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CHAPTER 1

INTRODUCTION

Shape analysis is a fundamental problem in many research fields such as computer graphics,

vision, image processing, robotics, and so on. Computer scientists and engineers consider

shape as an attribute to describe an object [45, 34]. In the past decade, massive 3D shapes

are produced with advanced technologies. Traditional computer aided design (CAD) creates

a lot of manufacturing 3D models [56]. Laser scanning generates 3D point clouds or surface

meshes [41]. Similarly, structure light camera generates depth image. For example, kinect from

Microsoft reduced the cost of this technique and made it available for daily use. MRI or CT

scanning produces intensity-based volume data. Although 3D shape data is represented with

various formats, those formats can be converted to each other. For example, surfaces can be

reconstructed from point clouds or extracted from the isovalues of the intensity-based volume.

In this work, we focus on the shapes represented with 2 manifold boundary surfaces which are

differentiable. In practice, these manifolds are discretized into triangle or tetrahedron meshes.

The increasing 3D shape data demands a variety of shape analysis methods. Considering shape

as general data, there exist basic analyses, e.g., matching, indexing, retrieval, registration, and

mapping. On top of these basic ones, high level understanding is also desired, including pose

analysis, 4D time-varying motion, etc.

Traditional shape analysis starts from the original spatial properties of shapes, e.g., curva-

ture, diameter, and geodesic distance. There are also more advanced shape representations. For

example moments describe a shape with a set of integrations of different orders [13, 62, 16, 50].

An extended Gaussian image is built with the orientation and area information of a convex

polygon mesh for shape representation. This extended Gaussian image can describe a con-

vex mesh uniquely [23, 66]. Shape distributions measure properties based on distance, angle,

area, and volume measurements between random surface points. The similarity between the
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objects is measured by a pseudo-metric that measures distances between distributions [53, 52].

Geometric hashing represents a shape with a set of its local interest features (points, lines, or

other suitable features) [38, 40, 73, 20]. A shape can be described with another kind of data

structure, such as vector or graph [68, 27, 44, 71, 63]. Graph-based approaches analyze a 3D

shape by transforming it to a graph, such as B-Rep graph, Reeb graph and skeletal graph and

convert shape analysis into graph problems [14, 15, 22, 4, 8, 4]. Spherical harmonics represents

a shape by a 2D histogram of radius and frequency [71, 63, 32, 33, 51]. It decomposes a model

into a collection of spherical functions on the concentric spheres, then calculates the Fourier

transforms of these spherical functions. Shape histograms [1] describe a shape by the partitions

of the 3D space. 3D space can be decomposed into disjoint cells in different ways. These tradi-

tional shape analysis approaches are often challenged by Euclidean transformations, irregular

mesh samplings, and non-linear deformations.

Another category of shape analysis work is based on geometric mapping. Shape mapping

is a powerful tool to reduce the complexity of arbitrary manifolds onto canonical domains such

as unit cube or sphere, where regular analysis, e.g., image-based processing, can be applied

directly [37]. Among this category, Functional methods typically start with defining certain

penalty functions, such that the minima are assumed at desired results. The mapping is then

achieved using optimization methods. Conformal mapping provides a unique mapping by pre-

serving local angle geometries. Conformal methods possess several unique advantages, e.g.,

exact angle preserving, guarantee of solution existence, efficient algorithm, and a rich continu-

ous theory in parallel. At the mean time, conformal mapping introduces large area distortions.

In order to reduce the area distortions, additional process are applied. Gu and Yau punctured

small holes at the tip of long appendages [19]. Cone singularities were introduced with non-

vanishing Gaussian curvature in [35, 3]. Surface cuts were repeatedly augmented according to

the geometric stretches generated through the course of tentative parameterizations [18]. Zou et

al. [76] presented a practical method to compute a group of analytic global 2D area-preserving
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mapping mathematically with Lie advection. A manifold can not be mapped to another do-

main without any distortion. Thus, different mapping methods have been proposed to preserve

certain local geometries [18, 43]. That is the dilemma of the mapping-based approaches for

shape analysis.

The spectrum-based approach is inspired by the Fourier transform in signal processing,

where the time variant signals can be projected on to functional bases. Early shape spectrum

work is applied on graphs [48, 49, 46]. Considering discrete meshes are also graphs, Laplacian

matrix is defined on vertices and connections, weights may also applied. The eigenvalues are

defined as the spectra of graphs, and the eigenfunctions are the orthogonal bases. This spectrum

has a lot of similarities with Fourier transform. The graphs are then projected onto those bases

and analyzed in the spectral domain. Karni and Gotsman [31] used the projections of geometry

on the eigenfunctions for mesh compression and smoothing. Jain and Zhang [28] extended it

for shape registration in the spectral domain. The Laplace spectrum focuses on the connection

of graph, instead of the intrinsic geometry of the manifolds. Only using the connectivity of the

graph may lead to highly distorted mappings [75].

From the view of computational geometry, the geometry of the shape can be represented

with the differentiable manifold. Reuter defined shape spectrum as the family of eigenvalues

of the Laplace-Beltrami operator on a manifold [59, 58, 60, 57]. Nearly at the same time,

Reuter [59] and Lévy [42] found out shape spectrum as the family of eigenvalues of Laplace-

Beltrami operator on a manifold, and used it as a global shape descriptor. Without further no-

tation, shape spectrum in this work refers to the Laplace-Beltrami spectrum. Laplace-Beltrami

eigenfunctions are also tools to understand the geometry. Rustamov [61] proposed a modi-

fied shape distribution based on eigenfunctions and eigenvalues. It is proved that the shape

spectrum is invariant to those spatial translation, rotation, scaling, and isometric deformations.

The spectrum is also stable to the different triangulations and near isometric deformation. The

shape spectrum describes the similarities among shapes. The shape spectrum has a lot of great
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properties for shape analysis. It is invariant to Euclidean transformations and isometric de-

formations. On discrete triangle meshes, the spectrum is invariant to different triangulations.

It carries the intrinsic geometry of the manifold behind various representations. However, by

definition, the spectrum depends on the global geometry. It will change a lot while the geome-

try changes. Analysis and experiments showed it is stable among near isometric deformations

and minor noises. Greater non-isometric deformation breaks the connections among differ-

ent objects. This often restricts the shape spectrum to global shape descriptor or same object

analysis.

In order to solve those research problems, we propose the shape analysis approaches by

employing the shape spectrum in differential geometry. The shape spectra contain the intrinsic

geometry information of the original shape and reveal the relationship across shapes. There are

three major contributions presented in this differential shape analysis work.

• We propose a method to extract salient spectral geometric features in the spectral domain

derived from the Laplace-Beltrami operator, which is invariant to Euclidean transforma-

tions and isometric deformations. Describing and matching shapes with their salient

features also conform to the procedure of “coarse-to-fine” multiresolution analysis. The

features are extracted with local “frequencies” identified, which imply spatial scales of

local support regions defining the features. That is to say, each salient feature finds its

local support. The salient spectral features are very stable and distinctive. The shape

representation built upon them may achieve a higher level of shape description. It can be

easily applied to tasks such as shape matching and shape retrieval.

• We present a registration-free shape motion analysis method based on Laplace-Beltrami

spectral domain. Surface mesh vertices belonging to the same semantic part on different

pose surfaces will be mapped to the same coordinates in the geometry spectral domain,

while they carry different spatial properties under different poses. The analysis of the

spatial property variation in the geometry spectral domain is able to quantify the geome-
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try behaviors of every point during the pose changes, consequently, classifying a point to

a rigid part or an articulated part in the spectral domain. The shape is then decomposed

into parts with different geometric semantics. The skeleton can be generated automati-

cally based on eigenfunctions of the shape. The behavior of the skeleton is constrained

by the surface properties and classified surface semantics, which also represents the se-

mantics of that skeleton.

• We prove that eigenvalues are continuous functions of scalar factors applied on the con-

formal metric. The derivatives of the eigenvalues are analytically expressed with those

of the scalar field defined on the original manifold. The discrete counterpart on the tri-

angle meshes also follows the same behavior. In this case, the scalar field turns into

a scale vector on the mesh, whose value is sampled at each vertex. More specifically,

the analytic expression between the eigenvalues and the scale vector can be reformed

into a linear system. With smoothness and local bound constraints, the linear system is

consequently solvable as a quadratic problem. Then, the spectra can be controlled with

local scale vectors. The approach closes the gap that shape spectrum is not invariant to

non-isometric deformations. The scale field is the solution of a quadratic problem. On

triangle meshes, the scalar scale factors are represented with a scale vector defined on

each vertex.

The dissertation is organized as follows:

• Chapter 2: Gives definitions and detailed description of shape spectrum and conformal

mapping which derived from the second order differential operators. This provides a

mathematical foundation on which the remainder of the thesis dissertation will be based.

• Chapter 3: Introduces local salient spectral features extracted in the spectral domain.

This section presents the detection, descriptor and matching of keypoints.

• Chapter 4: Shows the pose analysis in the spectral domain. By transferring the shapes
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from the spatial domain to the spectral domain, all the Euclidean transformations and

isometric deformations are filtered out. In the spectral domain, different poses are un-

derstood based on meaningful parts.

• Chapter 5: Invents an analytic method to align spectrum among different shapes with

non-isometric deformations. We prove that eigenvalues are continuous functions of scale

factors applied on the conformal metric. On discrete triangle meshes, the theorem is also

valid. The derivatives of the eigenvalues and the scalar factors satisfy a linear system.

Thus, the scale filed is the solution of a quadratic problem. By applying such scale field,

spectra are aligned among shapes with non-isometric deformations.

• Chapter 6: Gives a summary of the dissertation.
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CHAPTER 2

BACKGROUND

In this work, a shape is represented with a differentiable manifold in the computational

geometry. On such a manifold, the differential operator is defined based on the local geometry.

Within one shape, the operator contains intrinsic geometry information. The differential oper-

ator will introduce shape spectrum on the original manifolds. In this chapter, we are going to

briefly review the definition of the shape spectrum and the numerical computations.

2.1 Laplace Shape Spectrum
In this section, we will review the theory of Laplacian spectrum and describe how to com-

pute it on a triangle mesh.

Let f ∈ C2 be a real function defined on a Riemannian manifoldM . The Laplace-Beltrami

operator ∆ is defined as,

∆f = ∇ · (∇f), (2.1)

where∇f being the gradient of f and∇· the divergence on the manifold M [7]. The Laplace-

Beltrami operator is linear differential and can be calculated in local coordinates. Let ψ be a

local parametrization of a submanifold of M such that, ψ : Rn → Rn+k, gij =< ∂iψ, ∂jψ >,

G = (gij), W =
√

detG, and (gij) = G−1, where i, j = 1, 2, ..., n, <,> is the dot product

and det is the determinant. The Laplace-Beltrami operator then is defined on the submanifold

as ∆f = 1
W

∑
i,j ∂i(g

ijW∂jf). If M ⊂ R2, the Laplace-Beltrami operator reduces to the

Laplacian:

∆f =
∂2f

(∂x)2
+

∂2f

(∂y)2
. (2.2)

Consider the Laplacian eigenvalue equation:

∆f = −λf, (2.3)
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where λ is a real scalar. The solution will be a family of nonnegative scalar {λi} and a corre-

sponding real function {fi} for i = 0, 1, 2, . . .. The spectrum is defined to be the eigenvalues

arranged increasingly as 0 ≤ λ0 ≤ λ1 ≤ λ2 ≤ · · · ≤ +∞ . In the case of a close manifold

or a open manifold with Neumann boundary condition, the first eigenvalue λ0 will always be

zero, and f0 is a constant function. The spectrum is an isometric invariant because it only de-

pends on the gradient and divergence which are dependent only on the Riemannian structure

of the manifold. After the normalization of the eigenvalues, shape can be matching regardless

of the scales. The inner product of the functions on M is defined with an integral all over the

manifold as

< f, g >=

∫
M

fgdσ. (2.4)

The Laplace-Beltrami operator is Hermitian, so the eigenvectors corresponding to its different

eigenvalues are orthogonal:

< fi, fj >=

∫
M

fifjdσ = 0, (2.5)

where i 6= j. According to the definition of the eigenvalue problem, if there exists a solution

fi, αfi is also a solution, where α is a nonzero scalar. Thus, fi is usually normalized as

< fi, fi >=

∫
M

f 2
i dσ = 1 for i = 0, 1, 2, . . . . (2.6)

Another weak version of equation 2.3 can also be derived as for any test function ϕ ∈ C1

∫
M

∇ϕ · ∇fdσ = λ

∫
M

ϕfdσ, (2.7)

if f is a solution of equation 2.3, which is necessary but not sufficient. This weak version is

proved with Greens formula on a closed manifold or a open manifold with Neumann boundary
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condition as

∆f = −λf

ϕ∆f = −λϕf∫
M

ϕ∆fdσ = −λ
∫
M

ϕfdσ

−
∫
M

∇ϕ · ∇fdσ = −λ
∫
M

ϕfdσ.

