
Wayne State University

Wayne State University Dissertations

1-1-2014

Development And Human Performance
Evaluation Of Control Modes Of An Exo-Skeletal
Assistive Robotic Arm (esara)
Umer Khalid
Wayne State University,

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations

Part of the Robotics Commons

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in
Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Khalid, Umer, "Development And Human Performance Evaluation Of Control Modes Of An Exo-Skeletal Assistive Robotic Arm
(esara)" (2014). Wayne State University Dissertations. Paper 1145.

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1145&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1145&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1145&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1145&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1145&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations/1145?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1145&utm_medium=PDF&utm_campaign=PDFCoverPages


 

 

 

 

DEVELOPMENT AND HUMAN PERFORMANCE EVALUATION OF CONTROL 
MODES OF AN EXO-SKELETAL ASSISTIVE ROBOTIC ARM (eSARA)  

by 

UMER KHALID 

DISSERTATION 

Submitted to the Graduate School 

of Wayne State University,  

Detroit, Michigan,  

in partial fulfillment of the requirements 

for the degree of 

DOCTOR OF PHILOSOPHY 

2015 

MAJOR:  ELECTRICAL AND COMPUTER 
 ENGINEERING 

Approved by:

____________________________________________ 

Advisor                                                                  Date 

_____________________________________________ 

_____________________________________________ 

_____________________________________________ 

_____________________________________________ 



 

 

 

  

© COPYRIGHT BY  

UMER KHALID  

2015 

All Rights Reserved 

 



 

 

ii 

 

DEDICATION 

 

I dedicated my dissertation to my father (my inspiration), Khalid Bashir and 

my late mother (my motivation), Shahida Khalid, my older brother (my role 

model) Dr. Waqas Khalid, my younger brother (my encouragement) Hamza Khalid 

and my wife (my perseverance) Dr. Dilshad Umer-Khalid 

Your support and confidence in me helped me achieve my goal. 

Thank you. 

 



 

 

iii 

 

 

ACKNOWLEDGMENTS 

 
I would like to thank Dr. Abhilash Pandya, Dr. Robert Erlandson, Dr. Yong 

Xu, Dr. Gerry Conti and Dr. Richard Ellis for their efforts and guidance in this 

research. I would like to specially thank Vince Brown for his participation and 

involvement in making this research a success.  

In addition I would also like to thank Anthony M. Composto, Prem K. 

SivaKumar, Ajay V. Mudunuri, Tonya J. Whitehead, Melissa R. Wrobel, Fred W. 

Upton, and Computer Assisted Robotic Enhanced System (CARES) research 

group for their support.  

  



 

 

iv 

 

 

TABLE OF CONTENTS 

Dedication ...................................................................................................................................... ii 

Acknowledgements ...................................................................................................................... iii 

List of Tables .............................................................................................................................. viii 

List of Figures ................................................................................................................................ x 

Chapter 1 : Introduction Background, Motivation, and Significance ..................................... 1 

1.1 Aims and Scopes of Research ............................................................................................. 2 

1.2 Specific Research Objectives .............................................................................................. 3 

1.3 Novelty and Significance of the Research .......................................................................... 5 

1.4 Background and Significance ............................................................................................. 7 

1.4.1 Spinal Cord Anatomy ............................................................................................... 8 

1.4.2 The Level of a Spinal Cord Injury (SCI) .................................................................. 9 

1.4.3 Physical Limitations and Residual Functionality of Incomplete and Complete 
Spinal Cord Injuries ................................................................................................ 10 

1.4.4 Physical Limitations and Mobility Challenges of the C6-C7 SCI Individuals 
(upper extremity challenges and residual functionalities) ...................................... 11 

1.4.5 SCI Statistics ........................................................................................................... 12 

1.5 International Classification of Functioning, Disability and Health (ICF) Framework 
to Establish with Research ................................................................................................ 13 

1.5.1 ICF Structure ........................................................................................................... 14 

1.6 Overview of Current Assistive Devices and their Limitations ......................................... 16 

1.6.1 Types and Classifications of Assistive Devices ...................................................... 17 

1.7 Chapter Summary ............................................................................................................. 26 

1.8 Organization of the Dissertation ....................................................................................... 27 

1.8.1 Chapter 1: Introduction, Motivation, Background and Significance ...................... 27 



 

 

v 

 

 

1.8.2 Chapter 2: Development of a Prototype for Proof of Concept and Feasibility ....... 27 

1.8.3 Chapter 3: Development and Preliminary Testing of the Exo-Skeletal Assistive 
Robotic Arm (eSARA) ........................................................................................... 28 

1.8.4 Chapter 4: Human Machine Interface (HMI) and Evaluation of the Exo-
Skeletal Assistive Robotic Arm (eSARA) .............................................................. 28 

1.8.5 Chapter 5: Discussion, Conclusion, and Future Work ............................................ 28 

Chapter 2 : Voice-Activated Lightweight Reacher to Assist with .......................................... 30 

Upper Extremity Movement Limitations: A Case Study ........................................................ 30 

2.1 Introduction ....................................................................................................................... 30 

2.2 Development of Simple Assistive Reacher Arm (SARA) Platform ................................. 30 

2.3 System Hardware .............................................................................................................. 32 

2.4 System Firmware and Electronics .................................................................................... 33 

2.5 Preparatory Assessment of the SCI Participant ................................................................ 35 

2.6 EXPERIMENT 1: Case Study: Planar and 3D Movement by a Person with Spinal 
Cord Injury ........................................................................................................................ 37 

2.6.1 Methods ................................................................................................................... 37 

2.6.2 Protocol ................................................................................................................... 38 

2.6.3 Results ..................................................................................................................... 41 

2.7 EXPERIMENT 2 .............................................................................................................. 41 

2.7.1 Methods ................................................................................................................... 41 

2.7.2 Protocol ................................................................................................................... 43 

2.7.3 Data Analysis .......................................................................................................... 45 

2.7.4 Results ..................................................................................................................... 45 

2.8 Discussion and Conclusion ............................................................................................... 48 

Conclusion: .................................................................................................................................. 50 

 



 

 

vi 

 

 

Chapter 3 : Development of a Multi Modal, Exo-Skeletal Assistive Robotic Arm ............... 51 

3.1 Introduction and Motivation ............................................................................................. 51 

3.1.1 Classification of Modes of Control ......................................................................... 52 

3.2 Methods for the Development of the Exo-Skeletal Assistive Robotic Arm (eSARA) ..... 53 

3.2.1 System Hardware .................................................................................................... 56 

3.2.2 System Architecture ................................................................................................ 68 

3.2.3 System Software ..................................................................................................... 78 

3.2.4 Electrical Design ..................................................................................................... 83 

3.2.5 Preliminary Testing of the Exo-Skeletal Assistive Robotic Arm (eSARA) 
Platform ................................................................................................................... 90 

3.3 Discussion and Conclusion ............................................................................................. 100 

Chapter 4 : Evaluation of Control Modes .............................................................................. 103 

4.1 Introduction and Motivation ........................................................................................... 103 

4.2 Human Machine Interface (HMI) Structure and Process ............................................... 104 

4.3 Test-Bench for Human Machine Interface (HMI) .......................................................... 106 

4.4 National Aeronautics and Space Administration (NASA) Task Load Index (TLX) ...... 107 

4.4.1 Participants and Inclusion / Exclusion Criterion .................................................. 108 

4.5 EXPERIMENT 1: Fine Movement Experiment ............................................................. 109 

4.5.1 Methods ................................................................................................................. 109 

4.5.2 Data Analysis ........................................................................................................ 112 

4.5.3 Results ................................................................................................................... 114 

4.5.4 Summary ............................................................................................................... 136 

4.6 EXPERIMENT 2: Gross Movement Experiment ........................................................... 137 

4.6.1 Methods ................................................................................................................. 137 

4.6.2 Data Analysis ........................................................................................................ 140 



 

 

vii 

 

 

4.6.3 Results ................................................................................................................... 142 

4.6.4 Summary ............................................................................................................... 163 

4.7 NASA TLX Results ........................................................................................................ 163 

4.7.1 Healthy Participants .............................................................................................. 163 

4.7.2 Healthy Restricted (Occupational Therapy Students) Participants ....................... 164 

4.7.3 NASA TLX Result Summary ............................................................................... 164 

4.8 Modality Rating .............................................................................................................. 165 

4.9 Discussion and Conclusion ............................................................................................. 166 

Chapter 5 : Discussion, Conclusion, and Future Work ......................................................... 169 

Summary: ................................................................................................................................ 169 

5.1 Discussion and Conclusion ............................................................................................. 170 

5.1.1 Modality Selection for the SCI Injury Level ........................................................ 172 

5.1.2 Modality Match Methodology .............................................................................. 173 

5.2 Future Work .................................................................................................................... 174 

5.2.1 Device Upgrades ................................................................................................... 174 

References .................................................................................................................................. 181 

Abstract ...................................................................................................................................... 197 

Autobiographical Statement .................................................................................................... 200 

 

  



 

 

viii 

 

 

LIST OF TABLES 

Table 1:  Summary of physical limitations and residual functionality of complete and .................... 11 

Table 2: ICF Structure. ............................................................................................................................ 15 

Table 3: Power consumption of the device. ............................................................................................ 35 

Table 4: MANOVA results for Experiment 2 based on estimated marginal means ........................... 47 

Table 5: Available features for the L-16 actuators [96]. ........................................................................ 59 

Table 6: Summary of the Arduino Duemilanove microcontroller board. ........................................... 62 

Table 7: Trigger and command words used in the voice control modality. ........................................ 70 

Table 8: Summary of the maximum force at the end effector resulting from the change in the ....... 96 

Table 9: Current consumption and battery life for all the three modalities and lift assist. ............... 99 

Table 10: Estimated marginal mean of time (minutes) values of the levels ....................................... 115 

Table 11: ANOVA analysis for the fine movement experiment of healthy........................................ 115 

Table 12: Estimated marginal mean of time (minutes) values ............................................................ 116 

Table 13: ANOVA results for the fine movement experiment with healthy ...................................... 117 

Table 14: Estimated marginal mean of time (minutes) values ............................................................ 118 

Table 15: ANOVA results for the fine movement experiment of healthy .......................................... 118 

Table 16: Estimated marginal mean of time (minutes) values ............................................................ 124 

Table 17: ANOVA results for fine movement experiment of occupational therapy ......................... 124 

Table 18: Estimated marginal mean of time (minutes) values ............................................................ 125 

Table 19: ANOVA results for fine movement experiment of occupational therapy ......................... 126 

Table 20: Estimated marginal mean of time (minutes) values ............................................................ 127 

Table 21: ANOVA results for fine movement experiment of occupational therapy ......................... 128 

Table 22: Estimated marginal mean of time (minutes) values ts only................................................ 143 

Table 23: ANOVA results for the gross movement experiment with healthy participants.............. 144 



 

 

ix 

 

 

Table 24: Estimated marginal mean of time (minutes) values ............................................................ 145 

Table 25: ANOVA results for the gross movement experiment with healthy ................................... 146 

Table 26: Estimated marginal mean of time (minutes) values ............................................................ 147 

Table 27: ANOVA results for the gross movement experiment with healthy ................................... 147 

Table 28:  Estimated marginal mean of time (minutes) values ........................................................... 152 

Table 29: ANOVA results for the gross movement experiment ......................................................... 152 

Table 30: Estimated marginal mean of time (minutes) values ............................................................ 153 

Table 31:  ANOVA results for the gross movement experiment ........................................................ 154 

Table 32: Estimated marginal mean of time (minutes) values. ........................................................... 155 

Table 33: ANOVA results for the gross movement.............................................................................. 156 

Table 34: Average of the NASA TLX results for the healthy participants ........................................ 164 

Table 35: Average of the NASA TLX results for the occupational therapy ...................................... 164 

Table 36: Most challenging level............................................................................................................ 165 

Table 37: Control modalities ranked by the participants. .................................................................. 165 

 

  



 

 

x 

 

 

LIST OF FIGURES 

Figure 1: Specific research objectives summarized ................................................................................. 5 

Figure 2: Shows the modality selection method fitting the user with upper extremity ........................ 7 

Figure 3: Anatomy of the spinal cord showing the corresponding body parts [21]. ............................. 9 

Figure 4: ICF structure. ........................................................................................................................... 14 

Figure 5: Framework of International Classification ............................................................................ 16 

Figure 6: Evolution of reachers from the basic model in 1918 ............................................................. 17 

Figure 7: Individual using assistive robotic arm mounted on a wheelchair [29-30]. .......................... 18 

Figure 8: Different iterations of the wheelchair robotic arm [31-32]. .................................................. 18 

Figure 9: The extendable wheelchair robotic arm designed for opening door knobs [33]. ................ 19 

Figure 10: The figure on the left shows the entire mobile manipulator ............................................... 20 

Figure 11: This figure shows the object placement experiment ........................................................... 20 

Figure 12: Left: Four of the six doors that the robot successfully opened ........................................... 21 

Figure 13: The Dusty robot on the left and the remote on the right .................................................... 22 

Figure 14: The Figure showing various body bots [7, 71-76, 82]. ......................................................... 23 

Figure 15: Variations of the modern exo-skeletal robotic arms [50-55]. ............................................. 24 

Figure 16: Proposed model and the built robotic arm with 7 degrees of freedom [89, 90]. ............... 25 

Figure 17: i-limb ultra-prosthetic hand by touch bionics [1]. ............................................................... 25 

Figure 18: The Luke Arm. ....................................................................................................................... 26 

Figure 19: The Smart Assistive Reacher Arm ........................................................................................ 31 

Figure 20: The L-12 linear actuator [96] (left),  VR stamp module  .................................................... 32 

Figure 21: The driver circuit for the reacher arm (left) and the block diagram ................................ 33 

Figure 22: This Figure shows the Pilot Test being conducted .............................................................. 35 

Figure 23: Polaris and the reflector unit ................................................................................................. 36 



 

 

xi 

 

 

Figure 24: Participant's progress throughout the experiment ............................................................. 39 

Figure 25: This figure shows the participant moving the object .......................................................... 40 

Figure 26:  (a) Cell phone falls  ................................................................................................................ 40 

Figure 27: Left: Color coded test bench with three levels ..................................................................... 42 

Figure 28: Test bench levels and distance from the test bench. ............................................................ 43 

Figure 29: Start and end points of the experiment. ............................................................................... 44 

Figure 30: Errors within the test bench are shown (a-c) ....................................................................... 45 

Figure 31: This figure shows participants performance at different points ........................................ 46 

Figure 32: Estimated mean values of the levels (in minutes) ................................................................ 46 

Figure 33: Individual participant performance time in minutes .......................................................... 47 

Figure 34: Box plot and average of the healthy participants’ ............................................................... 48 

Figure 35: Multi-modal control and end effector units. ........................................................................ 53 

Figure 36: Final assembly of the Exo-Skeletal Assistive Robotic Arm (eSARA). ............................... 54 

Figure 37: Evolution of eSARA ............................................................................................................... 55 

Figure 38: (a) Zeiss S21 [98] stand used to support eSARA’s weight .................................................. 56 

Figure 39: Firgelli L16-P actuators. The actuator on the top (50mm) was used ................................. 57 

Figure 40: L16-P actuator load vs. force (left) and current vs. force plots (right) [96]. ..................... 58 

Figure 41: The innovator X® elbow brace by Össur [99]. ..................................................................... 59 

Figure 42: Claw kit and 2-wire motor 393 from VEX Robotics [100]. ................................................ 60 

Figure 43: Machined parts of eSARA a) Top of the arm used to hold the extension rail, ................. 61 

Figure 44: Arduino Duemilanove board with Atmel Atmega 328 chip [101, 102]. ............................. 64 

Figure 45:  Examples of the color coded push buttons used in the device. .......................................... 64 

Figure 46: Slider used to control extension and grasping. .................................................................... 65 

Figure 47: VRbot by Veear [103]............................................................................................................. 65 

Figure 48: The FSR sensor by Interlink Electronics [104]. ................................................................... 66 



 

 

xii 

 

 

Figure 49: Lithium polymer battery: 11.1V, 55.5Wh with 5000mAh. ................................................. 66 

Figure 50: Safety and power switches ..................................................................................................... 67 

Figure 51: Hierarchy of the system firmware. ....................................................................................... 68 

Figure 52: Flow chart of the control mode and lift assist processes. .................................................... 69 

Figure 53: Voice control mode showing VRbot and the Graphic User Interface ............................... 71 

Figure 54: Button Control mode.............................................................................................................. 72 

Figure 55: Slider Control Mode. .............................................................................................................. 72 

Figure 56: The PID controller concept (left) and the PID algorithm (right). ...................................... 74 

Figure 57: PID Tuning .............................................................................................................................. 74 

Figure 58: The calibrated BA (left) and the calibrated TA using BA as the primary actuator. ........ 75 

Figure 59: Distance travelled by biceps actuator vs. tricpes actuator  ................................................. 76 

Figure 60: Actual BA vs. TA potentiometer position feedback from the actuator counts ................. 77 

Figure 61: Atmega328 pin mapping to Arduino. ................................................................................... 78 

Figure 62: Handshake protocol between Arduino and VRbot. ............................................................ 80 

Figure 63: Allocated command words for the VRbot. ........................................................................... 81 

Figure 64: (a) Equations used to define variables in the code  .............................................................. 83 

Figure 65: Full circuit diagram interfacing all the control modes for extension and grasping. ........ 84 

Figure 66: Atmega328 micro controller used for the button modality. ............................................... 85 

Figure 67: Atmega328 micro controller used for the slider modality. ................................................. 85 

Figure 68: Atmega328 micro controller used for the voice modality. .................................................. 86 

Figure 69: L298P motor-driver controlling the extension and grasping motors. ............................... 86 

Figure 70: Modality control switch. ........................................................................................................ 86 

Figure 71: Full circuit diagram interfacing both of the pressure sensors for the lift assist feature. . 87 

Figure 72: Atmega328 micro controller used for the lift assist pressure sensors. ............................... 88 

Figure 73: L298P motor-driver controlling the first set of biceps and triceps actuators. .................. 89 



 

 

xiii 

 

 

Figure 74: L298P motor-driver controlling the second set of biceps and triceps actuators. .............. 89 

Figure 75: Voltage regulation circuit. ..................................................................................................... 89 

Figure 76: This Figure shows stages of the Printed Circuit Board (PCB) for the .............................. 90 

Figure 77: Figure showing eSARA with minimum and maximum extension. .................................... 91 

Figure 78: Figure showing eSARA minimum and maximum lift assist angles ................................... 93 

Figure 79: Side view of eSARA showing three flex angles for force calculations. .............................. 94 

Figure 80: Calculations based on the measurements from Computer Aided Design ......................... 95 

Figure 81: 17.85lb weight start and end point when moved with the eSARA platform. .................... 97 

Figure 82: Current measuring experiment showing all the three modes, button, slider and voice ... 98 

Figure 83: The final assembly of the Exo-Skeletal Assistive Robotic Arm. ....................................... 104 

Figure 84: HMI structure and process flow. ........................................................................................ 105 

Figure 85: (a) Color coded Test bench with three levels to be used for the experiment ................... 106 

Figure 86: Structure of the NASA TLX for the fine movement and gross movement ..................... 108 

Figure 87: (a) Test-bench (b) Color-coded pegs for the fine movement experiment. ....................... 109 

Figure 88: Start and end points of the fine movement experiment. ................................................... 110 

Figure 89: (a-d) Errors counted within the testbench that must be rectified (e) error outside ....... 111 

Figure 90: One mode, all levels for fine movement. ............................................................................. 113 

Figure 91: All modes, one level for fine movement. ............................................................................. 113 

Figure 92: Time performance of healthy participants during the fine movement ............................ 114 

Figure 93: Box and whisker plot of the time performance of healthy ................................................ 116 

Figure 94: Box and whisker plot of the time performance of healthy ................................................ 117 

Figure 95: Individual time performance of healthy participants ....................................................... 119 

Figure 96: Individual time performance of healthy participants ....................................................... 120 

Figure 97: Individual time performance of healthy participants ....................................................... 120 

Figure 98: Individual time performance of healthy participant ......................................................... 121 



 

 

xiv 

 

 

Figure 99: Individual time performance of healthy participants (slider) .......................................... 121 

Figure 100: Individual time performance of healthy participants (voice) ......................................... 122 

Figure 101: Box and whisker plot of the time performance  ............................................................... 123 

Figure 102: Box and whisker plot of the time performance ................................................................ 125 

Figure 103: Box and whisker plot of the time performance ................................................................ 127 

Figure 104: Individual time performances of the occupational therapy participants ...................... 128 

Figure 105: Individual time performances of the occupational therapy participants ...................... 129 

Figure 106: Individual time performances of the occupational therapy participants ...................... 130 

Figure 107: Individual time performance of the occupational therapy participants........................ 130 

Figure 108: Individual time performance of the occupational therapy participants........................ 131 

Figure 109: Individual time performance of the occupational therapy participants........................ 131 

Figure 110: Individual time performances of all participants ............................................................ 132 

Figure 111: Individual time performances of all participants ............................................................ 133 

Figure 112: Individual time performances of all participants ............................................................ 133 

Figure 113: Individual time performances of all participants ............................................................ 134 

Figure 114: Individual time performances of all participants ............................................................ 135 

Figure 115: Individual time performances of all participants ............................................................ 135 

Figure 116: (a) The test-bench (b) Color-coded bottles of various weights. ...................................... 137 

Figure 117: Start and end points for the gross movement experiment. ............................................. 138 

Figure 118: Bottles are marked with a red rectangle to show the additional support ..................... 139 

Figure 119: (a) and (b) Examples of errors for the gross movement ................................................. 140 

Figure 120: One Mode all level for gross movement ........................................................................... 141 

Figure 121: All Modes One level for gross movement ......................................................................... 142 

Figure 122: Box and whisker plot of the time performance of healthy participants ........................ 143 

Figure 123: Box and whisker plot of the time performance of healthy .............................................. 145 



 

 

xv 

 

 

Figure 124: Box and whisker plot of the time performance of healthy participants during the gross 

movement experiment using the voice modality on all three height levels. ....................................... 146 

Figure 125: Individual time performance of healthy participants ..................................................... 148 

Figure 126: Individual time performance of healthy participants ..................................................... 148 

Figure 127: Individual time performance of healthy participants ..................................................... 149 

Figure 128: Individual time performance of healthy participants ..................................................... 149 

Figure 129: Individual time performance of healthy participants ..................................................... 150 

Figure 130: Individual time performance of healthy participants ..................................................... 150 

Figure 131: Box and whisker plot of the time performance of occupational therapy ...................... 151 

Figure 132: Box and whisker plot of the time performance of the occupational therapy ................ 153 

Figure 133: Box and whisker plot of the time performance of occupational therapy ...................... 155 

Figure 134: Individual time performance of occupational therapy participants .............................. 156 

Figure 135: Individual time performance of occupational therapy participants .............................. 157 

Figure 136: Individual time performance of occupational therapy participants .............................. 157 

Figure 137: Individual time performance of the occupational therapy participants........................ 158 

Figure 138: Individual time performance of the occupational therapy participants........................ 158 

Figure 139: Individual time performance of the occupational therapy participants........................ 159 

Figure 140: Individual time performance of all participants, and their average .............................. 160 

Figure 141: Individual time performance of all participants and their average ............................... 160 

Figure 142: Individual time performance of all participants and their average ............................... 161 

Figure 143: Individual time performance of all participants and their average ............................... 161 

Figure 144: Individual time performance of all participants and their average ............................... 162 

Figure 145: Individual time performance of all participants and their average ............................... 162 

Figure 146: Methodology for modality selection for SCI participants. ............................................. 173 



1 

 

 

 

Chapter 1: Introduction Background, Motivation, and Significance 

In everyday life, human beings often perform many simple tasks such as reaching over the 

edge of the table to grasp a piece of paper or bending down to pick up a fallen pen. Such simple 

tasks become a challenge for a person who has physical limitations. These physical deficiencies 

may be the result of a birth defect or a traumatic incident. In either case, the person becomes less 

self-sufficient. In the case of severe spinal injuries, some people are forced to accept and adapt a 

lifestyle they never thought existed. To overcome some of these obstacles, engineers have 

designed various assistive robotics over the years. These assistive devices come in a vast variety, 

ranging from simple reachers to smart prosthetic limbs with brain control capabilities [1] with the 

goal of giving some level of autonomy back to the physically challenged person.  

This research was conducted to facilitate improved autonomy of a targeted group of 

individuals with spinal cord injury (SCI) at levels C5 to C7 relating to upper extremity injures. 

The specific population was selected as the existing technology was either too expensive, too 

bulky or was unable to address their needs in regards to upper extremity mobility. The residual 

functionality in the limbs and the lack of motor ability of the wrist and fingers makes it difficult 

for the existing technology to be customized for specific injury level. The unavailability of 

existing devices to provide multimodal controls also limits support to the SCI individuals.  

The motivation of this research was to provide multimodal control of an assistive device 

based on a range of basic human movements that were possible by the population under 

consideration (button pushing, lever sliding, and speech). The main idea was to create an 

evaluation methodology based on a user platform with multiple modes of control. The controls 

would be operational on the range of movement of the SCI participants. The multiple modality 

control would allow customization of the platform based on an individual’s level of SCI. 
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Creating devices that allow multiple modes of operation would immensely improve the 

customizability of the device and influence the quality of life for the group under discussion. The 

techniques described herein may also prove useful for all individuals with temporary or 

permanent upper extremity movement restrictions.  

1.1 Aims and Scopes of Research   

Given that spinal cord injury results in a wide variety of deficits, even for the small range 

of levels (C5-C7) targeted here, a one-size-fits-all approach to assistive devices was not optimal. 

