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CHAPTER 1 

INTRODUCTION TO APPLICATIONS OF SOLVATION PARAMETER MODEL 

 

1.1 Determination of Concentration Levels in Environmental Compartments 

Determination of the concentration levels of chemicals in various environmental 

compartments is considered an important procedure in many industries. For example, it plays a 

significant role in environmental risk assessment procedures, food and drug production, the 

perfumery industry, and in pharmaceutical and medicinal chemistry, to name only a few.
1
 Out of 

these, it plays a vital role in environmental risk assessment procedures, as many chemicals are 

released into the environment everyday due to human activities, and their possible risk to human 

health and to the ecosystem should be determined. 

1.2 Environmental Risk Assessment 

The environmental risk assessment procedure established by the United States Environmental 

Protection Agency (U.S. EPA) and European Union (EU) consists of four major steps, which are, 

hazard identification, dose-response or effect assessment, exposure or fate assessment, and risk 

characterization, respectively (Figure 1).
1a

  

Hazard identification evaluates whether a particular chemical stressor has the ability to cause 

an increase in adverse health effects in humans. A hazard identification procedure is carried out 

by monitoring the negative health effects in humans and gathering evidence whether the subjects 

under study are exposed to a particular chemical for a prolonged time, or to a certain dose of the 

chemical. Dose-response assessment is the evaluation of the extent of the severity of the damage 

caused to human health, with respect to the amount of the chemical stressor provided. For dose-

response assessment, a critical effect such as weight loss, disease, tumor, or death is considered 



 

 

2 
 
 

 
 
 

as the response. The experimental subjects are animals when detecting a severe effect such as 

death, and can be humans when detecting non-severe effects such as skin irritations. Test 

subjects are fed or exposed to definite amounts of chemical stressors and the extent of the 

response is observed. Since there can be variations in age, gender, species, etc. of the subject, an 

average value for the minimum concentration required to manifest the effect is determined. 

 

 

 

Figure 1. Selected Steps in U. S. EPA Environmental Risk Assessment Procedure
1a

 

 

 The two common parameters used to evaluate dose-response assessments are the EC50 value, 

which is the concentration of the substance needed to manifest a certain effect in 50% of the test 

population, and the LC50 value, which is the concentration of the substance needed to kill 50% of 

the test population, within an observed time period, under a previously defined set of conditions. 

In the final step of the procedure, a predicted no-effect concentration (PNEC) is calculated. 
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PNEC value is considered as the highest concentration that the test subject can be administered 

or exposed to, without observing statistically significant increase in frequency of occurrence, or 

severity of adverse effects with respect to a control population. Exposure or fate assessment 

evaluates the concentration, frequency, and duration of the chemical which comes in contact with 

the subject.
1a, 2

 Humans and animals can be exposed to a chemical through different routes, and 

the specific parameters for exposure assessment are defined according to the route that the 

chemical uptake has taken place. For example, the bio-concentration defines the accumulation of 

a chemical in an aquatic organism due to the transfer of a chemical from surrounding water to the 

organism, whereas the bio-accumulation defines the accumulation of a chemical in an organism 

as a result of uptake from all exposure routes including water, soil, sediment, and air.
3
 Often, due 

to the difficulties of accessibility of the natural environment, surrogate physicochemical 

parameters are used to determine the exposure levels. Commonly used physicochemical 

parameters are solubility in water (SW), soil adsorption coefficient normalized to the total organic 

carbon content (KOC), Henry’s law constant or water-air partition coefficient (KH), octanol-air 

partition coefficient (KOA), and the octanol-water partition coefficient (KOW).
1d, 4

 As the last step 

of the exposure assessment, predicted environmental concentration (PEC), which is the 

concentration level of the chemical in each environmental compartment, is determined.
1a

 A PEC 

value indicates the magnitude of the exposure of the test subject to the chemical stressor.  In the 

fourth step, the extent of the risk is characterized based on PEC:PNEC ratios which depend on 

the particular matrix and the environment considered. 

1.3 Exposure Assessment of Organic Chemicals 

Each year, large amounts of discrete organic chemicals are released into the environment 

from industry. The toxic substance control act (TSCA) listing contains more than 12,000 discrete 
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mass produced organic chemicals which do not have any effect or exposure data or for which 

there is only limited amount of data.
3
 Both effect and exposure assessment of these large 

inventories of chemicals is an almost impossible task due to the limitation of human, technical, 

and economical resources required to determine their concentration levels in various 

environmental compartments. As a solution to this problem, quantitative structure property 

relationships (QSPR) are used to estimate environmental and physicochemical endpoint values. 

1.4 Use of Quantitative Structure Property Relationships to Determine Endpoint Values  

In QSPRs, a chemical property of a compound is modeled as the response variable, as a 

function of physicochemical and structural properties. Environmental endpoints such as air-

particulate matter distribution, soil-water distribution, nonspecific toxicity to fish, water-skin 

distribution, and eye-irritation levels can be estimated using QSPRs.
5
 A global model, which is a 

QSPR built considering all global factors such as age, sex, health, stress levels, genetic factors, 

dietary factors etc. for the test population, can provide an accurate estimation of the endpoint for 

the global population considered. A local model, which is a QSPR constructed using only the 

specific parameters relevant to the local population under study, will provide an accurate 

estimation of endpoints relevant to the specific population and matrix considered for the study. 

QSPRs can be used to determine the concentration levels of organic chemicals in environmental 

compartments. For static systems, several assumptions are taken into consideration in the 

procedure for determining concentration levels.
6
 The first assumption is that chemical 

transformations are negligible. Secondly, it is assumed that the driving force for chemical 

accumulation in one medium is the partitioning of the chemical between the exposure media and 

receiving phase. Thirdly, it is assumed that the chemical has reached equilibrium between the 

two phases. For dynamic systems such as flow systems, a steady state hypothesis is considered 
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during the application of QSPRs. However, this is beyond our focus, as the research reported 

herein takes only static systems into consideration. Despite the fact that the organic compounds 

may exist as mixtures in nature, and the physical conditions such as temperature, pH, and 

composition may vary between matrices, QSPR models based on static systems have been 

applied to estimate many environmental endpoints, thereby economizing on the cost needed for 

complex experimental procedures. Although an experimental procedure is essential to determine 

the endpoint values accurately, in the instances where limited sources are available to generate 

large amounts of experimental data, the use of QSPRs is important for an initial estimate of the 

range within which the true value can be found. 

1.5 Development of Quantitative Structure Property Relationships 

Mortimer Kamlet, Robert Taft, and Jose Abboud are recognized as the intellectual 

forefathers of linear free energy relationships (LFER), which are currently in use for the 

rationalization of solvation processes. Kamlet and co-workers developed the solvatochromic 

scale known as π* scale.
7
 The π* scale was developed by selecting forty different probe solutes 

and measuring the frequency of maximum absorbance (υmax) in their ultraviolet/visible (UV/Vis) 

spectra with different solvents for each solute. The probe compounds used in the π* scale were 

neither good hydrogen bond acids, nor good hydrogen bond bases. Therefore, the data obtained 

from the measurements accounted for solvent dipolarity. The plots of υmax of solvent versus υmax 

of the probe solute showed good linearity. Also, for specific probe compounds, such as 1-ethyl-4-

nitrobenzene, N,N-diethyl-3-nitrobenzene, 4-methoxy-β-styrene, plots of υmax of one indicator 

versus υmax of second indicator were linear over a wide solvent dipolarity range. A particular π* 

value for a specific solvent is assigned by calculating the average of the π* values for different 
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probe solutes. Later, Abboud and co-workers developed the π* scale for a large number of 

solvents.
8
 

One of the earliest developed linear free energy relationships is given by Equation 1.
9
  

SP = c + s (π* + dδ) + aα + bβ  (1) 

In equation 1, SP is a solvent dependent property such as the rate of a chemical reaction or the 

solvatochromic shift of a probe solute. Term ‘c’ is a system constant or an intercept term which 

is independent of the probe solute. Terms π*, δ, α, and β are measures of solvent polarity, 

polarizability, hydrogen bond acidity, and hydrogen bond basicity, respectively. The coefficients 

s, d, a, and b are system constants. 

The basis of the solvatochromic model is the assumption that the solvent parameters can 

provide an estimate of solute properties. However, since a solute molecule in a solvent is 

surrounded by other solvent molecules, and therefore can have widely different interactions 

compared to a solvent molecule surrounded by the bulk solvent, solvatochromic models are not 

really suitable to describe the solvation process of a solute.  

1.6 Solvation Parameter Model 

 Among the variety of QSPRs or LFERs available to estimate solute properties, the most 

accepted relationship to describe the solvation of a solute in a medium, is the solvation parameter 

model founded by Michael H. Abraham.
10

 The solvation parameter model is based on a 

parameterization of the cavity model of solvation. The cavity model considers  transfer of a 

solute from one phase to another as a three-step process (Figure 2).
6a

 In the first step, a cavity is 

formed in the receiving phase, which is of a suitable size to accommodate the solute molecules. 

Cavity formation occurs by disrupting the solvent-solvent interactions and therefore is an 

endothermic process. The free energy associated with the solute transfer is favorable when the 



 

 

7 
 
 

 
 
 

donating phase has weaker solvent-solvent interactions than the receiving phase. In the second 

step, solvent molecules reorganize around the cavity. The reorganization minimizes the 

disruption that occurs when the cavity is created, and results in a more favorable orientation for 

solute-solvent interactions. The free energy change involved in this step is minimal due to the 

compensation of entropy and enthalpy. 

 

 

Figure 2. Major Steps of the Cavity Model of Solvation. 

 

In the third step, the solute is inserted into the cavity and solute-solvent interactions are 

established. If there are same interactions in the donor phase, they will be collapsed. Energy is 

released in the solute insertion step and therefore, solute insertion is exothermic. 

The solvation parameter model for transfer of a neutral compound between two phases 

takes two forms. For transfer of the solute from gas phase to condensed phase the model is, 

log SP = c + eE + sS + aA + bB + lL  (2) 

 

and for transfer of solute between two condensed phases the model is, 
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log SP = c + eE + sS + aA + bB + vV  (3) 

SP is a free energy related solute property, and c is a system constant independent of the 

solute property. Lower case letters are the system constants, which describe complementary 

interactions of the system with the solute, and the upper case letters are the solute descriptors, 

which describe the complementary interactions of the solute with the system. Upper case letters 

E, S, A, B, L, and V stand for the excess molar refraction, dipolarity/polarizability, hydrogen-

bond acidity, hydrogen-bond basicity, gas-hexadecane partition co-efficient, and McGowan’s 

characteristic volume, respectively. Lower case letters e, s, a, b, l, and v represent excess molar 

refraction, dipolarity/polarizability, hydrogen-bond basicity, hydrogen-bond acidity, and cavity 

formation/dispersion interactions of the system for solute transfer from a gas phase to a 

condensed phase, and the difference in cavity formation and residual dispersion interactions of a 

biphasic system for solute transfer between two condensed phases, respectively. 

Another form of solvation parameter model contains both L and V descriptors, but not the 

excess molar refraction (E) descriptor (Equation 4).
11

  

log SP = c +  sS + aA + bB + lL + vV  (4) 

The model in Equation 4 is called the Goss-modified Abraham solvation parameter model and 

performs similar to equations 2 and 3. However, in the instances where the determination of the 

gas-liquid partition coefficient in hexadecane at 298 K (L descriptor) is difficult due to the 

compound’s high molecular weight or less thermal stability, using equation 4 can be problematic.   

For ionic compounds, a separate free energy relationship is considered.  

log SP = c + eE + sS + aA + bB + lL + j
+
J

+
  (5) 

log SP = c + eE + sS + aA + bB + lL + j
-
J

-
  (6) 
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Equation 5 is used when the solute is a cation where the J
+
 descriptor defines the properties of a 

cation, and Equation 6 when the solute is an anion, where the J
-
 descriptor defines the properties 

of an anion.  

1.7 Solute Descriptors in the Solvation Parameter Model 

1.7.1 McGowan’s Characteristic Volume (V) 

 McGowan’s characteristic volume is the volume of one mole of a compound when the 

molecules are at a stationary position, and is calculated using the following equation.  

 

V = [ Ʃ (contribution to volume from all atoms) – 6.56 (N – 1 +  Rg) ]  (7) 

100 

In Equation 7, V is the McGowan’s characteristic volume, N is the total number of atoms, and Rg 

is the total number of ring structures in the molecule. Usually the McGowan’s characteristic 

volume is scaled to the other descriptors by division by 100 and has units of cm
3
 mol

-1
/100. For 

isomers, McGowan’s characteristic volume have the same values, although inclusion of a boiling 

point term for the two isomers can be used for their distinction.
12

  

McGowan’s characteristic volume is a measure of the cavity effect and mainly accounts 

for dispersion interactions.  

1.7.2 Excess Molar Refraction (E) 

 Excess molar refraction is defined as the difference between the excess molar refraction 

of a solute and the excess molar refraction of a hypothetical n-alkane which has the same volume 

as the solute. The excess molar refraction is calculated using the following equation. 

 

E = 10V [η
2 

− 1/η
2 

+ 2] – 2.832 V + 0.526  (8) 
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In Equation 8, E is the excess molar refraction, V is the McGowan’s characteristic volume, η is 

the refractive index. The excess molar refraction has units of cm
3 

mol
-1

/10. For liquids, the 

excess molar refraction is calculated using the refractive index at 20 °C for the sodium D-line. 

For solids, refractive index values are estimated by either using software, such as ChemSketch or 

Absolv, or by summation of assigned fragment values. However, both methods contribute to the 

uncertainty of the excess molar refraction value. Therefore, determining the excess molar 

refraction experimentally is preferred for solids, to minimize the error involved in using 

estimated refractive index values.  

Excess molar refraction accounts for the additional contribution to dispersion interactions 

beyond what has been already accounted for by cavity formation using the vV and lL terms. In 

the initial scales of excess molar refraction the n-alkanes were assigned a value of zero. The 

excess molar refraction values for other compounds are assigned using the n-alkanes as reference 

values. Therefore, compounds such as fluorocarbons and organosilicon compounds, which are 

less polarizable than n-alkanes, can have negative values for excess molar refraction.  

1.7.3 The L Descriptor 

 The L descriptor is defined as the gas-liquid partition coefficient for the solute in n-

hexadecane at 298 K. For volatile compounds this can be determined by gas chromatography 

using n-hexadecane as the stationary phase.
13

 Normal hexadecane is a readily available, non polar 

liquid having a well defined structure, and is widely used to determine water-hexadecane 

partition coefficients in pharmaceutical and medicinal chemistry. Therefore, n-hexadecane is 

used as the reference compound to determine the L descriptor. For compounds of low volatility 

the L descriptor is determined by back calculation on a low polarity phase at higher temperatures. 



 

 

11 
 
 

 
 
 

 The L descriptor accounts for dispersion interactions when the solute is transferred from 

the gas phase to a condensed phase. 

1.7.4 Dipolarity/Polarizability (S) 

 The dipolarity/polarizability descriptor accounts for both stable and induced dipoles. In 

the original scales for the dipolarity/polarizability descriptor, the n-alkanes were assigned a value 

of zero. Hence, the values of other compounds are normalized with respect to the n-alkanes. 

Certain flourocarbons and organosiloxanes can have negative values for dipolarity/polarizability 

values, as they are less polarizable than n-alkanes. The original scales for dipolarity/polarizability 

were built by determining the dipolarity/polarizability descriptor for compounds with known E 

and L descriptors.
14

 For these compounds, gas chromatography on polar stationary phases, where 

hydrogen bonding interactions are negligible, can be used to calculate the S descriptor.  

1.7.5 Hydrogen Bonding Descriptors (A and B) 

 As the name implies, A and B descriptors account for the hydrogen bond acidity and 

hydrogen bond basicity interactions of the solute, respectively. Initial scales for hydrogen bond 

acidity and basicity were developed based on the complexation equilibria of monomeric 

hydrogen bond acids and hydrogen bond bases. These reactions were carried out in an inert 

solvent such as tetrachloromethane at 298 K.
15

 

 

When the initial scales were constructed, a set of equilibrium constants for hydrogen bond 

complex formation (log K) were obtained for a group of acids against a reference base.
16

 It was 

found that these log K values show a linear relationship with the log K values of the acids with 

any other reference base. Based on this observation, initial scales were constructed such that the 
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log K values of acids against any given base are linearly related to the hydrogen bond acidity of 

the solute (log KA
H
). 

Log K (of a series of acids, with reference to a base B) = LB. log KA
H
 + DB  (10) 

In the initial work, forty five acids were studied to yield forty five values for LB and forty five 

values for DB. It was found that these equations intersected at (1.1, 1.1) when K is expressed 

on the molar concentration scale.  Therefore, the hydrogen-bond acidity descriptor can be 

obtained using the relationship, 

α2
H
 = (log KA

H
 + 1.1)/4.636  (11) 

 In Equation 11, α2
H
 is the hydrogen-bond acidity descriptor and 4.636 is a scaling factor. All non 

hydrogen-bond acids have a α2
H
 value of zero and solute hydrogen bond acidity (log KA

H
) of       

–1.1 units.  

 In a similar manner, equilibrium constants for a series of monomeric bases against 

reference monomeric acids were used to obtain a scale for the hydrogen-bond basicity descriptor 

(β2
H
). Hydrogen-bond basicity descriptor can be obtained from the relationship,  

β2
H
 = (log KB

H
 + 1.1)/4.636  (12) 

In Equation 12, log KB
H
 is the solute hydrogen-bond basicity. However, in practice solute 

molecules are surrounded by many solvent molecules and it was necessary to broaden the initial 

scales to take multiple hydrogen-bond acidity and hydrogen-bond basicity interactions into 

account. Therefore, the original scales were expanded to give effective hydrogen-bond acidity 

scales which are identified by the symbols A and B. Effective hydrogen bond acidity scales were 

obtained by solving a series of equations for solutes with no hydrogen bond acidity or using 

monomeric hydrogen bond acids, and finding the effective value through back calculations.
6a
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Alkylamines, alkyl pyridines, sulfoxides, anilines, and heterocyclic nitrogen compounds 

exhibit variable hydrogen-bond basicity values, in aqueous biphasic systems where water is 

miscible to a significant extent in the other phase. Examples for such biphasic systems are 

octanol-water, ethyl acetate-water, reversed-phase liquid chromatography, and micelles. For 

these systems, a new hydrogen bond basicity descriptor B
0
 is required to account for the variation 

of hydrogen bond-basicity resulting from the hydration of solute in the non-aqueous phase.  

1.8 Interpretation of the Solvation Parameter Model 

 In the solvation parameter model, the difference in solvent interactions in the two phases 

are indicated by the magnitude of the system constants.
9
 Therefore, the system constants also 

indicate in which phase the solute will retain preferentially, during chromatographic 

measurements. Since the coefficients reflect the solvent properties, they are specific for all 

solutes under study. Multiple linear regression analysis is suitable to evaluate the sign and 

magnitude of the coefficients. For a particular interaction the sign of the coefficients indicates 

which phase has the more dominant ability to interact with the solute. 

1.9 Versatility of Solvation Parameter Model Over Other Models for Descriptor       

       Determinations 

 

 Models based on quantitative structure property relationships can be constructed either 

theoretically or experimentally.
6a

 In theoretical methods, models are created by generating a large 

number of molecular descriptors using structure-based computational methods, and subsequently 

reducing the number of descriptors to a smaller number using statistical tools. Theoretical models 

can be used to determine descriptors for compounds which are not available, or which have not 

been synthesized yet. On the other hand, the main disadvantage of the theoretical approach is that 

the selected descriptors might not express the chemical significance of the compound, and of the 
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system accurately. In experimental methods, few descriptors are defined prior to the experiments 

and these descriptors are used to characterize the processes under study. Experimental models 

require that the solute is available for the study. Fragmentation methods combine both theoretical 

and experimental methods by assigning descriptor values to each fragment of a molecule, and 

afterwards combining them to give the total descriptor value for the compound. However, in 

fragment methods, the training set used for model validation is generally quite large, containing a 

large number of experimental solute property values for different compounds. For compounds 

with a variety of functional groups, fragment methods may be inaccurate as they cannot account 

for intramolecular interactions.  

 While solvatochromic models were developed by considering solvent effects, the 

solvation parameter model was developed taking both solute and solvent effects into 

consideration. In the solvation parameter model, the solute property is determined 

experimentally. Therefore, the descriptors will reflect the chemical significance of the solute. 

Due to its ability to accurately reflect the chemical properties of the solute and the surrounding 

system, the solvation parameter model is applicable to many free energy related solvation 

processes. 

1.10 Surrogate Solute Property Estimation Methods  

 When the environmental system is inaccessible, or when the experimental procedure is 

expensive, time consuming, and if there are any ethical concerns which prevent obtaining reliable 

data from the environmental system, traditional emulation and correlation processes are used to 

estimate the solute property.
10

 In emulation models, the intermolecular interactions that cause the 

distribution of the solute in the two phases are quantitatively similar in both the environmental 

and emulated system, although the two systems may not be chemically identical. Therefore, 
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emulation systems are rare. If they exist, their system constants will be identical for the compared 

systems, indicating an identical distribution processes for the two systems. In correlation models, 

the chromatographic systems, which are highly correlated to the environmental system, are 

identified. To accomplish this task, chromatographic databases are searched and systems which 

have close system constant ratios to that of the environmental system are identified.
17

 Mainly two 

methods are carried out to identify the best correlation system. In the first method, the system 

constants in the correlation and environmental systems are assumed as points in five-dimensional 

space. Then the Euclidean distance between the environmental system and the correlation system 

(D-parameter) are calculated using the five points in each system. Since systems which have 

similar chemical properties will exhibit small D-parameters, the system having the smallest D-

parameter value is selected as the best correlation system. In the second method, the system 

constants are considered as vectors in five-dimensional space. When the angle between the 

vectors in the environmental model and the correlation model (θ) has a Cos θ value close to 

unity, the system constants in the two systems are similar, and therefore the chemical properties 

of the correlation system are close to that of the environmental system.  

 Both emulation and correlation models have their own disadvantages. Emulation 

processes are uncommon in general. Correlation models have a large uncertainty associated with 

the measurements. The overall uncertainty in the correlation model is given by Equation 13.
17

 

SDcor
2
 = SDenv

2 
+ (p SDchr)

2
 + SDd

2
  (13) 

In equation 13, SDcor is the total expected error in the two correlated systems. Uncertainty in the 

environmental model is given by SDenv, and uncertainty in the chromatography model is given by 

SDchr. Dissimilarity of the chromatographic and environmental models are given by SDd. The 

slope of the correlation model is indicated by ‘p’. The best correlation model will possess a 
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minimum value for SDcor. In order to obtain a minimum value for SDcor, the error in the 

environmental model, the error in the chromatography model, and the dissimilarity in the two 

correlated models should be minimal. Ideally, the slope of the correlation system should be equal 

to one, which indicates a good correlation. A slope other than one indicates that the current 

measurements were obtained for a system which is different to the environmental model for 

which the original measurements were obtained.
10

 On the other hand, a shallow slope limits the 

range of environmental endpoint values that can be predicted using the data obtained from the 

chromatography model.  

 In correlation methods, uncertainty involved in the solute property determinations can be 

a problem in situations where expensive or a limited amount of resources are available. 

Therefore, having an estimation of the value which the solute property can take will facilitate 

economical measurements.  

1.11 Direct Estimation of Solute Properties using Chromatographic Methods 

Direct estimation methods can be used for both environmental systems and for correlated 

systems to identify an accurate or approximate value for the endpoint before the experiments are 

conducted. Therefore, direct estimation methods play an important role in the instances where the 

environmental system is inaccessible, or when there is a necessity to conduct solute property 

estimations with limited resources to hand, using surrogate emulation and correlation methods. 

The solvation parameter model can be used to determine a free-energy related solute 

property for a system previously characterized, when the descriptors for the solutes are known.
6a

 

Hence, the extent of partition of the solute in any physicochemical and environmental system can 

be directly estimated after a proper descriptor assignment for the solute is carried out.  
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 Partition coefficient for a solute at equilibrium in a biphasic system can be determined 

with ultraviolet/visible (UV/Vis), fluorescence, nuclear magnetic resonance (NMR), 

chromatographic methods etc. Of the many available methods, chromatographic methods are 

preferred for several reasons. First, in chromatographic methods, retention factors can be 

accurately determined resulting in accurate models which helps to determine an exact endpoint 

value. Secondly, chromatographic methods are fast and more economical than most other 

methods. Thirdly, large sample amounts are not necessary for chromatographic methods. Also, 

impurities if present in the sample matrices, can be removed easily using chromatographic 

methods.  

1.12 Methods for the Determination of Descriptors  

1.12.1 Gas-Solvent Partition Systems 

 Gas-solvent partition systems are suitable to determine the gas-hexadecane partition 

coefficient (L), hydrogen bond acidity (A), dipolarity/polarizability (S), and hydrogen bond 

basicity (B) descriptors. Headspace methods are used to determine gas-solvent partition 

coefficients.
18

 However, compounds need to be sufficiently volatile to be analyzed by headspace 

methods. If the volatile compounds have low solubility in the solvent, measurement error can be 

quite high. Literature values for gas-solvent partition coefficients often demonstrate several 

values for the same compound and extreme values often have to be rejected to calculate an 

average value.  

 It is common practice to relate gas-solvent partition coefficients with solvent-solvent 

partition coefficients to generate additional equations to increase the accuracy of the determined 

descriptor value.
6a, 19

 For example, hexadecane-water (log PHexd-W) partition coefficient and gas-
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water partition coefficient (log KW) at 25 °C can be used to obtain the gas-hexadecane partition 

coefficient (L) as shown by Equation 14. 

log PHexd-W = L  log KW  (14) 

Similarly, gas-solvent partition coefficients (log KS) and gas-water partition coefficients (log KW) 

can be used to estimate solvent-water partition coefficients (log PS-W) as shown by Equation 15. 

log PS-W = log KS  log KW  (15) 

When calculating the solvent-water partition coefficients, log PS-W
 

refers to the partition 

coefficient of the water-dry organic solvent systems. Water-saturated systems can possess 

different properties to the hypothetical dry solvent systems. Therefore, in order to calculate 

descriptor values using the models built considering the dry solvent systems, the log PS-W values 

should be determined using similar experimental protocols. 

1.12.2 Aqueous Biphasic Systems 

 Water-organic solvent systems can be used to determine mainly the hydrogen bond 

acidity (A), hydrogen bond basicity (B) descriptor values for compounds which have sufficient 

water solubility and which are stable in water. Although not to a great extent, water-solvent 

systems can be used to determine the dipolarity/polarizability (S) descriptor.
20

 Abraham and 

coworkers have characterized more than fifty aqueous biphasic solvent systems.
21

 The range of 

system constants for a selected group of characterized aqueous biphasic systems are shown in 

Figure 3.
22

 

The system constant values in Figure 3 demonstrates that the variation of system 

properties for aqueous biphasic systems are generally small. Cohesivity (v) and hydrogen bond 

acidity (b) of the systems take numerical values which are greater than four (v > 4, b > 4). 

Hydrogen bond basicity (a) values vary approximately around 4. The higher cohesivity of water 
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compared to the organic solvents cause high molecular weight solutes to migrate to the counter 

solvent in aqueous biphasic systems. Hydrogen bond acidity and hydrogen bond basicity of water 

cause the solute to prefer the aqueous phase. Figure 3 indicates that counter solvents in aqueous 

biphasic systems can be classified into mainly two types based on dipolarity and polarizability. 

One category includes counter solvents that have similar polarity to water. Systems in this 

category have a dipolarity/polarizability (s) system constants around zero. The second category 

has a dipolarity/polarizability (s) system constant value of approximately 2 and consists of 

relatively non polar counter solvents that fail to compete with water.  

 

Figure 3. Variation of  System Constant Values for a Selected Group of Aqueous Biphasic 

Systems. 

(Figure 3 is Reused from Reference 22 with Permission.) 

 

 

There are also two categories of aqueous biphasic systems when the hydrogen bond basicity (a) 

system constant is considered. The first category consists of systems with counter solvents which 

are competitive with water and have small a system constant values which are close to zero. The 

second category consists of systems that compete to a lessser extent with water and have an a 
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system constant value around 4. The charactristic feature of Figure 3 is that there is not much 

variation of the system constants although there is a variety of aqueous biphasic systems with 

different counter solvents. The full range of selectivity for the aqueous biphasic systems can be 

summarized using only the five biphasic systems indicated in Table 1. 

 

Table 1. Aqueous Biphasic Systems Representing the Total Selectivity Range for Available 

System Constant Values. 

(Table 1 is Reused from Reference 22 with Permission.) 

 

 

Counter Solvent c e s a b v 

n-Heptane 0.325 0.678 2.061 3.317 4.733 4.543 

Dichloromethane 0.319 0.102 0.187 3.058 4.090 4.324 

Diethyl ether 0.248 0.561 1.016 0.226 4.553 4.075 

Ethyl Acetate 0.441 0.591 0.699 0.325 4.261 3.666 

Octanol 0.088 0.562 1.054 0.034 3.460 3.814 

 

1.12.3 Totally Organic Biphasic Partition Systems 

           (Portions of Text under This Sub Topic are Reused from Reference 22 with Permission) 

Variation of system constant values for totally organic biphasic partition systems are 

demonstrated in Figure 4.
22

 Figure 4 indicates that the system constant values for totally organic 

biphasic partition systems are unique for each system and have a wide range of selectivity. At the 

same time, each system constant shows a continuous variation of values, quite different to 

aqueous biphasic systems. Organic solvent systems are less cohesive and less hydrogen bond 

acidic than water. Therefore, v and b system constants take values which are less than 2. Due to 
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the low cohesion and wide range of selectivity, totally organic biphasic systems are more useful 

for separating high molecular weight compounds, and in obtaining optimum biphasic systems to 

determine descriptor values. In descriptor determinations, totally organic biphasic systems are 

used to determine the dipoarity/polarizability (S), hydrogen bond acidity (A), and hydrogen bond 

basicity (B) descriptors. Also, for compounds of low water solubility and for compounds which 

are not stable in water, using totally organic biphasic systems is the most appropriate method as 

the solute property fall into a range that can be accurately determined by experiments.  

 

Figure 4. Variation of  System Constant Values for a Selected Group of Totally Organic 

Biphasic Partition Systems. 

(Figure 4 is Reused from Reference 22 with Permission.) 

 

 

 The octanol-water partition coefficient is commonly used as a surrogate system for 

lipophilicity. Poole and coworkers demonstrated that the descriptor values determined for some 

phthalate esters, polycyclic aromatic hydrocarbons, terpenes, and steroids could be used to 

predict the octanol-water partition coefficients. The correlation plot in Figure 5 shows the 
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correlation between the predicted octanol-water partition coefficients and the experimentally 

determined octanol-water partition coefficients.
22

  

 

 

Figure 5: Correlation Plot for Experimental and Calculated Octanol-Water Partition Coefficients 

                for a Selected Group of Phthalate Esters, Polycyclic Aromatic Hydrocarbons, Terpenes, 

and Steroids. 

(Figure 5 is Reused from Reference 22 with Permission) 

 

 

The correlation model for the data used in Figure 5 is given below. 

 

log (KOW)exp = 0.010 (0.045) + 0.997 (0.012) log(KOW)cal  (16) 

r
2 

= 0.993   SE = 0.133   F = 6155   n = 42 

In Equation 16, (KOW)exp is the experimentally determined octanol-water partition coefficient, 

and log(KOW)cal is the calculated octanol-water partition coefficient. The values for the octanol-

water partition coefficients cover about eight orders of magnitude. The intercept for the 

correlation model includes zero and the slope includes 1 at 95% confidence interval, which 

indicates that there is no bias in predicting the partition coefficients. Therefore, the use of 
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partition coefficients determined using the totally organic biphasic systems to predict partition 

coefficients for aqueous systems is a viable option when direct measurement is difficult. 

