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CHAPTER 1

Introduction

Polymers enjoy wide-spread usage in today’s society. Under loading, typical polymers

exhibit a time-dependent behavior which manifests itself in stress relaxation or creep. These

effects can degrade the capability of a polymer structure to perform its function properly.

The time-dependent behavior of solid polymers is so diverse that, at the moment, no better

recipe exists to describe the material behavior other than fitting experimental results by

either Volterra non-local stress-strain relations or their finite-dimensional truncations. The

latter can be interpreted as a combination of springs and dashpots. In such approaches a

potentially useful piece of information, the micromechanic behavior of the polymer, is lost.

This research proposes a theory to microscopic polymer chain movement, and develops a

model based on this theory to predict the macroscopic creep and stress relaxation response

of a polymer foam. Based on the slip/stick of polymer chains as they move past each other,

this model successfully predicts the response of a polymethacrylimide (PMI) polymer foam

under tensile loads.

The PMI foam selected for this research is Rohacell IG, widely used in the aviation and

marine industries, and manufactured by Evonik Industries. When possible, industry standard

test methods are employed to obtain tensile creep and stress relaxation results. To minimize

variability in the analysis, only those specimens which share nearly the same elastic modulus

are used for the final parameter fitting comparisons. A common set of parameters is fitted to

the data, resulting in good correlation between model predictions and experimental responses.

Success of this fitting helps to validate the proposed polymer micromechanic theory of chain

movement. This model lends insight into polymer microscopic behavior, which may be helpful

for the development of future polymer materials.

To set a groundwork of understanding, some highlights of the vast field of polymers and

polymer micromechanics are briefly reviewed in Chapter 2. Basic categories of polymers

and definitions are reviewed. Classic models based on springs and dashpots, or the Volterra

integral for materials with memory have historically been used to predict viscoelastic behavior.
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An evaluation of these models and their inadequacies in predicting the performance of the

test material are presented. In the literature review [Courtney, 2005, Findley et al., 1989],

it is observed that the focus is on the simple creep test, while either ignoring or only giving

a cursory mention of the stress relaxation test. This chapter provides a comprehensive

summary of both.

Chapter 3 describes the development of a micromechanics-based model for predicting

polymer creep and stress relaxation. The model is loosely based on polymer micromechanics

in which a theorized interaction between chains under loading is proposed. A complete

thermodynamic justification of the model is provided.

Chapter 4 addresses the specifics of the test materials and methods. Various grades (i.e.

densities) of PMI exist between 31 kg/m3 and 110 kg/m3. While this work focuses on 31 IG,

some work with 51 IG and 71 IG is also included. In order to determine the model material

parameters, tensile creep and tensile stress relaxation tests are performed at two different load

levels. This allows a linear fitting of the model parameters and provides good correlation

between the model predictions and experimental data. Variability makes the performance

of any model suspect, and in practice, of little use to predicting material behavior. An

important aspect of the testing regime is to identify potential sources of variability. One

variability study performed is an investigation of the elastic modulus and material density

relationship using nominal foam densities of 31 kg/m3, 51 kg/m3, 71 kg/m3.

An interesting feature of the PMI foam is its behavior once unloaded. Many models focus

on predicting the material performance during the hold phase after the initial loading. A

more complex loading involves the addition of an unloading, then recovery phase. Additional

model fittings/evaluations are performed for this complex loading, as well as load/partial-

unload/hold, and load/instantaneous-unload cycles, in Chapter 5. During the loading and

subsequent unloading, a residual strain builds up in the test specimen. This residual strain

in not permanent, and in fact, when no load is applied to the specimen, the strain eventually

returns to zero. Therefore, for the model’s micromechanic reasoning to be valid, the model

must be able to "close the loop" in the stress-strain plot in a similar fashion. It should also

predict the material behavior nuances observed in other loading cycles.

Chapter 6 summarizes the key points contained herein and offers potential areas of further
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exploration. These areas may provide additional insight into polymer chain motion with

the use of the developed model. The completion of this research adds to the database of

engineering knowledge with the development of a micromechanics-based model for polymer

foam behavior. This model predicts the behavior of a grade of PMI foam quite closely.

Future research will hopefully extend the model to cover other loading conditions, along with

the application to other polymer materials.
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CHAPTER 2

Polymers and Rheology

A myriad of information has been written on the subject of polymers. Indeed, there

are many individuals who have spent their life’s work advancing the field of polymer science.

One aim of this chapter is to simply introduce the reader to this vast field, and briefly

review some key points of polymer mechanics to aid in the understanding of the work herein.

For additional insights, the reader is encouraged to review works by Courtney, Flory, and

Gibson [Courtney, 2005, Flory, 1990, Gibson and Ashby, 1997]. Section 2.1 summarizes basic

definitions. Section 2.2 summarizes polymers and polymer micromechanics. A brief overview

of the manufacturing and construction of PMI foam is given in Section 2.3. Sections 2.4

and 2.5 review the basic rheology of polymers and the classic models which have been used to

describe this behavior. The models are based on linear springs and dashpots. Shortcomings

of the use of these models are discussed. Section 2.6 reviews the use of the Volterra integral

to describe the viscoelastic behavior.

2.1 Polymer Structure

The term polymer denotes a molecule made by the repetition of a simpler unit, the

mer or monomer. Polymerization is the process of joining together monomers into larger

chain-like macromolecules. The monomers are generally held together as macromolecules

by covalent bonds, the sharing of electrons between atoms. The attractive force between

the individual chains can be comprised of covalent bonds or weaker van der Waals forces,

that are usually due to polarization. Van der Waals forces are relatively weak compared to

covalent bonds. In general, covalent bonds govern the thermal and photochemical stability

of polymers. Van der Waals forces determine most of the physical properties associated with

specific compounds. Melting, dissolving, vaporizing, absorption, diffusion, deformation, and

flow involve the making and breaking of intermolecular bonds so that the polymer chains can

move past one another or away from each other.

The addition of cross-links, i.e. covalent bonds between polymer chains, provides "mem-
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ory" of the initial state to the polymer structure. Without cross-links, the individual chains

would slide freely past each other. Cross-links generate strong interchain bonds and thus

restrict this motion.

The macroscopic rheological model developed in this research is motivated by an idea on

modeling the breaking and reforming of the weak interchain bonds that occur when materials

deform.

2.2 Categories of Polymers

Polymers can be broadly classified on the basis of their mechanical characteristics, which

in turn, are determined by the polymer’s molecular architecture. In general, three broad

categories of polymers exist: thermosets, thermoplastics, and elastomers.

Thermosets are polymers in which the primary bonding lies not only along a chain, but

assumes a skeletal or three-dimensional character between chains. While thermosets are ca-

pable of elastic and viscoelastic deformation, their structure does not allow for permanent

deformation at ordinary temperatures; thermosets decompose at a temperature above which

permanent deformation could be accomplished in them. Thermosets are permanently cured

into a given shape, generally through the application of heat. Curing results in an irreversible

chemical reaction in which permanent connections (cross-links) are made between the mate-

rial’s molecular chains.

Thermoplastics consist of long molecular chains with covalent bonding along the chains.

The individual chains are held together by much weaker van der Waals bonds or, in certain

thermoplastics, hydrogen bonds. No cross-links are formed in a thermoplastic. The ther-

moplastic process is reversible in that the material may be remelted and reformed into new

shapes without degradation of the base material.

Elastomers are highly kinked long-chain polymers periodically cross-linked in such a way

that permanent displacement of the chains (i.e. plastic deformation) does not take place in

them. Elastomers differ significantly from thermosets and thermoplastics in that the glass

transition temperature is significantly below room temperature. Therefore, elastomers can

undergo deformation on the order of 500%, while still returning to their original shape after
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Figure 2.1: Tensile-loading fracture surface of Rohacell 31 IG PMI foam.

Vertices, edges, and faces which comprise the closed-cell foam’s macrostructure

are apparent.

unloading. The structural basis for this is the elastic uncoiling and recoiling of the polymer

molecules.

2.3 PMI Foams

2.3.1 Microgeometry

The rheology of Evonik’s Rohacell IG, a thermoset foammanufactured from polymethacrylim-

ide, is studied herein. This material is widely used as a core material in sandwich plate con-

struction in the aviation, marine, and sports industries [Black, 2014, Evonik Industries, 2014].

The microgeometry of the foam is shown in Figs. 2.1-2.3. Fig. 2.1 is an image of a foam

fracture surface of Rohacell 31 IG. The average cell size diameter is about 0.8 mm. The cell

walls are quite thin, about 14 m on average, while the average edge thickness is 2-3 time

higher. High definition cross-section images which more clearly identify the cell faces and

edges, Figs. 2.2, 2.3, were provided by Dr. Jie Shen from University of Michigan-Dearborn.
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Figure 2.2: High definition cross section (0.7 m / pixel) CT scan of Rohacell

51 IG foam. This is a true cross section, and not a surface image as in Fig.

2.1. Here the cell faces and edges are more clearly defined. The face thickness

averages 14 m, while the edge thickness averages 34 m. Average cell size is

approximately 0.8 mm in diameter.

2.3.2 Manufacturing

Rohacell IG is manufactured as follows (R. Averill, email communication, July 2011)

[United States Patent 5928459, 1999]. Methacrylic acid and methacrylonitrile are injected

into glass castings. The castings are placed into a water bath at elevated temperature to

start the polymerization process. As the reaction begins, the water bath temperature is

closely monitored to control the exothermic reaction. Depending on thickness, in 2-4 weeks

the newly polymerized product becomes a polymethacrylimide (PMI) sheet. It is amber in

color and similar to Plexiglas at this point. The sheets are formatted and hung vertically in

a convection oven. With the addition of heat, the sheets are free foamed into bun format.

Finally, the buns are formatted and cut into sheets. The foam density is controlled by the

size of the cells.
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Figure 2.3: Low definition cross section (1.7 m / pixel) CT scan of Rohacell

51 IG foam. A larger piece of the specimen is captured because of the reduced

resolution. The variation in cell shape and size is more apparent.

2.4 Rheology

Viscoelasticity is a material response wherein a material’s behavior, when subjected to

forces, is viscous as well as elastic in nature. These forces may be surface forces (e.g. a tensile

load), or body forces (e.g. the specimen’s weight). Upon application of a force, the elastic re-

sponse occurs immediately and the material responds in a linear manner. An elastic material

stores 100% of its energy during deformation, and returns that energy once unloaded. The

viscous response is “delayed”, and thus the material’s response is time dependent. During

deformation, a viscoelastic material stores part of the energy in an elastic manner, and dis-

sipates some of its energy in a viscous manner, causing hysteresis. For thermosets, the long

polymer chains along with cross-linking at the molecular scale result in viscoelastic behavior

at the macroscale. Three tests can be used to quantify a materials’ rheologic behavior in

simple tension: creep, stress relaxation, and periodic loading. In this study we focus on creep

and stress relaxation.
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Figure 2.4: Maxwell model, a spring and dashpot in series.

2.5 Classic Constitutive Models

Simple models have been developed to predict the elastic and viscous response of materials.

The mechanical equivalent to an elastic response is the Hookean spring. An ideal spring

exhibits instantaneous response/recovery to a change in the applied strain or stress. The

linear dashpot response is proportional to the rate at which the strain is applied. The

spring displacement is linearly proportional to applied force,  = ,  being the spring

constant. For materials, the equivalent linear relationship is Hooke’s Law,  = . An elastic

material stores 100% of its energy during deformation. The viscous response is characterized

by material flow over a period of time. As such, the material’s response is a function of time.

The mechanical equivalent is the Newtonian dashpot. The dashpot velocity is proportional

to the applied force,  = ̇,  being the viscosity. For materials, the equivalent relationship

is  = ̇. A viscous material does not store energy during deformation. Rather, it dissipates

some of this energy as heat.

To represent elastic and viscous behavior, springs and dashpots are arranged in various

combinations. These combinations can be tuned to react differently to the constant strain

test (i.e. stress relaxation), and constant stress test (i.e. creep). Additional insight can be

gained by looking at a more complex loading/unloading/recovery cycle for each of the models.

Following is a brief review of the classic models which are relevant to the polymer foam being

tested. References made to the material behavior are from the results of numerous test loops,

some of which are reviewed in Chapter 4.

2.5.1 Maxwell Model

The Maxwell model is composed of a spring and dashpot connected in series, Fig. 2.4.

For such a model, the stress on each element is the same, and equal to the imposed stress.

The strain is divided between the spring and dashpot elements. The stress-strain function
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Figure 2.5: Stress response of Maxwell model in a stress relaxation test.

for this model can be described by the constitutive equation:




̇ +  = ̇ (2.1)

When subjected to a constant strain as in a stress relaxation test, () =  = ,

the solution to (2.1) with boundary condition (0) =  demonstrates the stress decays

exponentially:

 () =  exp

µ
−− 



¶
 (2.2)

The qualitative plot of (2.2) is shown in Fig. 2.5. For (2.2), the limit value of stresses as

 −→∞ is zero, i.e. the material relaxes completely no matter how large the initial strain.

