each impact and is proportional to the rate of change of kinetic energy of the head in 

this study.  In the equation below the mass term, which is considered constant, is 

removed and the equation reflects the rate of change of translational kinetic energy: 

Power =  ΔV
2
 / ΔT, where ΔT is the time duration of effective acceleration, and ΔT is the 

change of velocity of the head in this period.  Power provides the basis for a hypothesis 

that head injury severity correlates to the magnitude of the rate of change of kinetic 

energy that the head undergoes during an impact (DiLorenzo, 1976; Newman et al., 

2000).  

       Time to surface right (SR) is the time taken by an animal to regain a normal 

ventral position after being placed on its back after impact.  It has been used as an 

indicator of duration of unconsciousness of rats (Adams, 1986; Li et al., 2011a). 
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7.2.5 TAI quantification 

After TBI, rats were allowed to recover and monitored for at least 6 hours.  Rats 

with skull fracture or those exhibiting signs of severe distress were euthanized and were 

not used in this analysis.  After a 24 h survival period, each rat was euthanized with an 

overdose of sodium pentobarbital (120 mg/kg, intra peritoneal) and exsanguinated.  Rats 

were then transcardially perfused with heparinized (500 units/ml) normal saline followed 

by cold 4% paraformaldehyde in phosphate buffered saline (0.1 M PBS, pH 7.45).  The 

brain was then carefully removed and post fixed (4% paraformaldehyde in 30% sucrose), 

after which the cerebral hemispheres were cut into 40 m thick frozen sections in CC and 

Py and subjected to -APP immunostaining as described in Chapter 6. 

The total number of -APP reactive axonal swellings and retraction balls 

(considered as total TAI counts) in CC or Py from all stained sections from each injured 

animal were quantified.  The total TAI in CC or Py for each rat was the sum of TAI from 

panoramic images of all selected stained sections.  In CC, 7 sections (Bregma 0.36, -0.12, 

-0.60, -1.08, -1.56, -2.52), which covers most TAI according to previous study (Fig. 6-7), 

were selected to count total TAI for each rat.  In Py, a set of 7 sagittal sections, 

comprising midline (0 μm), ±200 μm, ±600 μm, ±1000 μm, were selected.    

 

7.2.6 Biomarker quantification  

       24 h after impact, the CSF was collected from cistern magna using a published 

method (Liu and Duff 2008).  Prior to CSF collection, the rats were anesthetized by 

ketamine (50mg/kg) and xylazine (20mg/kg), administered intraperitoneally.  The skin of 

the neck was shaved, and the head was flexed so that the external occipital protuberance 
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in the neck was prominent. Then a dorsal midline incision was made over the cervical 

vertebrae and occiput.  Under the dissection microscope, the subcutaneous tissue and 

muscles was separated by blunt dissection with forceps, and the atlanto-occipital 

membrane was exposed.  Then, a 25G needle attached to 1 cc syringe was carefully 

lowered into the cisterna magna (Fig. 7-2) and approximately 0.1–0.15 mL of CSF was 

collected from each rat.  Then 1 mL of blood was collected from heart just before 

perfusion by 4% paraformaldehyde.  Both the CSF and serum were stored at -70
o
C until 

further processing for various biomarkers. CSF and serum expression of Aβ1-42 

(Invitrogen, KMB3441), NF-H (EnCor Biotechnology Inc, RPCA-NF-H), GFAP (EMD 

Millipore, NS830), and IL-6 (Invitrogen, KRC0061) were assessed by ELISA as per the 

manufacturer’s instructions. 