Furthermore, a custom solution for all individuals was impractical. The goal of this research was 

to understand the capabilities of C5-C7 injured individuals and develop and evaluate modes of 

control and methods of evaluation for a reacher/grasper prototype that would allow for a flexible 

interface. The focus of the research was to study the human interaction with the device when 

performing reaching and grasping tasks and to develop a testing methodology that would allow 

for practical levels of customization.  

A series of experiments was conducted to test the Human Machine Interface (HMI) with 

generalized control modes to determine what mode best fits the level of injury for the 

participating SCI individual. The key testing method compared an SCI participant performance 

with the average of healthy individuals using the same device. If the modality could bring the 

SCI individual to the level of performance of the healthy individual using the same control 

scheme, it would be considered a successful implementation. It was hypothesized that given a 

range of spinal cord injuries a clear delineation of classes of modes of control and a method of 

evaluation of these modes will result in a usable interface. 
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To achieve this goal, the following hypotheses were proposed: 

(1) Reach and grasp tasks with designed platforms with multiple modes of control and useful 

features would be feasible to be used by an SCI participant. 

a. Control modes can be matched to the functionality of SCI individuals. 

b. Utilizing reach extension would be beneficial and feasible. 

c. Lift assist would prove vital when lifting heavy objects.  

d. Signs or reports of fatigue or distress (recorded during the experiments by 

verbally asking the participants) would be absent. 

(2) A methodology to evaluate multiple modes of operating the device can be created.  

a. Multi-modal control would provide devise customization.  

b. Movement time and errors of the SCI participant, within the limits set by a 

healthy adult group using the same device for both ‘fine movement’ and ‘gross 

movement’ experiments, is a key metric of success. 

1.2 Specific Research Objectives 

To achieve the above hypotheses, the following specific research objectives were developed: 

(1) Develop a baseline platform of a light weight, voice activated, Simple Assistive Reacher 

Arm (SARA) and compare the performance of the SCI participant to normal individuals 

using the same device. 

The first prototype was developed with a fixed reaching length and the most basic modality 

for use – voice activation. The reacher was then evaluated with a case study involving an SCI 

participant’s time performance to that of the healthy participant’s time performance. The aim 

was to simply test the most basic mode of operation and compare the result with healthy 

individuals to create a baseline approach for comparison. 
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(2) Create a methodology for testing and evaluation of multi-modes of control. This 

objective required expanding the existing platform and development of an Exo-Skeletal 

Assistive Robotic Arm (eSARA) with multiple modes of control that could be 

customized and optimized for use with a range of capabilities. This platform also 

consisted of an added feature called smart lift assist mechanism, to enable SCI 

participants to lift daily life objects with ease. 

As more features were added, more dexterity and modes of control were needed. A second 

prototype was then designed with additional features such as extendable reaching length, lift 

assist, and most critically, different modes of controls for SCI individuals with upper extremity 

limitations. The control modes used were categorized as (1) ballistic modality with no extremity 

movement required (voice activated) (2) ballistic control mode (like pushing) that required 

minimal movement of the extremities and (3) continuous control mode (like sliding a joystick) 

that may require major (continuous) movement of the extremity. 

(3) The third research objective was to conduct an extensive Human Machine Interface 

(HMI) study to evaluate all the control modes and the lift assist of the device. This HMI 

study was conducted to evaluate the level of control most feasible for the SCI participant 

based on the participant’s level of injury.  

The Figure 1 below summarizes these research objectives. 
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Figure 1: Specific research objectives summarized [Spinal Cord Injury individuals (SCI), Simple 

Assistive Reacher Arm (SARA), Exo-Skeletal Robotic Arm (eSARA)]. 

1.3 Novelty and Significance of the Research 

This research was conducted to design and evaluate a reaching arm with different 

selectable modes of control and lift assist features. It has always been an issue to customize an 

assistive device for multiple users within a targeted population [2-6]. The issue of technology 

customization can be driven by the patients’ physical differences (e.g. weight, height, or level of 

strength) or differences in the severity of the injury. One of the common issues when 

customizing assistive technology is the lack of flexibility to control the device. The majority of 

the assistive devices have one unique way, or mode, of controlling the device, limiting the 

usability of the device to a small population. 

The modes considered for this research were categorized as ballistic control modes and 

continuous control modes for the user interface modalities. Both modes, ballistic and continuous, 

were studied with SCI individuals to determine suitability for a specific level of injury.  
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This research also focuses on devising a methodology to fit a modality to a specific SCI 

individual. The three modalities chosen for this research were based on simplistic and basic 

human movement characteristics. The modes of control for this research were: 

1. Voice control mode, basic speech requiring very little or no physical involvement. This 

mode was categorized as ballistic modality with no extremity movement required.  

2. Button control mode, basic pressing action repeatedly performed by SCI individuals with 

precision and very little effort. This mode was categorized as ballistic control mode that 

required minimal movement of the upper extremities. 

3.  Slider control mode, basic pushing or pulling repeatedly performed by SCI individuals 

with precision and very little effort. This mode was categorized as continuous control 

mode requiring the major (continuous) movement of the upper extremities. 

To evaluate these modes two different test platforms were created. Both these platforms 

shared a test-bench that was also specifically designed to evaluate the control modes based on 

fine and gross movement. These platforms are discussed in detail in chapters 2 and 3, 

respectively. Evaluation of ballistic versus continuous mode of control and the Human Machine 

Interface (HMI) is discussed thoroughly in chapter 4.  

Currently available reachers are mostly mechanical, requiring motor skills that preclude 

many users. Furthermore, use of voice control is generally lacking in the majority of these 

assistive reaching devices.  Therefore, a voice interface is well-suited for users that have very 

limited extremity control. 

Figure 2 summarizes the entire aim of the thesis. Briefly, to fit a user with upper extremity 

limitation to a device that can be customized for the given modes and can be used by all. The 

figure shows that each modality, ballistic (no/minor extremity movement) or continuous, were 
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given for the device. Then with the modality selection methodology developed in this research 

the outcome was targeted to the specific level of spinal cord injury (C5-C7).  

 
Figure 2: Shows the modality selection method fitting the user with upper extremity disability with 

a modality best suited for their injury.  
 

The background and significance of this research is discussed in the next section (1.4). 

This section provides background on the spinal cord injury used as the framework for the 

research. This section also gives a brief overview of existing assistive devices and identifies gaps 

in the technology for users with upper extremity disability and residual functionality. 

1.4 Background and Significance 

Some exoskeletal arms and body suits that are available are not only extremely expensive 

and bulky but also require nerve endings to be connected to the electronics [2, 7-12]. Such 

devices generally rely on signals produced in the nerve endings called myo-electric signals. The 

majority of these devices require surgical procedures for connecting the nerve endings to the 

device. By measuring the myo-electric signals, it is possible to provide a replacement device for 
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lost limbs that uses the electro-myographic activity of a contracting muscle as a control signal. 

These devices are most commonly used for below-elbow amputees with retained elbow function. 

Some leading companies, such as Touch Bionics [1, 13-20], have developed limbs that mimic 

human hand movements and are controlled voluntarily by the patient. Again these devices are 

normally designed for treating amputation-related injuries. A vast majority of the assistive 

technology focuses more on technological advancements for amputations and less on residual 

functionality assistive devices. A simple, light weight, voice activated extender/reacher has yet to 

be developed that enables individuals with residual functionality to accomplish simple tasks.  

1.4.1 Spinal Cord Anatomy 

The classification of spinal cord injury is often linked to the specific location along the spinal 

cord/vertebrae with each of these injury locations resulting in drastically different deficits. To 

control various parts of the body there are numerous nerve endings that connect to the brain. 

These nerves run through the body and are connected to a major structure called the spinal cord. 

The spinal cord can be considered a superhighway for messages between the brain and the rest of 

the body. The spinal cord runs through numerous linked bones that surround most of its length 

called vertebrae [21]. These vertebrae are divided as follows: 

• 7 cervical vertebrae (located in the neck) 

• 12 thoracic vertebrae (located in the trunk) 

• 5 lumbar vertebrae (located in the lower back) 

• 5 sacral vertebrae (located in the pelvis) 

• 4 fused vertebrae that form the coccyx 

31 pairs of spinal nerves connect with the spinal cord through nerve roots and travel to 

specific parts of the body. For example, the pair of spinal nerves connecting with the spinal cord 
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in the region of the C2 vertebra travels to the head and neck. Injury to this portion of the spine 

results in severe deficits from the head and neck all through the body. The spinal nerves 

attaching to the cord in the region of the L4 vertebra run to specific muscles in the legs and 

specific areas of skin in the calves. Hence, injury at this level relates to deficits in the legs and 

calves. Figure 3 illustrates where in the body the spinal cord nerves extend. 

   

Figure 3: Anatomy of the spinal cord showing the corresponding body parts [21]. 

1.4.2 The Level of a Spinal Cord Injury (SCI) 

The reference vertebra closest to the injury defines the level of the spinal cord injury. For 

example, an injury to the spinal cord at the level of the sixth cervical vertebra would be referred 

to as a C6 injury (“C” for cervical). An injury to the cord between the C6 and C7 vertebrae 

would be called a C6-7 injury. A T12 injury occurs at the level of the 12th thoracic (T) vertebra. 

An L3 injury occurs at the level of the third lumbar (L) vertebra [21, 22]. 

Spinal cord injuries alter communication between the brain and the parts of the body 

below the level of injury. This reduced communication or total loss of communication, to 

specific areas of the body can cause paralysis. The closer the injury is to the head, the greater the 
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area of the body affected. For example, an individual with a T10 injury (located in the lower 

middle back) may lose use of his legs (paraplegia) but his arms would not be affected. An 

individual with a C4 injury (located in the middle of the neck) may lose use of her legs and arms 

(referred to as quadriplegia)[23]. 

SCI is also classified according to the person's loss of motor and sensory function. The 

following are the main types of classifications: 

• Quadriplegia consists of loss of movement and sensation in all four limbs. It usually 

occurs as a result of injury at T1 or above. Quadriplegia can affect the chest and may 

result in breathing aid requirements. 

• Paraplegia consists of loss of movement and sensation in the lower half of the body. It 

usually occurs as a result of injuries at T1 or below. 

• Triplegia consists of the loss of movement and sensation in one arm and both legs and 

usually results from incomplete SCI. 

1.4.3 Physical Limitations and Residual Functionality of Incomplete and 

Complete Spinal Cord Injuries 

Spinal injury results in either complete or incomplete loss of sensation and motor ability 

of the individual. Complete injuries result in total loss of sensation and function below the injury 

level where as incomplete injuries result in partial loss. Paraplegia and quadriplegia can be 

associated with either total or partial loss. An incomplete injury leaves the individual with some 

residual functionality below the level of the injury. For example, an individual may have 

weakness of the forearm but is still able to move his or her index finger. In some cases an 

individual may lose the ability to use muscles below the level of the injury only on one side of 

the body, while losing pain and temperature sensation on the other side of the body [24-28]. 
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The International and American Spinal Injury Association (ASIA) [23, 29, 30] define an 

incomplete spinal cord injury as one in which the person has some spinal cord function preserved 

below the injury level. A complete injury results in total loss of sensation and muscle control 

below the level of the injury. According to ASIA, half of all spinal cord injuries result in 

complete spinal cord injury. These injuries do not require cutting of the cord but often result 

from bruising of the cord or loss of blood flow to the cord. Therefore, a complete injury does not 

mean that there is no hope of any improvement.  

All spinal cord injury patients can improve slightly over a period of time, but only 0.9% 

fully recovers with the exception for the incomplete-preserved motor functions. A greater 

number of injuries result in quadriplegia. Chances of quadriplegia increase at age 45 and increase 

further after age 60 [21, 22]. 

1.4.4 Physical Limitations and Mobility Challenges of the C6-C7 SCI 

Individuals (upper extremity challenges and residual functionalities) 

Table 1 compares the specific level of SCI and the resulting rehabilitation potential. 

Impairments and rehabilitation potential can vary depending on the type and severity of SCI. The 

table focuses only on upper extremity injuries (levels C5 to C7). 

Injury 
Level 

Result of Injury Residual Functionality 

Level C5 Quadriplegia that permits the right 
shoulder and elbow functionalities 

 Assistive devices were needed to help while 
eating. Self-assisting devices may be used. No 
ventilator needed 

Level  C6 Quadriplegia that permits  
shoulder, elbow and some wrist 
movements 

Ability to propel wheelchair. No assistance 
required for feeding, groom, and dress self; 

Level  C7 Quadriplegia resulting in 
restricted shoulder, elbow, wrist, 
and hand functionalities  

Ability to propel wheelchair, driving with 
assistance can be achieved 

Table 1:  Summary of physical limitations and residual functionality of complete and 
incomplete spinal cord injuries. 
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1.4.5 SCI Statistics 

The majority of patients with injuries above the C3 level die before receiving medical 

treatment and those who survive are dependent on mechanical respirators to breathe. Similarly, 

fifty percent of all SCI cases are associated with other injuries as well [31, 32]. The following list 

provides spinal cord injury statistics showing the need for assistive technology.  

• 270,000 Americans are currently living with an SCI. 

• 52% of spinal cord injured individuals are considered paraplegic and 47% quadriplegic. 

• Approximately 11,000 new injuries occur each year. 

• 82% of SCI patients are male. 

• 56% of injuries occur between the ages of 16 and 30. 

• The average age at the time of injury is 31. 

• The most rapidly increasing cause of injuries is violence; vehicular accident injuries are 

decreasing in number. 

• 89% of all SCI individuals are discharged from hospitals to a private home; 4.3% are 

discharged to nursing homes. 

• Only 52% of SCI individuals are covered by private health insurance at the time of 

injury. 

The above statistics have increased the demand for assistive robotics to be developed to help 

improve the lives of the patients suffering from such injuries. Improvements have been made in 

order to resolve simple tasks such as moving objects from one position to another. Various 

machines, gadgets, and robotic devices have been developed to assist these individuals [33, 34]. 

Wheelchairs with motors have been developed so that SCI individuals are less dependent on 
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others and can manually maneuver themselves with ease. Certain equipment is also available that 

allows the physically challenged individuals to utilize computers without much trouble.  

1.5 International Classification of Functioning, Disability and Health 
(ICF) Framework to Establish with Research 

ICF provides a framework and classifications for rehabilitation purposes designed to serve 

various disciplines and different sectors. Its specific aims are summarized as follows: 

• “To provide a scientific basis for understanding and studying health and health-related 

states, outcomes and determinants; 

• To establish a common language for describing health and health-related states in order 

to improve communication between different users, such as health care workers, 

researchers, policy-makers and the public, including people with disabilities; 

• To permit comparison of data across countries, health care disciplines, services and time; 

• To provide a systematic coding scheme for health information systems” [35-39]. 

These aims are interrelated in order to construct a meaningful and practical system that can 

be used by various consumers for health policy, quality assurance, and outcome evaluation in 

different cultures.  

ICF has been used for various purposes including: 

• “As a statistical tool – in the collection and recording of data (e.g. in population studies 

and surveys or in management information systems); 

• As a research tool – to measure outcomes, quality of life or environmental factors; 

• As a clinical tool – in needs assessment, matching treatments with specific conditions, 

vocational assessment, rehabilitation and outcome evaluation; 
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• As a social policy tool – in social security planning, compensation systems and policy 

design and implementation; 

• As an educational tool – in curriculum design and to raise awareness and undertake social 

action” [35-39].  

1.5.1 ICF Structure 

ICF has been accepted as one of the United Nations social classifications and was 

referred to in and incorporates The Standard Rules on the Equalization of Opportunities for 

Persons with Disabilities. 

ICF can apply not only to people with disabilities but also people without disabilities. 

The health and health-related states associated with all health conditions can be described using 

ICF. In other words, ICF has universal application. Figure 4 and Table 2 outline the structure of 

the ICF.  

 
Figure 4: ICF structure.  
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The model in the figure above can be represented in the following table: 

 Part 1: Functioning and Disability Part 2: Contextual Factors 
Components Body Functions 

and Structures 
Activities and 
Participation  

Environmental 
Factors 

Personal Factors 

Domains Body Functions 
Body Structures 

Life areas (tasks, 
actions) 

External 
influences on 
functioning and 
disability 

Internal 
influences on 
functioning and 
disability 

Constructs Changing in body 
functions 
(physiological) 
Change in body 
structures 
(anatomical) 
 

Capacity 
Executing tasks 
in standard 
environment 
Performance 
executing tasks in 
the current 
environment 

Facilitating or 
hindering impact 
of features of 
physical, social 
and attitudinal 
world 

Impact of 
attributes of the 
person 

Positive aspect Functional and 
structural integrity 

Activities  
Participation 

 
Facilitators 

 
Not applicable 

 Functioning 
Negative aspect Impairment Activity 

limitation 
Participation 
restriction 

 
Barriers / 
hindrances 

 
Not applicable 

 Disability 

Table 2: ICF Structure.  

The ICF model can be used as a problem solving tool in occupational therapy and 

rehabilitation [37, 40]. The ICF can be used as a tool to evaluate the role of environment [36]. A 

further simplified model can be used for less complicated problem solving following the ICF 

framework [38, 39]. Figure 5 shows an individual's functioning in a specific domain as an 

interaction or complex relationship between the health condition and contextual factors (e.g. 

environmental and personal factors). There is a dynamic interaction among these entities where 

interventions in one entity have the potential to modify one or more of the others. These 

interactions are specific and not always in a predictable one-to-one relationship. The interaction 

works in two directions where the presence of disability may even modify the health condition 
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itself. To infer a limitation in capacity from one or more impairments, or a restriction of 

performance from one or more limitations, may often seem reasonable [41]. It is important, 

however, to collect data on these constructs independently and thereafter explore associations 

and causal links between them. If the full health experience is to be described, all components 

should be considered. 

 
Figure 5: Framework of International Classification of Functioning, Disability and Health by the 

World Health Organization [35, 41]. 
 

1.6 Overview of Current Assistive Devices and their Limitations 

Over the past several years there have been a lot of different assistive devices that have 

helped a number of spinal cord injured patients. These assistive devices range in complexity 

from a simple reacher to a fully functional robotic arm that works on the residual functionality 

present in an amputated arm. Other forms of assistive robots come as wheelchair extensions 

often designed as robotic arms that protrude out of the wheelchair and assist in different tasks [2, 

3]. This section discusses the assistive devices focusing on their usability for SCI patients with 
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severe upper extremity disability. The devices were also accessed based on their appearance as 

user friendly and ability to draw less or no attention to the disability.  

1.6.1 Types and Classifications of Assistive Devices 

1.6.1.1 Assistive Reachers 

Current reaching devices are not that different from the ones invented in the early 1900s 

(see Figure 6) [42-44]. These devices were designed to grasp an object and move it from one 

place to another, similar to the current reachers [4]. Some extendable reachers were developed 

based on the telescopic mechanism [45]. Besides assisting in self-gripping of an object, available 

reachers have also been designed for a variety of other purposes for assisting the physically 

challenged including functioning as  a dressing aid [46] or walking assistance [47], whereas 

others provide assistance by self-gripping an object [48]. Some reachers are able to pick up tools 

with variable positions and take into account limitations of wrist or finger functionality [49-53].  

 

Figure 6: Evolution of reachers from the basic model in 1918 to the modern day top to bottom 
 [42-44, 47, 49]. 

1.6.1.2 Wheelchair Robotics 

Wheelchair robotics have evolved to provide a friendly user interface to control the 

assistive robots [54, 55]. The robot was mounted on the left side of the wheelchair and the 
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controls on the right side for a right handed individual. The figure below illustrates the 

complexity of the robotics but also the ease of use. 

 
Figure 7: Individual using assistive robotic arm mounted on a wheelchair [29-30]. 

The Weston wheelchair mounted with an assistive robot [56-62] was a typical example of 

wheelchair robotics. Using a normal wheelchair, a robotic arm is added behind the right shoulder 

and comes forward to cover a large radius towards the right. The following figures illustrate 

design similarities in the different iterations of the wheelchair robotic arm. 

 
Figure 8: Different iterations of the wheelchair robotic arm [31-32]. 
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Another example was an under actuated gripper to unlatch door knobs and handles [63]. 

The basic purpose of this assistive robotic design was to extend, grasp, and twist open door 

knobs. 

 
Figure 9: The extendable wheelchair robotic arm designed for opening door knobs [33]. 

Similarly, the wheelchair mounted robotic arm can be controlled with a virtual interface [64]. 

This robot provides methods for independent manipulation of objects in unstructured 

environments utilizing the wheelchair arm. The camera addresses the appropriateness of vision-

based input and the complexity of the hierarchy, comparing the human visual to a menu based 

system. Rigorous calculations and tasks were taken into considerations for a simple human 

judgment call [65]. For example, to pick up an object from a table an individual with SCI would 

prefer his vision abilities to rely on rather than picking from a menu. 

1.6.1.3 Mobile Robots (EL-E Robotic Arm) 

Another assistive robot was developed to perform tasks based on a command from a laser 

pointer. The tasks included grasping a pen from one end of the room and bringing it to the user at 

the other end of the room. The robot was controlled by using a clickable device with a laser 
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mounted at one end. Pointing the laser on the object triggers the robot to move towards the object 

grasps the object and clicking on the control device brings the robot to the desired position. The 

EL-E assistive mobile manipulator was developed to perform such functions [5, 6]. In addition 

the robot can be controlled with a touch screen display.   

 
Figure 10: The figure on the left shows the entire mobile manipulator with integrated interface 

system. The figure on the right shows the starting configuration, users can select object 
buttons on the ground and table to be picked up by the robot [5, 6]. 

The EL-E was also used to fetch objects from a flat surface autonomously [66, 67]. The 

robot moves to a flat surface, calculates the depth differences, subtracts the background and then 

picks up the desired object and takes it to the user. The following figure illustrates the motions. 

 
Figure 11: This figure shows the object placement experiment. The first image shows the three 

objects (TV remote, toothbrush and bowl) and the desired placement points (red 
circles). The second image shows the robot grasping the toothbrush, and the remaining 
three images show the robot placing the toothbrush, the TV remote, and the bowl [37-
38]. 
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The EL-E robot was also used to open doors [68, 69], a similar approach to that of the 

wheelchair robotic arm designed to open doors [63]. At first the EL-E robot was used to open 

doors with the laser pointer. Then a dog was used as a test participant in comparison to EL-E 

assistive robot to find the accuracy.  

 

Figure 12: Left: Four of the six doors that the robot successfully opened and traversed. The first 
row shows the robot twisting the door handles and the second row shows the robot after 
it has reversed the doorway [68]. Right: A service dog opens a door using a bandanna 
tied to the door handle and the assistive robot opens a door in an analogous manner 
[69].  
    

All the assistive robotics that have been discussed so far were either add on devices or an 

individual robot that was larger than the wheelchair in height. These robotic devices may be 

suitable for specified locations. However, wheelchair robotic arms have limited mobility and in 

some circumstances it is extremely difficult to maneuver around with assistive transportation 

systems. Due to the fixed dimensions of a standard wheelchair, addition of an overhanging third 

arm makes device usability extremely complex for SCI individuals.  

Another problem with these systems was a lack of user friendliness and no attempt to fit 

the technology with the deficit observed. In other words, the limitation was a lack of the 

flexibility needed in the interface. Just to get in and out of a wheelchair can be a daily challenge 

for individuals with spinal cord injuries (SCI). To add an additional arm that comes out of the 

wheelchair and is always present adds an additional restriction to their already limited mobility.  
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1.6.1.4 Dusty, An Assistive Mobile  

Dusty is an assistive mobile manipulator that retrieves dropped objects for people with 

motor impairments. It is a remote controlled assistive device developed to retrieve objects that 

were not within the reach of individuals with disabilities [70].  

 
Figure 13: The Dusty robot on the left and the remote on the right, a) the end effector, 

b) the lift, and c) the mobile base [70]. 

The dusty system can be tele-operated and once an object was reached the plate (see Figure 13a 

above) was adjusted to the object. Then the reaching finger at the end of the plate gathers the 

object into the plate. The object was then placed in the plate and the user moves dusty around so 

it can deliver the object to the user. Finally when dusty was close to the user the plate was raised 

by the lift (see Figure 13b above). 

This system was similar to the one described in [5, 6], but these type of assistive devices 

are unsuitable for the target population of this research. Keeping track of the device controls, the 

device itself, and the desired object would likely prove to be very challenging due to a lack of 

motor ability in the patients’ fingers and wrist. These motion limitations can potentially 

discourage the targeted populations from using such devices. 
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1.6.1.5 Exo-skeletal Robotics and Body Bots 

The robotic field took an amazing turn towards revolutionizing the industry with the 

introduction of Hybrid Assisted Limb [7, 71-77], HAL, often called the body bot, because these 

body bots are useful for not only upper or lower extremity injuries but also for the full skeleton. 

These body bots, or exo-skeletal robotics, were developed for future super soldiers, but have 

some applicability to SCI patients. Figure 14 shows the evolution of body bots over time. The 

full body robotics also provides the wearer with added strength comparable to that of a normal 

human. Several studies indicated the process by which these robots could be used for therapy 

[78-81]. While some of these devices help individuals recovering from stroke by allowing them 

to repeat a motion continuously, others support the individuals while walking or trying to regain 

balance.  

However, daily activities remain a challenge for patients with SCI of C5 to C7 levels. 

Utilizing a body robot would be an extreme challenge for these patients requiring them to suit 

up, perform the simple task, and then take off the suit. Furthermore, these devices are extremely 

delicate and require help of another individual to get suited and unsuited. Such unease may 

discourage the user from taking advantage of this technology. 