1.12.4 Gas Chromatography Methods 

 Gas chromatography is preferred over other techniques for the determination of the gas-

hexadecane partition coefficient at 298 K (L descriptor).
6a

 Gas chromatography is also suitable to 

determine the dipolarity/polarizability (S) and hydrogen bond acidity (A) descriptors by selecting 

stationary phases capable of polar and hydrogen-bond interactions. The model standard error for 

the open tubular column stationary phases characterized to date is about 0.015-0.035. 

 The expected error in the descriptor value is proportional to the ratio of the model 

standard error and the system constant value. For this reason, when the characterized stationary 

phase has a large system constant value for a particular intermolecular interaction, the expected 

error in the determined descriptor value is minimized. Therefore, to determine the gas-

hexadecane partition coefficient at 298 K (L) and excess molar refraction (E), 

poly(methyloctylsiloxane) is most suitable due to the significant contribution of L and E to 

retention on this stationary phase. To determine the L descriptor, the poly(dimethylsiloxane) 

stationary phase is less useful due to the significant values for the dipolarity/polarizability (s) and 

hydrogen bond basicity (a) system constants. For the estimation of dipolarity/polarizability (S) 

descriptors poly(methyltriflouropropylsiloxane) stationary phases are suitable due to their high  

s/a ratio. Poly(ethylene glycol) stationary phase can be used to determine the hydrogen bond 

acidity descriptor (A), due to their large value for the  a/s ratio. Strong dipolarity/polarizability 

and hydrogen bond basicity simultaneously occur for cyanoalkylsiloxane stationary phases. 

Therefore, the S and A descriptors can be determined simultaneously using these stationary 

phases. Although the excess molar refraction (E) is determined by calculation for liquids, for 
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solids it can be determined using poly(ethyleneglycol) and poly(methyltriflouropropylsiloxane) 

stationary phases since these stationary phases have a relatively large e system constant value. 

The system map for a poly(phenylene dimethylsiloxane) stationary phase is given in Figure 6.
23
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Figure 6: System Map for Rxi 5 Sil MS Column with Poly(phenylene dimethylsiloxane) 

Stationary Phase. 

(Figure 6 is Reused from Reference 23 with Permission) 

 

The variation of system constants as a function of temperature is illustrated by system maps. In 

Figure 6, a decrease in polar interactions and the cavity and dispersion interactions is observed 

with the increase in temperature. In contrast, an increase in electron lone pair interactions is 

observed at higher temperatures. Since large system constant values lead to more accurate 

descriptor estimates, theoretically the retention factors should be determined at low temperatures. 

However, the retention of a compound is affected significantly by the column phase ratio (ratio 

of the volume of mobile and stationary phases for the column) and volatility of the compounds. 

(°C) 
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Therefore, under practical conditions moderate to high temperatures are usually selected to 

obtain measurements, in order to obtain reasonable retention times. The gas chromatography 

retention models possess the lowest model standard errors compared to other techniques. The 

necessity to measure retention factors at high temperatures does not introduce a significant 

increase in the expected error for descriptor measurements.
24

 

 In gas chromatography it is assumed that the retention mechanism occurs exclusively 

through gas-liquid partitioning.
25

 However, adsorption of the solute by the column wall or the 

stationary phase can occur, leading to incorrect retention factors. The most common possibility is 

the adsorption at the surface of the stationary phase, when the stationary phase and solute differ 

significantly in polarity. Interfacial adsorption is often observed for n-alkanes on 

poly(biscyanopropylsiloxane) and poly(ethylene glycol) stationary phases. The occurrence of 

interfacial adsorption can be identified by eluting the solute simultaneously in two columns 

containing the same stationary phase, but with different phase ratios. When the interfacial 

adsorption is significant, the correlation of retention factors with the phase ratio observed under 

normal conditions is lost. A disadvantage of gas chromatographic methods is that there are no 

commercial open tubular columns with significant hydrogen-bond acidity (b~0). Therefore, it is 

difficult to determine the hydrogen bond basicity (B) descriptor using gas chromatographic 

methods. As an alternative, liquid chromatography methods can be used to determine the 

hydrogen-bond basicity descriptor. 

1.12.5 Liquid Chromatography Methods 

 Reversed-phase liquid chromatography is mainly used for the determination of the 

hydrogen-bond basicity (B) descriptor. It can also be used to determine the 
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dipolarity/polarizability (S) and hydrogen bond-acidity (A) descriptors. The retention mechanism 

for a Sunfire C18 column is illustrated in Figure 7.
26
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Figure 7. System Map for Sunfire C18 Octadecylsiloxane-Bonded Silica Stationary Phase for   

                Methanol-Water Mobile Phase Compositions in Reversed-Phase Chromatography. 

(Figure 7 is Reused from Reference 26 with Permission) 

 

Figure 7 indicates that the two dominating forces which govern solute retention in the stationary 

phase are the hydrogen bond-acidity of the mobile phase (b) and cavity formation and dispersion 

interactions (v). Model standard errors for liquid chromatography are about 0.02-0.07, which is 

higher than for gas chromatography (~0.01-0.04).
27

 For organic solvent compositions greater 

than 50% (v/v), the system constants except v and b have smaller values. The high values of the v 

and b system constants at low organic mobile phase compositions introduce less error to the 

model, and low organic solvent compositions are preferred to determine descriptor values. 
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However, under practical experimental conditions, moderate to high organic solvent 

compositions result in reasonable retention times although the model error is larger. Regardless 

of this uncertainty, liquid chromatography is still the selected method for the determination of the 

hydrogen bond-basicity descriptor (B). 

 Normal-phase chromatography can be used to estimate the dipolarity/polarizability 

descriptor (S) using polar, chemically bonded stationary phases.
28

 Reversed-phase 

chromatography is well suited to determine the hydrogen-bond basicity descriptor. 

 The dependent variable in liquid chromatography retention models is the retention factor 

(k). The retention factor is defined by Equation 18 in time units.
6a, 29

 

k = t'R/tM = (tR-tM)/(tM-texcol)  (18) 

In Equation 18, t'R is the adjusted retention time and tM is the column hold up time. Extra column 

hold up time is given by texcol. The gross column hold up time is usually determined by the 

injection of a non retained solute such as NaNO3 and KBr for reversed phase chromatography. 

The extra column hold up time is the time consumed when the solute is transferred to and from 

the column during injection and detection. The extra column hold up time is measured by 

replacing the column by a zero-dead-volume union and determining the retention time for a non 

retained solute to travel from the injector to detector.  

 Pore dewetting, steric resistance, and electrostatic interactions are the three major 

problems encountered in reversed-phase chromatography using porous chemically bonded 

stationary phases to determine descriptors. To enter the pores of the packing the surface tension 

of the mobile phase must be less than the local column pressure to fill the pores. This 

phenomenon is called pore dewetting. Pore dewetting causes retention loss of the sample due to 

the inaccessibility of the solute to the interior surface of the stationary phase. Pore dewetting can 
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occur for stationary phases with small pores, for stationary phases with a high bonding density 

and for mobile phases with a high water composition. Pore dewetting can be identified by a 

discontinuity in the system map and the pressure dependence of the retention factors.  

 When the solute size increases, the solutes tend not to insert fully into the stationary 

phase. This is called steric resistance. In chemically bonded phases with a high bonding density, 

only a part of the solute can insert itself into the solvated stationary phase and the other part 

resides in the mobile phase or in the interface region. Steric resistance results in two types of 

retention factors. First type arising from the fully solvated stationary phase is suitable for 

inclusion in the solvation parameter model. The second type, affected by the steric resistance is 

not suitable for modeling.
30

 Compounds affected by steric resistance include angular compounds 

such as benzophenones, rigid planar compounds, such as polycyclic aromatic hydrocarbons, 

compounds having long alkyl chains such as n-alkyl phenones, and bulky compounds such as 

dialkyl phthalates.
27b, 31

 Steric resistance is enhanced for mobile phases with a high water 

content. Steric resistance can be identified by the sharp discontinuity in plots of the retention 

factor (log k) versus composition of mobile phase. 

Electrostatic interactions between ionized silanol groups of the stationary phase and 

solute protonated bases result in anomalous retention properties. This is observed for silica-

based, chemically bonded stationary phases. Protonated bases have higher retention factors than 

those predicted by the solvation parameter model.
27, 31a

 To prevent electrostatic interactions, a 

suitable stationary phase should be selected with limited access to ionized silanol groups, and the 

pH of the mobile phase should be adjusted to suppress ionization. Electrostatic interactions are 

significant for highly-fluorinated siloxane-bonded stationary phases, such as Flourophase-RP.
26

 

Electrostatic interactions are more often observed for acetonitrile-water and tetrahydrofuran-



 

 

29 
 
 

 
 
 

water mobile phases than for the methanol-water mobile phase. Electrostatic interactions are not 

important for neutral compounds.
6a

 

1.12.6 Solubility Methods 

 Solubility measurements can be used to determine the gas-hexadecane partition 

coefficient at 298 K (L), dipolarity/polarizability (S), hydrogen-bond acidity (A), and hydrogen-

bond basicity (B) descriptors. Partition coefficients in different solvents can be calculated for 

compounds if the aqueous solubility and vapor pressure at 25 °C are known.
19, 32

 Partition 

coefficients for water solvent systems (P) can be determined, if the solubility (mol l
-1

) of a 

solvent (CS) and the aqueous solubility (CW) is known (Equation 19).
6a

 

log P = log CS  log CW  (19) 

Similarly, the partition coefficient of a solute between the solvent and the gas phase (KS) can be 

determined using Equation 20, by calculating the gas phase concentration (CG) if the solid 

saturated vapor pressure at 25 °C is known. 

log KS = log CS  log CG  (20) 

Using Equations 19 and 20, a series of equations can be obtained for different solvents to form a 

linear model. The accuracy of the calculated partition coefficients can be determined by 

comparison with the experimental values for dry solvents. The disadvantage of solubility 

methods is that they are applicable only when three conditions are met. First, the solute should be 

in the same physical and chemical form when in equilibrium between the two phases. Secondly, 

the secondary medium activity coefficient of the solute in the two phases should be near unity. 

That is, the infinite dilution situation is considered for the solute (solute should not be too soluble 

in the two phases). Thirdly, for solutes that can be ionized, the concentration of the neutral 

species is used to determine the concentration in the aqueous medium (CW).  
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1.12.7 Micellar Electrokinetic Chromatography 

 Retention factors obtained by micellar electrokinetic chromatography (MEKC) can be 

used to estimate descriptors and to supplement descriptor values obtained by other methods.
6a

 In 

MEKC systems, a charged separation carrier, such as micelles, migrate in a definite direction in a 

moving electrolyte solution. The migration velocity or directions of the micelles are different to 

that of the bulk electrolyte solution. Bulk electrolyte migrates at a constant velocity by 

electroosmosis. Neutral compounds are distributed between the micellar and electrolyte phases. 

Therefore, separation occurs within the window created by the electroosmotic flow and migration 

of the micellar phase. The unique feature of this method is that the start and the end of the 

separation is known and can be changed by varying the experimental conditions. 

 The MEKC systems are suitable to determine the hydrogen-bond basicity (B), 

dipoarity/polarizability (S), and hydrogen-bond acidity (A) descriptors in combination with other 

methods. MEKC systems have model standard errors between 0.05-0.10.
33

 Within the pH range 

of 3-11 ionization of weak acids and bases can be suppressed and acceptable migration rates 

established for fused silica or sulfonic acid coated capillary columns. Electrolytes having up to 

30% (v/v) organic solvent are used to determine retention properties for compounds with low 

water solubility. When the solute migration time is greater than 14% of the electroosmotic flow 

marker and 25% less than the migration time of the micellar phase retention factors can be 

obtained with less than 5% error. If the compounds have migration rates outside these 

boundaries, it can introduce significant error to the retention factors.  

 If a compound is partially ionized, it may have interactions with the electric field used to 

generate the electroosmotic flow, and the compound can also interact with the separation carrier 

by electrostatic forces. Therefore, partially ionized compounds cannot be analyzed by the 
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solvation parameter model, as the solute property cannot be accurately modeled due to the above 

additional interactions.  

1.13 Required Properties of Models for Descriptor Determinations 

 Suitable systems which are capable of determining descriptor values should yield models 

which have high correlation between the solute property and the system constants. Rigorous 

models also should possess small standard errors. If the ratio between the model standard error 

and the system constant is small, the expected error associated with the determined descriptor 

value will be less. Therefore, appropriate models are expected to have one or more dominant 

system constant values in order to be suitable for descriptor determinations. 

 In order to build appropriate models, the solutes should satisfy certain requirements. 

Solutes should be distributed evenly within the largest possible descriptor range. The number of 

solutes should be sufficient to validate the model chemically and statistically. The solutes should 

also cover a reasonable descriptor space, so they can be separated easily into a training set and a 

test set. There should be minimal cross correlation between the descriptors. If cross correlation is 

present, it will lead to inaccurate solute property estimations. The dependent variable should 

possess a reasonable range of values without clustering. The expected value range for the 

dependent variable in totally organic biphasic systems is between 4 to +4 log units, whereas for 

gas and liquid chromatography it lies between 3 to +3 log units. 

1.14 Thesis Problem for the Research Segment ‘Chromatographic Methods for Solute   

         Descriptor Determinations’ 

 

The direct determination of the concentration of compounds in environmental and 

physiological systems is important when the resources for the experimental procedures are 

limited. The solvation parameter model can be used to estimate solute properties directly in 
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environmental, physiological, and physicochemical systems. In order to estimate the distribution 

of compounds in environmental compartments, the descriptor values for the solutes should be 

accurately assigned. To accomplish this task, suitable solvent systems with dominant system 

constant values need to be identified and characterized.  Therefore, the research work reported 

herein focuses on two different directions. In the first part, the focus will be on the identification 

and characterization of appropriate solvent systems suitable for descriptor determinations. In the 

second part, the focus will be on the determination of descriptor values for compounds of 

environmental interest.  

 Since the totally organic biphasic partition systems afford access to a wide selectivity 

space, solvent systems containing ethanolamine as a base solvent, and triethylamine as a counter 

solvent will be evaluated to identify biphasic systems with optimal system constants for accurate 

descriptor measurements. The purpose is to identify systems suitable for increasing the selectivity 

space for hydrogen-bond acidity and hydrogen-bond basicity system constants. These systems 

will then be explored for the determination of descriptors for polycyclic aromatic hydrocarbons 

and related compounds. The low solubility of these compounds in water renders conventional 

methods of limited use for these applications. 

Use of gas and liquid chromatography methods will allow the determination of 

experimental solute properties rapidly and accurately with well defined experimental procedures. 

Models will be constructed using linear regression analysis and will be validated for accuracy 

and reliability using statistical tools. The validity of the descriptor values will be evaluated by 

assessing their performance using standard environmental models (octanol-water, octanol-air, 

and air-water partition coefficients) and by comparison with experimentally determined solute 

physicochemical properties. 
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CHAPTER 2 

EVALUATION OF ETHANOLAMINE AS A POTENTIAL SOLVENT FOR 

DESCRIPTOR DETERMINATIONS 

 

Text, figures, and tables of this chapter were reused or adapted with permission from Ariyasena, 

T. C.; Poole, C. F. Chromatographia 2013, 76, 157-164.
34

 

 

2.1 Introduction 

Recent developments in liquid phase microextraction methods for sample preparation 

have renewed interest in liquid-liquid partition systems. Liquid-liquid partition systems have low 

sample size utilization and facilitate system selection for chromatography techniques.
22, 35

 

Compared with sorbent-based methods liquid partition systems are more tolerant of matrix 

burden and afford a wider selectivity range. In addition, solvent properties are more reproducible 

than sorbents and compare favorably with adsorption methods in terms of equipment, operational 

requirements, and costs.
35c, 36

 

Totally organic biphasic systems were shown to be suitable for the measurement of 

descriptors for organosiloxanes,
1c, 37

 fragrance compounds,
38

 plasticizers,
39

 and steroids
40

 

overcoming the limitations of aqueous biphasic systems for these measurements.  However, the 

number of systems available with suitable system constants for determining descriptors is still 

limited providing further impetus for the studies described here. Poole and coworkers 

demonstrated that ethylene glycol afforded several totally organic biphasic systems with a useful 

range of selectivity for liquid-liquid partition studies.
41

 In the research work reported herein, our 

aim is to investigate the use of ethanolamine (2-aminoethanol) as a base solvent for liquid-liquid 
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partition employing different counter solvents to extend the selectivity range of totally organic 

biphasic systems currently available, and for descriptor determination purposes. 

Ethanolamine has found many applications in industry as a polar solvent, particularly for 

processing biomass to useful materials and as a component of carbon dioxide storage systems.
42

 

Its solvatochromic parameters indicate that it is a highly structured polar liquid, strongly 

hydrogen-bond basic and moderately hydrogen-bond acidic.
42b, 42c, 43

 Spectroscopic studies and 

theoretical calculations show that in the liquid state ethanolamine has significant internal 

hydrogen bonding which may reduce its capacity to hydrogen bond with solutes.
44

 It is also 

suggested that in the liquid state ethanolamine exists predominantly as an equilibrium mixture of 

monomers and dimers with the later formed as hydrogen-bonded complexes between the 

hydroxyl terminus and amino terminus of adjacent molecules.
45

  

To date there are no reports of liquid-liquid partition coefficients for ethanolamine, which 

could be used to quantify its solvent properties. Modeling of ethanolamine as a base solvent with 

counter solvents of different polarity using the solvation parameter model will facilitate the 

evaluation of ethanolamine as a potential solvent for descriptor determinations.  

2.2 Experimental Section 

2.2.1 Materials 

Ethanolamine was obtained from Acros Organics (Morris Plains, NJ, USA) and n-

heptane and isopentyl ether from Sigma-Aldrich (Milwaukee, WI, USA) and dried over 

molecular sieves before use. Common chemicals were of the highest purity available and 

obtained from several sources. The 30 m x 0.32 mm id HP-5 open-tubular column, 0.25 µm film 

thickness, was obtained from Agilent Technologies (Folsom, CA, USA). 

 



 

 

35 
 
 

 
 
 

2.2.2 Instrumentation 

Gas chromatographic measurements were made with an Agilent Technologies (Palo Alto, 

CA, USA) HP 6890 gas chromatograph fitted with a split/splitless injector and flame ionization 

detector using ChemStation software (rev. B.04.01) for data acquisition. Nitrogen was used as 

carrier gas at a constant flow rate of 2.5 mL min
-1

 (velocity 47 cm s
-1

). The split ratio was set to 

30:1, septum purge 1 mL min
-1

, inlet temperature 275 C, and detector temperature 300 C. 

Separations were performed using a temperature program with an initial temperature of 150 C 

for 1 min and then raised to 280 C at 25 C min
-1

. To handle co-elution of some solutes with 

either the internal standard or solvent peaks this program was modified slightly as needed. 

2.2.3 Determination of Partition Coefficients 

Partition coefficients were determined by a method previously published by the Poole 

group.
41

 Screw-capped vials, 2.0 mL with PTFE-lined caps (Supelco, Bellefonte, PA, USA) were 

charged by syringe with 0.75 mL of ethanolamine saturated with counter solvent, 0.75 mL of 

counter solvent saturated with ethanolamine, 1-10 µL of liquid sample, and 1 µL (1.31 gml
-1

) of 

internal standard. Solid samples were dissolved in either the ethanolamine or counter solvent 

(depending on solubility) at a concentration of about 0.5-1.5 mg mL
-1

 and added to the vial as 

described for the pure solvent. Smaller sample sizes were used in some cases to avoid saturation 

in one of the phases. The vials were shaken and allowed to stand overnight or longer to reach 

equilibrium at room temperature (22 ± 2 C). Each vial was centrifuged at about 3,400 rpm for 

15 min to facilitate phase separation. Sample volumes of 1 µL from each phase were taken for 

calculation of the partition coefficients using Equation 21. 

Kp = (Scs / Sea) (Iea / Ics) Kp
IS

  (21) 



 

 

36 
 
 

 
 
 

In equation 21, Kp is the partition coefficient for compound S. The peak areas for compound S in 

the counter solvent and ethanolamine is given by Scs and Sea, respectively. The peak areas for the 

internal standard in the counter solvent and ethanolamine are given by Ics and Iea, respectively. 

Partition coefficient for the internal standard in the biphasic system is given by Kp
IS

. The internal 

standard was 1-nitronaphthalene with Kp = 0.776 ± 0.017 (n = 10) for n-heptane-ethanolamine 

and Kp = 1.182 ± 0.086 (n = 10) for isopentyl ether-ethanolamine, where n is the number of 

measurements. 

2.2.4 Calculations  

Multiple linear regression analysis and statistical calculations were performed on a Dell 

Dimension 9200 computer (Austin, TX, USA) using the program PASW v18.0 (PASW, 

Chicago, IL, USA). The solute descriptors were taken from an in-house database, 
6a, 40-41

 and are 

summarized in Table 2 together with the experimental partition coefficients. The Kennard-Stone 

algorithm programmed in visual basic for use in Excel 2007 (Microsoft Corporation, Redmond, 

WA, USA) was used to split the data sets into training and test sets to estimate the predictive 

ability of the partition models.
46

 

2.3 Results and Discussion 

2.3.1 Characterization of n-Heptane-Ethanolamine Biphasic System 

Fitting the partition coefficients (log Kp) in Table 2 to the solvation parameter model for 

the n-heptane-ethanolamine biphasic system gave Equation 22. 

log Kp =  0.233(±0.084) – 0.264(±0.046)E – 1.086(±0.070)S – 4.533(±0.066)A    

               – 1.299(±0.063)B + 1.992(±0.060)V      (22) 

r = 0.997 radj
2
 = 0.994 SE = 0.130 F = 2581 n = 76 
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In Equation 22, r is the multiple correlation coefficient, radj
2
 is the coefficient of determination 

adjusted for the number of degrees of freedom, SE is the standard error of the estimate, F is the 

Fisher’s statistic, n is the number of compounds with partition coefficients included in the model, 

and the coefficients in parenthesis are the standard deviation for the system constants. 

The driving force for the transfer of solutes from the n-heptane layer to enthanolamine is 

indicated by the system constants with a negative sign. Polar interactions characterized by the 

dipolarity/polarizability (s), hydrogen bond basicity (a), and hydrogen bond acidity (b) system 

constants are primarily responsible for transfer to ethanolamine. The system constants support 

the assertion that ethanolamine is a cohesive solvent, reasonably dipolar/polarizable, strongly 

hydrogen-bond basic, and moderately hydrogen-bond acidic. Electron lone pair interactions, 

represented by the e system constant, are weak but also favor transfer to the ethanolamine layer. 

Since n-heptane is a solvent of low cohesion the large positive v system constant suggests that 

ethanolamine is a cohesive solvent. For perspective it is about as cohesive as formamide and 

ethylene glycol, significantly more cohesive than dimethyl sulfoxide and 2,2,2-trifluoroethanol, 

and slightly less than half as cohesive as water, as measured by the v system constant in n-

heptane-organic solvent (or water) biphasic systems.
21-22, 47

 In particular the relatively large value 

for the a system constant indicates that ethanolamine is a strong hydrogen-bond base, 

significantly stronger than water, ethylene glycol, formamide, and dimethyl sulfoxide as 

measured by the a system constant in n-heptane-organic solvent (or water) biphasic systems. 

 

 



 

 

 
 

 
 
 

Table 2. Descriptor Values and Partition Coefficients for Compounds Used in the Solvation 

Parameter Model to Characterize the n-Heptane-Ethanolamine (HEP-EA) and Isopentyl 

Ether-Ethanolamine (IPE-EA) Biphasic Systems. 

 

Compound E S A B V HEP-EA 

log Kp 

IPE-EA 

log Kp 

Acenaphthene               1.350 0.910 0 0.226 1.2586 0.855 0.288 

Acenaphthylene 1.570 1.120 0 0.218 1.215 0.329 0.170 

Acetanilide       0.962 1.162 0.548 0.704 1.1137 −2.851 −1.687 

Aniline 0.956 1.012 0.237 0.432 0.8162  −1.727  

Anisole   

   

0.712 0.762 0 0.312 0.9160 0.416 0.168 

Anthracene    1.980 1.278 0 0.270 1.4544  0.524  

Benzamide 1.257 1.365 0.660 0.657 0.9728 −3.791 −2.469 

Benzyl alcohol 0.803 0.868 0.410 0.558 0.9160 −2.148 −1.201 

Biphenyl  1.372 0.978 0 0.156 1.2604   0.351 

Borneol  0.763 0.704 0.166 0.650 1.3591 −0.213 0.006 

1-Bromonaphthalene  1.594 1.014 0 0.156 1.2604 0.534 0.160 

3-Bromophenol  

   

1.081 0.760 0.942 0.209 0.9501 −4.039 −3.051 

 

 

 3
9

 



 

 

 
 

 
 
 

Table 2. Continued. 

Compound E S A B V HEP-EA 

log Kp 

IPE-EA 

log Kp 

Carbazole    2.051 1.553 0.388 0.229 1.3154 −2.009 −1.434 

2-Chloroaniline 1.026 1.006 0.238 0.317 0.9386 −0.902 −0.807 

4-Chloroaniline  

   

0.998 1.177 0.342 0.295 0.9386 −1.798 −1.319 

4-Chloro-3-methylphenol 

  

0.571 0.677 0.799 0.300 1.0384  −2.316 

1-Chloronaphthalene  1.419 0.941 0 0.137 1.2078  0.526 

2-Chlorophenol  

  

0.874 0.683 0.516 0.344 0.8975 −2.293 −1.572 

4-Chlorophenol  1.006 0.786 0.862 0.211 0.8975 −3.613 −2.733 

Chrysene  2.647 1.667 0 0.302 1.8234 0.527 0.230 

Cinnamyl alcohol  1.095 0.984 0.480 0.597 1.1548  −2.186 −1.709 

n-Decanol   

  

0.191 0.417 0.347 0.536 1.5763 0.329 0.130 

Dibenzofuran  1.598 1.092 0 0.123 1.2087 0.448 0.386 

Dibenzylamine 1.340 1.013 0.101 0.926 1.7058  0.110 0.296 
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Table 2. Continued. 

Compound E S A B V HEP-EA 

log Kp 

IPE-EA 

log Kp 

Dibenzyl ether  1.212 1.113 0 0.719 1.6647 0.474 0.250 

3,4-Dichloroaniline  

  

1.362 1.290 0.412 0.247 1.0610 −1.954 −1.258 

2,6-Dichloro-4-nitrophenol  1.263 1.494 0.369 0.319 1.2352 −1.724 −1.150 

Dicyclohexylamine  

   

0.585 0.423 0.015 0.560 1.8132  2.067 1.125 

N,N-Diethylcarbanilide 1.692  1.295 0 1.304 2.2440 0.652 0.320 

N,N-Diethyldodecanamide 

    

0.331 0.936 0 0.948 2.2635 1.846 1.356 

N,N-Dimethylaniline  0.956 0.815 0 0.445 1.0980 0.110 0.371 

N,N-Dimethyldodecylamine 0.080 0.199 0 1.467 2.1810 1.897 1.374 

3,5-Dimethylphenol  0.762 0.755 0.688 0.347 1.0569 −2.659 −1.766 

1,3-Dinitrobenzene  

  

1.056 1.760 0 0.416 1.0648  −0.961 −0.481 

Diphenylamine 1.704 1.278 0.149 0.532 1.4240  −0.609 −0.299 

Diphenyl ether   1.221 0.979 0 0.267 1.3829 0.765 0.316 
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Table 2. Continued. 

Compound E S A B V HEP-EA 

log Kp 

IPE-EA 

log Kp 

N,N-Diphenyl-p-phenylenediamine 

 

2.715 2.090 0.312 0.981 2.1316 −1.456 −1.110 

1,5-Divinyl-1,1,3,3,5,5-

hexamethyltrisiloxane  

−0.238 0.008 0 0.525 2.2861 3.870 

 

 

Dodecane   

   

0 0 0 0 1.7994  3.209  2.279 

1,12-Dodecanediol  

  

0.455  0.805 0.819 1.219 1.9168  −2.636  

Fluoranthene  2.310 1.470 0 0.286 1.5846 0.233 0.264 

Fluorene   

   

1.669 1.105 0 0.257 1.3565  0.448 0.297 

Geraniol   

   

0.493 0.640 0.270 0.603 1.4903 −0.074 −0.113 

Hexachlorobenzene  

 

1.374 0.876 0 0 1.4508 1.304 0.959 

n-Hexadecylamine   0.170 0.280 0.235 0.610  2.4680   1.700 

n-Hexanol   

 

0.210 0.432 0.350 0.535 1.0127 −0.908  

Indole   1.071 1.240 0.417 0.228 0.9464 −2.363 −1.253 

Iodobenzene   1.182 0.790 0 0.134 0.9747 0.375 −0.034 
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Table 2. Continued. 

Compound E S A B V HEP-EA 

log Kp 

IPE-EA 

log Kp 

Limonene   

 

0.497 0.337 0 0.167 1.3230 1.742 1.175 

Linalool  

 

0.391 0.536 0.198 0.733 1.4903  0.272 0.292 

2-Methoxynaphthalene 

   

1.451 1.151 0 0.355 1.2850 0.159 0.342 

1-Methylnaphthalene  

   

1.337 0.903 0 0.206 1.2263 0.596  

2-Methylnaphthalene  

   

1.304 0.888 0 0.206 1.2263 0.623  0.342  

2-Methylphenol  0.775 0.740 0.614 0.356  0.9160 −2.824 −1.912 

3-Methylphenol  

   

0.810 0.767 0.678 0.350 0.9160 −3.066 −2.175 

Naphthalene   

  

1.230  0.905 0 0.191 1.0854   0.129 

2-Naphthylethanol  

  

1.592 1.233 0.440 0.745 1.4259 −2.340 −1.417 

Nicotinamide   

  

1.191 1.798 0.431 0.773 0.9317  −2.018 

Nicotine  0.861 0.958 0 1.082 1.3710 −0.405 0.051 

2-Nitroaniline   

   

1.228 1.473 0.343 0.352 0.9904  −2.285 −1.269 
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Table 2. Continued. 

Compound E S A B V HEP-EA 

log Kp 

IPE-EA 

log Kp 

3-Nitroaniline   1.252 1.564 0.496 0.420 0.9904  −3.168  −2.073 

Nitrobenzene   

  

0.846 1.143 0 0.268 0.8906 −0.271 −0.275 

4-Nitrobenzyl alcohol  

   

1.008 1.358 0.509 0.583 1.0902 −2.939 −1.881 

1-Nitronaphthalene  

 

1.381 1.478 0 0.287 1.2596 −0.110 0.072 

2-Nitrotoluene   

  

0.866 1.154 0 0.225 1.0315 0.062 −0.118 

3-Nitrotoluene   

  

0.874 1.138 0 0.211 1.0315 0.075 −0.063 

4-Nitrotoluene  0.879 1.171 0 0.265 1.0315  −0.030 0.165 

n-Nonanol   

   

0.199 0.368 0.370 0.555 1.4354  -0.058 

Octan-2-ol   

 

0.176 0.414 0.273  0.525 1.2945 0.187  

Pentachlorophenol  

   

1.745 0.956 0.665  0.061 1.3871 −1.616 

 

 

Perylene   

  

2.697 1.835 0 0.411 1.9536 0.634 −0.021 

Phenanthrene   

 

1.934 1.284 0 0.284 1.4544 0.491 0.379 
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Table 2. Continued. 

Compound E S A B V HEP-EA 

log Kp 

IPE-EA 

log Kp 

2-Phenylethanol  

  

0.787 0.815 0.415 0.620 1.0569 −1.924 −1.440 

4-Phenylphenol  

   

1.517 1.179 0.817 0.445 1.3829 −3.609 −2.496 

3-Phenylpropan-1-ol  0.819  0.888 0.359 0.670 1.1978  −1.694 −1.137 

Pyrene    

 

2.296  1.463 0 0.293 1.5846  0.409 0.072 

trans-Stilbene   

 

1.619 1.216 0 0.286 1.5630 0.610 0.641 

Quinoline   

  

1.265 1.091 0 0.619 1.0443 −0.254 −0.325 

Terpinen-4-ol   

 

0.553 0.557 0.173 0.652 1.4247  0.115 0.133 

1,2,4,5-Tetrachlorobenzene   1.070 0.714 0 0.024 1.2060  0.942 0.682 

Tribenzylamine  

   

1.821 1.270 0 0.631 2.4545   1.004 

1,2,4-Trichlorobenzene 

    

1.022 0.746 0 0.024 1.0836  0.839 0.614 

1,3,5-Triethylbenzene   

 

0.672 0.500 0 0.190 1.5618 1.118 
 

Trisopropanolamine  0.629 1.335 0.412  1.499 1.6526   −1.228 
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Table 2. Continued. 