(2.8)

A given function f on the surface can be expanded as:

f = c1f1 + c2f2 + c3f3 + · · · , (2.9)

where the coefficients are

ci =< f, fi >=

∫
M

ffidσ. (2.10)

2.2 Finite Element Method Computation
In order to solve the Laplace eigenvalue problem numerically, the manifold is discretized.

equation 2.7 can be solved with the finite element method [59]. Assume there exist n sample

points on the manifold M . Each function is defined on those n digital sample points. Differen-

tial operations are also defined on such points. If a set of n linear independent functions {ϕi}

are chosen, which means

< ϕi, ϕj >=

∫
M

ϕiϕjdσ = 0 if i 6= j, (2.11)

any function on M , including eigenfunction f , is a linear combination of {ϕi} as

f = c1ϕ1 + c2ϕ2 + c3ϕ3 + · · ·+ cnϕn. (2.12)
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Eigenfunction f is uniquely represented with coefficient vector c and satisfies equation 2.7. If

we consider each ϕi is a test function, then we get

n∑
j=1

cj

∫
M

∇ϕi · ∇ϕjdσ = λ

n∑
j=1

cj

∫
M

ϕiϕjdσ, for i = 1, 2, . . . , n. (2.13)

These n independent linear equations can be put into a linear system as

A · c = λB · c

Aij =

∫
M

∇ϕi · ∇ϕjdσ

Bij =

∫
M

ϕiϕjdσ.

(2.14)

Depending on different representations,∇ϕi and the integral can be calculated on the finite el-

ements. The weak version of the eigenvalue problem is converted into a generalized eigenvalue

problem in matrix form. The family of the solution represents the eigenvalues and eigenfunc-

tions.

2.3 Discrete Laplace-Beltrami Operator
Another numerical approach is discrete differential operator [47]. In our framework, 2D

manifold data is approximated with discrete triangle meshes. A triangle mesh is defined with

M = (V,E, F ), where V = {pi} denotes the set of vertices, E = {eij} the edge set, and

F = {fijk} the face set with 1 ≤ i, j, k ≤ n = |V |. pi also denotes the position of the vertex

in R3, eij the edge vector connects vertices pi and pj as eij = pj − pi. The 1-ring neighbors

of pi are denoted as N1(i). All triangular faces assume counterclockwise orientation. Each

triangular face represents the local manifold. We can define property on each element, e.g.,

vertex, edge, and face, which is a spatial average around such element. The properties on the

vertices are considered as discrete samplings on the manifold. The discrete operators are also

defined on each vertex. In this work, the neighborhood of a vertex pi is approximated with



11

its Voronoi area. Figure 2.1 demonstrates the Voronoi area of the vertex pi within its N1(i).

Figure 2.1: Voronoi area of the vertex pi within its one-ring neighborhood.

A discrete Laplace-Beltrami operator Ki, also known as mean curvature normal operator, is

defined with the average value over the Voronoi area. Suppose we have the integral of the

Laplace-Beltrami value, then the Laplace-Beltrami operator at vertex pi is represented as

Ki(g) =

∫
AV oronoi

K(g)dA

AV oronoi
, (2.15)

where g(p) ∈ C2 is a scalar function defined on the triangle mesh M . The calculation of

Voronoi areas on triangle meshes is trivial by definition. The geometry on each face is piece-

wise linear, so the Laplace-Beltrami operator turns into Laplacian on the parameter space, such

that

K(g) = −∆g = −guu − gvv, (2.16)
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where u and v are the parameters. According to Gauss’s Theorem, the area integral of Lapla-

cian can be calculated with a line integral on the boundary

∫
AV oronoi

K(g)dA = −
∫
AV oronoi

∆gdA = −
∫
∂AV oronoi

∇uvg · ndl. (2.17)

where n is the unit normal vector of the boundary. The boundary is piecewise line segment

Figure 2.2: The boundary of a Voronoi area consists of the piecewise line segment in each face.

in the one-ring neighbor faces, and the gradient is analytic and constant within each face.

Figure 2.2 demonstrates the piecewise linear boundary of the Voronoi area of pi in the face

fijk. As we know, the gradient in each face is a constant vector, the line segment integral on the

segments ac and cb is equivalent of that on the dot straight line ab in the face. That is, in this

face f , ∫
∂AV oronoi∩f

∇uvg · ndl = ∇uvg · nab ‖ eab ‖ . (2.18)

a and b are the middle point of eij and eik by definition, so eab and ejk are parallel and

‖ ejk ‖= 1
2
‖ ejk ‖. The normal direction of a line segment in a face is retrieved by rotating the

directed edge 90◦ on the face plane. This rotation can be derived from vector cross production.
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Denote N as the unit normal of the face fijk as

N =
1

2Af
eki × eij =

1

2Af
eij × ejk =

1

2Af
ejk × eki, (2.19)

where Af is the area of fijk. Thus the rotation above is derived from cross product N from the

right. And equation 2.18 turns into

∫
∂AV oronoi∩f

∇uvg · ndl =
1

2
∇uvg · (ejk ×N). (2.20)

The face is piecewise linear and the gradient on it is constant which is expressed as

∇uvg =
1

2Af
(giejk + gjeki + gkeij)×N, (2.21)

where gi, gj , and gk are the values of function g at those vertices. Combining equation 2.20

and 2.21, we have

∫
∂AV oronoi∩f

∇uvg · ndl =
1

4Af
((gj − gi)eik · ekj + (gk − gi)eij · ejk), (2.22)

or ∫
∂AV oronoi∩f

∇uvg · ndl =
1

2
(cot βij(gj − gi) + cotαik(gk − gi)), (2.23)

where αik and βij are the angles demonstrated in Figure 2.2. The sum of equation 2.23 of all

the faces with in the one-ring neighborhood leads to the discrete Laplace-Beltrami operator Ki

on vertex pi

Ki(g) =
1

2Ai

∑
pj∈N1(pi)

(cotαij + cot βij)(gi − gj), (2.24)

where αij and βij are the two angles opposite to the edge in the two triangles sharing the edge

i, j, and Ai is the Voronoi area of pi. For the whole vertices of a triangle mesh, a Laplace-
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Beltrami matrix can be constructed as:

Lij =


− cotαij+cotβij

2Ai
if i, j are adjacent,∑

k
cotαik+cotβik

2Ai
if i = j,

0 otherwise,

(2.25)

where αij , βij , and Ai are the same as in equation 2.24 for certain i and j. Then, the spectrum

problem equation 2.3 turns into the following eigenvalue problem:

Lv = λv. (2.26)

where v is n dimensional vector. Each entry of v represents the function value at one of

n vertices on the mesh. The equation above can be represented as a generalized eigenvalue

problem which is much easier to solve numerically by constructing a sparse matrix W and a

diagonal matrix S such that,

Wij =


− cotαij+cotβij

2
if i, j are adjacent,∑

k
cotαik+cotβik

2
if i = j,

0 otherwise,

and Sii = Ai. Thus, the Laplace Matrix L is decomposed as L = S−1W and the generalized

eigenvalue problem is presented as:

Wv = λSv. (2.27)

As defined above, W is symmetric and S is symmetric positive-define. All the eigenvalues and

eigenvectors are real, and the eigenvectors corresponding to different eigenvalue are orthogonal

in terms of S dot product:

< u,w >S= uTSw (2.28)
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where u and w are eigenvectors of equation 2.27. equation 2.5, equation 2.9 and equation 2.10

can be reduced, respectively, to

< vi,vj >S= 0, i 6= j, (2.29)

v =
n∑
i=1

vici, (2.30)

and

ci =< v,vi >S . (2.31)

Under this setting, the spectrum, {0, λ1, λ2, λ3, · · · , λn−1}, is the family of eigenvalues of the

generalized eigenvalue problem defined above.



16

CHAPTER 3

SALIENT SPECTRAL GEOMETRIC FEATURES FOR

SHAPES

In this chapter, we introduce a new method for extracting salient features from surfaces.

This method extracts salient geometric feature points in the Laplace-Beltrami spectral domain

instead of usual spatial domains. Simultaneously, a spatial region is determined as a local

support of each feature point, which is correspondent to the “frequency” where the feature point

is identified. The local shape descriptor of a feature point is the Laplace-Beltrami spectrum of

the spatial region associated to the point, which are stable and distinctive. The method leads

to the salient spectral geometric features invariant to spatial transforms such as translation,

rotation, and scaling. The properties of the discrete Laplace-Beltrami operator make them

invariant to isometric deformations and mesh triangulations as well. With the scale information

transformed from the “frequency”, the local supporting region always remain the same ratio to

the original model no matter how it is scaled. That means the spatial region is scale invariant

as well. Therefore, both global and partial matching can be achieved with these salient feature

points.

Figure 3.1: Matching with salient spectral geometric features. The highlighted feature points
are extracted in the spectral domain generated directly form the triangles meshes. Notice that
the two meshes are different in position, orientation, scale, pose, number of vertices, and trian-
gulation. Furthermore, the left shape is only a “part” of the whole model. In order to clearly
see the matching result, only some of the matched points are displayed.
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3.1 Related Work
There are a number of well studied global shape representations such as moment [62][13][50],

extended Gaussian image [23][66], shape distribution [53][26][52], and shape harmonics [33].

These work showed great power in shape analysis. But matching with these global representa-

tions usually requires the data to be aligned or normalized. It can be determined whether two

shapes are similar or not or how similar they are with those global representations. However,

it is difficult to obtain more matching details directly, such as part level similarity, correspon-

dence or registration. These global representations also perform poorly in a “part to whole”

matching. A part or a sub-shape is always considered as a quite different shape from its orig-

inal shape by these methods. To decide a proper scale of the part to the whole shape is also a

difficult task.

A part to whole matching is also considered as partial matching which is more general than

global one. Partial matching decides if a shape is a part of another one and where it should

be located. It is often applied with matching local features. Gal et al. [17] proposed a partial

matching method based on salient local features extracted from 3D surfaces. The salient fea-

tures are extracted locally with an area growing algorithm following an empirical formula, and

the descriptors are defined on the quadratic fitted surfaces based on the original meshes. There

are also more rigorous scale space-based methods for extracting salient features [39][25][77].

Graph-based approach is another important solution to shape matching. For example Reeb

graph [22] and skeletal graph [68][27]. represent a shape with a graph and turn the matching

problem into the graph problem. A part to whole matching can be handled here with sub-graph

searching. However, the graph extracted from a shape is sensitive to topology. The tiny change

of topology may result quite different graphs.

In this work, we analyze shapes based on their spectrums. Shape spectrum is a new topic

in computer graphics the recent years. Reuter [59] defined shape spectrum as the family of

eigenvalues of Laplace-Beltrami operator on a manifold, and used it as a global shape descrip-
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tor. Lévy [42] pointed out that Laplace-Beltrami eigenfunctions are “tools” to understand the

geometry of shapes and discussed the properties of those eigenfunctions of Laplace-Beltrami

operator. Rustamov [61] proposed a modified shape distribution base on eigenfunctions and

eigenvalues. Karni and Gotsman [31] used the projections of geometry on the eigenfunctions

for mesh compression. Laplace-Beltrami spectrum is showing more and more power in shape

analysis. It is proved to have many good invariant properties [59]. In this chapter, we propose

to extract salient geometric features in the domain of spectrum.

3.2 Salient Spectral Feature Extraction
Given a 3D triangle mesh, we first analyze its Laplacian spectrum and represent the shape

by a set of salient feature points with scale information in its spectrum. With their associated

scales, local Laplacian spectrums are calculated and assigned as local shape descriptors to the

feature points.

Salient Feature Point Detection

In this section, we will describe how to extract salient feature points based on the geometry

and eigenfunctions since there are much shape information in the eigenvalues and eigenfunc-

tions. Figure 3.2 illustrates some eigenfunctions on the armadillo model. The eigenfunctions

contain very symmetric and meaningful information. Figure 3.3 shows isometric properties of

eigenfunctions. They are the 5th eigenfunctions on different meshes. The three meshes are

generated from the same shape with different poses. The sampling rates are also different.

In Figure 3.3, (a) has 1,000 vertices, (b) has 1,500, while (c) has 3,000. We can see that the

eigenfunctions are independent to poses and triangulations.

Consider the geometric reconstruction problem. Let matrix P be the position matrix con-

sisting with the {x, y, z} coordinates of each vertex:

P = [x,y, z], (3.1)
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(a) (b) (c) (d)

Figure 3.2: The 2nd, 3rd, 4th, and 10th eigenfunctions on the shape. Red color indicates larger
value while blue color denotes smaller value.

(a) (b) (c)

Figure 3.3: The 5th eigenfunctions on the model with different poses. The eigenfunctions are
isometric invariant. The three shapes, from left to right, have 1000, 1500, and 3000 vertices,
respectively.