 
Figure 14: The Figure showing various body bots [7, 71-76, 82].  
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1.6.1.6 Exo-Skeletal Robotic Arms 

In addition to the full body robots, some work has been done on a single exo-skeletal 

robotic arm [83-87]. These arms were designed to perform and enhance the mobility of a normal 

human. Some of these arms were designed for future space missions[83]. Although these exo-

skeletal arms are very sophisticated and extremely light weight (only 5lbs), in some cases this is 

still too heavy for someone (e.g. SCI individual) whose maximum weight handling capacity is 

2.5 pounds. In some cases the exo-skeletal arms are supported by rod that either rests on the 

ground or is fixed to the wearer’s waist [88]. The following figures show some of these robotic 

arms. 

 
Figure 15: Variations of the modern exo-skeletal robotic arms [50-55]. 

Another example of an exo-skeletal arm is the SAM arm with 7 degrees of freedom 

(DOF) including wrist motion [89-91]. However, people with severe spinal cord injuries have 

very little or no voluntary wrist motions. Furthermore, the heavy back support, along with the 

added difficulty of taking on and off the arm, makes this device extremely difficult to use for an 

SCI participant. Hence the arm would be unsuitable for SCI individuals. 
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Figure 16: Proposed model and the built robotic arm with 7 degrees of freedom [89, 90]. 

1.6.1.7 Assistive Prosthetics 

Assistive prosthetics have covered major engineering and technology milestones. For 

example, Touch Bionics [1] has designed an incredible prosthesis (see Figure 17) that can be 

connected to the nerve endings of an amputated limb and relay the strength of the grip with a 

feedback to the user. However, this assistive device was strictly designed for amputees and does 

not have advantages for individuals with residual functionality in their upper extremities. 

 
Figure 17: i-limb ultra-prosthetic hand by touch bionics [1]. 
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One revolutionary prosthetic arm is the Luke arm created by Dean Kamen [92]. The Luke 

arm is modular, lightweight, agile and controllable. This arm was designed for amputated 

soldiers returning from the war fields. The arm gives 22 DOF and works best if attached 

surgically to the amputated arm. The Luke arm also provides feedback via a small motor called a 

tactor [93]. The tactor is worn on the user’s belt so he or she can feel the vibrations generated 

from the device. If the end effecter grips an object firmly, the tactor vibrates more vigorously 

indicating the intensity of the grip. The Luke arm also weighs as much as an average female arm, 

8 pounds. This sophisticated arm is well adapted to the population it addresses, amputees, but not 

necessarily to SCI individuals. 

 
Figure 18: The Luke Arm. 

1.7 Chapter Summary  

This chapter provided an overall scope of the research, introduced and discussed the 

motivation for the research, and provided the framework being utilized for the research. Gaps in 

existing assistive technologies were identified by providing a brief overview of current devices. 
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The next chapter discusses aim/objective 1 of the research: the development of a prototype 

for proof of concept and feasibility. Chapter 2 provides details of the electrical, mechanical, and 

functional details of the device, followed by a detailed analysis of the participant study. 

1.8 Organization of the Dissertation 

The dissertation is divided into 5 chapters as follows: 

1.8.1   Chapter 1: Introduction, Motivation, Background and Significance 

The first chapter summarizes the motivation for the research by providing a brief 

background of existing assistive devices and identifying gaps amongst the existing technology. 

The chapter also discusses the novelty and significance of the research and how it can help 

bridge the gap for individuals with residual functionality of the upper extremities. 

1.8.2 Chapter 2: Development of a Prototype for Proof of Concept and 

Feasibility 

This chapter describes the development and testing of a voice-activated lightweight 

reacher to assist with upper extremity movement limitations. A case study was conducted with 

an SCI participant using the first generation of the Simple Assistive Reacher Arm (SARA). 

Experiments were conducted for reaching and grasping tasks. A second set of reaching and 

grasping tasks were conducted with 6 healthy participants and the SCI participant. The 

experiment was conducted to study participants’ movement at three different levels: waist level, 

mid shin level and chest level. Statistical analysis (MANOVA) was performed on the data from 

the healthy individuals and was then compared with the SCI participant’s data. This chapter 

explains the protocol, and details of the experiments with SARA. This chapter also discusses the 

results and conclusions from the Human Machine Interface study.    
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1.8.3 Chapter 3: Development and Preliminary Testing of the Exo-Skeletal 

Assistive Robotic Arm (eSARA) 

This chapter describes the development of the second generation of the Simple Assistive 

Reacher Arm (SARA), called the Exo-Skeletal Assistive Robotic Arm (eSARA) platform.  This 

chapter explains the additional features of eSARA for extension and grasping. This chapter 

discusses the three modalities mentioned in chapter 1, the development and implementation of 

the lift assist feature, and covers current consumption, battery life, force calculation and 

preliminary testing of the platform.  

1.8.4 Chapter 4: Human Machine Interface (HMI) and Evaluation of the Exo-

Skeletal Assistive Robotic Arm (eSARA) 

In this chapter, two groups of healthy participants took part in experiments evaluating the 

eSARA platform. The first group consisted of 12 healthy, young adults, while the second group 

consisted of 6 Occupational Therapy students (mimicking SCI movements). These two groups 

and the SCI participants performed 2 experiments to study fine movement and gross movement 

of the individuals, respectively. Both experiments were conducted at the three different body 

levels mentioned above. The data from just the healthy individuals was statistically analyzed 

using ANOVA. The resulting data was then compared with the SCI participant’s data. This 

chapter explains the protocol, details, and results for these experiments.  

1.8.5 Chapter 5: Discussion, Conclusion, and Future Work  

This chapter discusses the overall outcomes and conclusions of this thesis. It discusses 

the nuances of the performed experiments, the evaluation methodology, and classes of modes of 

control. In addition, a final case study was performed illustrating how this system of evaluation 

and control modes might be used to customize a system for an SCI individual. In addition, this 



29 

 

   

 

chapter also summarizes possible improvements to the existing generations of the assistive 

device including future improvements for a third generation SARA. This chapter also drives the 

conclusion from the results in chapter 3 and chapter 4. 
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Chapter 2: Voice-Activated Lightweight Reacher to Assist with
Upper Extremity Movement Limitations: A Case 
Study 

2.1 Introduction 

This chapter discusses the first research objective to develop a baseline platform of a light 

weight, voice-activated, Simple Assistive Reacher Arm (SARA) and compare the performance 

of a SCI participant to normal individuals using the same device.  

Mechanical reachers provide an inexpensive means of retrieving out-of-reach and dropped 

objects for many people with limited upper extremity and trunk function, such as those with high 

spinal cord injury (SCI). The frequency of dropped objects is often high; for instance, people 

with amyotrophic lateral sclerosis reported dropping objects an average of 5 to 6 times per day 

with lengthy retrieval time reported [70]. Commonly dropped objects are often ones essential for 

independent living including: remote controls, cell phones, prescription bottles, glasses, reading 

materials, and keys [53]. Currently available mechanical reachers may not benefit people with 

severe arm and trunk movement limitations. Reacher weight, increased torque requirements, and 

the need for hand and wrist movement make mechanical reachers inadequate for this population. 

An extensive review of commercially available assistive devices for reaching produced no 

suitable low cost, lightweight, and voice-activated devices for people with high SCI.  Therefore, 

a need exists to develop a simple, lightweight, voice-activated reacher to improve independent 

function for people with limited upper extremity motor skills, such as those with high SCI. 

2.2 Development of Simple Assistive Reacher Arm (SARA) Platform 

The current work stems from a class project designed by a student team in a medical 

robotics class at Wayne State University, Detroit, MI [94]. The team developed an extendable 

arm using air muscle technology and a voice recognition (VR) chip called VR Stamp module 
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[95]. A prototype of a voice-activated, ultra-lightweight mechatronic reach-assist device was 

designed and built. Figure 19 shows this first SARA prototype. SARA was built by modifying an 

inexpensive, lightweight manual reacher made by Rainbow Reacher. The device weighed 249.2 

grams (0.549 lbs) with a total length 63.5 cm (25 inches). The housing of the electronics 

measured 7.62 cm (3 inches) by 10.16 cm (4 inches). The length of the ‘handle grip’ measured 

12.7 cm (5 inches) by 2.54 cm (1 inch). The end-effectors are flexible rubber suction cups to 

allow for holding many different items. The manual trigger mechanism used for opening and 

closing the gripper was removed and replaced by an electric linear actuator linked to the band 

springs which are attached to the suction cup gripper. The linear actuator is voice-activated with 

simple phrases to open and close the gripper. The voice chip was customized for each user 

before using the device. To train the device for a given command a user would say the desired 

command twice when prompted by the VR Stamp module [95] training program with a delay 

each time the command was given. The voice chip then either prompts success if the two 

commands were similar. If the given commands were spoken differently, the VR stamp module 

would reject the command and the user would be required to retrain the voice chip. 

 

Figure 19: The Smart Assistive Reacher Arm is shown with the ‘control circuit pack’ open, showing 
the control circuit and dimensions of the original device (length and width of the 
‘handle grip’ was by 12.7 cm by 2.54 cm). 



32 

 

   

 

2.3 System Hardware 

Figure 20 shows the major components used in the making of the prototype including the 

Rainbow Reacher, the Firgelli linear actuator [96] for opening and closing the gripper, and the 

VR stamp module. The actuator operates on 6 Volts and can generate a back drive force of 

150N. The actuator was controlled using the VR stamp module, a built-in voice recognition and 

microcontroller by Sensory Incorporation [95]. 

               
Figure 20: The L-12 linear actuator [96] (left),  VR stamp module [95](center), Rainbow Reacher  

(right). 

The mechanical reacher was selected due to its light weight of only 217grams (0.48 lbs.), 

and its ability to lift typical light loads (keys, cellphones, soda cans, etc.) without distortion. This 

is a commercially available arm which is used by many elderly and disabled people to pick up 

objects [42-46, 48]. The reacher requires the person to use their fingers to press the handle to 

close the end effectors to grip objects. Given that individuals with high SCI do not have motor 

control of their fingers, a voice-activated system was selected as an alternative. The mechanical 

assembly consists of the arm with the gripper and the linear actuator that operates the end 

effectors. The linear actuator causes the end-effector to grip and release the objects. When the 

actuator is drawn in, the gripper closes; when the actuator is drawn out, the gripper opens. The 

gripper is connected to the front end of the arm (Figure 20).  
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2.4 System Firmware and Electronics 

The voice recognition chip, combined with the motor driver circuit, is connected to the 

linear actuator controlling the end effectors. The motor driver circuit is used to extend or contract 

the linear actuator for desired functionality. The microcontroller waits for a trigger word 

followed by a command word. Once the correct combination is received through the 

microphone, the linear actuator is activated, and the desired action is performed. 

       

Figure 21: The driver circuit for the reacher arm (left) and the block diagram of the mechanism of 
operation (right). 

Figure 21 shows the driver circuit which activates the linear actuator that in turn actuates 

the gripper. The motor driver is used to reverse the polarity of the supply to the motor. The VR 

Stamp Module is programmed according to the flow chart in Figure 21. When the VR module is 

turned on, it enters the ‘trigger mode’ waiting for the trigger word. Once the trigger word is said, 

it enters the ‘command mode’ and awaits the command word. Once the command word is 

spoken, the VR module recognizes and matches it with the two stored commands. Once the 

correct combination is received, the command is executed and the device waits for additional 

commands. The system also blinks an LED at the gripper to show the user that the system is on 
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and understood the said command. The device stays in the ‘command mode’ for 3 seconds. If 

additional commands are not provided within 3 seconds, the system enters the ‘trigger mode’ 

again. The voice mechanism is active only if a discrete trigger word is said followed by a 

specific command. If the combination is not followed then there will be no output. The system 

was tested with background noise. In Figure 26 there are two individuals talking in the 

background while the experiment was performed. The experiment was successfully repeated 

multiple times.  

The trigger word chosen for the entire testing was ‘Max’. There were two command 

words selected for the experiment, ‘Grab’ and ‘Release’. Once the participant says the trigger 

word ‘Max’ followed by the command word ‘Grab’, the microcontroller recognizes the 

command issued and closes the reacher’s jaws. Similarly, when the command word ‘Release’ is 

said, the microcontroller recognizes the command issued and opens the reacher’s jaws.  

The linear actuator is programmed in such a way that when the grab command is issued, 

the grip closes only half way in case of handling fragile objects. To further strengthen the grip, 

the command is repeated until the actuator is at its minimum position. For example, if the grab 

command was said once, the gripper closed half way, when the grab command was said the 

second time, the gripper closed fully. If the grab command was said a third time, the gripper 

would firmly grab onto an object. In addition, the reacher can be programmed depending on the 

user’s needs. For instance, a ‘stop’ command can be implemented when the reacher is either 

grabbing or releasing to accommodate fragile objects. 

A 170 mAh (milliamp hours) battery providing 9V (volts) was used to power the circuit.  
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 The current drawn for a specific command is inversely proportional to the number of hours the 

battery will last. If the battery draws 100 mA it will last 170 mAh / 100 mA = 1.7 hours. Table 3 

below shows the battery life per command for the device.  

Action Current Consumption (mA) Battery Life (hours) 
Standby mode 60 2.8 

Grab 1 100 1.7 
Grab 2 110 1.5 
Grab 3 120 1.4 
Release 70  2.4 

Table 3: Power consumption of the device. 

Prior to research with participants, a test was conducted using various objects to 

determine the device’s ability to grasp, lift, and move objects of various shapes and sizes. This 

test is shown in Figure 22. 

 
Figure 22: This Figure shows the Pilot Test being conducted on various objects picking them from 
one spot and placing it on the other side. 

2.5 Preparatory Assessment of the SCI Participant  

One participant with high quadriplegia (incomplete level C5-6) participated in this study. 

In collaboration with an occupational therapist (GC), the participant’s range-of-motion and lift 

capacity was measured. Specific movement patterns associated with reaching, lifting (average 

weight on a daily basis), maximum weight lifting limits (strength test), and carrying capacity 

(precession test) were measured. These measures provide baseline information to avoid injury to 

the participants. 
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Experiments were conducted to determine the participant’s reach envelope without SARA. 

As the participant moved his arm in 3D, Polaris reflectors (Figure 23) captured the movements 

and range of motion. Based on the data obtained from the motion tracker, the work envelope of 

the participant was determined. Another study was conducted to determine the maximum weight 

that the participant could lift. These experiments informed the design of the device in terms of its 

reach and weight. Based on these studies, it was established that additional extension of the 

reacher was not necessary and that a simple grab and place reacher was enough. It was also 

determined from the study that the participant could lift a maximum 1150 grams (2.5 lbs.) 

including the load of the object being carried. It was concluded that in order to give maximum 

payload capacity, and be useful to the participant, the device itself should weigh less than 

500grams (1.1 lbs.). The length of the reacher enabled the participant to reach objects on the 

floor, a table, or shelf from his wheelchair orientation. Most importantly, the reacher must enable 

the participant to use his available range of motion and residual functional capabilities to pick 

and place objects in a desired location. The reach envelope and range of motion data enabled us 

to select an optimal reacher length (15 inches from the handle). 

 
Figure 23: Polaris and the reflector unit, shown on the left, used to capture the envelope of reach of 

the participant which is shown in the figure on the right. The circle indicates the center 
point and the arrow indicates the maximum possible reach of the participant. 
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Figure 23 shows the Polaris and the reflector unit (left), the figure on the right shows the 

envelope of reach of the participant without the reacher. The center of the envelope of reach is 

marked by the circle and the arrows show the maximum movements of the participant with 

respect to the center in the specified direction. This determines the envelope of reach of the 

participant without the reacher. The center of movement was determined by a starting point for 

the individual. The individual was then asked to move his arm to the furthest position in the left, 

right, forward and back positions, to determine his full reach envelope. The plot shows the 

movement of the individual in real time. 

2.6 EXPERIMENT 1: Case Study: Planar and 3D Movement by a 
Person with Spinal Cord Injury  

2.6.1 Methods 

2.6.1.1 Study Purpose 

The purpose of this experiment was to determine if a person with SCI can effectively 

complete grasping and reaching tasks in the horizontal plane and in 3-dimensions. The study was 

designed, to ascertain the ability of the participant with SCI to complete reach and grasp tasks 

that would not be possible without the reacher. All studies were approved by the Institutional 

Review Board at Wayne State University. 

2.6.1.2 Participants 

One individual with a C5-6 spinal cord injury was the only participant in this experiment. 

2.6.1.3 Materials 

For the table top experiment, an area was marked to test the reach and grasp of the SCI 

participant. For the floor to table experiment, areas were marked on the floor and the table top to 
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conduct the pick and place experiments. In this experiment a pencil and a 9 volt battery were 

used as objects. For the second half of the floor to table experiment a cell phone was used as an 

object. 

2.6.2 Protocol 

2.6.2.1 Table Top: Case Study 

The participant was asked to move an object, a 9V battery, within the white test area on 

the surface as shown in Figure 24. The participant was asked to grab, pick up, and move the 

object to three locations within the test area. The locations were selected by the test conductor. 

The locations were given sequentially to the participant in order to determine the ease of use as 

well as adaptability of the participant to the reacher. The three different locations in this test case 

are marked by the numbered dots in Figure 24. The locations progressively varied in difficulty as 

the participant’s reach and gross movements were tested. This demonstrated the ability of the 

participant to move the object in one plane.  

It was noted from the experiment that the SCI participant was able to fulfill the task 

completely and with ease. However, he was unable to perform any of the given tasks without the 

aid of the reacher.  
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Start Point End Point 

 
a. Level: Easy b. Level: Easy 

 
c. Level: Medium d. Level: Medium 

 
e. Level: Hard f. Level: Hard 

Figure 24: Participant's progress throughout the experiment. The figures show the participant 
moving the object in one plane on the test bench, marked with the white area. The three 
dots in the picture shows the points selected by the principal investigator. 

2.6.2.2 Floor to Table: Case Study 

In the second stage of the experiment, the SCI participant was asked to pick up objects 

from the floor and place them on the desk. Two objects of different shape and size were selected. 

The participant was expected not to drop the objects during the entire transition from the ground 

to the table top. Figure 25 below shows the starting and ending points of the experiment. The 

participant was able to successfully move both of the objects to the required positions with ease. 

Without the reacher, the participant was unable to pick up the objects from the floor. 
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Start Point End Point 

  
a. Grabbing object (pencil) from the floor b. Successfully transferred object to the test area 

  
c. Grabbing object (battery) from the floor d. Successfully transferred object to the test area 

 
Figure 25: This figure shows the participant moving the object in three dimensions picking up the 

objects from the floor and placing them on the table within the test bench (indicated by 
the white area).  

In a more realistic test scanario, the SCI participant was asked to pick up his dropped cellphone 

from the floor. The sequence of images in Figure 26 sumarizes the outcome of this test. 

 
Figure 26:  (a) Cell phone falls (b) SCI participant moves to pick up the cell phone using the 

reacher (c) Using voice commands the SCI participant controls gripper to secure the cell 
phone (d) SCI participant places the cell phone on his lap and then commands the 
gripper to open releasing cell phone (e) Success! 



41 

 

   

 

2.6.3 Results  

For the table top experiment (Figure 24) the SCI individual successfully completed the 

tasks following the given instructions. He was able to place the object accurately at the specified 

locations. For the floor to table top, and dropped cell phone, experiments the SCI individual 

accomplished the tasks successfully. 

2.7 EXPERIMENT 2  

2.7.1 Methods 

2.7.1.1 Study Purpose 

 Given the lack of available reach aids for people with SCI and forearm/hand paralysis, 

the purpose of this experiment was to assess reach and grasp capabilities of the above designed 

reacher with both healthy, young adults and a person with SCI. It was hypothesized that, with the 

use of the reacher, the SCI individual could (1) feasibly reach and grasp objects within a newly 

designed test bench, (2) match movement time and errors within the limits shown by the healthy 

comparison group, and (3) produce these tasks in the absence of any signs or reports of fatigue or 

distress.  

2.7.1.2 Participants 

Six healthy young adults and one adult with quadriplegia (incomplete level C5-6) 

participated in this study. The adult with SCI was the primary person of interest in this study to 

evaluate the system. 
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2.7.1.3 Materials 

A book shelf with three different levels was used as a test bench. The test bench was 

designed to measure the gross movements of the participant on these three different levels. The 

three different levels consist of level ‘0’ (waist level), level ‘-1’ (mid-shin level), and level ‘+1’ 

(chest level) as shown in Figure 27. These levels were specified to normalize the height 

requirements for each participant. The Figure also shows the objects that were used in the 

experiment such as a small peg, a medium size peg, and a bottle weighing 227 grams (0.50 lbs.). 

These objects were color coded for ease of viewing. These objects were selected to represent 

categories of commonly used objects. 

   

Figure 27: Left: Color coded test bench with three levels. Right: Test objects included a small peg 
(pink), larger peg (green), and a half pound bottle (orange). 
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Figure 28: Test bench levels and distance from the test bench. 

A chair or wheelchair was placed at a distance of 27 inches from the base of the test-bench to the 

chair center for all participants, as shown in Figure 28.  

2.7.2 Protocol 

All participants completed the reach and grasp tasks using SARA. The participants were 

given the reacher for 3 minutes, or 10 trials, to become familiar with the voice activation 

functionality. The experiment was counter balanced to reduce any possible learning effect. Three 

of the participants were asked to perform the experiment starting with level 0, then level -1, and 

then finally level +1 while the other three participants were asked to perform the experiment 

starting at level 0, then level +1, and then finally level -1. The goal of the experiment was to 

place the color coded objects from level -1 to level 0 or from level +1 to level 0. At the start of 

the experiment, all of the objects were placed at fixed positions within level 0 and the 

participants were expected to grasp each object and place them on their corresponding color 

coded positions. The participants were then asked to repeat the same procedure for the other 

levels. Figure 29 summarizes the start and expected end points of the experiment for the different 

levels. Two types of errors, within and outside of the test bench, were demonstrated for the 
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participants. These errors are shown in Figures 30a, 30b, and 30c (within the test bench) and 

Figures 30d and 30e (outside of the test bench). Any within-bench error required correction by 

the participant, while errors outside the bench were recorded as a failed attempt. 

Start Point End Point 

 

 
 
 
 
 
 
 

 

a. Level: +1 

 
b. Level: 0 

 
c. Level: -1 d. Level: 0  

Figure 29: Start and end points of the experiment. 
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Figure 30: Errors within the test bench are shown (a-c); a) improper placement of the objects, b) 

wrong object position, and c) mismatched color coding of the objects. The errors outside 
the test bench are shown in d and e and are considered as failed attempts for those 
specific object for the respective level. 

2.7.3 Data Analysis 

Each participant’s completion time and errors per level were recorded. Data were 

analyzed using SPSS (IBM) [97]. Descriptive data were provided for each participant. 

Differences in time between levels for all participants were compared using Multiple Analysis of 

Variance (MANOVA) with the Bonferroni correction for multiple comparisons. Significance 

was established at p < 0.05. 

2.7.4 Results  

Figure 31 shows each participant grasping the large peg at level +1, the chest level.  All 

participants completed the task successfully by placing the peg in the required position on level 

0. The degree of shoulder and elbow flexion was similar among all participants, as seen in Figure 

31. The posture of all participants was similarly upright and relaxed.  
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Figure 31: This figure shows participants performance at different points in time grasping the same 
object. The figure also compares the posture of the participants handling the same 
object as level +1 with the reacher. 

Figure 32 summarizes the estimated mean values with standard error at each of the three 

levels for data collected from the healthy participants only. Healthy participants spent the longest 

mean time completing tasks at the height of the mid-shin (-1), while movement times for the 

waist (0) and chest (+1) levels were similar.  

Levels 
Mean 

(Healthy Participants Only) Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

-1 
1.782 .070 1.602 1.963 

0 1.366 .100 1.108 1.624 

+1 1.346 .099 1.092 1.601 

Figure 32: Estimated mean values of the levels (in minutes) and the standard error (healthy 
participants only). 

There was a significant main effect for level height (F(2,10) = 54.592, p < 0.001). 

Pairwise comparisons for the main effect of level were corrected using Bonferroni adjustments 

and are displayed in the table below. Table 4 shows that the significant main effect reflects a 

significant difference (p = 0.002) between levels -1 and 0 (lower and middle) and -1 and 1 (lower 

and upper) (p < 0.001) but not between levels 1 and 0 (upper and middle).  
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(I) Levels (J) Levels 
Mean Difference (I-J) 

(Healthy Participants Only) Std. Error Sig.b 

95% Confidence Interval for 
Differenceb 

Lower Bound Upper Bound 

-1 0 .416* .056 .002 .219 .613 

+1 .436* .037 .000 .306 .565 
0 -1 -.416* .056 .002 -.613 -.219 

+1 .020 .047 1.000 -.146 .186 
+1 -1 -.436* .037 .000 -.565 -.306 

0 -.020 .047 1.000 -.186 .146 

Table 4: MANOVA results for Experiment 2 based on estimated marginal means only for the 
healthy participants.  
* The mean difference is significant at the 0.05 level. 
 bAdjustment for multiple comparisons: Bonferroni. 

 

Figure 33: Individual participant performance time in minutes per level (P = healthy participant, 
Avg = average (healthy participants only), SCI = spinal cord injured participant). 

Figure 33 shows the time performance of each participant at all three levels. Figure 34 is 

a box and whisker plot generated from the six healthy participants’ data at each of the three 

levels. This plot is overlaid with the healthy (able-bodied) participants’ average results (healthy 

participants’ average time performance is represented by a thick dashed line).  Figure 34 also 

contains the SCI participant’s time performance in comparison to the healthy participant’s 

average time performance (the SCI participant’s time performance is represented by a thick dot 

and dash line). The data demonstrates that the SCI participant, who was unable to perform the 
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task of moving an object without the reacher, was able to perform the task, at all levels, in a 

comparable amount of time to the healthy participants. The SCI participant finished testing at 

levels -1 (mid-shin) and 0 (waist) faster than the average healthy participants by 8.3% and 4.2%, 

respectively. At level +1 (chest) the SCI participant was 2.1% slower than the average healthy 

individual. However, this rate was still within one standard deviation of the average. Throughout 

all testing, no discomfort or fatigue was observed by the investigator or reported by the SCI 

participant. 