Compound E S A B V HEP-EA 

log Kp 

IPE-EA 

log Kp 

Trimethoprim    1.760  1.947 0.075 2.081 2.1813 −1.507 
 

 

Triphenylamine  2.439 0.983 0 0.755 2.0318 0.942 0.786 

Triphenylmethane  

   

1.865  1.152 0 0.549 2.0729 0.757 
 

Undecane  0 0 0 0 1.6585  2.878 2.035 

Vanillin   

  

1.120 1.385 0.385 0.673 1.1313   −1.390 

m-Xylene   

  

0.625 0.505 0 0.184 0.9982   0.649 
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To evaluate the predictive ability of the model the data set in Table 2 was split into a training set 

of 51 compounds and a test set of 25 compounds using the Kennard-Stone algorithm.
46

 This 

approach ensures that the training set and test set are selected to occupy a similar descriptor 

space. The model for the training set in Equation 23 is similar to the model in Equation 22. 

 

log Kp =  0.267(±0.089) – 0.232(±0.060)E – 1.100(±0.085)S – 4.477(±0.077)A  

               1.284(±0.069)B + 1.978(±0.065)V      (23) 

r = 0.998 radj
2
 = 0.995 SE = 0.123 F = 1,880 n = 51 

 

Equation 23 was then used to predict the partition coefficients (log Kp) for the compounds 

in the test set. The average error, average absolute error, and root mean square error of the 

difference between the experimental and model predicted partition coefficients are used to assess 

the ability of Equation 23 to estimate further values of log Kp within the same descriptor space. 

The average error is an indication of bias and at 0.021 is not a concern for equation 23. The 

absolute average error (0.155) and root mean square error (0.154) are an indication of the likely 

error in predicting further partition coefficients based on equation 23. Since Equation 23 is 

similar to Equation 22, which is preferred because it is based on a larger number of compounds, 

it is reasonable to conclude that Equation 22 should be able to predict partition coefficients to 

about ±0.15 log units for further compounds that lie within or close to the descriptor space (E = 

0.24 to 2.72, S = 0 to 2.09, A = 0 to 0.92, B = 0 to 2.08, and V = 0.816 to 2.286) used to define 

the model. 

The system constants for the biphasic system n-heptane-ethylene glycol (e = 0.095, s = 

1.486, a = 3.797, b = 1.536, and v = 2.075) have been reported previously and can be used to 
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assess differences in solvation properties for n-heptane-ethylene glycol and n-heptane-

ethanolamine biphasic systems.
40-41

 Ethylene glycol and ethanolamine have similar cohesion (v 

system constant about the same) but ethylene glycol is significantly more polar/polarizable than 

ethanolamine (s ethylene glycol > s ethanolamine). Electron lone pair interactions are virtually 

insignificant for ethylene glycol but not so for ethanolamine and contribute to the transfer of 

compounds to the polar solvent from n-heptane. Ethylene glycol is considerably more hydrogen-

bond acidic than ethanolamine (b ethylene glycol > b ethanolamine) but a significantly weaker 

hydrogen-bond base. The ‘a’ system constant for the n-heptane-ethanolamine biphasic system is 

the largest recorded for a liquid-liquid partition system and is considerably larger than n-alkane-

water biphasic systems.
19, 21

 Biphasic systems with a large single dominant system constant are 

useful for estimating descriptor values and this is foreseen as a major application of this system. 

For sample preparation purpose the n-heptane-ethanolamine system should be useful for the 

selective extraction of hydrogen-bond acids from matrices soluble in n-heptane. 

Ethanolamine was observed to be unsuitable for handling certain samples due to chemical 

reactions either in solution or the injection port of the gas chromatograph. Ketones, aldehydes, 

and aromatic esters (e.g., phthalate esters) showed additional products in the chromatogram most 

likely due to nucleophilic carbonyl addition reactions involving Schiff base formation. 

Alkoxysilanes are unstable in ethanolamine forming silyl derivatives of the amine and hydroxyl 

groups. Similar reactions were not observed with ethylene glycol indicating the participation of 

the amine group as a base in promoting these reactions. Using cryoscopic measurements Baliah 

and Ramakrishnan suggested that phenols react with ethanolamine forming ion pairs which 

dissociate only partially in ethanolamine.
48

 There are seven phenols in the data set used to 
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construct Equation 22. Removing these from the data set gave Equation 24 which is virtually 

identical to Equation 22. 

 

log Kp =  0.225(±0.087) – 0.245(±0.050)E – 1.116(±0.075)S – 4.452(±0.091)A 

               – 1.305(±0.064)B + 1.990(±0.061)V      (24) 

r = 0.997 radj
2
 = 0.993 SE = 0.130 F = 1883 n = 69 

 

In addition the model residuals for the phenols show alternating signs and the average 

error for the phenol residuals of 0.052 does not indicate a significant bias in the prediction of 

their solvation properties. Thus, it is reasonable to conclude that phenols are unlikely to form ion 

pairs in ethanolamine since their experimental partition coefficients can be described by the 

general model. This was confirmed for the isopentyl ether-ethanolamine data set, discussed 

below, which contains eleven phenols for which the average error for the model residuals was 

0.036.  

2.3.2 Characterization of Isopentyl Ether-Ethanolamine Biphasic System 

Fitting the partition coefficients (log Kp) for the isopentyl ether-ethanolamine system in 

Table 2 to the solvation parameter model gave Equation 25. 

 

log Kp =  0.091(±0.087) – 0.302(±0.051)E – 0.564(±0.073)S – 3.212(±0.071)A  

               – 0.701(±0.071)B + 1.231(±0.060)V      (25) 

r = 0.993 radj
2
 = 0.985 SE = 0.144 F = 1045 n = 81 

 

The higher cohesion of the ethanolamine layer favors transfer of the solutes to the 

isopentyl ether layer (positive v system constant) while polar interactions have a negative sign (e, 
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s, a, and b) and favor solubility in the ethanolamine layer. Isopentyl ether is more cohesive, 

dipolar/polarizable, and hydrogen-bond basic than n-heptane and this is reflected in the smaller 

values for the v, s and a system constants compared with the n-heptane-ethanolamine system. 

The Kennard-Stone algorithm was used to split the data set into a training set of 54 compounds 

and a test set of 27 compounds. The model for the training set is given in Equation 26. 

 

log Kp =  0.068(±0.100) – 0.282(±0.059)E – 0.584(±0.087)S – 3.139(±0.096)A 

               – 0.623(±0.106)B  + 1.179(±0.072)V          (26) 

r = 0.992 radj
2
 = 0.982 SE = 0.145 F = 578 n = 54 

 

Equation 26 is quite similar to the Equation 25. For the test set, the average error was 0.024, the 

average absolute error was 0.164, and the root mean square error was 0.163. Thus Equation 25 

should be able to predict further values of the partition coefficient to about 0.16 log units for 

compounds with descriptor values that lie within or close to the descriptor space (E = 0 to 2.71, S 

= 0 to 2.09, A = 0 to 0.94, B = 0 to 1.49, and V = 0.891 to 2.468) used to define the model. 

The system constants for the biphasic system isopentyl ether-ethylene glycol (e = 0.130, 

s = 1.093, a = 1.537, b = 1.919, and v = 2.093) indicate that the isopentyl ether-ethanolamine 

system has complementary separation properties.
40-41

 The ethanolamine biphasic system is not as 

cohesive, dipolar/polarizable or as hydrogen-bond acidic (smaller v, s, and b system constants) as 

the ethylene glycol system. On the other hand, the ethanolamine biphasic system is considerably 

more hydrogen-bond basic (larger a system constant). Isopentyl ether competes to some extent 

with ethanolamine as a hydrogen-bond acid but the significant ‘a’ system constant suggests that 

it would be useful for determining the hydrogen bond acidity (A) descriptor for compounds with 
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limited solubility in n-heptane. The solubility of isopentyl ether in ethanolamine is about 1.19 % 

(v/v) and ethanolamine in isopentyl ether 0.73% (v/v) at equilibrium and room temperature. With 

the exception of aromatic solvents, such as toluene, ethanolamine does not form biphasic systems 

with moderately dipolar solvents, such as 1,2-dichloroethane (unlike ethylene glycol), or more 

polar organic solvents. Thus, there are limited options for the choice of further counter solvents 

that might be used with ethanolamine to adjust selectivity. 

Hierarchical cluster analysis using the average linkage between groups agglomeration 

algorithm and the system constants as variables was used to obtain a global view of the 

extraction properties of the nineteen totally organic biphasic systems characterized using the 

solvation parameter model.
22, 40, 47a

 The dendrogram in Figure 8 demonstrates that these totally 

organic biphasic systems encompass a wide range of selectivity with little clustering.  

Both the n-heptane-ethanolamine and isopentyl ether-ethanolamine systems are indicated 

as behaving independently and do not duplicate the separation properties of any of the other 

biphasic systems in the database. n-Heptane-ethanolamine is loosely connected with the group 

containing n-heptane-ethylene glycol
41

 and n-heptane-formamide
47b

. These three systems have 

the largest value for the ‘a’ and ‘v’ system constants and are suitable candidates for determining 

the hydrogen bond acidity (A) descriptor. They are somewhat different in their other solvation 

properties and thus do not form a tight cluster with n-heptane-ethanolamine standing out by its 

significantly larger value for the ‘a’ system constant. The isopentyl-ether-ethanolamine biphasic 

system is loosely connected with the ethylene glycol-1,2-dichloroethane
41

 and formamide-1,2-

dichloroethane
47b

 biphasic systems. These systems have a reasonably large ‘a’ system constant, 

small ‘s’ system constant, and intermediate ‘v’ system constant. They provide an alternative to 

the biphasic systems like n-heptane-ethanolamine for the determination of the hydrogen bond 
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acidity (A) descriptor for compounds with limited solubility in n-heptane. The analysis of the 

solvation characteristics of the biphasic systems in Figure 8 confirm that the two ethanolamine 

systems add to the diversity of the liquid-liquid partition systems available for sample 

preparation and descriptor measurements without duplicating the properties of those systems. 

 

 

Figure 8. Dendrogram for Totally Organic Biphasic Systems with the System Constants as 

Variables Using the Average Linkage Between Groups Agglomeration Algorithm. 

 

 

(Solvents: hp = n-heptane, ipe = isopentyl ether, dce = 1,2-dichloro ethane, ocoh = 1-octanol 

dmf = N,N-dimethylformamide, acn = acetonitrile, dmso = dimethylsulfoxide, 

pc = propylene carbonate, eg = ethylene glycol, fa = formamide, moh = methanol, 

hfip = hexaflouroisopropanol, tfe = 2,2,2-triflouroethanol) 
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2.4. Conclusions 

Ethanolamine is shown to be a useful solvent for liquid-liquid partition forming 

complementary biphasic systems with organic counter solvents with potential applications for 

sample preparation and descriptor measurements. Ethanolamine is a relatively cohesive solvent, 

moderately dipolar/polarizable and hydrogen-bond acidic, and strongly hydrogen-bond basic. It is 

its capability as a strong hydrogen-bond base which sets it apart from other organic solvents 

studied so far as well as water. The two models for the characterized ethanolamine systems 

demonstrate that the ethanolamine-based systems are suitable for descriptor determinations, as 

well as the two systems contributed to increase the selectivity space for totally organic biphasic 

systems. We have used ethanolamine systems to determine descriptors for a group of amine and 

amide compounds. 
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CHAPTER 3 

EVALUATION OF TRIETHYLAMINE AS A POTENTIAL SOLVENT FOR 

DESCRIPTOR DETERMINATIONS 

 

Text, figures, and tables of this chapter were reused or adapted with permission from Ariyasena, 

T. C.; Poole, C. F. Chromatographia 2013, 76, 1031-1039.
49

 

 

3.1 Introduction 

Poole and coworkers have reported the characterization of n-heptane, 1,2-dichloroethane, 

isopentyl ether, and octan-1-ol as counter solvents in totally organic biphasic systems (Figure 

9).
22

 Due to mutual solubility, it is difficult to extend the coverage of these biphasic systems by 

identifying further polar solvents which demonstrate different selectivity properties than those 

reported so far. Characterization of systems with counter solvents which exhibit diverse chemical 

properties is important to enhance the selectivity space for totally organic biphasic partition 

systems. To this end, triethylamine was explored as a counter solvent with solvation properties 

different to those of n-heptane, 1,2-dichloroethane, isopentyl ether, and 1-octanol. Triethylamine 

is a weakly cohesive and dipolar/polarizable solvent that is strongly hydrogen-bond basic, but 

lacks any hydrogen-bond acidity.
50

 It forms biphasic systems with dimethyl sulfoxide and 

formamide of the polar solvents indicated in Figure 9. We could find no reports of liquid-liquid 

partition coefficients for totally organic biphasic systems formed with triethylamine, which could 

be used to facilitate an understanding of its solvent properties, and set about determining these 

values to identify its selectivity properties and its potential ability for descriptor determinations. 
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Polar Solvent Counter Solvent 

Heptane 1,2-DCE IPE OcOH TEA

Acetonitrile

Dimethylformamide

Dimethyl sulfoxide

Ethylene glycol

Ethanolamine

Formamide

Hexafluoroisopropanol

Propylene carbonate

Methanol

Trifluoroethanol
 

Figure 9. Currently Explored Counter Solvents in Totally Organic Biphasic Partition Systems. 

Shaded Areas Indicate Solvent Pairs Having Less Solubility which Form Suitable Systems for 

Characterization. 

(Solvents: 1,2-DCE = 1,2-Dichloroethane, IPE = Isopentyl ether OcOH = Octanol,  

 TEA = Triethylamine) 

 

 

3.2 Experimental 

3.2.1 Materials 

Triethylamine, ethanolamine, dimethyl sulfoxide, and formamide were obtained from 

Acros Organics (Morris Plains, NJ, USA) and dried over molecular sieves before use. Common 

chemicals were of the highest purity available and obtained from several sources. The 30 m x 

0.32 mm id HP-5 open-tubular column, 0.25 µm film thickness, was obtained from Agilent 

Technologies (Folsom, CA, USA). 
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3.2.2 Instrumentation 

Gas chromatographic measurements were made with an Agilent Technologies (Palo Alto, 

CA, USA) HP 6890 gas chromatograph fitted with a split/splitless injector and flame ionization 

detector using ChemStation software (rev. B.04.01) for data acquisition. Nitrogen was used as 

carrier gas at a constant flow rate of 2.5 mL min
-1

 (velocity 47 cm s
-1

). The split ratio was set to 

30:1, septum purge 1 mL min
-1

, inlet temperature 275 C, and detector temperature 300 C. For 

the triethylamine-dimethyl sulfoxide and triethylamine-ethanolamine systems, separations were 

performed using a temperature program with an initial temperature of 100 C for 1 min and then 

raised to 280 C at 15 C min
-1

 with a hold at the final temperature of 4 min. For the 

triethylamine-formamide system separations were performed using a temperature program with 

an initial temperature of 115 C for 3 min and then raised to 128 C at 2 C/min, held at 128 C 

for 1 min, then programmed to 280 C at 15 C/min and held at the final temperature for 4 min. 

The program conditions were optimized in this way to handle a broad decomposition peak that 

results from the decomposition of formamide on gas chromatography.
47b

 To handle co-elution of 

some solutes with either the internal standard or solvent peaks both programs were modified 

slightly as needed. 

3.2.3 Determination of Partition Coefficients 

Partition coefficients were determined following a literature method.
41

 Screw-capped 

vials, 2.0 mL with PTFE-lined caps (Supelco, Bellefonte, PA, USA) were charged by syringe 

with 0.75 mL of triethylamine saturated with polar solvent, 0.75 mL of polar solvent saturated 

with triethylamine, 1-10 µL of liquid sample, and 1 µL of internal standard. Solid samples were  

dissolved in either the triethylamine or polar solvent (depending on solubility) at a concentration 

of about 0.5-1.5 mg mL
-1

 and added to the vial as described for the pure solvent. Smaller sample 



57 
 

  
 
 

sizes were used in some cases to avoid saturation in one of the phases. The vials were shaken and 

allowed to stand overnight or longer to reach equilibrium at room temperature (22 ± 2 C). Each 

vial was centrifuged at about 3,400 rpm for 15 min to facilitate phase separation. Sample 

volumes of 1 µL from each phase were taken for calculation of the partition coefficients using 

the relationship 

Kp = (Stea / Sps) (Ips/ Itea) Kp
IS

  (27) 

 Kp is the partition coefficient for compound S, Stea and Sps the peak area for compound S in the 

triethylamine and polar solvent layers, respectively, Itea and Ips the peak area for the internal 

standard in the triethylamine and polar solvent layers, respectively, and Kp
IS

 is the partition 

coefficient for the internal standard in the biphasic system. The internal standard was dibenzyl 

ether with Kp = 0.918 ± 0.052 (n = 10) for triethylamine-dimethyl sulfoxide and nitrobenzene 

with Kp = 1.683 ± 0.037 (n = 10) for triethylamine-formamide and 0.971  0.057 (n = 10) for 

triethylamine-ethanolamine.   

3.2.4 Calculations 

Multiple linear regression analysis and statistical calculations were performed on a Dell 

Dimension 9200 computer (Austin, TX, USA) using the program PASW v 21.0 (PASW, 

Chicago, IL, USA). The solute descriptors were taken from an in-house database
6a, 40-41

 and are 

summarized in Table 3 together with the experimental partition coefficients. The Kennard-Stone 

algorithm programmed in visual basic for use in Excel 2007 (Microsoft Corporation, Redmond, 

WA, USA) was used to split the data sets into training and test sets to estimate the predictive 

ability of the partition models.
46
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3.3 Results and Discussion 

Triethylamine forms biphasic systems with the polar solvents ethanolamine, dimethyl 

sulfoxide, formamide and propylene carbonate. The equilibrium solubility of propylene 

carbonate in triethylamine is 0.54% (v/v) and triethylamine in propylene carbonate 89.7% (v/v). 

The high solubility of triethylamine in propylene carbonate would make this biphasic system an 

unlikely candidate for practical applications in sample preparation and for descriptor 

measurements. The mutual solubility of the triethylamine-ethanolamine system is more favorable 

with the solubility of ethanolamine in triethylamine determined as 0.43% (v/v) and estimated as 

5% (v/v) for triethylamine in ethanolamine. The solubility of triethylamine in dimethyl sulfoxide 

was 1.09% (v/v) and dimethyl sulfoxide in triethylamine 0.98% (v/v). Formamide is unstable to 

gas chromatography,
47b

 and its mutual solubility was indicated as low based on the imperceptible 

change in volume of the two layers on mixing. 

3.3.1 Characterization of Triethylamine-Dimethyl sulfoxide Biphasic System 

Fitting the partition coefficients (log Kp) in Table 3 to the solvation parameter model for 

the triethylamine-dimethyl sulfoxide biphasic system gave equation 28. 

 

log Kp =  0.167(±0.093) + 0.085(±0.054)E – 1.325(±0.084)S – 1.215(±0.095)A  

               – 0.716(±0.081)B + 1.046(±0.052)V      (28) 

r = 0.977 radj
2
 = 0.951 SE = 0.187 F = 329 n = 86 

 

In Equation 28, r is the multiple correlation coefficient, radj
2
 is the coefficient of determination 

adjusted for the number of degrees of freedom, SE is the standard error of the estimate, F is the 

Fisher’s statistic, n is the number of compounds with partition coefficients included in the model, 
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and the coefficients in parenthesis are the standard deviation for the system constants. The 

driving force for the transfer of solutes from the triethylamine layer to dimethyl sulfoxide is 

indicated by the system constants with a negative sign. Polar interactions characterized by the s, 

a, and b system constants are primarily responsible for transfer to dimethyl sulfoxide. The 

difference in cohesion for the two solvents is mainly responsible for retention in the triethylamine 

layer. Electron lone pair interactions, represented by the e system constant, are weak and favor 

transfer to the triethylamine layer. Consequently, compounds of low polarity are expected to 

reside predominantly in the triethylamine layer with small polar compounds being selectively 

extracted by dimethyl sulfoxide.  

 

 



 

  
 
 

Table 3. Descriptor Values and Partition Coefficients for Compouds Used in the Solvation Parameter Model to Characterize the 

Triethylamine-Dimethyl sulfoxide (TEA-DMSO), Triethylamine-Formamide (TEA-FA), and Triethylamine-Ethanolamine (TEA-EA) 

Biphasic Systems. 

 

 

 

Compound 

 

E 

 

S 

 

A 

 

B 

 

V 

TEA-

DMSO 

log Kp 

 

TEA-FA 

log Kp 

 

TEA-EA 

log Kp 

Acenaphthene               1.350 0.910 0 0.226 1.258 0.022 1.749 0.030 

Acenaphthylene 1.570 1.120 0 0.218 1.215 0.329 1.292 0.080 

Acetanilide       0.962 1.162 0.548 0.704 1.113 1.722 0.535 1.172 

1-Acetonaphthone 1.517 1.414 0 0.559 1.382  0.639  

2-Acetonaphthone 1.429 1.457 0 0.601 1.382  0.572  

Acetophenone 0.806 1.057 0 0.497 1.013  0.188  

Androsterone 1.331 1.697 0.396 1.590 2.425  0.288  

Aniline 0.955 1.012 0.237 0.432 0.816   0.684 

Anisole   0.712 0.762 0 0.312 0.916   0.243 

Anthracene  1.980 1.278 0 0.270 1.454 0.356 1.537 0.065 

 

 

 

 6
0

 



 

  
 
 

Table 3. Continued. 

 

Compound 

 

E 

 

S 

 

A 

 

B 

 

V 

TEA-

DMSO 

log Kp 

 

TEA-FA 

log Kp 

 

TEA-EA 

log Kp 

Benzamide 1.257 1.365 0.660 0.657 0.972 2.406  1.875 

Benzonitrile 0.742 1.128 0 0.332 0.871  0.138  

Benzophenone 1.209 1.293 0 0.581 1.480 -0.715 0.532  

Benzyl alcohol 0.803 0.868 0.410 0.558 0.916 1.216  0.401 

Benzyl benzoate 

    
1.248 1.304 0 0.584 1.680 0.177 1.252  

Benzyl ether  

  
1.210 1.114 0 0.723 1.664 0.037 1.076 0.341 

Biphenyl   1.372 0.978 0 0.156 1.260 0.106 1.215 0.596 

Bis(2-butoxyethyl) phthalate 0.641 1.582 0 1.492 2.955  1.283  

Bis(2-ethoxyethyl) phthalate 

   
0.619 1.558 0 1.501 2.391  0.374  

Bis(2-methoxyethyl) 

phthalate  
0.788 1.748 0 1.483 1.436 1.449 0.433  

Borneol  0.763 0.704 0.166 0.650 1.359 0.457  0.173 

1-Bromonaphthalene  1.594 0.978 0 0.281 1.260   0.456 
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Table 3. Continued. 

 

Compound 

 

E 

 

S 

 

A 

 

B 

 

V 

TEA-

DMSO 

log Kp 

 

TEA-FA 

log Kp 

 

TEA-EA 

log Kp 

3-Bromophenol  

  
1.081 0.760 0.942 0.209 0.950 1.148   

Butyl benzyl phthalate 

   
1.296 1.728 0 1.010 2.459 0.750 1.685  

Caffeine  1.568 1.684 0.044 1.249 1.363 1.497   

Carbazole  

  
2.051 1.553 0.388 0.229 1.315 1.492 1.358 0.310 

2-Chloroaniline 1.026 1.006 0.238 0.317 0.938  0.413 −0.422 

4-Chloroaniline 0.998 1.177 0.342 0.295 0.938 1.179 0.226 0.323 

4-Chloro-3-methylphenol

  
0.571 0.677 0.799 0.300 1.038 0.910  1.017 

1-Chloro naphthalene 1.419 0.941 0 0.137 1.207 0.151 1.631 0.304 

2-Chlorophenol  

  
0.874 0.683 0.516 0.344 0.897 1.190   

Cholesterol   1.353 1.087 0.212 0.558 3.494 1.482   

Chrysene  2.647 1.667 0 0.302 1.823 0.375 1.890 0.075 

Cinnamyl alcohol  1.095 0.984 0.480 0.597 1.154 1.005  0.559 
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Table 3. Continued. 

 

Compound 

 

E 

 

S 

 

A 

 

B 

 

V 

TEA-

DMSO 

log Kp 

 

TEA-FA 

log Kp 

 

TEA-EA 

log Kp 

n-Decanol  

  
0.191 0.417 0.347 0.536 1.576 0.399  0.529 

Decamethyltetrasiloxane

   
−0.717 −0.167 0 0.559 2.676 2.410 3.405  

Dibenzofuran  1.598 1.092 0 0.123 1.208 0.249 1.674 0.562 

Dibenzylamine 1.340 1.013 0.101 0.926 1.705 0.065  0.315 

Dibutyl phthalate 0.694 1.299 0 0.938 2.274 −0.228 1.380  

Dibutyl succinate 0.091 0.935 0 0.968 1.948  0.787  

3,4-Dichloroaniline 1.362 1.290 0.412 0.247 1.061 1.584 0.495 −0.980 

2,6-Dichloro-4-nitroaniline

  
1.263 1.494 0.369 0.319 1.235  0.159 0.536 

Di(cyclohexyl)adipate  0.649 1.259 0 1.075 2.510  1.607  

Dicyclohexylamine  0.585 0.423 0.015 0.560 1.813 0.631  0.976 

Dicyclohexyl phthalate 
   

1.405 1.508 0 1.067 2.620  1.879  

Diethyl adipate  
  

0.085 1.009 0 0.868 1.666 0.299 0.590  

N,N-Diethylcarbanilide 1.692 1.295 0 1.304 2.244 0.071 1.281 0.072 
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Table 3. Continued. 

 

Compound 

 

E 

 

S 

 

A 

 

B 

 

V 

TEA-

DMSO 

log Kp 

 

TEA-FA 

log Kp 

 

TEA-EA 

log Kp 

Diethyl diethylmalonate 1.692 1.295 0 1.304 2.244 -0.071 1.281 −0.072 

N,N-Diethyldodecanamide  0.331 0.936 0 0.948 2.263   1.485 

Di(2-ethylhexyl) phthalate
  

0.693 1.155 0 1.189 3.401  2.844  

Diethyl phthalate 0.725 1.394 0 0.887 1.710  0.406  

Diisobutyl phthalate  0.672 1.235 0 0.948   1.566  

N,N-Dimethylaniline  0.956 0.815 0 0.445 1.098 0.459   

N,N-Dimethyldodecylamine 0.080 0.199 0 1.467 2.181 0.684  1.147 

2,6-Dimethyl phenol 0.771 0.788 0.413 0.403 1.056   −0.033 

3,5-Dimethylphenol 0.762 0.755 0.688 0.347 1.056   0.480 

Dimethyl phthalate 0.780 1.410 0 0.880 1.429 0.906 0.055  

1,3-Dinitrobenzene 

  
1.056 1.760 0 0.416 1.064  0.493 0.405 

Dioctyl phthalate 0.662 1.220 0 1.121 3.401  2.838  

Diphenylamine 1.704 1.278 0.149 0.532 1.424  0.921 0.070 
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Table 3. Continued. 

 

Compound 

 

E 

 

S 

 

A 

 

B 

 

V 

TEA-

DMSO 

log Kp 

 

TEA-FA 

log Kp 

 

TEA-EA 

log Kp 

N,N-Diphenyl-p-

phenylenediamine 
2.715 2.090 0.312 0.981 2.131 1.286 1.157 1.235 

1,5-Divinyl-1,1,3,3,5,5-

hexamethyltrisiloxane 
−0.238 0.008 0 0.525 2.286   3.014 

Dodecane 0 0 0 0 1.799   2.556 

Ethyl benzoate  
   

0.694 0.881 0 0.452 1.213  0.679  

Eugenol   0.946 0.865 0.353 0.540  0.871 0.841 0.333 

Fluoranthene  2.330 1.475 0 0.289 1.584 0.369 2.161 0.112 

Fluorene   1.669 1.105 0 0.257 1.356 0.014  1.678  0.458  

Geraniol   0.493 0.640 0.270 0.603 1.490 0.326  0.382 

Hexachlorobenzene  

 
1.374 0.876 0 0 1.450 0.453 2.208 0.722 

n-Hexanol  

 
0.210 0.432 0.350 0.535 1.012   0.210 

Hexanophenone 0.790 0.951 0 0.510 1.577 0.110 1.362  

Indole   
  

1.071 1.240 0.417 0.228 0.946 −1.338  0.476  

Iodobenzene  

  
1.182 0.790 0 0.134 0.974 −0.471 1.076  −0.011 
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Table 3. Continued. 

 

Compound 

 

E 

 

S 

 

A 

 

B 

 

V 

TEA-

DMSO 

log Kp 

 

TEA-FA 

log Kp 

 

TEA-EA 

log Kp 

Limonene  
 

0.497 0.337 0 0.167 1.323 0.505   

Linalool    0.391 0.536 0.198 0.733 1.490 −0.147  0.245 

2-Methylaniline  
 

0.964 1.079 0.172 0.486 0.957 −1.257 0.048  

Methyl benzoate  0.738 0.918 0 0.440 1.072 −0.421   

Methyl decanoate  0.057 0.564 0 0.456 1.733 0.763 1.559  

2-Methoxynaphthalene   1.451 1.151 0 0.355 1.285 −0.572 1.264 −0.247 

2-Methylnaphthalene  1.304 0.888 0 0.206 1.226 −0.170 1.582 0.259  

Methyl octanoate 
  

0.069 0.557 0 0.448 1.451 0.226 0.928  

2-Methylphenol  0.775 0.740 0.614 0.356 0.916 −1.256  −0.625 

3-Methylphenol   0.810 0.767 0.678 0.350 0.916 −1.523   

Naphthalene  

  
1.230 0.905 0 0.191 1.085 −0.514 1.048 0.534 

2-Naphthol  1.453 1.174 0.783 0.347 1.144   −1.235 

Nicotinamide 1.191 1.798 0.431 0.773 0.931 −2.259  −2.101 
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Table 3. Continued. 

 

Compound 

 

E 

 

S 

 

A 

 

B 

 

V 

TEA-

DMSO 

log Kp 

 

TEA-FA 

log Kp 

 

TEA-EA 

log Kp 

Nicotine  0.861 0.958 0 1.082 1.371 −0.425 0.132 −0.102  

2-Nitroaniline  1.228 1.473 0.343 0.352 0.990 −1.441  0.076 −0.615  

3-Nitroaniline  
  

1.252 1.564 0.496 0.420 0.990 −2.000 −0.740  −1.021 

Nitrobenzene  0.846 1.143 0 0.268 0.890 −1.039  −0.013 

4-Nitrobenzyl alcohol 
 

1.008 1.358 0.509 0.583 1.090 −1.738   

1-Nitronaphthalene  1.381 1.478 0 0.287 1.259  0.590 −0.301 

2-Nitrotoluene  0.866 1.154 0 0.225 1.031 −0.830 0.517 0.058 

3-Nitrotoluene  0.874 1.138 0 0.211 1.031 −0.604 0.507 0.117  

4-Nitrotoluene 0.879 1.171 0 0.265 1.031   0.445 −0.133 

Nonan-1-ol  0.199 0.368 0.370 0.555 1.435   0.508 

Octan-1-ol    0.199 0.440 0.344 0.520 1.294   0.272 

 

Octan-2-ol   0.176 0.414 0.273 0.525 1.294 −0.025 1.067 0.435 

Octanophenone  0.779 0.992 0 0.500 1.859 0.453 1.778  
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Table 3. Continued. 