     

(Adapted from Liu and Duff, 2008) 

Figure 7-2: CSF collection from Cisterma Magna 

 

7.2.7 Statistical analysis:  

       Comparisons for significant differences in biomarker levels between impact 

groups, or between impact group and control group were assessed using t-tests. Pearson’s 

correlation analysis was used to evaluate the correlation between biomechanical 

parameters and biomarker levels using SPSS 13 software (SPSS Inc. Chicago, Illinois). 
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In this study, a logistic regression analysis was conducted to determine potential 

biomarker for severe TAI.  Similar to what described in chapter 6, the 2.25 m drop height 

produced the highest levels of TAI and the longest time for surface righting.  Therefore 

the critical value of severe TAI was determined as the lower limit (LL) of 95% 

confidence interval of normalized total TAI count in 2.25 m impact group, defined as: 

Lower limit = NsNtMean /)1,(       (4) 

where t() is the test statistic, N is the sample size, α is the desired significance level, 

which is 95% in our case and s is the sample standard deviation.  All rats with TAI 

number higher than the LL were grouped into category 1.  All rats with TAI number 

lower than the LL were grouped into category 0.   

      The independent variables tested were biomarker level of NF-H, GFAP, Aβ1-42 

and IL-6 in serum and CSF.  Various univariate and multivariate models were assessed to 

find a single biomarker variable, or a combination of the variables, which best explained 

the data. To determine whether relationships between outcome and the biomarker 

variables were statistically significant, -2Log Likelihood ratio, Wald Chi-Squared and H-

L test were performed.   

       Receiver operating characteristic curve (ROC) analysis and area under ROC were 

also used to assess and compare the outcome performance between single and paired 

combinations.  The optimal threshold (specificity and sensitivity) for each individual and 

paired biomarker was determined, which was defined as the point closest to the left upper 

corner of the ROC curve.  The Logistic analysis and ROC analysis were performed using 

SPSS 13 (SPSS Inc. Chicago, Illinois).  
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7.3. RESULTS 

7.3.1 Head kinematics 

       The mechanical responses and post-injury behavior from 1.25 m, 1.75 m and 2.25 

m impacts are summarized in Table 7.1.  The biomechanical and behavioral responses 

were significantly different between the 2.25 m and 1.75 m groups (p< 0.05), except peak 

angular velocity. The peak angular velocity was significantly different between 1.75 m 

and 1.25 m impacts, but all other parameters were not statistically different between these 

two impact groups. 

Table 7-2 Mechanical and behavioral responses of rat head in weight-drop experiments. 

 
 

 

7.3.2 TAI quantification in CC and Py 

       The total TAI counts per rat in CC were 314 ± 95 for 2.25 m group, 31 ± 4 for 

1.75 m group and 17 ± 3 for 1.25 m group, respectively.  The total TAI count at the 2.25 

m group was significantly higher than that at the 1.75 m group (p < 0.02), while TAI 

count at the 1.75 m group was significantly higher than that at the 1.25m group (p < 0.05) 

(Fig. 7-3A).  

       In Py, The total TAI counts per rat were 6451 ± 1569 for 2.25 m group, 544 ± 

124 for 1.75 m group and 634 ± 247 for 1.25 m group, respectively.  The total TAI count 
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at the 2.25 m group was significantly higher than that at the 1.75 m group (p < 0.01), 

however TAI count had no statistically difference between 1.75 m and 1.25 m groups (p > 

0.05) (Fig. 7-3B). 

 

Figure 7-3: TAI counts in CC (A) and Py (B). 

 

7.3.3 Biomarker assessment in CSF and serum  

       Changes in the expression of potential biomarkers targeting axonal injury (NF-H 

and Aβ), astrocytic activation (GFAP) and neuroinflammation (IL-6) were studied. 

Compared to control, significantly higher CSF and serum NF-H levels were observed in 

all the impact groups, except with no statistical significance between 1.25 m and control 

in serum. Furthermore, CSF and serum NF-H levels at 2.25 m were significantly higher 

than 1.75 m & 1.25 m impact groups and CSF and serum NF-H levels of 1.75 m group 

were significantly higher than that of 1.25 m group (Fig. 7-4 A, B). GFAP levels were 

significantly higher at 2.25 m compared to other heights and control in both CSF and 

serum. Although there was no significant difference between 1.75 m and 1.25 m groups, 

CSF and serum GFAP levels in these groups were significantly higher than control (Fig. 