 
Figure 34: Box plot and average of the healthy participants’ performance against the SCI 

participant’s performance. 

2.8  Discussion and Conclusion 

These experiments demonstrate that this simple voice-activated reacher allowed an 

individual with SCI to move lightweight objects of different sizes and shapes in similar times, 

and with no more errors, than healthy young adults, and without reported or observed 

discomfort. The first experiment was designed to assess whether and to what extent the device 

could be used by an individual with SCI. Technical issues were identified and positively 
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resolved. With the use of the designed reacher, the participant was able to reach and grasp within 

a horizontal plane placing objects at targeted areas. In the floor to table case study, vertical 

movements were also successful. The hypothesis that a person with SCI would be able to 

complete reach and grasp tasks successfully using the voice-activated reacher was affirmed.  

Experiment two required greater precision of reaching and grasping a variety of objects at 

three different levels. While this was not possible without the reacher, it was successful with it. 

These results also confirmed the hypotheses that use of the reacher would be feasible for these 

more rigorous movements, that movement time and errors for the SCI individual would be 

comparable to healthy adults, and that there would be no signs or reports of fatigue or distress for 

the user. These hypotheses were also confirmed.  Confirming these outcomes is especially 

important as the movements for experiment two required more challenging and complex arm 

movements, within the environmental constraint of the test bench. These positive results suggests 

that the reacher may be useful in providing independence in placing and retrieving lightweight 

objects from places such as book shelves or cluttered counters.  

The SARA prototype achieved previously unmet needs for the individual with high-level 

SCI. With this reacher, independence in reaching and grasping small, lightweight objects became 

possible. Errors and performance time were comparable to healthy adults, and there was no 

reported or apparent distress in using the device. Based on these findings, the reacher, with 

additional technical improvement, may provide significant and meaningful assistance to people 

with high level SCI. 

Future work will focus on the following improvements. First, the control circuit pack can 

be significantly reduced in size and cost. The prototype used a proto-board and other components 

that can be further optimized to decrease size and weight constraints. Second, a different linear 
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actuator could also provide reduced weight and cost. Third, the battery pack and control circuit 

pack with the microphone can be designed so that they fit inside the reacher’s frame making it 

more compact. Finally, the addition of a mechanical lift assist and reach extension will increase 

the value of this reacher. 

Limitations of this feasibility study included the use of only one participant with SCI. In 

the future, more such subjects with similar disabilities should be tested to confirm broad 

applicability. In addition, testing should include other conditions that result in greatly decreased 

arm and hand function, such as people with multiple sclerosis, stroke or arthritis.  

Conclusion:  This specific aim provided strong proof of concept that a lightweight voice- 

activated reacher can be developed to enable individuals with high level SCI to reach, grasp, and 

accurately place lightweight objects. Movement between levels at mid-shin and mid-chest of 

these objects was feasible and completed with comparable movement times and errors as a 

control group of healthy young adults, and without observable or reported evidence of distress or 

fatigue.  

Technical improvements for the next generation of the reacher have been identified. 

Improvements were made to the existing prototype before the next round of testing which will be 

discussed in the next chapter.  
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Chapter 3: Development of a Multi Modal, Exo-Skeletal Assistive 
Robotic Arm (eSARA) with Lift Assist 

 

3.1 Introduction and Motivation 

This chapter discusses the infrastructure development to support specific research objective 

2: designing and developing a platform for reach and grasping tasks with multiple modes of 

control and lift assist features to be used by an individual with high-level spinal cord injury 

(SCI). The design and development of the new platform assumed the following objectives:  

a. Control modes matched to the functionality of SCI individuals can be created. 

b. Increased device reach extension would be beneficial and feasible for the SCI 

individuals.  

c. Lift assist would provide necessary additional support for moving heavy objects. 

d. The new platform must maintain no signs or reports of fatigue or distress from the 

SCI user.  

These objectives required expanding the existing platform to develop an Exo-Skeletal 

Assistive Robotic Arm (eSARA) with multiple modes of control and lift assist. Furthermore, the 

controls modes were to be customizable for use based on the level of injury. Providing multi-

modal control of an assistive device built on a range of basic human movements, easily achieved 

by SCI individuals, motivated the research in this chapter. The multi-modal controls were 

designed to control the extension and grasping abilities of the eSARA platform. The lift assist 

feature enabled the SCI individuals to lift objects heavier than they could otherwise handle. Once 

the device was completed, different measures were taken to ensure device safety before the 

Human Machine Interface (HMI). The HMI allowed testing different modalities and developing 

a methodology to fit the technology with the level of injury of the SCI individuals.  
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3.1.1 Classification of Modes of Control 

A platform was designed and built to assist people with residual functionality in their upper 

extremities, specifically to expand the reaching and grasping abilities of high-level SCI 

individuals. An extendable robotic arm platform was developed and investigated with three 

modes (briefly described in chapter 1) of controlling the extension and grasping capabilities of 

the arm. The control modes were categorized as follows:  

(1) Ballistic modality with no extremity movement required (voice-activated)  

(2) Ballistic control mode that required minimal movement of the extremities (pushing a button) 

(3) Continuous control mode that may require major/continuous movement of the extremity 

(sliding a joystick) 

Ballistic control mode originates from ballistic movement. A ballistic movement can be 

described as a short muscle contraction with maximum velocity and acceleration towards a given 

target. Examples include tapping a button or saying a vocal command. A continuous movement 

however, requires a more controlled or guided motion over a longer period of time with a rather 

slower velocity and acceleration towards the targeted object. For example, a sliding movement to 

extend or retract an actuator. 

These control modes were designed such that an SCI individual could use the platform 

with minimal effort and o limited movement of their extremities. Depending on the level of SCI, 

the platform provides various ways to control the end effectors. The platform was based on a 

multi-modal control unit and the end effector unit. When the multi-modal control unit receives 

the instructions from different modalities, it commands the end-effector unit to carry out the 

desired instructions. Figure 35 illustrates the modality inputs to control the arm’s 

extension/grasping units. 
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Figure 35: Multi-modal control and end effector units. 

3.2 Methods for the Development of the Exo-Skeletal Assistive Robotic 
Arm (eSARA) 

A first generation prototype, designed as SARA (Smart-Assistive Reacher Arm) [94], was 

discussed in chapter 2. The second generation of the reaching device, called Exo-Skeletal 

Assistive Robotic Arm (eSARA), was designed to improve reachability and lift-ability of the 

prototype. Another improvement in eSARA was to provide various ways to control the arm. To 

make this platform function successfully, various hardware components and software features 

were required. The design intent was to build a platform that can be utilized by various 

participants with very little or no training.  

Figure 36 shows the final test platform that was built with the three modes of control. The 

voice control mode module, marked ‘a’ on the figure, was enclosed in a box with the speaker 

sticking out to receive voice commands. The slider control mode, marked ‘b’ on the figure, was 

housed in a clear box. The button control mode, marked ‘c’ on the figure, was also housed in a 

transparent box. The modality control unit and lift assist control units are marked ‘d’ and ‘e’, 

respectively. The pairs of biceps and triceps actuators are marked ‘g’ and ‘f’, respectively. The 

battery that drives both the circuits is marked ‘h’. The extension actuator is shown by ‘i’ and the 
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extension rail is shown by ‘j’. The grabber motor and the grabber (end effector) are marked ‘k’ 

and ‘m’. Pressure sensors are mounted on the handle and are shown in the figure by ‘l’.  

 
Figure 36: Final assembly of the Exo-Skeletal Assistive Robotic Arm (eSARA). 

Figure 37 shows the evolution of eSARA from SARA using computer aided design (CAD) 

diagrams. The figure also shows the final CAD design, the final fabricated version of eSARA, 

and a user wearing eSARA. Throughout the design cycle, eSARA was enhanced to improve 

functionality, reduce weight, and increase ergonomics. 
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Figure 37: Evolution of eSARA, a) SARA, b) addition of arm attachment and extension to SARA, c) 
improved handle and design update to the device in b, d) implementation of biceps and triceps 
actuators and end effector finalizing the design, e) fabricated eSARA, f) user wearing eSARA.  

 

Figure 37 above shows the evolution of eSARA from its predecessor SARA. In the figure a) 

represents SARA, b) shows updates to the pioneer design with added extension and arm 

attachments, c) shows improvement in the handle and design update, including the housing for 

the extendable forearm, d) shows the implementation of biceps and triceps actuators extension 

including adjustable handle, updated extension rails, and the end effector, finalizing the design, 

e) shows the completed eSARA, and f) shows a user displaying eSARA. 

In the figure above the user donned eSARA while standing, this was only for demonstration 

purposes. For the experimental study and HMI analysis, the eSARA platform was suspended by 
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a weight countering device called The Zeiss S21[98]. This suspension allowed the participants 

free movement of their extremity, zeroing out the additional weight of eSARA (7.42lbs.), along 

with their own arm.  

 
Figure 38: (a) Zeiss S21 [98] stand used to support eSARA’s weight (b) user operating the Zeiss S21 
system.  

The Zeiss S21 stands are generally used to support surgical microscopes. Figure 38 shows 

how a participant was able to move freely and weightlessly with the help of the Zeiss S21 stand. 

Prior to the start of the experiment the flexibility of Zeiss S21 was adjusted for each participant. 

These adjustments were kept the same until the experiments were completed. The purpose of the 

Zeiss S21 system was to provide the participants with a zero-gravity device to counter the weight 

of the arm. 

3.2.1 System Hardware 

Multiple hardware components were used to develop this platform. The hardware used for 

eSARA, along with a description of its integration into the platform, is described in this section.  
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3.2.1.1 Actuators  

The L16 actuators are complete, self-contained linear motion devices with position feedback 

capable of sophisticated position control, end of stroke limit switches for simple two position 

automation, or Radio Control (RC) servo. Several gear ratios are available providing various 

speed/force configurations. One Firgelli actuator (L16-P, 140 mm length, 150:1 gear ratio, 

Force) was used for extension, 2 for biceps (100 mm length, 150:1 gear ratio, Force), and 2 for 

triceps (50 mm length, 150:1 gear ratio, Force) [96]. These actuators have axial design utilizing 

powerful Permanent Magnet Direct Current (PMDC) motors with a rectangular cross section for 

increased strength. The “P” type series of actuators was selected because they offer an analog 

position feedback signal that can be inputted to an external controller. Figure 39 shows the 12 

volt L16-P actuators. 

 

Figure 39: Firgelli L16-P actuators. The actuator on the top (50mm) was used 
for the triceps and the actuator at the bottom (100mm) used for the biceps[96]. 

The load versus force and current versus force curves of the actuator re shown in Figure 40. 

The plot shows the gear ratios available for all the L-16 actuators (35:1, 63:1, and 150:1). When 

power was removed, the actuator held its position unless the load applied was greater than the 

back driving force. The higher the gear ratio the greater load the actuator can withstand. 

Therefore, the gear ratio selected for all actuators was 150:1. Due to an increased number of 
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moving gears, the speed of the actuator was slower compared to the actuators with lower gear 

ratios. Figure 40 shows the load curves. 

 Figure 40 also provides current versus force plots, showing that the actuators handling a 

force of 50 or 100 Newtons (N) require a larger current (approximately 550mA) compared to the 

actuator handling a force of 200 N (approximately 450mA). From the plots, higher currents were 

proportional to the speed of the actuators.  

 
Figure 40: L16-P actuator load vs. force (left) and current vs. force plots (right) [96]. 

Table 5 below summarizes available options for the L-16 actuators including the gear ratio 

options, stroke options, and the force. From the table, the 150:1 gear ratio was able to drive a 

maximum lift force (200N). This actuator was selected as a precaution due to the uncertainty in 

the final weight of the platform. An actuator with greater lift force was preferred in case the 

platform itself weighed more than the expected 7lbs. The SARA prototlype used a similar 

actuator (L-12) without any reliability or durability issues. The variety of lengths, gear 

ratio/speed, weight and durability (from previous experience) of the actuators proved to be a vital 

part in their selection for the eSARA platform.  
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Gear Option 35:1 63:1 150:1 
Peak Power Point 50N @16mm/s 75N @10mm/s 175N @4mm/s 
Peak Efficiency Point 24N @24mm/s 38N @15mm/s 75N @7mm/s 
Max Speed (no load) 32mm/s 20mm/s 8mm/s 
Max Force (lifted) 50N 100N 200N 
Back Drive Force 31N 46N 102N 
Stroke Options 50mm 100mm 140mm 
Mass 56g 74g 84g 
Positional Accuracy 0.3mm 0.4mm 0.5mm 
Max Side Load (extended) 40N 30N 20N 
Feedback Potentiometer 9kΩ±30% 18kΩ±30% 25kΩ±30% 
Electrical Stroke 48mm 98mm 138mm 
Input Voltage 0-15 VDC. Rated at 12VDC. 
Stall Current 650mA @ 12V 
Operating Temperature -10°C to +50°C 
Audible Noise 60dB @ 45cm 
Ingress Protection IP-54 
Mechanical Backlash 0.2mm 
Limit Switches Max. Current Leakage: 8uA 

Table 5: Available features for the L-16 actuators [96]. 

3.2.1.2 Elbow Brace  

The innovator X® elbow brace by Össur (Americas) [99] was used as a starting point for 

making the eSARA platform wearable. The brace’s arm grips were used but not the elbow angle 

constraints. This elbow brace was selected due to its light weight and secure/easy attachment to 

the arm. The elbow brace, shown in Figure 41, provided an easy attachment of the eSARA 

platform to the user. The strapping mechanism provided convenience when taking on and off 

eSARA while the open structure provided ease of movement for the SCI individuals. 

 
Figure 41: The innovator X® elbow brace by Össur [99]. 
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3.2.1.3 End Effector  

The claw kit and 2-Wire Motor 393 from VEX Robotics [100] was used for the end effector 

due to its ability to hold and grasp various objects. The rubber coating inside the claw prevented 

objects from slipping. The gap between the claws allowed for a tighter grip on various objects. 

With the use of the servo, the position of the grabber could be monitored at all times. Figure 42 

shows both the motor and servo. 

 
Figure 42: Claw kit and 2-wire motor 393 from VEX Robotics [100]. 

3.2.1.4 Machined Parts  

A top plate and base plate were machined from stainless steel forming a study frame for the 

exo-skeletal boundary of the arm. Stainless steel was chosen to prevent the exo-skeletal structure 

from collapsing during experiments. A floating handle (between the two plates) was machined 

from aluminum. Aluminum was selected due to its light weight and durability and also because 

the handle would not be subjected to intense movements or force. Two brackets to hold the 

biceps and triceps actuators were also machined from stainless steel for strength and durability as 

the biceps and triceps actuators were to mount directly to the brackets. Stainless steel provided 

durability against any unexpected weight on the platform. Stainless steel was also a first choice 

due to low cost and availability. Figure 43 shows the machined parts of eSARA. The forearm top 

and bottom support rails are shown in ‘a’ and ‘b’, respectively. The triceps and biceps brackets to 
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attach the actuators are shown in ‘c’ and ‘d’, respectively. The parts and assembled handle are 

shown in ‘e’ and ‘f’. 

 
Figure 43: Machined parts of eSARA a) Top of the arm used to hold the extension rail, 

b) Bottom plate to hold the floating handle, c) Bracket to hold triceps actuator, d) 
Bracket to hold biceps actuator, e) Floating handle components, f) Assembled floating 
handle. 

 

3.2.1.5 Microprocessor (Arduino) 

The Arduino Duemilanove [101] is a microcontroller board based on the ATmega328 [102]. The 

hardware consists of an open-source hardware board designed around an 8-bit Atmel AVR 

microcontroller. It has fourteen digital input/output pins. Six can be used as pulse width 

modulation (PWM) pins marked by ‘~’ and six analog inputs. This Arduino also consists of 16 

MHz crystal oscillator, a USB connection, a power jack, an ICSP header, and a reset button.  

Table 6 summarizes the Arduino Duemilanove’s characteristics. Arduino provides an easy to 

use, open source electronic platform. 
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Hardware Specification 
Microcontroller ATmega328 
Operating Voltage 5V 
Input Voltage  7-12V 
Input Voltage  6-20V 
Digital I/O Pins 14 (of which 6 provide PWM output) 
Analog Input Pins 6 
DC Current per I/O Pin 40 mA 
DC Current for 3.3V Pin 50 mA 
Flash Memory 32 KB (ATmega328) (2 KB used by boot-loader) 

SRAM 2 KB (ATmega328) 
EEPROM 1 KB (ATmega328) 
Clock Speed 16 Hz 

Table 6: Summary of the Arduino Duemilanove microcontroller board. 

3.2.1.5.1 Power 

This board can be powered from a USB connector or an external power supply of 6 to 20 

volts. The power source was selected automatically. If the external power was less than 7 volts 

the five volt pin may provide power less than 5 volts on the board. Supplying more than 12 volts 

can overheat and damage the board. A pin named ‘VIN’ provided input voltage to the Arduino 

board when an external power source was used. The pin name ‘5V’ provided 5 volts once the 

Arduino was powered. Similarly the 3.3V and GND pins provided 3.3 volts and ground, 

respectively. 

3.2.1.5.2 Memory 

The ATmega328 has 32 KB of flash memory for storing code (of which 2 KB is used for 

the boot-loader), 2 KB of SRAM, and 1 KB of EEPROM.  
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3.2.1.5.3 Input and Output 

From the 14 available pins, each can be used as an input or output. This board has 6 analog 

inputs, each of which provide 10 bits of resolution (i.e. 1024 different values). By default they 

measure from ground to 5 volts. 

3.2.1.5.4 Communication 

The Arduino Duemilanove is capable of communicating with a computer, another Arduino, 

or other microcontrollers. The ATmega168 and ATmega328 provide UART TTL (5V) serial 

communication available on digital pins 0 (RX) and 1 (TX). An FTDI FT232RL on the board 

channels this serial communication over USB and the FTDI drivers (included with Windows 

version of the Arduino software) providing a virtual com port to software on the computer. The 

Arduino software includes a serial monitor which allows simple textual data to be sent to and 

from the Arduino board. The RX and TX LEDs on the board flashed when data was being 

transmitted via the FTDI chip and USB connection to the computer (but not for serial 

communication on pins 0 and 1). The software serial library allows for serial communication on 

any of the Duemilanove's digital pins. The ATmega328 also support I2C (TWI) and SPI 

communication. Arduino Duemilanove board, [101] using Integrated Developmental 

Environment (IDE) was used to upload the programs to the Atmega 328p microprocessor chip by 

Amtel [102]. The handshake between the voice recognition module and Arduino was achieved 

without third party software or licenses. Figure 44 shows the Arduino Duemilanove board with 

the Atmega chip.  
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Figure 44: Arduino Duemilanove board with Atmel Atmega 328 chip [101, 102]. 

3.2.1.6 Push Buttons  

Push buttons were used as one mode of controlling the extension and grasping of the 

device. The buttons were color coded for extension of the arm (blue) and for grasping (red). The 

buttons were placed in the orientation shown in the figure below for ease of use. The extension 

buttons were in one line and grasp/release buttons were perpendicular to them. This divided the 

two distinct functions (extension/contraction and grasping/releasing) needed into two different 

sections. In the future, the size and spacing requirements for these buttons could be optimized. 

Figure 45 shows the buttons used for this control mode.  

 

Figure 45:  Examples of the color coded push buttons used in the device. 



65 

 

   

 

3.2.1.7 Slider 

Figure 46 shows a sliding resistor. This resistor served to provide a slide-able controlling 

mode for the device. Two of these resistors were used; one controlled the extension/contraction 

of the arm while the other controlled the grasping releasing of the end effector. The sliders were 

housed in a clear box as show in Figure 36. 

 

Figure 46: Slider used to control extension and grasping. 

3.2.1.8 Voice Control Module  

The speech recognition module, VRbot by Veear, was used for voice recognition mode 

[103]. This VRbot was selected due to high robustness and user recognition through training. 

The VRbot was able to record the command words in any accent or language. These abilities, 

combined with the cost, made VRbot the first choice for the eSARA platform. Figure 47 shows 

the VRbot that was used for the eSARA voice control.  

 

Figure 47: VRbot by Veear [103]. 
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3.2.1.9 Force (Pressure) Sensor 

The Force Sensing Resistor (FSR) from Interlink Electronics [104] was used in the handle for 

the lift assist part of the device. The FSR shows a decrease in resistance when there is an 

increase in the force applied. This feature allows the sensor to detect force or pressure with 

sensitivity ranging from a few grams to a few kilograms. This sensor, designed for human touch 

control applications, is shown in Figure 48. 

 

Figure 48: The FSR sensor by Interlink Electronics [104]. 

3.2.1.10 Battery 

A lithium polymer battery by SMC Lightning Volts was used. This battery was rated at 11.1 

volts and 55.5Wh with 5000mAh. This battery was sufficient to drive all of the actuators, control 

modes, and the lift assist simultaneously. The chosen battery is shown in Figure 49. 

 

Figure 49: Lithium polymer battery: 11.1V, 55.5Wh with 5000mAh. 
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3.2.1.11 Safety (Emergency Stop) 

Safety switches were used to control power to individual circuits and the main power. The 

overall system of eSARA was designed such that the main power supply was routed through a 

safety ‘Main Power’ switch. Beyond this main power switch, the lift assist and the modality 

control units have individual power switches. Once the main power switch is turned on, the user 

has the flexibility to turn on either the modality control switch, or the lift assist switch, or both, 

depending on his or her needs. The switches are shown in Figure 50. 

 

Figure 50: Safety and power switches: a) Main power switch, b) Lift assist power switch, c) 
Modality control power and modality selection switches.  
 

When the main power and lift assist switches are turned on, lift assist is activated and ready 

for use. Once power is supplied to the modality control unit, the user then has the ability to select 

from the 3 given modes of control (button mode, slider mode, or voice mode). Once the control 

mode is selected the device is ready for use. Turning off the main switch cuts power to both the 

modality and lift assist control units even if their individual power switches are turned on. Once 

the main power is turned back on, the modality and lift assist settings are retained. 
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3.2.2 System Architecture  

The eSARA platform was divided into two separate control units, the modality control unit 

and the lift assist control unit. Figure 51 shows the hierarchy of the system and illustrates how 

the various modes were isolated for their specific purpose.  

 

Figure 51: Hierarchy of the system firmware. 

When the lift assist unit is powered on, the biceps and triceps actuators rely on two pressure 

sensors on the top and bottom of the device’s handle. When the modality control unit is powered 

on, a modality must be selected to control the extension and grasping of the eSARA platform. 

When selecting voice mode, the protocol described in the previous chapter is followed. Briefly, a 

trigger word activates the system, followed by the command word to enable the desired action. 

The system was designed so that once the trigger word is said the system waits for the command 

word. Once the command word is detected, the respective command is carried out. When 

selecting slider mode, the extension and grasping sliders are activated. One slider controls the 

extension of the arm and the other controls the grasping of the end effector. When selecting the 

button modality, the four buttons responsible for extension and grasping are activated. Each 
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button is connected to a specific action: extension, contraction, grasping, or releasing. This 

mechanism is summarized in Figure 52 below.  

 

Figure 52: Flow chart of the control mode and lift assist processes. 

3.2.2.1 Voice Control (Ballistic Control Mode with Minimal Movement of the 
Extremities) 

The voice command was divided into a trigger word and command word, similar to 

SARA in chapter 2. In addition to the original command words, grab and release, two new 

command words were added. These command words, forward and backward, were added so that 
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the participants could control the extension of the arm. The voice control unit was capable of 

recording the voice of the participant in order to associate the appropriate trigger and command 

words. This feature makes the voice controls highly customizable and user friendly. Table 7 

summarizes the entire trigger and command words used during the participant study showing 

flexibility and customizability of the voice module.  

 

 
Trigger Word 

Command Word 
Extension Contraction Grasping Releasing 

Max Forward Backward Grab Release 
Joe Go Back Close Open 

Robot Move Forward Move Backward Hold Drop 
Table 7: Trigger and command words used in the voice control modality. 

Table 7 shows the various trigger and command word combinations that were used by the 

different participants during the experiment. Following the voice modality structure, when a 

participant says the trigger word, ‘Joe’, once, the system was activated. The participant then says 

the command word,  ‘go’, ‘back’, ‘close’, or ‘open’, to perform the desired function. The voice 

mode was customized for each participant as various participants were comfortable using 

different trigger and command words.  

Figure 53 below shows the voice recognition module used in this research. The 

programmable user interface of the VRbot allowed multiple customizable options. This Figure 

shows the VRbot and the housing for the VRbot that was used for the participant study. The 

Graphical User Interface (GUI) is also shown in the figure. This GUI enabled the participants to 

record custom word combinations from Table 7. 
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Figure 53: Voice control mode showing VRbot and the Graphic User Interface (GUI) for VRbot 

[103]. 

3.2.2.2 Button Control Mode (Ballistic Control Mode with Minimal Movement of 
the Extremities) 

Four separate buttons, each responsible for a unique task, were connected to the control 

board. The red set of buttons, shown in the figure below, were moment on-off buttons attached to 

the grabber motor. Once a button was pressed the grabber opened or closed depending on the 

button pressed. The blue set of buttons, shown in figure below, were on-off buttons connected to 

the extension unit of the arm. Once a button was pressed, the arm extended and kept extending 

until the button was pressed again. Pressing the button the second time stopped the extension. 