When subjected to a constant stress as in a creep test, () =  = , the solution to

(2.1) with boundary condition (0) = , demonstrates the strain responds linearly:

 () =



(+ ) (2.3)

The plot of (2.3) is shown in Fig. 2.6. The creep test in the Maxwell model exhibits an

unbounded increase in strains. Linear creep, while not exactly consistent with the polymer

foam material being studied, can in some cases be used as a good approximation for long-term

performance, but is lacking in it’s ability to predict short-term behavior.

Additional issues arise with the Maxwell model if a prescribed stress loading cycle is eval-

uated. For such a situation, upon loading/unloading a residual amount of strain remains in
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Figure 2.6: Strain response of Maxwell model in a creep test.

t

,

Figure 2.7: Qualitative depiction of a complex stress-controlled loading cycle.

Stress rate (solid line) is a linear loading/unloading up to time 1, then zero

for   1. This produces the stress time history profile (dashed line) shown.

the material, Fig. 2.8. It is with this test that the Maxwell model breaks down for predicting

the material response. This response is not consistent with the material being studied, and

thus the Maxwell model is not sufficient to describe the polymer material behavior. During

testing, it was observed that the polymer foam material eventually "closes the loop" on the

stress-strain plot, whereas the Maxwell model does not. This can be shown with the following

analysis. Starting with (2.1), we assume a complex load/unload/recovery similar to Fig. 2.7

where the loading/unloading takes place up to 1.

At the exact ending moment of the unloading period 1 (1) 6= 0 and for   1 ̇ = 0,

thus (2.1) becomes:





Z 1

0

̇+

Z 1

0

 = 

Z 1

0

̇ (2.4)
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Figure 2.8: Maxwell model does not "close the loop" for the complex

load/unload/recovery test. A residual strain is observed and remains inde-

finately when the stress is returned to zero after unloading.

Figure 2.9: Voigt model, a spring and dashpot in parallel.




[(1)− (0)] +

Z 1

0

 = [(1)− (0)] (2.5)

Since (0) = 0 and ( ≥ 1) = 0, the first term of (2.5) vanishes. The integral term, which

is the area under the −  curve, is not equal to zero for all  ≥ 1, thus ( ≥ 1) is a constant

and non-zero. This is in direct conflict of the material behavior where (→∞) = 0

2.5.2 Voigt-Kelvin Model

The Voigt model (aka Kelvin model) is composed of a spring and dashpot connected in

parallel, Fig. 2.9. For such a model, the strain on each element is the same, and equal to

the imposed strain. The stress is divided between the spring and dashpot elements. The

constitutive equation for this model is:

 = + ̇ (2.6)

When subjected to a constant strain, () =  = , the total stress in the Voigt
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Figure 2.10: Stress response of Voigt model in a stress relaxation test.

t

Figure 2.11: Strain response of Voigt model in a creep test.

model is constant, i.e. no stress relaxation takes place regardless of the level of strain loading

as shown in Fig. 2.10. This is in direct conflict with the material response which does relax.

When subjected to a constant stress, () =  = , the solution to (2.6) with

boundary condition (0) = 0 is:

 () =




µ
1− exp

µ
−− 



¶¶
 (2.7)

It is seen that the strain goes to the limit value,  (∞) = , dependent on the initial stress

level, Fig. 2.11.

If a prescribed complex strain-controlled load/unload/recovery cycle is evaluated, an addi-

tional issue arises with the Voigt model. Starting with (2.6), we assume a load/unload/recovery

similar to Fig. 2.12 where the loading/unloading takes place up to 1. At the exact ending

moment of the unloading period 1 (1) = 0 and for   1 ̇ = 0, thus (2.6) becomes:
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Figure 2.12: Qualitative depiction of a complex strain-controlled loading

cycle. Strain rate (solid line) is a linear loading/unloading up to time 1, then

zero for   1. This produces the strain time history profile (dashed line)

shown.

Figure 2.13: When subjected to a strain-controlled load/unload/recovery

cycle, the stress-strain plot for the Voight model shows a linear response and

is not consistent with the test material.

Z 1

0

 = 

Z 1

0

+ 

Z 1

0

̇ (2.8)

Z 1

0

 = 

Z 1

0

+ [(1)− (0)] (2.9)

Since (0) = 0, ( ≥ 1) = 0, only the integral terms remain. Here we observe the area

under the  −  curve is linearly proportional to the area under the  −  curve. For such

a condition, the model reacts in a purely linear fashion and results in no hysteresis on the

stress-strain plot, Fig. 2.13. This is not consistent with the material being studied, and thus

the Voigt model is discounted.
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Figure 2.14: Voigt form of the SLS model includes an additional spring in

series with a Voigt unit.

Figure 2.15: Maxwell form of the SLS model includes an additional spring

in parallel with a Maxwell unit.

2.5.3 Standard Linear Solid (SLS) Model

Most polymers do not exhibit the unrestricted creep permitted by the Maxwell model,

nor the purely elastic response in the Voigt model. To correct for this, several forms of the

Standard Linear Solid model have been suggested.

Voigt-SLS

The Voigt-SLS model includes the addition of a spring element in series with a Voigt unit,

Fig. 2.14.

The stress-strain relation for the Voigt-SLS model is:

1

1
̇ +

µ
1 + 2

1

¶
 = ̇+

2


 (2.10)

Maxwell-SLS

The Maxwell-SLS model includes the addition of a spring element in parallel with the

Maxwell unit, Fig. 2.15.
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Figure 2.16: Normalized stress response of the SLS model to a stress relax-

ation test. With the appropriate choice of variables, the Maxwell form and

the Voigt form of the SLS models are interchangeable.

The stress-strain relation for the Maxwell-SLS model is:

̇ +
2


 = (1 + 2) ̇+

12


 (2.11)

It can be shown that with the proper choice of 1 2  that (2.10) and (2.11) are

equivalent. Thus conclusions drawn for appropriateness of the SLS models are the same for

both the Maxwell and the Voigt forms. Evaluating (2.11), when subjected to a constant

strain, () =  = , the solution to (2.11) with boundary condition (0) = (1 + 2)

is:

() =

∙
1 + 2 exp

µ
−2


(− )

¶¸
 (2.12)

For (2.12), lim−→∞  () = 1 = , which demonstrates stress relaxation continues

until a constant value, dependent on the material properties and the initial strain level, is

reached, Fig. 2.16.

When subjected to a constant stress, () =  = , the solution to (2.11) with

boundary condition (0) = (1 + 2), is:

() =

∙
1

1
− 2

1(1 + 2)
exp

µ
− 12

(1 + 2)
(− )

¶¸
 (2.13)

For (2.13), lim−→∞  () = 1 = , which demonstrates creep continues until a con-

stant value, dependent on the material properties and initial stress level, is reached, Fig.
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Figure 2.17: Normalized strain response of the SLS model to a creep test.

With the appropriate choice of variables, the Maxwell form and the Voigt form

of the SLS models are interchangeable.

Figure 2.18: Stress-strain plot of the SLS model when subjected to a stress

controlled, complex loading cycle. During the recovery phase, the SLS model

closes the stress-strain loop and returns to its starting point.

2.17.

If a stress load/unload/recovery cycle is evaluated, the SLS models do "close the loop" on

the stress-strain plot, Fig. 2.18, which is consistent with the overall material behavior.

2.5.4 Wiechert Model

More complex behaviors can be modeled with increasing complexity of the spring and

dashpot models. One popular modification is the Wiechert model which is an extension of

the Maxwell-SLS model. A -component Wiechert model is shown in Fig. 2.19.

The constitutive equation for the Wiechert model is the ordinary differential equation of

n order linking  and . It can also be written as  first order differential equations, where

the subscripts on  represent the individual branches of the model:
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Figure 2.19: Wiechert model is a generalized version of the Maxwell-SLS

model. To improve modeling flexibility, an increasing number of Maxwell

units are added to the Maxwell-SLS model.

() = 1() + 2 + 3 + + 

22 + 2̇2 = 22̇

33 + 3̇3 = 33̇ (2.14)



 + ̇ = ̇

The advantage of the Wiechert model is it can be tailored to the decay rate more precisely

than the SLS models. As many Maxwell units as needed can be added to the arrangement to

approximate the material response. For a stress relaxation test, when the strain is constant:

() =

⎡⎣1 + X
=2

½
 exp

µ
−

(− )

¶¾⎤⎦  (2.15)

For (2.15), lim−→∞  () = 1 = , which demonstrates stress relaxation continues until a

constant value, dependent on material properties and initial strain level, is reached.

An operational shortcoming with this model is the absence of clear physical meaning of

the material parameters involved, 1 2   and 2 3  .
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2.6 Nonlocal Constitutive Equations

Instead of a model based on linear and viscous elements, the polymer material’s stress-

strain behavior can be represented using the Volterra integral. For material stress, the fol-

lowing relationship is used:

() =

Z 

0

(− )̇() (2.16)

Equation (2.16) can be inversed to obtain material strain:

() =

Z 

0

(− )̇() (2.17)

The functions () and () are referred to as kernels. The kernel determines the model

response to the loading. Since creep and stress relaxation are two aspects of the same vis-

coelastic material behavior, it is expected that they are related. Indeed, it can be shown using

Laplace transforms [Zenkert et al., 2006],

̂()̂() =
1

2
 (2.18)

where ̂() and ̂() are the Laplace transforms of the kernels () and () respectively.

To experimentally measure the kernel (), one can apply the strain and release it in a step-

function manner. This appears to create an ambiguity in equations (2.16) and (2.17) at  = 0.

In practice, due to equipment limitations, the load (or elongation) application is actually over

a short, finite time interval.

Because of the material’s memory to prior loadings, the stress rate (or strain rate as

appropriate) must be prescribed for the entire loading cycle beginning from its initial loading,

which is assumed to be at  = 0. In order to be appropriate for predicting the performance

of the polymer material, the Volterra integral (2.16) and (2.17) must be able to "close the

loop" in the stress-strain plot for the complex load/hold/unload/recovery test. Let us take
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the following loading profile:

̇ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0  ≤ 0
 0 ≤  ≤ 1

0 1 ≤  ≤ 2

− 2 ≤  ≤ 3

0 3 ≤ 

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
 (2.19)

To determine the final strain at a time   3, we have from (2.17):

() =

Z 

0

(− )̇() (2.20)

=

Z 1

0

(− )̇() +

Z 2

1

(− )̇() +

Z 3

2

(− )̇() +

Z 

3

(− )̇()

Substituting the loading conditions of (2.19) into (2.20) results in the simplified form

() =

Z 1

0

(− ) −
Z 3

2

(− ) (2.21)

Let us take the kernel used by [Findley et al., 1989] as an example:

() =  (2.22)

Thus;

() =
1

Γ(1 + )Γ(1− )
− (2.23)

Evaluating (2.21) with kernel (2.22) results in:

() =


+ 1
[−(− 1)

+1 + +1 + (− 3)
+1 − (− 2)

+1] (2.24)

Unfortunately, for such a kernel, only under the conditions of

 = 0 1 + 2 = 3 (2.25)

can it be guaranteed that the Volterra integral with kernel (2.22) will close the loop for the

prescribed loading cycle, limiting its usefulness. When  is not a whole number, as is typically
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the case in fitting, it is not a trivial task to explicitly verify whether or not the material will

return to zero strain on the stress-strain curve. Indeed, for the case  = 2, (2.24) can be

shown to diverge from zero in the positive direction as →∞.
Though potentially limited in scope, the careful choice of parameters  and  in (2.22)

allows the Volterra integral to predict simple creep and stress relaxation performance of the

material. However, as more complex loading cycles are introduced, the kernel must be chosen

wisely to insure appropriate model responses. Unfortunately from a physical perspective,

the choice of the Volterra integral kernel is not apparently related to any of the microscopic

structural qualities of the polymer (e.g. chain length, amount of cross-linking). Thus no

insight can be gained into the microscopic behavior of the polymer chains.

2.7 Summary

Creep, and stress relaxation tests on several grades (i.e. densities) of PMI foam indi-

cate the material does not respond in a purely elastic, nor plastic manner. Rather, the

response is viscoelastic. Attempting to fit the material’s response using classic viscoelastic

models can only be satisfactorily done with the Wiechert model. The other classic mod-

els suffer deficiencies in predicting some portion of the creep, stress relaxation, or complex

load/unload/recovery cycle response. With an appropriate kernel choice, use of the Volterra

integral can result in satisfactory predictive performance, but leaves unanswered the question

as to the microscopic behavior of the polymer chains. Because of the desire to gather further

insight, a micromechanics-based model is developed based on the diffusion phenomena de-

scribed by the Fokker-Planck equation. Details of this development are reviewed in Chapter

3.
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CHAPTER 3

Theory

The time-dependent behavior of solid polymers is so diverse that, at the moment, no better

recipe exists to describing the material behavior other than fitting experimental results by

either Volterra non-local stress-strain relations or their finite-dimensional truncations. The

latter can be interpreted as a combination of springs and dashpots. Needless to say, the

physics of the deformation process is completely lost in such an approach. In the case of

non-linear material responses, the situation becomes much worse. The variety of nonlinear

versions of Volterra relations is boundless. Therefore, it seems important to restrict the class

of feasible models suggesting possible micromechanisms of the time dependence, and deriving

the macroscopic relations from statistical reasoning. This is the aim of our work.