 

Compound 

 

E 

 

S 

 

A 

 

B 

 

V 

TEA-

DMSO 

log Kp 

 

TEA-FA 

log Kp 

 

TEA-EA 

log Kp 

Pentachlorophenol 1.740 0.962 0.659 0.060 1.387   −0.316 

Perylene  

  
2.697 1.835 0 0.441 1.953 −0.924    

Phenanthrene 1.934 1.284 0 0.284 1.454 −0.217 1.475 0.427 

2-Phenyl acetamide  1.818 2.060 0.279 0.784 1.113 −2.671   

Phenyl benzoate   1.624 1.464 0 0.364 1.539  1.402  

1-Phenyl ethanol 
  

0.823 0.763 0.411 0.696 1.056 −0.848 

 

  

2-Phenylethanol 

  
0.787 0.815 0.415 0.620 1.056 −1.044  −0.408 

Phenyl ether  
  

1.220 0.986 0 0.264 1.382 −0.108 1.452 0.451 

4-Phenylphenol   1.517 1.179 0.817 0.445 1.382 −1.197  −1.091 

3-Phenylpropan-1-ol 0.819 0.888 0.359 0.670 1.197 −0.938   −0.245 

Phthalimide  
  

1.169 1.700 0.250 0.602 1.020  −0.685 
 

Phthalonitrile 0.749 1.954 0 0.377 1.025  −0.790 
 

Pyrene   

 
2.296 1.463 0 0.293 1.584 −0.651 2.110 0.436 
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Table 3. Continued. 

 

Compound 

 

E 

 

S 

 

A 

 

B 

 

V 

TEA-

DMSO 

log Kp 

 

TEA-FA 

log Kp 

 

TEA-EA 

log Kp 

trans-Stilbene  1.619 1.216 0 0.286 1.563 −0.195 2.004 0.843 

Quinoline  

  
1.265 1.091 0 0.619 1.044 −0.865 0.156  −0.172 

Terpinen-4-ol  

    
0.553 0.557 0.173 0.652 1.424 −0.244 

 0.207 

1,2,4,5-Tetrachlorobenzene 1.070 0.714 0 0.024 1.206 0.308 1.823 0.579 

n-Tetradecane 0 0 0 0 2.081  3.208  

1,2,4-Trichloro benzene  1.022 0.744 0 0.023 1.083  1.297 0.708 

p-Tolualdehyde 0.862 1.000 0 0.420 1.014 −0.709   

Tribenzylamine   1.821 1.270 0 0.631 2.454 0.116 2.840 1.423 

Tri-n-butyrin   0.118 1.220 0 1.343 2.445  1.052  

1,3,5-Triethylbenzene 
  

0.672 0.500 0 0.190 1.561   1.349 

Trisopropanolamine 0.608 1.361 0.392 1.481 1.652   −1.288 

Trimethoprim  1.760 1.947 0.075 2.081 2.181 −2.234 −1.152 −1.871 
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Table 3. Continued. 

 

Compound 

 

E 

 

S 

 

A 

 

B 

 

V 

TEA-

DMSO 

log Kp 

 

TEA-FA 

log Kp 

 

TEA-EA 

log Kp 

Triphenylamine    2.439 0.983 0 0.755 2.031 0.400 2.426 0.238 

Triphenylmethane 

  
1.819 1.172 0 0.549 2.072 0.056 2.208 1.036 

Undecane  0 0 0 0 1.658   2.558 
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To evaluate the predictive ability of the model, the data set in Table 3 was split into a 

training set of 57 compounds and a test set of 29 compounds using the Kennard-Stone 

algorithm.
46

 This approach ensures that the training set and test set are selected to occupy a 

similar descriptor space. The model for the training set in Equation 29 is similar to the model in 

test set in Equation 28. 

 

log Kp =  0.136(±0.134) + 0.065(±0.067)E – 1.286(±0.084)S  – 1.300(±0.134)A 

               – 0.729(±0.108)B + 1.039(±0.087)V      (29) 

r = 0.977 radj
2
 = 0.951 SE = 0.190 F = 218 n = 57 

 

Equation 29 was then used to predict the partition coefficients (log Kp) for the compounds 

in the test set and the average error, average absolute error, and root mean square error of the 

difference between the experimental and model predicted partition coefficients were used to 

assess the ability of Equation 29 to estimate further values of log Kp within the same descriptor 

space. The average error is an indication of bias and at 0.055 is not a concern for Equation 29. 

The absolute average error (0.183) and root mean square error (0.188) are an indication of the 

likely error in predicting further partition coefficients based on Equation 29. Since Equation 29 is 

similar to Equation 28, which is preferred because it is based on a larger number of compounds, 

it is reasonable to conclude that Equation 28 should be able to predict partition coefficients to 

about ±0.19 log units for further compounds that lie within or close to the descriptor space (E = 

0.72 to 2.72, S = 0.17 to 2.09, A = 0 to 0.94, B = 0 to 2.08, and V = 0.898 to 3.494) used to 

define the model. 

The system constants for the biphasic system n-heptane-dimethyl sulfoxide (e = 0, s = 

1.769, a = 3.277, b = 1.112, and v = 1.146) have been reported previously,
22, 51

 and can be 

used to assess differences in solvation properties for n-heptane and triethylamine. Since n-
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heptane is a non polar solvent of low cohesive energy the differences in system constants should 

reflect the main difference in selectivity for the two solvents. For this to be true, it is necessary to 

assume that the difference in mutual solubility for the two biphasic systems does not significantly 

affect the interpretation of the system constants. This is likely the case as the difference in mutual 

solubility is small.
22

 In which case, then n-heptane and triethylamine have similar cohesive 

energy (‘v’ system constants are nearly equal), triethylamine is weakly dipolar/polarizable (‘s’ 

system constant is negative and smaller than for n-heptane-dimethyl sulfoxide), and a reasonably 

strong hydrogen-bond base (‘a’ system constant much smaller than n-heptane-dimethyl sulfoxide 

but not as strong a hydrogen-bond base as dimethyl sulfoxide, since the ‘a’ system constant is 

negative). Neither n-heptane nor triethylamine is expected to be a hydrogen-bond acid and the 

small difference in the ‘b’ system constants is likely due to small differences in mutual solubility.   

3.3.2 Characterization of Triethylamine-Formamide Biphasic System 

Fitting the partition coefficients (log Kp) for the triethylamine-formamide system in Table 

3 to the solvation parameter model gave equation 30. 

 

log Kp =  0.089(±0.093) + 0.561(±0.043)E – 1.100(±0.079)S – 0.377(±0.142)A  

               – 1.601(±0.084)B + 1.733(±0.052)V      (30) 

r = 0.984 radj
2
 = 0.965 SE = 0.171 F = 448 n = 81 

 

The higher cohesion of the formamide layer favors transfer of the solutes to the triethylamine 

layer (positive ‘v’ system constant) while polar interactions have a negative sign (s, a, and b) and 

favor solubility in the formamide layer. Electron lone pair interactions favor transfer to the 

triethylamine layer, probably as a result of electron lone pair repulsion in the formamide layer 

rather than attractive interactions with triethylamine. The Kennard-Stone algorithm was used to 
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split the data set into a training set of 54 compounds and a test set of 27 compounds. The model 

for the training set is given in equation 31. 

  

log Kp =  0.108(±0.128) + 0.517(±0.056)E – 1.008(±0.121)S – 0.569(±0.207)A  

              – 1.650(±0.107)B + 1.728(±0.070)V      (31) 

r = 0.982 radj
2
 = 0.960 SE = 0.179 F = 578 n = 54 

 

Equation 31 is quite similar to equation 30. For the test set, the average error was 0.024, the 

average absolute error 0.167 and the root mean square error 0.166. Thus equation 30 should be 

able to predict further values of the partition coefficient to about 0.17 log units for compounds 

with descriptor values that lie within or close to the descriptor space (E = 0.72 to 2.72, S = 

0.17 to 2.90, A = 0 to 0.60, B = 0 to 2.08, and V = 0.877 to 3.401) used to define the model.  

Primary alcohols and phenols were observed to produce secondary peaks in the 

triethylamine-formamide system. These compounds likely react with formamide in the presence 

of triethylamine to form formyl esters. This reaction may occur in solution or at the point of 

injection at the higher temperature of the injector. In the absence of triethylamine there was no 

reaction observed between alcohols and phenols with formamide. The reactions resulted in 

unreliable results for the partition coefficients of primary alcohols and phenols in the 

triethylamine-formamide biphasic system which were removed from the model in equation 30.  

The system constants for the biphasic system n-heptane-formamide (e = 0.554, s = 

2.169, a = 3.356, b = 1.671, and v = 2.267)
22, 47b

 can be compared with the system constants 

in equation 30 to confirm the observations made for the triethylamine-dimethyl sulfoxide 

biphasic system with regard to the solvation properties of triethylamine. There is good agreement 
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with the assessment that triethylamine is a weak cohesive solvent, is weak to moderately strong 

dipolar/polarizable, non-hydrogen-bond acidic, and a moderately strong hydrogen-bond base. 

3.3.3 Characterization of Triethylamine-Ethanolamine Biphasic System 

Fitting the partition coefficients (log KP) for the triethylamine-ethanolamine system in 

Table 3 to the solvation parameter model gave equation 32. 

 

log Kp =  0.067(±0.145)  0.394(±0.083)E  0.640(±0.123)S  1.340(±0.119)A  

               1.282(±0.108)B + 1.406(±0.101)V      (32) 

r = 0.968 radj
2
 = 0.933 SE = 0.230 F = 228 n = 82 

 

The higher cohesive energy of the ethanolamine layer favors transfer of the solutes to the 

triethylamine layer (positive ‘v’ system constant) while polar interactions have a negative sign (e, 

s, a, and b) and favor solubility in the ethanolamine layer. The Kennard-Stone algorithm was 

used to split the data into a training set of 55 compounds and a test set of 27 compounds. The 

model for the training set is given by equation 33. 

 

log Kp =  0.116(±0.189)  0.338(±0.124)E – 0.707(±0.177)S – 1.175(±0.159)A  

                1.312(±0.127)B + 1.540(±0.128)V         (33) 

r = 0.973 radj
2
 = 0.942 SE = 0.235 F = 176 n = 55 

 

Equation 33 is quite similar to Equation 32. For the test set, the average error was 0.018, 

the average absolute error 0.259 and the root mean square error 0.255. Thus Equation 32 should 

be able to predict further values of the partition coefficient to about 0.26 log units for compounds 
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with descriptor values that lie within or close to the descriptor space (E = 0.24 to 2.72, S = 0 to 

2.09, A = 0 to 0.82, B = 0 to 2.08, and V = 0.816 to 2.455) used to define the model.  

Ketones, aldehydes, and some aromatic esters were observed to produce secondary peaks 

in the triethylamine-ethanolamine system. These reactions are most likely due to nucleophilic 

carbonyl addition reactions involving Schiff base formation. The same compounds formed 

secondary products in the n-heptane-ethanolamine biphasic system,
34

 and the reactions are a 

property of ethanolamine and are not related to triethylamine. These secondary reactions resulted 

in unreliable results for the partition coefficients of aldehydes, ketones and aromatic esters in the 

triethylamine-ethanolamine biphasic system, which were removed from the model in equation 

32. 

The system constants for the biphasic system n-heptane-ethanolamine (e = 0.264, s = 

1.086, a = 4.533, b = 1.299, and v = 1.992)
34

 can be compared with the system constants in 

equation 32 to confirm the observations made for the triethylamine-dimethyl sulfoxide and 

triethylamine-formamide biphasic systems with regard to the solvation properties of 

triethylamine. There is good agreement with the assessment that triethylamine is a weak cohesive 

solvent, weak to moderately strong dipolar/polarizable, non-hydrogen-bond acidic, and a 

moderately strong hydrogen-bond base. 

Hierarchical cluster analysis using the average linkage between groups agglomeration 

algorithm and the system constants as variables was used to obtain a global view of the 

extraction properties of the twenty-two totally organic biphasic systems characterized using the 

solvation parameter model.
22, 47a, 49

 The dendrogram (Figure 10) demonstrates that characterized 

totally organic biphasic systems encompass a wide range of selectivity with little clustering.  
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Figure 10.  Dendogram for Totally Organic Biphasic Systems (Including Triethylamine 

Containing Systems) with the System Constants as Variables Using the Average Linkage 

Between Groups Agglomeration Algorithm. 

 

(Solvents: hp = n-heptane, ipe = isopentyl ether, dce = 1,2-dichloroethane, ocoh = 1-octanol,  

dmf = N,N-dimethylformamide, acn = acetonitrile, dmso = dimethylsulfoxide, pc = propylene 

carbonate, eg = ethylene glycol, fa = formamide, moh = methanol, hfip = hexaflouroisopropanol, 

tea = triethylamine, tfe = 2,2,2-triflouroethanol) 

 

 

The nearest neighbor for the triethylamine-dimethyl sulfoxide biphasic system is 

isopentyl ether-propylene carbonate (e = 0.262, s = 1.514, a = 0.764, b = 0.593, and v = 

0.691) 
22, 51

 and for triethylamine-formamide biphasic system, octan-1-ol-formamide (e = 0.285, s 

= 1.059, a = 0.306, b = 0.813, and v = 1.280).
22, 47b

 Neither pairs of biphasic systems are 
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selectivity equivalent.  The significant difference in cohesive properties favors the distribution of 

larger solutes to the triethylamine layer and the greater hydrogen-bond basicity of dimethyl 

sulfoxide favors the selective extraction of hydrogen-bond acids by the dimethyl sulfoxide layer. 

For the triethylamine-formamide system, larger molecules have a slight preference for transfer to 

the triethylamine layer compared with octan-1-ol, and hydrogen-bond bases will be selectively 

extracted to the formamide layer, since triethylamine is not competitive with octan-1-ol as a 

hydrogen-bond acid solvent. The triethylamine-ethanolamine biphasic system has no partners and 

is loosely associated with the 1,2-dichloroethane-formamide and 1,2-dichloroethane-ethylene 

glycol biphasic systems. The three biphasic systems have similar cohesive energy and hydrogen-

bond acidity but are quite different in their dipolarity/polarizability and hydrogen-bond basicity. 

For compounds of low polarity partition coefficients would be similar but significant differences 

are expected for polar compounds. The triethylamine-ethanolamine biphasic system has a 

significantly different s/a system constant ratio to the other two biphasic systems. Knowledge of 

the system properties facilitates the selection of the optimum biphasic system for specific 

applications. 

The system constants in Equations 28, 30, and 32 are relatively small, except for the ‘b’ 

system constant for triethylamine-formamide. Given the limited number of totally organic 

biphasic systems with moderate to large ‘b’ system constants,
22, 47a

 the triethylamine-formamide 

biphasic system could be used together with the other biphasic systems with similar ‘b’ system 

constants to facilitate estimating the hydrogen bond basicity (B) descriptor for compounds of low 

water solubility or stability. 
10, 22
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3.4 Conclusions 

Triethylamine is shown to be a useful counter solvent for liquid-liquid partition forming 

complementary biphasic systems with polar organic solvents with potential applications for 

sample preparation and descriptor measurements. Triethylamine is a relatively weak cohesive 

solvent, weak to moderately dipolar/polarizable, non-hydrogen-bond acidic, and a reasonably 

strong hydrogen-bond base. Triethylamine-dimethyl sulfoxide, triethylamine-formamide, and 

triethylamine-ethanolamine have useful separation properties that are not duplicated in a data 

base of nineteen totally organic biphasic systems. The triethylamine-formamide system has 

useful properties for estimating the hydrogen bond basicity (B) descriptor when used together 

with other totally organic biphasic systems.  
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CHAPTER 4 

DETERMINATION OF DESCRIPTORS FOR POLYCYCLIC AROMATIC 

HYDROCARBONS AND RELATED COMPOUNDS 

 

Text, figures, and tables of this chapter were reused or adapted with permission from Ariyasena, 

T. C.; Poole, C. F. Journal of Chromatography A 2014, 1361, 240-254.
52

  

 

4.1 Introduction 

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants 

usually found as complex mixtures with related compounds containing mainly ring hetero atoms 

and alkyl ring substituents. The United States Environmental Protection Agency has designated 

16 of the common PAHs as priority pollutants, and along with other regulatory authorities 

worldwide, has established safe levels for individual PAHs and PAHs as a group in the 

environment, in food, in air, in water, in the workplace, and in industrial products.
53

 A number of 

PAHs are known human carcinogens and considered genotoxic and mutagenic.
53a, 53b

 Their low 

vapor pressure, poor water solubility, and reasonable stability favors their bioaccumulation in 

terrestrial and marine animals and long range transport in the atmosphere by sorption to particle 

matter. They have been actively studied for over a century and a large number of analytical 

methods have been described, and continue to be described, for their determination in a variety of 

different matrices.
53a, 54

 

The large number of PAHs and their general distribution throughout the environment 

render comprehensive studies of their fate and distribution prohibitively expensive. 

Physicochemical properties are unknown or unreliably determined for many compounds, which 

limits the possibility of using more readily determined physicochemical properties to estimate 
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environmentally important properties using predictive models.
55

 The physicochemical properties 

considered of most interest are vapor pressure, solubility in water, Henry’s law constant (or 

water-air partition coefficient), octanol-air partition coefficient, and the octanol-water partition 

coefficient. For PAHs the determination of these properties is not straightforward due to their 

low vapor pressure and low water solubility. Experimental measurements are time consuming, 

expensive and often show poor agreement between different methods and research groups due to 

the non-trivial experimental problems of the measurements.
55-56

 

Herein, we describe an alternative method that uses chromatographic data obtained from 

gas and liquid chromatography and liquid-liquid partition coefficients for totally organic biphasic 

systems for the determination of a set of descriptors suitable for the prediction of the 

physicochemical properties of PAHs and related compounds as well as the estimation of 

environmental properties through a set of models that use the descriptor values directly for 

property estimates. The approach to determine descriptors is based on Abraham’s solvation 

parameter model.
10

  

The procedure which is used to determine the descriptor values is illustrated in Figure 11. 

First, each chromatography and liquid-liquid partition system needs to be characterized using the 

solvation parameter model. The characterization of gas chromatographic systems is carried out 

by the measurement of retention factors (log k) for selected solutes on each stationary phase at 

several temperatures. In order to characterize the biphasic partition systems, partition coefficients 

(log Kp) for the solutes need to be determined. Then the coefficients of the solvation parameter 

model are determined using multiple linear regression analysis. These characterized systems are 

used to determine the descriptor values. To determine descriptor values for the polycyclic 

aromatic compounds retention factors for these compounds are measured at several temperatures 



81 
 

  
 
 

on different stationary phases, and partition coefficients for the compounds are determined in 

various biphasic systems. Then the descriptor values for the compounds are assigned using the 

Solver algorithm in Excel. The solver algorithm obtains the descriptor values which minimize 

the standard deviation between the calculated and experimentally determined solute property. 

 

 

Figure 11. Diagram Illustrating the Procedure for Determination of Solute Descriptors. 

 

In order to determine descriptor values retention measurements in different 

chromatographic systems are combined with water-organic solvent liquid-liquid partition 

coefficients.
6a, 10, 19

 For compounds of low water solubility or reactivity, such as 

organosiloxanes,
1c, 57

 some fragrance compounds,
38

 and plasticizers like phthalate esters,
39

 

experimental aqueous biphasic partition coefficients are difficult to determine because of the very 

low concentration of the compounds in the aqueous phase.  The same compounds in totally 
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organic biphasic systems generally afford partition coefficients that fall into a favorable range for 

experimental measurements and possess sufficiently large system constants to facilitate 

descriptor measurements (the main advantage of aqueous biphasic systems).
22, 47a

 In addition, 

descriptor values for water insoluble compounds can be inferred from solubility measurements in 

organic solvents by setting up a series of equations for real and hypothetical partition systems.
19

 

The calculation requires either an experimental value for the saturated vapor pressure at 25 C 

and solubility of the compounds in water, or the set of equations can be solved by including the 

gas-water partition coefficient as an additional unknown descriptor. This method was used to 

determine descriptor values for anthracene and phenanthrene,
58

 acenaphthene, pyrene and 

fluoranthene,
59

 fluorene, 
60

 and 1-nitronaphthalene.
61

  

4.2 Experimental 

4.2.1 Materials 

n-Heptane, 2,2,2-trifluoroethanol, diisopentyl ether, N,N-dimethylformamide, azulene, 

naphthalene, 1-methylnaphthalene, acenaphthylene, anthracene, 9,10-dimethylanthracene, 

triphenylene, benzo[e]pyrene, pyrene, perylene, benzo[g,h,i]perylene, dibenzo[a,i]pyrene, 8-

hydroxyquinoline, 3,3'-dichlorobenzidine, 1-nitropyrene, 9,10-anthraquinone, quinoline and 

quinine were obtained from Sigma-Aldrich (Milwaukee, WI, USA). Formamide, propylene 

carbonate, ethylene glycol, 1,2-dichloroethane, dimethyl sulfoxide (containing < 0.2% [v/v] 

water), chrysene, and  benzo[a]anthracene were obtained from Across organics (Morris Plains, 

NJ, USA). 2-Methylnaphthalene, acenaphthene, biphenyl, fluorene, phenanthrene, fluoranthene, 

p-terphenyl, benzo[a]pyrene, dibenzo[a,h]anthracene, quinoline, 1-nitronaphthalene, 1-naphthol, 

2-naphthol, carbazole, 1-acetonaphthone, 2-acetonaphthone, benzidine, benzothiazole, 2-

methylbenzothiazole, 4,4'-dibromobiphenyl, 4-dimethylaminoazobenzene, 1-
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hydroxyanthraquinone, and quinine were obtained from Chem Services (West Chester, PA, 

USA). n-Hexane, methanol and acetonitrile were OmniSolv grade from EMD Chemicals 

(Gibbstown, NJ, USA). The open-tubular columns used for gas chromatography and their 

sources are summarized in Table 4. The 50 mm x 4.6 mm I.D. SunFire C18 column packed with 

4.5 m particles of an average pore diameter of 10 nm with endcapping was obtained from 

Waters (Milford, MA, USA). 

4.2.2 Instrumentation 

Gas chromatographic retention factors were determined with an Agilent Technologies 

(Palo Alto, CA, USA) gas chromatograph fitted with a split/splitless injector and flame 

ionization detector using Chemstation software (rev. 8.04.01) for data acquisition. Nitrogen was 

used as the carrier gas at a constant velocity of 47 cm/s. The split ratio was set to 30:1, septum 

purge 1 ml/min, and injector and detector temperature 300 C. Isothermal retention factors were 

determined at 20 C temperature intervals in the range 160-320 C as dictated by the retention 

characteristics of the compound and the thermal stability of the columns. Typically, three 

retention factor values were obtained for each column (column thermal stability allowing). The 

column hold-up time was determined by a separate injection of methane. For the measurement of 

liquid-liquid partition coefficients a temperature program starting at 150 C for 1 min and then 

raised to 320 C at 25 C/min on the HP-5 column in Table 4 was used. The temperature 

program was modified as required to handle co-elution of some solutes with the internal standard 

or solvent peaks and to elute large-ring PAHs of low volatility. 

   

 

 



 

  
 
 

 

Table 4. Open-Tubular Columns Used for Descriptor Measurements by Gas Chromatography. 

 

Column Stationary Phase Manufacturer* Dimensions 

SPB-Octyl Poly(methyloctylsiloxane) Supelco 30m x 0.25 mm x 1 μm 

HP-5 Poly(dimethyldiphenylsiloxane) Agilent 30m x 0.32 mm x 0.25 μm 

Rxi-5Sil MS Silphenylene-dimethylsiloxane copolymer Restek 30m x 0.25 mm x 0.5 μm 

Stx-500 Carborane-siloxane copolymer Restek 30m x 0.25 mm x 0.15 μm 

Rxi-17 Poly(dimethyldiphenylsiloxane) Restek 30m x 0.25 mm x 0.5 μm 

Rtx-440 Proprietary structure Restek 30m x 0.25 mm x 0.5 μm 

Rtx-OPP Poly(dimethylmethyltriflouropropylsiloxane) Restek 30m x 0.32 mm x 0.15 μm 

DB-1701 Poly(cyanopropylphenyldimethylsiloxane) Agilent 15m x 0.32 mm x 0.25 μm 

DB-225 Poly(cyanopropylphenyldimethylsiloxane) Agilent 15m x 0.32 mm x 0.25 μm 

 

*Supelco(Bellefonte, PA, USA), Restek(Bellefonte, PA, USA), and Agilent(Folsom, CA, USA) 
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Liquid chromatographic retention factors were determined with a Hitachi D-7000 liquid 

chromatograph (San Jose, CA, USA) fitted with a photodiode array detector and column oven set 

to 45 C. All measurements were made with a column flow rate between 1-2 ml/min. The 

column hold-up time was determined by injection of an aqueous solution of sodium nitrate (26 

mg/ml). The extra column hold-up volume was determined by replacing the column with a zero-

volume connector and used to correct all retention factors.
25

 Retention factors were measured at 

10% (v/v) increments of organic solvent within the composition range 50-70% (v/v) methanol, 

40-70% (v/v) acetonitrile, and 30-70% (v/v) tetrahydrofuran in water.  

4.2.3 Determination of Liquid-Liquid Partition Coefficients 

Partition coefficients were determined according to a literature method.
1c, 37-38

 The 2.0 mL 

screw-capped sample vials (Supelco, Bellefonte. PA, USA) were charged by syringe with 0.75 

mL of polar solvent saturated with counter solvent, 0.75 mL of low-polarity solvent saturated 

with counter solvent, and 1 µL of internal standard. Solid samples were dissolved in either 

solvent (depending on solubility) at a concentration of 0.5-1.0 mg/mL (less for the large-ring 

PAHs due to limited solubility) and added to the vials as described for solvents. For compounds 

giving nearly saturated solutions dilutions were performed to ensure the measured partition 

coefficients were independent of concentration. The vials were shaken by hand for 30 s and 

allowed to stand for several hours (usually overnight) at room temperature (22 ± 2 C) and then 

centrifuged. Sample volumes of about 1 µL from each phase were taken for calculation of the 

partition coefficients. The biphasic solvent systems and their system constants are summarized in 

Table 5.
1c, 41, 47b, 51, 62

 The identification of the internal standards is given in the citations. The 

system constants in Table 5 are up-dated compared with those in the original citations and were 



86 
 

  
 
 

recalculated after adding additional compounds to the data sets and re-determining descriptor 

values for some compounds.  

 

 



   
 

  
 
 

Table 5. System Constants for Totally Organic Biphasic Solvent Systems Used for Descriptor Determinations. 

Liquid-Liquid Partition System e s a b v c r* SE* F* n* 

n-Heptane-Ethylene glycol
41

 0.097 -1.478 -3.778 -1.562 2.090 0.309 0.999 0.075 13556 157 

n-Heptane- 

N,N-Dimethylformamide
62b

 

0.036 -1.392 -2.054 -0.579 0.487 0.259 0.998 0.072 6492 124 

n-Heptane-Dimethylformamide
51

 0 -1.768 -3.314 -1.109 1.141 0.377 0.997 0.113 5460 138 

n-Heptane-Formamide
47b

 0.542 -2.167 -3.353 -1.669 2.264 0.163 0.998 0.104 5959 157 

n-Heptane-Methanol
62b

 0.204 -0.723 -1.145 -0.920 0.593 -0.130 0.994 0.068 1265 86 

n-Heptane-Proplylene Carbonate
62c

 0.439 -2.090 -2.685 -0.443 0.796 0.541 0.998 0.068 10134 162 

n-Heptane-Triflouroethanol
62a

 0.917 -1.585 -1.269 -2.856 1.311 -0.026 0.998 0.072 12923 206 

n-Hexane-Acetonitrile
62d

 0.388 -1.482 -1.677 -0.847 0.671 0.153 0.997 0.080 6220 184 

Isopentyl ether-Ethylene glycol
41

 -0.130 -1.093 -1.537 -1.919 2.093 0.388 0.996 0.098 3838 143 

Isopentyl ether-Formamide
47b

 0.577 -1.717 -1.321 -1.408 1.987 0.143 0.996 0.101 2927 114 

Isopentyl ether-Dimethyl sulfoxide
51

 0 -1.465 -2.175 -0.958 1.111 0.183 0.997 0.094 4284 97 

Formamide-1,2-Dichloroethane
47b

 -0.089 0.423  2.028 1.263 -1.642 -0.297 0.995 0.089 2244 111 

 

* r = Overall correlation coefficient; SE = Standard error of the estimate; F = Fisher statistic; 

n = Number of partition coefficients included as the dependent variable 
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4.2.4 Calculations 

All calculations were performed on a Dell Dimension 9200 computer (Austin, TX, USA) 

using either the Solver add-in module in Excel 2007 (Microsoft Corporation, Redmond, WA) or 

IBM SPSS statistics v. 22 (IBM Corporation, Chicago, IL, USA). The McGowan’s characteristic 

volume (V) descriptor was calculated from the molecular formula by summing atom constants 

and correcting for the number of bonds with units of cm
3 

mol
-1

/100.
63

 The excess molar 

refraction (E) descriptor for liquids with units of cm
3 

mol
-1

/10 was calculated using equation 8.
64

 

The refractive index for solids was estimated using ChemSketch v12 (ACD Labs, Toronto, 

Canada) or the excess molar refraction (E) descriptor was determined simultaneously with the 

other descriptors. The descriptor values were optimized using the Solver algorithm.
6a, 10, 19

 Solver 

is an optimization package that adjust selected changing cells (descriptors) to minimize the value 

in a target cell (standard deviation ) as illustrated by Equation 34. 

 

Standard Deviation = [ (log kexp − log kcal)
2
/ (n – 1) ]

1/2
  (34) 

 

In Equation 34, log kexp is the experimental retention factor (or partition coefficient), log kcal is 

the model predicted retention factor (or partition coefficient). Descriptor values were thus 

assigned using solvation parameter model (using equation 2 or 3 as suitable). System constants 

were used for various characterized systems including gas chromatography columns in Table 4 

for 60-140 C,
24, 65

 160-240 C,
23, 66

 and 260-320 C,
40

 for the SunFire C18 reversed-phase liquid 

chromatography column with methanol, acetonitrile, and tetrahydrofuran as organic modifiers,
26

 

and for the liquid-liquid partition coefficients in Table 5.  
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4.3 Results and discussion 

The 23 polycyclic aromatic hydrocarbons and 18 related compounds and their descriptor 

values determined in this study are summarized in Table 6. None of the PAHs contain hydrogen 

atoms expected to function as hydrogen-bond acids and the hydrogen bond acidity descriptor (A) 

was set to zero. There are several examples of compounds in the related compounds group 

expected to exhibit hydrogen-bond acidity, and in this case, a value for the A descriptor was 

determined simultaneously with the other descriptors. For some amines two hydrogen-bond 

basicity descriptors are indicated as B and B
0
. The B

0
 descriptor is required to explain the 

properties of these compounds in biphasic systems in which the organic phase contains an 

appreciable amount of water. Examples for such systems are water saturated-octanol in the 

octanol-water partition system, and reversed-phase liquid chromatography.
67

 For the PAHs and 

related compounds other than the amines, the hydrogen bond basicity (B) descriptor is 

independent of system properties and the assigned value is used for all circumstances. By 

combining chromatographic retention factors and liquid-liquid partition coefficients for the 

systems described in the experimental section it was possible to obtain 40-60 experimental 

retention factors and partition coefficients for each compound. For some compounds a larger 

number of experimental values (indicated in Table 6) were used to calculate the descriptors. 

These additional values consisted of further retention factors for gas, liquid, and micellar 

electrokinetic chromatography and partition coefficients in totally organic and aqueous biphasic 

systems carried forward from previous studies and supplemented by new values determined 

here.
6a, 10

 In this way we have maximized the data used for descriptor calculations while 

maintaining the common experimental protocols used for the measurements. 

 



 

  
 
 

Table 6. Experimental Descriptors for Polycyclic Aromatic Hydrocarbons and Related Compounds. 