This enables the participants to extend the arm and position/orient it in a direction of choice and 

to utilize the grabber at the same time. For instance, if a participant was trying to reach 

something on the far end of the table, the participant can extend the arm and while the arm was 

extending open the grabber unit to make it ready for grasping the object. Once the desired 

position was reached, the participant can stop the extension, by pressing the blue button again, 

and grab the object desired. Then during the retrieval of the arm the participant can move the arm 

to the next desirable position without holding the button until the arm was fully collapsed.  
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Figure 54: Button Control mode. 

3.2.2.3 Slider controlled (Continuous Control Mode with Major/Continuous 
Movement of the Extremity) 

This mode of control consists of a pair of sliders that allow participants to extend the arm 

of the device to a desired length with a light pushing motion. When the slider is pushed forward, 

the actuator extends. The actuator continues extending until the slider is brought back to a central 

green marked area- the dead zone. To retract the arm, the slider is pushed backwards until the 

appropriate length is achieved and then the slider should be returned to the dead zone.  

A second slider provides the ability to open or close the gripper. To grab an object, the 

slider is pushed forward. If the grabbed object slipped this grabber unit was powered constantly 

by moving the slider out of the dead zone. Participants were advised to keep the slider inside the 

dead zone. If the slider was outside of the dead zone for a prolonged period of time, the grabber 

motor and the circuit could overheat. To release an object the slider is pushed backwards 

allowing the grabber to open. The two sliders for continuous control mode are shown in Figure 

55. 

 
Figure 55: Slider Control Mode. 
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3.2.2.4 Proportional Integral Derivative (PID) Control and Tuning 

Filtering out the tremors and achieving smooth transition in both upward and 

downward directions were critical aspects of the platform. Therefore, a feedback mechanism 

was needed to control the biceps and triceps actuators of the eSARA platform. A proportional-

integral-derivative (PID) controller was used as a control loop feedback mechanism. This 

controller calculates ‘error’ as the difference between the set point and the feedback (Error = 

Set point – Feedback). The digital controller tries to minimize the error by adjusting the 

‘process’ control inputs. PID is named for three distinct parameters: the Proportional (P), the 

Integral (I), and the Derivative (D) values. These values are computed in terms of time where 

P depends on the present error, I depends on accumulation of past errors, and D is a prediction 

of future errors, based on current rate of change. The subjective sums of these three quantities 

were used to fine-tune the process by a control element. For example the position of a control 

valve, another example can be controlling the power supplied to a heater. Another example can 

be in which the set point was equal to the Required Temperature of the water. Feedback was 

given by the skin and error was equal to the difference. The controller was the brain and the 

output was a function of the error. 

The controller can provide the desired action by tuning the three parameters of the PID 

algorithm. The system proved to be more robust when the response of the controller to the error 

was the shortest, meaning the degree to which the controller overshot the set point and the 

system oscillation were minimized. However, the PID algorithm does not assure system stability. 

In some cases only one or two parameters provides appropriate control of the system, 

accomplished by setting other parameters to zero. The control can then be called a PI, PD, P, or I 

controller with respect to the absence of the zeroed parameter(s). Derivative action generally 
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measures noise and leads to frequent use of the PI algorithm, where the absence of the integral 

term may prevent the system to reach the targeted value due to control action. 

  
Figure 56: The PID controller concept (left) and the PID algorithm (right).  

The algorithm does not know the correct output to bring the process to the set point, but 

rather adjusts the output so that the process moves towards the set point (refer to Figure 57). 

 
Figure 57: PID Tuning 
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3.2.2.5 Tracking Biceps and Triceps Actuators as an Antagonistic System 

Parallel PID controllers were used to tune the eSARA lift assist. An equation was used 

to calculate a ratio of distance travelled by the biceps actuator (BA) to that of the triceps actuator 

(TA) as these two actuators differed in their lengths. The biceps actuator was marked at quarter 

inch intervals along its entire length. The respective potentiometer position feedback from the 

actuator counts were noted through the serial monitor. At every point the bicep actuator’s 

readings were taken, the triceps actuator was marked and its position feedback from the serial 

monitor was noted. The markings from the triceps actuator were measured in inches. Figure 58 

shows the marked biceps and triceps actuators.  

 
Figure 58: The calibrated BA (left) and the calibrated TA using BA as the primary actuator. 
 

Measured lengths of the marked BA vs. measured lengths of the TA are plotted in Figure 59 

along with a plot of the biceps actuator position feedback vs. the triceps position feedback.  
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Figure 59: Distance travelled by biceps actuator vs. tricpes actuator (left). Potentiometer position 

feedback from the biceps actuator vs. the triceps actuator. 

From the position feedback an equation of best fit was determined as follows:  

������ = � =  −0.0005�
 − 0.3607� + 918.6                           Equation 1 

This equation provided a start point for the PID parameter tuning. The parameters were 
tuned according to the following equations: 

PID parameters:   

���1 = ��� × �����1 +  ��� ×  ������1 −  !"������1#              Equation 2 

               ���2 = ��
 × �����2 +  ��
 ×  ������2 −  !"������2#                Equation 3 

Where Error1 and Error2 are given by:  

�����1 = %&�'�()�1 − *+��!���1,!-�&                                Equation 4 

�����2 = %&�'�()�2 − *+��!���2,!-�&                                 Equation 5 

The sensed position, called the actuator value, was considered the process variable. The 

desired position was called the set point. The input to the processes was the position of the 

actuator and the output of the PID controller was called the manipulated variable or the control 

variable. The difference between the measured actuator position and the set-point was the ‘error’. 

The ‘error’ quantifies whether the actuator position was higher or lower and by how much. The 
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PID controller sets the actuator position after measuring the process variable and calculating the 

error. The proportional control method (P) sets the actuator position in proportion to the current 

error. The derivative control method considers the rate of change of position of the actuator the 

position in adjusting the error. Finally, the integral action method uses the average position in the 

past to detect whether the position of the actuator was set too high or too low and sets the 

position proportional to the current error. Over time the steps add up (with the discrete time 

equivalent to the integration) the past errors. If a change was made that was too large when the 

error was too small lead to over-shooting the position. If the controller were to repeatedly make 

changes that were too large and constantly over shoots the target. The output oscillated around 

the set-point in a growing sinusoid. In this case the parameters were heavily tuned until the 

output oscillated around the set point. Fine tuning was done afterwards to minimize or eliminate 

any oscillations or jittering of the system. After the parameters were tuned, the position feedback 

serial readout of the bicep actuators vs. the triceps actuators was plotted and the outcome is 

shown in Figure 60.  

 
Figure 60: Actual BA vs. TA potentiometer position feedback from the actuator counts. An 

equation for the curve of best fit was obtained.  
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PID controls were implemented to minimize the jittering of the lift assist mechanism and 

produce a robust and agile system for the user.  

3.2.3 System Software 

The system used a total of four separate Atmega 328p microprocessors, one for each of the 

three control modalities and one for the lift assist. Using independent microprocessors allowed 

for the potential expansion of a specific modality with add-on circuits. The extra input/output 

pins were also kept for debugging issues with a certain modality or with the lift assist. Figure 61 

shows the pin mapping of the Arduino board to that of the Atmega 328. 

 

Figure 61: Atmega328 pin mapping to Arduino. 

3.2.3.1 Button Modality 

In this modality, the extension, contraction, grab, and release buttons were connected to pins 

4, 13, 18, and 19 of the Atmega 328 microprocessor, respectively. These pins were declared as 

input pins. The enable pins (both A and B) were connected to 5 volts. The extension motor and 
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grabber motor pins were connected to the 16, 17, 11, and 12 pins of the Atmega 328 

microprocessor, respectively. These pins were declared as output pins. It was written in the code 

that if, for example, the user presses the contraction button while the extension button is already 

pressed, no changes would take place. This type of code was applied to the grabber button 

controls as well. However, the extension actuator and the grabber motor can work 

simultaneously.  

3.2.3.2 Slider Modality 

For the slider control mode, the extension/contraction and grab/release sliders were 

connected to pins 24 and 25 of the Atmega 328 microprocessor, respectively. These pins were 

declared as input pins. The enable pins (both A and B) were connected to 5 volts. The extension 

and grabber motor pins were connected to 16, 17, 11 and 12 pins of the Atmega 328 

microprocessor, respectively. These pins were declared as output pins. A variable, ‘Current 

Value’, was declared to hold the current values of the sliding potentiometers and the initial value 

was set to zero. The sliding potentiometer was positioned in a neutral zone. Once the slider 

moved from the neutral position, the potentiometer limit set in the code was exceeded and the 

extension or grasping motors of the arm became active. The extension slider (ES) and grabber 

slider (GS) values are read from the analog pins with extension and grasping being adjusted by 

changing the settings for the extension motor pins (EMPin1, EMPin2) and the grabber motor 

pins (GMPin1, GMPin2). 

3.2.3.3 Voice Modality 

For the voice mode, Arduino had to interface with the VRbot. This interface required a 

handshake protocol between the two hardware modules which was achieved by processing 
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information via software serial ports that transmitted and received information between the 

modules. The ports were connected to pins 18 (receiving pin) and 19 (transmitting pin) of the 

Atmega 328 microprocessor. The enable pins (both A and B) were connected to 5 volts. The 

extension motor and the grabber motor pins were connected to 16, 17, 11 and 12 pins of the 

Atmega 328 microprocessor respectively. An LED was added to pin 7 to provide feedback to the 

user for the successful handshake between the Arduino board and the VRbot.  

To establish a successful protocol, certain parameters had to be sent and received between 

the Arduino and the VRbot. Figure 62 explains this process. Once the protocol was established, 

Arduino transmits the character ‘b’ and receives the character ‘o’ from the VRbot. Once the 

expected character was received, the VRbot was active (awake) shown in part (a) of the figure.  

 
Figure 62: Handshake protocol between Arduino and VRbot. 

The Arduino then sends a character ‘x’ and expects to receive the character ‘x’ from the 

VRbot. Once that was confirmed, Arduino registers the character ‘x’ as being received (Figure 

62b). For the next step Arduino sends a space (‘ ’) and expects to read the character ‘A’ from the 

VRbot. This step confirms that the firmware is functioning (Figure 62c). The language was set to 

English by sending the letter ‘A’ to the VRbot. Arduino receives the letter ‘o’ confirming that the 

language has been set to English (Figure 62d). Multiple timeouts can be selected; in this case 

infinite timeout was selected by send the character ‘A’ (Figure 62e). Finally, the handshake was 
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completed and the VRbot was ready to accept the trigger word for the voice chip to and to start 

controlling eSARA (Figure 62f). This entire process takes less than one second.  

The next step was to set up the command words following receipt of the trigger word. Once 

the trigger word was received, the VRbot expected the command words from the allocated group 

slots. Figure 63a shows that after receiving the trigger word (in this case ‘Max’) the reader was 

active for 1000 milliseconds during which the VRbot expects to receive commands. 

 
Figure 63: Allocated command words for the VRbot. 

In this sample figure the four commands: grab, release, forward, and backward, are denoted 

by the letters ‘A’, ‘B’, ‘C’ and ‘D’ as shown in Figure 63b-e. Once the desired command was 

received, the VRbot was updated and the process continued. The users only had to speak and 

record their voice using the Graphic User Interface of the VRbot shown earlier in Figure 53 but 

if more commands were needed, then the code would require additional updates. 
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3.2.3.4 Lift Assist   

The lift assist of the eSARA platform was controlled by using the Proportional Integral 

Derivative (PID) system. The PID calculates an ‘error’ value as the difference between a 

measured variable and a set-point. The PID minimizes the error using an iterative process to 

adjust the initial output of the PID (manipulated variable). This control method was used because 

it allows a fast and improved adjustment that can be made to the system. PID provides three 

forms of tuning controls that were relatively easier to tune and accomplish the required task 

quickly and accurately.  

The beginning of the program not only defines with pins but also defines the PID variables 

including: set-point, max-set-point, min-set-point, error-threshold, step-size, Kp, Ki, Kd, error, and 

last error. Equation 1 was used as the second set-point, with the first set point being the analog 

readout from the positional feedback of the biceps actuator. The PWMs were defined using  

equation 2 and equation 3. The errors were defined by equation 4 and equation 5. Figure 64a 

shows these equations being used in the code, while Figure 64b shows various functions being 

called based on the error state. The extend and contract functions, to extend or contract the 

actuators accordingly, lead to the rotation in the elbow joint of eSARA. The stop function stops 

the motion of the actuators. 
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Figure 64: (a) Equations used to define variables in the code (b) Functions being called based on the 

error state. 

3.2.4 Electrical Design 

The electrical design for eSARA was divided into two categories. Category 1 was the 

electrical design for the three control modes. Each of the three control modes were designed to 

control the extension/contraction and the grasping ability of the device. Category 2 was designed 

solely to control the two pressure sensors that were responsible for the lift assist portion of the 

device. 
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3.2.4.1 Electrical Design for Control Modalities and Extension  

 
Figure 65: Full circuit diagram interfacing all the control modes for extension and grasping. 

Figure 65 above shows the three Atmega 328p microprocessor chips used [102], one to 

connect each control mode separately. One motor driver was responsible for controlling the 

extension actuator and the grasping servo motors. The circuit was divided into two segments, a 

high voltage (11.1 volts) and a low voltage (5 voltes) segment. The high voltage circuit 
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contained the motor driver unit for extension and grasping. The low voltage circuit consisted of 

the microprocessors, sensors, and feedback LEDs. The voltage regulation was used to convert 

11.1 volts to 5 volts. A 28 pin motor drive, L298P, was used to drive the extension and grabber 

motors because this motor driver was able to control two actuators simultaneously (in this case 

the extension actuator and the grabber motor). Figures 66 to 70 below show detailed views of 

each part of the circuitry from Figure 65.  

 
Figure 66: Atmega328 micro controller used for the button modality. 

 
Figure 67: Atmega328 micro controller used for the slider modality. 
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Figure 68: Atmega328 micro controller used for the voice modality. 

 
Figure 69: L298P motor-driver controlling the extension and grasping motors. 

 

 
Figure 70: Modality control switch. 
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3.2.4.2 Electrical Design for Lift Assist Mechanism 

  

Figure 71: Full circuit diagram interfacing both of the pressure sensors for the lift assist feature. 

Figure 71 shows the electrical circuit for the lift assist feature of the arm which also utilized 

an Atmega 328p [102] microprocessor chip. The pressure sensors provided an analog input to the 

microprocessor and, based on the threshold pressure, the microprocessor controlled the biceps 

and triceps actuators. The threshold pressure was customized for each user via a variable resistor. 
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The variable resistor controlled the pulse with modulation (pwm) signal and thereby changed the 

threshold frequency for the pressure sensors. This feature allowed participants to customize their 

force exerted on the pressure sensors. The PID system was used to control the rate at which the 

actuators moved based on the input from the pressure sensors. This process was controlled by the 

‘Pressure Sensor Control’ shown in Figure 71. Here two motor driver units control the biceps 

actuators and triceps actuators separately. Figure 72 to Figure 75 below show detailed views of 

each section of the circuitry from Figure 71. 

 
Figure 72: Atmega328 micro controller used for the lift assist pressure sensors. 

 



89 

 

   

 

 
Figure 73: L298P motor-driver controlling the first set of biceps and triceps actuators. 

 
Figure 74: L298P motor-driver controlling the second set of biceps and triceps actuators. 

 
Figure 75: Voltage regulation circuit. 

Both of the electrical circuits were then converted into a Printed Circuit Board (PCB) and 

populated with the components. Figure 76 shows the stages of the PCB for modalities, from the 

breadboard tests, to the plain PCB, and finally the populated PCB. 

 

 



90 

 

   

 

 Bread board stage PCB Populated PCB 
 
 

Extension 
/ Modality 
Circuit 

 

 

 

 
 

 

 

 
 

Lift Assist 
Circuit 

 

 

 

 
 

 

 

Figure 76: This Figure shows stages of the Printed Circuit Board (PCB) for the 
modalities from design to building and populating the PCB. 

 

3.2.5 Preliminary Testing of the Exo-Skeletal Assistive Robotic Arm (eSARA) 

Platform 

Various aspects of eSARA were tested prior to the Human Machine Interface (HMI). First, 

the extension and grasping units were tested with each of the modalities independently. Then the 

lift assist unit was tested individually. Finally, the combination of the modalities for extension 

and grasping were tested simultaneously and rigorously to confirm usability before HMI and the 

participant studies.  

3.2.5.1 Extension 

The length of the arm was 4 inches when fully collapsed and 15 inches when fully extended, 

giving the arm an extension range of 11 inches. This full range of extension was controllable by 

any of the modalities. The extension actuator is triggered by the control modality and keeps 

extending until the maximum length is reached. Figure 77 shows the fully collapsed and fully 

extended arm. 
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Figure 77: Figure showing eSARA with minimum and maximum extension. 

Extension and grasping were first tested independently using each control modality. Then a 

test combining extension and grasping was conducted with each modality. Finally, all the 

modalities were activated at the same time with the modality selection switch. The arm was 

extended using one modality and retracted using the other modalities. Similarly, the grabber was 

opened with one mode and closed with another mode. These tests were done extensively to 

prevent any unexpected behavior during the participant testing.  

3.2.5.2 Lift Assist 

Pressure sensors were mounted in the handle of eSARA such that the user of the arm was 

able to control the lift assist feature with these pressure sensors. The sensors were placed so that 

if a participant presses down on the handle the system unfolds (arm stretches) and the system 

folds (arm flexes) when the participant exerts pressure on the top of the handle. Haptic feedback 

was added with an LED connected to the pressure sensors. The LED would light up when the 

pressure sensors were engaged. The biceps and triceps actuators were designed to provide lift 
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assist for the users. These actuators move antagonistically. The biceps actuator was longer and 

moved faster whereas the triceps actuator was smaller and moved slower. This antagonism 

produces a force couple (pure moment) creating rotation without translation or acceleration of 

the center of mass of the arm. The system acts like a rigid body with the pivot point being the 

elbow joint. The force couple acts as free vectors creating a resultant moment (torque). The 

calculations of these vector forces are shown in the next section. These actuators can be activated 

any time by turning on the main power supply and the lift assist unit. The lift assist was designed 

to be used frequently when retrieving the objects from the floor or above the chest. 

There were two ways to control the sensitivity of the pressure sensor. First, a potentiometer 

was attached to the device and adjusting the resistance of the potentiometer increased or 

decreased the pressure sensitivity. Alternatively, the pressure threshold could be changed within 

the software and uploaded to the micro-processor for a specified participant. The device was 

capable of adapting to a user desired threshold in both of these ways in order to prevent 

undesired movement of the arm when the user presses on the handle. When the user presses 

down on the handle the pressure sensor reads the force being applied by the user. An adjustable 

threshold, set by the user, allows the system to move only when the force, exerted by the user on 

the handle, exceeds this threshold. This additional assistive feature was designed to provide the 

user with flexibility in choosing from a broader spectrum of objects with fewer weight 

constraints.   
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Figure 78: Figure showing eSARA minimum and maximum lift assist angles 

Figure 78 shows the minimum (95o) and maximum (155o) lift assist angles. The maximum 

lift assist angle occurs when the biceps actuator is at its maximum extension. The platform was 

tested initially by isolating the lift assist feature. The arm was repeatedly tested by taking the lift 

assist from its minimum lift angle to its maximum lift angle. Once the lift assist functionality was 

successfully confirmed, a combination of extension, grasping, and lifting was tested with various 

objects. This preliminary pilot testing was done to assure no malfunctioning of the eSARA 

platform during the Human Machine Interface (HMI).  

3.2.5.3 Force Evaluation/Calculations  

Due to the fact that eSARA is a dynamic device with irregular shape and a shifting center of 

mass (depending on its position), force limitations were calculated at 9 different positions. These 

positions were chosen based eSARA’s range of extension and flexion between the forearm and 

the biceps. The extension of the forearm was measured from the handle to the tip of the grabber 

and three points were considered: no extension (14 inches), mid-point extension (17.5 inches) 

and full extension (21 inches). When the biceps actuator was at its maximum length and the 
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triceps actuator was at its minimum length the bend angle between the bicep and the forearm of 

the device was 155o and the arm was considered to be in no-flex (stretched) position. When the 

biceps and triceps actuators were both at mid-point lengths, the bend angle was 125o and the arm 

was considered to be in a mid-point flex position. When the bicep actuator was at its minimum 

length and the triceps actuator was at its maximum length the bend angle was 95o and the arm 

was considered to be in a full-flex position. Figure 79 shows these three bend angles. 

 
Figure 79: Side view of eSARA showing three flex angles for force calculations. 
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Figure 80: Calculations based on the measurements from Computer Aided Design (CAD) diagram.  

Figure 80 above shows how the force at the end-effector (FE) was to be calculated. The 

following steps were taken to calculate the force at the end-effector based on the torque produced 

at the elbow joint ‘O’. Force generated by the bicep actuator and triceps actuator was denoted by 

FBA and FTA, respectively. The perpendicular distances from the point of rotation (‘O’) to the line 

of direction of the force for the bicep and triceps actuators were denoted by LB and LT, 

respectively. The torque produced by each set of actuators was multiplied by 2 because the 

device contains two biceps and two triceps actuators. The weight of the forearm only was 

denoted by FW and its distance from the point of rotation (‘O’) was denoted by LW. Similarly, 

the force at the end-effector was denoted by FE and its distance from the point of rotation (‘O’) 

was denoted by LE. 

Given: FBA = FTA= 44.96179 lbs., FW = 4.4167 lbs., LB = 2.5 inches, LT = 2.126 inches,  

LW = 8.213 inches. FE was the only unknown. 

 

Torque produced by the bicep actuators at ‘O’  

./0 =   /0 ∗ 2/0                                 Equation 6 
 

Torque produced by the triceps actuator at ‘O’ 

.30 = �− 30# ∗ �−230# =   30 ∗ 230                                  Equation 7 
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Torque produced by the weight 

.4 =   4 ∗ 24                                  Equation 8 
 

Torque produced by the end-effector 

.5 =   5 ∗ �−25#                                  Equation 9 
 

The torque produced by the actuators was equal to the torque produced by the weight and the 

force at the end-effector. Therefore, the following equation was generated.  

2./* + 2.6* =  .7 − �− .5#  =  .7  + .5              Equation 10 
From the equation above:  

25 =  
2./0 +  2.30  − .7

 5

 

The above calculations were repeated for all 9 positions described earlier based on the flex angle 

of the arm Figure 79.  

 
Table 8: Summary of the maximum force at the end effector resulting from the change in the 

extension and the flexion of the arm. 

Table 8 shows the force at the end-effector in relation to the flex angle of the actuators and 

the change in length of the end-effector from the point of rotation. The first few columns 

calculate the torques for the bicep and triceps actuators. For each bicep flex angle, end-effector 
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force was calculated at the three forearm positions. From the table, the maximum force at the 

end-effector was calculated to be 20.14 lbs.  

The eSARA platform was tested physically with a weight of 17.85 lbs suspended at the 

end-effector. Figure 81 shows this weight being lifted using the eSARA platform. This weight 

was tested with ‘contracted’ forearm extension and the position between the bicep and triceps 

flex angle of 125o to 155o. The calculated weights at positions mentioned earlier were 18.91lbs. 

and 20.14 lbs. Although the eSARA platform was fully capable to lift greater weight at the end-

effector, it was not subjected to any additional weights. This was done as a precaution against 

any damages that may have occurred.  

 
Figure 81: 17.85lb weight start and end point when moved with the eSARA platform. 

3.2.5.4 Current Consumption and Battery Life Calculations 

An important and critical aspect of any device is the actual time the device can be utilized 

(runtime). The run time is based on the power source available and the amount of power being 

consumed by the system. The power consumption may vary depending on the activity and 

duration of the individual components. Current consumption and battery life calculations were 

done to create a profile for the runtime of eSARA.  
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Table 9 shows the current usage and the battery life of all the possible commands for 

eSARA. The same command was repeated ten times and the current drawn was measured with a 

multi-meter. Then combinations of commands were repeated ten times and the current drawn 

was measured. This process was repeated for all the three modalities, the button control mode, 

slider control mode, and the voice control mode. The setup of the experiment and the multi-

meter are shown in 

 

Figure 82. 

 
Figure 82: Current measuring experiment showing all the three modes, button, slider and voice 

control mode. 