20

where x = [x1, x2, x3, ..., xn]T , y = [y1, y2, y3, ..., yn]T , and z = [z1, z2, z3, ..., zn]T are coor-

dinate vectors. Then the expansion with equation 2.30 and equation 2.31 can be rewritten in

matrix form as:

P = V CT , (3.2)

where V is the eigenvector matrix V = [v1, v2, ..., vn] and C = P TSV . Let A1−p,1−q denote a

sub matrix consisting of 1-p rows and 1-q columns of matrix A. Then the first k eigenfunctions

reconstruction is represented as:

P (k) = V1−n,1−kC
T
1−3,1−k. (3.3)

(a) 5 (b) 20 (c) 100 (d) 400

Figure 3.4: Geometric reconstruction with first 5, 20, 100, and 400 eigenfunctions, respec-
tively.

The reconstructed mesh is represented by the coordinate P (k) with the same connections.

Figure 3.4 shows a reconstruction process. The eigenfunctions, corresponding with smaller

eigenvalues, represent lower frequency information. As more and more eigenfunctions added

up, more details of the mesh are presented. New salient features come out with new eigenfunc-

tions, which means that features are contained by their eigenfunctions within the corresponding

frequencies. We define the geometry energy of a vertex i corresponding with the kth eigenvalue
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as:

E(i, k) =‖ V (i, k)× C1−3,k ‖2 . (3.4)

We pick the maxima in E as the feature points, which means more geometry energy is added

locally in both spatial and spectral neighborhood. If E(i, k) is larger than those of its neighbor-

ing vertices within several neighbor frequencies, it will be picked up as a salient feature point

with a scale factor, sf = 1/
√
λ2
k. Notice that, one vertex may be picked several times with

different scale factors corresponding with different eigenvalues. See Figure 3.5 for an example.

Figure 3.5: Geometry energy between neighboring eigenfunction reconstructions. In this illus-
trative example, the vertex in the middle of the one ring neighborhood receives largest geometry
energy when (k + 1)th eigenfunction is added for reconstruction. Thus it is considered as a
maxima at the “frequency” of λk

.

Shape Descriptor Construction

In previous sections, we have described how feature points are extracted from an original

mesh with scale information factors. The next step is to find a local descriptor for each feature

point, which is invariant to translation, rotation, scaling, and isometric deformation and also

distinctive enough for similarity measure. We propose to use the Laplace-Beltrami spectrum of

the spatial local region defined by the identified scale (i.e., the local support of the correspond-

ing salient feature point). However, most of these regions are open boundary sub-surfaces and

properties of those eigenfunctions of Laplace-Beltrami operator. Rustamov [61] mentioned

Laplace matrix could meet some problems with open boundary surface. In order to solve this
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problem, we attach another surface patch to the open boundary region patch. The attached

patch has exactly the same shape as the original patch, but opposite normal at every point.

Then, an open boundary path turns into a water-tight surface and equation 2.27 can be applied

on it without any problem.

The algorithm procedure is as follow: First, a spatial local patch is extracted by drawing

geodesic circle with the feature point as the center and r × 1/
√
λk as the radius, where r is a

uniform, constant radius factor. Note that, because of the scaling factor, 1/
√
λk, the shape of

the local patch will remain the same despite the scaling of the mesh; Then, equation 2.27 is

applied on the patch to obtain the spectrum of the patch; Finally, for similarity comparison, the

spectrum is normalize by a fitting function f(x) = 4π
A
x, x = 1, 2, ..., n, where A is the area of

the local patch [59]. Figure 3.6 illustrates how to construct a descriptor for a feature point. The

histograms show the spectral values over the Eigenvectors in the local patches. The matching

can be performed by comparing the Euclidean distance between two descriptors.

3.3 Correspondence and Matching
Given a 3D surface, we can now represent it with a set of salient spectral geometric features.

In this section, we propose a method to build correspondence between two models with those

features. The correspondence problem can be described as: If there are two set of features {pi}

and {p′

i′
}, try to find a mapping function φ(·) such that φ(i) = i

′ . The similarity between these

two model relies on the mapping function φ. We denote the similarity as

Sim(φ) = Sims(φ) + Simp(φ), (3.5)

where Sims(φ) is the similarity calculated based on single feature to single feature mapping

and Simp(φ) based on cluster to cluster mapping. Single to singe feature similarity can be

based on the Euclidean distances between the spectrum descriptors. Let f(i) denote the feature
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(a) (b)

Figure 3.6: The local shape descriptors of the model in (a) are normalized spectra of local
patches as shown in (b).
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vector of the feature i, then Sims(φ) is defined as

Sims(φ) = ωs
∑
φ(i)=i′

C(i, i
′
),

C(i, i
′
) = exp(

‖ f(i)− f(i
′
) ‖2

2σ2
s

). (3.6)

Cluster to cluster feature similarity is base on the relative geodesic distances and scale factors.

Let g(i, j) denote the absolute geodesic distance between i and j based on the spatial coordinate

and sf(i) denote the scale factor of i, then Simp(φ) is defined as

Simp(φ) = ωp
∑

φ(i)=i′ ,φ(j)=j′

H(i, j, i
′
, j

′
),

H(i, j, i
′
, j

′
) = exp(

(dpg(i, j, i
′
j
′
) + βdps(i, j, i

′
j
′
))2

2σ2
p

), (3.7)

where dpg is the distance between relative geodesic distances

dpg(i, j, i
′
j
′
) = |g(i, j)

sf(i)
− g(i

′
, j

′
)

sf(i′)
|, (3.8)

and dps is the distance between scale ratios

dps(i, j, i
′
j
′
) = |log(

sf(j)

sf(i)
)− log(

sf(j
′
)

sf(i′)
)|. (3.9)

ωs, σs, ωp, σp, and β are weight scalars. The goal of the correspondence algorithm is to find

certain mapping function φc, which maximizes the similarity Sim(φ). If we define binary

indicators variable x(i, i
′
) as

x(i, i
′
) =


1 if φ(i) = i

′ exists,

0 otherwise.
(3.10)
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then equation 3.5 can be represented with an Integer Quadratic Programming (IQP) problem

as

Sim(x) =
∑
i,i′ ,j,j′

H(i, j, i
′
, j

′
)x(i, i

′
)x(j, j

′
) +

∑
i,i′

C(i, i
′
)x(i, i

′
). (3.11)

We also constrain a one-to-one mapping which means one feature in a model can not be as-

signed more than one correspondence in the other model. Consequently, we have
∑

i x(i, i
′
) ≤

1 and
∑

i′ x(i, i
′
) ≤ 1. These linear constraints can be encoded in one row of A and an entry

of b. Therefore, our IQP problem can be formalized in the following matrix form:

max Sim(x) = x
′
Hx + Cx subject to Ax ≤ b. (3.12)

We use the IQP solver proposed by Bemporad et al. [2] to solve the above optimization prob-

lem.

3.4 Experiments and Applications
Salient Spectral Geometric Features: In previous sections, we have introduced our method

for extracting salient spectral geometric features from a surface. Figure 3.7 shows some ex-

amples of salient feature points. The vertices colored with red and green colors are feature

points extracted in the spectral domain with our method. Each mesh in Figure 3.7 has 1,000 to

1,500 vertices. In order to find extrema in the spectral domain, each vertex is compared with its

one-ring neighbors within three frequencies, the current, previous, and next ones. The extrema

are extracted in the first 100 eigenfunctions. Redder color means the feature is found in a lower

“frequency”, which has large supporting region, while greener color corresponds to higher

“frequency”. Only lowest “frequency” is visualized for a vertex with multi “frequencies”. The

highlighted patches illustrate the local supports for some identified feature points. The experi-

ments show that the salient features are very stable and invariant to Euclidean transforms and

isometric deformations.

Shape Correspondence: A nature application with the salient features is partial matching.



26

Figure 3.7: Salient feature points extracted in the spectral domain. Redder color means the
feature is found in a lower “frequency”, which has a large supporting region, while greener
color corresponds to a higher “frequency”. The highlighted patches illustrate the local supports
for some of the feature points.
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(a) (b) (c)

Figure 3.8: Examples of matching. (a) and (b) demonstrate correspondence between shapes
form the same model with different poses. (c) shows correspondence between similar shapes.

Because each feature point is found with both the position and the scale factor, there is a local

region to support the feature point. The ratio of the local support region to the entire surface

is independent of the scale of the original surface. In our experiments, the radius constant

r is set to be 1.7 and a geodesic circle patch is approximated with the graph shortest edge

path on the mesh. Then, the spectrum of the local patch is calculated, and the descriptor

consists of the eigenvalues of λ1 to λ21 with normalization. Fig 3.1 and Figure 3.8 show some

examples of matching and partial matching. The two meshes in the matching pairs are different

in position, orientation, scale, pose, and triangulation. Our experiments demonstrated that the

salient features are very powerful in matching of similar shapes. In Figure 3.8, (a) and (b) are

shapes of the same armadillo model with different poses. We can see that even poses are quite

different from each other but the correspondences are stable, even at very detailed levels. Note

that, the mirrored matches could happen in our algorithm. Not only the different poses from

the same model, but also similar shapes can have correct correspondences too. (c) illustrates a

dog shape corresponds to a horse shape with their similar features, such as heads, knees, necks,

and feet.

Shape Retrieval: Another application is 3D shape searching and retrieval in large databases.

Not only globally, shape can also be searched by parts, which leads to a more powerful partial

matching. We use SHREC ’07 3D shape database. We extract 10 shapes from each category.

Since our framework extracts stable and distinctive salient spectral geometric features, the
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retrieval task is very straightforward by comparing the matching score of the IQP throughout

the database, and then picking up the best ones as the query outputs. Figure 3.9 shows some

results demonstrating the stability and accuracy of our retrieval. For the dataset that we use,

our method outperforms the reported best result in the latest SHREC contest [70]. Figure 3.10

shows the precision/recall graph.

As we mentioned in the previous sections, another desirable property of the salient spectral

geometric features is their powerful partial representation. Figure 3.11 shows how our method

performs in retrieving shapes if only a part is given.

3.5 Summary
We have introduced a novel 3D shape representation with a set of salient feature points in

the LaplaceBeltrami spectrum. The spectrum is defined as the family of eigenvalues of the

LaplaceBeltrami operator on a manifold. The eigenvalues and eigenfunctions are invariant to

translation, rotation, and scaling. They are also invariant to isometric transformations. We have

introduced how to calculate the spectrum directly on triangle meshes. The results showed the

spectrum relies only on the geometry of the manifold. It is very stable under Euclidean and

isometric transformations and is independent of different triangulations. The spectrum energy

domain is obtained by projecting the geometry onto the eigenfunctions. The salient features

are the energy maxima in the geometry energy domain. The salient features share the nice

properties of the Laplace-Beltrami spectrum. The maxima provide not only where the features

are on the manifold but also the frequency where the features lie in. A scale of a local region

can be determined with the frequency to support a feature point. With the IQP algorithm,

correspondences can be built among variant shapes in very detailed levels. Salient spectral

feature point representation is ideal for fundamental shape matching. Our experiments show

its great power in shape retrieval and searching. Besides global matching, partial matching is

also supported in our framework.
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Figure 3.9: Examples of shape retrieval with salient spectral geometric features. The 3D shapes
at the most left column are input queries, and those on the right are the first five retrieved results
from the database.
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Figure 3.10: The overall averaged precision/recall graph of our method on the SHREC datasets
and its comparison to the method by Tung et al. [70].
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Figure 3.11: Examples of partial shape retrieval with salient spectral geometric features. The
shapes at the most left column are input queries, and those on the right are the first five retrieved
results from the database.
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CHAPTER 4

NEAR ISOMETRIC MOTION ANALYSIS USING

SPECTRAL GEOMETRY

The previous chapter solves the problem of measuring the similarities among different

static shapes. Poses casted by the same original object are considered as the same shape in

terms of spectral features. However, there is still isometric deformations which carry rich ge-

ometric information. In this chapter we propose a novel method to analyze a set of poses of

3D models that are represented with triangle meshes and unregistered. Different shapes of

poses are transformed from the 3D spatial domain to a geometry spectral domain that is de-

fined by Laplace-Beltrami operator. During this space-spectrum transform, all near isometric

deformations, mesh triangulations and Euclidean transformations are filtered away. The differ-

ent spatial poses from a 3D model are represented with near isometric deformations, therefore,

they have similar behaviors in the spectral domain. Semantic parts of that model are then deter-

mined based on the computed geometric properties of all the mapped vertices in the geometry

spectral domain. Semantic skeleton can be automatically built with joints detected as well. The

method turns a rather difficult spatial problem into a spectral problem that is much easier to

solve.