(SD = Standard Deviation of the Residuals n = Number of Experimental Values for the Dependent Variable) 

 

Compound Composition E S A B B
0
 L V SD n 

Azulene C10H8 1.393 1.058 0 0.211  5.776 1.0854 0.039 63 

Naphthalene   C10H8  1.230 0.906 0 0.191  5.157 1.0854 0.036 410 

1-Methylnaphthalene  C11H10  1.332 0.906 0 0.202  5.706 1.2263 0.046 95 

2-Methylnaphthalene  C11H10 1.218 0.895 0 0.202  5.743 1.2263 0.027 61 

Acenaphthylene C12H8  1.553 1.125 0 0.214  6.395 1.2156 0.038 102 

Acenaphthene   C12H10  1.453 0.951 0 0.221  6.709 1.2586 0.051 42 

Biphenyl  C12H10 1.380 0.981 0 0.280  6.029 1.3242 0.035 177 

Fluorene  

   

C13H10  1.660 1.104 0 0.256  6.948 1.3565 0.029 220 

Anthracene  

  

C14H10  1.981 1.284 0 0.269  7.735 1.4544 0.039 107 

Phenanthrene  

   

C14H10  1.917 1.275 0 0.285  7.712 1.4544 0.032 214 

Fluoranthene  

   

C16H10 2.348 1.479 0 0.300  8.733 1.5846 0.041 84 

Pyrene   C16H10 2.241 1.475 0 0.283  8.974 1.5846 0.042 70 
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Table 6. Continued. 

 

Compound Composition E S A B B
0
 L V SD n 

9,10-Dimethylanthracene C16H14  2.104 1.275 0 0.383  9.256 1.7362  0.043 52 

Triphenylene   C18H12  2.919 1.757 0 0.426  9.933 1.8234 0.049 49 

Chrysene   C18H12  2.593 1.660 0 0.294  10.142 1.8234 0.039 55 

Benz[a]anthracene  C18H12 2.735 1.678 0 0.368  10.124 1.8234  0.039 53 

p-Terphenyl  C18H14  1.495 1.164 0 0.729  9.680 2.3031  0.048 53 

Benzo[a]pyrene C20H12  3.023 1.846 0 0.418  11.540 1.9536 0.041 47 

Benzo[e]pyrene  C20H12  3.095 1.881 0 0.408  11.431 1.9536 0.041 44 

Perylene C20H12  2.896 1.853 0 0.431  11.652 1.9536  0.037 39 

Benzo[g,h,i]perylene  C22H12  3.612 2.110 0 0.436  12.707  2.0838 0.053 45 

Dibenz[a,h]anthracene C22H14  3.827 2.261 0 0.549  12.552 2.1924 0.049 28 

Dibenzo[a,i]pyrene  C24H14  4.442 2.485 0 0.495  13.495 2.3226 0.055 33 

Quinoline  C9H7N  1.268 1.092 0 0.622 0.559 5.367 1.0443 0.040 144 
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Table 6. Continued. 

 

Compound Composition E S A B B
0
 L V SD n 

8-Hydroxyquinoline  C9H7NO 1.088 1.072 0.243 0.373 0.550 5.969 1.1030 0.038 56 

1-Nitronaphthalene  C10H7NO2 1.389 1.480 0 0.289  6.844  1.2596  0.037 98 

1-Naphthol  C10H8O 1.457 1.123 0.755 0.333  6.163 1.1441 0.036 229 

2-Naphthol  C10H8O 1.453 1.174 0.783 0.347  6.148 1.1441 0.042 273 

Carbazole  C12H9N 2.183 1.596 0.400 0.178 0.230 7.438 1.3154 0.038 90 

3,3'-Dichlorobenzidine C12H10Cl2N2 1.600 1.904 0.763 0.402 0.654 10.085 1.7686  0.043 51 

1-Acetonaphthone  C12H10O 1.517 1.414 0 0.561  6.671 1.3829  0.033 101 

2-Acetonaphthone  C12H10O 1.442 1.452 0 0.600  6.798  1.3829  0.034 100 

Benzidine   C12H12N2 1.116 1.567 0.228 1.018 0.989 9.166 1.5238  0.049 45 

1-Nitropyrene   C16H9NO2 2.809 2.074 0 0.325  10.456 1.7588 0.048 46 

Benzothiazole   C7H5NS 1.298 1.212 0 0.473  5.209 0.9690 0.046 54 

2-Methylbenzothiazole C8H7NS 1.111 0.989 0 0.549  5.767 1.1099  0.042 54 
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Table 6. Continued. 

 

Compound Composition E S A B B
0
 L V SD n 

4,4'-Dibromobiphenyl  C12H8Br2 2.149 1.183 0 0.245  8.659 1.6742 0.043 52 

4-

Dimethylaminoazobenzene 

C14H15N3 1.366 1.597 0 1.392 1.058 8.906 1.8624 0.050 52 

9,10-Anthraquinone  C14H8O2 1.653 1.443 0 0.576  8.644 1.5288 0.045 54 

1-Hydroxyanthraquinone C14H8O3 1.504 1.491 0.050 0.539  9.075  1.5875  0.047 53 

Quinine C20H24N2O2 1.832 1.272 0.808 1.270 1.358 12.025 2.5512 0.054 42 
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Only two of the compounds in Table 6 are liquids (1-acetonaphthone and quinoline) for 

which the excess molar refraction (E) descriptor can be calculated from the experimental 

refractive indices using Equation 8. For the remaining compounds, estimated refractive index 

values can be obtained from several software packages. Estimated refractive indices using 

ChemSketch v.12 and the excess molar refraction descriptors (E) calculated from them are 

summarized in Table 7 together with a second collection of estimated E descriptors from the 

UCL descriptor database.
19

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  
 
 

Table 7. Comparison of Methods Used to Determine the Excess Molar Refraction (E) Descriptor for Solid Compounds. 

 

 

Compound 

Refractive Index  

Estimated Using 

ChemSketch 

E value Calculated 

from Estimated 

Refractive Index 

(ChemSketch) 

E Value from UCL 

Database* 

Experimental E 

Value 

Azulene  1.632 1.323 1.340  1.393 

Naphthalene  1.632  1.323 1.340 1.230 

1-Methylnaphthalene 1.617 1.344 1.344 1.332  

2-Methylnaphthalene 1.617  1.344 1.304 1.218 

Acenaphthylene 1.732 1.945 1.750 1.553 

Acenaphthene  1.692  1.783 1.604 1.453  

Biphenyl  1.571 1.126 1.360  1.380 

Fluorene  1.645 1.602 1.588 1.660 

Anthracene  1.715  2.121 2.290 1.981  

Phenanthrene  1.715 2.121 2.055  1.917 

Fluoranthene  1.652  3.129 2.377 2.348 

 

*
 Database of Descriptors Developed by Prof. M. H. Abraham at University College London (UK) 

 

9
5

 



 

  
 
 

Table 7. Continued. 

  

 

Compound 

Refractive Index  

Estimated Using 

ChemSketch 

E value Calculated 

from Estimated 

Refractive Index 

(ChemSketch) 

E Value from UCL 

Database* 

Experimental E 

Value 

Pyrene   1.852 3.129 2.808 2.241 

9,10-Dimethylanthracene 1.675  2.140   2.104 

Triphenylene   1.771  2.946  2.919  

Chrysene  1.771 2.946 3.027 2.593 

Benz[a]anthracene  1.771 2.946 2.992  2.735 

p-Terphenyl  1.602 1.682  1.495  

Benzo[a]pyrene 1.887 3.990 3.625  3.023  

Benzo[e]pyrene 1.887  3.990 3.625 3.095 

Perylene   1.887  3.990 3.256 2.896 

Benzo[g,h,i]perylene  2.009 5.106 4.073  3.612  

Dibenz[a,h]anthracene 1.812 3.792  3.827 

Dibenzo[a,i]pyrene  1.903  4.863  4.442 
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Table 7. Continued. 

 

 

Compound 

Refractive Index  

Estimated Using 

ChemSketch 

E value Calculated 

from Estimated 

Refractive Index 

(ChemSketch) 

E Value from UCL 

Database* 

Experimental E 

Value 

8-Hydroxyquinoline  1.691  1.623   1.088 

1-Nitronaphthalene 1.671  1.669 1.600  1.389 

1-Naphthol  1.678  1.599 1.520 1.457 

2-Naphthol  1.678 1.599 1.520 1.453 

Carbazole   1.768 1.827 1.787  2.183 

3,3'-Dichlorobenzidine 1.679  2.193  1.600 

2-Acetonaphthone  1.615 1.435  1.442 

Benzidine   1.667 1.882  1.116 

1-Nitropyrene   1.871 3.540   2.809 

Benzothiazole   1.642  1.281 1.330  1.298 

2-Methylbenzothiazole 1.663  1.261  1.111 

4,4'-Dibromobiphenyl  1.626 1.711   2.149 
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Table 7. Continued. 

 

 

Compound 

Refractive Index  

Estimated Using 

ChemSketch 

E value Calculated 

from Estimated 

Refractive Index 

(ChemSketch) 

E Value from UCL 

Database* 

Experimental E 

Value 

4-

Dimethylaminoazobenzene 

1.567 1.335   1.366 

9,10-Anthraquinone  1.659  1.833   1.653 

1-Hydroxyanthraquinone 1.695  2.132  1.504  

Quinine 1.688  2.469   1.832 
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Estimated excess molar refraction (E) descriptor values are compared with the 

experimental values from this study obtained using the Solver method. (Table 7) For the two 

liquids there is a good agreement between the calculated and the experimental values (for 1-

acetonaphthone calculated E value = 1.517, and E value determined by Solver method = 1.430, 

for quinoline calculated E value = 1.268, and E value determined by Solver method = 1.313). 

Since there is some uncertainty in the experimental refractive indices (values from the 

manufacturers catalog for compounds > 98% purity) and in the values obtained by the Solver 

method, the two sets of values for the E descriptor are not considered significantly different. For 

these compounds the E descriptor was set equal to the value calculated from the experimental 

refractive indices. There is also a good agreement with the estimated values from ChemSketch 

for these two compounds (1-acetonaphthone E = 1.435 and quinoline E = 1.340). 

For the solid compounds the E descriptor estimated using ChemSketch tend to be larger 

than the experimental values (30 compounds larger and 9 compounds smaller). For 12 

compounds (fluoranthene, pyrene, benzo[a]pyrene, benzo[e]pyrene, perylene, 

benzo(g,h,i)perylene, 8-hydroxyquinoline, 3,3'-dichlorobenzidine, benzidine, 1-nitropyrene, 1-

hydroxyanthraquinone, and quinine) the difference in the E descriptor values is > 0.5. However, 

there is no obvious trend, just poor agreement for most compounds. For the E descriptors from 

the UCL database there is reasonable agreement for the small ring compounds but increasingly 

poorer agreement for the higher-ring number PAHs. The E descriptors for the higher ring number 

PAHs in the UCL database are generally larger than the experimental values determined in this 

work. The values in the UCL database are estimated values using a group contribution approach, 

and in some cases, subjected to further experimental optimization.
67-68

 Unfortunately, most 

estimation methods result in different values for the E descriptor (and other descriptors) and there 
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is no particular reason to accept the values from one method over another.
38, 40, 69

 Experimental 

values are subject to measurement uncertainty and for reliable measurements should be based on 

a sufficient number of models in which the E descriptor has a reasonably sharp descriptor well, 

as shown in Figure 12 for benzo[a]pyrene and pyrene.  

 

 

Figure 12. Descriptor Wells Using the Solver Method for the Estimation of the E (Excess Molar 

Refraction) Descriptor for Pyrene and Benzo[a]pyrene. 

 

In Figure 12, SD is the standard deviation of the residuals (ordinate axis) and E is the excess 

molar refraction. SD is calculated by entering the calculated value for McGowan’s characteristic 

volume V, setting hydrogen bond acidity equal to zero (A = 0)  as neither PAH is a 

hydrogen-bond acid, selecting different test values for excess molar refraction (E) (x-coordinate), 

and allowing dipolarity/polarizability (S), hydrogen bond basicity (B) descriptors to assume any 

value that minimizes the standard deviation.
6a
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Descriptor wells with a sharp bottom allow identification of the best value for excess 

molar refraction (E) while wells with a shallow bottom only allow an indication of the range of 

values that can fit the system of equations with little change in the minimum value of the 

standard deviation of the residuals for the model predicted and experimental values. If one 

considers the alternative values for the E descriptor estimated by ChemSketch (pyrene = 3.129 

and benzo[a]pyrene = 3.990) and from the UCL database (pyrene = 2.808 and benzo[a]pyrene = 

3.625) the standard deviation for the models (when A is set to 0, and S, B, and L allowed to vary) 

are considerably higher than the observed minimum for the E descriptor when E is allowed to 

adopt any value. The E descriptor reported in these studies is the value that results in a minimum 

in the standard deviation of the residuals when all descriptors are determined simultaneously by 

the Solver method (where appropriate V is set to its calculated value).  

Descriptors for some of the compounds in Table 6 have been determined previously as a 

group or individually. These values are summarized in Table 8.
5c, 14, 58-61, 69a, 70

 Literature values 

for the gas-hexadecane partition coefficient at 298 K (L descriptor) were retrieved for 28 

compounds.  

 

 

 

 

 

 

 



 

  
 
 

Table 8. Descriptors for Polycyclic Aromatic Compounds Cited in the Literature. 

 

 

 

 

 

Compound E S A B B
0
 L 

Azulene 1.340 

1.340 

1.17 

1.17 

0 

0 

0.16  

 

 

5.707 

Naphthalene    

  

1.340 0.92 

0.92 

0 

0 

0.20  5.161 

5.152 

5.162 

5.277 

1-Methylnaphthalene   

     

    

1.337 

1.344 

0.94 

0.92  

0.90 

0 

0 

0 

0.22 

0.20  

 5.802 

 

5.834 

2-Methylnaphthalene   

     

  

1.304 0.91 0 0.25  5.617 

5.768 

5.772 

5.771  

Acenaphthylene 1.750 

1.750 

1.14 

1.14 

0 

0 

0.24   

6.175 

Acenaphthene  1.604 

1.604 

1.05 

1.04 

0 

0 

0.22 

0.20 

 6.469 

 

6.539 

Biphenyl    

     

  

1.360 0.990 

 

0.90 

0 

 

0 

0.26  6.014 

6.07 

6.177 
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Table 8. Continued. 

Compound E S A B B
0
 L 

Fluorene  1.588  1.06 0 0.25  6.922 

7.061 

6.936 

Anthracene    2.290 1.34 0 0.28  7.568 

7.598 

7.721  

Phenanthrene    

      

2.055 1.29 0 0.26  7.632 

7.723 

7.638 

7.670 

Fluoranthene    

     

    

2.377 

2.377  

1.55 

1.53 

0 

0 

0.24 

0.20 

 8.827 

 

8.721  

8.764  

Pyrene      2.808  1.71 0 0.28  8.833  

8.764  

8.949 

9,10-Dimethylanthracene  2.290      9.283 

Triphenylene    

   

3.000 1.71    10.355 

10.494 

Chrysene    3.027  1.73 0 0.33  10.334 

Benz[a]anthracene   

  

2.992 

2.992 

 

1.70 

1.70 

 

0 

 

0.33 

 10.291 

 

10.494  

p-Terphenyl   2.040 1.48 0   9.689 

 

1
0

3
 



 

  
 
 

Table 8. Continued. 

 Compound  E S A B B
0
 L 

Benzo[a]pyrene 3.625 1.98 0 0.44  11.736 

12.000 

Benzo[e]pyrene 3.625 

3.625 

1.99 

1.99 

0 

 

0.44 

 

  

11.656 

Perylene 3.256 1.76 0 0.40  12.053 

12.000  

Benzo[g,h,i]perylene    4.073 

4.073 

4.073 

1.90 

1.90 

1.90 

0 

0 

0 

0.48  

0.40  

  

 

13.264 

Dibenz[a,h]anthracene 

     

   

4.000 

4.000 

2.04 

2.04 

0 0.44   

12.960  

12.996 

Quinoline    

     

     

1.268 

1.268  

0.97 

0.97 

 

1.00 

0 

0 

 

0.03 

0.54 0.51  

5.457  

5.28 

5.422 

1-Nitronaphthalene   

      

1.600 1.59 0 0.29  7.056 

6.80 

1-Naphthol    

      

1.520 1.10 0.66 0.34  6.284  

6.23  

2-Naphthol    

     

1.520  1.08 0.61 0.40  6.200 

Carbazole    

     

      

1.787 

1.787 

1.790 

1.42  

1.42  

2.12 

0.47 

 

0.09 

 

 

0.10 

0.26 

 

0.10 

 

7.982  

 

7.68 

Benzothiazole   

 

1.330  1.10 0 0.40   

 

1
0

4
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Where multiple values are indicated in Table 8, an average was used for comparison with the 

experimental values determined in this study except for fluoranthene,
59

 quinoline,
69a

 1-

nitronaphthalene,
61

 and carbazole,
70a

 which resulted in a poor fit with the regression model. 

There is a good fit for a linear model for the plot of the experimental against literature L 

descriptors (Figure 13).  

 

Figure 13. Correlation Between the Experimental L (Gas-Hexadecane Partition 

Coefficient at 298 K) Descriptor Values and the Average of the Available L Descriptor Values 

Reported in Literature. 

 

 

The regression model shown in Equation 35 has an intercept that is statistically different 

to 0 (95% confidence interval 0.21 to 0.59) and a slope that does not include 1 (95% confidence 

interval 0.92 to 0.96). 

L = 0.940 ( 0.010) Llit + 0.398 ( 0.091)   (35) 

r
2
 = 0.997 SE = 0.135 F = 8049 n = 27 
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In Equation 35, r
2
 is the coefficient of determination, SE is the standard error of the estimate, F is 

the Fisher statistic, and n is the number of compounds with descriptor values included in the 

model. For perspective, the average error for the two sets of L descriptors is 0.16 log units but 

there is a trend with the small-ring PAHs and related compounds having smaller differences than 

for the large-ring PAHs. In this context, the experimental L descriptors determined here have 

slightly smaller values than those extracted from the literature. 

Literature values for the dipolarity/polarizability (S) descriptor were obtained for 28 

compounds, most of which are single values with only a few average values taken for 

comparison. One of the literature S values for carbazole
5c

 is considerably larger than the others 

and was omitted as a likely outlier. There is a modest fit for a linear model for the plot of the 

experimental against literature S descriptors (Figure 14). 

 

Figure 14. Correlation Between the Experimental S (Dipolarity/Polarizability) Descriptor 

Values and the Average of the Available S Descriptor Values Reported in Literature. 
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There is poor agreement for the S descriptors for pyrene and p-terphenyl. Removing these two 

compounds resulted in the regression model given in Equation 36. 

 

S = 1.012 ( 0.052) Slit − 0.007 ( 0.074)   (36) 

r
2
 = 0.941 SE = 0.097 F = 380 n = 26 

 

In the regression model the intercept is not statistically different from 0 (95% confidence interval 

−0.16 to 0.15) and the slope from 1 (95% confidence interval 0.91 to 1.12). Apart from pyrene 

and p-terphenyl, the general scatter in the plot shown in Figure 14 suggests that there are small 

differences in the S descriptor for the two data sets but these are largely random. 

Literature values for the hydrogen bond basicity (B and B
0
) descriptors were obtained for 

23 compounds (two compounds with both B and B
0
 descriptors). The B values for 1-

methylnaphthalene,
70e

 acenaphthene,
5c

 benzo[g,h,i]perylene,
68

 were not included as average 

values since two distinct and different values were indicated in the literature, which makes them 

unsuitable to average. The B
0
 value for carbazole

5c
 was omitted as an unlikely value. There is a 

poor fit for a linear model for the plot of experimental against literature combined B and B
0
 

descriptors (indicated as B descriptors below) in Figure 15.  
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Figure 15. Correlation Between the Experimental B (Hydrogen Bond Basicity) Descriptor 

Values and the Average of the Available B Descriptor Values Reported in Literature. 

 

There is poor agreement for the B descriptor for 9,10-dimethylanthracene, 

dibenzo[a,h]anthracene, 2-naphthol, 2-methylnaphthalene, and fluoranthene. Removing these 

five compounds resulted in the regression model given in Equation 37. 

 

B = 1.0196 ( 0.068) Blit + 0.005 ( 0.022)   (37) 

r
2
 = 0.916 SE = 0.036 F = 228 n = 23 

 

In the regression model, intercept is not statistically different from 0 (95% confidence interval 

−0.042 to 0.052) and the slope from 1 (0.879 to 1.160). Apart from the five compounds indicated 
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above the general scatter shown in Figure 15 suggests that the modest differences in the B 

descriptor are largely random. 

There are only three compounds (1-naphthol, 2-naphthol, and carbazole) with literature 

values for the A descriptor in Table 6. There are differences in the assigned values for the 

literature and experimental hydrogen bond acidity (A) descriptors determined here but the 

number of compounds is too small to draw any general conclusions. 

Overall, the collection of descriptors in Table 6 differs from those in the literature by 

small but significant amounts. The excess molar refraction (E) and gas-hexadecane partition 

coefficient at 298 K (L) descriptors are generally smaller with greater differences for the PAHs of 

a large-ring number. Differences for the dipolarity/polarizability (S) and hydrogen bond basicity 

(B) descriptors are significant but for most compounds there is no trend. Such an analysis as this 

does not indicate that the descriptors determined in this study are more reliable than those that 

can be found in the literature, but they are more consistent as a homogeneous and verifiable 

experimental design is used for their measurements. In subsequent sections their usefulness for 

predicting experimental properties to support this statement is demonstrated. 

4.4 A Fragment Model for Predicting Descriptors for Polycyclic Aromatic Hydrocarbons 

Platts and coworkers have demonstrated the use of a fragment model for estimating 

descriptors.
67-68

 In a simpler form we have adapted the same approach to obtain atom fragment 

constants for predicting descriptors for the fused ring polycyclic aromatic hydrocarbons. For the 

relevant compounds in Table 6 the atom fragment constants were obtained by deconstructing the 

compounds into four fragments (ring –CH=, ring fused carbon >C<, ring –CH2–, and methyl 

substituent on a ring –CH3). Appropriate descriptor values for each fragment were then obtained 

by setting up a series of equations containing the fragment count for each compound and the 
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experimental descriptor values from Table 6 using the Solver method to obtain the fragment 

descriptor values. The results are summarized in Table 9. 

 

Table 9. Atom Fragment Descriptor Values for Polycyclic Aromatic Hydrocarbons. 

(A = 0 for All Compounds) 

 

Descriptor        

 ring -CH= ring >C< ring-CH2- -CH3 n SD Descriptor 

Range 

L 0.469 0.726 0.474 0.458 20 0.172 5-14 

E 0.084 0.274 −0.115 −0.080 20 0.203 1.2-4.5 

S 0.086 0.114 −0.041 0.011 22 0.078 0.9-2.5 

B 0.020 0.022 0.030 0.008 22 0.037 0.19-0.55 

 

 

The ability of the atom fragment constants to reproduce the descriptor values is quite 

good with a few exceptions. In general, atom fragment models do not account for the difference 

in descriptor values for isomers as they have the same atom counts. This seems to be most 

significant for the gas-hexadecane partition coefficient at 298 K (L descriptor), where the cavity 

formation component of the descriptor is not completely independent of the shape of the 

compound. Molecules interact at their surfaces and the shape and accessibility of the cavity 

surface could affect the contribution from dispersion. The PAHs with a fused four atom ring 

(azulene and fluoranthene) were not as well described by the atom fragment constants as the 

PAHs containing fused benzene rings. Azulene contains a seven membered ring fused to a four 

membered ring and shows the largest difference for the predicted L descriptor based on the 

summation of atom fragment constants (Lpredicted = 5.212 and Lexperimental = 5.776). For 

Atom Fragment Constants Statistics 
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fluoranthene the difference is not as great (Lpredicted = 9.066 and Lexperimental = 8.733). These values 

were removed in the calculation of the atom fragment constants for the L descriptor in Table 9. It 

is quite likely a better model could be found by including additional variables to account for 

shape differences but this would require further data for PAHs with different ring sizes and is 

outside the scope of this study.  For the excess molar refraction (E) descriptor, the atom fragment 

model adequately predicts the experimental values except for triphenylene (Epredicted = 2.619 and 

Eexperimental = 2.919). The experimental E descriptor for triphenylene is in good agreement with a 

literature value,
70a

 and is close to the value predicted by ChemSketch (Table 7). We do not 

believe that the experimental E value is poorly determined. It is more likely that the simple 

model employed here lacks some of the subtleties that would be required for more accurate 

predictions. The dipolarity/polarizability (S) and hydrogen bond basicity (B) descriptors seem 

more amenable to estimation with a simple atom fragment constant model as illustrated by the 

data in Table 9. Overall, the atom fragment constant models can provide a reasonable estimate of 

descriptor values for fused benzene ring compounds, with or without attached methyl groups, 

which should be suitable for estimating descriptor values for further PAHs that currently lack 

experimental values. For PAHs with different ring sizes there may be some deficiencies in the 

estimation of the L and E descriptor. This analysis by atom fragment constants also supports the 

hypothesis that the experimental descriptors are reasonably homogeneous as a group and do not 

contain unexplainable values.  

4.5 Estimation of the Octanol-Water Partition Coefficient for Polycyclic Aromatic    

      Hydrocarbons and Related Compounds. 

The octanol-water partition coefficient (as log KOW) is widely used as an estimate of 

lipophilicity and as a variable in numerous models to estimate a range of environmental 

properties.
54b, 55-56

 For compounds of low water (or octanol) solubility experimental measurement 
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can be tedious, difficult, and uncertain.
22, 56b

 Poole and coworkers recently demonstrated the 

possibility of estimating the octanol-water partition coefficient for compounds of low water 

solubility from sets of descriptors derived from more convenient measurements of partition 

coefficients in totally organic biphasic systems and retention factors obtained by gas 

chromatography (e.g., organosiloxanes,
37

 fragrance compounds,
38

 and phthalate esters
39

). The 

same approach can be applied to estimate a number of water-based properties for compounds of 

environmental importance from descriptors summarized in Table 7 and to assist in the validation 

of descriptor quality.  

The octanol-water partition coefficients for the polycyclic aromatic hydrocarbons and 

related compounds extracted from the literature are summarized in Table 10.
4e, 56b, 71

 For some 

compounds only a single experimental value is available, while in other cases, for example the 

small-ring polycyclic aromatic hydrocarbons, there are numerous values but with poor agreement 

only, reflecting the difficulties of making such measurements for compounds with overwhelming 

solubility in a single phase. In general, the data cited in Table 10 refer to carefully considered 

average values that are assumed to better represent the true value and from which extreme values 

have been removed or adjusted in a thermodynamic cycle across a range of properties to obtain 

consistency, and indicated as LDV or FAV values, respectively.
56b

  They are as close to 

consensus values as it is possible to identify. As well as a number of average or “consensus” 

values, the value taken for comparison with the predicted values is also indicated together with 

the estimated values for all compounds in Table 6 (with or without an experimental literature 

value) for comparison. Footnotes to Table 10 provide some additional information on how the 

literature values were selected in the cited sources and the model for the estimation of the 

octanol-water partition coefficient.  
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The general agreement between the selected experimental values and the model predicted 

values using the descriptors in Table 6 are very good with a few exceptions. The experimental 

octanol-water partition coefficient for quinine and the predicted value are significantly different 

(3.44 and 4.745, respectively). We removed this compound from the statistical summary of the 

data, but can offer no obvious reason beyond experimental uncertainty in either value for this 

observation. The differences for 9,10-dimethylanthracene and quinoline are more extreme than 

for the other compounds but were retained. The average error of 0.045 and average absolute error 

of 0.081 for the agreement between the experimental and predicted log KOW values for the 37 

compounds is an indication that there is no significant bias in the estimation method using the 

descriptors in Table 6 and that the descriptors provide an accurate prediction of the experimental 

octanol-water partition coefficients. 

 

 

 

 

 

 



 

  
 
 

Table 10. Sources for Octanol-Water Partition Coefficients (log KOW) and their Model Predicted Values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 
LDV is the arithmetic mean of all reliable values at 25 C or from linear regression equations between log property and 1/T when 

experiments had been carried out at different temperatures. 

FAV values are obtained by adjusting the average value by an algorithm to obtain thermodynamic consistency across a range of 

properties, according to a literature method described in reference 56b.
56b

  

2
 Model used for calculation log KOW = 0.123 + 0.680E – 1.169S – 0.207A – 3.412B + 3.788 V 

r =0.998 SE = 0.118 F = 7631 n = 192 

 

Compound 

 

Literature source
1
 

Literature  

log KOW 

Value 

Calculated
2
 

log KOW 

Value 

Using 

Descriptors 

Assigned in 

this Study 

Azulene 3.20 
71c

 3.20  3.273 

Naphthalene LDV = 3.39 and FAV=3.40,
56b

 3.37,
71a

 3.35 
71d

 3.40  3.368 

2-Methylnaphthalene  4.11, 
71b

 3.86 [4] 3.86 3.867  

Acenaphthylene  

  

LDV=3.80 and FAV=3.85,
56b

 4.00,
71a

 4.70
71b

  3.80 3.758 

Acenaphthene   LDV=-3.97 and FAV=3.95,
56b

 3.92,
71a

 4.00 
71b

 3.95  4.019 

Biphenyl   3.90, 
71a

 4.01
71c

 4.01 3.978 
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Table 10. Continued. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compound 

 

Literature source
1
 

Literature  

log KOW 

Value 

Calculated
2
 

log KOW 

Value 

Using 

Descriptors 

Assigned in 

this Study 

Fluorene   

   

LDV=4.14 and FAV=4.11,
56b

 4.18,
71a

 4.18 
71d

  4.16 4.233 

Anthracene   LDV=4.63 and FAV=4.57,
56b

 4.54, 
71a

 4.45, 
71b

 4.53 
71d

 4.57 4.562 

Phenanthrene  LDV=4.49 and FAV= 4.47,
56b

  3.24,
71a

 4.46
71b

 

  

4.47 4.475 

Fluoranthene  LDV=4.98 and FAV=4.97,
56b

 5.22, 
71a

 4.90, 
71b

 5.22
71d

 4.97 4.966 

Pyrene    LDV=5.06 and FAV=5.01,
56b

 5.18, 
71a

 4.88, 
71b

 5.22 
71d

 5.01 4.962 

9,10-Dimethylanthracene 5.69 
71c

  5.69  5.334 

Triphenylene 5.49 
71a

 5.49  5.465 

Chrysene  LDV=5.67 and FAV=5.67,
56b

 5.65,
71a

 5.61,
71b

 5.91 
71d

 5.67 5.763 

Benz[a]anthracene LDV=5.83 and FAV=5.83,
56b

 5.91,
71a

 5.60
71b

 5.83 5.656 

p-Terphenyl   6.03
71a

  6.03 6.024  
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Table 10. Continued. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compound 

 

Literature source
1
 

Literature  

log KOW 

Value 

Calculated
2
 

log KOW 

Value 

Using 

Descriptors 

Assigned in 

this Study 

Benzo[a]pyrene LDV=5.99 and FAV=6.05,
56b

 6.02,
71a

 6.06, 
71b

 6.50
71d

 6.05 6.040 

Benzo[e]pyrene 6.44 
71c

 6.44 6.027 

Perylene 6.25,
71a

 6.25,
71c

 5.82 
71e

 6.25 6.129 

Benzo[g,h,i]perylene LDV=6.60 and FAV=6.63,
56b

 6.50,
71a

 6.51, 
71b

 7.10
71d

 6.63 6.518 

Dibenz[a,h]anthracene 6.80,
71b

 6.75, 7.11,
71c

 6.50 
4e

 6.50 6.514 

Dibenzo[a,i]pyrene  7.28 
71e

 7.28 7.348  

Quinoline  2.03, 
71c

 2.10 
71d

 2.03 1.769 

8-Hydroxyquinoline  1.85 
71c

    1.85 1.868 

1-Nitronaphthalene  3.19 
71e

 3.19  3.127 

1-Naphthol  2.85
71c

 2.85 2.852 
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Table 10. Continued. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compound 

 

Literature source
1
 

Literature  

log KOW 

Value 

Calculated
2
 

log KOW 

Value 

Using 

Descriptors 

Assigned in 

this Study 

2-Naphthol   2.70 
71c

 2.70 2.735 

Carbazole 3.84 
71d

 3.84 3.844 

3,3'-Dichlorobenzidine  1.75 
71c

 1.75 1.673 

1-Acetonaphthone 2.86
71e

 2.86 2.832 

Benzothiazole  2.01 
71b

 2.01  1.655 

Benzidine 1.34 
71c

 1.34 1.408 

1-Nitropyrene  5.06
71c

 5.06 5.152 

4,4'-Dibromobiphenyl  5.72 
71c

  5.72 5.708 

9,10-Anthraquinone  3.39
71c

 3.39 3.396 

1-Hydroxyanthraquinone 3.52 
71c

 3.52 3.570 

Quinine 3.44 
71c

 3.44  4.772 

 

1
1
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4.6 Estimation of Octanol-Air Partition Coefficients for Polycyclic Aromatic Hydrocarbons   

      and Related Compounds. 