7-4 C, D). TBI rats also showed significantly higher levels of IL-6 versus control in both 
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CSF and serum.  Although dramatically high CSF IL-6 levels were observed in 5 of 14 

rats in the 2.25 m impact group, no significant differences were observed between each 

impact group (Fig. 7-4 E, F). Levels of Aβ, a breakdown product of -Amyloid precursor 

protein (-APP), were not significantly different between groups (Fig. 7-4 G, H). 

 

Figure 7-4: Comparisons of biomarker levels between different impact heights in CSF 

and Serum. * indicates significant differences between groups.  

 

7.3.4 Comparison of CSF and serum biomarker levels 

       The concentration of all four biomarkers was higher in the CSF compared to the 

serum. There were positive correlation between the CSF and serum NF-H levels (p<0.01) 

based on Pearson’s correlation analysis. The concentrations of GFAP, Aβ or IL-6 were 

not correlated between matched CSF and serum samples (Fig. 7-5).  
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Figure 7-5: Correlation of biomarker levels in CSF and Serum. Pearson’s correlation 

showed NF-H concentration in CSF had good correlation with that in Serum. 

 

7.3.5 Biomarker for severe TAI 

       A potential biomarker for severe TAI in brain regions can be determined by 

defining the dependent variable as “1” in logistic model if severe injury occurred in either 

CC or Py.  Single and paired biomarkers were tested in serum and CSF, respectively.  

NF-H and GFAP in CSF and serum have been identified as potential biomarkers for 

severe TAI (Appendix A-4).  CSF biomarkers showed better predict ability than serum 

biomarkers.   

 Among CSF biomarkers tested, GFAP was the best single biomarker with an area 

under the ROC curve of 0.946 (Fig. 7-6), followed by NF-H with an area under the ROC  
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Figure 7-6: CSF GFAP to predict severe TAI 

 

Figure 7-7: CSF NF-H to predict severe TAI 

curve of 0.938 (Fig. 7-7).  In serum biomarkers tested, GFAP also had better predict 

ability than the others, with an area under the ROC curve of 0.920 (Fig. 7-8).   NF-H in 

serum was also a potential biomarker with an area under the ROC curve of 0.857 (Fig. 7-

9).  However, combined multiple biomarkers didn’t show better prediction values than 

single biomarker in current study. 
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Figure 7-8: Serum GFAP to predict severe TAI 

 

Figure 7-9: Serum NF-H to predict severe TAI 

 

7.3.6 Correlation between biomarker levels and mechanical response  

Pearson’s correlation analysis showed that NF-H and GFAP levels in CSF had 

positive correlation with power (p<0.001), followed by correlations with average linear 

acceleration (p<0.01) and surface righting (p<0.01), which are good biomarkers for TAI 



104 
 

 

 

according to histologic assessment in our previous study (Li et al., 2011a, 2011b).  NF-H 

and GFAP levels in serum also showed good correlation with power, average linear 

acceleration, and surface righting (p<0.01) (Fig. 7-10). 

 

Figure 7-10: Correlation between biomarkers and biomechanics. Pearson’s correlation 

showed NF-H and GFAP had good correlation with power, average linear acceleration 

and surface righting.  

 

7.4 DISCUSSION 

       One of the limitations of clinical biomarker studies has been that the population 

being studied has experienced TBI with varying mechanisms and severities which are not 

documented nor measured.  Other characteristics, including age, gender, and possible 

genetic factors also vary.  In fact levels of various biomarkers and outcomes following 

TBI may also be influenced by acute and chronic nontraumatic neurologic insults such as 

posttraumatic seizures or hypoxemia, chronic nontraumatic neurologic insults such as 
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previous strokes, or noncranial injuries from impact  such as bone fractures (Berger et al., 

2006; Pelinka et al., 2005; Dash et al. 2010). The presence of polytrauma in other body 

regions can give rise to biomarker expression related to the injured tissues.  In this regard, 

the modified impact acceleration model used in a controlled experimental setting offers 

benefits over human clinical studies.  First, the model enables close monitoring of various 

mechanical parameters that produce the injury and secondly the animal model enables 

evaluation of biomarker levels at precise time periods following TBI and also avoids 

most polytrauma. 