After measuring the current consumption, the battery life was calculated for each 

command set. The battery was rated 500mAh (milliamp hours) providing 11.1V (volts) and 

55.5Wh (watt hours). The current drawn for a specific command was inversely proportional to 

the number of hours the battery lasted. If the battery draws 37.1mA it lasted for 500mAh / 

37.1mA = 134.77h. The table below shows device battery life per command as well as different 

command sets. 
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Extension 
Position 

Grabber 
Position 

Lift Assist 
Position 

Button Mode  
Average 
Current 

Button 
Mode 

Battery Life 

Slider 
Mode 

Current 

Slider 
Mode 

Battery 
Life 

Voice 
Mode 

Current 

Voice 
Mode 

Battery 
Life 

Status Status Status Average h Average h Average h 

ON OFF ON i’ mA   i’ mA   i’ mA   
Forward - Up 37.1 134.77 39.4 126.9 41.2 121.36 

Forward - Down 41.1 121.65 41.9 119.33 39.2 127.55 

Backward - Up 38.8 128.87 31.7 157.73 42.3 118.2 

Backward - Down 42.3 118.2 44.6 112.11 52.9 94.52 

Grab  - Up 65.8 75.99 54.8 91.24 64.7 77.28 

Grab  - Down 63 79.37 57.9 86.36 58.1 86.06 

Release - Up 82.6 60.53 67.8 73.75 81.5 61.35 

Release - Down 84.6 59.1 77.3 64.68 83.6 59.81 

ON ON ON - - - - - - 
Forward Grab Up 70.6 70.82 60.8 82.24 - - 

Forward Grab Down 76 65.79 76.8 65.1 - - 

Forward Release Up 89.8 55.68 77.1 64.85 - - 

Forward Release Down 82.1 60.9 77.4 64.6 - - 

Backward Grab Up 70 71.43 72.8 68.68 - - 

Backward Grab Down 67.5 74.07 69.8 71.63 - - 

Backward Release Up 76.2 65.62 83.3 60.02 - - 

Backward Release Down 87.6 57.08 78.5 63.69 - - 

ON OFF OFF - - - - - - 
Forward - - 9.8 510.2 10.5 476.19 11 454.55 

Backward - - 10.2 490.2 10.2 490.2 11 454.55 

Grab  - - 43.8 114.16 36.3 137.74 44.6 112.11 

Release - - 65.4 76.45 46.7 107.07 66.5 75.19 

ON ON OFF - - - - - - 

Forward Grab - 53 94.34 43.8 114.16 - - 

Forward Release - 66.5 75.19 65.2 76.69 - - 

Backward Grab - 42.7 117.1 38.3 130.55 - - 

Backward Release - 64.5 77.52 59.2 84.46 - - 

OFF OFF ON - - - - - - 
- - Up 24.8 201.61 25.8 193.8 37.6 132.98 
- - Down 29.3 170.65 38.8 128.87 30.8 162.34 

Table 9: Current consumption and battery life for all the three modalities and lift assist. 
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Table 9 includes results for all the possible positions and orientations of the arm. For each 

modality, the current was measured and noted 10 times for a specific configuration, and then it 

was averaged. Table 9 also captures results for basic movements, such as opening and closing 

the gripper, and complex movements, such as moving forward with the lift assist going up and 

grasping all at the same time. From Table 9 there were three columns for extension position, 

grabber position, and lift assist position. The independent average currents driven by each were 

stored in separate columns for the three modalities. Then the current consumption from the 

combination of extension, grabber, and lift assist positions were measured and the average was 

reported in corresponding modality column. The resulting battery life from the measured current 

was calculated and reported in the columns for each modality. This creates a complete profile of 

the current consumed for a specific movement indicating the potential usage that can be achieved 

from a fully charged battery.   

3.3 Discussion and Conclusion 

This chapter described the design and construction of an extendable, exo-skeletal, 

multimodal robotic arm with lift assist. The functionality of the arm was designed to facilitate 

reaching and grasping tasks for people with residual functionality or limited movement of their 

upper extremities.  This platform was developed especially to extend the reach envelope of high-

level SCI individuals. The platform provided an additional 11 inches of reach length beyond the 

original length (4 inches). Furthermore, the end effector of the device was able to grasp various 

objects with ease.  

Three different modalities were designed for controlling the platform. The button modality, 

slider modality, and voice modality could be used individually or in combination depending on 
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the user’s needs. Switching between the modalities was made easier by the mode selection 

switch.  

Participant safety was an important consideration achieved through the use of three separate 

switches. A main switch powered both the modality control unit and the lift assist unit, while 

cach of these units also had individual power switches.  

The platform provided lift assist for users who were unable to lift objects heavier than 2.5lbs 

extending their ability to include easy handling of objects up to 38 lbs. (subjected to limitations). 

Based on the results of force calculations and preliminary testing, eSARA demonstrates 

significant endurance and durability. 

The device’s battery life was sufficient to support intensive reaching, grasping, and lifting 

tasks before needing to be recharged. The current consumption matrix provides the battery-life of 

eSARA.  

Conclusion: The hypothesis, that a platform robotic reaching and grasping arm with multiple 

modes of control and lift assisting features could be created, was confirmed. A system has been 

created with the needed functionality for testing. The safety of the participant was given high 

priority and was assured with the ‘emergency stop’ system of the platform. The current and 

power consumption matrix provides feasibility of use on a daily basis. The force calculation and 

the actual force that eSARA was subjected in the preliminary testing meet the standards set for 

Human Machine Interface.  

The next chapter describes utilizing the eSARA platform to study HMI in detail. Chapter 4 

describes two experiments with various reaching, grasping, and lifting tasks. The platform 

developed in this chapter was used extensively with 19 different participants. The experimental 

protocol, results, and discussions for these experiments are also found in the next chapter.  
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Chapter 4: Evaluation of Control Modes 

4.1 Introduction and Motivation 

This chapter discusses the third research objective to conduct an extensive Human Machine 

Interface (HMI) study to evaluate the control modes and lift assist of the eSARA device. This 

HMI study was conducted to evaluate which modality of control was best matched to the 

capability of SCI participants and to associate that modality with the level of injury. This chapter 

describes the purpose, methods, and protocols of the experiments conducted. The main objective 

of these experiments was to create an evaluation methodology for a range of user interface 

movement modalities. The methodology devised was expected to be useful for the evaluation of 

SCI patients with short or long term upper extremity limitations. 

Given the lack of available reaching aids for people with SCI and forearm/hand paralysis, 

and the purpose of the HMI experiments was to assess the utility of the eSARA design (chapter 

3) for completing reaching and grasping tasks by both healthy, young adults and a person with 

SCI. Figure 83 shows the fully developed eSARA platform from chapter 3. The figure shows the 

three modalities (voice, slider, and buttons) connected to the modality control unit. The biceps 

and triceps actuators are connected to the lift assist control unit and were successfully operated 

by pressure sensors in the device handle. The extension actuator, extension rail, grabber motor, 

and claw (end effector) are also shown. Controlling the extension actuator and the grabber motor 

was successfully achieved with all the three modalities.  
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Figure 83: The final assembly of the Exo-Skeletal Assistive Robotic Arm.  

The hypotheses (from chapter 1) for the third objective were that:  

(3) A methodology to evaluate multiple modes of operating a device can be created.  

a. Multi-modal control would provide devise customization.  

b. The key metric of success was that movement time and errors of the SCI 

participant would be within the limits set by a healthy, adult group using the same 

device for both ‘fine movement’ and ‘gross movement’ experiments.  

This section provides detailed criteria for the experiments regarding the participants, 

experimental setup, test-bench, materials used, and error tracking.  

4.2 Human Machine Interface (HMI) Structure and Process 

Two experiments were conducted to test the HMI structure using the eSARA platform and 3-

level test-bench. These experiments were characterized based on the level of precision and 
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accuracy required for the assigned task and the handling of the weight of the object. Figure 84 

summarizes the structure and process flow of the HMI study. 

 

Figure 84: HMI structure and process flow. 

The HMI was divided into two experiments. Experiment 1 was defined as a ‘fine movement’ 

experiment, where the participants were required to perform light weight precision and accuracy 

tasks. Experiment 2 was defined as a ‘gross movement’ experiment, where the participants were 

required to perform an accuracy task with a heavier weight. Both of the experiments were 

repeated on all three levels of the test-bench and using all three available control modalities. In 

both of the experiments, time performance of the participants was measured and the number of 

errors produced during the course of the experiment was noted. The details and protocols of 

these experiments are discussed individually in the respective sections. After completing both 

experiments, participants were asked to complete a task load index assessment, also discussed 

below.  
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4.3 Test-Bench for Human Machine Interface (HMI) 

A book shelf with three different levels was used as a test-Bench shown in Figure 85Error! 

Reference source not found. The dimensions for the test-bench were 627mm (length) x 237mm 

(width) x 900mm (height) (24.7in x 9.3in x 35.4in). The three different levels consist of level ‘0’ 

(waist level), level ‘-1’ (mid-shin level), and level ‘+1’ (chest level) as shown in Figure 85b. 

These levels were based on the average height of a person while sitting on a chair. For the entire 

course of the experiment the participants sat at a fixed distance from the test bench. A chair or 

wheelchair was placed at a distance of 27 inches from the base of the test-bench to the chair 

center for all participants, as shown in Figure 85. 

 
Figure 85: (a) Color coded Test bench with three levels to be used for the experiment (b) Test bench 

levels and distance from the test bench shown. 

This test-bench (chapter 2) was designed with three height levels in order to test the use of 

the eSARA platform (chapter 3) for similar reaching and grasping tasks but at altered heights. 

The three modes of controls (voice, buttons, and slider) were used independently during the 

course of the HMI. The HMI was designed to measure time performances of participants based 

on reaching and grasping tasks on the three levels.  
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4.4 National Aeronautics and Space Administration (NASA) Task Load 
Index (TLX)  

NASA-TLX is a subjective workload assessment tool used to evaluate the workload on 

operators using various human machine systems. This multi-dimensional rating procedure 

derives an overall workload score based on a weighted average of ratings on six subscales. These 

subscales include Mental Demands (MD), Physical Demands (PD), Temporal Demands (TD), 

Performance (PF), Effort (EF) and Frustration (FR). The ‘Scores’ represent the ‘Weighted Mean 

Workload’. NASA utilizes this tool to assess workload in various human-machine environments 

including: aircraft cockpits, command, control, and communication workstations; supervisory 

and process control environments; simulations and laboratory tests [105]. The NASA-TLX was 

used for this research to assess the workload participants were subjected to when using the Exo-

Skeletal Robotic Arm (eSARA). All participants were required to complete the NASA-TLX 

assessment after finishing both the fine movement and gross movement experiments. Figure 86 

shows the structure of the NASA-TLX model used for the two experiments. The two 

experiments were treated as conditions, and each test-bench level was treated as a trial. The 

structure below was applied to all the participants.  
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Figure 86: Structure of the NASA TLX for the fine movement and gross movement experiment 

showing the relationship between the conditions and trials. 

4.4.1 Participants and Inclusion / Exclusion Criterion  

Inclusion criteria: Male and female, ages 18-60, any race or ethnicity, complete or 

incomplete spinal cord injury levels C5 through C7, able to reach and extend their extremity for 

simple movements.  

Exclusion criteria: People with extensive contractures, thoracic braces, or additional physical 

impairments that limit their ability to move. People who cannot speak, understand, or follow 

simple three step commands due to their injury were also excluded. 

Participants were divided into 3 groups: 

• Group 1: Healthy participants (General Population) 

o 12 participants 

• Group 2: Healthy participants mimicking movements of a C5-6 individual (Occupational 

Therapy Students)   

o 6 participants 

• Group 3: Spinal Cord Injury (SCI) Individual 

o 1 participant  (incomplete quadriplegia level C5-6) 
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4.5 EXPERIMENT 1: Fine Movement Experiment 

4.5.1 Methods 

4.5.1.1 Materials 

To test the fine movements of the participants a peg block was used with the test-bench. 

The test-bench and the peg-blocks are shown in Figure 87a and 87b, respectively. The pegs and 

the slots were color-coded. The participants were tasked with matching the color coded peg to 

the corresponding color coded slot. The pegs that were selected for this experiment loosely fitted 

in the slots, providing a flexible fit for the participants 

 
Figure 87: (a) Test-bench (b) Color-coded pegs for the fine movement experiment.  

4.5.1.2 Protocol  

For fine movements, the participants were required to perform a peg transfer task. The 

participants were to pick up the pegs from color coded areas and put them in corresponding 

colored peg slots. The experiment was to be repeated with five colored pegs, at the three 

different levels, and with the three modalities. The experiment was conducted with five colored 

pegs at level 0 (waist level), then the task was repeated with the pegs placed at level -1 (mid-shin 

level), and finally the task was repeated with the pegs placed at level +1 (chest level). This 

completed one modality (e.g. buttons). The same experiment was repeated with the remaining 
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two modalities. The five pegs used were of different shapes and sizes. Figure 88 below shows the 

start point and expected end point of the experiment for the three levels. 

Start Point End Point 

 

 
 
 
 
 
 
 
 
 
 

 

 

e. Level: +1 

 
f. Level: 0 

 
g. Level: -1 h. Level: 0 All Pegs in their slots 

Figure 88: Start and end points of the fine movement experiment. 
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To avoid fatigue, participants were allowed to take breaks during testing. Breaks within 

levels were 3 minutes and breaks between modalities were 5 minutes. The number of breaks 

taken was subject to the individual participant’s desire. Participants who required even more rest 

due to excessive fatigue were allowed to rest after completing each level. An option was also 

given to all the participants to complete the test over the course of one or two days if preferred. 

The total time to take the test without any breaks was approximately 45 minutes. 

4.5.1.3 Error Tracking 

For the fine movement experiments, participants were required to place the color-coded 

pegs into their corresponding slots such that the peg was fully descended into the slot. Figure 

89(a-d) shows examples of errors within the test bench that participants were required to rectify 

before moving on. Figure 89e shows an error outside of the test bench that did not have to be 

rectified. The number or errors per level and the color of the peg with the error were documented 

manually. No additional penalties were added to the experiment time. 

 
Figure 89: (a-d) Errors counted within the testbench that must be rectified (e) error outside 

testbench considered a failed peg transfer. 

Placing a peg incorrectly would increase the time for that particular level as participants 

were required to fix the error before moving onto the next level. The participants were informed 

before the start of each experiment about the errors and their consequence. The participants were 

also informed of correct, acceptable placement of the pegs. The lift assist feature was actively/ 
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automatically available for those participants who required it. When a participant moved from 

one level to the next (level -1, 0, or +1) the pegs were quickly reset and the experiment resumed. 

4.5.2 Data Analysis 

For the entire series of experiments the mean estimation and Analysis Of Variance 

(ANOVA) were calculated for able-bodied participants only. This compiled control data was 

then compared with the time performance of the SCI participant. Data was analyzed using SPSS 

(IBM) [97] statistical software. Descriptive data were provided for each participant. Differences 

in time between levels for all participants were compared using Analysis of Variance (ANOVA) 

with the Bonferroni correction for multiple comparisons. Significance was established at p < 

0.05. Overlaying the plots was the average time of the healthy participants took to complete the 

experiment in each level. This average time of the healthy participants was represented by a thick 

dashed line, the SCI participant was represented by a thick dot and dash line. The plots also 

indicate the upper limits (marked with a dot) and lower limits (marked with a dot) for standard 

deviations. Participants did not report experiencing any discomfort or fatigue, and the principal 

investigator did not observe any signs of discomfort or fatigue over the course of the 

experiments.   

Figure 90 shows how participants performed tasks for a given mode on all three levels. The 

time the participant took to complete each level was recorded in order to study the effect of 

change in height in relation to the modality. Level 0 represented natural working position in 

contrast to out of reach positions (level +1 and level -1).  
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Figure 90: One mode, all levels for fine movement. 

Figure 91 shows how participants were asked to perform tasks using all three control 

modalities on each of the height levels. For a given level, the participant completed the tasks 

using all three modalities. The time the participant took to complete each level was recorded in 

order to study the effect of change in the control mode at a given height (level). Level 0 

represented a natural working position in contrast to out of reach positions (level +1 and level -

1).  

 

Figure 91: All modes, one level for fine movement. 
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4.5.3 Results 

4.5.3.1 Healthy Participants in Comparison with SCI Participant 

Figure 92 provides a box and whisker plot summarizing the time performance of the 

participants during the ‘fine movement’ experiment using the ‘button’ mode. The SCI participant 

finished testing at levels -1 (mid-shin) and +1 (chest), faster than the average healthy participants 

by 9.6% and 19.9%, respectively. At level 0 (waist) the SCI participant was 22.0% slower than 

the average healthy individual. However, this outcome was still within one standard deviation 

(SD) of the healthy participants’ average.  

 
Figure 92: Time performance of healthy participants during the fine movement experiment using 

the button modality on the three levels. 

Each healthy participant’s completion time and errors per level were recorded for the button 

mode for the fine movement experiment.  
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Table 10: Estimated marginal mean of time (minutes) values of the levels and the standard error 

for the fine movement experiment. These estimated marginal means were calculated 
only for the healthy participants using the button mode. 

There was a significant main effect for level height (F (2, 22) = 53.891, p < 0.001) in the fine 

movement experiment for the healthy participants using button mode. The pairwise comparisons 

for the main effect of level were corrected using Bonferroni adjustments and are displayed in the 

following table. Table 11 shows that the significant main effect reflects a significant difference 

(p < 0.001) between levels -1 and 0 (lower and middle), between levels -1 and 1 (lower and 

upper; p = 0.010), and between levels 1 and 0 (upper and middle; p < 0.001). 

 
Table 11: ANOVA analysis for the fine movement experiment of healthy participants using the 

button mode, based on estimated marginal means. * The mean difference was 
significant at the 0.05 level. b Bonferroni adjustment for multiple comparisons. 

The box and whisker plot in Figure 93 below, summarizes the results of the fine movement 

experiment for the healthy participants using the slider control mode. The SCI participant 

finished testing at levels -1 (mid-shin), 0 (waist), and +1 (chest), slower than the average healthy 

participants by 14.7, 5.4 and 3.3%, respectively. However, his performance still falls within one 

standard deviation of the healthy participant average.  
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Figure 93: Box and whisker plot of the time performance of healthy participants during the fine 

movement experiment using the slider modality on all three height levels. 

Each healthy participant’s completion time and errors per level were recorded for the slider 

mode for the fine movement experiment.  

 
Table 12: Estimated marginal mean of time (minutes) values and standard error for the different 

height levels during the fine movement experiment, calculated from healthy participant 
data only.  

There was a significant main effect for level height (F (2, 22) = 104.331, p < 0.001) in the 

fine movement experiment for the healthy participants using the slider control mode. The 

pairwise comparisons for the main effect of level were corrected using Bonferroni adjustments 

and are displayed in the table bleow. Table 13 shows that the main effect for level height reveals 

a significant difference (p < 0.001) between levels -1 and 0 (lower and middle), between levels -

1 and 1 (lower and upper; p = 0.012), and between levels 1 and 0 (upper and middle; p < 0.001).  
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Table 13: ANOVA results for the fine movement experiment with healthy participants using the 

slider mode, based on estimated marginal means *The mean difference was significant 
at the 0.05 level. b Bonferroni adjustment for multiple comparisons. 

Figure 94 shows a similar plot to those presented in figures 92 and 93, but contains the 

results of the fine movement experiment for the healthy participants using the voice control 

mode. The SCI participant finished testing at both the -1 (mid-shin) and +1 (chest) levels 1.5% 

slower than the average healthy participants. This result, however, was still within one standard 

deviation of average. At waist level 0, the SCI participant was 8.6% faster than the average 

healthy individual. 

 
Figure 94: Box and whisker plot of the time performance of healthy participants during the fine 

movement experiment using the voice control modality on all three height levels. 
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Each healthy participant’s completion time and errors per level were recorded for the voice 

mode for the fine movement experiment.  

 
Table 14: Estimated marginal mean of time (minutes) values and standard error for the fine 

movement experiment at each of the three height level, calculated only for the healthy 
participants using the voice mode. 

There was a significant main effect for level height (F (2, 22) = 39.692, p < 0.001) in the fine 

movement experiment for healthy participants using the voice control mode. The pairwise 

comparisons for the main effect of level were corrected using Bonferroni adjustments and are 

displayed in the table below.  Results of the statistical analyses in Table 15 show that a 

significant difference exists between levels -1 and 0 (lower and middle; p < 0.001), between 

levels -1 and 1 (lower and upper; p = 0.004), and between levels 1 and 0 (upper and middle; p = 

0.001). 

 
Table 15: ANOVA results for the fine movement experiment of healthy participants using the voice 

mode, based on estimated marginal means. *The mean difference was significant at the 
0.05 level. b Bonferroni adjustment for multiple comparisons. 
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4.5.3.1.1 Time Performance of the SCI Participant vs. Healthy Participants Using One 

Mode at All Levels 

Figure 95 below shows the individual time performance of each healthy participant 

completing the fine movement experiment at all three height levels while using the button 

modality.  

 
Figure 95: Individual time performance of healthy participants, their average, and the SCI 

participant’s performance during the fine movement experiment using the button 
modality at all three height levels. 

Figure 96 below shows the individual time performance of each healthy participant 

completing the fine movement experiment at all three height levels while using the slider 

modality.  
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Figure 96: Individual time performance of healthy participants, their average, and the SCI 

participant’s performance during the fine movement experiment using the slider 
modality at all three height levels. 

Figure 967 below shows the individual time performance of each healthy participant 

completing the fine movement experiment at all three height levels while using the voice 

modality.  

 
Figure 97: Individual time performance of healthy participants, their average, and the SCI 

participant’s performance during the fine movement experiment using the voice 
modality at all three height levels.  
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4.5.3.1.2 Time Performance of the SCI Participant vs. Healthy Participants using All 

Modes at One Level  

Figure 98 below shows the time performance of each healthy participant for the fine 

movement experiment at level +1 using all three control modalities.  

 
Figure 98: Individual time performance of healthy participants, their average, and the SCI 

participant’s performance during the fine movement experiment on level +1 (chest) 
using all the three control modalities; (1=button, 2=Slider, 3=Voice). 

Figure 99 below shows the time performance of each healthy participant for the fine 

movement experiment at level 0 using all three control modalities.  

 
Figure 99: Individual time performance of healthy participants, their average, and the SCI 

participant’s performance during the fine movement experiment on level 0 (waist) using 
all the three control modalities; (1=button, 2=Slider, 3=Voice). 
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Figure 100 below shows the time performance of each healthy participant for the fine 

movement experiment at level -1 using all three control modalities.  

                                         
Figure 100: Individual time performance of healthy participants, their average, and the SCI 

participant’s performance during the fine movement experiment on level -1 (mid-shin) 
using all the three control modalities; (1=button, 2=Slider, 3=Voice). 
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4.5.3.2 Healthy Restricted Participants (Occupational Therapy Students) in 
Comparison with an SCI Participant 

For each of the experiments conducted, summary statistics (e.g. mean and analysis of 

variance) were computed for the able-bodied participants only and this compiled data was then 

compared with that of the SCI participant. In the above sections, the performance of the healthy 

participants (group 1) was averaged and compared to that of the SCI individual. In the following 

sections, time performance results of the occupational therapy participants (group 2) will be 

compared to that of the SCI individual.  

 The box and whisker plot in Figure 101 summarizes the performance of the occupational 

therapy students during the fine movement experiment using the button control modality. The 

SCI participant finished testing at levels -1 (mid-shin), 0 (waist), and +1 (chest), faster than the 

average of the occupational therapy participants by 14.6, 35.9, and 24.6%, respectively. His 

performance times were within two standard deviations of group 2’s means for levels -1 and +1. 

However, at level 0, the SCI participant’s performance significantly exceeded (indicated by a 

faster completion time) the average from the occupational therapy participants.   

 
Figure 101: Box and whisker plot of the time performance of the occupational therapy participants 

during the fine movement experiment using the button modality at all three height 
levels. 
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Each occupational therapy participant’s completion time and errors per level were recorded 

for the button mode for the fine movement experiment.  

 
Table 16: Estimated marginal mean of time (minutes) values and the standard error are reported 

for the fine movement experiment at each of the three levels using the button control 
mode.  Values are calculated using data from the occupational therapy participants 
only. 

There was a significant main effect for level height (F (2, 10) = 62.632, p < 0.001) in the fine 

movement experiment for the occupational therapy participants using the button control mode.  

The pairwise comparisons for the main effect of level were corrected using Bonferroni 

adjustments and are displayed in the table below. Table 17 indicates a significant difference in 

main effect between levels -1 and 0 (lower and middle; p < 0.001) and between levels -1 and 1 

(lower and upper; p = 0.006). However, there was no significant difference between levels 1 and 

0 (upper and middle; p = 0.065). 

 
Table 17: ANOVA results for fine movement experiment of occupational therapy participants using 

the button mode, based on estimated marginal means. *The mean difference was 
significant at the 0.05 level. b Bonferroni adjustment for multiple comparisons. 

Figure 102 summarizes the results of the fine movement experiment for the occupation therapy 

participants using the slider control mode. The SCI participant finished testing at levels -1 (mid-
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shin), 0 (waist), and +1 (chest), faster than the average of the occupational therapy participants 

by 11.2, 42.5, and 12.7%, respectively. His performance for levels -1 and +1 were within one 

standard deviation of this average, and within two standard deviations of the average for level 0. 

 
Figure 102: Box and whisker plot of the time performance of occupational therapy participants 

during the fine movement experiment using the slider modality at all three height levels. 

Each occupational therapy participant’s completion time and errors per level were recorded 

for the slider mode for the fine movement experiment.  

 
Table 18: Estimated marginal mean of time (minutes) values and the standard error are reported 

for the fine movement experiment at each of the three levels using the slider control 
mode.  Values are calculated using data from the occupational therapy participants 
only. 

There was a significant main effect for level height (F (2, 10) = 23.123, p < 0.001) in the fine 

movement experiment for the occupational therapy participants using the slider control modality. 
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Table 19 shows this significant main effect using Bonferroni adjustments to correct the pairwise 

comparisons. A significant difference was observed between levels -1 and 0 (lower and middle; 

p = 0.013), between levels -1 and 1 (lower and upper; p =0.009), and between levels 1 and 0 

(upper and middle; p = 0.046). 

 
Table 19: ANOVA results for fine movement experiment of occupational therapy participants using 

the slider mode, based on estimated marginal means. *The mean difference was 
significant at the 0.05 level. b Bonferroni adjustment for multiple comparisons. 

Figure 102 summarizes the results of the fine movement experiment for the occupation 

therapy participants using the voice control mode. The SCI participant finished testing at levels -

1 (mid-shin) and +1 (chest), slower than the average occupational therapy participant by 16.2% 

and 23.4%, respectively. At level 0 (waist), the SCI participant was 23.4% faster than the 

average healthy individual but still within one standard deviation of the average). At levels -1 

and 0, the SCI participant’s performance fell within two standard deviations of the healthy 

participant averages. 
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Figure 103: Box and whisker plot of the time performance of occupational therapy participants 

during the fine movement experiment using the voice modality at all three height levels. 