4.1 Related Work
Shape animation and deformation often relies on shape interpolation. Given two or more

key frames of a shape, the intermediate deformations are interpolated or blended. Extrapola-

tion can also be applied, which decides what the shape is going to be following the deforming

direction. The interpolation is applied on locations of the corresponding vertices or faces. Cer-

tain constrains are considered to make the interpolation as natural as possible while avoiding

some artifacts such as local shrinking or collapse. Kilian et al. [36] treated each pose of shapes
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Figure 4.1: The procedure of our pose analysis method. Given several unregistered poses of
a model which are unregistered and have different triangulations (shown in the left pane), an
re-embedding from the spatial domain to a geometry spectral domain is built as shown in the
middle. The poses are analyzed in the geometry spectral domain. The geometric behavior of
each point on the pose surface is classified. Then, semantic parts on any poses from the same
model can be determined. Colder color in the middle figure indicates rigid part on the surface,
while warmer color denotes articulated part. With the graph and skeleton driven algorithms,
the static 3D surface turns into a semantically articulated model which can cast animation.

as a point in a shape space. A best interpolation is a geodesic path between two poses, which

can preserve original length on the surfaces as much as possible. James and Twigg [29] and

Chu et al. [9] employed mean shift clustering to learn the near rigid parts of surface from a

sequence of poses to guide the interpolation. This kind of methods usually requires one-to-one

vertex-face correspondence, either pre-given or obtained by other registration algorithms. The

correspondence requirement limits the capabilities of these methods since registration itself is

another challenging problem. The shape interpolation focuses on global smoothness and influ-

ence in order to provide smooth and fluent shape sequences. It is based on signal interpolations

with constrains.

Skeleton driven mesh deformation is another popular kind of shape approaches. A shape

is deformed under the control of an articulated structure, which is more natural to human

understanding [11]. It can provide local control and free deformation. Yan et al. [74] employed

simplex transformations to make the skeletons drive the surfaces instead of vertices. Weber et

al. [72] used geometric information to guild the skeleton to preserve local details. This kind of

approaches usually requires the skeletons to be manually designed to reach a better result. He et

al. [21] introduced harmonic function on the surface to build Reeb graph [5, 6, 10, 54, 55, 65]
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as the skeleton. They reduced the manual operation to picking only one or a few reference

points on the surface.

All work aforementioned is from a perspective of spatial analysis. They have to overcome

many Euclidean factors such as translation, rotation, and scaling before they analyze the pure

geometry properties. Recent research shows that 3D surfaces can also have spectral properties,

to which the Euclidean factors are not significant. Karni and Gotsman [30] defined mesh Lapla-

cian on polygon meshes based on the adjacent matrix. The eigenvectors of the Laplacian matrix

form an orthogonal basis on the mesh surface. The eigenvalues denote different frequencies.

Then signal processing algorithms can be applied to mesh surface, such as filtering, denois-

ing, mesh compression. This mesh Laplacian relies on the triangulations of meshes. Reuter et

al. [59] introduced Laplace-Beltrami operator to Riemann manifolds represented with surfaces

in 3D Euclidean space. The operator is invariant to Euclidean transformations and isometric

deformations. The eigenvalues can be used as shape descriptors which is not only invariant but

also distinctive. The eigenvalues also contain much information such as the area of the surface,

topology, and boundary length. Lévy [42] focused more on the eigenfunctions of the Laplacian

equation. The eigenfunctions form a orthogonal basis for the functions defined on the Riemann

manifold and can “understand the geometry”. A lot of applications can be achieved, such as

signal processing on surfaces, geometry processing, pose transfer and parametrization. Rusta-

mov [61] defined a Global Shape Descriptor (GPS) embedding based both on eigenvalues and

eigenfunctions and gave a G2 distribution based on the GPS, which can be used as a global

shape descriptor stable to topology changes. Hu and Hua [24] analyzed shapes with salient

features extracted from the shape spectra.

Our work starts from the perspective of spectral geometry. Therefore, it may extract the

pure geometric information behind variant Euclidean factors. The discrete setting makes the

Laplace-Beltrami operator can be applied on triangle mesh directly. This saves preprocessing

and handles more types of data.
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4.2 Shape Spectrum on Triangle Meshes
Considerig equation 2.3, the solution {0, λ1, λ2, λ3, · · · , λn−1}, is the family of eigenvalues

of the generalized eigenvalue problem defined above. The eigenvectors v0,v1,v2, · · · ,vn−1

represent the eigenfunctions on the mesh. They define the spectrum of a shape. As it can be

seen, the number of eigenvalues and eigenfunctions is reduced from infinite to n, because a

triangle mesh is a finite discrete sampling of a continuous surface. It is similar to the discrete

Fourier transform and the continuous one. In practice, infinite eigenvalues and eigenfunction

is not necessary. Only first a few of eigenvalues and eigenfunction are employed to build the

geometry spectral domain.

Figure 4.2 illuminates the 3rd, 5th and 10th eigenfunctions on different poses. Note that,

the Laplace-Beltrami operator is define on continuous manifold, so the triangle meshes are re-

quired to be manifolds. They could be either closed manifolds or those with open boundaries,

with the same topology. The color turns from cold to warm while the function value grows

from a small one to a big one. The eigenfunctions always change along the surface geometry.

The 3 poses are quite different from the spatial view, but the eigenfunctions stay stable on the

surfaces. The eigenfunctions rely only on the surface geometry. The shapes are not only dif-

ferent from each other with poses, but also the triangulations. The pose in the first column has

about 2,000 vertices; the one in the second column has about 10,000; the one in the last column

has about 20,000. As it is discussed above, the eigenfunction is also invariant to triangulations.

These properties guarantee the geometry spectrum embedding is invariant to pose deformations

and mesh triangulations. In other words, vertices from different poses but at the same position

in terms of surface geometry will be embedded together in the geometry spectral domain, no

matter how the poses are deformed or how different the samplings and triangulations are.

The spectrum can describe the intrinsic geometry within the original shape. Theoretically,

the shape spectrum is invariant to isometric deformations. However, problems arise when deal-

ing with the real data. Different poses casted by an object are usually near isometric to each
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other. The deformations near the joints break the isometric constraint. The computations also

bring numerical errors. Dey et al. [12] studied the spectral stabilities under near isometric de-

formation. Their results show the spectra achieved with the cotangent scheme, including the

discrete operator in our method, is stable in terms of eigenvalues. Our method produces the

similar results. Figure 4.3 lists five shapes represented with triangle meshes while Table 4.1

lists their first a few eigenvalues. The eigenvalues are normalized with the first non-zero eigen-

value to filter away the global scaling according to [59]. Because the first 3 poses are casted

by a same armadillo model, they are considered to be near isometric to each other. This fact is

demonstrated by the similar eigenvalues. When the models different, eigenvalues are dramat-

ically different too, as shown in Table 4.1. The eigenvalues have enough power to distinguish

models and shapes globally. In addition, there are some other potential problems of eigen-

vectors/eigenfunctions as discussed below which may affect our algorithm. Rueter et al. also

discussed these problems in [57].

• Sign flips occurs. If v is an eigenvector, −v is also one according to the definition.

Rueter [57] admitted that, sign flips cannot be detected intrinsically on an almost perfect

intrinsic symmetric shape. We employ the absolute value to avoid the sign flip problem.

• Eigenvectors switch. The neighbor eigenvalues may switch due to the perturbations of

the deformations and numerical computations. So are the corresponding eigenvectors. It

happens nearly on every mesh. Rueter [57] gave a solution to reorder the eigenvectors

based on the Morse-Smale graph. We use the same scheme. Without further notations,

all the eigenvectors, in the rest of the chapter, refer to the reordered ones.

• Higher dimensional eigenspaces can theoretically occur. However, they rarely happens

in practical data. We have not found any example in our results so far.

• Duplicated eigenvalues may exist. A highly symmetric shape, e.g. sphere or cube, has

duplicated eigenvalues. The linear combinations of the corresponding eigenvectors are
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also eigenvectors. Nevertheless, practically used animation models do not have such

high symmetry. That is to say that duplicated eigenvalues rarely happen practically in

our application.

• Low frequency eigenvectors are stable under near isometric deformation. Rueter [57]

had a detailed discussion about the stabilities of the shape spectrum with respect to near

isometric deformations and noises, and used direct spectral embedding for the semantic

shape segmentation. Our experiments also show that the low frequency eigenvectors are

quite stable. The third row of Figure 4.2 demonstrates the stability of the 10th eigen-

vectors for different poses. Although the spectra are stable globally, the local values of

eigenvector may shift. This usually happens when there is a twisting deformation. The

shifting will affect the registration accuracy under this single frequency. However, with

multi-frequency embedding and multiple shape data, the accuracy will be corrected by

other values that are stable.

The above discussion shows the near isometric shapes will have similar behavior in the spectral

spaces.

Table 4.1: Normalized eigenvalues of different shapes in Figure 4.3
Shape λ0 λ1 λ2 λ3 λ4 λ5 λ6 λ7

Armadillo(a) 0 1 1.23 1.64 2.90 4.37 6.32 8.83
Armadillo(b) 0 1 1.36 1.81 3.20 4.52 6.48 8.51
Armadillo(c) 0 1 1.25 1.33 2.28 4.83 6.76 8.68
Elephant(d) 0 1 2.44 3.07 3.51 3.98 4.24 4.70

Lion(e) 0 1 1.51 2.57 2.66 2.71 4.69 7.92

4.3 Geometry Spectral Domain Embedding
The Laplace-Beltrami operator define a family of eigenvalues and a family of eigenfunc-

tions. The eigenvalues can be used as shape descriptors which are stable and distinctive. It

also contains “frequency” information. The smaller eigenvalues denote lower frequencies. The

eigenvectors form an orthogonal basis on the manifold. Any functions can be projected to the
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Figure 4.2: The 3rd, 5th, and 10th eigenvectors of discrete Laplace matrices on 3 different
poses. Each column demonstrates a pose while each row shows the 3rd, 5th, and 10th eigen-
vectors from the top to the bottom. The color from blue to green and then to red demonstrates
the value changes from small to large. Each eigenvector shows some meaning of the surface.
Within a pose, higher order eigenvector shows higher frequency. Note that, the pose surfaces
in the first column have about 2,000 vertices; the ones in the second column have about 10,000
vertices; the ones in the last column have about 20,000 vertices. The eigenvectors are not only
meaningful but also stable to poses and triangulations.
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(a) (b) (c) (d) (e)

Figure 4.3: 5 different shapes in the database. The first 3 shape are different poses from a same
armadillo model. According to Table 4.1 the three armadillo poses have similar eigenvalues,
while the eigenvalues of the elephant and the lion are quit different.

basis and reconstructed with the linear combination of these eigenfunctions. All of these are

global analysis in the spectral domain. However, the main goal here is to study the local be-

haviors of the surfaces. It is obvious that each eigenfunction fk is assigned a real value at every

surface point p as fk(p). With respect to each point, there exists a mapping from a point on the

surface in 3D spatial space to an infinite geometry spectrum space as:

GS(p) =

(
f1(p)√
λ1

,
f2(p)√
λ2

,
f3(p)√
λ3

, ...

)
, (4.1)

where p is a point on a surface S and fk is the kth eigenfunction corresponding to the kth

eigenvalue λk of S. Each eigenfunction is normalized by

< fi, fi >= 1, i = 1, 2, 3, ..., (4.2)

on surface S. As we work on the poses casted by the same object, the scales of each surface can

be normalized. Thus, the scales of the values in eigenfunctions represent the geometries of the

shapes. We summarize some major advantages of this geometry spectral domain embedding

as follows:

• If the surface in 3D space has no self-intersection, the embedding has no self-intersection
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in the infinite domain either. That means GS(pi) = GS(pj) if and only if pi = pj on S.

• The embedding is based only on eigenfunctions on the manifold. It only relies on the

manifold metric and is invariant to the Euclidean embedding in 3D space of S. The

embedding mapping filters away the Euclidean transformations and near isometric de-

formations.

• The embedding is invariant to different triangulations because of the implementations of

discrete Laplacian.