       Although much information and data is available regarding biomarkers and how 

they relate to TBI, there are many discrepancies which have been  attributed to lack of 

model reproducibility and reliability (Cernak 2005), leading to difficulty in comparing 

the outcomes of different studies.  We previously showed that TAI severity is directly 

related to the combination of linear and angular acceleration during the brain injury event 

(Li et al., 2011b).  By incorporating the mechanical input into the investigation of the 

biomarkers as studied, we are able to determine the induced injury severity as well.  

Measuring the mechanical input can also link different studies and give investigators the 

ability to compare results between studies based on quantified differences or similarities 

in the mechanical severity of the impacts. 

       Currently, the Glasgow Coma Scale (GCS) is the primary selection criterion in 

most TBI clinical trials (Teasdale and Jennett, 1974, 1976; Teasdale and Murray, 2000; 

Laureys et al., 2002) and is also used to assess TBI severity.  However, it does not 

capture the full spectrum of injury severity, especially for the milder forms of injury 

(Ross et al., 1998; Fisher et al., 2001).  Saatman et al (2008) proposed a multidimensional 
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classification system based on the injury mechanism with an assumption that brain 

injuries with similar injury mechanism are likely to share common injury 

pathophysiology. This classification may be useful in understanding the role of specific 

biomechanical loading and injury severity. Since the magnitude of loading can be 

measured and graded, this approach could help identify biomarkers that reflect a 

continuous rather than categorical injury severity. The present study examined a panel of 

biomarkers associated with axonal injury (pNF-H and Aβ), astrocytic activation (GFAP) 

and neuroinflammation (IL-6) and correlated to the mechanical severity of the head 

impact. 

       In the present study, a positive correlation between serum and CSF concentrations 

of pNF-H was found, but no such correlation was found between serum and CSF 

concentrations of GFAP, Aβ and IL-6.  Phosphorylated pNF-H has been found to be 

resistant to breakdown by calpain and caspases (Shaw et al., 2005) and thus may readily 

reach the serum and hence offer a more reliable representation of the extent of neuronal 

damage.  The serum GFAP levels of 1.75 m and 1.25 m impact decreased while levels in 

CSF remained high. The high CSF GFAP levels may be related to an intact or somewhat 

less affected BBB following moderate to mild TBI compared to severe impact 

(Zetterberg et al., 2006; Blennow et al., 2011).  Serum IL-6 levels in all three impact 

groups were high, and increased independently of CSF IL-6 levels. These elevated levels 

may be related to a systemic inflammatory response following TBI (Pape et al., 2002; 

Dash et al., 2010).  Furthermore, a lack of correlation between serum and CSF expression 

of these biomarkers may also be related to the time dependency of their release in the 

CSF compared to the serum, and warrants additional studies using more time points.  
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Clinically, it is faster and safer to collect serum than CSF. The findings from the current 

study show that in the current study pNF-H shows potential as a blood-based biomarker 

for TBI that may accurately depict the magnitude of axonal injury.  

       pNF-H presents as a unique biomarker for traumatic axonal injury for mainly two 

reasons.  It is easy to detect because its many serine residues are most commonly 

phosphorylated.  pNF-H expression has been studied in rats using a controlled cortical 

impact (CCI) model and has been found to increase with impact depth from 1.5 mm to 2 

mm in both serum and CSF (Anderson et al., 2008; Shaw et al., 2005).  In the present 

study, CSF and serum pNF-H expression was also found to be significantly higher in all 

impact groups, except between 1.25 m and control in serum. Furthermore, pNF-H 

expression was also determined to be positively correlated with mechanical responses of 

the head; power, average linear acceleration and surface righting.  These have all been 

found to be good biomarkers of TAI (Li et al., 2011a, 2011b).  These results suggest that 

pNF-H not only tracks the level of TAI severity (mild, moderate, severe), but also 

correlates well with impact severity.  