Each occupational therapy participant’s completion time and errors per level were recorded 

for the voice mode for the fine movement experiment.  

 
Table 20: Estimated marginal mean of time (minutes) values and the standard error are reported 

for the fine movement experiment at each of the three levels using the voice control 
mode.  Values are calculated using data from the occupational therapy participants 
only. 

There was a significant main effect based on height level of the test bench (F (2, 22) = 

12.271, p < 0.001) for the occupational therapy participants using the voice control mode during 

the fine movement experiment.  The pairwise comparisons for the main effect of level were 

corrected using Bonferroni adjustments. Table 21 shows that the significant main effect reflects a 

significant difference between levels -1 and 0 (lower and middle; p = 0.007) but there was no 
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significant difference between levels -1 and 1 (lower and upper; p = 0.132) or between levels 1 

and 0 (upper and middle; p = 0.318). 

 
Table 21: ANOVA results for fine movement experiment of occupational therapy participants using 

the voice mode, based on estimated marginal means. *The mean difference was 
significant at the 0.05 level. b Bonferroni adjustment for multiple comparisons. 

4.5.3.2.1 Time Performance of the SCI Participant vs. Occupational Therapy 

Participants Using One Mode at All Levels  
 

Figure 104 below shows the individual time performance of each occupational therapy 

participant for the fine movement experiment using the button modality at each of the three 

height levels.  

 
Figure 104: Individual time performances of the occupational therapy participants, their average, 

and the SCI participant’s performance during the fine movement experiment using the 
button modality at all three height levels. 
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Figure 105 below shows the individual time performance of each occupational therapy 

participant for the fine movement experiment using the slider modality at each of the three height 

levels.  

 
Figure 105: Individual time performances of the occupational therapy participants, their average, 

and the SCI participant’s performance during the fine movement experiment using the 
slider modality at all three height levels. 

Figure 106 below shows the individual time performance of each occupational therapy 

participant for the fine movement experiment using the voice modality at each of the three height 

levels.  
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Figure 106: Individual time performances of the occupational therapy participants, their average, 
and the SCI participant’s performance during the fine movement experiment using the 
voice modality at all three height levels. 

4.5.3.2.2 Time Performance of the SCI Participant vs. Occupational Therapy 

Participants Using All Mode at One Levels 

Figure 107 below shows the individual time performance of each occupational therapy 

participant for the fine movement experiment at level +1 (chest) using all three control 

modalities.  

 
Figure 107: Individual time performance of the occupational therapy participants, their average, 

and the SCI participant’s performance during the fine movement experiment on level 
+1 using all three control modalities; (1=button, 2=Slider, 3=Voice). 
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Figure 108 below shows the individual time performance of each occupational therapy 

participant for the fine movement experiment at level 0 (waist) using all three control modalities.  

 
Figure 108: Individual time performance of the occupational therapy participants, their average, 

and the SCI participant’s performance during the fine movement experiment on level 0 
using all three control modalities; (1=button, 2=Slider, 3=Voice).  

Figure 109 below shows the individual time performance of each occupational therapy 

participant for the fine movement experiment at level -1 (mid-shin) using all three control 

modalities.  

 
Figure 109: Individual time performance of the occupational therapy participants, their average, 

and the SCI participant’s performance during the fine movement experiment on level -1 
using all three control modalities; (1=button, 2=Slider, 3=Voice).  
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4.5.3.3 All Participants (Healthy and Occupational Therapy Students) in 
Comparison with the SCI Participant 

In this section, time performances of all healthy participants (groups 1 and 2) were 

combined and compared to that of the SCI participant. Comparisons were made for ‘one mode, 

all levels’ and ‘all modes, one level’, where mode indicates the three control modalities and level 

indicates the three height levels of the test bench. In all subsequent plots, blue dotted lines with 

solid triangles represent the healthy participants (group 1) with their average shown by red solid 

line with triangles. Green dashed lines with solid circles represent individual occupational 

therapy participants with their average indicated by an orange solid line with solid circles. The 

SCI participant’s performance is represented by the magenta dot-dash line with hollow squares. 

4.5.3.3.1 Time Performance of the SCI Participant vs. All Participants Using One 

Mode at All Levels  

Figure 110 below shows the time performance of all participants for the fine movement 

experiment at all three levels using the button modality.  

 
Figure 110: Individual time performances of all participants, and healthy participant averages 

(groups 1 and 2), during the fine movement experiment using the button modality on all 
three height levels. 
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Figure 111 below shows the time performance of all participants for the fine movement 

experiment at all three levels using the slider modality.  

 
Figure 111: Individual time performances of all participants, and healthy participant averages 

(groups 1 and 2), during the fine movement experiment using the slider modality on all 
three height levels. 

Figure 112 below shows the time performance of all participants for the fine movement 

experiment at all three levels using the voice modality.  

 

Figure 112: Individual time performances of all participants, and healthy participant averages 
(groups 1 and 2), during the fine movement experiment using the voice modality on all 
three height levels.  
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4.5.3.3.2 Time Performance of the SCI Participant vs. All Participants Using All 

Modes at One Level 

Figure 113 below shows the individual time performances of all participants for the fine 

movement experiment at level +1 using the all three control modalities.  

 
Figure 113: Individual time performances of all participants, and healthy participant averages 

(groups 1 and 2), during the fine movement experiment at level +1 using all three 
control modalities; (1=button, 2=Slider, 3=Voice). 

Figure 114 below shows the individual time performances of all participants for the fine 

movement experiment at level 0 using the all three control modalities.  
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Figure 114: Individual time performances of all participants, and healthy participant averages 

(groups 1 and 2), during the fine movement experiment at level 0 using all three control 
modalities; (1=button, 2=Slider, 3=Voice). 

Figure 115 below shows the individual time performances of all participants for the fine 

movement experiment at level -1 using the all three control modalities. 

 
Figure 115: Individual time performances of all participants, and healthy participant averages 

(groups 1 and 2), during the fine movement experiment at level -1 using all three control 
modalities; (1=button, 2=Slider, 3=Voice). 
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4.5.4 Summary 
 

The SCI participant’s time performance was within 1 standard deviation of the average of 

group 1 (healthy participants/general population). The SCI participant’s time performance was 

generally faster than the average time performance of group 2 (Occupational Therapy students). 

The difference was within 1 or 2 standard deviation. However, when the SCI participant’s time 

performance was assessed against all the participants (group 1 + group 2), the performance 

difference falls within 1 standard deviation. It was noted that all participants took the longest to 

complete the lower level (-1 level/ mid-shin level). The fastest level was noted to be the middle 

level (level 0/ waist level).  
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4.6 EXPERIMENT 2: Gross Movement Experiment 

4.6.1 Methods 

4.6.1.1 Materials  

A second test was conducted using the eSARA arm and the same groups of participants 

from experiment 1 in order to test gross movements. For the gross movements test, bottles of 

various weights were used with the test-bench. The test-bench and these bottles are shown in 

Figure 116a and 116b, respectively. The bottles weighed 0.5, 1, 1.5, and 2 lbs. Similar to the 

pegs in the fine movement experiment, the bottles were also color-coded. Participants were 

tasked with moving the color coded bottles to corresponding color coded positions on the test-

bench. Bottles were also marked with their respective weights allowing the participant to know 

how much weight they were handling.  

 
Figure 116: (a) The test-bench (b) Color-coded bottles of various weights. 

4.6.1.2 Protocol 

To test gross movements with the eSARA platform, the participants were required to 

perform what was called the Bottle-Weight Transfer Experiment. The lift assist feature of the 

device was activated during testing at all levels of the experiment. This completed one modality 
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(e.g. buttons). The same experiment was repeated with the remaining two modalities. All of the 

bottles were the same size and shape, but each had a different weight. Figure 117 below shows 

the start point and expected end point of the experiment for the three levels of the test bench. 

Start Point End Point 

 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

a. Level: +1 

 
b. Level: 0 

 
c. Level: -1 d. Level: 0 

Figure 117: Start and end points for the gross movement experiment. 

To avoid fatigue, participants were allowed to take breaks during testing. Breaks within 

levels were 3 minutes and breaks between modalities were 5 minutes. The number of breaks 
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taken was subject to the individual participant’s desire. Participants who required even more rest 

due to excessive fatigue were allowed to rest after completing each level. An option was also 

given to all the participants to complete the test over the course of one or two days if preferred. 

The total time to take the test without any breaks was approximately 45 minutes.  

4.6.1.3 Error Tracking  

Bottle diameters were increased to approximately 2.5 inches (see Figure 118) to improve 

grasping and prevent slipping of the bottles from the end-effector. 

 
Figure 118: Bottles are marked with a red rectangle to show the additional support during the 

gross test to have a better grasp on the bottle. The diameter of the rings were noted to 
be approximately 0.75 inches wide 0.8 inches 

Figure 119 shows possible errors committed by the participants during the gross 

movement tests. An error was recorded if the bottle was knocked down (Figure 119a) but it was 

determined that participants would not waste additional time and effort to make the bottle stand 

up. However, if the bottle was placed more than halfway off of its color coded slot (Figure 

119b), it was considered an error that must be fixed before moving on. Figure 119c illustrates a 

failed bottle-weight transfer, which was recorded along with the specific bottle and the respective 

level.  
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Figure 119: (a) and (b) Examples of errors for the gross movement experiment within the test 

bench. Only error type (b) required correction before moving on. (c) Errors outside of 
the test bench are considered a failed bottle transfer for that specific bottle and level. 

4.6.2 Data Analysis   

For the entire series of experiments the mean estimation and Analysis Of Variance 

(ANOVA) were calculated for able-bodied participants only. This compiled control data was 

then compared with the time performance of the SCI participant. Data was analyzed using SPSS 

(IBM) [97] statistical software. Descriptive data were provided for each participant. Differences 

in time between levels for all participants were compared using Analysis of Variance (ANOVA) 

with the Bonferroni correction for multiple comparisons. Significance was established at p < 

0.05. Overlaying the plots was the average time of the healthy participants took to complete the 

experiment in each level. This average time of the healthy participants was represented by a thick 

dashed line, the SCI participant was represented by a thick dot and dash line. The plots also 

indicate the upper limits (marked with a dot) and lower limits (marked with a dot) for standard 

deviations. Participants did not report experiencing any discomfort or fatigue, and the principal 

investigator did not observe any signs of discomfort or fatigue over the course of the 

experiments.   
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Figure 120 shows how participants performed tasks for a given mode on all three levels. The 

time the participant took to complete each level was recorded in order to study the effect of 

change in height in relation to the modality. Level 0 represented natural working position in 

contrast to out of reach positions (level +1 and level -1).  

 

Figure 120: One Mode all level for gross movement 

Figure 121 shows how participants were asked to perform tasks using all three control 

modalities on each of the height levels. For a given level, the participant completed the tasks 

using all three modalities. The time the participant took to complete each level was recorded in 

order to study the effect of change in the control mode at a given height (level). Level 0 

represented a natural working position in contrast to out of reach positions (level +1 and level -

1). 
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Figure 121: All Modes One level for gross movement 

 

4.6.3 Results 

4.6.3.1 Healthy Participants in Comparison with SCI Participant 

All summary statistics (e.g. mean estimation and analysis of variance) were conducted on 

data collected from the healthy participants and occupation therapy participants only. Their 

combined data was then compared with that of the SCI participant. Figure 122 below shows a 

box and whisker plot of results from the healthy participants for the gross movement experiment 

using the button control mode. The SCI participant finished testing at levels +1 (chest) and 0 

(waist), faster than the average healthy participants by 21.2% and 29.2%, respectively. At level -

1 (mid-shin) the SCI participant was 10.7% slower than the average healthy individual. 

However, his performance was still within one standard deviation of the average.  
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Figure 122: Box and whisker plot of the time performance of healthy participants during the gross 

movement experiment using the button control modality at each of the three height 
levels. 

Each healthy participant’s completion time and errors per level were recorded for the button 

mode for the gross movement experiment.  

 
Table 22: Estimated marginal mean of time (minutes) values and the standard error are reported 

for the gross movement experiment at each of the three levels using the button control 
mode.  Values are calculated using data from the occupational therapy participants 
only. 

There was a significant main effect for level height (F (2, 22) = 6.763, p < 0.001) in the gross 

movement experiment for the healthy participants using the button control modality.  The 

pairwise comparisons for the main effect of level were corrected using Bonferroni adjustments 

and are displayed in the following table. Table 23 reveals a significant difference between levels 
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-1 and 0 (lower and middle; p = 0.044), but no significant differences between levels -1 and 1 

(lower and upper; p = 0.794) or between levels 1 and 0 (upper and middle; p =0.091). 

 
Table 23: ANOVA results for the gross movement experiment with healthy participants using the 

button mode, based on estimated marginal means *The mean difference was significant 
at the 0.05 level. b Bonferroni adjustment for multiple comparisons. 

Figure 123 summarizes the results of the gross movement experiment for healthy participants 

using the slider control modality at each of the three height levels. The SCI participant finished 

testing at levels +1 (chest) and 0 (waist), faster than the average healthy participants by 14.3% 

and 18.5%, respectively. At level -1 (mid-shin) the SCI participant was 7.3% slower than the 

average healthy individual but his performance was still within one standard deviation from the 

average. 
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Figure 123: Box and whisker plot of the time performance of healthy participants during the gross 

movement experiment using the slider control modality at each of the three height 
levels. 

Each healthy participant’s completion time and errors per level were recorded for the slider 

mode for the gross movement experiment.  

 
Table 24: Estimated marginal mean of time (minutes) values and the standard error are reported 

for the gross movement experiment at each of the three levels using the slider control 
mode.  Values are calculated using data from the occupational therapy participants 
only. 

There was a significant main effect for level height (F (2, 22) = 4.373, p <0.001) in the gross 

movement experiment for the healthy participants using the slider control mode. The pairwise 

comparisons for the main effect of level were corrected using Bonferroni adjustments and are 

displayed in Table 25. Main effect statistical analysis reveals no significant difference (p =0.086) 
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between any of the pairs of levels. Levels -1 and 0 (lower and middle), between levels -1 and 1 

(lower and upper) (p = 1.000) and between levels 1 and 0 (upper and middle) (p = 0.197). 

 
Table 25: ANOVA results for the gross movement experiment with healthy participants using the 

slider mode, based on estimated marginal means *The mean difference was significant 
at the 0.05 level. b Bonferroni adjustment for multiple comparisons. 

Figure 124 below shows a box and whisker plot of only the healthy participants for the gross 

movement experiment using the voice mode. The SCI participant finished testing at levels +1 

(chest) and 0 (waist), faster than the average healthy participants by 2.6% and 0.7%, 

respectively. At level -1 (mid-shin) the SCI participant was 4.2% slower that the average healthy 

individual but still within one standard deviation of the average.  

 
Figure 124: Box and whisker plot of the time performance of healthy participants during the gross 

movement experiment using the voice modality on all three height levels. 
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Each healthy participant’s completion time and errors per level were recorded for the voice 

mode for the gross movement experiment.  

 
Table 26: Estimated marginal mean of time (minutes) values and the standard error are reported 

for the gross movement experiment at each of the three levels using the voice control 
mode.  Values are calculated using data from the occupational therapy participants 
only. 

There was a significant main effect for level height (F (2, 22) = 12.320, p <0.001) in the 

gross movement experiment for healthy participants using the voice control modality.  The 

pairwise comparisons for the main effect of level were corrected using Bonferroni adjustments. 

Table 27 shows that the significant main effect reflects a significant difference between levels -1 

and 0 (lower and middle; p = 0.001) and between levels 1 and 0 (upper and middle; p =0.010). 

However, there was no significant difference between levels -1 and 1 (lower and upper; p = 

1.000). 

 
Table 27: ANOVA results for the gross movement experiment with healthy participants using the 

voice mode, based on estimated marginal means *The mean difference was significant at 
the 0.05 level. b Bonferroni adjustment for multiple comparisons. 
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4.6.3.1.1 Time Performance of the SCI Participant vs. Healthy Participants Using One 

Mode at All Levels 

Figure 125 below shows the individual time performance of each healthy participant for 

the gross movement experiment at all three levels using the button modality.  

 
Figure 125: Individual time performance of healthy participants, their average, and the SCI 

participant’s performance are shown for the gross movement experiment conducted at 
all three height levels using the button modality. 

Figure 126 below shows the individual time performance of each healthy participant for 

the gross movement experiment at all three levels using the slider modality.  

 
Figure 126: Individual time performance of healthy participants, their average, and the SCI 

participant’s performance are shown for the gross movement experiment conducted at 
all three height levels using the slider modality. 
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Figure 127 below shows the time performance of each healthy participant for the gross 

movement experiment at all three levels using the voice modality.  

 
Figure 127: Individual time performance of healthy participants, their average, and the SCI 

participant’s performance are shown for the gross movement experiment conducted at 
all three height levels using the voice modality. 

4.6.3.1.2 Time Performance of the SCI Participant vs. Healthy Participants using All 

Modes at One Level  

Figure 128 below shows the individual time performance of each healthy participant for 

the gross movement experiment at level +1 (chest) using all three control modalities.  

 
Figure 128: Individual time performance of healthy participants, their average, and the SCI 

participant’s performance during the gross movement experiment on level +1 using all 
the three modalities; (1=button, 2=Slider, 3=Voice). 
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Figure 129 below shows the time performance of each healthy participant for the gross 

movement experiment at level 0 using all three control modalities. 

 
Figure 129: Individual time performance of healthy participants, their average, and the SCI 

participant’s performance during the gross movement experiment on level 0 using all 
the three modalities; (1=button, 2=Slider, 3=Voice). 

Figure 130 below shows the time performance of each healthy participant for the gross 

movement experiment at level -1 using all three control modalities.  

 
Figure 130: Individual time performance of healthy participants, their average, and the SCI 

participant’s performance during the gross movement experiment on level -1 using all 
the three modalities; (1=button, 2=Slider, 3=Voice). 
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4.6.3.2 Healthy Restricted Participants (Occupational Therapy Students) in 
Comparison with SCI Participant 

The above analysis for the healthy participants (group 1) has been repeated for the healthy 

participants restricting their movements (occupational therapy participants/group 2). 

Figure 131 below shows a box and whisker plot of only the occupational therapy participants 

for the gross movement experiment using the button mode. The SCI participant finished testing 

at levels -1 (mid-shin), 0 (waist), and +1 (chest), faster than the average of the occupational 

therapy participants by 20.1%, 35.7%, and 31.1%, respectively. However, his performance was 

still within two standard deviations of the average.  

 
Figure 131: Box and whisker plot of the time performance of occupational therapy participants 

during the gross movement experiment using the button modality on all three levels. 

Each occupational therapy participant’s completion time and errors per level were recorded 

for the button mode for the gross movement experiment.  
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Table 28:  Estimated marginal mean of time (minutes) values and the standard error are reported 

for the gross movement experiment at each of the three levels using the button control 
mode.  Values are calculated using data from the occupational therapy participants 
only. 

There was a significant main effect for level height (F (2, 10) = 50.689, p <0.001) in the 

gross movement experiment occupational therapy participants using button mode. The pairwise 

comparisons for the main effect of level were corrected using Bonferroni adjustments. Table 29 

shows that the significant main effect reflects a significant difference between levels -1 and 0 

(lower and middle; p = 0.002), between levels -1 and 1 (lower and upper; p = 0.003), but was not 

significant between levels 1 and 0 (upper and middle; p = 0.094). 

 
Table 29: ANOVA results for the gross movement experiment with occupational therapy 

participants using the button mode, based on estimated marginal means *The mean 
difference was significant at the 0.05 level. b Bonferroni adjustment for multiple 
comparisons. 

Figure 132 below shows a box and whisker plot of the time performances of the occupational 

therapy participants for the gross movement experiment using the slider mode. The SCI 

participant finished testing at levels -1 (mid-shin), 0 (waist), and +1 (chest), faster than the 

average of the occupational therapy participants by 27.1%, 30.0%, and 30.8%, respectively. 

However, his performance was still within two standard deviations of the average.  
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Figure 132: Box and whisker plot of the time performance of the occupational therapy participants 

during the gross movement experiment using the slider modality on all three height 
levels. 

Each occupational therapy participant’s completion time and errors per level were recorded 

for the slider mode for the gross movement experiment.  

 
Table 30: Estimated marginal mean of time (minutes) values and the standard error are reported 

for the gross movement experiment at each of the three levels using the slider control 
mode.  Values are calculated using data from the occupational therapy participants 
only. 

There was a significant main effect for level height (F (2, 10) = 19.379, p < 0.001) in the 

gross movement experiment for the occupational therapy participants using slider mode.  The 

pairwise comparisons for the main effect of level were corrected using Bonferroni adjustments. 

Table 31 shows that the significant main effect reflects a significant difference between levels -1 
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and 0 (lower and middle; p = 0.016), between levels -1 and 1 (lower and upper; p = 0.026), but 

no significant difference existed between levels 1 and 0 (upper and middle; p = 0.067).  

 
Table 31:  ANOVA results for the gross movement experiment with occupational therapy 

participants using the slider mode, based on estimated marginal means *The mean 
difference was significant at the 0.05 level. b Bonferroni adjustment for multiple 
comparisons. 

Figure 133 below shows a box and whisker plot of the occupational therapy participants’ 

time performance for the gross movement experiment using the voice mode. The SCI participant 

finished testing at levels -1 (mid-shin), 0 (waist), and +1 (chest), faster than the average of the 

occupational therapy participants by 7.9%, 13.9%, and 0.4%, respectively. However, his time 

performance at each of the three height levels were all within 1 standard deviation of the 

occupational therapy participants’ average. 
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Figure 133: Box and whisker plot of the time performance of occupational therapy participants 

during the gross movement experiment using the voice modality on all three levels. 

Each occupational therapy participant’s completion time and errors per level were recorded 

for the voice mode for the gross movement experiment.  

 
Table 32: Estimated marginal mean of time (minutes) values and the standard error are reported 

for the gross movement experiment at each of the three levels using the voice control 
mode.  Values are calculated using data from the occupational therapy participants 
only. 

There was a significant main effect for level height (F (2, 10) = 24.651, p <0.001) in the 

gross movement experiment for the occupational therapy participants using voice mode.  The 

pairwise comparisons for the main effect of level were corrected using Bonferroni adjustments. 

Table 33 shows that the significant main effect reflects a significant difference between levels -1 



156 

 

 

 

and 0 (lower and middle; p = 0.003), between levels -1 and 1 (lower and upper; p = 0.045), but 

not between levels 1 and 0 (upper and middle; p =0.053).  

 
Table 33: ANOVA results for the gross movement experiment with occupational therapy 

participants using the voice mode, based on estimated marginal means *The mean 
difference was significant at the 0.05 level. b Bonferroni adjustment for multiple 
comparisons. 

4.6.3.2.1 Time Performance of the SCI Participant vs. Occupational Therapy 

Participants Using One Mode at All Levels 

Figure 134 below shows the inidivudal time performance of each occupational therapy 

participant for the gross movement experiment at all three levels using the button modality.  

 
Figure 134: Individual time performance of occupational therapy participants, their average, and 

the SCI participant’s performance during the gross movement experiment using the 
button modality on all three height levels. 

Figure 135 below shows the time performance of each occupational therapy participant 

for the gross movement experiment at all three levels using the slider modality.  
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Figure 135: Individual time performance of occupational therapy participants, their average, and 

the SCI participant’s performance during the gross movement experiment using the 
sider modality on all three height levels. 

Figure 136 below shows the time performance of each occupational therapy participant 

for the gross movement experiment at all three levels using the voice modality.  

 
Figure 136: Individual time performance of occupational therapy participants, their average, and 

the SCI participant’s performance during the gross movement experiment using the 
voice modality on all three height levels. 
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4.6.3.2.2 Time Performance of the SCI Participant vs. Occupational Therapy 

Participants Using All Mode at One Levels 

Figure 137 below shows the time performance of each occupational therapy participant 

for the gross movement experiment at level +1 using all three control modalities.  

 
Figure 137: Individual time performance of the occupational therapy participants, their average, 

and the SCI participant’s performance during the gross movement experiment on level 
+1 using all three modalities; (1=button, 2=Slider, 3=Voice). 

Figure 138 below shows the time performance of each occupational therapy participant 

for the gross movement experiment at level 0 using all three modalities.  

 
Figure 138: Individual time performance of the occupational therapy participants, their average, 

and the SCI participant’s performance during the gross movement experiment on level 
0 using all three modalities; (1=button, 2=Slider, 3=Voice). 
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Figure 139 below shows the time performance of each occupational therapy participant 

for the gross movement experiment at level -1 using all three modalities.  

 
Figure 139: Individual time performance of the occupational therapy participants, their average, 

and the SCI participant’s performance during the gross movement experiment on level 
-1 using all three modalities; (1=button, 2=Slider, 3=Voice). 

4.6.3.3 All Participants (Healthy and Occupational Therapy Students) in 
Comparison with SCI Participant 

In this section, time performances of all healthy participants (groups 1 and 2) were 

combined and compared to that of the SCI participant. Comparisons were made for ‘one mode, 

all levels’ and ‘all modes, one level’, where mode indicates the three control modalities and level 

indicates the three height levels of the test bench. In all subsequent plots, blue dotted lines with 

solid triangles represent the healthy participants (group 1) with their average shown by red solid 

line with triangles. Green dashed lines with solid circles represent individual occupational 

therapy participants with their average indicated by an orange solid line with solid circles. The 

SCI participant’s performance is represented by the magenta dot-dash line with hollow squares. 
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4.6.3.3.1 Time Performance of the SCI Participant vs. All Participants Using One 

Mode at All Levels 

Figure 140 below shows the time performance of all participants for the gross movement 

experiment at all three levels using the button modality.  