With this embedding, our method does not require any preprocessing such as normalization,

remeshing or registration. All these spatial factors do not mater in the geometry spectral do-

main. With a same surface, there is only one basis set for the embedding. Among different

poses, the basis will keep stable. Figure 4.4 demonstrates different poses are registered in the

spectral domain neutrally. The 3rd, 4th, and 5th eigenfunctions are picked for form a 3D sub-

space in the spectral domain. The Euclidean differences, including triangulations, transforms,

and isometric deformations, are filtered away. The shapes are colored with the 3rd eigen-

function for rendering. The eigenfunctions of the manifold satisfies equation 2.3. If certain

function fk is a normalized eigenfunction corresponding to some eigenvalue λk, according to

this equation, −fk is also a normalized eigenfunction. The experiments also show that eigen-

functions from different pose can flip with sign corresponding to the same eigenvalue. In order

to overcome this flipping problem, the mapping is restricted as an absolute one as:

AGS(p) =

(
‖ f1(p)√

λ1

‖, ‖f2(p)√
λ2

‖, ‖f3(p)√
λ3

‖, ...
)
, (4.3)

The absolute mapping will break the first property about self-intersection above, the symmet-

ric points on the surface will be mapped together. In our framework, it is natural to assume

that parts have similar physical behaviors when they are symmetric on the surface. Thus, the

absolute mapping does not affect the accuracy of mapping in terms of symmetry. For example,
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(a) (b)

(c) (d)

(e)

Figure 4.4: Transfer spatial manifolds to spectral domain. In the high dimensional space the
near isometric deformation with be filtered out and registered uniformly. For rendering pur-
pose, only the 3-5 eigenfunctions are chosen as a sub 3D space of the spectral domain. Despite
the spatial deformations and different triangulations, the shapes are registered in the spectral
domain neutrally. The color illustrates the 3rd eigenfunction distribution on shapes.
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the left and right elbows have the symmetric geometry properties, the registration across each

is acceptable, as we do not require the dense mapping and registration.

4.4 Semantic Shape Analysis
Semantic Point Classification

The geometry spectrum embedding transforms each point on the surface from the Euclidean

space to an infinite geometry spectrum space. Suppose there exists a spatial surface which is

near isometrically deformed along time, denoted by S(t). The points with same positions

relative to the surfaces S at different time will be mapping into the same coordinates in the

spectrum space, despite the different locations, orientations and poses of the original surfaces.

Although the point is fixed in the spectral domain, it can carry varying geometric properties

on S. That is to say, in the spectral domain, the properties at a point varies while the pose

changes. For each point p in the spectral domain, we can define a property function fp(t).

which depends only on time t. Imagine that, if the properties are chosen to be invariant to

Euclidean transformations but only sensitive to pose changes, what can be observed in the

spectral domain is that properties vary on certain regions along with pose changes while do not

on the other regions. The former situation indicates articulations while the latter one indicates

rigid parts of the original shape. There are some well studied features on surfaces, such as

curvatures, normals, geodesic fans, and so on. In our frame work, mean curvatures are a

straightforward choice, as the Laplacian operator is also the mean curvature normal operator

on the surface. When the shape deformation S(t) is given, the pose behaviors of all the points

can be classified into articulate or rigid.

The data in our frame work is not a continuous surface changing with time but N frames

of meshes. N could range from 2 to 10 or even more. The property functions are reduced to

a discrete set. A triangle mesh is a discrete sampling of a surface, therefore, an exact corre-

spondence of a vertex may not exist on another near isometric mesh. Thus, the property set on
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a vertex is built based on an approximation. Suppose fp is a feature set which is going to be

built at a vertex p on the surface S. First, the embedding of p is calculated, the mean curvature

of p is put into fp as an element. Then, for each following frame of meshes Si, a point pi is

found as a nearest one to p in the geometry spectral domain base on the Euclidean distance,

and the mean curvature of pi is put into fp as another element. Therefore, the element in fp can

classify the geometry behaviors of p through different poses. Figure 4.5 illustrates the maxima,

minima, and range distributions on the surface among different poses.

(a) (b) (c)

Figure 4.5: Mean curvatures values in spectral pose analysis. (a) maximum mean curvature
distribution on each vertex during pose transformations; (b) minimum mean curvature distri-
butions; (c) mean curvature range distribution. The values are histogram equalized for visual-
ization.

Property Smoothing

After the equation 2.27 is solved, vertices can be mapped from spatial space into to ge-

ometry spectral domain directly with the indices. The chosen properties can be assigned in

the spectral domain. As aforementioned, mean curvature is chosen because the mean curvature

normal vector can be obtained by multiplying the Laplacian matrix with the vertex position ma-

trix. Mean curvature is also invariant to Euclidean transformation. However, directly assigning

the mean curvature will cause stability problems. The embedding is applied on each discrete

vertex. A particular vertex usually can not find the exact matching with other vertices from

other surfaces, but has to use the neighbor information in the geometry spectral domain. Based

on the definition, mean curvatures obtain by the mean curvature normal operator use only one
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ring neighborhood on the mesh. When the mesh is constructed, noise could be involved during

the modeling or reconstruction procedures. Thus, the direct mean curvatures will contain a lot

of local variance, which will affect the accuracy and stability of the pose analysis in the spectral

domain. Therefore, they have to be smoothed first.

The smoothing process is done with Laplacian eigenfunctions. As it is discussed in pre-

vious charpters and sections, any function f defined on the surface can be transformed into

frequency domain by projecting it onto the eigenfunctions. The coefficient family {ci} forms

the frequency spectrum of f as its counterpart in 1D which is well known as Fourier transform.

The smoothing is done by applying a low pass filler in the frequency domain then transform-

ing filtered coefficients back to the surface function. Figure 4.6 illustrates the mean curvature

reconstruction procedure with different numbers of eigenfunctions. As it is shown, the recon-

struction with first 130 eigenfunctions is usually sufficient.

Figure 4.6: Mean curvature reconstruction on eigenfunctions of the manifold. Form left to
right, top to buttom, the first figure is the discrete mean curvatures on the surface, obtained
by applying Laplace-Beltrami operator on the Euclidean embeddings; the rest ones are recon-
structions with the first 6, 20, 50, 100, and 130 eigenfunctions.

4.5 Automatic Skeleton and Joint Extraction
When all the points on the surface shape are classified and clustered into semantic parts, it

enables an automatic skeleton construction with joint identification. Here we adopt Reeb graph

to achieve this goal.
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Skeleton Extraction

Reuter [57, 60] discussed the skeletal representation based on the eigenfunctions. We found

that, in the practical data, the intersections of different parts are not stable if the centers of Reeb

graph are employed directly. They may shift away from the semantic locations where they

should be. The experiments show that iteratively shrinking the mesh to the center producing

smoother results. Our skeleton construction is automatic with two simple steps as demonstrated

in Figure 4.8.

Iso-contour shrinking. For each vertex on the mesh, the contour with the same function

value of the vertex is traversed and found. Then, the vertex is moved the geometric center of

the iso-contour. This results in a skeleton-like mesh. Figure 4.7 illustrates the iso-contours of

the eigenfunction of the first nonzero eigenvalue.

Figure 4.7: The iso-contours of the eigenfunction of the first nonzero eigenvalue.

Skeleton construction. Applying the algorithm in [54] on the shrunk mesh with the origi-

nal eigenfunction. Because the mesh is shrunk to the skeleton shape, the spatial embedding of
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the Reeb graph is accurate to become skeleton.

Figure 4.8: Automatic skeleton generation. From left to right: the first non-trivial eigenfunction
of the loin model; shrink mesh based on iso-contours; skeleton generated with Reeb graph
algorithm; and the embedding of the skeleton within the original model.

Joint Detection

Based on the changing geometric behaviors of points in the geometry spectral domain, we

are able to automatically spot out the joints as long as the deformation around the joints are

presented in the given deformation sequence. Figure 4.5 demonstrates the basic ideal of the

pose analysis in the geometry spectral domain. Figure 4.5(a) is the distribution of the mean

curvature maxima on the surface. The larger the value is, the more the surface on that point

can bend along relative to the negative direction of the normal at that point. Figure 4.5(b) is the

distribution of mean curvature minima. It predicts the behavior that surface bends along the

positive normal direction. Note that, the values on the surface are histogram equalized. The

same color does not mean the same value across different surfaces. Ideally, if a part is always

rigid during pose transformation, the geometry shape will never change. A point on that part

has the exact constant mean curvature all the time. Thus, the minimum and maximum of mean

curvature are equal to each other. On the contrary, if a part varies, the minima and maxima will

fall away from each other. This mean curvature change range is a measurement describing how

“rigid” the point and its neighborhood is, which is shown in Figure 4.5(c). The result is very

natural. The articulations like neck have different forms under different poses. The parts like

nose will not change too much during different poses. Figure 4.9 shows the complete example.
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(a) (b)

Figure 4.9: Mean curvature range distributions on a lion model and the extracted semantic
skeleton with joints identified based on the distribution.

4.6 Experiments and Applications
In this section, we show some experiment results of skeleton and joint extraction as well

as some further applications based on the semantic skeletons. Note that, the pose shapes are

represented with triangle meshes. In our experiments, we use mesh data sets from SHREC07

and the one Sumner and Popović [67] used.

Skeleton and Joint Extraction

Figure 4.10 gives an example of the armadillo shape. The main body, especially the chest

and the back shell, will not have much variance when it casts different poses. Instead, when the

armadillo often changes its postures of head, arms or legs, the neck, shoulder, and waist follow

the pose changes. The mean curvature ranges on the surface leads to a segmentation directly,

which segment the rigid parts and articulations apart. With the help of the mean curvature

ranges, hierarchy graphs can be build as it is described in [9]. Figure 4.11 shows another

example.
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Figure 4.10: Mean curvature range distributions on armadillo models. The chest and back shell
usually stay rigid while the neck, elbows, and waist vary during pose changes.
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(a) (b) (c)

Figure 4.11: Mean curvature range distributions on an elephant model and the extracted se-
mantic skeleton with joints identified based on the distribution.

Animation

Skeleton driven deformation has extensively studied. It is intuitive to human understanding.

Most of poses of creatures are controlled by bones and muscles and then represented by the skin

surfaces. The technique of the skeleton driven deformation and animation is widely used in the

animation and gaming industry. The classical pipeline is as following: first, manually design a

skeleton of a mesh surface; second, assign the vertices of that surface to semantic skeletal parts;

then, deform the mesh along the skeleton. Fortunately, our method automatically classifies

semantic parts of surfaces during pose changes, and then produces graphs that can be treated

as skeletons of meshes. The vertices of the semantically classified surface are automatically

associated with skeletal parts with joints identified. There are many existing algorithm can be

employed to deform and control such a shape with skeletons. Figure 4.1 has already given an

example. The skeletons are learnt from several key frames, but can control the shape to cast

much more poses than that. Figure 4.12 also shows some other deformation sequences. These

new poses are not any one in the reference frames, but some potential possibilities the models

can cast based on the knowledge from existing frames.
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Figure 4.12: Animation sequence. With the automatically extracted semantic skeleton, user can
edit the pose freely. The animation sequence can be generated among the edited key frames.

Pose Transformation

Pose transformation is another popular graphics application. The motivation is obvious. If

a pose can be transformed form one shape to another similar shape automatically, a lot time can

be saved by modeling one key shape instead of modeling lots of different shapes, respectively.

In our frame work, the poses are represented with semantic parts. Two similar shapes will have

similar semantic parts and skeletons. Graph or skeleton matching algorithm, such as [68] can

find the correspondence between two similar skeleton. After that, a pose driven by a skeleton

can be transformed to a similar pose with a corresponded skeleton. Figure 4.13 demonstrates

how running poses are transformed from a lion model to a cat model.

4.7 Summary
Differing from the existing spatial approaches, our method enables to understand the poses

in the geometry spectral domain. The geometry spectrum is based the eigenvalues and eigen-

functions that are defined by the Laplace-Beltrami operator on the surface. The Laplace-

Beltrami operator relies only on the metric on the surface, therefore, it is variant to Euclidean

translation, rotation and scaling. It is also invariant to isometric deformations. Thus, the eigen-
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Figure 4.13: Motion transform from a lion model to a cat model.

values, eigenfunctions, and the geometry spectral domain share the invariance. Ideally, every

point on a spatial surface should be embedded to the geometry spectral domain only by its

geometric meaning. As long as the poses casted by one model are near isometric to each other,

they will be re-embedded to a uniform surface in the infinite geometry spectrum. In practice,

the shape spectrum is stable under the near isometric deformations. For example, the points

on the elbow of the model will always be embedded around a common location in the spectral

domain, no matter how the model’s pose changes. The spectrum reflects the intrinsic charac-

teristics of a surface despite varying Euclidean space embeddings.

The discrete setting makes it is possible and easy to apply the Laplace-Beltrami operator

directly on the surfaces represented by triangle meshes. The continuous Laplacian equation

turns into a symmetric generalized sparse matrix eigen problem. The eigenvalues are kept

the same within a finite number, and eigenfunctions are represented with eigenvectors as area

weighted samplings. This also makes the spectral domain invariant to different sampling rates

and triangulations.

Our method analyzes data without preproccess like remeshing or registration. It first trans-

forms spatial surfaces into geometry spectral domain. Each point is mapped along with its

spatial geometry properties. The properties are smoothed with a low pass filter defined on the

basis of eigenfunctions. In the spectral domain, each point carries a set of properties during the

pose variations. It is efficient to classify points on the surface into rigid parts and articulated



52

parts by analyzing the geometric property changes on those points mapped in the geometry

spectral domain. The eigenfunction can also provide rich geometric meaning, which leads to

an automatic semantic skeleton with joints identified. The experimental results show that the

filtered mean curvature range can predict different semantics of parts on the original surface.