 

The octanol-air partition coefficient (as log KOA) is widely used to estimate the 

atmospheric distribution of organic compounds between air and the organic matter of aerosols 

and as a variable in models used to estimate environmental distribution and fate of volatile 

organic compounds.
53b, 53c

  Its measurement for compounds of low vapor pressure, such as PAHs, 

is challenging and estimation methods are widely used as a surrogate for experimentally 

determined values.
55a, 56c

 The octanol-air partition coefficients for the polycyclic aromatic 

hydrocarbons and carbazole extracted from the literature are summarized in Table 11.
4d, 56b, 56c, 72

 

For compounds with multiple values, the selected value for comparison with the predicted value 

was an average with due regard to the general quality of the experimental results. In most cases 

the recommended values reported by Ma and coworkers and Ha and coworkers were adopted.
56b, 

56c
 In the case of dibenz(a,h)anthracene the two experimental values of log KOA differ by 1.4 log 

units and neither value, nor their average, was used in calculations. Table 11 also summarizes the 

predicted values for all compounds in Table 6 using the experimental descriptors.  The general 

agreement between the experimental and the predicted values for the octanol-air partition 

coefficient is very good with the exception of carbazole, which has an experimental log KOA of 

8.03
72a

 and a predicted log KOA of 8.864. The experimental log KOA for carbazole is a single 

value and we have no method to estimate its experimental uncertainty and elected to remove it 

from the statistical summary of the remaining data in Table 11. For these compounds the average 

error is 0.075 and average absolute error 0.096 for the agreement between the experimental and 

predicted log KOA for 16 compounds. This is an indication that there is no significant bias in the 

estimation method and that the experimental descriptors in Table 6 for the PAHs are suitable for 
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the prediction of octanol-air partition coefficients. This confirms reasonable expectations for 

descriptor quality. Table 12 summarizes the estimated log KOA values for compounds without 

experimental values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  
 
 

Table 11. Sources for Octanol-Air Partition Coefficients (log KOA) for Polycyclic Aromatic 

Hydrocarbons and Related Compounds and their Model Predicted Values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 
LDV is the arithmetic mean of all reliable values at 25 C or from linear regression equations between log property and 1/T when 

experiments had been carried out at different temperatures. 

FDV values are obtained by adjusting the average value by an algorithm to obtain thermodynamic consistency across a range of 

properties, according to a literature method described in reference 56b.
56b

  

2 Model used for calculation log KOA = − 0.120 − 0.203E + 0.560S + 3.560A  

                                                             + 0.702B + 0.939 L
72b

 

 

Compound 

 

Literature source
1
 

Literature  

log KOA 

Value 

Calculated
2
 

log KOA 

Value 

Using 

Descriptors 

Assigned in 

this Study 

Naphthalene   

   

FAV = 5.19 and LAV=5.19,
56b

 5.37, 5.27, 5.46, 5.13,
56c

 

5.19 
72b

 

5.19 5.114 

Acenaphthylene  FAV=6.46 and LAV=6.25 
56b

 6.46 6.350 

Acenaphthene   

   

FAV=6.44 and LDV=6.42
56b

, 6.52, 6.43, 6.33,
56c

 

6.31
72b

 

6.44 6.572 

 

Biphenyl   6.15 
71c

 6.15 6.007 

Fluorene FAV=6.85 and LDV=6.81,
56b

 6.84, 6.79,
73

  6.90, 7.45, 

7.57
56c

 6.83 
72b

 

6.85  6.865 

Anthracene    FAV=7.70 and LDV=7.64,
56b

 7.71, 7.34,
56c

 7.55
72b

 7.70  7.649 

 

1
2

0
 



 

  
 
 

Table 11. Continued. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compound 

 

Literature source
1
 

Literature  

log KOW 

Value 

Calculated
2
 

log KOW 

Value 

Using 

Descriptors 

Assigned in 

this Study 

Phenanthrene    FAV=7.64 and LDV=7.61,
56b

 7.62, 7.68, 
56c

  7.68,
72a

  

7.57,
73

 7.52
72a

 

7.64 7.646  

Fluoranthene    FAV=8.81 and LDV=8.80,
56b

 8.61, 8.48, 8.76, 8.76,
56c

  

8.88,
73

 8.61
72b

 

8.81 8.642 

Pyrene    FAV= 8.86 and LAV=8.79,
56b

 8.86, 8.75, 8.65, 8.43
56c

  

8.80 
73

  

8.86  8.876  

Chrysene  FAV=10.30 and LDV=10.30,
56b

 9.85, 10.44 
56c

 10.30 9.997 

Benz[a]anthracene  FAV = 10.28 and LDV=10.28,
56b

 8.69,10.80
56c

 10.28 10.029  

p-Terphenyl   

   

9.87 
73

    9.87 9.830 

Benzo[a]pyrene   FAV=11.48 and LDV=11.56,
56b

 10.7, 10.48 
56c

  11.48 11.430 

Benzo[e]pyrene  11.35 
73

 11.35 11.325  

Perylene  11.70 
56c

  11.70 11.574 

 

1
2

1
 



 

  
 
 

Table 11. Continued. 

 

 

 

 

 

 

 

 

1 
LDV is the arithmetic mean of all reliable values at 25 C or from linear regression equations between log property and 1/T when 

experiments had been carried out at different temperatures. 

FDV values are obtained by adjusting the average value by an algorithm to obtain thermodynamic consistency across a range of 

properties, according to a literature method described in reference 56b.
56b

  

2
 Model used for calculation log KOA = − 0.120 − 0.203E + 0.560S + 3.560A  

                                                             + 0.702B + 0.939 L
72b

 

 

Compound 

 

Literature source
1
 

Literature  

log KOW 

Value 

Calculated
2
 

log KOW 

Value 

Using 

Descriptors 

Assigned in 

this Study 

Benzo[g,h,i]perylene  

   

FAV =12.55 and LDV=12.55
56b

   

  

12.55 12.556 

Dibenz[a,h]anthracene 12.59, 13.9 
56c

    12.541 

Carbazole   8.03 
72a

 8.03 8.864 

 

1
2

2
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Table 12. Estimated Octanol-Air Partition Coefficients (log KOA) Values for Compounds 

without Experimental Values. 

 

Compound Calculated
1
 log KOA Value Using 

Descriptors Assigned in this Study 

Azulene 5.761 

1-Methylnaphthalene 5.617 

2-Methylnaphthalene 5.668 

9,10-Dimethylanthracene 9.127 

Triphenylene 9.898 

Dibenzo[a,i]pyrene 13.389 

Quinoline 5.710 

8-Hydroxyquinoline 6.991 

1-Nitronaphthalene 7.056 

1-Naphthol 8.922 

2-Naphthol 9.047 

3,3'-Dichlorobenzidine 13.089 

1-Acetonaphthone 7.022 

2-Acetonaphthone 7.204 

Benzidine 10.664 

1-Nitropyrene 10.518 

Benzothiazole 5.519 

2-Methylbenzothiazole 6.009 

4,4'-Dibromobiphenyl 8.409 

4-Dimethylaminoazobenzene 9.837 

9,10-Anthraquinone 8.874 

1-Hydroxyanthraquinone 9.487 

Quinine 15.280 

 

1
Model used for calculation of log KOA = − 0.120 − 0.203E + 0.560S + 3.560A  

                                                             + 0.702B + 0.939L
72b
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4.7. Estimation of the Air-Water Partition Coefficient for Polycyclic Aromatic   

       Hydrocarbons and Related Compounds  

The air-water partition coefficient (the inverse of Henry’s law constant with due regard to 

units) describes a compounds ability to partition between air and water. It is a key property for 

the assessment of a compounds environmental behavior and for fate modeling.
55a, 56d, 74

 For 

compounds of low vapor pressure and/or low water solubility its measurement is challenging and 

only a small number of experimental values are available for compounds of environmental 

interest. The air-water partition coefficients (log KAW) for nineteen polycyclic aromatic 

hydrocarbons and seven related compounds are summarized in Table 13.
55a, 56b, 56d, 70e, 71a, 72a, 75

 

For most compounds with multiple experimental values an average was taken for comparison 

purposes. For anthracene, phenanthrene and benz[a]anthracene we chose the values from 

Abraham and coworkers
75

 as we have validated these internally in numerous calculations, and 

with the exception of anthracene, there is good agreement with the suggested reference values 

reported by Ma and coworkers.
56b

  For benzo[a]pyrene there is considerable scatter in the 

experimental values and we chose an experimental value similar to benzo[e]pyrene and perylene, 

which all have the same ring number, and a clustering of values is anticipated. Table 13 also 

summarizes the predicted values for all compounds in Table 6 using the experimental descriptors 

for the calculation. The general agreement between the experimental and the predicted values for 

the air-water partition coefficient is good with the exception of 9,10-anthraquinone, and 1-

hydroxyanthraquinone, which have an experimental log KAW of 6.02 and 6.53,
71b

 respectively, 

and  predicted log KAW of 4.433 and 4.422, respectively. The experimental log KAW for 

anthraquinone and 1-hydroxyanthraquinone seem unusually large for compounds of this type, but 

as single determinations, we have no method to estimate their experimental uncertainty. We 

elected to remove them from the statistical summary of the remaining data in Table 13. For the 
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24 compounds the average error is −0.077 and average absolute error 0.188 for the agreement 

between the experimental and predicted log KAW values. Thus, there is no significant bias in the 

estimation method and the experimental descriptors in Table 6 are suitable for the prediction of 

the air-water partition coefficients. Estimated log KAW values for compounds without 

experimental values are given in Table 14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   
 

  
 
 

Table 13. Sources for Air-Water Partition Coefficients (log KAW) for Polycyclic Aromatic Hydrocarbons and Related Compounds and 

their Model Predicted Values. 

 

 

 

 

 

 

 

 

 

 

 

1
 LDV is the arithmetic mean of all reliable values at 25 C or from linear regression equations between log property and 1/T when 

experiments had been carried out at different temperatures. 

FDV values are obtained by adjusting the average value by an algorithm to obtain thermodynamic consistency across a range of 

properties, according to a literature method described in reference 56b.
56b

  

2
 Model used for calculation log KAW = − 0.996 + 0.470E + 3.058S + 3.905A + 4.496B − 0.272L 

r = 0.996 SE = 0.175 F = 2112 n = 98 

 

Compound 

 

Literature source
1
 

Literature  

log KAW 

Value 

Calculated
2
 

log KAW 

Value 

Using 

Descriptors 

Assigned in 

this Study 

Naphthalene   
   

Fav = 1.73 and LDV= 1.72,
56b

 1.638
56d

  
  

1.73  1.810 

1-Methylnaphthalene  
   

1.75, 1.97, 1.67, 
70e

 1.62, 
71c

 1.62 
56d

  1.73 1.758 

2-Methylnaphthalene  
   

1.67, 1.77, 1.78, 
70e

 1.47, 
71c

 1.60 
56d

   1.66 1.660 

Acenaphthylene  
   

Fav = 2.41 and LDV= 2.31,
56b

   
  

2.41 2.398  

Acenaphthene   
    

Fav = 2.24 and LDV= 2.25,
56b

 2.24, 
53d

 2.31 
75

  2.24 1.765 

Biphenyl 1.95, 
75

 1.90 
71c

   1.95 2.272 

 

1
2

6
 



   
 

  
 
 

Table 13. Continued. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compound 

 

Literature source
1
 

Literature  

log KAW 

Value 

Calculated
2
 

log KAW 

Value 

Using 

Descriptors 

Assigned in 

this Study 

Fluorene   

     

Fav = 2.44 and LDV= 2.42,
56b

  2.46 
75

  2.44 2.422 

Anthracene   
   

Fav = 2.69 and LDV= 2.69, 
56b

 2.90 
75

  
  

2.90 2.968 

Phenanthrene   

   

Fav = 2.76 and LDV= 2.75,
56b

 2.85
75

   2.85 2.989 

Fluoranthene       
  

Fav = 3.27 and LDV= 3.23, 
56b

 3.44, 
53d

 3.61 
71a

 
  

3.44 3.605 

Pyrene     Fav = 3.27 and LDV= 3.27,
56b

 3.32,
74a

 3.54 
56d

 
  

3.27 3.401 

Triphenylene 5.20 
71c

    5.20 4.964 

Chrysene   Fav = 3.82 and LDV= 3.75 
56b

 3.82 3.863 

Benz[a]anthracene   

   

Fav = 3.59 and LDV= 3.55,
56b

  3.31, 
53d

 3.61 
75

  3.59 4.323 

p-Terphenyl 3.84 
71c

    3.84 3.912 

Benzo[a]pyrene  

   

Fav = 4.51 and LDV= 4.69,
56b

  4.84, 
53d

  4.70 
56d

  4.84 4.812  

 

1
2

7
 



   
 

  
 
 

 

Table 13. Continued. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compound 

 

Literature source
1
 

Literature  

log KAW 

Value 

Calculated
2
 

log KAW 

Value 

Using 

Descriptors 

Assigned in 

this Study 

Benzo[e]pyrene  

  

4.91 
71c

 4.91 4.938 

Perylene  4.83 
71c

    4.83 4.802 

Benzo[g,h,i]perylene Fav = 4.77 and LDV= 4.87,
56b

      4.94
71c

   4.91 5.660 

Quinoline   

  

4.20, 
74a

 4.17 
71c

   4.19      4.277 

1-Nitronaphthalene 4.14, 
56d

 4.09 
71c

    4.09 3.622 

1-Naphthol  

  

5.63 
75

    5.63  5.893  

2-Naphthol   5.95 
75

    5.95 6.224  

Carbazole  5.32 
72a

    
 

5.32 5.251 

9,10-Anthraquinone  
  

6.02 
71c

    6.02 4.434  

1-Hydroxyanthraquinone 6.53 
71c

 6.53  4.422 

 

 1
2

8
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Table 14. Estimated Air-Water Partition Coefficient (log KAW) Values for Compounds without 

Experimental Values. 

 

1
Model used for calculation of log KAW = − 0.996 + 0.470E + 3.058S + 3.905A  

                                                                    + 4.496B − 0.272L 

r = 0.996 SE = 0.175 F = 2112 n = 98 

 

 

4.8. Comparison of Descriptors for the Prediction of Partition Coefficients 

 The descriptors determined in this study for polycyclic aromatic hydrocarbons and related 

compounds (Table 6) can be compared with literature values (Table 9) together with their 

associated calibration equations for their ability to predict the experimental octanol-water (Table 

Compound Calculated
1
 log KAW Value Using 

Descriptors Assigned in this 

Study 

Azulene  2.273 

9,10-Dimethylanthracene  3.097 

Dibenz[a,h]anthracene  6.773 

Dibenzo[a,i]pyrene  7.248 

8-Hydroxyquinoline  3.797 

3,3'-Dichlorobenzidine  7.624 

1-Acetonaphthone  4.750 

2-Acetonaphthone  4.972 

Benzidine  7.296 

1-Nitropyrene  5.286 

Benzothiazole    4.031 

2-Methylbenzothiazole  3.451 

4,4'-Dibromobiphenyl  2.379 

4-Dimethylaminoazobenzene  8.367 

Quinine 9.350 
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10), octanol-air (Table 11), and air-water (Table 13) partition coefficients.
6a, 10, 21

  The average 

error and average absolute error for these predictions are summarized in Table 15 where m 

indicates the number of compounds with descriptor values in common from Tables 6 and 8 for 

which experimental partition coefficients are available. 

 

Table 15. Comparison of Descriptors from this Study (Table 6) and the Literature (Table 8) for 

the Prediction of Partition Coefficients (log K). 

 

Partition 

Coefficient 

(log K) 

Descriptor 

Source* 

Average Error Average 

Absolute 

Error 

Number of 

Compounds 

(m) 

Octanol-water  This study 0.060   0.085  22 

 Literature 0.019  0.112  22 

Octanol-air  This study 0.081 0.105  17 

 Literature 0.083 0.138  17 

Air-Water This study −0.069  0.177  19 

 Literature −0.813  0.850  19 

 

* Calibration models for calculations using literature descriptors
21

 

log KOW  =  0.088 + 0.562E – 1.054S + 0.044A – 3.460B + 3.814V 

log KOA = − 0.147 – 0.214E + 0.561S + 3.502A + 0.749B + 0.913L 

log KAW = − 1.271 + 0.822E + 2.743S + 3.964A + 4.814B – 0.213L 
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These are predominantly polycyclic aromatic hydrocarbons with quinoline, 1-

nitronaphthalene, 1-naphthol and 2-naphthol included in the calculations for the octanol-water 

and air-water partition coefficients. Both sets of descriptors predict the octanol-water and 

octanol-air partition coefficients without obvious bias, as indicated by the average error, but the 

descriptors determined in this study improve the accuracy of the prediction as indicated by the 

smaller absolute average error. For the air-water partition coefficient the literature descriptors 

result in a biased estimation for the polycyclic aromatic hydrocarbons (the predicted values are 

systematically larger than the experimental values), which is not the case for the predictions 

using the descriptors determined in this study. Abraham and Acree have made similar 

observations and resorted to the use of an indicator variable for polycyclic aromatic hydrocarbons 

to define a general model that included some polycyclic aromatic hydrocarbons.
76

  

To shed some light on why the two sets of descriptors provide different predictive ability 

for the air-water partition coefficients a breakdown of the contributions from the predicted 

intermolecular interactions to the partition coefficients for some representative polycyclic 

aromatic hydrocarbons and 1-naphthol is shown in Table 16. Since the calibration models 

associated with the two groups of descriptors have significantly different intercepts the use of 

either model alone with both groups of descriptors would bias the resulting comparison.  

 

 

 

 

 



   
 

  
 
 

Table 16. Contribution of Different Intermolecular Interactions to the Air-Water Partition Coefficient (log KAW) for the Descriptors 

Determined in this Study (Table 7) and Literature Descriptors (Table 9). 

 

Polycyclic Aromatic 

Hydrocarbon 

Descriptor eE 

  

sS aA bB lL Model 

Intercept 

Naphthalene This study 0.58  2.77 0  0.86 −1.40 −0.996 

 Literature 1.10  2.52 0  0.96 −1.10 −1.271 

Phenanthrene This study 0.90  3.91 0  1.28 −2.10  −0.996 

 Literature 1.69  3.54 0  1.25 −1.63 −1.271 

Pyrene  This study 1.07  4.49  0  1.30 −2.44 −0.996 

 Literature 2.31  4.69 0  1.35 −1.88  −1.271 

Chrysene This study 1.21  5.01 0  1.46 −2.77 −0.996 

 Literature 2.49  4.75 0  1.59 −2.20 −1.271 

Benzo[a]pyrene This study 1.45  5.67  0  1.90  −3.13 −0.996 

 Literature 2.98  5.43 0  2.12 −2.50  −1.271 

1-Naphthol This study 1.20  3.43 2.95  1.50 −1.31 −0.996 

 Literature 0.71  3.02  2.58  1.53 −1.34 −1.271 

 

1
3

2
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From Table 16 it is clear that there is a large difference in the contribution from electron-

lone pair interactions for the two calibration models (eE), which accounts for most of the 

observed differences, and a smaller but significant contribution from cavity formation/dispersion 

interactions (lL). Differences in the contributions from dipole-type interactions (sS) and 

hydrogen bonding (bB) are generally smaller and less important. As a reference point data is 

included for 1-naphthol, for which both models provide a reasonable prediction of the air-water 

partition coefficient, and is representative of the results for the four related polycyclic aromatic 

compounds included in the comparison. This is too small a data set to make global comparisons, 

but the contrast with the data for the polycyclic aromatic compounds is interesting, since it 

indicates reasonably close agreement for the contribution of the cavity/dispersion and hydrogen 

bond contributions (lL and bB) and small differences for dipole-type, electron-lone pair 

interactions, and hydrogen bond contributions (sS, eE, aA) to the predicted air-water partition 

coefficients. These differences usually off-set the difference in model intercepts and results in 

unbiased and similar prediction ability for the air-water partition coefficients. For the polycyclic 

aromatic hydrocarbons significant bias in the predictions is a combination of both differences in 

the values for the two sets of solute descriptors and the differences in their associated calibration 

models, especially the intercept term. The excess molar refraction (E) and gas-hexadecane 

partition coefficient at 298 K (L) descriptors found in Table 6  tend to be systematically smaller 

than the literature values, as discussed earlier, but the system constants for the calibration models 

are also systematically different for e and l. Thus, the bias in the prediction of the air-water 

partition coefficients cannot be as simple as poor descriptor quality for the literature descriptors 

alone.  
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For clarity, we emphasize that the significant anomaly in the prediction of the air-water 

partition coefficients is for the polycyclic aromatic hydrocarbons alone and not for the polar 

aromatic compounds included in this study, nor is it apparent in the predictions of the other 

partition systems studied here. Its origins, however, are complex involving both the descriptor set 

and the calibration model. The descriptors determined in this study together with their associated 

calibration model provide a bias-free prediction, as indicated in Table 16. The use of the 

literature descriptors with literature calibration model results in a significant bias in the 

prediction of the air-water partition coefficient that is generally larger than when the literature 

descriptors are combined with the calibration model associated with the descriptor database for 

the polycyclic aromatic hydrocarbons determined here. The largest bias in the prediction of the 

air-water partition coefficients for the polycyclic aromatic hydrocarbons is always for the 

literature descriptors and their associated calibration model.  

4.8. Estimation of the Water Solubility for Polycyclic Aromatic Hydrocarbons and Related  

       Compounds. 

 

The solubility of compounds in water is an important property that provides an indication 

of the likely mobility and environmental fate of a compound. Indirectly it provides an indication 

of the likelihood of their uptake and accumulation in living organisms. The solvation parameter 

model was developed to model transfer properties but an amended model containing a cross-

product term (AB) was proposed by Abraham and Le
77

 and updated
61

 to estimate the molar 

solubility of compounds in water. The cross-product term was introduced to allow for 

intermolecular interactions in the solid form, which are of course absent in transfer properties, 

where it is assumed that solute molecules interact only with solvent molecules. The water 

solubility for twenty-one polycyclic aromatic hydrocarbons and fifteen related compounds are 
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summarized in Table 17. 
53b, 56a, 71a, 71c, 77-78

 As mentioned earlier, the values taken for comparison 

are generally averages except for those compounds with only a single experimental value. The 

general agreement between the experimental and estimated values is good except for anthracene, 

4-dimethylaminoazobenzene, and quinine, which have experimental values (−log SW) of 6.49, 

5.96 and 3.36, respectively, and predicted values using the descriptors in Table 6 of 5.057, 2.073, 

and 5.156, respectively. The experimental solubility values for anthracene are reasonably 

consistent from several studies but are significantly different to phenanthrene, which is not 

typical of the isomeric PAHs in Table 17. In addition, the experimental descriptors for anthracene 

provided a reasonable estimate of the octanol-water, air-octanol, and air-water partition 

coefficients and so the problem may lie in how the model accounts for the contribution of the 

dissociation of the solid phase for this compound since the cross-product term is 0 (As is the case 

for all PAHs, but it does not seem to be a significant problem for most of the other PAHs).  4-

Dimethylaminoazobenzene and quinine have only single solubility values and their experimental 

uncertainty is unknown. We removed these three compounds from the comparison of 

experimental and predicted solubility to give a more typical assessment of the capability of the 

descriptors to estimate solubility. It cannot be stated, however, that these three compounds are 

outliers because of poor experimental values, since the model used to predict solubility contains 

an approximate representation of interactions in the solid form. For the remaining compounds in 

Table 17 the average error is 0.412 and the average absolute error is 0.612 for the agreement 

between the experimental and predicted −log SW for 33 compounds. The results would suggest 

the possibility of a small bias in the predictions (the calculated values in general suggesting 

higher solubility). The average absolute error for the prediction of solubility is similar to 
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observations for a larger and more diverse group of compounds at about 0.5 log units.
77

 

Estimated water solubility of compounds without experimental values are given in Table 18. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  
 
 

Table 17. Sources for Solubility in Water (−log SW, mol/L) for Polycyclic Aromatic Hydrocarbons and Related Compounds and their 

Model Predicted Values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1
 Model used for calculation log SW = 0.391 − 0.954E + 0.318S + 1.157A + 3.255B  

                                                             – 0.786AB – 3.329V [33] 

 

 

Compound 

 

Literature source 

Literature  

-log SW 

Value 

Calculated
1 

-log SW Value 

Using 

Descriptors 

Assigned in this 

Study 

Naphthalene   
  

3.62, 
71a

  3.60, 
77

 3.61, 
56a

 3.62
78a

   3.61 3.486 

1-Methylnaphthalene  3.75, 
71c

 3.70, 
77

 3.69 
56a

  
 

3.71 4.016 

2-Methylnaphthalene  
   

4.75, 
71b

 3.76, 
71c

 3.77, 
77

 3.74
56a

   3.76 3.911 

Acenaphthylene  

   

3.48, 
71c

 3.98, 
71a

 4.59, 
71b

 3.96
77

   3.97 4.083 

Acenaphthene   
  

4.61, 
71a

 4.65, 
71b

 4.63, 
77

 4.59, 
56a

 4.58 
78a

  
   

4.61 4.163 

Biphenyl    
   

4.34, 
71a

 4.35, 
71c

 4.35, 
77

 4.35 
78a

  
  

4.35 4.110  

Fluorene    4.94,  
71a

 5.00, 
77

 4.92 
56a

, 4.96 
78a

   4.96 4.524 

Anthracene   

    

6.60, 
71a

 6.60, 
71b

 6.35, 
77

 6.39, 
56a

 6.49 
78a

 6.49 5.057 

 

1
3
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Table 17. Continued. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compound 

 

Literature source 

Literature  

-log SW 

Value 

Calculated
1 

-log SW Value 

Using 

Descriptors 

Assigned in this 

Study 

Phenanthrene   

     

4.58, 
71a

 5.25, 
71b

 5.19 
75

 5.26, 
77

 5.14, 
56a

 5.21, 
78a

 5.21 4.946 

 

Fluoranthene  5.89, 
71a

 5.99, 
71b

 6.00, 
77

 5.89, 
56a

 5.96 
78a

  5.95 5.677 

Pyrene   6.19, 
71a

 6.19, 
71b

 6.18, 
77

  

6.18, 
56a

 6.19 
78a

    

6.19 5.632 

9,10-Dimethylanthracene 6.57, 
71c

 6.57, 
77

 6.57, 
56a

  

6.57 
78a

    

6.57 5.744 

Triphenylene   

   

6.73, 
71a

 6.66, 
71c

 6.73 
56a

   
  

6.70 6.518 

Chrysene   
   

8.10, 
71b

 8.06, 
77

 8.06, 
56a

 8.09
78a

  8.08 6.668 

Benz[a]anthracene  

   

7.32, 
53b

 7.69, 
71b

  7.39, 
71c

 7.21,
56a

 7.28 
78a

 
   

7.38 6.557 

p-Terphenyl   
  

7.11 
71a

 7.11 5.959 

 

1
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Table 17. Continued. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compound 

 

Literature source 

Literature  

-log SW 

Value 

Calculated
1 

-log SW Value 

Using 

Descriptors 

Assigned in this 

Study 

Benzo[a]pyrene 7.82, 
71a

 8.32, 
71b

 8.70, 
77

 7.82,
56a

 8.21 
78a

 
  

8.17 7.049 

Benzo[e]pyrene   7.80, 
71a

 7.56, 
71c

 7.65, 
71b

 7.800, 
77

 7.65 
78a

  7.69 7.139 

Perylene   

     

8.23,
71a

 7.80,
71c

 8.60 
77

 7.80, 
56a

 8.80 
78a

  8.25 6.883  

Benzo[g,h,i]perylene  

   

9.03, 
71a

 8.60, 
71b

 9.02, 
77

 9.03,
56a

 9.29 
78a

  9.09 7.902 

Dibenz[a,h]anthracene 

   

8.67, 
71a

 8.74, 
71b

 8.95
71c

    8.79  8.052 

Quinoline    1.33, 
71c

 1.30 
77

   1.32 1.793 

8-Hydroxyquinoline    2.22 
71c

       2.22 2.552 

1-Nitronaphthalene  

   

4.28 
78b

      4.28 3.716 

1-Naphthol   

   

2.22, 
71c

 2.22 
77

    2.22 2.684 

 

1
3

9
 



 

  
 
 

Table 17. Continued. 

 

Compound 

 

Literature source 

Literature  

-log SW 

Value 

Calculated
1 

-log SW Value 

Using 

Descriptors 

Assigned in this 

Study 

2-Naphthol  2.28, 
55b

 2.28 
77

    
  

2.28 2.602  

Carbazole   5.27 
77

 5.27 4.575  

3,3'-Dichlorobenzidine 4.91 
71c

 4.91 4.459 

2-Acetonaphthone  
   

2.80 
71c

 2.80 3.174 

Benzidine   2.76 
71c

 2.76 1.851 

1-Nitropyrene  7.62 
78b

    7.62 6.426 

Benzothiazole    1.50 
71c

    1.50 2.148  

4-Dimethylaminoazobenzene 5.96 
71c

 5.96 2.073 

9,10-Anthraquinone 5.19, 
71c

 5.190 
77

   5.19 3.942 

1-Hydroxyanthraquinone   4.42 
71c

 4.42 4.063 

Quinine    3.36 
71c

 3.36 5.156 

 

1
4

0
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Table 18. Estimated Water Solubility (−logSW) of Compounds without Experimental 

Values. 

 

Compound Calculated
1
 −log SW Value Using 

Descriptors Assigned in this Study 

Azulene  3.525 

Dibenzo[a,i]pyrene  9.177 

1-Acetonaphthone  3.384 

2-Methylbenzothiazole  2.262 

 4,4'-Dibromobiphenyl  6.059 

 

 

None of the PAHs are hydrogen-bond acids (A = 0) and therefore, the cross-product term 

(AB) added to the general model to correct for contribution of intermolecular interactions in the 

solid phase is zero for these compounds. This suggested that it might be possible to develop a 

simpler model to estimate their solubility as a separate group. The model obtained by multiple 

linear regression analysis is 

 

log SW = 3.885 ( 0.434) + 11.3680 ( 1.323)B − 8.469 ( 0.486)V  (38) 

r = 0.990 SE = 0.302 F = 303 n = 20 

 

Equation 38 contains only the McGowan’s characterisctic volume (V) and hydrogen bond 

basicity (B) descriptors. Anthracene was an outlier and was removed as observed for the general 

model used to calculate the results in Table 17. Equation 38 is quite a useful model for 

estimating the solubility of PAHs and is more accurate than the general model (average absolute 

error 0.229). Given that V is always available via calculation, and that B can be estimated 



142 
 

  
 
 

reasonably well from atom fragment constants (Table 10), then the aqueous solubility of PAHs 

could be estimated directly from structure using Equation 38. 