 
Figure 140: Individual time performance of all participants, and their average along with the SCI 

participant’s performance during the gross movement experiment on all the three levels 
using the button modality. 

Figure 141 below shows the time performance of all participants for the gross movement 

experiment at all three levels using the slider modality.  

 
Figure 141: Individual time performance of all participants and their average along with the SCI 

participant’s performance during the gross movement experiment on all the three levels 
using the slider modality. 
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Figure 142 below shows the time performance of all participants for the gross movement 

experiment at all three levels using the voice modality.  

 
Figure 142: Individual time performance of all participants and their average along with the SCI 

participant’s performance during the gross movement experiment on all the three levels 
using the voice modality. 

4.6.3.3.2 Time Performance of the SCI Participant vs. All Participants Using All 

Modes at One Level 

Figure 143 below shows the time performance of each participant for the gross 

movement experiment at level +1 using all three modalities. 

 
Figure 143: Individual time performance of all participants and their average along with the SCI 

participant’s performance during the gross movement experiment on level +1 using all 
three modalities; (1=button, 2=Slider, 3=Voice). 
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Figure 144 below shows the time performance of each participant for the gross 

movement experiment at level 0 using all three modalities.  

 
Figure 144: Individual time performance of all participants and their average along with the SCI 

participant’s performance during the gross movement experiment on level 0 using all 
three modalities; (1=button, 2=Slider, 3=Voice). 

Figure 145 below shows the time performance of each participant for the gross movement 

experiment at level -1 using all three modalities.  

 

Figure 145: Individual time performance of all participants and their average along with the SCI 
participant’s performance during the gross movement experiment on level -1 using all 
three modalities; (1=button, 2=Slider, 3=Voice). 
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4.6.4 Summary 

The SCI participant’s time performance was with the within 1 standard deviation of the 

average of Group 1 (healthy participants (general population)). The SCI participant’s time 

performance was generally faster than the average time performance of group 2 (Occupational 

Therapy students). The difference was within 1 or 2 standard deviation. However when the SCI 

participant’s time performance was assessed against all the participants (group 1 + group 2), the 

performance difference falls within 1 standard deviation. It was noted that all participants took 

the longest to complete the lower level (-1 level/ mid-shin level). The fastest level was noted to 

be the middle level (level 0/ waist level).  

4.7 NASA TLX Results 

This section discusses the results of the NASA TLX data collected after the completion of 

both experiment 1 and experiment 2. The subscales (as described in section 4.4) include Mental 

Demands (MD), Physical Demands (PD), Temporal Demands (TD), Performance (PF), Effort 

(EF) and Frustration (FR). The ‘Scores’ represent the ‘Weighted Mean Workload’.  

4.7.1 Healthy Participants 

Table 34 shows the average of the NASA TLX results of the healthy participants 

(subscale averages denoted by their acronym + prime, e.g. MD’). These results were compared to 

that of the SCI participant’s with columns immediately to the right of each subscale average (red 

text). 
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Table 34: Average of the NASA TLX results for the healthy participants compared with that of the 

SCI participant. 

4.7.2 Healthy Restricted (Occupational Therapy Students) Participants 

Table 35 shows the average results from the NASA TLX assessment taken by the 

occupational therapy participants (these averages are shown by each subscale acronym, e.g. 

MD'). These results were compared to that of the SCI participant’s with columns immediately to 

the right of each subscale average (red text). 

 
Table 35: Average of the NASA TLX results for the occupational therapy participants compared 

with that of the SCI participant. 

These two tables reveal that the mid-shin level (-1) required the most effort (EF) and 

physical demand (PD) for both the fine movement and gross movement experiments. 

4.7.3 NASA TLX Result Summary 

In table 36 below, each NASA TLX subscale has been marked with a cross (X) to indicate which 

height level the participants found most challenging. The index marked in red with MD 

represents the SCI participant whereas the unmarked index MD represents the combined replies 
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of both the healthy and healthy restricted participants. The table shows that both the SCI and all 

other participants faced the most challenges at level -1 (mid-shin level).  

 Level MD’ MD PD’ PD TD’ TD PF’ PF EF’ EF FR’ FR Score’ Score 
Fine 1               

0               
-1 X X X X X X X X X X X X X X 

Gross 1               
0               
-1 X X X X X X X X X X X X X X 

Table 36: Most challenging level. 

4.8 Modality Rating   

After the completion of the two experiments, the participants were asked to rank the 

modalities based on preference. Table 37 summarizes the results of these modality rankings. 5 of 

the 12 healthy participants preferred the slider control modality. The next most popular control 

modality was voice mode, the fewest number of healthy participants liked the button mode. 

Similarly, 4 of the 6 occupational therapy participants (healthy participants asked to restrict their 

movements) liked the slider mode the best, followed by the button mode, and voice mode was 

least preferred. The table also shows the SCI participant’s ranking of the modalities. The SCI 

participant liked the voice mode the best, followed by the slider mode, and liked the button mode 

least. 

 
Table 37: Control modalities ranked by the participants. 
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4.9 Discussion and Conclusion   

The results in section 4.8 above revealed that the majority of the healthy participants 

preferred the continuous mode of control (slider mode) out of the three control modalities. 

Despite his rankings above, the SCI participant also mentioned liking the slider mode 

(continuous mode of control) best. However, because the slider modality required the SCI 

participant to use one arm for balancing and stabilizing his body (related to his level of injury), 

he ultimately preferred the voice mode.  

These extensive experiments demonstrated that the multimodal exo-skeletal reacher arm 

with lift assist designed here, is useful for assisting an SCI individual in moving objects of 

different shape, size, and weight in a similar time, and with no more errors, than an average 

healthy young adult without discomfort or fatigue. 

The first experiment was designed to assess the participants’ ability to perform a ‘fine 

movement’ task by arranging particular pegs into corresponding slots within a confined space. 

Successful completion of this task by the SCI participant with all the given modes and within a 

comparable time as the healthy participants clearly demonstrated that the SCI participant was 

comfortable using the eSARA platform.  

The second experiment was designed to assess the participants’ ability to perform a ‘gross 

movement’ task by moving bottles of different weights within a confined space and in a 

particular arrangement. Experiment two required a more careful approach and consequently the 

lift assist function played a vital role here. The extension and lift assist features greatly improved 

the lifting and placing of heavier objects, especially from the perspective of the SCI participant 

whose normal lifting capabilities are very limited (<2.5 lbs).  
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Using the eSARA platform allowed the SCI participant to achieve all of the objectives 

from the two experiments, which he otherwise was unable to complete. eSARA also allowed the 

SCI participant to maneuver similar to healthy, young adults using the same device, measured by 

the time required to complete the experiments  Based on these results, his answers to the NASA 

TLX assessment, and his ranking of the different modalities, a methodology to fit SCI 

individuals with the eSARA device was successfully achieved. The results of these experiments 

also confirmed the second hypothesis of this thesis, which stated that a methodology to evaluate 

the multiple control modes of the eSARA could be created.  

Ultimately, this multimodal, exo-skeletal robotic arm resolved previously unmet needs for 

an individual with severe spinal cord injury. The eSARA device was particularly useful for 

giving this individual independence, especially for reaching and grasping otherwise out-of-reach 

(located at various height levels) objects. Furthermore, the lift assist feature enabled the SCI 

individual to manageably lift and retract objects that would otherwise weigh too much. 

Movement between mid-shin and mid-chest levels of these objects not only became feasible, but 

was completed with comparable movement times and number of errors as a control group of 

healthy young adults. Finally, the SCI individual was able to accomplish all of this without 

distress or fatigue (either reported by the participant or observed by the investigator).  Based on 

these findings, the reacher, with additional technical improvement, may provide significant and 

meaningful assistance to people with high level SCI.  

This research provided strong proof of concept that, using the eSARA platform, a 

methodology can be developed to match a specific mode of device control to the functionality of 

an SCI individual, based on his or her level of injury. Technical improvements for the next 

generation of the reacher have been identified and are discussed in the next chapter. The next 
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chapter discusses the future work proposed for the eSARA platform based on feedback from the 

majority of the participants. 
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Chapter 5: Discussion, Conclusion, and Future Work 

Summary: One of the fundamental problems with designing a user interface for assistive 

devices is addressing functional deficits in the matching of user capability with device control 

modalities. Solving this problem was the primary goal of this thesis—that is, how to create a 

methodology that allows for technology customization, bringing individuals from the target 

population (high level spinal cord injury) towards greater self-sufficiency. The thesis was framed 

around the main hypotheses that:  

(1) Reach and grasp tasks with platforms designed with multiple modes of control and other 

useful features would be feasible and usable by an SCI participant and  

(2) A methodology to evaluate multiple modes of operating such a device can also be 

created.  

The first prototype device, and its associated experiments, addressed hypothesis 1 and 

were described in chapter 2. User testing confirmed the device’s utility as a low cost, light 

weight, voice-activated reaching and grasping device for people with reach limitation. 

Furthermore, the device allowed a SCI participant to perform at the same level as a healthy 

individual using the same device. The reach limitations were tested in a specially designed test 

environment simulating real life scenarios. The experiments were expanded with a control group 

of healthy participants. The SCI participant repeated the experiment with results similar to those 

of the average of the healthy participants using the same device. These results showed promising 

usability, but the device was restricted in its capabilities and modes of operations. 

In chapter 3 the research was taken further with the design of a new wearable robotic 

device with multi-modal controls. Greater functionality (lift assist and extendibility) was also 
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added to the device to better assist individuals with severe SCI and upper extremity limitations in 

their daily lives. Two different tests were designed to target various aspects of functionality and 

movability of the Human Machine Interface (HMI). All participants were to complete both 

experiments with the three given modalities of control. Healthy participants were divided into 

two groups. Group 1 participants were allowed to make any movements while group 2 was asked 

to restrict themselves to imitate movements that would be made by an individual with severe 

SCI. At the end of the two experiments with all the modalities, participants took a task load 

index test to determine the most challenging aspect of the experiments. 

Finally, the SCI participant completed the two experiments with all three available 

modalities. The results of the experiments confirmed that the SCI participant was able to perform 

equal to the average healthy participant (using the same device) while achieving all the tasks 

accurately. No visual signs of fatigue were observed and all participants confirmed not feeling 

fatigue when asked.  

5.1 Discussion and Conclusion 

This research validates the methodology of matching the ability of the SCI individual with 

the mode of control using the eSARA platform. The eSARA platform enabled individuals with 

high level of SCI or upper extremity limitations to move objects within a 1D planar level and 

across three levels in 3D. The SCI participant was able to use all the available modes of control, 

but due to limitations from his SCI, he selected the ballistic mode of control with minimal/no 

limb movement. Without the methodology developed using eSARA, the SCI participant was 

unable to perform any of the functional tasks. With the use of the reacher it was validated that 

the SCI participant was able to perform all of the assigned tasks and was able to lift substantial 

weight (beyond his normal limit) with the help of the lift assist feature. His time performance 
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was comparable to both control groups. This result was the key to the methodology because it 

demonstrates that a successful level of control was achieved by the SCI individual.  

The methodology devised in this research has proven on positive impact, and great potential 

to improve, the life of SCI participants by matching their deficits with appropriate control 

modalities. One drawback of this research was that there were not enough SCI participants (due 

to a lack of availability) to fully test the methodology. In addition, the device was a prototype 

that still needs usability improvements. Thus, future work is based on these main factors:  

1. Participant Study: A larger group of individuals with SCI needs to be evaluated on the 

test platform developed in chapters 2 and 3.  

2. Device update: The device will be updated to increase its usability with a number of 

improvements suggested below. 

3. Enhanced Human Machine Interface (HMI): The future HMI should be tested with SCI 

participants with various levels of injury. These participants will then take part in 

experiments similar to the ones in chapter 2 and chapter 3. Control modes will be 

categorized as described previously: 

1. Ballistic modality with no extremity movement required (e.g. voice activated)  

2. Ballistic control mode (e.g. pushing buttons) that requires minimal movement of the 

extremities 

3. Continuous control mode (e.g. joystick) that may require major (continuous) movement 

of the extremities 

Other modalities could be added depending on the range of disabilities. For instance, if 

speech was an issue, neck or eye movements could be used to control the device. 



172 

 

 

 

The methodology will include having the participant use a given control mode and assessing 

the results of the experiment to see if the participant’s data corresponds to that of a healthy 

participant. If a SCI participant’s performance falls outside two standard deviations of the mean 

performance of healthy participants, the SCI participant will be asked to select a different (less 

movement requiring) modality and repeat the experiment. A simple test of evaluation could be 

created to determine the capabilities of any given participant. For instance, a simple computer 

game could help determine the ease of use of a given modality. A joystick or differently sized 

buttons could all be used to complete the gaming tasks. The information collected from the 

gaming tasks would be utilized to design a modality study for the SCI participants.   

5.1.1 Modality Selection for the SCI Injury Level 

The participant will be required to perform a simple experiment that will determine 

which of the three modes is best suited for that participant (like those in chapter 2). The 

participant will then engage in a more intensive experiment (like those in chapter 3) multiple 

times. A number of participants, with various levels of SCI, will be compared to the following 

control groups similarly to the controls used in chapters 2 and 3:   

1. Healthy participants with no restrictions 

2. Healthy participants with temporary physical constraints  

3. SCI participants with various levels of injury 

4. Participants with arthritis 

5. Participants with temporary upper extremity limitations 

The methodology for modality selection will be similar for all of these participants in order to 

create a user interface that matches the capability of the participant with his or her respective 

upper extremity limitations.  
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5.1.2 Modality Match Methodology 

Once the participant is matched to a given modality, that mode will be available in 

various ergonomic and user friendly options. If the participant was matched with the ballistic 

modality with no extremity movement, there will be various microphones available for enhanced 

voice communication. If the participant was matched with ballistic control mode with minor 

extremity movement, there will be buttons with various sizes and touch sensitivities available. If 

the participant was matched with continuous control mode, there will be a variety of options for 

the participant to select from including a rotary dial, a slider, or a joystick. To further customize 

the matched modality, the participants will be required to repeat a series of experiments with 

their modality’s different options. The following figure helps explain this ideology for the future 

work. 

 

Figure 146: Methodology for modality selection for SCI participants. 
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Stating from various participants the modality match experiments will determine what mode 

the participant can use given their physical restrictions. Once the modality is matched, ballistic 

no extremity movement, ballistic minor extremity movement or continuous with major extremity 

movement, the participants will be provided with options available for the matched modality. To 

determine the best fit specifications of the matched modality the participants will be asked to 

perform a simple test of evaluation. For instance the gaming exercises from section 5.2. This will 

help the participant to choose to customize the matched modality. 

 

5.2 Future Work 

5.2.1 Device Upgrades 

The current generation of the assistive arm is a fully operational device that meets all 

desired expectations and functional requirements. However, the currents Exo-Skeletal Assistive 

Robotic Arm (eSARA) could be modified to a lighter and easier to customize device. Now that 

the platform is functional, and shown to be useful for developing a strategy for SCI participants, 

only a few adjustments are needed to enhance future generations of the assistive arm. The 

following are a few suggestions and ideas for the next generation of eSARA. 

5.2.1.1 Weight Reduction 

The current assistive device weighs 7.42 lbs. with the majority of this weight coming 

from the steel components (forearm plate, bottom arm plate, biceps bracket, triceps bracket, etc.) 

of eSARA. In the future design these parts could be replaced by aluminum, high density 

polymer, or carbon-fiber, all of which would significantly reduce the weight of the arm. Another 

weight contributing factor is the handle. Although the current handle is made of aluminum, it 

contains many components. The central cylinder holding the top and bottom plate of the handle 
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is a solid aluminum piece. That solid aluminum cylinder is housed within a hollow aluminum 

cylinder to have a floating mechanism for the handle. In the future these pieces could be replaced 

by a simpler piece of high density polymer or plastic. These parts could also be 3D printed in 

low-cost, high strength plastics. 3D printing would also allow the parts to be made modular such 

that if something breaks, a replacement part could be printed. Finally, the electronics could be 

housed within the arm’s length, avoiding weight generated by the individual housing units for lift 

assist and modality selection. 

5.2.1.2 New Structural Design  

The current generation of eSARA inherited its structure from the air-brace system with 

slight modifications to accommodate the needs of the user. Now that different functionalities of 

eSARA have been well-defined with the current platform, a fresh design could not only improve 

the look and weight of the device, but could also accommodate channels for the electrical 

features. This design feature would help to integrate and conceal the electrical wires, 

connections, and battery within the structure.  

The current generation of eSARA consists of a cushion and four Velcro straps to fasten 

the device to the user. These Velcro straps are located at the wrist, forearm, bottom of the bicep, 

and top of the bicep. The cushion and Velcro combination makes the current generation look 

bulky and maladroit. This system can also be very cumbersome while putting on or taking off the 

arm. Better ways of securing the user’s arm to the device are being considered. For example, a 

one buckle system could provide a quick and secure release for the arm.  
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5.2.1.3 End-Effector Enhancement  

The end-effector used for the current generation was a servo based grapping claw. The 

claw assembly worked sufficiently well but the end-effector could be greatly enhanced for future 

device generations using some of the following ideas.  

5.2.1.4 Camera Based Adaptive End-Effector Orientation 

If a micro camera with the capability of object recognition is added at the end effector, it 

could greatly improve the ease of grasping an object. Once the camera recognizes the object, the 

end-effector would rotate and adjust its orientation based on the object’s position. This 

recognition would allow the users to perform the grasping task faster and more efficiently. 

However, a training period would be required for the users to get acclimated with the new 

device.   

5.2.1.5 Better Gripper 

The current gripper works excellently but further improvements in the quality and 

grasping ability could be very useful. A gripper with integrated sensors for slip detection, force 

feedback, and dexterity would allow the users to be more informed about the grasp on the object.  

5.2.1.6 Feedback Mechanism 

The future generation of this robotic device should provide more information to the user 

based on suggestions from the current participants. Feedback from the various functionalities of 

the current assistive arm would help the user to be more confident in moving various objects. 

Feedback requirements, and how they would enhance the current device, follow. 

5.2.1.6.1 Lift Assist Feedback  

The current generation of eSARA lacked feedback from the pressure sensors. A 

multicolor Light Emitting Diode (LED) could be added to the pressure sensors. The LED would 
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stay ‘on’ while the arm is in motion, with a simple change in color when the maximum or 

minimum angle between the forearm and biceps is reached. This color coded LED will make the 

user aware of the maximum and minimum limits of the arm’s rotation.  

5.2.1.6.2 Extension Feedback 

The current generation of eSARA also lacks extension feedback. This feedback could 

also be in the form of an LED. This LED can stay luminous while the extension is taking place 

and changes to a different color if the maximum extension is reached. The same can be true 

when the arm collapses and the minimum extension is reached. 

5.2.1.6.3 Gripper Feedback 

Feedback from the gripper would also improve the current generation of eSARA by 

providing feedback regarding the grip strength. A tactor (small vibrating motor) [93] would be 

very helpful for the user. The tactor’s intensity can be linked to pressure sensor in the gripper end 

of the device. The pressure sensor can be directly proportional to the tactor’s vibration. The 

strongest grasp by the end-effector will make the tactor vibrate intensely. The intensity of 

vibrations will reduce as the grip is reduced. This feedback could also be achieved using an  LED 

instead of a tactor. When the luminosity of the LED is the brightest, that would suggest the 

tightest grip by the end-effector.  

5.2.1.6.4 Modality Feedback 

The current generation eSARA had only one modality control switch that indicated the 

mode in use, but a feedback mechanism could be incorporated that allows users to know what 

mode the platform is in without checking the switch. This feature could be done by connecting 

an LED or a speaker using the inputs from the modality control switch. Based on the switch 

position, when the device is turned on, the modality feedback will say which modality is 
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currently being used (in case of the speaker feedback). In case of the LED feedback, once the 

device is turned ‘on’ the feedback for various modalities can be color coded. For example, if the 

button modality was selected the LED will blink red for a few seconds and turn off. Once the 

modality is switched (slider modality) the led will blink yellow a few times and turn off. Again if 

the modality is switched to voice the led will blink blue for a few second and turn off. 

5.2.1.6.5 Power Feedback (Low Battery Feedback) 

The power feedback feature will allow the user to know if the battery needs to be 

recharged. This can be achieved by using a low energy LED. Once the power reaches a certain 

value the power feedback LED turns on. This will be a clear visual indication to recharge the 

battery. Current generation of eSARA does not have an indicator that allows the users to know if 

the battery needs to be recharged.  

5.2.1.7 Modality Selection and Exchange 

In the current platform, the modality selection switch was concealed to limit access. In 

the future generation it would be made visible making it easier for users to utilize the multi-

modal feature. The packaging of the modality and connection wires also needs to be improved 

for durability. 

5.2.1.8 Placement of the Pressure Sensors for Lift Assist 

The participant study revealed that placement of the pressure sensors needed to be 

improved. Currently, the pressure sensor are placed just above the handle. In the next generation 

of the device, a pressure sensor with a larger contact area will be used. This will improve the 

contact of the sensor with the user resulting in a better pressure assessment. The threshold 

adjustment switch was concealed in the current version to see how well the participants adapt 

with a constant pressure threshold. However, some of the participants showed interest in 
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changing the pressure threshold making it more (or less) sensitive. Therefore, in the next 

generation the pressure threshold will be visible and adjustable to suit the participants’ desires.  

5.2.1.9 Dynamic Lift Assist 

The lift assist feature of this device was based on one threshold. Once the threshold was 

adjusted, the PID controller was set up to maintain a constant speed. A future improvement will 

be to allow for user adjustment of this threshold. Another improvement will be a dynamic 

assistive method. In this method, if the pressure sensor is pressed beyond the threshold pressure, 

the speed of the arm will increase. These adjustments will allow a user to fully adjust the 

pressure applied at the pressure sensor and also controlling the speed of the rotation of the arm.  

5.2.1.10 Ergonomics and Participants 

Ergonomics play an important part in designing a commercial device. The current 

generation served as a platform for concept verification/visualization. Consideration of 

ergonomics was rather low for the current iteration of the device. However, now that the device 

has been demonstrated to be useful for the target population, an improved Human Machine 

Interface can be styled to allow for a larger user base for the device. In addition to ergonomics, 

future participant testing should also include individuals with other conditions that result in 

greatly decreased arm and hand function, such as people with multiple sclerosis, stroke, or 

arthritis.  

This research developed a methodology to select a specific control mode for an assistive 

device based on the level of injury of a SCI individual. Using this method, individuals can select 

their preferred modality, while still having the other modes available for use. The platform’s 

evolution is especially beneficial for SCI participants but this same methodology can be applied 
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to many different individuals with any type of temporary or permanent upper extremity 

disability.   
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This research was conducted to assist with functional tasks for a targeted group of individuals 

with spinal cord injury (SCI); with C5 to C7 level of injury relating to upper extremity 

movement. The specific population was selected as the existing technology was either too 

expensive, too bulky or was unable to address their needs in regards to upper extremity mobility. 

In addition, no platforms allowed multimodal control options for customization or provided a 

methodology for this crucial evaluation. The motivation of this research was to provide a 

methodology for selecting the appropriate control of an assistive device based on the range of 

basic human movements that were possible by the population under consideration (button 

pushing, lever sliding, and speech). The main idea was to create an evaluation methodology 

based on a user platform with multiple modes of control. The controls were developed such that 

they would allow operation of the device with respect to the capabilities of SCI participants. 

Engineering advancements have taken assistive robotics to new dimensions. Technologies 

such as wheelchair robotics and myo-electronically controlled systems have opened up a wide 

range of new applications to assist people with physical disabilities. Similarly exo-skeletal limbs 
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and body suits have provided new foundations from which technologies can aid function. 

Unfortunately, these devices have issues of usability, weight, and discomfort with donning. The 

Smart Assistive Reacher Arm (SARA) system, developed in this research, is a voice-activated, 

lightweight, mobile device that can be used when needed. SARA was built to help overcome 

daily reach challenges faced by individuals with limited arm and hand movement capability, 

such as people with cervical level 5-6 (C5-6) SCI. The functional reacher arm with voice control 

can be beneficial for this population. Comparison study with healthy participants and an SCI 

participant shows that, when using SARA, a person with SCI can perform simple reach and 

grasp tasks independently, without someone else’s help. This suggests that the interface is 

intuitive and can be easily used to a high-level of proficiency by a SCI individual. 

Using SARA, an Exo-Skeletal Assistive Robotic Arm (eSARA) was designed and built. 

eSARA platform had multiple modes of control namely, voice (ballistic mode with no extremity 

movement), button (ballistic mode with minor extremity movement) and slider (continuous mode 

with major extremity movement). eSARA was able to extend a total of 7 inches from its original 

position. The platform also provided lift assist for users that can potentially enable them to lift up 

to 20lbs.The purpose of eSARA was to build a platform that could help design a methodology to 

select the modality for a specific level of SCI injury or capability.  

The eSARA platform’s Human Machine Interface (HMI) was based on two experiments 

‘Fine movement experiment’ and ‘Gross movement experiment’. These experiments tested the 

reaching, grasping and lifting ability of the platform. Two groups of healthy young adults were 

selected to perform the experiment. The first group, 12 healthy participants, had no movement 

restrictions. The second group, 6 Occupational Therapy students, that could mimic restrictions 

similar to those of a level 5-6 SCI individual. The experiment was also conducted by an SCI 
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individual. The results of the 2 groups from both the experiments were compared with the results 

of the SCI participant. It was found that the SCI participant’s time performance to finish the 

tasks was comparable to the average of the healthy participants.  

It was concluded that the developed methodology and platforms could be used to evaluate the 

control modes needed in order to customize the system to the capabilities of SCI individual. . 

These platforms can be tested for a broader range of participants including participants with 

arthritis, recovering from paralysis and seniors with movement issues.  
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