We employ a highly simplified picture of the deformation of a cross-linked polymer chain

schematically shown in Fig. 3.1. Two ends of the chain,  and , are pinned at cross-links.

The chain is moving inside the polymer, which is composed of an ensemble of polymer chains.

Some parts of the chain come close to other chains and form weak links that, in contrast to

cross-links, are easily broken by deformation. The horizontal line 0 represents another chain;

point  is a weak link. During elongation in the -direction, the cross-links  and  follow

macroscopic deformation. If the distance between  and  changes, point  is no longer in

equilibrium; there is a non-zero force acting on . To compensate, point  starts moving

along 0 changing the overall distribution of internal forces. This is the assumed microscopic

origin of the time-dependent behavior to be discussed further.

To model the behavior of point , we assume that it is similar to the motion of a point

in a periodic potential () under the action of a random force, Fig. 3.2. The origin of the

random force is the conformation motion of the polymer chain. The assumption of periodicity

is made only to make this problem treatable analytically. One obtains qualitatively similar

results for the random potential as well.

We end up with a model which is schematically presented by Fig. 3.3. The most essential

feature of the model is the highly nonlinear dashpot behavior. Statistical reasonings employed
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Figure 3.1: Sketch of the interaction of a polymer chain with neighboring

chains.

� ��

�

����

�

������	�
���
�����

Figure 3.2: Motion of a weak link is modeled as a point in a periodic potential.
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Figure 3.3: Spring and dashpot scheme of the model.

determine the dependence of the model parameters on temperature.

As will be shown, our model captures correctly the most salient feature of macroscopic

response: in a stress relaxation test, the fast decay of stresses at the beginning of the process

followed by a long slow evolution, and in a creep test, the fast occurring strain at the beginning

of the process followed by a long slow evolution.

In Section 3.1, we start with a reminder of some basic facts from thermodynamics of

polymer chains, which are the building blocks of our model. In Section 3.2, we derive the

dynamic equation for polymer chains with one fixed end and one end loaded by an external

force. Section 3.3 and Appendix B discuss in detail the problem of particle motion in a

periodic potential. Section 3.4 derives the dynamic equation for a polymer chain, a piece

of which is weakly connected to another chain. In Section 3.5, thermodynamic functions

of a cross-linked polymer are constructed. The closed system of macroscopic equations is

formulated in Section 3.6. Its linearized version is considered in Appendix A. In Section

3.7, we construct a modification of nonlinear theory that yields Treloar theory for equilibrium

states. Finally, we extend the results to polymer foams in Section 3.8.

It can be shown that our model, up to physical interpretation of the terms involved, is

mathematically equivalent in the linearized case to the model proposed by [Bergstrom, 1999].

In the nonlinear regime, which is of major interest at least due to nonlinearity of the dashpot,

the models are different.
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3.1 Facts from Thermodynamics of Polymer Chains

Thermodynamics of a polymer chain. The internal energy U of a polymer chain is usually
assumed to be a function of temperature  only:

U = ( ) (3.1)

where  is the number of monomers in the chain, and ( ) is the energy per monomer,

which depends on the composition of the monomer. It is essential that the internal energy

not depend on the distance  between the chain ends. Such a dependence arises in the free

energy F ,
F = U − S (3.2)

through the dependence of entropy S of the chain, on ,

S =() (3.3)

where () is the entropy per one monomer. Based on a detailed analysis of the stochastic

model with freely rotating Kuhn segments, in what follows, we use for () the quadratic

approximation developed from the one-dimensional random walk polymer model

() = −3
2

2

22
 (3.4)

It holds, if one means by  the number of Kuhn segments, i.e. the number of segments that

can be viewed as rotating independently. Accordingly, () is the entropy per one Kuhn

segment. Total entropy of the chain is thus also a quadratic function of :

S =− 3
2

2

2
 (3.5)

The quadratic approximations (3.4) and (3.5) work reasonably well for conditions when

the distance between the chain ends  does not exceed about 20 percent of the chain length

.
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Force acting on the chain end. Let both ends of the polymer chain be fixed. Then due to

thermal motion, there is a force acting on each end. If  are components of the vector going

from chain end  to chain end , and the chain is placed in a thermostat with temperature

 , then the external force  that should be applied at end  to keep the chain in equilibrium

is

 =
F


= − 


 (3.6)

Equation (3.6) follows from the energy equation: if end  was not fixed but free to move for

 then

F =  (3.7)

Here and in what follows, summation over repeated indices is implied. Using the quadratic

approximation for entropy (3.4), we get for the force,

 =
3

2
 (3.8)

As follows from (3.8), the chain tends to contract to form a "blob" with  = 0 For very

large , (3.6) and (3.8) hold for adiabatically isolated chains as well. Equation (3.6) can be

used for any point of the chain as long as the average velocity of this point is much smaller

than the velocity of thermal motion, and the dependence of entropy on the coordinate of this

point is known. In particular one can apply (3.6) to the sticking point of the chain, point 

in Fig. 3.1.

3.2 Dynamics of the Sticking Point in an External Field

Consider a massless particle moving along a line in a smooth external field with potential

()  being the coordinate on the line. Assume a friction force , and a random ex-

citation force () acting on the particle,  being the friction coefficient. Then, the particles’s

equation of motion is





= −()


+ () (3.9)
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Let () up to a deterministic average value ̄, be proportional to white noise ̇() (() is a

Wiener process)

() = ̄ + ̇() (3.10)

The deterministic part of the excitation ̄ may depend on  The solution of the stochastic

differential equation (3.9) is conveniently described in terms of the probability density function

( ) of the positions of the particle. This function obeys the Fokker-Planck equation

 ( )


+





µ
1



µ
−()


+ ̄

¶
 −





¶
= 0 (3.11)

where the diffusion coefficient  depends on the magnitude of the random excitation , and

friction coefficient 

 =
2

22
 (3.12)

To apply this classical theory of particle motion under random excitation to the motion

of the polymer chain end, one has to explain the meaning of all variables in (3.11):  ()

̄ and . We begin with the parameters of the random excitation ̄ and . Let () = 0

and the chain end be free. Then from any initial value, the probability density evolves to the

equilibrium density, which is given by Einstein’s formula

∞() =  S() (3.13)

S() being the entropy of the polymer chain. The probability flux,

1


̄ −




 (3.14)

from (3.11) must vanish at the equilibrium distribution (3.13). This yields the value of ̄

1


̄ = 

S


 (3.15)

Comparing (3.15) with (3.6) written for one-dimensional motion, we find that the external
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force  is equal to the negative of the "internal force" ̄. In addition, using (3.3) we get

 =



or

2

2
=  (3.16)

This is an analogy of Einstein’s formula for the diffusion coefficient in Brownian motion. In

our situation however, the origin of diffusion of particle positions is quite different. Random

force, and therefore, diffusion is the result of the conformal motion of the polymer chain.

Relations (3.15) and (3.16) do not depend on the presence of external forces. One can

verify this by including an external force in derivation of (3.15) and (3.16). Therefore, for a

nonzero external force, (3.11) takes the final form

 ( )


+
1







µµ
−()


+ 

S()


¶
 − 





¶
= 0 (3.17)

Potential energy () can be interpreted as the interaction energy between the sticking point

 in Fig. 3.2, and the neighboring chain 0. If point  is moving over the neighboring chain,

there are places of "good" and "bad" connections. Interaction energy is small at "good"

connections and large at "bad" connections. We take the simplest form of (), assuming

that it is a periodic function of . The period  is assumed to be much smaller than the scale

change of S: S is practically constant on distances of the order .

3.3 Motion of Particle Under Random Excitation in Periodic Field

As follows from (3.17), the friction coefficient  affects only the rate of the processes and

can be eliminated by choosing a new time  = . The motion of a piece of polymer chain

modeled by a single sticking point  interacting with a neighboring polymer chain, is reduced

to the solution of the differential equation




+





µµ
−()


+ Λ

¶
 − 





¶
= 0 (3.18)

where we introduce the notation,

Λ = S  (3.19)
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Here Λ may be treated as a constant, because it does not change on the distances of the

order of the period . We are interested in the behavior of the solution at large  . This

is a homogenization problem for a parabolic equation with a fast oscillating coefficient. It

was studied by [Jikov et al., 1994] in Chapter 2 in the general multidimensional case. Their

approach applied to our one-dimensional case, allows an analytical treatment outlined in

Appendix B. Here, we summarize the results of this analysis. Note that motion of a particle

in a periodic field under random excitation has been studied previously in [Risken, 1989], but

the homogenization approach used here is simpler.

The particle will move with some average velocity  that depends on the external force Λ

acting on the chain. The equation that links  and Λ is




=

"
Λ

Λ − 1

¿
−

 
0

Φ(0)


0
À
−
¿Z 

0

−
 ̃
0

Φ(0)


0̃

À#−1
 (3.20)

where

Φ = −1





+ Λ  ≡ 


 (3.21)

and h·i means average over the period, i.e. the integral over  on [0 1]  The dependence of
 on Λ is affected by the energy of the weak link (), and temperature  . Note that  in

(3.20) is the particle velocity in ( ) variables. For  to be the velocity in physical ( )

variables, the factor  must be included in the left hand side of (3.20).

Dependence of drift velocity  on the force Λ can be studied numerically from (3.20). To

this end, we introduce the following dimensionless quantities:

external force: Λ̂ =
Λ



periodic force: Φ̂() =
Φ()


= − 1






+ Λ̂ (3.22)

velocity: ̂ =




and rewrite (3.20) in dimensionless form

̂ =

"
Λ̂

Λ̂ − 1
D
−

 
0
Φ̂(0)0

E
−
¿Z 

0

−
 ̃
0
Φ̂(0)0̃

À#−1
 (3.23)
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Figure 3.4: Dependence of dimensionless sticking point velocity on the dimen-

sionless external force for different values of the periodic potential amplitude

̂.

In Figs. 3.4 and 3.5, the dependence of the particle velocity on the applied external force

is shown for a periodic potential field of the form

1


( ̂) = ̂ sin2() (3.24)

If ̂ = 0, i.e. there are no chain interactions, then the sticking point velocity increases linearly

with force. The value of velocity is determined by the balance of friction force and the external

force. If ̂ 6= 0, then the sticking point spends some time in energy wells. Accordingly, its
velocity becomes smaller. The larger ̂, i.e. the larger the chain interaction, the larger the

velocity decrease. The velocity decrease is felt much stronger at small external forces. For

the external forces being large enough, the sticking point "flies" over the energy barriers and

its velocity approaches the limit values for ̂ = 0, Fig. 3.4.

It is not convenient to employ the dependence of velocity on the external force (3.23), and

we replace it by a sufficiently simple analytical relation. As such, we use the formula:

̂(Λ̂) = Λ̂+  ln

⎡⎣cosh
³
−Λ̂


´
cosh

³
+Λ̂


´
⎤⎦ = Ψ(Λ̂) (3.25)
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Figure 3.5: Given a large enough external force, the sticking point velocity

for large periodic potential amplitudes, e.g. ̂ = 20, approaches that of no

periodic potential, i.e. ̂ = 0.
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Figure 3.6: Sticking point velocity dependence on the external force (3.25)

for  = 1  = 4  = 2  = 1.
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Figure 3.7: We choose to do the best fit of (3.25) to the transistion zone and

ignore the differences at large values of force.

where     are the parameters. Function (3.25) is shown in Fig. 3.6 for  = 1  =

4  = 2  = 1. The required general shape of the curve of Fig. 3.6 is maintained, if , , ,

 obey the constraints (see Appendix C for details)

  0  ≥ 0  ≥ 0 0 ≤ 2 ≤  (3.26)

In further applications of (3.25) we need to capture correctly the behavior of the velocity-

force relationship for small velocities. Therefore we choose parameters     in (3.25) to

properly approximate the velocity-force dependence in the small velocity range, and do not

care of the proper capturing of the large force dependence. This is illustrated by Fig. 3.7

where, at a sufficiently high velocity, the exact dependence and our approximation begin to

diverge.

3.4 Dynamics of One Polymer Chain

Consider the polymer chain sketched in Fig. 3.1. Let segments  and  of the chain

contain 0 and 00 Kuhn segments, respectively. Thus  = 0 + 00 is the total number of

segments in the chain. We assume that the line 0 is parallel to  and denote the distance
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between these two lines by  Let the projection of  on line  be  Denote the distance

 by  We consider here the quadratic approximation for entropy (3.4). Entropy of

the chain  is the sum of entropies of sub-chains  and . Thus, in the quadratic

approximation, entropy of the chain is

S = −3
2

2 + 2

20
− 3
2

(− )2 + 2

200
 (3.27)

In equilibrium, the equilibrium value of  maximizes (3.27).

If we let end  be fixed and end  move, the distance  between  and  changes.

Presumably, the weak link at point  is strong enough not to respond immediately to the

movement of end . Then point  is no longer at equilibrium: there is a nonzero force acting

on . Point  then begins its slow motion to a new equilibrium position. As follows from

(3.19) and (3.27), the velocity of point  is a function of the force Λ

Λ = 
S

= − 3

20
+

3

200
(− )  (3.28)

Approximating the dependence of velocity on the force by (3.25), we obtain the differential

equation for  :




= Ψ ( (− )− )  (3.29)

where  and  are the constants linearly depending on temperature,

 =
3

200
  =

3

20
 (3.30)

At first glance, in the quadratic approximation  falls out from the dynamic equation.