       Astroglial cells are found in the CNS to support and provide nourishment for the 

surrounding cells.  When these cells in either the brain or spinal cord are injured, they 

release the intermediate filament GFAP.  Due to GFAP’s specified location and release 

after injury, it presents itself as a viable TBI biomarker (Pelinka et al., 2004).  GFAP has 

also been considered as a reliable marker of injury outcome in clinical and experimental 

TBI studies.  GFAP release after TBI was shown to be time-dependent reaching peak 

levels at 6 h after CCI injury in rats (Woertgen et al., 2002).  Clinically, elevated serum 

GFAP levels have been considered as a valid biomarker of TBI (Pelinka et al., 2004; 
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Lumpkins et al., 2008).  Ahmed et al. (2012) studied GFAP expression in a swine blast 

model and found that GFAP concentrations increased significantly 6h post injury. In the 

present study serum and CSF GFAP levels were significantly higher in the 2.25 m group 

compared to other heights and control. However, compared to NF-H, GFAP level was 

elevated in the 1.25 m group in both CSF and serum, making it potentially a more 

sensitive biomarker for mild injury. Similar to pNF-H, GFAP levels also showed a 

positive correlation with power, average linear acceleration and time to surface right, 

which further support that GFAP may be used to grade injury severity.  

      IL-6 is a proinflammatory cytokine that is found in the CNS and activated as part 

of the acute inflammatory response after injury.  This biomarker may be especially useful 

due to the independency between patient age and concentrations of IL-6 in serum (Bell et 

al., 1997).  Pediatric clinical studies have found IL-6 to be indicative of poor clinical 

outcome and indicative of head injury severity (Chiaretti et al., 2005).  Although 

clinically there is evidence for IL-6 as a potential biomarker for determining patient 

outcome and injury severity, Zhu et al (2004) showed different results  in rat studies of 

severe and mild CCI with increased plasma IL-6 levels compared to controls but no 

significant difference in plasma IL-6 between the severe and mild injury groups.  Results 

from our study support usefulness of IL-6 in determining the presence or absence of TBI 

but do not support any relationship between its expression and injury severity.  Due to the 

discrepancy between the clinical outcomes and animal models, further studies are needed 

required to determine whether IL-6 levels are useful for grading injury severity.  

       Aβ, a breakdown product of -APP important in the formation of amyloid plaques 

is associated with an increased risk of onset of Alzheimer’s disease (Roberts et al., 1994; 
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Dekosky et al., 2007). Although serum and CSF Aβ levels can be measured (Tian et al., 

2011; Yu et al., 2012; Abrahamson et al., 2006) the change in the amount of serum and 

CSF Aβ in the present study was insignificant 24 hrs after TBI.  Olsson et al. (2004) 

found Aβ in CSF increased significantly on day 3 vs. day 0-1 (573%), on day 4 vs. day 0-

1 (855%), on day 5-6 vs. day 0-1 (1173%) in TBI patients.  The use of Aβ as a biomarker 

for TBI immediately after injury is limited by the possible time delay between β-APP 

release and the subsequent Aβ breakdown product expression in the serum and CSF. 

 One limitation about this study is the possibility of spinal injury produced by the 

impact acceleration model.  Kallakuri et al. (2003) observed epidural hemorrhages at the 

base of the skull and spinal cord down to C3–C4 levels in 1.5- and 2.0-m drops with the 

Marmarou model. These injuries may be caused by the stretch of the neck when the 

dropped weight pushes the head and neck into the foam pad.  In this phase, deformations 

of the neck may lead to epidural injury.  Viano et al. (2012) also indicated that even 

without skull fracture, the head-neck motion during compression into the foam and 

rebound can cause skull deformation, which would contribute to loading of the brain and 

then the brain pushing on the spinal cord.  The possibility of producing spinal cord injury 

is another potential confounding effect of the Marmarou drop-weight technique, and 

could affect the accuracy of biomarker to evaluate TBI.   
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CHAPTER 8 

CONCLUSIONS 

 

       The objective of this dissertation was 1) to investigate the relationship of impact 

mechanics and TAI, and 2) to identify potential biomarker to predict TAI.  To achieve 

these goals, a modified impact-acceleration model of TAI has been developed to monitor 

the consistency, reproducibility and reliability of mechanical trauma imparted to the 

animals from impact acceleration injury. The new design incorporating real time 

measurements and analysis of head kinematics that allow determination of head linear 

acceleration, head angular velocity and impact force as a result of each impact. These 

technical renovations will help advance the standardization of this model between 

different research groups, and assist in interpretation of severities of TAI.   