It may be very useful in motion analysis in computer vision and pattern recognition tasks as

well.
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CHAPTER 5

NON-ISOMETRIC MOTION ANALYSIS BY VARIATION

OF SHAPE SPECTRUM

In previous chapters, we introduced shape spectrum is invariant to different triangulations

and isometric deformations. By definition, shape spectrum represents the information of the

intrinsic local geometry. A lot of existing approaches and experiments also show shape spec-

trum is stable with noises. Analysis on the variation of shape spectrum is less studied. In the

chapter, we prove that the variation of shape spectrum can be analytically expressed and it can

be used to analyze non-isometric deformations.

5.1 Related Work
The spectrum approach started on graphs [48, 49, 46]. Considering discrete meshes are

also graphs, Laplacian matrix is defined on vertices and connections, weights may also applied.

The eigenvalues are defined as the spectra of graphs, and the eigenfunctions are the orthogonal

bases. This spectrum has a lot similarities with Fourier transform. The graphs are then pro-

jected onto those bases and analyzed in the spectral domain. Karni and Gotsman [31] used the

projections of geometry on the eigenfunctions for mesh compression. and smoothing. Jain and

Zhang [28] extended it for shape registration in the spectral domain. The Laplace spectrum

focuses on the connection of graph, instead of the intrinsic geometry of the manifolds. Only

using the connectivity of the graph may lead to highly distorted mappings [75].

The Laplace-Beltrami spectrum, also refers to shape spectrum in this work, was brought

to computer graphics to describe shapes [61, 42, 59, 60]. There are a lot advantages of this

spectral approach compared with transitional spacial ones. The spectrum depends on only the

intrinsic geometry of a manifold. It is invariant to spacial translations, rotations, and scaling.

It is also invariant to isometric deformations. On discrete domain, it is fine defined on digital
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manifold, e.g., triangle meshes. The computing time is affordable. It is invariant to different

triangulations. Due to those properties, A lot of shape analysis approaches are base on the

Laplace-Beltrami spectrum, including our previous work.

Isometry is a fundamental condition of the shape spectrum. Non-isometry is less studied in

this area. By definition, the spectrum is not invariant any more. Reuter et al. [58] discussed that

the spectrum is stable to small amount of noise. High level noise on free form deformations

will change the spectrum dramatically. Recent approaches showed the shape spectrum can be

controlled with a scale function on the Riemann metric. It is the clue to have shape spectrum

work on general different shapes. Shi et al. [64] discussed that the eigenvalues and eigenfunc-

tions change according to the Riemann metric of the manifold. The derivate of the eigenvalues

can be represented with that of the scale of the Riemann metric. In [64], eigenfunctions are

registered across objects by calculating the Riemann metric scaling on both shapes. A dense

registration is more focused there and the eigenvalue variation is no studied. Also the algorithm

takes 15 minutes to register two shapes with around thousands vertices, which is not efficient.

In this chapter, we focus on a spectrum alignment for general shapes, and also a computa-

tionally affordable discrete algorithm, which can support non-isometric analysis.

5.2 Variation of the Eigenvalues and Eigenfunctions
In the real world motion cases, isometry is not usually preserved. The non-isometric de-

formations result in instability of eigenvalues and dramatic changes of eigenfunctions. In this

section, we prove the eigenvalues are analytic function of motions.

On a compact closed manifold M with Riemann metric g, we define motion as a time vari-

ant positive scale function ω(t) : M 7−→ R+ such that gωij = ωgij and dσω = ωdσ, where ω(t)

is nonnegative and continuously differentiable. By definition, the weighted Laplace-Beltrami

operator becomes

∆gω =
1

ω
∆g.
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Consider the ith solution of the weighted eigen problem

∆gωfi = −λifi, (5.1)

or rewritten as

∆gfi = −λiωfi, (5.2)

where the eigenfunction fi is normalized as

∫
M

f 2
i dσ

ω = 1 for i = 0, 1, 2, . . . , (5.3)

and orthogonal to other eigenfunctions

∫
M

fifjdσ
ω = 0, j 6= i. (5.4)

Theorem 1. λi(t) is piecewise analytic and, at any regular point, the t-derivative of λi(t) is

given by:

λ̇i = −λi
∫
M

ω̇fi
2dσ (5.5)

Proof. ω is a nonnegative and continuously differentiable function, and ∆g is analytic. We can

compute the derivative of the eigenvalue equation, equation 5.2, and get

∆gḟi = −λ̇iωfi − λiω̇fi − λiωḟi.

Then, we multiply both sides by fi and take the integral on M and get

∫
M

fi∆
gḟidσ = −λ̇i

∫
M

ωfi
2dσ − λi

∫
M

ω̇fi
2dσ −

∫
M

ḟiλiωfidσ,



56

which can be simplified with equation 5.2 and 5.3 as

∫
M

fi∆
gḟidσ = −λ̇i − λi

∫
M

ω̇fi
2dσ +

∫
M

ḟi∆
gfidσ,

Note that, M is a closed manifold. According to divergence theorem, we can have

∫
M

fi∆
gḟidσ = −

∫
M

∇ḟi · ∇fidσ =

∫
M

ḟi∆
gfidσ,

so we get equation 5.5.

In discrete matrix form, we can get the similar result. Assume Ω is a nonnegative, continu-

ously differentiable, diagonal matrix, and consider a weighted generalized eigenvalue problem

Wvi = λiΩSvi, (5.6)

where λi and vi are ith corresponding solution. The eigenvectors can be normalized as

< vi,vi >ΩS= 1 for i = 0, 1, 2, . . . , (5.7)

and orthogonal to each other

< vi,vj >ΩS= 0, i 6= j. (5.8)

Theorem 2. λi(t) is piecewise analytic and, at any regular point, the t-derivative of λi(t) is

given by:

λ̇i = −λiviT Ω̇Svi (5.9)

Proof. We can compute the derivative of the eigenvalue equation, equation 5.6, and get

W v̇i = λ̇iΩSvi + λiΩ̇Svi + λiΩSv̇i,
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multiply vTi from the left

vTi W v̇i = λ̇iv
T
i ΩSvi + λiv

T
i Ω̇Svi + vTi λiΩSv̇i,

and simplify it with equation 5.6 and 5.7 as

vTi W v̇i = λ̇i + λivi
T Ω̇Svi + vi

TW T v̇i.

Then we get equation 5.9 as W is symmetric.

5.3 Algorithm
In previous chapters and sections, we already discussed the properties of shape spectrum

and proved that the eigenvalues can be controlled with a time variant continuous function.

By definition, the shape spectrum is invariant to isometric deformations. However, in real

cases, isometry is not guaranteed. For example, in pose deformations, the surfaces at the joints

are locally scaled, and in heart motions, the surface will contract and expand globally. These

deformations break isometry. The former experiments showed that the shape spectrum is stable

to these non-isometric deformations and noises. Our eigenvalue variation theorems prove that

the spectrum is smooth and analytic to a non-isometric local scale deformation. They support,

analytically, aligning the shape spectrum among non-isometric deformations, hence facilitating

a registration-free solution for motion analysis.

In this section, we focus on the discrete algorithm to align the shape spectrum among non-

isometric deformations. Consider two closed manifolds, M and N , represented with discrete

triangle meshes. Their first k nonzero eigenvalues and eigenvectors are

λMi,vMi, λNi, and vNi, for i = 1, 2, . . . , k.

Due to the non-isometry, the first k eigenvalues are not necessary to be aligned. In order to



58

align the first k eigenvalues of N to those of M , a continuous scale diagonal matrix Ω(t) is

applied on N . Ω is an n by n matrix, where n is number of vertices on N . The element Ωii

on the diagonal is a scale factor defined on each vertex on N . According to Theorem 2, the

derivative of each eigenvalue is expressed by those of Ωii analytically. Thus, the scale matrix Ω

will introduce an alignment from N to M on eigenvalues. The rest of this section will describe

the details to obtain the diagonal matrix Ω numerically.

5.3.1 Linear Interpolation

Assume that the eigenvalues of N vary linearly towards those of M . This linear interpola-

tion is represented as

λi(t) = (1− t)λNi + tλMi, t ∈ [0, 1]. (5.10)

At the beginning, t = 0, and λi(0) starts as λNi, while t reaches 1, λi(1) aligned to λMi. At

any regular time t ∈ [0, 1], the derivative is calculated on both sides as

λ̇i(t) = λMi − λNi, t ∈ [0, 1]. (5.11)

The derivative of λi(t) is a constant all the time, and it can be expressed by the derivative of

the scale matrix Ω.

5.3.2 Matrix Eigenvalue Variation

Each diagonal element Ωii represents a scale factor at vertex i on manifold N . Ω(0) is

a identity matrix on N , and Ω(1) aligns the first k nonzero eigenvalues of N to those of M .

Combining equation 5.9 and 5.11, the derivative of each λi(t) leads to a equation of Ω as

−λi(t)vi(t)T Ω̇Svi(t) = λMi − λNi, t ∈ [0, 1], (5.12)

where S is also diagonal Voronoi area matrices and vi(t) is the corresponding eigenvector as

described in previous chapters. The diagonal elements of S are defined as Voronoi area of
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vertices. Although we have the equation of the time derivative of Ω, it is hidden in the discrete

integration and not straight forward to solve. We have to reform the individual integration

equation into a linear system. If we extract the diagonals as vectors vΩ and vS , and employ

Hadamard production, which is an element wise matrix production as

A ◦B = C such that Aij ·Bij = Cij, (5.13)

the equation 5.11 can be rewritten with a linear form as

(vS ◦ vi ◦ vi)T · vΩ̇ =
λNi − λMi

λi(t)
, t ∈ [0, 1]. (5.14)

Note that, as the first k eigenvalues are to be aligned, we got k independent equations, which

leads to an under-determined linear system as

A · vΩ̇ = b (5.15)

where A is a row stack of (vS ◦ vi ◦ vi)T with k rows

Ak×n =



(vS ◦ v1 ◦ v1)T

(vS ◦ v2 ◦ v2)T

...

(vS ◦ vk ◦ vk)T


and b is a k dimensional vector with

bi =
λNi − λMi

λi(t)
, t ∈ [0, 1].

Note that, practically, k is much less than n. For example, on a triangle mesh with 20000

vertices, and only first 50 eigenvalues are aligned. This means the linear the system is unde-
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termined and has no unique solution. More constraints are necessary to provide an optimized

solution for the linear system.

5.3.3 Smoothness Constraints

In our case, we focus on global smoothness of the scale factors distributed on N . Consider

a scalar function f ∈ C2 is define on the continuous manifold < Nc, g >. The gradient of

f , ∇f , describes the local change of f . For example, if f is a constant function, which is

considered as the smoothest distribution, the gradient ∇f is zero everywhere. A smoothness

energy of f is defined with the total square magnitude of the gradient∇f on Nc

E =

∫
Nc

‖∇f‖2dσ. (5.16)

Note that∇f is a vector, and the square magnitude is calculated as a dot product

‖∇f‖2= ∇f · ∇f. (5.17)

Then the integral on Nc becomes

E = −
∫
Nc

f∆gfdσ. (5.18)

At time t, we investigate the scale function ω(t) and dω|t. Then we obtain the following

smoothness energy

E = −
∫
Nc

(ω + dω)∆g(ω + dω)dσ

= −
∫
Nc

dω∆gdωdσ − 2

∫
Nc

ω∆gdωdσ −
∫
Nc

ω∆gωdσ.

(5.19)
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On the discrete triangle mesh N , the scale function is a vector vΩ, which is the diagonal of

matrix Ω. The integral is a matrix product as

E =< vΩ + vΩ̇, L · (vΩ + vΩ̇) >S

= (vΩ + vΩ̇)T · S · L · (vΩ + vΩ̇)

= (vΩ + vΩ̇)T ·W · (vΩ + vΩ̇)

= vT
Ω̇
·W · vΩ̇ + 2vTΩ ·W · vΩ̇ + vTΩ ·W · vΩ.

(5.20)

Assume that vΩ is known at each time t and vΩ̇ is to be solved in equation 5.15. vΩ is constant

to vΩ̇. vΩ̇ is going to minimize the quadratic smooth energy Eq at any time

Eq = vT
Ω̇
·W · vΩ̇ + 2cT · vΩ̇, (5.21)

where c = W · vΩ. In order to preserve the physical availability, vΩ must be bounded. The

scale factor cannot be zero or negative. Further more, any point cannot be infinity either. We

denote a lower bound and an upper bound with hl,hu > 0, where hl and hu are n dimensional

constant vector. vΩ̇ must satisfy

hl ≤ vΩ + vΩ̇ ≤ hu. (5.22)

This inequality bound can be written into a matrix form

G · vΩ̇ ≤ h, (5.23)

where G is stack of identity matrices as

G2n×n =

−In×n
In×n

 , (5.24)
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and h is a 2n dimensional vector as

h2n×1 =

vΩ − hl

hu − vΩ

 , (5.25)

The linear system, equation 5.15, smoothness constraint, equation 5.20, and constant bound,

equation 5.23, introduce a quadratic programming problem at each time t. Assume the eigen-

values and eigenvectors are known at each time t, the derivative of the scale matrix Ω̇ is the

solution of such quadratic programming.