One can expect however, that the energy landscape () depends on : with extension of

,  decreases and the interaction energy between the chains increases. We return to this

issue when developing a model of polymer foams.

One note is in order about energy relations. The original dynamical equation for motion

of one particle (3.9) yields the following energy equation
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( − S)


= −
µ




¶2
+ ̇()




 (3.31)

The first term in the right hand side of (3.31) is the negative viscous dissipation, the second

term is the work of internal forces related to conformations.

After averaging, the dynamical equation (3.9) transforms to (3.25), which, being resolved

with respect to , reads


S

= Ψ−1

µ








¶
 (3.32)

Here Ψ−1 is the inversion of the function Ψ. Hence, the averaged energy equation is


S

=




Ψ−1

µ








¶
 (3.33)

Comparing (3.31) and (3.33), we conclude that the right hand side of (3.33) has the

meaning of averaged negative right hand side of (3.31) (average of periodic function  is a

constant and does not contribute to (3.33)).

3.5 Thermodynamic Functions of an Ensemble of Cross-linked Polymer

Chains: Preliminary Reasoning

In this section, a simplified version of thermodynamic functions is constructed, and will

be put in a final form in Section 3.7. For a polymer, the total entropy is the sum of entropies

of all chains. Therefore, for each chain we need to include the kinematic variables   

0 00. In the spirit of Treloar statistical mechanics of rubbers [Flory, 1969, Flory, 1976,

Treloar, 1976, Treloar, 2009], we assume there are average values of  =  and  over all

chains. First, we set on average 0 = 00 = 2 Moreover, we take  to be the same for

all chains and equal to the average number of Kuhn segments over all chains. Later, we

generalize that construct. From (3.27), for a large ensemble of  chains with initial distances

between the ends ̊  = 1 

S̊ =− 3

2

"³
2 + (1− )2

´ X
=1

̊
2

 + 22

#
 (3.34)
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The symbol ·̊ over variables indicates their values at the initial instant.
If in (3.34) we set  = 12 and  = 0 we recover the classic Treloar formula for entropy

of an ensemble of polymer chains.

Denote by ̊
 the components of the vector connecting the ends of the 

th chain in the

undeformed state. Latin indices run through values 1, 2, 3. Let the macropolymer be

homogeneously deformed. We assume that each vector ̊
 is subject to an affine deformation

with distortion matrix  This means that the vector 


 connecting the ends of the th

polymer chain in the deformed state is




 = ̊

 (3.35)

with the same matrix  for all chains. Distortion  can be presented as a product of a

positive symmetric matrix  and an orthogonal matrix 

 (so called polar decomposition):

 = 

 (3.36)

Orthogonality of 
 means that





 = ̊ 



 ̊

 =   (3.37)

where ̊ is the metric tensor in the initial state, and 
 is Kronecker’s delta. We assume that

Lagrangian coordinates in the initial state are chosen to be Cartesian, and ̊ =  Due to

this fact, we do not distinguish further between upper and lower indices and just do summation

over repeated indices. However, we do distinguish between Lagrangian and Eulerian indices;

Lagrangian indices can only be summated with Lagrangian indices, and Eulerian indices

can only be summated with Eulerian indices (for details see [Berdichevsky, 1989] p.76). For

Lagrangian and Eulerian indices, we use the letters , , , and , ,  , respectively.

Equation (3.36) corresponds to superposition of two deformations: first 
 is rotated by

orthogonal transformation 
, and then elongations are made along the principle axes of
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tensor . The metric tensor of the deformed state , is the squared matrix  :

 = 

 =  (3.38)

Matrix  is also called the square root of  After rotation with orthogonal matrix 

, the

position of the weak link  on the th chain is 
̊


 The squared distance  is 2̊

̊



while the squared distance  becomes

³

 − 

̊



´³

 − 

̊



´
 (3.39)

Here and in (3.40), no summation is taken over . Taking into account (3.35) - (3.37), (3.39)

can be written as

¡
 − 



¢
̊


¡
 − 



¢
̊
 =

=
¡



 − 




¢
̊


³



 − 




´
̊
 =

= ( − )
³
 − 

´




̊


̊


 = (3.40)

= ( − )
³
 − 

´
̊̊


̊


 =

= ( − ) ( − ̊) ̊

̊




Since entropy of the chain ensemble is the sum of chain entropies, the entropy of the deformed

polymer is

S = − 3

2

"
2

X
=1

̊
̊


 + (


 − ) ( − ̊)

X
=1

̊
̊


 + 22

#
 (3.41)

We assume that the material is isotropic. Then the tensor
P

=1 ̊

̊


 must be proportional

to the metric tensor in the initial state ̊,

X
=1

̊
̊


 =  ̊ (3.42)
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Thus,

S = −2 | |
3

£
32 + ( − ̊) ( − ̊)

¤− ̃2 (3.43)

where  and ̃ are some constants, and | | the volume of the specimen. The factor 23 is
introduced to give the coefficient  the meaning of shear modulus for small deformations.

As follows from our derivation, the relation for entropy (3.41) is temperature independent.

Therefore, the coefficient  introduced by (3.41) must linearly depend on temperature

 =   (3.44)

Parameter  changes in compression/dilatation. It is known for polymers that the bulk

Young modulus is much larger than the shear modulus. Therefore in the following approxi-

mation, polymers can be assumed incompressible, and we drop  in (3.43). Finally, the total

entropy of the polymer is

S =− 2 | |
3

£
32 + ( − ̊) ( − ̊)

¤
 (3.45)

Denote by  and  the entropy and internal energy per unit volume, respectively. For

polymers,  is a function of temperature  only. Free energy per unit volume  , is a function

of temperature  , the metric tensor of the deformed state , and the internal parameter :

 (  ) = ( )−  ( ) = ( ) +
2

3

£
32 + ( − ̊) ( − ̊)

¤
 (3.46)

At equilibrium, the internal parameter  maximizes entropy and minimizes free energy.

It is convenient to write free energy in terms of strains . From the definition of the

strain tensor,

 =  − ̊ (3.47)

then

 (  ) = ( ) +
2

3

h
32 + 3 (1− )2 +  + 2 (1− ) 

i
 (3.48)



38

As follows from (3.48) for small deformations, the equilibrium value of  is 12. At this value

 (  12) = ( ) +
2

3
 [ + ] +  (3.49)

This is apparently different from the Treloar energy [Treloar, 1976, Treloar, 2009],

 ( ) = ( ) +


2
 = ( ) +



2
 =

= ( ) +


4

µ
 +

1

2


¶
+  (3.50)

As shown in Appendix A, the differences are only for finite deformations, and in the linear

approximation (3.49) and (3.50) are identical. The origin of the difference between energy

at equilibrium (3.48) and Treloar energy (3.50) will be explained in Section 3.7, where we

modify the derivation of (3.48) to get energy that is equal to Treloar energy at equilibrium.

3.6 Closed System of Equations

The equations of the model introduced in Section 3.5 can be closed in the following manner.

If  is fixed, and displacements of the boundary of a polymer specimen are prescribed, then

the equilibrium displacements inside the specimen minimize the total free energy

F =
Z


 (  )  (3.51)

on the set of all displacements obeying the incompressibility condition

det kk =  (3.52)

Including the constraint (3.52) in the functional (3.51) with some Lagrange multiplier , one

arrives at the equilibrium equations. These equations are written down in general nonlinear

case in [Berdichevsky, 1989] in Section 7.2. Since in further applications we use only linear

approximation, we do not reproduce these nonlinear equations here. The linear equation is

constructed as follows. The equations for the minimizer of (3.51) must be complemented by
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the evolution equation for . Consider the "force" acting on the internal parameter . By

definition, this is the derivative of free energy with respect to ,





= −


 (3.53)

We assume that the rate of the internal parameter , is linked to the force (3.53)

by an equation of the type (3.25). In the nonlinear case we can take into account that

 ' 
p
̊. Then the evolution equation has the form.





³

p
̊

´
= −Ψ

µ




¶
 (3.54)

Here Ψ is the function (3.25). The minus sign in (3.54) is necessary to satisfy the second law

of thermodynamics. This is explained in more detail in Section 3.8 for the similar situation

for polymer foams.

3.7 Thermodynamic Functions of an Ensemble of Cross-linked Polymer

Chains

Here we weaken an assumption of Section 3.5 that the parameter  is the same for all

chains as rendering oversimplified kinematics of deformation. Due to that assumption, the

corresponding continuum parameter was a scalar. Instead, we admit that the internal para-

meter describing the deviation from equilibrium is a tensor. Accordingly, the diagonal tensor

̊ that appears in (3.45), is replaced by a symmetric tensor  Then (3.45) should be

replaced by the relation

S = −

[ + ( − ) ( − )] | |  (3.55)

Here we introduce an additional phenomenological dimensionless constant  which accounts

for asymmetry of positions of sticking points. Apparently,   0.

First, let  = 1. Maximum entropy (3.55) over  is achieved at

 =
1

2
 (3.56)
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At this value of  entropy coincides with Treloar entropy:

S = − 

2
 | | = − 

2
 | |  (3.57)

In the general case  6= 1, and the equilibrium value of  is

 =
1

1 + 
 (3.58)

and for the equilibrium value of entropy we have

S =



 | |  (3.59)

where we denote by  the equilibrium value of the shear modulus,

 =


 + 1
 (3.60)

The constant  has the meaning of the current (nonequilibrium) shear modulus. Because

  0, the equilibrium value of the shear modulus is smaller than the current value.

Closing of the system of equations is done in the same way as in Section 3.6 with replace-

ment of free energy (3.51) by the free energy,

F =
Z


 ( + ( − )( − ))  (3.61)

The generalization of dynamic equations (3.54) can be done in several ways. For example,

one can assume, that the tensors  and  have the same principle axes and their

principle values,  and , are linked by the equations




= −Ψ

µ




¶
 (3.62)

The minus sign in (3.62) is necessary as in (3.54) to satisfy the second law of thermodynamics.

This is explained in more detail in Section 3.8 for a similar situation for polymer foams.
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3.8 Polymer Foams

The polymer models considered thus far are characterized by only one elastic characteris-

tic, shear modulus , and a dimensionless parameter  describing the deviation of the current

and equilibrium shear moduli. In contrast, polymer foams are compressible and possess an

additional characteristic, the bulk modulus . Compressibility is due to foam microgeome-

try, and elasticity of the microstructure. Bulk modulus  is some function of  and foam

microgeometry.

If the polymer foam was purely elastic and isotropic, then the material’s energy density

is a quadratic form of deformations,

 ( ) = ( ) +
1

2
 ()

2 +0
0
 (3.63)

with  and  being the elastic constants and ·0 marks the deviators, in particular 0 =
 − 1

3
. Further, we consider isothermal processes, and therefore drop ( ). Polymer

foams are not purely elastic and exhibit deviations of the current elastic moduli from the

equilibrium elastic moduli. Therefore, as in the previous consideration, we introduce internal

parameters  which reach their equilibrium values if strains or stresses are kept constant.

These equilibrium values minimize free energy. We take for free energy the expression which

is similar to (3.48):

 =
1

2

³
2 + ( − )

2
´
+

³
0

0
 +

¡
0 − 0

¢2´
 (3.64)

The material is characterized by four positive material parameters,  . We consider

sufficiently rigid foams which exhibit small deformations usually not exceeding 2 percent

strain. In this deformation range, nonlinear effects of the foam cell deformation, like micro-

buckling, formation of plastic hinges or micro-fracturing, can be ignored. Therefore, the

parameters  are associated only with the chain-slippage processes inside the polymer material

itself.
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From the definition of the stress tensor,

 =



 (3.65)

and thus the constitutive equations are

 =  ( − )  + 2
¡
0 − 0

¢
 (3.66)

There is a "second stress tensor," which describes the internal stresses caused by deviation

of parameters  from the equilibrium values,

 =



 (3.67)

At equilibrium,

 = 0 (3.68)

From (3.64),

 =  [(+ 1)  − ]  + 2
£
(1 + ) 0 − 0

¤
 (3.69)

Equilibrium values of  are designated by the symbol ·̌. They are found from (3.68) and

(3.69)

̌
0
 =

1

1 + 
0  ̌ =

1

1 + 
 (3.70)

For the equilibrium value of energy we get

 =
1

2


2
 +

0


0
  (3.71)

Here  and  are the equilibrium elastic moduli. They are linked to the instantaneous

moduli ,  by

 = 


+ 1
  = 



1 + 
 (3.72)

Equilibrium values of elastic moduli are always smaller than the instantaneous values since

  0,   0.



43

Sometimes it is convenient to express energy in terms of    and Lamé parameters.