       Based on the results of the rat head kinematics and quantified TAI severities, the 

following conclusions can be drawn: 

1. TAI in different brain regions may result from different mechanical input.  

2. Different impact sites, the magnitude and direction and of linear acceleration and 

the magnitude and axis of head rotational acceleration may result in different TAI 

distributions and injury types. 

3. Power, a function of the rate change of kinetic energy to the impacted rat head, 

was the best single predictor for severe TAI in CC and Py combined. 

4. Combined linear and angular responses may produce higher levels of TAI than 

linear or angular acceleration alone. 
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       The model in this thesis also showed promise in elucidating the relationship 

between biomarker levels and severity of the mechanical trauma to the brain, which 

cannot be determined in clinical trials. The results indicated: 

1. Both NF-H and GFAP levels in CSF and serum were good biomarkers for severe 

TBI.  

2. The Levels of NF-H and GFAP had positive correlation with the following 

biomechanical responses: average linear acceleration and power. 

3. CSF NF-H, CSF and serum GFAP had potential to be good biomarkers for mild 

TBI. 

4. Combined multiple biomarkers did not show better predictive ability for TAI than 

single biomarkers in the current study. 
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CHAPTER 9 

FUTURE STUDIES 

 

9.1 SCALING: ANIMAL TO HUMAN 

The mechanical data measured in this study can be converted to levels in humans 

using scaling laws.  A common technique is equal stress / equal velocity (Gutliercez et al., 

2001, Margulies et al., 1985, Viano et al., 2009).  For application to the current study, a 

characteristic length ratio (λ = rh / rr) is determined, where rh is the radius of the human 

brain and rr is the radius of the rat brain.  In our FE studies, the average radius of the rat 

brain was 7 mm and the radius of the human brain was 80 mm (Zhang et al., 2001; Zhang 

et al., 2010).  This gives λ = 11.4.  Equal stress and velocity method was then applied to 

obtain the scaled mechanical data for human.  Twelve rats with severe TAI (category 1 in 

logistic regression) were used in this analysis.  The scaled peak head accelerations of 76 

± 47 g (mean ± SD) is lower than 103 ± 30 g (Zhang et al., 2004) and 98 ± 28 g (Pellman 

et al., 2003) from reconstructed NFL game impacts of injury cases.  The scaled peak 

angular velocity of 11 ± 5 rad/sec is lower than 35 ± 15 rad/sec reported by Pellman et al. 

(2003) from reconstructed NFL game impacts, and also lower than the proposed TAI 

threshold by Margulies et al. (1992), which is 46.5 rad/sec for human.  Therefore, more 

research is necessary to evaluate the contribution of linear and angular head mechanical 

response to TAI and in scaling animal data to human.  Limitations in current scaling 

methods include the differences of brain structure and geometry between human and rat, 

which may lead to different response during impact.  In addition, the rat is lissencephalic 

with only a fraction of the white matter compared to a human.  Thus their tolerance to 
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injury might be at different level (Viano et al., 2009).  Although the rodent model is 

widely used in laboratory studies of TBI, the low mass of the rat brain requires very high 

angular accelerations to produce closed head injuries.  Larger animals with similar 

geometry and mass to human are better models for scaling animal data to human.  

Primates (Gennarelli et al., 1982), swine (Meaney et al., 1995; Smith et al., 1997, 2000), 

sheep (Anderson et al., 1997), and rabbits (Gutierrez et al., 2001) have been used for 

rotational acceleration studies of the head in the different planes.  In the future, how to 

similarly reproduce results in rodent model in higher species more closely related to 

human, such as the pig and the sheep, will be the next step.   