5.3.4 Linear Integration

The discussions above prove that at each time t, the derivative of the scale matrix Ω̇ is the

solution of a quadratic programming. As an initial state, Ω is an identity matrix as it starts from

N itself. The final scale matrix is achieved by an integral

Ω(1) = I +

∫ 1

0

Ω̇dt, (5.26)

which aligns the first k nonzero eigenvalues from N to M .

This integration is discretely approximated with an iteration. The time interval [0, 1] is di-

vided into K steps. The index of each steps is j. Initially, j = 0, Ω(0) = I , λi(0) = λNi, and

vi(0) = vNi. In order to reduce the numerical error, we reinitialize the problem at the begin-

ning of each step j = 0, 1, · · · , K. In stead of aligning λNi to λMi, we are aligning λi(j). λi(j)

and vi(j) are re-calculated with equation 5.6 and current Ω(j) on N . The diagonal of Ω(j) is

vector vΩ(j) while the diagonal of S is vS . And then, the current quadratic programming
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problem is constructed with equation 5.15, 5.20, and 5.23as

minimize
vΩ̇(j)

Eq = vΩ̇(j)T ·W · vΩ̇(j) + 2cT · vΩ̇(j)

subject to G · vΩ̇(j) ≤ h (inequality constraint)

A · vΩ̇(j) = b (equality constraint)

where

c = W · vΩ(j)

G2n×n =

−In×n
In×n


h2n×1 =

vΩ(j)− hl

hu − vΩ(j)



Ak×n =



(vS ◦ v1(j) ◦ v1(j))T

(vS ◦ v2(j) ◦ v2(j))T

...

(vS ◦ vk(j) ◦ vk(j))T



bk×1 =



λ1(j)−λM1

λ1(j)

λ2(j)−λM2

λ2(j)

...

λk(j)−λMk

λk(j)


.

(5.27)

Note that, as we reinitialize the problem, λNi in equation 5.15 is replaced with λk at the begin-

ning of each step. Ω̇(j) is the solution of the quadratic programming above. Then Ω(j + 1) is

approximated with

Ω(j + 1) = Ω(j) +
1

K − j
Ω̇(j). (5.28)

After K steps, the desired Ω(K) is achieved.
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5.3.5 Algorithm Summary

The algorithm is summarized as follows:

Algorithm 1 Eigenvalue Alignment
Input: Closed 2D manifolds N and M , represented triangle meshes and constant k
Output: Diagonal weight matrix Ω(j) on N , aligning first k nonzero eigenvalues from N to
M
Initialize Ω(0)← I , calculate matricesW and S onN , and λMi,vMi, λNi, and vNi, for i =
1, 2, . . . , k
while j < K do

Calculate λi(j),vi(j), for i = 1, 2, . . . , k using equation 5.6 with Ω(j)
Construct the quadratic programming problem (5.27)
Solve the quadratic programming problem to get Ω̇(j)
Ω(j + 1)← Ω(j) + 1

K−j Ω̇(j)
j ← j + 1

end while

5.4 Results
Our algorithm is implemented with Python and C++ on a 64-bit Linux platform. The

Python libraries, Numpy, Scipy and cvxopt, are employed for algebra calculations, OpenGL,

VTK, and Blender 3D for rendering and visualization. The experiments are conducted on an

Intel Celeron 2955U 1.4GHz laptop with 4GB RAM. We apply our algorithm on 2D manifold,

represented with triangle meshes.

There are typically two kinds of data in our experiments, brains surfaces and heart left

ventricle (LV) motion sequences. They are all extracted from 3D medical images. Each brain

and LV surface contains 20000 and 10000 vertices respectively. We first evaluate the com-

putation performance of our algorithm. Besides the vertex number, there are two constants,

K iterations and the first k nonzero eigenvalues to be align. According to the algorithm de-

scribed in previous sections, each iteration is an independent quadratic programming problem.

Thus the complexity is linear to the step number K. k determines how many eigenvalues to

be re-initialized at the beginning of each step. The Scipy libraries we employed calculates the

eigenvalues by iterations. The complexity is O(n2) to the number of vertices and linear to k.
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The average computing time is shown in Table 5.1, which matches the analysis above. Note

that, the larger the K is, the more accurate the approximation is, in terms of the linear interpo-

lation. In practical, we found K = 5 is sufficient to get the accurate result and save computing

time. Ideally, including more eigenvalues for alignment can be more accurate. However, the

numeric eigenvalue calculation is not reliable on higher indexed eigenvalues, which will bring

more unsuitability. We usually choose k = 50 in our experiments without further notations.

The computation is quite affordable on a low profile laptop.

Manifold k = 30, K = 5 k = 50, K = 5 k = 30, K = 10 k = 50, K = 10

Brain (20000) 21.2s 30.6s 42.6s 59.1s
LV (10000) 8.91s 14.0s 18.0s 27.4s

Table 5.1: Performance evaluation.

In order to evaluate our eigenvalues variation algorithm, we synthetically generate some

non-isometric deformations. In this case, the dense vertex to vertex correspondence is known.

A reference is chosen as a brain surface, which is extracted from MRI scans. The surface

is then deformed manually with local controls, which is non-isometric. The deformation and

local controls are shown in Figure 5.1. Due to the non-isometry, the spectrum is expected to

(a) (b) (c) (d)

Figure 5.1: Synthetic deformation. (a) and (b) are original triangle mesh, which is generate
from 3D medical image. (c) and (d) are obtained by manually editing the original surface. The
synthetic deformation is local and non-linear. The locally deformed area are marked with red
circle in (c).

vary, both eigenvalues and eigenfunctions. Table 5.2 shows the eigenvalue variations under the
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non-isometric deformation. The eigenvalues in the table are normalized by the first nonzero

Manifold λ 2-6 λ 51-55
Synthetic Deformation 1.31, 1.36, 2.98, 3.38, 3.69 30.29, 30.69, 31.57, 32.59, 32.94

Brain 1.23, 1.29, 2.93, 3.29, 3.61 29.65, 29.84, 30.96, 31.37, 31.71
Aligned 1.31, 1.36, 2.98, 3.38, 3.69 30.25, 30.66, 31.61, 32.62, 32.87

Table 5.2: Eigenvalues alignment on synthetic deformation.

one to remove the scale factor. One can compare how the non-isometry breaks eigenvalue in-

variabilities from the original brain shape to the synthetic deformation in Table 5.2. Not only

eigenvalues, eigenfunctions vary even more dramatically, which is illustrated in Figure 5.2.

We randomly pick the 12th, 14th, and 16th eigenfunction distributions for comparison, where

eigenfunction shifting is more noticeable in the middle range. The eigenfunctions are normal-

ized between −1 and 1. Their values are expressed with color maps, where red means larger

value, blue means smaller ones, and green means zero. The patterns of the eigenfunctions shift

around. They may not represent the corresponding geometry across non-isometric manifolds.

In the worst case, the topology of the eigenfunction distribution may also change. With the

synthetic deformation, our spectrum alignment is applied on the first 50 nonzero eigenvalues

and a scale function is obtained. We compare the eigenvalues, on the original brain and after

alignment, in Table 5.2. After applying the spectrum alignment algorithm, the eigenvalue are

aligned perfectly. Furthermore, the higher indexed eigenvalues are also aligned even they are

not in the linear system constraint. We define a relative error of eigenvalues as

er =
|λreference
i − λi|
λreference
i

.

Table 5.3 records the accuracy of the spectrum alignment algorithm in percentage on the eigen-

values. Both ranges, within the first 50 constraint and first 100, are measured. The alignment

reduces the eigenvalue error by two orders of magnitude. Figure 5.3 demonstrates the scale

function distributions on the original surface. The color represents the log of the scales. Red
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 5.2: Synthetic spectrum shifting. The shape spectrum is invariant to isometric deforma-
tions. The non-isometric ones breaks the invariability. We randomly pick the 12th, 14th, and
16th eigenfunctions to show the shifting, represented by each row respectively. The rows of
(a) and (c) are the original shape, while (b) and (d) are the synthetic deformation. Even small
non-isometric deformation introduces noticeable eigenfunction shifting.

Synthetic Brain LV
first 50 first 100 first 50 first 100 first 50 first 100

before 8.93% 9.00% 6.55% 6.61% 25.9% 24.5%
after 0.0186% 0.0187% 0.202% 0.203% 0.290% 0.286%

Table 5.3: Average normalized eigenvalue errors before and after alignment.
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means dilating, blue contraction, and green no distortion. (a) and (b) are ground truth by calcu-

lating the vertex to vertex Voronoi area distortions on the synthetic surface. (c) and (d) are the

result of the spectrum alignment. It is clear that the spectrum alignment predicts the local de-

(a) (b) (c) (d) (e)

Figure 5.3: Synthetic deformation log ratio. The scale function from the eigenvalue alignment
algorithm is evaluated with the synthetic ground truth. With the synthetic deformation, the
dense vertex to vertex correspondence is known. The vertex-wise scale function is calculated
with the Voronoi area ratio after and before the deformation, demonstrated in (a) and (b).
In order to make it linear to compare, log operation is employed. (c) and (d) represent the
scale function from the eigenvalue alignment. Our algorithm accurately recovers the local
deformation without any pre-information but shape spectra.

formation precisely, with spectrum information only. Please note that, the result scale function

is much smoother than the one of ground truth and they have slight difference, because we are

using smoothness constraints to solve the linear system. The next step is to investigate how the

eigenvalue distributions change under the spectrum alignment. We pick the same eigenfunc-

tions, 12th, 14th, and 16th, after alignment for comparison in Figure 5.4. Compared with the

unaligned eigenfunctions in Figure 5.1, those ones after the spectrum alignment are more re-

sponsible. Especially, the 16th eigenfunction on the top has not only shifting but also topology

change on the top. The blue part is a connected strip shape on the deformed shape, but separate

on the original brain, which is also corrected with the spectrum alignment in Figure 5.4. The

synthetic deformation is aligned in shape spectrum.

We move next step to real clinical data. Brain surface registration is a fundamental research

in image analysis and vision. The brain data in our experiment is extracted from MRI scans

with marching cube and re-sampled with 20000 vertices for each shape. The shapes from
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 5.4: Synthetic spectrum alignment. The eigenvalues are aligned form the original shape
to the synthetic deformation. The eigenfunctions are aligned as well. The 12th, 14th, and
16th eigenfunctions are represented by each row respectively. Those eigenfunctions are more
consistent after eigenvalue alignment over deformations.
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different persons are usually non-isometric to each other. The original shape spectrum fails in

this case. In Table 5.3, the average eigenvalue error is 6.55% among different brain surfaces.

Two brains samples are demonstrated side by side in Figure 5.5. It is obvious that they are not

isometric even up to a global scale factor. Figure 5.6 shows how the eigenfunction distributions

change among different brains. Here, the 12th, 14th, and 16th eigenfunctions are chosen. The

patterns, e.g., maxima and minima, are shifting around, and some of them are even missing.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.5: Different shapes are aligned with a scale function. The column of (a) is the ref-
erence shape, (b) the target one to be aligned, and (c) the scale function distribution on the
reference shape. The color the represents the log values of the scale factors.

The spectra of these two brains can be aligned, with a scale function. Such scale function is

illustrated in Figure 5.5, whose log values are mapped with color. Intuitively, the red and yellow

areas expand themselves, while the blue ones contracts. Then the geometry on the left brain

deformed to the right one. Table 5.3 shows the spectrum alignment reduces the eigenvalue
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 5.6: Brain spectrum shifting. The two brains shapes are from different persons, which
are not isometric to each other. The rows show the 12th, 14th, and 16th eigenfunction distri-
butions respectively on the two brains. The columns of (a) and (c) represent one brain and (b)
and (d) the other. The eigenfunctions shift due to the non-isometry.
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error from 6.55% to 0.202%. The eigenfunctions are also aligned as they are geometrically

more similar than the original case, shown in Figure 5.7. Comparing Figure 5.7 and 5.6, the

great improvement is obtained after spectrum alignment, in terms of those maxima, minima,

and transition edges on the geometry. Another interesting case to study is LV motion in heart.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 5.7: Brain spectrum alignment. The spectra of the two brains are aligned with a scale
function. The rows show the 12th, 14th, and 16th eigenfunction distributions respectively on
the two brains. The columns of (a) and (c) represent one brain and (b) and (d) the other. The
eigenfunctions are aligned as well.