4.9. Estimation of the Sub-cooled Liquid Vapor Pressure for Polycyclic Aromatic   

       Hydrocarbons 

 

The sub-cooled liquid vapor pressure plays an important role in establishing the vapor 

phase concentration in equilibrium with organic matter in environmental systems. Experimental 

values are available for the PAHs in Table 6 except for azulene and 9,10-dimethylanthracene.
79

 

Quina and coworkers have proposed a model for the estimation of the vapor pressure for organic 

compounds using a modified form of the solvation parameter model.
80

 This model includes a 

fitting factor to modify the dipolarity/polarizability (S) descriptor for different compound types 

and a cross-product term (AB) to take into account differences in hydrogen-bonding in the liquid 

state for different compound types. Before exploring this complex relationship we looked for a 

simpler model that could be applied to PAHs without seeking a general model for all compound 

types. There is a simple relationship between the sub-cooled liquid vapor pressure log VP (Pa, 25 

C) and the gas-hexadecane partition coefficient at 298 K (L descriptor). 

 

log VP = 7.110 ( 0.092) – 1.063 ( 0.010)L   (39) 

r = 0.999 SE = 0.107 F = 11092 n = 20 

 

Equation 39 is suitable for estimating the vapor pressure for PAHs. Although L is not predicted 

accurately it is estimated reasonably well from structure for PAHs containing fused benzene rings 

(Table 9). Equation 39 would facilitate a general estimate of the sub-cooled vapor pressure for 
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PAHs where some additional uncertainty can be tolerated due to using estimated L descriptor 

values. There is a less useful relationship containing the V descriptor 

 

log VP = 9.111 ( 0.497) – 2.904 ( 0.371)S + 4.533 (1.739)B – 5.333 ( 0.902)V                (40) 

r = 0.996 SE = 0.264 F = 608 n = 20 

 

Equation 40 requires an additional knowledge of the dipolarity/polarizability (S) and hydrogen 

bond basicity (B) descriptors to predict vapor pressures. Equation 39 is more accurate and precise 

as well as simpler to use. 

4.10 Conclusions 

Chromatographic retention factors combined with liquid-liquid partition coefficients 

afford a flexible approach for the calculation of descriptors for compounds with a wide range of 

solubility characteristics.
6a, 10, 19

 The use of totally organic biphasic systems overcomes the 

difficulty of using aqueous based systems for compounds of low water solubility. The descriptors 

calculated for the polycyclic aromatic hydrocarbons and related compounds were shown to be 

suitable for the accurate estimation of their physicochemical properties as well as demonstrating 

the reliability of the descriptors for additional applications using the large number of existing 

models formulated on the basis of the solvation parameter model for chromatographic, 

environmental and biological transport and distribution properties.
10
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CHAPTER 5 

CONCLUSIONS ON SOLVENT SYSTEM CHARACTERIZATION AND DESCRIPTOR 

DETERMINATIONS 

 

 

 The determination of descriptor values for organic compounds will facilitate the 

estimation of their properties in environmental systems. The characterization of totally organic 

liquid-liquid partition systems contributes to this goal by providing appropriate systems for the 

experimental determination of descriptors with high accuracy. 

 In Chapter 2, ethanolamine was characterized as a base solvent with heptane and 

isopentyl ether as counter solvents. Two models were developed with high statistical quality. 

Both systems are suitable for the determination of the hydrogen bond acidity (A) descriptor and 

both models increase the selectivity space for determining descriptor values. The value of 4.533 

for the hydrogen-bond basicity system constant for the ethanolamine-heptane biphasic system is 

the highest reported so far for a two-phase liquid-liquid partition system. The ethanolamine 

systems were used to facilitate the determination of descriptor values for a group of polycyclic 

aromatic hydrocarbons and related compounds. 

 In Chapter 3, triethylamine was characterized as a counter solvent with dimethyl 

sulfoxide, ethanolamine, and formamide as base solvents. A model with high statistical quality 

was developed for each system. The triethylamine-formamide system is suitable for the 

determination of the hydrogen bond-basicity (B) descriptor as it has a moderate hydrogen-bond 

acidity system constant value of 1.601.  

 In Chapter 4, descriptor values were determined for a group of polycyclic aromatic 

hydrocarbons and related compounds. The descriptor values were used to estimate partition 

coefficients for octanol-water, air-octanol, air-water systems and also for estimating the aqueous 
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solubility and sub cooled liquid vapor pressure of these compounds. When the determined 

descriptor values are applied in the environmental models, the average absolute error for the 

difference between calculated and experimental partition coefficients for octanol-water, octanol-

air, and air-water partition coefficients are 0.085, 0.105, and 0.177, respectively. The small 

absolute average error indicates that the determined descriptor values are accurate and 

homogeneous as a group. A theoretical atom fragment constant model was also built to estimate 

descriptor values directly from the molecular formula. Two local models for solubility in water 

and sub-cooled liquid vapor pressure were constructed which are suitable for the prediction of 

solute property values. 

The environmental properties were estimated without bias using the newly determined 

descriptor values. Since the selected group of polycyclic aromatic hydrocarbons possesses 

different solubility in environmental systems, the determination of reliable descriptor values is a 

significant contribution to accurately estimate their solute properties in environmental systems.  
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CHAPTER 6 

INTRODUCTION TO ATOMIC LAYER DEPOSITION 

 

6.1 Applications of Atomic Layer Deposition in Microelectronics Industry and Other  

      Areas 

 

 The rapid development in the microelectronics industry during the last five decades was 

mainly a result of scaling down of microelectronic devices and integrated circuits following 

Moore’s law, which stated that for integrated circuits, the number of transistors per unit area 

approximately doubles every two years.
81

 Miniaturization of microelectronic devices increased 

the packing density of electronic memories, increased the speed and performance of 

microprocessors, and decreased the cost of microelectronic devices.
82

 According to the 

predictions of the International Technology Roadmap for Semiconductors (ITRS), which defines 

the requirements and advances in the future semiconductor technology, the microelectronic 

device sizes will reach the 7 nm node in 2018 and 5 nm node in 2020.
83

 Past technology nodes 

indicate that for both dynamic random access memory (DRAM) half-pitch (half of the distance 

between two adjacent metal pathways) and complementary metal oxide semiconductor (CMOS) 

field-effect transistor gate length (Figure 16), feature sizes have reduced faster than the values 

predicted by the corresponding technology node.  

The downscaling of silicon dioxide, which is used as the capacitor dielectric in DRAMs, 

and as the transistor gate dielectric in CMOS logic devices leads to unacceptable levels of 

leakage currents.
81c, 84

 Therefore, new materials having high dielectric constant values were 

introduced to replace silicon dioxide in memory and logic devices. The size reduction of devices 

also caused the metal cross section of interconnect structures to decrease.
85

 The decrease in cross 
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section enhanced the interconnect resistance, resulting in signal propagation delays between 

transistors. Therefore, copper and materials having low dielectric constant values were 

introduced to replace aluminum alloy-silicon dioxide interconnects.  

 

Figure 16. Cross-Section of a Basic Metal Gate in a Metal Oxide Semiconductor Field Effect 

(MOSFET) Transistor.
86

 

 

When microelectronic device dimensions decreased, the complexity of the topography of 

integrated circuits increased.
87

 It was necessary to deposit thin films of materials on three 

dimensional structures having a high aspect ratio (via holes having a high ratio between the depth 

and the diameter) features. To obtain the required level of performance of the microelectronic 

devices, a thin film deposition technique which produces highly uniform, conformal (having the 

same thickness on all exposed parts of a three dimensional structure) thin films with atomic scale 

thickness control was needed. To satisfy the above requirements, atomic layer deposition (ALD) 

was identified as the most suitable thin film deposition technique. 

Other than microelectronic devices, currently ALD is used as a thin film deposition 

method in many application areas, including magnetic heads, thin film electroluminescent flat 

panel displays, protective and antireflective coatings, nanostructured solar cells, fuel cells, 

lithium batteries, metal oxide semiconductor gas sensors, photonic devices, nanomaterial 
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fabrications, and catalysts.
88

 The ability of ALD to produce thin films with an excellent control 

of thickness, composition, mechanical and chemical properties on surfaces having nanoscale 

dimensions and intricate shapes and porosities resulted in its popularity as a major thin film 

deposition method.  

6.2. Thin Film Deposition Techniques 

 Physical vapor deposition (PVD), chemical vapor deposition (CVD), and atomic layer 

deposition (ALD) are the three most commonly used gas phase methods to deposit thin films in 

microelectronic devices.
81a

  

6.2.1 Physical Vapor Deposition (PVD) 

  In PVD, atoms or molecules of a solid or liquid source material are removed and 

transported in a vacuum chamber to a substrate.
89

 The atoms or molecules which impinge on the 

substrate condense and form a film. The source materials have vapor pressures which are much 

lower than the working pressure of the deposition system. Atoms are removed from the source 

either by evaporation or sputtering (Figure 17).  

 

Figure 17. Physical Vapor Deposition Using (a) Evaporation and (b) Sputtering Methods.
89a, 90
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Evaporation methods can be classified into two main categories as quasi-equilibrium and 

non-equilibrium processes.
90

 In quasi-equilibrium processes the source material is in a heated 

effusion cell, which has a large interior surface area compared to its orifice. The source material 

evaporates and escapes through the orifice. During the evaporation process, heated source 

material is in a nearly steady state equilibrium with the vapor. In non-equilibrium processes, 

source material is kept in an open container such as a boat or crucible. Therefore, when the 

source material evaporates, the vapor pressure above the source is lower than the equilibrium 

vapor pressure, and the evaporated atoms do not return to the source. In both processes, the 

source is heated to a temperature above its melting point. Resistive heating is used to heat the 

containers, while an electron beam is commonly used to heat the source in non-equilibrium 

processes. Unlike evaporative methods in which atoms are thermally emitted from the source by 

heating, sputter deposition removes surface atoms by bombarding the source or the target 

material with a high energy particle beam. The high energy beam consists of ions of an inert gas, 

but it can consist of any ion, molecule, atom, or photon having sufficient energy. The sputtered 

atoms are directed under vacuum to the substrate to be coated.  

6.2.1.1 Physical Vapor Deposition of Alloy Films 

Alloy films can be formed using evaporative methods, by keeping two adjacent sources 

with the required materials which are necessary to form the binary compounds, and adjusting the 

rate of emission of sources to the required level to get the correct composition of the alloy. 

Composition can also be adjusted by varying the distance between the sample and the source. 

Flash evaporation, in which a small amount of sample source is heated and evaporated to a 

temperature above the melting point very rapidly, and reactive evaporation, in which a second 

element is added to the vacuum chamber, are the other two methods for forming alloy films using 
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evaporative PVD. Nitrides are formed by using a variant of reactive evaporation in which a 

plasma or ionized beam of the second element is used as the reactive species. However, 

evaporative PVD is not widely used for the formation of alloy films, since sputter deposition, 

which utilizes a target having the accurate composition, is a more convenient method to form 

alloys. In situations where the sputter yield may change to varying degrees for two different 

elements, in order to obtain the accurate composition of the film the surface composition of the 

target is changed such that the surface composition is inversely proportional to the relative 

sputter yield of the two elements. Reactive sputter deposition is carried out in sputtering PVD by 

adding a second reactive gas species to the chamber. 

6.2.1.2 Directional Nature of Physical Vapor Deposition Methods 

For evaporative PVD, line-of-sight depositions are observed under vacuum conditions as 

a result of direct transport of source material to the substrate without undergoing collisions with 

background gas atoms. Sputter PVD is relatively non-directional compared to the evaporative 

PVD, due to the collisions occurring with the sputtered atoms in the gas phase. However, in high 

aspect ratio features, both evaporative and sputtering methods produce films with poor step 

coverage (ratio between the thickness of a film on a side wall or on the bottom of the step to the 

thickness of a film at the top of the step) arising from the directionality of the PVD methods and 

the low surface migration of the deposited atoms. Poor step coverage and non-conformal coating 

of thin films can severely affect the performance of the microelectronic devices as the electrical 

properties of these non-ideal films can deviate considerably from their bulk values for the 

considered thickness range.
81a

 Therefore, despite the fact that PVD methods produce high purity 

films, and have a high production volume owing to high deposition rates, PVD is not a promising 
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thin film deposition method for the fabrication of high aspect ratio features in microelectronic 

devices.  

6.2.2 Chemical Vapor Deposition (CVD) 

 Chemical vapor deposition employs gas phase chemical reactions to deposit a thin film of 

material on a heated substrate surface.
91

 CVD precursors are delivered to the reaction chamber 

using an inert gas such as argon, nitrogen, or helium.
92

 After being delivered to the surface, 

precursors diffuse and adsorb on the surface, and a chemical reaction takes place which produces 

the required material. The gaseous byproducts are carried out of the chamber using an inert gas 

stream to an exhaust system (Figure 18). CVD uses many types of reactions.
93

 Thermal 

decomposition or pyrolysis, hydrogen reduction, co-reduction, hydrolysis, and disproportionation 

reactions are widely used in CVD. Oxygen, methane, and ammonia gases are used as the reactive 

species for the oxidation, carburization, and nitridation reactions.  

 

 

 

Figure 18. Sequence of Steps for the Formation of a Metal M, from the Precursor MLn Using 

CVD. 
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CVD precursors should be sufficiently volatile to be efficiently delivered to the substrate, and 

should be able to produce in acceptable yields with a high degree of purity. Precursors also 

should be able to react without parasitic reactions or side reactions at the desired substrate 

temperature. If the temperature and the concentration of the precursors introduced to the reaction 

chamber are high, gas phase precipitation of particles can occur. The formed particles can 

incorporate into the thin film creating a non-uniform and a rough surface. To avoid gas phase 

precipitation, the gas pressures are usually kept below 10
-4

 Torr.
94

 Factors such as temperature, 

surface area of the substrate, flow rates of the incoming source gases and outgoing gases affect 

the partial pressure of the precursor at the substrate.
95

 Therefore, these factors should be 

monitored carefully in order to obtain uniform films. The growth rate of the film depends on the 

precursor fluxes at steady state and the reaction kinetics on the surface.
96

 In CVD, the reactive 

sticking probability (SR) indicates the fraction of the molecules which will stick on the surface 

when an incident flux hits the substrate.
92

 The highest values SR can get are near unity, which 

occurs in CVD for highly reactive precursors if they dissociate or chemisorb at the point of 

impact on the substrate, resulting in non-conformal film growth. Conformality can be achieved 

by the use of more thermally inert precursors. However, the reduced reactivity of precursors can 

cause low deposition rates.  

6.2.3 Atomic Layer Deposition (ALD) 

Line of sight delivery of highly reactive precursors in PVD, and the high sticking 

probability of CVD precursors at the initial point of contact of the substrate, cause the thin film 

material to accumulate near the top wall and on the bottom surface of the trenches with high 

aspect ratios, resulting in non-conformality of films (Figure 19 (a)). Atomic layer deposition, 
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which is a variant of chemical vapor deposition, produces highly conformal thin films due to its 

inherently self-limiting surface reactions (Figure 19 (b)).
81a

   

 

 

Figure 19.  A Thin Film Deposited on Top, Side, and Bottom Walls of a Trench Demonstrating, 

(a) Non-conformal Coverage, and (b) Conformal Coverage. 

 

The ALD principle, where the deposition proceeds through self-limiting sequential half 

reactions was invented by Prof. S. I. Kol’tsov and Prof. V. B. Aleskovskii from Leningrad 

Technological Institute under the concept of ‘molecular layering’ in the 1960s. The ALD 

production technique was proposed by Dr. Tuomo Santola and co-workers in Finland in the 

1970s gaining ALD a worldwide recognition as a useful thin film deposition technology.
97

 

 In ALD, film growth proceeds by exposing the substrate surface to alternate precursor 

pulses in a cyclic manner.
98

 The precursors are kept separate in the gas phase using inert gas 

purges between pulses. Figure 20 illustrates the four major steps in an ALD cycle using the 

growth process for Al2O3 thin films using trimethylaluminum and water, which is considered as a 

model process in ALD.
99

 In the first step, substrate surface is exposed to the pulse of the first 

gaseous precursor trimethylaluminum, and the precursors are allowed to chemisorb on the 

surface hydroxyl groups. The reaction of trimethylaluminum with surface hydroxyl groups 
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release methane as the byproduct. In the second step methane is removed from the deposition 

chamber together with excess trimethylaluminum precursor using an inert gas purge. In the third 

step, the surface is exposed to water. The reaction of water with the methyl groups of the 

chemisorbed trimethylaluminum precursor produces an Al2O3 thin-film material. In the final 

step, the methane byproduct formed in the third step is removed together with excess water using 

another inert gas purge. The ALD growth cycle is repeated to obtain the required film thickness.  

 

 

 

Figure 20. ALD Growth Cycle for the Growth of Al2O3 Thin Films from Trimethylaluminum 

and Water. 
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Precursors that lead to exothermic reactions with a negative free energy of reaction (∆G) 

are preferred in ALD.
100

 Ideally, when the precursor dose is high enough, and when there is 

sufficient energy for the reaction to proceed, precursors react with the surface saturatively.
101

 

After one chemisorbed layer is formed, the excess precursor molecules do not react or adsorb any 

further on the surface. This self-limiting growth mechanism results in deposition of a constant 

amount of thin-film material in each cycle. Therefore, in the ALD processes when the surface 

receives a sufficient concentration of precursors to achieve surface saturation, the growth rate 

stays constant with precursor pulse length (Figure 21).
102

  

 

Figure 21. A Plot of Growth Rate Versus Precursor Pulse Length. 

 

 Although not a definite requirement, many ALD processes possess an ALD window, 

which is a temperature range where the film growth takes place by self-limited, surface 

controlled reactions and the growth rate remains constant (Figure 22).
98, 101c

 Outside the limits of 
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the ALD window, at low deposition temperatures, film growth often decreases due to the lack of 

sufficient thermal energy for the reactions to attain completion. The growth rate can increase at 

low deposition temperatures due to the condensation of precursors on the substrate surface. At 

high deposition temperatures the growth rate often increases due to decomposition of the 

precursors. However, growth rate can decrease due to desorption of precursors from the substrate 

surface. If the substrate surface contains silanol groups, at high deposition temperatures, loss of 

water molecules and formation of bridging oxygen on the substrate surface can also lead to a 

reduced growth rate. 

 

Figure 22. Schematic Illustration of an ALD Window. 

 

Theoretically, one monolayer of thin film material should be deposited in one ALD 

cycle.
98, 103

 However, under practical conditions, usually less than or equal to half a monolayer 

per cycle is formed due to steric hindrance of the precursors, which limits the number of 
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precursors reacting with or adsorbing on the surface. The limited number of reactive surface sites 

can also be a factor, which results in less than monolayer growth per cycle.  Therefore, several 

ALD cycles may be needed to complete one monolayer. However, this is not considered a 

significant problem, as the film growth can still proceed layer-by-layer. 

Due to the self-limited growth mechanism, ALD can be used to grow thin films with 

accurate thickness control and excellent conformality on complex topographies.
98, 101, 104

 

Uniform, dense, and pinhole-free films can be obtained over large areas with straightforward 

scale-up of films. In contrast to CVD, separation of precursor pulses using inert gas purges 

prevents the occurrence of gas phase reactions, and it is not necessary for the precursor flow to be 

homogeneous. The ability to generate precursor molecules in situ allows the usage of freshly 

prepared complexes, which are otherwise unstable. Within the ALD window, the film growth 

rate is reproducible regardless of small changes in temperature. 

The main drawback of ALD is the low thickness increase of films per unit time, which 

results in low throughput.
98

 Generally, a promising ALD process would exhibit approximately 

100 nm h
-1

 deposition rate. To increase the production, batch processing can be used where the 

batch reactors are available with the facility of processing up to 150 wafers in a single load. The 

effective deposition rate can also be increased by the selection of proper precursor chemistry, 

which yields fast reaction kinetics and low cycle times.
98, 100

 Another approach which is capable 

of increasing the throughput is spatial ALD, which operates under atmospheric pressure. 
96-97, 105

 

In spatial ALD, precursors are confined to separate precursor zones, and the deposition is carried 

out by moving the substrate from one zone to the other sequentially. To prevent gas phase 

reactions, two precursor zones are separated by an inert gas flow. Spatial ALD eliminates the 

long purge times that conventional ALD need between the precursor pulses to purge the reactor. 
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As a result, the thickness of films produced by spatial ALD can reach the nanometers per second 

range. A modification of spatial ALD is the roll-to-roll ALD, which consists of a central drum 

that contains different precursor zones separated by inert gas flow zones.
105a

 Depositions are 

carried out by moving a flexible substrate over the drum. The distance from the substrate to the 

outer surface of the drum is kept constant. Coating of substrates which are 300 mm wide and 

1000 m long and up to 100 ALD cycles per pass are anticipated using this method in the future. 

6.3 Precursors for Atomic Layer Deposition 

 Since ALD reactions occur only on the substrate surface in a self-limiting and saturative 

manner, and gas-phase reactions should be avoided, ALD precursors should have some specific 

properties.
98, 101b, 101c

 Precursors must be sufficiently volatile at the deposition temperature. Gases 

and liquids having high vapor pressures can be efficiently transported to the reaction chamber 

with high fluxes. Solids which give appreciable vapor pressures at the deposition temperature can 

be used. Self-decomposing or self-reacting precursors should be avoided in the considered 

temperature limits, as they are likely to undergo side reactions in the gas phase or on the substrate 

surface.
100

 Precursors must readily adsorb or chemisorb on the surface sites, and must readily 

react with the second precursor. Low deposition temperatures and low cycle times can be 

obtained using rapid and complete surface reactions. Precursors should not etch the substrate or 

the growing film. The byproducts must be volatile so that they can be easily removed from the 

deposition chamber. Byproducts must also be unreactive. Reactive byproducts can etch the film 

and the substrate, and can block the surface reactive sites by readsorption. Further, they can cause 

the corrosion of the reactor. The availability of precursors at a reasonable cost, and to be able to 

handle safely are two desirable properties.  
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 Metal precursors for ALD consist of several categories, which include volatile metal 

halides,
106

 metal alkoxides,
107

 metal β-diketonates,
108

 metal alkyls,
99, 109

 metal 

cyclopentadienyls,
110

 metal alkyl amides,
111

 metal silyl amides,
112

 metal amidinates and 

guanidinates,
113

 pyrazolyl borates,
114

 and metal alkylsilyl compounds.
115

 Non-metal precursors 

can also be grouped into a few categories.
115a, 115b

 Hydrogen has been used widely as a reducing 

agent. Metallic zinc vapor, boranes, and silanes have also been used successfully as reducing 

agents. Water, oxygen, ozone, nitrous oxide, and dinitrogen tetroxide are used as oxygen sources. 

To form nitride thin films, both a nitrogen source and a reducing agent are required.  Ammonia is 

commonly used in the formation of metal nitrides. Other nitriding agents which have been used 

are hydrazine (N2H4), 1,1-dimethyl hydrazine ((CH3)2NNH2), tert-butylamine (
t
BuNH2), and allyl 

amine (CH2CHCH2NH2). Chalcogenide thin films can be deposited using elemental S, Se, and 

Te only in the situations where the other precursor is sufficiently volatile and reactive.  In 

common use, H2S, H2Se, and H2Te are employed to form the corresponding chalcogenide thin 

film material. 

6.4. Thermal and Energy Enhanced ALD Processes 

6.4.1 Thermal ALD 

 In ALD, precursor adsorption and ligand exchange reactions need to traverse the energy 

activation barrier in order for film growth to take place.
96, 116

 ALD processes are classified 

mainly into two groups as thermal ALD and energy enhanced ALD, depending on how the 

energy is supplied to drive the ALD half-reactions.
117

 

 In thermal ALD processes, energy is supplied as heat to the precursors and to the 

substrate.
96, 116-117

 Substrates are kept at elevated temperatures, typically between 150 and 350 

°C. If the ALD half reactions have a negative change in free energy (∆G < 0) the activation 
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barrier can be overcome readily. Exothermic reactions with negative change in enthalpy (∆H < 0) 

are often used in ALD processes. However, when the reaction enthalpy change is positive (∆H > 

0), a large positive entropy change can create a favorable thermodynamic driving force for the 

reaction. Efficiency in thermal ALD processes can be enhanced by using more reactive 

precursors or co-reagents. For example, fast reactions can be obtained by using hydrogen 

peroxide instead of water, and hydrazine instead of ammonia, for the growth of oxide and nitride 

films, respectively. The two major hindrances for thermal ALD processes are the lack of 

sufficient thermal energy at low deposition temperatures leading to lower growth per cycle and 

higher impurity contents, and the lower thermal stability of precursors at high deposition 

temperatures leading to parasitic CVD like reactions. Lack of thermal energy can limit the lower 

end of the ALD window, while precursor decomposition can limit the higher end of the ALD 

window. 

6.4.2 Energy Enhanced ALD 

 Thin films with improved growth characteristics can be obtained by energy enhanced 

ALD methods at low deposition temperatures.
117

 Highly thermally stable precursors, which have 

low reactivity in thermal ALD processes, can be used readily in energy enhanced processes, 

although at high deposition temperatures. In energy enhanced ALD, the co-reactant is a highly 

reactive species which has a short term stability, such as reactive neutral molecules, ions, and 

radicals. Generation of the reactive species is carried out by applying additional energy to 

gaseous co-reactants using a variety of methods such as electrical discharges, thermal cracking 

(hot-wire ALD), and UV photodissociation.  
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6.4.2.1 Plasma ALD 

Plasma enhanced ALD is the most widely used energy enhanced ALD process, which is 

used as an alternative to thermal ALD.
118

 A plasma is a mixture of gaseous mono and 

multinuclear ions, radicals, electrons, and meta-stable excited species which is on average, quasi-

neutral.
117, 119

 By adjusting the composition and properties, such as gas flow, pressure, plasma 

power, and exposure time, selective reactivity on the substrate surface can be obtained. The heat 

flux supplied to the substrate surface by plasma is low, although ion bombardment results in 

additional energy to the surface which is dissipated by the surface species. The dissipation of the 

extra energy can increase the reaction rates and surface diffusion of the deposited material. Due 

to the increased reactivity of the plasma, the thin films deposited by plasma processes can have 

high film density, a lower impurity content, and improved electrical properties. Chemically and 

thermally stable precursors, and substrate surfaces which have been found challenging in thermal 

processes, can be readily used to deposit thin-film materials using plasma processes. The ability 

to change the composition and operating parameters of the plasma allows the deposition of thin- 

film material with a good control of stoichiometry. Since a plasma can be turned on and off 

rapidly, purge times are reduced, which cause the growth rate to increase. Due to the high 

reactivity, the nucleation delay for the plasma processes can be lower than for the thermal ALD 

processes. Short cycle times and fast nucleation increases the throughput in the plasma processes. 

However, plasma radicals can recombine on the walls of the reactor and on the substrate 

surface to form non-reactive molecules. The surface recombination probability (r), which can 

have a range of values from approximately 10
-6 

to 1, indicates the probability of the 

recombination reactions. In order to deposit materials in high aspect ratio structures and porous 

surfaces, plasma radicals have to undergo multiple collisions, which results in a higher 
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probability of radical recombinations and a reduced radical flux. Therefore, it is difficult to 

obtain conformal films with good step coverage on high aspect ratio features using plasma ALD. 

Good conformality can be achieved using long plasma exposure times. However, for aspect 

ratios ≥ 30, the duration of the plasma exposure times required are too long, and therefore 

impractical. A plasma contains a variety of gas phase and surface species, which can sometimes 

induce undesired reactions. Plasma-induced damage can result from the impact of high energy 

particles, which can create defects inside the material and on the surface. Further, a plasma 

requires the ALD reactors to have additional complex equipment when compared with thermal 

ALD. Due to the inherent disadvantages of the plasma processes mentioned above, in industrial 

applications, plasmas are used only in situations where they can provide significant benefits over 

thermal ALD. Thermal ALD, therefore, is still the mainstream ALD process. 

6.5 Low Temperature ALD 

 The semiconductor industry, which is the key driver for ALD technology, demands low- 

temperature depositions in order to avoid inter-diffusion of materials at elevated temperatures, 

and to obtain smooth, high purity films with low resistivity.
117, 120

 To prevent the films suffering 

from thermally induced stress and to obtain high quality films, deposition temperatures of ≤ 150 

°C are preferred.  

 Plasma ALD can be used to carry out depositions at low temperatures, but the films 

deposited lack conformality, and suffer from plasma induced damage as mentioned in section 

6.4.2.1. There are only a few thermal ALD processes carried out at low temperatures that 

demonstrate favorable thermochemistry to obtain high quality thin films. The main challenge in 

low temperature depositions is the lack of thermal energy to drive the surface reactions. There are 

significant nucleation delays observed at low temperatures, which leads to island-like film 
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growth and rough films. Due to the increased probability for precursors to condense on the 

surface and reactor walls, long purge times are required. Therefore, long processing times are 

needed at low temperatures, leading to low growth per cycle values. Trimethylaluminum used in 

the formation of Al2O3 thin films is generally known as an ideal precursor capable of reacting 

even at room temperature. Groner and coworkers reported that the average density of amorphous 

Al2O3 films are around 3.0 g cm
-3

 when 
 
deposited at 177 °C, and reduced to around 2.5 g cm

-3
 

for depositions at 33 °C.
121

  Due to incomplete reactions and the low vapor pressure of precursors 

and byproducts, the incorporation of impurities in films at low deposition temperatures can be 

high.  

 Apart from Al2O3 ALD, other ALD systems which were well developed for low-

temperature depositions below 100 °C, owing to good precursor reactivity, include deposition of 

TiO2 using TiCl4 and water
122

 or Ti(OiPr)4 and water
123

 and deposition of ZnO using 

Zn(CH2CH3)2 and water,
124

 and deposition of ZrO2 using TDMAZr 

(tetrakis(dimethylamido)zirconium(IV)) and water.
125

 Some of these low-temperature 

depositions have extended the application range of ALD by enabling the fabrication of polymers, 

organic materials, and biomaterials.
120b, 122a

 

In addition to conventional two-step ALD processes, three-step processes which were 

originally developed by Niinistӧ and coworkers have been used to obtain thin-film materials via 

an additional intermediate step.
122a, 126

 Winter and coworkers employed a copper alkoxide 

precursor, an acid, and a reducing co-reagent in a three-precursor sequence to produce copper 

metal thin films at low substrate temperatures.
127

 In the three-step process, the copper precursor 

Cu(OCHMeCH2NMe2)2 does not react with anhydrous hydrazine, which is a strong reducing co-

reagent. Instead, the copper precursor was first converted to copper(II)formate by reacting with 
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formic acid, which is then reduced to copper metal using anhydrous hydrazine. This process 

afforded copper metal thin films within an ALD window between 100-160 °C on Si(100) 

substrates. Thin films consisting of high purity copper metal having low resistivity (9-16 μΩ cm) 

were obtained. The films were of an average surface roughness, which is approximately 3.5 nm 

for a 50 nm thick film deposited at 120 °C.  

6.6 Chemically-Catalyzed Thermal ALD Processes for Low Temperature ALD 

The quest to find optimum low-temperature depositions is stretching the limits of ALD 

process technology. A key factor for obtaining an efficient low-temperature ALD process is the 

high reactivity of precursors which leads to strong exothermic reactions. A major challenge that 

affects the field of ALD, and particularly low-temperature ALD, is the low reactivity of 

precursors, which makes surface reactions impossible or makes them possible only at higher 

temperatures. Use of a catalyst can drive the reaction at lower temperatures.  