 

9.2 COMBINED BIOMECHANICAL AND COMPUTATIONAL APPROACH 

Despite recent efforts to understand biomechanics on TAI, there are still no 

widely accepted injury criteria for humans. Animal studies as in this thesis have resulted 

in important advances in the understanding of brain injury due to different levels of 

dynamic loads. However, the applicability of animal brain injury results to humans 

remains uncertain as described in section 9.1. 

Finite element (FE) model is a promising method to address issues related to 

biofidelity and to scaling between human and animal. Many studies have used it to study 

the local level of injury criterion of brain tissue (Zhang et al., 2004; Ruan et al., 1994; 

Zhou et al., 1995). The computer model can be built in highly detailed anatomical 

structures of brain and can measure the parameters that are difficult to inquire from 

experiment. In order to transfer the information obtained in the current animal study, , an 

anatomically based, high resolution FE model of rat head was developed (Zhang et al., 
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2011, 2012). This high resolution model will permit a direct correlation between the 

detailed experimental injury map and response map at the level of the finite element (Fig. 

9-1), thereby result in establishment of tissue level thresholds associated with TAI.  

Knowing the mechanical behavior of neural tissue does not vary significantly from one 

species to another; these tissue level thresholds can be directly translated to human head 

models and therefore will enhance the capability of the human head model in predicting 

brain injury. In addition, such an improved human head model can assist in the diagnosis 

of DAI by predicting microscopic injury which is invisible to conventional imaging 

techniques. 

 

Figure 9-1: Frame work of combined biomechanical and computational approach 

 

9.3 TEMPORAL CHANGES OF BIOMARKER LEVELS 

In this thesis, an animal model was developed which can precisely measure 

mechanical response in mild to severe TBI and facilitate the development of reliable 
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biomarkers before clinical trials. However, one limitation was the biomarkers has only 

been tested at one time point (24hrs). Little was know about time course of these 

biomarkers, of which the peak concentration in CSF and serum may occur at an earlier or 

later time point. In order to accurately evaluate a biomarker, investigating the time profile 

of the biomarker is of great importance.   

Temporal changes in serum concentrations of Aβ, phosphorylated NF-H (pNF-H), 

cleaved tau (c-tau), SBDPs, UCH-L1 and interleukin-6 (IL-6) have been studied mainly 

in the rat controlled cortical impact (CCI) model. Abrahamson et al. (2006) reported that 

the brain tissue level of Aβ1-42 peaked 3 h after CCI, remained high for 6 to 12 h and 

showed a slow secondary increase between 12 and 72 h. Shaw et al. (2005) showed 

increased levels of serum pNF-H after TBI with a peak at 2 days post-injury. Another 

study by Anderson et al. (2008) detected the presence of pNF-H in serum as early as 6 h 

post-injury and the levels peaked at 24-48 h. Also, serum c-tau levels were significantly 

increased 6 h after TBI but not at later time points (Gabbita et al., 2005). Significant 

elevation of SBDP levels in CSF was measured within 24-72 h following CCI (Pike et al., 

2001). Liu et al. (2011) reported that CSF UCH-L1 levels were significantly higher than 

their counterparts in the sham group at 2 h and 6 h for CCI at 1.0 mm and at 2h, 6h and 

24h for CCI at 1.6 mm. Stover et al. (2000) found IL-6 in CSF peaked at 24 h in the rat 