The corresponding formula is

 =
1

2

h
̄2 + ( − )

2
i
+ 

£
 +

¡
 − 

¢ ¡
 − 

¢¤
(3.73)

where we introduce the notations

̄ =
 − 2

3


  =  − 2

3
  =  (3.74)

The system of equations is closed by inclusion of equilibrium equations,




= 0 (3.75)

and the evolution equation for the internal parameters 



= −Ψ

µ




¶
 (3.76)

where  and  are the eigenvalues of the tensors  and  respectively, and

principle axes of  and  are assumed to coincide.

Here we explain the thermodynamic reasoning for the negative sign in (3.54), (3.62) and

(3.76). From the first law of thermodynamics

 =  + () (3.77)

while the second law of thermodynamics reads

 = () + () () ≥ 0 (3.78)

It follows from (3.77) and (3.78) that free energy

 =  −  (3.79)
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obeys the Clausius-Duhem inequality for isothermal processes, i.e.  = ,

 −  ≤ 0 (3.80)

According to (3.73),  is a function of  and  ,

 =  (  ) (3.81)

and (3.80) becomes





 + 




 −  ≤ 0 (3.82)

Equation (3.82) holds true for all processes. If  depend on the current values of  and

 , but do not depend on the rates ̇ and ̇ , then (3.82) yields the constitutive equations

 = 



 (3.83)

Indeed, setting  = 0, we see that





 −  ≤ 0 (3.84)

for all  . The linear function of  can be non-positive for all  only if (3.83) holds.

From (3.82) and (3.83) it follows that the evolution must go in such a way that




 ≤ 0 (3.85)

There are many constitutive relations that obey (3.85). For example, one can assume that

the principal axes of  and  coincide, and in principal coordinates

11


= −Ψ
µ



11

¶


22


= −Ψ
µ



22

¶


33


= −Ψ
µ



33

¶





= 0 for  6=  (3.86)

In Chapter 4, the model described is applied to the prediction of deformations of poly-
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methacrylimide foam for simple tensile creep and stress relaxation tests. Additional model

predictions are explored for more complex loadings of polymethacrylimide foam in Chapter 5
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CHAPTER 4

Some Experimental Results

Polymer foam used as a structural element in composite structures is typically the weakest

component of such structures. Therefore understanding its response to mechanical loads is of

significant importance. This chapter reports the results of the experimental study of tensile

creep and stress relaxation in a polymethacrylimide (PMI) foam. The experimental results

are used to validate the analytical model proposed in Chapter 3. In the results that follow,

the model is shown to adequately capture the basic features of the foam material behavior.

Usually, three types of tests are employed to quantify rheologic behavior: creep, stress

relaxation, and periodic loading. Due to equipment limitations, only the first two tests are

conducted.

The chapter outline is as follows. In Section 4.1, the experimental observations are

summarized and issues related to measurements are discussed. Section 4.2 investigates the

manifestation of variability in the results due to material variability. Specifically, the effect

of material density on the elastic modulus is further investigated. Finally, validation of the

model from Chapter 3 as it applies to the axial loading of a foam beam, along with selection

of the model parameters to creep and stress relaxation tests is covered in Section 4.3.

4.1 Experimental Observations

PMI foams exhibit quite interesting rheological behavior, while some of its distinguished

signatures are characteristic to the behavior of other polymers. In this section, the results

of studies previously performed on 31 IG [Berdichevsky and Herman, 2011] are reevaluated

for insight into the proposed model. We report further creep and stress relaxation results

for Rohacell 31 IG which has a nominal density of 31 kg/m3, along with an elastic modulus

versus density study which includes 51 IG and 71 IG, with densities of 51 kg/m3 and 71

kg/m3 respectively.

All results reported herein are in engineering stress (applied force per initial cross-sectional

area of the test specimen) and engineering strain (change in gage length referenced to the
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Figure 4.1: Stress-strain plot for load/unload/recovery test cycle at a

crosshead speed of 1 mm/minute for four repeats on a single specimen.

original gage length). For all testing a gage length of 50 mm is used on a dog-bone specimen

with nominal rectangular cross section of 15 x 12 mm. All loading/unloading is done at a

crosshead speed of 1 mm/minute unless indicated otherwise.

Consider first loading and unloading under constant strain rate . Fig. 4.1 shows the

stress-strain curves for loading and unloading at a material effective strain rate ∼= 0.00001

s−1. It is seen that the material is not purely elastic. However, after unloading and holding

nearly zero stress, the material contracts to the original length during the recovery period, and

the stress-strain curve becomes "closed." For partial unloading, that is, unload at a constant

strain rate to some intermediate prescribed strain, and then hold the strain constant, it is

observed the stress starts building up. It appears the material intends to close the stress-

strain curve in the vertical direction, but instead, stress relaxation begins and the stress

starts decaying slowly, Fig. 4.2. The process of the short-term stress increase, followed by

the long-term stress relaxation is clearly seen in the time history plot, Fig. 4.3.

As is the case for other polymers, the "thickness" of the stress-strain curve depends on

the maximum loading stress or strain. Fig. 4.4 shows the load/unload/recovery curves of a

single specimen loaded to various maximum stress levels. Sufficient time was allowed between

tests for the material to return to its original macroscopic state. A higher loading stress, and
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Figure 4.2: Stress-strain behavior for load/partial-unload/hold test to an

intermediate strain level. Specimen is held at the intermediate strain for an

extended time.

Figure 4.3: Stress time history for load/partial-unload/hold test. At the par-

tial unload point, the strain is held constant at 0.00758. Note the increase, then

decrease of stresses after partial unloading, while the strain is held constant.
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Figure 4.4: Stess-strain behavior for load/unload/recovery test to various

strain levels for a single specimen. The "thickness" of the stress-strain curve

increases as the maximum loading strain increases.

conversely a higher loading strain, results in an increase in the difference between the loading

and unloading curves, i.e. increased hysteresis.

The stress and strain profiles for an instantaneous unloading test are shown in Fig. 4.5.

The specimen is loaded at a constant strain rate and when the desired strain is achieved, the

load is suddenly released. It is observed that while the stress level vanishes immediately and

completely, the strain takes some time to vanish. The slow strain decay causes the loop of

the corresponding stress-strain curve to close, Fig. 4.6.

Instantaneous unloading tests were run on different specimens at various maximum strain

loadings. From Fig. 4.7, it is observed two regimes occur during the unloaded phase. A

"fast" regime which occurs in the first 2-3 minutes, and then a "slow" regime ensues for the

remaining time period.

Creep tests were performed at various stress levels on different specimens. In Fig. 4.8,

a considerable amount of spread in the creep data is observed. Normalizing the data to the

initial loading strain , a more consistent performance is seen, Fig. 4.9.

Finally, a set of stress relaxation tests was run at various strain levels, Fig. 4.10. It is

noteworthy that after normalizing to the maximum stress level , the curves do not coincide,
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Figure 4.5: Strain (dashed line) and stress (solid line) time history for a

load/instantaneous-unload test. Strain does not instantaneously go to zero

with the instantaneous release of the load (stress).

Figure 4.6: Stress-strain curve for load/instantaneous-unload test. The gap

along the strain-axis between the loading (solid line) and unloading (long dash)

portions of the test, indicates a residual strain remains after the immediate

release of the load. As the strain decays (short dash), the stress-strain loop

closes.

hermanj
Rectangle
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Figure 4.7: Load/instantaneous-unload test showing the decay of strain over

time for various levels of maximum loading strain.

��������	
��

Figure 4.8: Creep tests performed at different levels of initial loading stress.
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Figure 4.9: Creep data of Fig. 4.8, normalized to the initial loading strain

level . Except for the test  = 0301, all tests are in close proximity once

normalized.

Fig. 4.11. Two interpretations are possible for the existence of bunches of curves in Figs. 4.9,

4.11: material variability or material nonlinearity. This issue is addressed in Section 4.2.

4.1.1 Technical details of experiments

A MTS 45G electromechanical load frame with a 500 N load cell is used for this work.

Pneumatic grips with diamond-tipped serrated faces are used to hold the specimen. Air

pressure is adjusted to 41
2
psi to maintain sufficient grip forces, while minimizing specimen

damage. Pneumatic grips provide a constant clamp force for the test duration as air pressure

controls the clamping mechanism. Separate valves for the upper and lower grips allow

instantaneous unloading tests to be performed. A knife-edge extensometer with a 50 mm

gage length is used.

Clamping of the material is critical to minimize bending of the specimen. Small foam

blocks help align the specimen and the grip faces. This allows the grips to contact the

specimen squarely, minimizing extraneous forces in the test train.

A knife-edge extensometer can easily damage the surface of the specimen. Excessive

attachment forces cause the knife edges to sink into the material. Rubber bands used to
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������

Figure 4.10: Stress relaxation tests performed at different levels of maximum

strain.

������

Figure 4.11: Stress relaxation time history of Fig. 4.10, normalized to the

initial stress level . Unlike the normalized creep tests, a considerable spread

exists in the normalized stress relaxation data as time increases.
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Figure 4.12: Typical test setup of the foam specimen showing the exten-

someter and clamp arrangments. Not readily visible are plastic protectors

and double-sided tape used to prevent stress risers in the specimen.

attach the extensometer easily cause notches to be formed in the specimen edges. Damage

of this type contributes to stress risers, which can lead to erroneous test results. Several

methods are employed to minimize specimen damage. Two plastic sleeves placed under the

rubber band contact area protect the specimen edges. Small pieces of double-sided cellophane

tape placed under the knife edges help prevent damage, and provide a secondary method to

prevent extensometer slippage. Figure 4.12 shows a typical test setup.

Measurement Variability. A measurement variability study was performed on the mi-

crometers, load cell, and extensometer. Six sigma (i.e. six standard deviations) analysis

determined the maximum error in the cross-sectional area measurement to be ± 0.8%. The
maximum error of the load cell based on calibration documents is ± 1.0%. Thus, the max-

imum measurement error for the stress calculation is ± 1.8%. Based on the extensometer

calibration, the maximum error for strain is ± 0.5%. To investigate variability induced

by equipment drift, tests were performed on the machine crosshead position, load cell, and

extensometer over a 24 h period. The results show drift to be insignificant, as our creep

and stress relaxation tests are typically less than 8 h total duration. To verify the overall

machine repeatability, a linear steel spring with stiffness similar to the elastic modulus of 31

IG was tested. Similar stress levels and hold times as used for material tests were used. As

expected, the load/hold/unload profile produces a straight line in the stress-strain plot where

no hysteresis is observed.
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Figure 4.13: Typical stress relaxation data for multiple specimens of Rohacell

31IG.

4.2 Discussion

4.2.1 Material Variability

A set of stress relaxation tests of PMI 31 IG, all cut from the same sheet and all loaded

to the same strain level, is shown in Fig. 4.13. The specimen to specimen variation in stress

levels at  = 12 000 s is ± 8%. Figure 4.14 is a stress-strain plot of the same data as Fig.

4.13. Variation is also observed in the elastic modulus value between the specimens, Fig.

4.14.

Creep tests were run on new specimens of PMI 31 IG, also cut from the same sheet as

the stress relaxation material. Results are shown in Fig. 4.15. The specimen to specimen

variation in the strain levels at  = 12 000 s is ± 5%. Figure 4.16 is a stress-strain plot of the
same tests as Fig. 4.15.

As a validation of the observed variability, David Ostberg from US Army TARDEC lab-

oratory in Warren, Michigan performed confirmation tests on the same batch of material.

Every reasonable attempt was made to duplicate the test procedures and settings of the

primary lab. The amount of material variability seen in the second laboratory data was con-

sistent with the testing from the primary laboratory. Because the creep performance and the
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Figure 4.14: Stress-strain plots of the same Rohacell 31 IG specimens of Fig.

4.13.

Figure 4.15: Dispersion of strain time history data for creep tests of four

specimens of Rohacell 31 IG loaded to identical conditions.
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Figure 4.16: Dispersion of stress-strain data for the four specimens of Fig.

4.15.

test results’ variability are consistent, the significant variability in the results is likely due to

variability in the material properties.

4.2.2 Elastic Modulus

Another manifestation of material variability is the variance of elastic moduli for foams of

the same industrial grade, i.e. foams with the same mass density. For this study, foams with

nominal densities of 31 kg/m3, 51 kg/m3 and 71 kg/m3 were tested. Results are shown in

Fig. 4.17. All specimens with density 31 kg/m3 were cut from the same sheet, as were the

specimens with 51 kg/m3 , while the specimens with density 71 kg/m3 were cut from various

sheets. As expected, the latter showed the greatest spread in the results.

It is known that the elastic moduli of polymer foams are strongly dependent on the foam

density. Most foam properties follow the relationship [Zenkert et al., 2006]:

̄ = ̄ (4.1)

where ̄ is a mechanical property of the foam normalized with its value for the fully dense

material, and ̄ is the relative density defined as the ratio of the foam density to the solid
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Figure 4.17: Dependence of the elastic modulus of Evonik Rohacell IG on

material density . Solid line is the power law  = 01815

�
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�

Figure 4.18: Notation used in Section 4.3.

material density. In our case, PMI is not available in the non-foamed state, which results in

"messier" units for (4.1). In our non-normalized case, the elastic modulus relates to foam

density with  = 15 and  = 018 MPa/(kg/m3)32.

4.3 Modeling the Extension of a Foam Beam

To employ the model developed in Chapter 3, first the problem of a polymer foam beam

extension is solved. The beam is deformed by a force applied at one end, while the other end

is clamped, Fig. 4.18.