LV changes its shape within cycles by contracting and dilating the muscles. This motion results

in changes of the surface geometry. Figure 5.8 shows a sequence of 8 samples during a LV

motion. It can been seen the geometry changes dramatically. The middle sample, first one in
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.8: LV motion represented with scale functions. Although the LV motion introduces a
sequence of non-isometric deformations, the spectra of those deformations can still be aligned
with scale functions. Each deformation is then represented with a scale function on the refer-
ence frame.
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row 3, is chosen as a reference shape, and its spectrum is aligned to all the other shapes. The

eigenvalue errors shown in Table 5.3 verify the large geometry changes as the average errors is

25.9% and the spectrum alignment brings it down to 0.290%. Figure 5.9 and 5.10 demonstrate

the eigenfunction distributions before and after the spectrum alignment. The results are similar

to the previous synthetic shape and brain surfaces. While the eigenvalues are aligned among the

shapes, the eigenfunctions are also aligned according to the geometry. The spectrum alignment

result a scale function to each time frame, illustrated in Figure 5.8. Red color indicates dilation,

blue contraction, and green no scaling. For example, from the reference shape to the first

frame, the interior has to expand, and to the third frame, it is necessary to contract instead.

In this way, the spacial geometry deformations turn into scale function distributions. Note

that the scale functions are globally smooth and predict local deformations. Another potential

application would be abnormality visualizations and diagnosis. For example, Cardiomyopathy

is the main cardiac disease which affects the wall thickness and its functionality. This disease

can be detected from the abnormal motion of LV [69]. Usually, the variations are weaker on

the myopathy parts than those on the normal parts. In this work, the scale function illustrates

the contractions and expansions of local part. For rendering, we cut interior wall of the LV,

shown in Figure 5.11. It is in the during a contraction phase. Most of the surface is contracting,

which is indicated by blue color. There is a abnormal patch receives less or no deformations.

5.5 Summary
In this chapter, we have introduced spectrum variation theorems for general shapes. A

shape is represented with a closed 2D manifold with Riemann metric. The Laplace-Beltrami

spectrum is defined on the intrinsic geometry of the manifold, which is invariant to rigid op-

erations and isometric deformations. In real cases, isometry is hard to preserve. Even small

non-isometric deformation will cause spectrum variations. We prove that the eigenvalues of

the spectrum is an analytic function of a scale function applied on the Riemann metric. The

derivative of each eigenvalue is an integral of the derivative of the scale function. The theorem
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 5.9: LV spectrum shifting during motion. The local parts of a LV contract and expand.
Those deformations are usually not isometric. The rows show the 8th, 12th, and 14th eigen-
function shifting respectively. The columns of (a) and (c) represent one time frame in the LV
motion and (b) and (d) another.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 5.10: LV motion spectrum alignment. The LV motion introduces a sequence of non-
isometric deformations. The spectra of each time frame can be aligned with a scale function.
Both eigenvalues and eigenfunctions are aligned during the motion. The rows show the 8th,
12th, and 14th eigenfunction shifting respectively. The columns of (a) and (c) represent one
time frame in the LV motion and (b) and (d) another.
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(a) (b) (c)

Figure 5.11: LV abnormality on the interior wall. Blue color indicates contractions at this time
frame. The major parts of the interior wall contract normally. Some myopathy ones have much
less or no deformations, which are colored with green.

applies both continuous analytic and discrete cases.

We have also developed an algorithm to align the shape spectra on discrete shapes rep-

resented with triangle meshes. Given two closed triangle meshes, the spectra can be aligned

from one to another with a scale function defined on each vertex. The alignment is expressed

as a linear interpolation of eigenvalues. The interpolation is then decomposed into discrete

iterations. In each step, a quadratic programming problem is constructed with the spectrum

variation theorem and smoothness energy constraint. The derivate of the scale function is so-

lution of such problem. The final scale function is approximated with integral of the derivate

from each step.

Our experiments verify the spectrum variation theorem and illustrate the accuracy and effi-

ciency of the alignment algorithm on general shapes and their motions to shape motion analy-

sis.
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CHAPTER 6

CONCLUSION

Shape analysis is a fundamental research topic in computer graphics and computer vision

including matching, retrieval, mapping, etc. Inspired by the recent research, we focus on the

shapes represented with differential geometry as the differential operators contain the intrinsic

geometry information of the original shape. On one hand, the second order Laplace-Beltrami

operator introduce a spectral domain where the Euclidean transformations and isometric defor-

mations are filtered out. In such a spectral domain, only the intrinsic shape properties are left.

Our research is the shape analysis based on such geometry behind the differential operators.

6.1 Contributions
The main contributions include:

• We have introduced a novel 3D shape representation with a set of salient feature points in

Laplace-Beltrami spectrum. The Laplace-Beltrami operator is defined on the geometry

of a Riemann manifold. The Laplace eigenvalue problem introduces spectra of shape ge-

ometry similar to Fourier transfer on time domain. They also have the similar properties.

The shape spectra depend shape geometry, and are invariant to translation, rotation, scal-

ing, and isometric deformations. The shape is then projected to the spectral bases and

represented with a linear combination of them. The salient features are extracted from

the “frequency” domain as local geometry energy maxima, which shared the invariabil-

ity of the original spectrum. The maxima provide not only where the features are on the

manifold but also the “frequency” where the features lie in, so the scales of the salient

features are predicted. With spectra, shapes are represented with a set of invariant salient

features with scales. IQP is employed to retrieve the correspondences among variant

shapes in very detailed levels. The experiment results show the applications in shape
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matching, retrieval, and searching. Partial matching is also supported in our framework.

• We present a novel method to understand the poses in the geometry spectral domain.

Poses are defined as a set of near-isometric shapes casted by the same model. Their

Laplace-Beltrami spectra stay stable under minor non-isometry deformations. All the

poses from the same object can be re-embedded to a high dimensional spectral domain.

By transferring spatial poses into the spectral domain, their geometry are aligned natu-

rally there despite Euclidean transformations, triangulations, and, near-isometric defor-

mations. In this case, the pose difference are represented with local geometry properties,

e.g., mean curvatures. Investigating in spectral domain, the pose motions will vary the lo-

cal properties on the fixed geometry. Large variations indicate joints and Small ones rigid

parts. The eigenfunction also carry rich geometric meaning, which leads to an automatic

skeleton extraction. Combining the part understanding and the skeleton, the semantic

deformable model is obtained. The shape spectra help shape understandings and seg-

mentations. It contributes to motion analysis in computer vision and pattern recognition

tasks as well.

• We prove the shape spectrum is a piecewise analytic to a scale function on the conformal

factor on the Riemann metric of the manifold. The derivatives of the eigenvalues are

expressed with those of the scale function at each time. The property applies to both

continuous domain and discrete triangle meshes. Further more, a spectrum alignment

algorithm is developed on the triangle meshes. In the discrete domain, integration is

represented with matrix product. The derivatives of the shape spectrum and the scale

vector can be turned into a matrix form, which introduces a linear system. We apply the

smoothness and local bound constraints to solve the linear system by reaching the min-

imum energy of a quadratic programming problem. Given two closed triangle meshes,

representing manifolds, the eigenvalues can be aligned from one to the other. After

the eigenvalues are registered, the eigenfunction distributions are aligned as well. This



80

means the shape spectrum can be controlled by the user analytically with a scale vector

and non-isometric deformations analysis is available within shape spectra.

6.2 Future Work
This dissertation work introduces the great analysis power with shape spectrum. Along this

direction, there exist topics for future work.

1. Spectrum alignment with local deformation. We have proved that the eigenvalues of the

shape spectrum is a analytic function of a scale function on the Riemann metric. This lin-

ear constraint is under-determined on triangle meshes. The solution has not to be unique

with this constraint only. In this dissertation work, we employed global smoothness as

extra constraints to achieve an energy optimized solution. It is accurate and efficient on

global deformations or smooth deformation. This global smoothness constraints may not

precisely locate very sparse and local deformations on a shape. For example, the global

optimization often fails in pose changes, where deformations occur only on sparse joints

and other parts remain rigid during most of time. Adaptive constraints for specific types

of deformations remain open for study in future.

2. Shape level interpolation based on spectra. This dissertation work closes the gap of the

shape spectra on non-isometric deformations. We prove that the spectrum can be inter-

polated and aligned with a scale function on the Riemann metric. Given any general

shapes, they can be registered in spectral domain. At current stage, the conversion from

spacial to spectral domains is one-way only. The interior process in the spectrum inter-

polation does not have too much spacial meanings, except the two end points. Our work

builds a two-way bridge between the spacial scale function and the spectrum. Following

this clue, the spacial properties of the shape spectrum is expected to be future recovered.

Also, a shape space may be constructed along this direction.
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via circle patterns. ACM Trans. Graph. 25, 2 (Apr. 2006), 412–438.

[36] KILIAN, M., MITRA, N. J., AND POTTMANN, H. Geometric modeling in shape space.

ACM Trans. Graph. 26, 3 (July 2007).

[37] LAI, Z., AND HUA, J. 3D surface matching and registration through shape images.

In Proceedings of the 11th International Conference on Medical Image Computing

and Computer-Assisted Intervention, Part II (Berlin, Heidelberg, 2008), MICCAI ’08,

Springer-Verlag, pp. 44–51.

[38] LAMDAN, Y., AND WOLFSON, H. J. Geometric hashing: a general and efficient model

based recognition scheme. In International Conference on Computer Vision (1988),

pp. 238–249.

[39] LEE, C. H., VARSHNEY, A., AND JACOBS, D. W. Mesh saliency. ACM Trans. Graph.

24, 3 (July 2005), 659–666.

[40] LEIBOWITZ, N., FLIGELMAN, Z. Y., NUSSINOV, R., AND WOLFSON, H. J. Multiple

structural alignment and core detection by geometric hashing. In Proceedings of the

Seventh International Conference on Intelligent Systems for Molecular Biology (1999),

AAAI Press, pp. 169–177.

[41] LEVOY, M., PULLI, K., CURLESS, B., RUSINKIEWICZ, S., KOLLER, D., PEREIRA,

L., GINZTON, M., ANDERSON, S., DAVIS, J., GINSBERG, J., SHADE, J., AND FULK,

D. The digital michelangelo project: 3D scanning of large statues. In Proceedings of

the 27th Annual Conference on Computer Graphics and Interactive Techniques (New



88

York, NY, USA, 2000), SIGGRAPH ’00, ACM Press/Addison-Wesley Publishing Co.,

pp. 131–144.

[42] LEVY, B. Laplace-beltrami eigenfunctions towards an algorithm that ”understands” ge-

ometry. In Proceedings of the IEEE International Conference on Shape Modeling and

Applications 2006 (Washington, DC, USA, 2006), SMI ’06, IEEE Computer Society,

pp. 13–.
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Shape analysis is a fundamental research topic in computer graphics and computer vision.

To date, more and more 3D data is produced by those advanced acquisition capture devices,

e.g., laser scanners, depth cameras, and CT/MRI scanners. The increasing data demands ad-

vanced analysis tools including shape matching, retrieval, deformation, etc. Nevertheless, 3D

Shapes are represented with Euclidean transformations such as translation, scaling, and ro-

tation and digital mesh representations are irregularly sampled. The shape can also deform

non-linearly and the sampling may vary. In order to address these challenging problems, we

investigate Laplace-Beltrami shape spectra from the differential geometry perspective, focus-

ing more on the intrinsic properties. In this dissertation, the shapes are represented with 2

manifolds, which are differentiable.

First, we discuss in detail about the salient geometric feature points in the Laplace-Beltrami

spectral domain instead of traditional spatial domains. Simultaneously, the local shape descrip-

tor of a feature point is the Laplace-Beltrami spectrum of the spatial region associated to the

point, which are stable and distinctive. The salient spectral geometric features are invariant

to spatial Euclidean transforms, isometric deformations and mesh triangulations. Both global

and partial matching can be achieved with these salient feature points. Next, we introduce a

novel method to analyze a set of poses, i.e., near-isometric deformations, of 3D models that are
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unregistered. Different shapes of poses are transformed from the 3D spatial domain to a ge-

ometry spectral one where all near isometric deformations, mesh triangulations and Euclidean

transformations are filtered away. Semantic parts of that model are then determined based on

the computed geometric properties of all the mapped vertices in the geometry spectral domain

while semantic skeleton can be automatically built with joints detected. Finally we prove the

shape spectrum is a continuous function to a scale function on the conformal factor of the

manifold. The derivatives of the eigenvalues are analytically expressed with those of the scale

function. The property applies to both continuous domain and discrete triangle meshes. On

the triangle meshes, a spectrum alignment algorithm is developed. Given two closed triangle

meshes, the eigenvalues can be aligned from one to the other and the eigenfunction distribu-

tions are aligned as well. This extends the shape spectra across non-isometric deformations,

supporting a registration-free analysis of general motion data.
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