CCI model. However, data on CSF and serum levels of biomarkers and related histology 

changes in the closed head impact acceleration model are lacking. Based on these studies, 

we recommend biomarker and histology analyses at 6, 24, and 72h after impact in future 

study. 
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APPENDIX 

Table A-1: Significance test for univariate and multivariate logistic regression models of 

biomechanical response to predict TAI in CC 
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Table A-2: Significance test for univariate and multivariate logistic regression models of 

biomechanical response to predict TAI in Py 
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Table A-3: Significance test for univariate and multivariate logistic regression models of 

biomechanical response to predict to predict TAI in combined CC and Py region 
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Table A-4: Significance test for univariate and multivariate logistic regression models for 

biomarkers to predict TAI. 
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In the United States 1.4 million people sustain traumatic brain injury (TBI) each 

year, resulting in 235,000 hospitalizations and 50,000 fatalities annually. Traumatic 

axonal injury (TAI) is a serious outcome of TBI that accounts for 40-50% of 

hospitalizations due to head injury and one third of the mortality due to TBI, and it is 

difficult to diagnose and evaluate. The purpose of this dissertation is to determine 

mechanical injury predictors for TAI and identify potential biomarkers to evaluate TAI. 

In this dissertation, a modified Marmarou impact acceleration injury model was 

developed to allow the monitoring of velocity of the impactor and characterization of 

head kinematics during impact. The rat head sustained linear acceleration and angular 

velocity of 918±281g and 116±45 rad/sec, respectively in 2.25m impacts, and 609±142g 

and 98±31 rad/sec, respectively in 1.25m impacts. The variability in head kinematics 

resulting from the same drop height  suggested that monitoring of mechanical parameters 



152 
 

 

 

are critical factors for illustration of the level of closed head injury with this model. Using 

this modified impact acceleration model, a series studies were performed to investigate 

correlation between impact mechanics and TAI, as well as correlation between biomarker 

levels and TAI. 

In the first part of this dissertation, thirty-one anesthetized male Sprague-Dawley 

rats (392 ± 13 grams) were impacted using a modified impact acceleration injury device 

from 2.25 m and 1.25 m heights.  Beta-amyloid precursor protein (β-APP) 

immunocytochemistry was used to assess and quantify axonal changes in CC and Py.  

Linear and angular responses of the rat head were monitored and measured in vivo with 

an attached accelerometer and angular rate sensor, and were correlated to TAI data.  

Logistic regression analysis suggested that the occurrence of severe TAI in CC was best 

predicted by average linear acceleration, followed by Power and time to surface righting.  

The combination of average linear acceleration and time to surface righting showed an 

improved predictive result.  In Py, severe TAI was best predicted by time to surface 

righting, followed by peak and average angular velocity.  When both CC and Py were 

combined, power was the best predictor, and the combined average linear acceleration 

and average angular velocity was also found to have good injury predictive ability.   

In the second part of this dissertation, tweenty-four anesthetized male Sprague-

Dawley rats were subjected to a closed head injury from 1.25, 1.75 and 2.25 m drop 

heights (n=8 for each group). 24 h after impact, cerebrospinal fluid (CSF) and serum 

were collected. CSF and serum levels of neurofilament H (NF-H), glial fibrillary acidic 

protein (GFAP), interleukin (IL)-6, and amyloid beta (Aβ) 1-42 were assessed by 

enzyme-linked immunosorbent assay (ELISA). Compared to controls, significantly 
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higher CSF and serum pNF-H levels were observed in all impact groups, except between 

1.25 m and control in serum.  Furthermore, CSF and serum pNF-H levels were 

significantly different between the impact groups. For GFAP, both CSF and serum levels 

were significantly higher at 2.25 m compared to 1.75 m, 1.25 m and controls. There was 

no significant difference in CSF and serum GFAP levels between 1.75 m and 1.25 m, 

although both groups were significantly higher than control.  TBI rats also showed 

significantly higher levels of IL-6 versus control in both CSF and serum, but no 

significant difference was observed between each impact group. Levels of Aβ were not 

significantly different between groups.  Logistic regression analysis suggested that both 

pNF-H and GFAP levels in CSF and serum were good biomarkers for severe TBI. 

Pearson’s correlation analysis showed pNF-H and GFAP levels in CSF and serum had 

positive correlation with power (rate of impact energy), followed by average linear 

acceleration and surface righting (p<0.01), which were good predictors for traumatic 

axonal injury (TAI) according to histologic assessment in first part study, suggesting that 

they are directly related to the injury mechanism. 
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