Denote by 1 the axial coordinate. Projections of tensors on the other two coordinates are
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marked by Greek indices,   = 2 3; small Latin indices    run through values 1 2 3

and summation over repeated indices is implied.

The free energy (3.73) is a function of strains 11 1  and internal parameters

11 1 and :

 =
1

2

h
̄2 + (11 − 11)

2 + 2 (11 − 11) ( − ) + ( − )
2
i

+

+
h¡
 − 

¢ ¡
 − 

¢
+ 2 (1 − 1) (1 − 1) + (11 − 11)

2
i
 (4.2)

In this problem, stresses  and 1 vanish. This is equivalent to minimization of (4.2) over

1 and . Minimizing over 1 yields 1 = 1, while minimizing over  results in the

equation

 −  = − (11 − 11)   (4.3)

where

 ≡ 

+ 
 (4.4)

Substituting (4.3) into (4.2) provides free energy as a function of 11 and  :

 =


2
(11 − 11)

2 +
1

2
̄2 +   (4.5)

where

̄ ≡ +
2

3
(− )  (4.6)

A solution is sought with 22 = 33, and 12 = 23 = 31 = 0. Under such a setting, free

energy (4.5) is a function of 11 11 and 22 only:

 =


2
(1 − 1)

2 +
1

2

¡
̄+ 2

¢
21 + 2̄12 + 2

¡
̄+ 

¢
22 (4.7)

where the notation 11 = 1 22 = 2 11 = 1 22 = 2 is employed.
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The "second" stress tensor components associated with the polymer chain slippage are:

1 =


1
=  (1 − 1) + (̄+ 2)1 + 2̄2 (4.8)

2 =


2
= 2̄1 + 4(̄+ )2 (4.9)

Both parameters 1 and 2 evolve during deformation. It is useful to know their equilibrium

values. Minimization of (4.7) with respect to 2 determines the equilibrium value of 2:

̌2 = −
̄

2
¡
̄+ 

¢1 (4.10)

 then depends on the current value of 1 only. We have

min
2

 =


2
(1 − 1)

2 +


2
21 (4.11)

where we introduce the notation

 = 
3̄+ 2

̄+ 
 (4.12)

Further minimization of (4.11) over 1 yields:

̌1 =


 + 
1 (4.13)

so at equilibrium we have

min
1 2

 =
1

2

µ


 + 

¶
21 (4.14)

At equilibrium, elastic energy is a quadratic function of 1:

 =
1

2


2
1 (4.15)

The coefficient in (4.15) has the meaning of the equilibrium Young’s modulus. Therefore, we

get
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 =


 + 
 (4.16)

Apparently, the equilibrium Young’s modulus  is smaller than the current Young’s modulus

.

To close the system of equations, we define the evolution to equilibrium by the equations:

1


= −Ψ(1) 2


= −Ψ(2) (4.17)

where the function Ψ(Λ) was introduced in Chapter 3, specifically (3.25):

Ψ(Λ) = Λ+  ln

"
cosh

¡
−Λ


¢
cosh

¡
+Λ


¢#  (4.18)

Equations (4.17), (4.18) determine the time-dependent behavior of the material. They

contain the material parameters    .

4.3.1 Minimizing Material Variability

In order to negate as much material variability as possible, only those specimens whose

elastic moduli were "nearly" the same are used for the creep and stress relaxation fittings,

Figs. 4.19, 4.21. The stress-strain curves in Figs. 4.20, 4.22 indicate that the elastic moduli

are nearly the same for the four specimens. Exact values are 36.1, 35.7, 37.0, 37.4 MPa.

Of note, the dip in the stress-strain plot of Fig. 4.22 is not solely the result of the

material’s response. Rather, the root cause of the dip is the MTS controller’s inability to

transition quickly enough between the loading and hold portion of the test cycle, compared

to the rapidly changing material response during the same period.

Stress Relaxation. For a stress relaxation test, the specimen is elongated a prescribed

amount, then held at constant strain for a specified time period. The strain application occurs

over a relatively short period of time compared to the entire test duration. The material’s

stress response is measured during the entire test.

Creep. For a creep test, the specimen is loaded (i.e. stressed) a prescribed amount, then

held at the constant stress for a specified time period. The stress loading application occurs
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Figure 4.19: Stress relaxation of two specimens of 31 IG which have nearly

the same elastic moduli.
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Figure 4.20: Stress-strain plot of the data from Fig. 4.19. The elastic moduli

of the two specimens are 35.7 and 36.1 MPa.
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Figure 4.21: Creep tests of two specimens of 31 IG foam. These specimens

have nearly the same elastic moduli as those in Fig. 4.19.
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Figure 4.22: Stress-strain plot of the creep data from Fig. 4.21. The elastic

moduli of the two specimens are 37.0 and 37.4 MPa.
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Figure 4.23: Typical strain loading profile for a stress relaxation test. The

model uses an idealized strain profile which closely approximates the machine

test profile. The dashed (red) line is the experiment creep data. The solid

(blue) line is the model prescribed loading. A creep test prescribes a similarly

shaped stress profile.

Figure 4.24: Model prediction (solid blue line) comparison to experiment

data (dashed red line) for a stress relaxation test performed at a strain of

0.0115.
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Figure 4.25: Model prediction (solid blue line) comparison to experiment

data (dashed red line) for a stress relaxation test performed at a strain of

0.0174.

over a short, finite time interval. The material’s strain response is measured during the entire

test.

4.3.2 Material Parameters

Material Parameters    . Based on testing and the results of Figs. 4.20, 4.22,

the values of material parameters    for Rohacell 31 IG are

 = 366 MPa  = 433 MPa  = 13 MPa. (4.19)

The material parameters , ,  are determined/estimated based on long-term creep and

stress relaxation tests. Based on these tests,  ≈ 270 MPa. Equation (4.16) establishes

the link between  and  with the parameter . In this case,  = 103 MPa. From

(4.6) and (4.12), there is a link between , . We estimate the value  = 5, which yields

 = 276.

Material Parameters    . Using iterative fittings, the following dynamic parameters
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Figure 4.26: Model prediction (solid blue line) comparison to the experiment

data (dashed red line) for a creep test performed at a stress of 0.404 MPa.

Figure 4.27: Model prediction (solid blue line) comparison to the experiment

data (dashed red line) for a creep test performed at a stress of 0.607 MPa.
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Figure 4.28: Dependence of sticking point velocity 1 on the correspond-

ing thermodynamic force in stress relaxation. This differs from the appearance

of Fig. 3.6 because parameters   are not constant values, but rather are

functions of the lateral strain 2, (4.20).

are determined for (4.15);

 = 0078 + 215022  = 102 + 25 00022  = 2  = 10 000 (4.20)

In order to satisfactorily fit all four tests, the parameters   are found to be functions

of the transverse strain 2. Intuitively this seems reasonable. As the beam is extended,

the specimen contracts in 2 placing the polymer chains in closer proximity to each other.

Thus, the chain interactions becoming stronger the more closely packed they become. This is

observed as a change in the velocity profile at the higher loading/unloading levels and results

in the creation of the loop in Fig. 4.28.

4.4 Summary

It has been shown that the model proposed in Chapter 3 is capable of capturing the

creep and stress relaxation behavior of a polymethacrylimide foam. It is essential that

the values of the material parameters found from creep experiments allow us to properly
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predict stress relaxations and vice versa. This appears to be true for the case here. The

success in accomplishing this task indicates that the micro-mechanical reasoning used in the

construction of the model appears sound and may prove meaningful in gathering further

insight into polymer behavior. The model behavior under more complex loading cycles is

further explored in Chapter 5.
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CHAPTER 5

Closing the Stress-Strain Loop

In Section 4.3, the model does a good job of predicting the material behavior for typ-

ical stress relaxation and creep tests. However, a valid model should comprehend many

material behaviors, some of which are shown in Sections 4.1 and 4.2. A test in which

other models fall short is the complex load/hold/unload/recovery cycle, which is covered

for the classic models in Section 2.5. In this chapter, a review of the model behavior for

both a load/hold/unload/recovery cycle for a stress relaxation test and a creep test are cov-

ered. A load/partial-unload/hold test setup in the form of a stress relaxation test, and a

load/unload/recovery test setup in the form of a creep test, are qualitatively analyzed against

the experiment data. Finally, a load/instantaneous-unload test is qualitatively evaluated

against the experiments.

5.1 Modeling

5.1.1 Load/Hold/Unload/Recovery

Typical stress relaxation and creep tests involve loading the material to either a prescribed

strain or stress, then holding the load for a period of time. In such a test, the sticking point

parameter 1, spends its time in the first quadrant of the velocity-force plot, Fig. 4.28. An

important piece of polymer chain behavior can be observed with the addition of an unload,

and recovery phase (i.e. a second hold phase) to the tests. For materials with memory, this

addition causes the secondary internal force parameter 1 to change signs, and the sticking

point to change direction. This has the effect of moving the sticking point behavior into

the third quadrant of the velocity-force plot as the secondary internal force parameter and

sticking point velocity become negative. Typical stress-strain plots for stress relaxation and

creep of 31 IG material for a complete load/hold/unload/recovery cycle are observed in Figs.

4.14 and 4.16. Upon removal of the strain or stress as appropriate, given a sufficient recovery

time the material will return essentially to its starting position on the stress-strain plot, Figs.

4.14, 4.16. We refer to this as "closing the (stress-strain) loop." Due to test capabilities and
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variability, the statement, "closing the loop" is a qualitative statement as opposed to an exact

statement. A significant validation of the model then is, it must be able to close the loop

of this entire complex loading cycle. To this end, the green dash specimen from Fig. 4.14

and blue dash specimen from Fig. 4.16 are selected for further analysis. These specimens

have nearly the same elastic moduli, 28.7 MPa and 29.5 MPa respectively. Since these values

differ significantly from those used in the analysis of Section 4.3, a complete refitting of the

data is warranted. As in previous tests/analyses, the material is loaded to the final strain or

stress (i.e. for stress relaxation or creep test), held for 12,000 s, unloaded at the same rate,

and allowed to recover under a minimal load of 5 N. The 5 N load maintained during the

recovery eliminates slack in the test train, improving test repeatability.

Material Parameters    . Based on results of Figs. 4.14, 4.16, and engineering

judgement, the values of material parameters    for this modeling of Rohacell 31 IG are

 = 289 MPa  = 366 MPa  = 104 MPa. (5.1)

From other testing,  ≈ 236 MPa, and the values of the material parameters , ,  are
estimated to be

 = 5  = 441  = 129 MPa. (5.2)

Material Parameters    . Using trial and error, the following dynamic parameters

for the new specimens are;

 = 0082  = 099  = 2  = 10 000 (5.3)

Of significance, parameters   need only be constants in order to adequately fit the data, and

not functions of the transverse strain 2 as in (4.20). This is likely due to the small range

of loading used for these specimens, along with fitting to a limited number of specimens.

Figs. 5.1 and 5.2 show the complete experiment (red dash line) time history for the stress

relaxation and creep test respectively, along with model predictions (solid blue line). For a

given specimen, closer correlation of the model to experiment is possible, but here we reinforce
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Figure 5.1: Stress time history where the final strain at loading is 0.0114 and

held for 12,000 s. Final strain at unloading is 0.0021 and held for 40,000 s.

Dashed red line is the experiment data, solid blue line is the model prediction.

that only one set of parameters is needed to adequately predict both material stress relaxation

and creep.

5.1.2 Load/Partial-Unload/Hold

The load/partial-unload/hold test, Figs. 4.2, 4.3, is evaluated against the model pre-

dictions. We investigate the choice of parameters (5.3) on their ability to display similar

behavior to the experiments. Only a qualitative comparison is made instead of another

model fitting based solely on the experimental data of Figs. 4.2, 4.3. In Fig. 5.6, the

model is loaded to a strain of 0.0175, then immediately unloaded to 50 percent of that value,

0.00875. During the hold time, the change in stress response is not readily apparent in Fig.

5.6; Fig. 5.7 magnifies this range. Fig. 5.7 differs somewhat from Fig. 4.3, in that once

the hold period is reached, the model predicts an immediate stress relaxation while for the

experiment, the stress increases briefly before starting to decrease. As variability has been

a constant distraction with the 31 IG material, the exact differences between the model and

experiments may very well be explained by the model parameters being fitted to different

specimens which behave differently. Further investigations are performed to determine if the
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Figure 5.2: Strain time history where the final stress at loading is 0.27 MPa

and held for 12,000 s. Final stress at unloading is 0.025 MPa and held for

40,000 s. Dashed red line is the experiment data, solid blue line is the model

prediction.

Figure 5.3: Stress-strain plot of the data from Fig. 5.1, comparing the model

(solid blue line) to the experiment (dashed red line). During the recovery

phase, the strain is held constant, and the material moves to close the loop

vertically.
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Figure 5.4: Stress-strain plot of the data of Fig. 5.2 comparing the model

(solid blue line) to the experiment (dashed red line). During the recovery

phase, the stress is held constant, and the material moves to close the loop

horizontally.
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d 1 dt

Figure 5.5: Velocity-force relationship for the loading cycle of Fig. 5.4. The

plot is anti-symmetric, with the sticking point spending time in the first and

third quadrants due to the addition of unload and recovery phases to the

standard creep test.
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Figure 5.6: Stress time history for load/partial-unload/hold test where the

strain at unload is approximately 50 percent of the maximum strain loading.

This is the same load cycle as used for Fig. 4.2.

increase/decrease phenomenon is captured by the model at some partial-unloading point.

Indeed, the model captures the observed material behavior when approximately 80 per-

cent unloaded, Figs. 5.9, 5.10, 5.11. Though model changes during the hold time are not

as apparent as the experiment, the increase then decrease in the stress response is clearly

observed.

5.1.3 Load/Unload/Recovery

Though simple in its execution, the load/unload/recovery test poses unique modeling

challenges. This cycle results in small amounts of polymer chain slippage compared to tests of

Sections 4.3 and 5.1. As such, the subtleties of the model predictions, or lack thereof, become

more apparent. Because of variability in the elastic moduli, only qualitative comparisons of

the experimental data of Fig. 4.4 with the fitted model parameters of Section 5.1 are made.

For clarity, the 0.6, 0.4 and 0.2 MPa test cycles are isolated and shown on LHS of Fig. 5.12 .

The closing of the stress-strain loops is clearly observed in the experiment data. With the

stress returned to (nearly) zero, it takes approximately 3000 s for the strain to return to zero.

The model also closes the loop, RHS of Fig. 5.12, though it requires approximately 10,000 s

to do so. Some general shape differences are observed between the experiments and model

predictions, the most noticeable being the barrel shape of the experimental data during the
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Figure 5.7: Magnification of the hold period of Fig. 5.6 showing immediate

stress relaxation of the model once the hold period is started. The dashed hor-

izontal line is used as a reference to accentuate the material behavior. Contrast

this with Fig. 4.3, where there is an increase then decrease in the stress.

Figure 5.8: Unlike Fig. 4.2, here no increase is noted on the stress-strain plot

during the hold period.
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Figure 5.9: Stress time history for load/partial-unload/hold test where the

strain at unload is approximately 20 percent of the maximum loading strain.

Figure 5.10: Magnification of the hold period of Fig. 5.9 showing the im-

mediate stress increase and then decrease. The dashed horizontal line is used

as a reference to accentuate the material behavior. At the greater unloading

percentage, the model shows similar behavior as Fig. 4.3.
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Figure 5.11: Unlike Fig. 5.8, the subtle increase then decrease in stress is

noted on the stress-strain plot during the strain hold period. Qualitatively,

this behavior is similar to Fig. 4.2.

unload phase versus the more linear response of the model. This results in a wider loop for

the model at the unloaded portion, potentially requiring more time to "close." Regardless,

the model qualitatively responds in a manner consistent with the experiments.

Insight into the material internal response during the 0.6 MPa load/unload/recovery cycle

of Fig. 5.12 is further investigated in Fig. 5.13. Being stress controlled, that is the loading

stress is prescribed, the stress profile (thick blue line) is straight and consistent during the

various phases of load/unload/recovery. In this test, the sticking point position (long green

dash) has its effect on the strain response. Past the time of stress reversal at  = 150 s, the

sticking point continues in the same direction as it was during loading. In fact, the secondary

internal force (short yellow dash) which affects the movement of the sticking point, does not

reverse until  ≈ 225 s. At  ≈ 225 s, the stress is approximately 50 percent unloaded.

Further insight into the behavior of the sticking point during the unloading is gained by

observing the sticking point velocity (thin orange line). The sticking point velocity changes

signs at  ≈ 225 s. After  ≈ 225 s, the sticking point starts operating in the third quadrant
of the velocity-force plot. From this point on, the velocity and force remain negative until the
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Figure 5.12: Load cycles of 0.6, 0.4, 0.2 MPa (LHS) isolated from Fig. 4.4,

which more clearly showes each load/unload/recovery cycle of a single specimen

of 31 IG. Closing of the stress-strain loop is observed in all experiment data.

Qualitatively the model (RHS) predicts similar performance.
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Figure 5.13: Model load/unload/recovery time history of the 0.6 MPa load,

Fig. 5.12, for prescribed loading stress (thick blue line), secondary internal

force (short yellow dash), sticking point velocity (thin orange), and sticking

point position (long green dash). Values are scaled to fit the same y-axis.

sticking point parameter reaches its equilibrium position and the stress-strain loop is closed,

Fig. 5.14.

5.1.4 Load/Instantaneous-Unload

An unconventional test performed as part of this work is the load/instantaneous-unload

test, Figs. 4.5, 4.6, 4.7. It is here that the premise of a fast and slow regimes of polymer chain

motion was theorized. It is fitting then to close this chapter with an analysis of the model

predictions against the load/instantaneous-unload experiment data. Because of the "violent"

nature of this test, i.e. the instantaneous releasing of the load energy, a significant amount of

variability is observed in the unloading results. This is likely due to the use of a mechanical

extensometer and the amount of energy released when the lower specimen clamp is opened.

However, general trends and material performance can still be drawn As in all analyses in

this chapter, the parameters of (5.3) are used for a qualitative evaluation of the model against

experiments as opposed to an individual fitting of the model to each experiment run.

Fig. 5.15 shows the first 500 s of the test. Total model run time is 10,000 s. The material
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Figure 5.14: Fig. 5.13 time histories for  = 20 000 s. All responses are

scaled exactly as Fig. 5.13. By  = 10 000 s, qualitatively the material closes

the loop as observed in Fig. 5.12, though here the material has not quite yet

reached its "no-load" equilibrium postition.

is loaded to  = 06 MPa. At  = 150 s, the stress is returned to zero in one second, which

is consistent with the experiment result. From  = 151 s,  = 0 and the material is allowed

to recover. The strain time history, Fig. 5.16, demonstrates the results of the microscopic

reasoning used in the development of the model. The two regimes of polymer chain motion

are clearly observed and are consistent with the experiments of Fig. 4.7. In the fast regime,

i.e. the nearly vertical line of Fig. 5.16, the secondary internal force is high enough such that

polymer chains move freely past each other. In the slow regime, i.e. the nearly horizontal line,

the polymer chains are strongly interacting with their neighbors, slowing the material’s return

to its macroscopic pretest state. For the load/instantaneous-unload cycle, the stress-strain

plot of Fig. 5.17 performs in a manner similar to the experiment results of Fig. 4.6.

Though the stress-strain plot of Fig. 5.17 appears similar to the 0.6 MPa load/unload

stress-strain plot of Fig. 3.31, a significant difference exists in the velocity-force plot of the

two tests, Fig. 5.18. Quadrant one is identical, as the test loading parameters are identical

for both tests. The instantaneous unloading however causes the velocity of the sticking point

parameter to become quite high, progressing well into the third quadrant compared to the 1

mm/minute unloading of the "traditional" load/unload profile.
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Figure 5.15: Model stress time history for the load/instantaneous-unload

test, similar to Fig. 4.5. Removal of the load in one second creates a vertical

drop in the loading profile, similar to the experiments.

Figure 5.16: Strain time history of the loading profile of Fig. 5.15. Here the

fast regime and slow regime of chain motion are observed, similar to Fig. 4.7.
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Figure 5.17: Model prediction for the stress-strain plot for the

load/instantaneoous-unload test. Qualitatively the model reacts in a simi-

lar fashion as the experiment data, Fig. 4.6.

The instantaneous-unload test adds additional information about the material perfor-

mance. Further work will be needed to improve physical test repeatability in order to

provide better correlation of the model and tests, and make the results more meaningful.

5.2 Summary

Not only is the model proposed in Chapter 3 capable of predicting the stress relaxation

and creep performance of the foam material, it is also capable of capturing nuances of mate-

rial behavior during various loading, unloading, and recovery cycles. Though in some cases

only qualitative comparisons are made, the model behavior is consistent with the behaviors

observed in the experiments. Successful prediction of the material behavior helps to further

validate the micro-mechanical reasoning used in the model construction. The primary dif-

ferences between model predictions and experiments exist in the unload portion of the test

cycles. Additional investigations into exact causes of these differences may allow further in-

sight into polymer chain motion and interactions. Areas of future exploration will be touched
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Figure 5.18: Velocity-force plot comparison for load/unload (LHS) and

load/instantaneous-unload (RHS) test cycles.

on in Section 6.1.
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CHAPTER 6

Conclusions

A model has been proposed to predict the behavior of cross-linked polymers based on the

theorized micromechanics of polymer chain interactions under loading. It predicts all the

salient features of 31 IG foam when subjected to typical stress relaxation and creep tests.

Additionally, it captures the material response during subsequent periods of recovery after

stress relaxation and creep, as well as more subtle responses during load/partial-unload/hold,

simple load/unload/recovery, and load/instantaneous-unload tests.

In the stationary state, weak van der Waals bonds form between the polymer chains.

Under the application of a sufficiently large load, these weak inter-chain forces are easily

broken and chain sliding begins. As the chains move past each other, these bonds are

continually broken and reformed. Given tensile forces are not too high, the stronger covalent

cross-link bonds remain intact and provide the material with memory. This is the impetus

for the material’s return to its macroscopic preloaded condition. The model described in this

work simulates the chain behavior and interaction as a "sticking point" on the chain moving

through a periodic energy potential. At "favorable" positions, the sticking point rests in an

energy well, resisting further motion. As the force on the chain is increased, the sticking

point slowly moves from one well, only to be captured by another. This is the slow regime

of chain motion. With a sufficiently large force, the sticking point moves through or "skips"

through the wells unencumbered. This is the fast regime of chain motion. The complete

behavior is approximated by the solution of the Fokker-Planck equation for a particle moving

through a periodic potential. The movement of the particle approximates the evolution of

the polymer chain to its equilibrium position.

The complete model is based on thermodynamic reasoning. The free energy of the

polymer chain is developed as a function of the external applied strain and an internal sticking-

point parameter. The material model has two key features. First is the migration of the

polymer to a long-term equilibrium condition as described by two material parameters  and

. Second, the driving force behind this migration is due to the change in entropy of the
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polymer chains. The migration rate of the polymer to the equilibrium condition is based on

the solution to the Fokker-Planck equation of a particle moving through a periodic potential.

The periodic potential approximates chain-to-chain interactions. For ease of use, the exact

solution of the Fokker-Planck equation is approximated by a simple analytical function which

introduces four material parameters , , ,  which tune the model’s dynamic response. The

choice of parameters , , , , ,  is based on a combination of testing and iterative fittings.

The research contained herein, validates the model through the use of tensile stress re-

laxation and creep tests on specimens of Rohacell 31 IG thermoset foam. For such tests,

the specimen is strained/stressed a prescribed amount using a MTS tensile machine. The

material response is measured using a mechanical extensometer and load cell. Additional

insight into the material behavior is realized with the addition of an unload and recovery

phases to the traditional stress relaxation and creep tests. It is during the recovery phase

where the material’s memory is apparent, as it returns to its original macroscopic state.

Load/partial-unload/hold, load/unload/recovery, and load/instantaneous-unload tests help

to further validate the nuances of the model.

The successful completion of this phase of research lends validity to the theorized interac-

tion of polymer chains undergoing tensile loading. Initial validation of the model offers the

beginnings to potential new areas of understanding into the physics of polymer chain behavior

and the resulting polymer macroscopic material response.

6.1 Areas for Further Exploration

As this research unfolded, side-branches of information presented themselves for potential

future exploration. Following are "thought starters" for areas which may merit further

investigation for additional model insights and enhancements.

A significant challenge in this research has been due to the choice of 31 IG foam material.

Considerable emphasis was needed to minimize variability in the testing, both equipment

and material. However, material variability remained a significant issue throughout this

research. It made fitting a wide-reaching, consistent model challenging. To further refine

the microscopic reasoning behind polymer chain motion, using a more homogeneous polymer
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material appears to be a next logical step. Such a material may make it easier to consistently

observe and subsequently model the nuances of polymer chain motion.

Due to creep and relaxation, polymer properties such as elastic modulus can be sensitive

to test speed. All testing reported in this research was performed at load/unload speeds of

1 mm/minute (except instantaneous unload). Other speeds tested, but not reported herein,

appear to indicate an influence on the elastic modulus. However, due to the amount of vari-

ability observed at 1 mm/minute loading rates, further test speed tests were not undertaken.

Loading speed effects on stress relaxation and creep were not evaluated, but some influence

is expected.

Adding the unload and recovery portions to the test cycles provided extremely useful in-

formation in model fitting. It is suggested future testing include this modification, regardless

of the initial test profile. Performing more load/partial-unload/hold tests may help to more

precisely determine the sticking point reversal during unloading. This may lend insight into

the barrel shape of the unload portion of the stress-strain plots. Because of this shape, it

has been theorized that the assumed antisymmetry of the velocity-force profile may not be

100 percent valid.

A potential model modification being considered is a nonsymmetrical velocity-force profile,

Fig. 6.1. This plot is not antisymmetric as the velocity-force relationship of Fig. 3.6. Rather,

there is a bias towards the positive -axis. If necessary, this modification would allow further

tailoring of the model when the secondary internal force 1  0. Biased parameters would

facilitate the model’s return to the zero-zero state on the stress-strain plot once the stress is

completely removed. Such a change implies polymer chains interact differently with their

neighbors, dependent on the direction of movement of the chains. Initial modeling in this

area shows nonsymmetric parameters have some effect on the curvature of the unloading

portion of the stress-strain plot, though not to the extent observed experimentally.

Finally, the analytical function used to approximate the velocity-force relationship was

chosen to provide a close approximation to the exact solution of the Fokker-Planck equation

in the small velocity range, while providing sufficient flexibility for fitting. During model

fittings, some interactions of parameters , , , , seemed to exist. A potential exists

then to describe some of the parameters as a function of the others, thus simplifying the
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Figure 6.1: Example of a nonsymmetric velocity-force plot in which the values

of parameters ,  change depending on the sign of the "second" internal force.

model. While the analytical function used provides a significant flexibility to tailor the

model performance, other relationships could be chosen, such as a power law, to provide an

acceptable approximation for the solution of the Fokker-Planck equation for a particle in a

periodic potential.

6.2 Final Comments

In closing, the quote from E. E. Cummings, "Always the beautiful answer who asks a

more beautiful question." seems apropos. While this research begins to address some key

questions concerning the micromechanic behavior of polymer chains, it also opens up a host

of other questions to be pursued.
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APPENDIX A

Linearization of Free Energy

Let us find the linearized version of free energy (3.49) for the case of small deformation of

the order  Due to the incompressibility condition, the linear term  in (3.49) is actually

of the order 2 To see that, we write the incompressibility condition in the principle axes of

the strain tensor,

(1 + 1) (1 + 2) (1 + 3) = 1 (A.1)

Keeping the terms up to the second order, we find

1 + 2 + 3 = − (12 + 23 + 31)  (A.2)

The RHS of (A.2) can be written in invariant form using the identity

12 + 23 + 31 =
1

2

³
()

2 − 

´
 (A.3)

On the other hand, there is a relation between any three numbers 1 2 3

2(12 + 23 + 31) + 21 + 22 + 23 = (1 + 2 + 3)
2  (A.4)

Therefore using (A.3) and (A.4) in (A.2) and retaining the terms up to 2, we obtain

 =
1

2
 (A.5)

Note that up to terms of the order 3

 = 0
0
 (A.6)

Substituting (A.5) into (3.49) and using (A.6), we obtain



µ
 

1

2

¶
= ( ) +0

0
 (A.7)
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i.e.  indeed has the meaning of shear modulus for small deformations. Substitution of (A.5)

and (A.6) into (3.50) results in (A.7). That is, at  = 12, (3.48) coincides with Treloar

energy.
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APPENDIX B

Particle Under Action of Random Force in Periodic Potential

A solution of (3.18) is sought as a function of fast variable  =  and slow variables 

and   First we try to "kill" the oscillations of the coefficient of the first derivative of  . To

this end, we make a change of the required function,  → 

 = ()(  ) (B.1)

where () is a periodic function such that,

(0) = (1) (B.2)

To avoid uncertainty of the multiplicative presentation (B.1) we need to choose a "magnitude"

of () We do this by setting

hi ≡
Z 1

0

() = 1 (B.3)

Substituting (B.1) into (3.18), we get





+





∙µ
−()



1


+ Λ

¶
− 





1


− 





¸
= 0 (B.4)

We choose () as a solution of the differential equation

µ
−


1


+ Λ

¶
− 





1


=  (B.5)

where  is a yet unknown constant.

For a given , the boundary value problem (B.5) and (B.2) has a unique solution. The

additional constraint (B.3) determines a unique value of the constant . Indeed, we denote

by Φ() the function

Φ() = −1





+ Λ (B.6)

Substituting (B.6) into (B.5) results in the ODE
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Φ()− 




1


=  (B.7)

The homogeneous equation,

Φ() =







(B.8)

has the solution

 =  

∙Z 

0

Φ (0)


0
¸
 (B.9)

Therefore, the solution of the inhomogeneous equation (B.7) has the form

 = ̃()

∙Z 

0

Φ (0)


0
¸
 ̃(0) = ̃(1) [hΦi ]  (B.10)

Further, note that due to periodicity of ,

hΦi = Λ (B.11)

The boundary condition for ̃() can be written in terms of the dimensionless external force

Λ̂ = Λ as

̃(0) = ̃(1)Λ̂ (B.12)

Substituting (B.10) into (B.5), we get the equation for ̃()

−


 
0

Φ(0)


0 ̃


=  (B.13)

from which

̃() = ̃(0)− ̂

Z 

0

−
 0
0

Φ(̃)


̃0 ̂ ≡ 


 (B.14)

The boundary condition (B.12) determines ̃(0) :

̃(0) =

µ
̃(0)− ̂

¿
−

 
0

Φ(0)


0
À¶

Λ̂
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or

̃(0) =

̂Λ̂
¿
−

 
0

Φ(0)


0
À

Λ̂ − 1
 (B.15)

So, for a given constant , () is indeed determined uniquely. The constraint (B.3) selects

the value of . To write this constraint in a convenient form we first transform the relation

(B.10) using (B.14) and (B.15) :

() = ̂
Λ̂

Λ̂ − 1

 
0

Φ(̃)


̃

Z 1

0

−
 0
0

Φ(̃)


̃0 − ̂ 

 
0

Φ(̃)


̃

Z 

0

−
 0
0

Φ(̃)


̃0

= ̂
Λ̂

Λ̂ − 1

Z 1

0


 
0

Φ(̃)


̃− 0

0

Φ(̃)


̃0 − ̂

Z 

0


 
0

Φ(̃)


̃− 0

0

Φ(̃)


̃0 (B.16)

Note that Z 

0

Φ (̃)


̃ −

Z 0

0

Φ (̃)


̃ =

Z 

0

Φ (̃)


̃ =

= − 1


¡
()−(0)

¢
+ Λ̂

¡
 − 0

¢
 (B.17)

Finally,

() = ̂
Λ̂

Λ̂ − 1

Z 1

0

−(()−(
0))+Λ̂(−0)0

−̂
Z 

0

−(()−(
0))+Λ̂(−0)0 (B.18)

Utilizing (B.18), we put (B.3) into the form

Λ̂

Λ̂ − 1

Z 1

0

Z 1

0

−(()−(
0))+Λ̂(−0)0

−
Z 1

0

Z 

0

−(()−(
0))+Λ̂(−0)0 =

1

̂
 (B.19)

For a given energy landscape (), formula (B.19) establishes the correspondence between

constants Λ̂ and ̂

Asymptotics of this correspondence are: If Λ̂ → ∞ then we can neglect () in (B.19),

the leading term Λ̂
³
Λ̂ − 1

´
' 1, and the left hand side becomes

Z 1

0

Z 1

0

Λ̂(−
0)0 −

Z 1

0

Z 

0

Λ̂(−
0)0 =
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=
Λ̂+−Λ̂ − 2

Λ̂2
−
Ã
Λ̂ − 1
Λ̂2

− 1

Λ̂

!
' 1

Λ̂
 (B.20)

Hence, the asymptotics is

̂ = Λ̂ (B.21)

or, in dimension form,

 = Λ (B.22)

If Λ̂ → 0 then the leading term Λ̂
³
Λ̂ − 1

´
' 1Λ̂, and the first integral on the LHS

dominates, so we get

̂ = Λ̂

, 1Z
0

1Z
0

−(()−(
0))0  (B.23)

According to Cauchy inequality
³¡R


¢2 6 R 2 R 2´

1 =

µZ 1

0

−()2+()2
¶2
6
Z 1

0

−()
Z 1

0

(
0)0 =

=

Z 1

0

Z 1

0

−(()−(
0))0 (B.24)

Therefore, the denominator in (B.23) is always greater than 1, and velocity for small Λ̂ is less

than velocity at large Λ̂

Another important asymptotics are for  → 0, and  →∞. If  → 0, then

Z 1

0

−() ∼ −minp
2 00

min
 (B.25)

Z 1

0

() ∼ maxp
2 00

max
 (B.26)

where min max are minimum and maximum values of () 
00
min and 

00
max are the values

of the second derivative of () at the points of minimum and maximum, respectively. If

 →∞ then Z 1

0

−() ∼ 1− h()i


 (B.27)

Z 1

0

() ∼ 1 + h()i


 (B.28)
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Hence, for Λ̂→ 0 and  → 0

̂ ' 2
q
 00
min

00
max

Λ̂


−(max−min)  (B.29)

for Λ̂→ 0 and  →∞
 = Λ (B.30)

After the change of required function (B.1), the equation for  takes the form

()



+





µ
− ()





¶
= 0 (B.31)

Here hi = 1   0 and  is a constant.

If initially  is localized, then this equation describes translational transport with velocity

, and slow diffusion with diffusion coefficient 2() To justify this statement, one can first

transform (B.31) by introducing an auxiliary coordinate 0,

0 = 
³


´
 (B.32)

Then (B.31) becomes a parabolic equation with fast oscillating periodic coefficient 2()




+



0

µ
− 2()



0

¶
= 0 (B.33)

This equation has been studied by [Bakhvalov and Panasenko, 1989]. Its solution admits an

asymptotic expansion

 = ̄
¡
  0

¢
+ 1

¡
   0

¢
+ 

where the leading term ̄ is a solution of the parabolic equation with constant coefficients

̄


+ 

̄

0
= eff

2̄

02
 (B.34)

eff being the effective diffusion coefficient,

eff = 
­
−2()

®−1
 (B.35)
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According to (B.34), the particle moves with velocity  in (  0)-variables, and its position

"diffuses" at the rate eff  Since eff is proportional to  , eff is small.
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APPENDIX C

Constraints on Parameters a, b, c, d

Values of , , ,  must be such that (3.25) yields a qualitative agreement with Fig 3.6.

That is, the particle velocity  must remain positive with the application of a positive force

Λ, and the initial slope must remain smaller than the slope after the transition period.

If Λ is very large, then (3.25) is asymptotically linear

 = Λ (C.1)

and since  is positive for positive Λ,

 ≥ 0 (C.2)

If Λ→ 0, then

 ∼=
∙
− 2 tanh

µ




¶¸
Λ (C.3)

To maintain the condition   0 when Λ  0, the term
£
− 2 tanh ¡ 



¢¤
must be greater

than zero. This results in the constraint

 ≥ 2 tanh
µ




¶
 (C.4)

For  & 1, (C.4) reduces to

 ≥ 2 (C.5)

There is one more constraint caused by the behavior at the transition point between the

slow and fast velocity regimes. Let us find the derivative of particle velocity



Λ
= −  tanh

µ
− Λ


¶
−  tanh

µ
+ Λ



¶
 (C.6)

We see that transitions occur at the points at which hyperbolic tangents vanish, Λ =  and
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Figure C.1: Qualitative representation of the effect on the sticking point

velocity profile by increasing/decreasing the various parameters of (3.26).

Λ = −. The global minimum of velocity is to occur when Λ = 0 while the global maxima is

to be seen for Λ  − or Λ  . Since from (C.6) Λ =  for |Λ|  , and



Λ
= − 2 tanh

µ




¶
 (C.7)

for Λ = 0,  and  must have the same sign in order for (Λ) to be smaller at Λ = 0, compared

to Λ  − or Λ  . For convention, we choose  and  to be positive

  0  ≥ 0 (C.8)

Parameter Effects. To aid in fitting (3.25) to the experimental data, it is helpful to

understand how the parameters     qualitatively affect the plots of [ ] versus  ,

and 0[ ] versus  . Figures C.1, C.2 provide a summary of the effects. The parameter 

controls the sharpness of the transition between the slow velocity and fast velocity regimes.

The parameter  controls the point when the transition occurs between the slow and fast

velocity regimes. Parameter  controls the velocity profile in the fast regime, while  controls

the velocity profile in the slow regime.
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Figure C.2: Qualitative representation of the effect on the sticking point

acceleration by increasing/decreasing the various parameters of (3.26).
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Typical polymers have a time-dependent response to loading which results in stress relax-

ation or creep. Models using springs/dashpots or Volterra integrals are capable of predicting

the material response, but place little or no emphasis on the reasoning behind the response.

This research proposes a microscopic reasoning behind polymer chain movement, while de-

veloping a model to predict the creep and stress relaxation of a polymer foam. Based on the

theorized slip/stick of polymer chains as they slide past each other, this model successfully

predicts the behavior of a PMI polymer foam under tensile loads. This model lends insights

into polymer microscopic behavior, which may be used for the development of future polymer

materials.

When possible, industry standard test methods are used to obtain tensile creep and stress

relaxation results from rectangular specimens of Rohacell 31 IG foam. A common set of

material parameters is fitted to the data, validating the micromechanic reasoning to polymer

chain movement. To gain insight into observed test result variability, an investigation of the

elastic modulus and material density relationship is performed using nominal foam densities

of 31 kg/m3, 51 kg/m3, 71 kg/m3.

Additional testing and modeling is performed to validate the model under load/partial-

unload/hold, load/unload/recovery, and load/instantaneous-unload test cycles. The model

successfully captures the observed material nuances during these more complex loading cycles.
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