There are several examples for chemically-catalyzed ALD processes where a catalyst is 

mixed with a reactant and supplied to the surface together with the gas-phase reactant flow.
128

 

George and coworkers developed Lewis base catalyzed silicon dioxide ALD, using pyridine or 

ammonia as the catalyst (Chart 1).
120b, 128a, 128b

  

 

 

Chart 1. Reaction Steps for the Silicon Dioxide ALD Process. 
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Although the reaction of SiCl4 with water has a negative reaction enthalpy, the reaction is 

slow and occurs at temperatures > 325 °C on Si(100) substrates only with a large amount of 

reactant exposure. A Lewis base, like pyridine or ammonia can hydrogen bond with surface -

SiOH during the first ALD half reaction with SiCl4, weakening the SiO-H bond, and thereby, 

making the oxygen atom a stronger nucleophile. The increased nucleophilicity of the oxygen 

atoms facilitate the nucleophilic attack of oxygen on the silicon atom of SiCl4. In a similar 

manner, the hydrogen bonding between the Lewis base and water in the second ALD half 

reaction facilitates the nucleophilic attack by the oxygen atom of water on the silicon atom of 

surface –SiCl. Although this method brings the reaction temperatures close to room temperature, 

a major drawback is the possibility that the Lewis base will react with the HCl byproduct, 

forming a salt which can accumulate over time and poison the surface. Use of tetraethoxysilane 

(Si(OCH2CH3)4) instead of SiCl4 prevents salt formation.
129

 However, the reaction with 

tetraethoxysilane is much slower. Another disadvantage is that the Lewis bases can catalyze the 

surface reactions within a limited temperature range only. As the catalyst should have a sufficient 

vapor pressure in order to be efficiently delivered to the surface, the method of adding the 

catalyst extraneously, mixed with the reactant is limited to a narrow range of ALD reactions. A 

self catalytic SiO2 process was reported using 3-aminopropyltriethoxysilane, water, and ozone.
130

 

However, precursor systems which exhibit self catalysis are rare. 

 Rapid SiO2 ALD is another process which uses aluminum catalyst from a trimethyl 

aluminum precursor, which is initially chemisorbed on the substrate.
131

 The process developed 

by Gordon and coworkers employed alternating exposure of trimethylaluminum and tris(tert-

butoxy)silanol to the surface, resulting in deposition rates that are more than a hundred times 

greater (one silanol flux resulting in thickness up to ~120 Å SiO2 layers) than rates obtained by 
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other conventional SiO2 deposition processes. Growth of siloxane polymer chains occurs at 

aluminum catalytic sites.
131-132

 Eventual cross linking of the polymer chains results in a dense 

SiO2 film and self-terminates the growth, preserving the ALD characteristics. Therefore, a new 

ALD cycle can begin with another exposure to the trimethylaluminum vapor on newly formed 

silanol surface. However, initial depositions were carried out at higher substrate temperatures 

(>200 °C). George and coworkers developed a rapid SiO2 process using trimethylaluminum and 

tris(tert-pentoxy)silanol precursors.
133

 Nucleation and the cross-linking rate of the siloxane 

polymer were dependent on the temperature, and the flux and pressure of tris(tert-

pentoxy)silanol. Therefore, low deposition temperatures were obtained in the process by varying 

the silanol pressure and exposure times and by adding tris(tert-pentoxy)silylpyridine as an 

impurity. The pyridine derivatives contribute to the lower deposition temperature by catalyzing 

the initial nucleation and cross linking reaction. Hafnium and zirconium have also been used as 

the catalyst for rapid SiO2 ALD, although they were not as effective as the aluminum catalyst.
134

 

Thus far, this method is limited to the growth of SiO2 films. 

6.7 Noble Metal Catalysis in Atomic Layer Deposition  

 Noble metals consist of elements that have a high resistance to oxidation, corrosion, 

chemical action, and attack by acids.
135

 Ruthenium, osmium, rhodium, iridium, palladium, 

platinum, silver, and gold are classified as noble metals. This class of elements is widely used in 

chemistry to catalyze oxidation, reduction, and hydrogenation reactions. Atomic layer deposition 

processes where the noble metal catalysis has been utilized, can be categorized mainly as two 

types. The first category includes the deposition of noble metal thin films where noble metal 

precursors are employed, and the film growth proceeds by a mechanism where the noble metal 

on the deposited thin-film surface catalyze the noble metal deposition itself. The second category 
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includes the use of a noble metal seed layer to initiate the film growth. After this initiation step, 

film growth proceeds by catalysis by the deposited metal on the surface of the thin film in the 

instances where catalytic metals are deposited, or by ligand exchange ALD reactions. The 

catalyzed ALD reactions demonstrate an increase in growth rates of thin films and a reduction of 

the lower limit of the deposition temperatures, in comparison to the thermal ALD processes 

where a catalyst is not used.  

In the reported noble metal ALD processes, oxygen is used as the most common reactant 

to obtain noble metal thin films.
136

 Higher deposition temperatures (≥ 275 °C) are needed when 

the film nucleation and onset of film growth take place on catalytically inactive substrate 

surfaces, such as amorphous aluminum oxide on silicon or glass substrates.
136a, 137

 Several 

reactions are known to take place during the oxygen-based processes. First, the noble metal 

precursor adsorbs on the substrate. Then the already adsorbed noble metal precursor catalytically 

activates oxygen by dissociating molecular oxygen into atomic oxygen.
138

 The adsorbed atomic 

oxygen combusts the ligands of the noble metal precursor, producing a noble metal thin film. The 

two main byproducts are water and CO2, although some reactions may produce hydrogen and 

carbon monoxide as byproducts.
135, 139

 After the noble metal nuclei are formed on the substrate, 

this freshly prepared metal layer further catalyzes the oxygen decomposition, thereby 

substantially increasing the growth rate of film formation. An example for a self-catalyzed noble 

metal ALD process is the deposition of ruthenium metal films using 

bis(cyclopentadienyl)ruthenium (RuCp2) and oxygen. Only a fraction of the ligands are 

combusted during the Ru(Cp2) pulse (Chart 2. Reactions 4 and 5). During the next consecutive 

oxygen pulse, the reaction goes to completion with the combustion of the remaining ligands 

(Chart 2. Reactions 6 and 7). 
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Chart 2. Reaction Steps for the Formation of Ruthenium Films from RuCp2 and Oxygen. 

 

Penetration of some dissociated atomic oxygen into the subsurface region of the deposited film 

was also observed during the depositions of ruthenium films at temperatures ≥ 280 °C.
98, 136a

 

Nucleation delay periods were observed for noble metal ALD processes carried out on 

substrates which are not catalytically active. This problem was overcome by the use of a  

catalytically active seed layer in some noble metal ALD processes, which also enabled reduced 

deposition temperatures of around 200 °C.
140

 For example, the low temperature limit of 275 °C 

to obtain ruthenium films from RuCp2 and oxygen was brought down to 225 °C by using an as-

deposited iridium seed layer. The deposition of copper metal using bis(2,2,6,6-tetramethyl-3,5-

heptanedionato)Cu(II) and hydrogen on glass substrates using a platinum and palladium mixed 

seed layer between 190 and 260 °C had also been reported.
141

 The film growth is initiated by the 

dissociation of molecular hydrogen to atomic hydrogen on a noble metal seed layer. The atomic 

hydrogen reduces the metal ion into metal atoms and cleaves the ligands. After the copper metal 

surface is formed, hydrogen dissociates on the freshly formed copper metal surface and the film 

growth continues. Deposition of palladium using palladium(II)hexaflouroacetylacetonate 

(Pd
II
(hfac)2) and hydrogen on an iridium surface between 60 and 230 °C was  reported.

142
 This 

process consists of an incubation period resulting from carbon contamination on the iridium 
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surface. The adventitious carbon is a result of high reactivity of hydrogen with Pd
II
(hfac)2. 

Although the onset of the film growth is initiated on an iridium substrate, the film formation 

proceeds through the catalysis of the reaction (dissociation of molecular hydrogen to atomic 

hydrogen), by palladium deposited on the surface of the thin film. The substrate reactivity effects 

of Ru and RuO2 on growth of ALD aluminum oxide using trimethylaluminum and water had 

been studied previously.
143

 The aluminum oxide deposition process was carried out on ruthenium 

and RuO2 films deposited on a ZrO2 substrate at 280 °C. In the reported ALD process, normal 

ligand-exchange type ALD growth takes place on Ru substrate. When the RuO2 substrate is used, 

an increase in the Al2O3 growth rate was observed in the first few cycles due to the active 

participation of oxygen from RuO2 on the reaction with trimethylaluminum. However, after the 

first few cycles, when the Al2O3 layer is formed on the surface, further ALD film growth 

proceeds by ligand-exchange type ALD reactions between trimethylaluminum and water. 

 The catalyzed ALD processes, which were carried out prior to the research work reported 

herein, are not solely substrate-dependent. In the noble metal atomic layer deposition processes, 

the film growth proceeds through the self-catalysis of the noble metal precursor by the freshly 

deposited elemental noble metal on the surface of the thin film. When a noble metal seed layer is 

used, the seed layer catalyzes the film nucleation, but the film growth proceeds through catalysis 

of the precursors either by freshly formed surface metal atoms in the instances where the catalytic 

metals are deposited, or by uncatalyzed normal ligand-exchange type reactions. Therefore, in the 

ALD processes carried out thus far, the film growth is independent of the catalytic activation by 

the substrate. This fact is evidenced by the continuous linearity of the thickness versus number of 

ALD cycles graphs demonstrated by all catalytic thermal ALD processes conducted prior to the 

research work reported herein.  



170 
 

  
 
 

6.8 Nickel Nitride Thin Films 

 Nickel nitride thin films are used in spintronic devices
144

 and magnetic memory storage 

devices as a contact material.
145

 Nickel silicide is a major constituent in source and drain contacts 

in microelectronic devices. Nickel metal films are used as protective and decorative coatings, as 

selective absorbers, as fuel cells, and as catalysts.
146

 Nickel nitride serves as a starting material 

for the formation of both NiSi and Ni metal thin films.
147

 

 Nickel nitride thin films have been prepared by physical vapor deposition using ion beam 

implantation
148

 and sputtering methods.
149

 The reported CVD methods for nickel nitride thin 

films include deposition using bis(2,2,6,6-teramethyl-3,5-heptanedianato)nickel(II) and NH3 as 

precursors at temperatures between 160 and 200 °C,
150

 and using bis[N,N'-di(tert-

butyl)acetamidinato]nickel(II) and NH3 as precursors at temperatures between 160 and 200 °C.
146

 

 Nickel nitride ALD has been carried out using bis[N,N'-di(tert-

butyl)acetamidinato]nickel(II) and NH3 on glassy carbon.
151

 Due to carbon incorporation in the 

films at deposition temperatures ≥ 240 °C, the ALD deposition temperature for this process was 

kept at 200 °C. Nickel nitride ALD has been carried out also using bis(1,4-di-tert-butyl-1,3-

diazabutadienyl)nickel(II) and 1,1-dimethylhydrazine on thermal SiO2.
152

 The ALD window for 

the process is between 225-240 °C. However, since the decomposition of the nickel precursor 

occurs at 230 °C, it is probable that the film growth may proceed through a CVD type growth 

mechanism. Both the significant surface roughness of films (root mean square surface roughness 

of a film deposited at 225 °C was ~10.87 nm for a 70 nm thick film) and the significant amounts 

of carbon and hydrogen impurity incorporation in films may have resulted from the thermal 

decomposition of the nickel precursor. 
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 A nickel nitride thermal ALD process which produces smooth, uniform, high purity films 

at low deposition temperatures is unprecedented. 

6.9 Low Reactivity of Precursors-A Major Obstacle in Atomic Layer Deposition 

A considerable problem in the growth of ALD metal thin films is the low reactivity of the 

metal precursors towards reducing co-reagents. In the copper ALD process reported by Winter 

and coworkers, a solution to this problem was obtained where the copper metal precursor was 

converted to a copper(II)formate species using formic acid followed by the subsequent reduction 

to metal using the reducing co-reagent (Chart 3).
127

 

 

 

Chart 3. Scheme for the Growth of Copper Metal Thin Films. 

 

However, many ALD precursors show low reactivity to an extent that neither the use of 

more reactive precursors or co-reagents, nor the carrying out of the reaction through multi-step 

ALD processes would produce the required thin-film material within an acceptable temperature 

range. Therefore, low reactivity of precursors is a central problem in growth of ALD thin films. 

The lack of reactivity is caused by the higher activation energy barrier needed to 

overcome the reaction in order for the products to form. The enthalpy needed to overcome the 

activation energy barrier can be high, making the ALD reaction possible only at higher 
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temperatures where only poor quality films can be obtained or making the reaction impossible at 

all within the acceptable temperature limits. For this reason, developing a new ALD process 

which can address the problem of low reactivity of precursors, and which can make the low-

temperature depositions possible, would be a significant improvement in the field of ALD. 

Use of a heterogeneous catalyst in the ALD process will lower the activation energy of 

the ALD reaction and will facilitate the reaction to go to completion at lower temperatures 

(Figure 23). In ALD, the starting surface is known to influence the film nucleation and the start 

of film growth.
153

 Therefore, using a catalytic substrate can produce better film growth and film 

properties in the ALD processes. 

 

 

 

Figure 23. Lowering the Activation Energy of a Reaction Using a Catalyst. 
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6.10 Thesis Problem for the Research Segment ‘Ruthenium-Substrate Catalyzed Growth of  

         Nickel Nitride Thin Films by Atomic Layer Deposition’ 

 

 A major problem in ALD is the low reactivity of precursors. The ALD research work 

documented in this thesis focuses on developing a new ALD process to address the problem of 

the low reactivity of precursors. To this end, substrate-dependent catalytic ALD film growth was 

explored.  

 Nickel nitride thermal ALD processes, which have been developed to date, are carried out 

at high deposition temperatures (≥ 200 °C). The other disadvantages of existing nickel nitride 

ALD processes include a narrow ALD process window, high surface roughness of films, and 

significant amount of impurity incorporation. Therefore, the research work reported herein also 

focuses on developing a nickel nitride thermal ALD process at low temperatures. High purity, 

smooth, uniform, and conformal thin films are anticipated to meet the demands of the 

microelectronics industry. 

  A new substrate-dependent catalytic ALD technique will be introduced. The ALD growth 

studies of nickel nitride thin films will be performed by varying film growth parameters. 

Composition of the films and the surface morphology will be analyzed using X-ray diffraction 

(XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and 

atomic force microscopy (AFM) techniques. 
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CHAPTER 7 

RUTHENIUM SUBSTRATE-CATALYZED GROWTH OF NICKEL NITRIDE THIN 

FILMS BY ATOMIC LAYER DEPOSITION 

 

7.1 Introduction 

 In this chapter, the first example of the substrate-dependent catalytic ALD film growth is 

described. Two new low temperature nickel nitride ALD processes are developed using catalytic 

ruthenium substrates. The substrate dependent catalytic technique reduces the activation energy 

of the ALD reaction and allows depositions at low temperatures. Therefore, analogous substrate-

dependent catalytic processes can be utilized to obtain a diverse range of thin-film materials 

using various precursors and co-reactants which can be catalytically activated.   

7.2 Results and Discussion 

 Literature reports indicate that nickel aminoalkoxide complexes have been used as 

promising precursors in ALD and metal organic chemical vapor deposition (MOCVD) processes 

for the formation of nickel and nickel alloy thin films.
107e, 154

 Therefore, Ni(OCHMeCH2NMe2)2 

(Ni(dmap)2) (1) (Chart 4) was selected as the nickel precursor to carry out the nickel nitride film 

growth studies reported herein. 

 

Chart 4. Structure of (1), Bis(dimethylamino-2-propoxo)nickel(II) or Ni(dmap)2 Precursor. 
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From preparative sublimation studies 95% sublimed recovery and 5% nonvolatile residue was 

observed for 1 (~0.70 g) at 60 °C/0.05 Torr within approximately 3 hours. The solid state 

decomposition temperature range for 1 is between 178 and 185 °C. 

Hydrazine is used in ALD as a strong reducing co-reagent and also as a source of nitrogen 

for the formation of nitride thin films.
155

 The enthalpy and free energy for dissociation of 

hydrazine are much smaller than the corresponding values for ammonia (Chart 5). Therefore, 

hydrazine demonstrates a higher reactivity than ammonia in nitridation reactions. 

 

 

 

Chart 5. Decomposition Reactions of Ammonia and Hydrazine. 

 

Due to the high reactivity of hydrazine, often the growth rates and film densities of nitride 

thin films deposited using hydrazine are higher than the corresponding values obtained for the 

films deposited using ammonia. However, even a strong reducing agent like hydrazine may not 

be effective for certain reactions due to the high activation energy needed for the reaction. From 

the preliminary ALD experiments, depositions using both 1 with anhydrous hydrazine and 1 with 

formic acid and anhydrous hydrazine did not afford films on hydrogen terminated silicon, silicon 

with native oxide, or thermal silicon dioxide substrates. Only island-like discontinuous films on 

Si(100) substrates were observed at temperatures ≥ 175 °C. Thermal reduction of nickel formate 

to nickel metal requires elevated temperatures ≥ 266 °C.
156

 Therefore, the discontinuous films 
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obtained from these preliminary studies can be a result of CVD type film growth following the 

thermal decomposition of 1. 

Hydrazine is known to catalytically decompose on ruthenium surfaces.
157

 Above 220 K, 

dissociation of hydrazine on ruthenium generates various surface species and desorption products 

including surface amino (-NH2) and imide (-NH) groups, adsorbed atomic N and H, and gaseous 

NH3, N2, and H2.  

A ruthenium seed layer was used by Waechtler and coworkers to efficiently reduce ALD 

grown Cu2O thin films on copper.
158

 After the Cu2O ALD process, the Cu2O films were heat-

treated at 115 °C in formic acid vapor on a ruthenium seed layer to obtain a copper film. Formic 

acid is known to dissociate on ruthenium by dehydrogenation, producing CO2 and H2, and 

dehydration, producing CO and H2O. Formic acid is also known to dissociate on copper surfaces, 

producing CO2 and H2.
159

  

Therefore, use of a catalytic ruthenium substrate would enable the nickel nitride film 

growth at reduced temperatures. Accordingly, two new low-temperature ruthenium substrate-

catalyzed ALD processes were developed using 1 and anhydrous hydrazine in a two precursor 

sequence, and 1, formic acid, and anhydrous hydrazine in a three precursor sequence (Chart 6). 

 

 

 

Chart 6. Scheme for the Growth of Nickel Nitride Thin Films. 
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Initial film growth studies were investigated on several substrates which can demonstrate 

catalytic activity. Non-uniform, island-like film growth was observed on Pt/Ti/SiO2/Si and 

Pd/Ti/SiO2/Si substrates, indicating poor nucleation. Continuous films were deposited on 5 nm 

sputtered ruthenium on 100 nm thermal SiO2 (Ru/SiO2/Si).  RuO2 species may be present on the 

surface of the ruthenium substrates.
108d

 Nickel or nickel nitride film growth was not observed for 

the reaction of 1 with formic acid at temperatures < 175 °C. 

Film growth studies were carried out for nickel nitride films obtained using both the three 

precursor sequence (three-step) process and the two precursor sequence (two-step) process on 

Ru/SiO2/Si substrates. 

7.2.1. New Low Temperature Ruthenium Substrate-Catalyzed Three-Step NixN ALD   

          Process 

 

For the three-step process (Chart 7) the growth behavior was evaluated by varying the 

precursor pulse length, substrate temperature, and number of deposition cycles. 

 

 

 

Chart 7. Scheme for the Growth of NixN Thin Films by Three-Step Process. 

 

The variation of the film growth rate on the pulse length of 1 was examined at 150 °C (Figure 

24). The number of deposition cycles, the formic acid pulse length, the hydrazine pulse length, 
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and the length of the purge following the formic acid and hydrazine pulses were held constant at 

1000, 0.2 s, 0.2 s, and 5.0 s, respectively. The growth rate was constant at about 0.35 Å/cycle 

with ≥ 1.0 s pulse lengths for 1. This constant growth rate is indicative of self-limited growth. 
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Figure 24. Plot of Growth Rate Versus Pulse Length of 1 at 150 °C for the Three-Step NixN 

ALD Process. 

 

 The dependence of film growth rate on the pulse length of formic acid and anhydrous 

hydrazine was also investigated at a growth temperature of 150 °C. For the investigation of the 

growth behavior as a function of the formic acid pulse (Figure 25), the number of deposition 

cycles, pulse length of 1, pulse length of anhydrous hydrazine, and the length of the purge 
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between precursor pulses were kept constant at 1000, 3.0 s, 0.2 s, and 5.0 s, respectively. In a 

similar manner, the growth behavior was investigated as a function of the pulse length of 

anhydrous hydrazine, keeping the number of deposition cycles, pulse length of 1, pulse length of 

formic acid, and the length of the purge between precursor pulses constant at 1000, 3.0 s, 0.2 s, 

and 5.0 s, respectively (Figure 26). Saturative growth was observed for formic acid and hydrazine 

pulse lengths ≥ 0.1 s. 
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Figure 25. Plot of Growth Rate Versus Pulse Length of Formic Acid at 150 °C for the Three-

Step NixN ALD Process. 
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Figure 26. Plot of Growth Rate Versus Pulse Length of Anhydrous Hydrazine at 150 °C for the 

Three-Step NixN ALD Process. 

 

The film growth rate was investigated as a function of the deposition temperature (Figure 

27). The depositions were carried out using 3.0 s pulse lengths of 1, and formic acid, and 

anhydrous hydrazine pulse lengths of 0.2 s each, with a 5.0 s purge length between pulses, and 

1000 deposition cycles. A constant growth rate of ~0.35 Å/cycle was observed for substrate 

temperatures between 120 and 180 °C (ALD window). Growth rates of 0.29 Å/cycle and 0.32 

Å/cycle were observed at 100 and 200 °C, respectively, which are outside the ALD window. The 

lower growth rate below the ALD window was a result of the lack of thermal energy for the 
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reaction of the precursors. The reduced growth rate above 180 °C resulted from decomposition of 

the precursor in the gas phase followed by removal of the decomposition products from the 

reaction chamber by the purge. 
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Figure 27. Plot of Growth Rate as a Function of the Deposition Temperature for the Three-Step 

NixN ALD Process. 
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Cross sectional SEM view of a ~35 nm thick film is shown in Figure 28. 

 

 

Figure 28. Cross Sectional Scanning Electron Micrograph Image of a NixN Film Deposited by 

Three-Step NixN ALD Process. 

 

 The variation of the film thickness on the number of deposition cycles was investigated 

(Figure 29). The deposition temperature was 150 °C with 2.0 s, 0.1 s, and 0.1 s pulse lengths of 

1, formic acid, and anhydrous hydrazine, respectively, with 5.0 s purges between pulses. A linear 

variation of film thickness was observed with the number of deposition cycles up to 1000 cycles. 

The slope of the line (0.348 Å/cycle) is similar to the saturative growth rate which is ~0.35 

Å/cycle. From 1000 to 2000 deposition cycles the film thickness remained constant at ~35 nm.  

This growth plateau in a film thickness versus number of deposition cycles graph is 

unprecedented in ALD processes carried out prior to the ALD processes documented herein. 
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Hydrazine is catalytically activated on ruthenium surfaces, followed by reduction of the nickel 

precursor and eventual nitridation. Further growth of the nickel nitride layer stops when the 

growing nickel nitride layer blocks hydrazine from reaching active substrate ruthenium sites, or 

when the already activated nitriding agent is completely consumed and not available anymore to 

permeate through the growing nickel nitride layer. Therefore, the constant film thickness 

observed beyond 1000 deposition cycles indicates substrate-dependent catalytic film growth. The 

intercept of −0.6, which is within experimental error, indicates a small nucleation delay period. 
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Figure 29. Plot of Film Thickness as a Function of Number of Deposition Cycles at 150 °C for 

the Three-Step NixN ALD Process. 
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 Powder X-ray diffraction experiments were carried out on the 35 nm thick films 

deposited at various temperatures (Figure 30). The X-ray diffraction pattern showed reflections 

arising from (110), (002), and (111) planes of the polycrystalline Ni3N (JCPDS file number 10-

0280).  
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Figure 30. Powder X-Ray Diffraction Pattern of a 35 nm Thick NixN Film Deposited at 120 °C 

Using the Three-Step NixN ALD Process. 

 

 X-ray photoelectron spectroscopy (XPS) was performed on 35 nm thick films deposited 

at 150 °C (Figure 31). The spectrum of the film surface before argon ion sputtering showed 

nickel and nitrogen ionizations as well as ionizations arising from oxygen and carbon. The 

composition of the film after two argon ion sputters (60 s each) was 87.8 at % nickel, 8.0 at % 

nitrogen, 2.9 at % carbon, and 1.3 at % oxygen (Table 19). The Ni 2p
1/2

 and Ni 2p
3/2

 ionizations 

appeared at 869.65 and 852.55 eV corresponding to nickel metal (Figure 32).
160

 The reduction of 

the nitrogen content of NixN films when NH3 and H2 were used as co-reactants was previously 
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reported.
146

 However, since the X-ray powder diffraction pattern indicates the formation of 

crystalline Ni3N films, the reduced content of nitrogen in this work compared to the Ni3N 

stoichiometry could be as a result of preferential sputtering of nitrogen by the argon ion beam.
150a

  

The high percentages of oxygen and carbon observed before argon ion sputtering changed to 

considerably smaller values after argon ion sputtering. Adventitious carbon and oxygen in the 

sample could result from the exposure of the sample to the ambient atmosphere before XPS 

analysis. The low percentages of carbon and oxygen impurity incorporation after argon ion 

sputtering indicate that the deposited films were of high 

purity.
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Figure 31. XPS Survey Spectrum for a 35nm Thick NixN Film Deposited at 150 °C Using the 

Three-Step NixN ALD Process. 
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Table 19. Elemental Compositions of Ni, N, C, and O in 35 nm Thick NixN Films Determined 

by XPS. 
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Figure 32. High Resolution XPS Multiplex of the Ni 2p Region of a 35 nm Thick NixN Film 

Deposited at 150 °C Using the Three-Step NixN ALD Process. 

 

The surface morphology of the films was studied by atomic force microscopy (AFM). The root 

mean square (RMS) surface roughness of 35 nm thick films deposited at 120 °C was ~0.38 nm 

 Initial Survey Second Survey Third Survey 

% Ni 40.5 87.7 87.8 

% N 5.7 8.1 8.0 

 % C 24.4 2.2 2.9 

 % O 29.4 2.0 1.3 
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indicating a very smooth surface (Figure 33). The RMS surface roughness of 35 nm thick films 

deposited at 180 °C was 4.4 nm indicating an average surface roughness (Figure 34). 

 

 

Figure 33. AFM Images of 35 nm Thick Films Deposited at 120 °C with RMS Surface 

Roughness Values of (a) 0.353 nm and (b) 0.387 nm. 

 

 

Figure 34. AFM Images of 35 nm Thick Films Deposited at 180 °C with RMS Surface 

Roughness Values of (a) 4.463 nm and (b) 4.349 nm. 

 

(a) (b) 

(a) (b) 
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 The scanning electron micrograph images show that the film surfaces are uniform with no 

cracks or pinholes (Figure 35). 

 

 

 

Figure 35. Top SEM View of a 35 nm Thick NixN Film Deposited at 150 °C Using the  

Three-Step NixN ALD Process. 

 

Films deposited at all temperatures passed the scotch tape test. Therefore, the films show good 

adhesion. 
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7.2.2. New Low Temperature Ruthenium Substrate-Catalyzed Two-Step NixN ALD     

          Process 

 

For the two-step process (Chart 8) precursor pulse lengths, substrate temperature, and 

number of deposition cycles were varied to evaluate the growth behavior. 

 

 

 

Chart 8. Scheme for the Growth of NixN Thin Films by Two-Step Process. 

 

The dependence of the film growth rate on the pulse length of 1 was examined at 150 °C 

(Figure 36). The number of deposition cycles, the hydrazine pulse length, and the purge lengths 

were held constant at 1000, 0.2 s, and 5.0 s, respectively. The growth rate was constant at about 

0.25 Å/cycle with ≥ 2.0 s pulse lengths of 1, which is consistent with the self-limited growth 

behavior. 
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Figure 36. Plot of Growth Rate as a Function of Pulse Length of 1 at 150 °C for the Two-Step 

NixN ALD Process. 

 

 The variation of the film growth rate as a function of pulse length of anhydrous hydrazine 

was investigated. Depositions were carried out at a substrate temperature of 150 °C (Figure 37). 

The number of deposition cycles, pulse length of 1, and the purge lengths were held constant at 

1000, 3.0 s, and 5.0 s, respectively. Saturative growth was observed for anhydrous hydrazine 

pulse lengths ≥ 0.1 s. 
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Figure 37. Plot of Growth Rate as a Function of Pulse Length of Hydrazine at 150 °C for the 

Two-Step NixN ALD Process. 

 

The film growth rate was investigated next, varying the deposition temperature (Figure 

38). Depositions were carried out using 3.0 s and 0.2 s pulse lengths of 1 and anhydrous 

hydrazine pulse lengths, respectively, with a 5.0 s purge between pulses, and 1000 deposition 

cycles. The ALD window was observed between 140 and 180 °C where the growth rate was 

constant around 0.25 Å/cycle. Growth rates of 0.12, 0.18, and 0.33 Å/cycle were observed at 100, 

120, and 200 °C, respectively. These temperatures are outside the ALD window. The lower 

growth rates could result from the low reactivity of precursors and the increased growth rate at 
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200 °C due to decomposition of the precursors and the accumulation of decomposition products 

on the film surface. 
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Figure 38. Plot of Growth Rate Versus Deposition Temperature for the Two-Step NixN ALD 

Process. 

   

The variations of film thickness with the number of deposition cycles was investigated. 

Depositions were carried out at 150 °C, using 2.0 s and 0.1 s pulse lengths of 1 and anhydrous 

hydrazine, respectively, with 5.0 s purge lengths between pulses. The film thickness varied 

linearly with the number of deposition cycles up to 1500 cycles (Figure 39). The slope of the line 

is 0.25 Å/cycle, which is equal to the saturative growth rate. Beyond 1500 deposition cycles film 
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thickness remained constant at ~32 nm, indicative of catalytic activation of hydrazine by 

ruthenium. Therefore, the film growth in this two-step process also proceeds by substrate-

dependent catalysis of the precursors. 
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Figure 39. Plot of Thickness Versus Number of Cycles Graphs for the Two-Step NixN Process. 
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Powder X-ray diffraction scans of 25 nm thick films deposited at various temperatures indicate 

that the films are amorphous as deposited (Figure 40). 
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Figure 40. Powder X-Ray Diffraction Scan of a 25 nm Thick NixN Film Deposited at 150 °C 

using the Two-Step NixN ALD Process. 

 

XPS was performed on 25 nm thick films deposited at 150 °C (Figure 41). The surface 

before argon ion sputtering revealed the expected ionizations for nickel and nitrogen. Ionizations 

arising from oxygen and carbon were also visible. After argon ion sputtering the composition of 

the films were 84.2 at % nickel, 8.9 at % nitrogen, 4.1 at % carbon, and 2.7 at % oxygen (Table 

20). The Ni 2p
1/2

 and Ni 2p
3/2

 ionizations appeared at 869.9 and 852.5 eV for nickel metal 

(Figure 42).
160

 The composition of the films are almost identical to the films obtained from the 

three-step process.  



195 
 

  
 
 

020040060080010001200

N
(E

)

Binding Energy (eV)

No Sputtering

2nd Survey Scan (60 s Sputtering)

3rd Survey Scan(60 s Sputtering)Ni 2s

Ni 2p1/2

Ni 2p3/2

O 1s

N 1s
C 1s

Ni 3s Ni 3p

 

Figure 41. XPS Survey Spectrum for a 25 nm Thick NixN Film Deposited at 150 °C Using the 

Three-Step NixN ALD Process. 

  

 

 

 

Table 20. Elemental Compositions of Ni, N, C, and O in 25 nm Thick NixN Films 

Determined by XPS. 

 Initial Survey Second Survey Third Survey 

% Ni 30.8 80.1 84.2 

 % N 4.4 9.0 8.9 

 % C 32.0 4.5 4.1 

 % O 32.8 6.4 2.7 
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Figure 42. High Resolution XPS Multiplex of the Ni 2p Region of a 25 nm Thick NixN Film 

Deposited at 150 °C Using the Two-Step NixN ALD Process. 

 

 

An AFM image of a 25 nm thick film deposited at 120 °C showed a RMS surface 

roughness of ~0.25 nm indicating a smooth film (Figure 43). The RMS surface roughness of 25 

nm thick films deposited at 180 °C was also around 0.25 nm indicating a smooth surface (Figure 

44). 
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Figure 43. AFM Images of 25 nm Thick Films Deposited at 120 °C with RMS Surface 

Roughness Values of (a) 0.235 nm and (b) 0.254 nm. 

 

 

 

 

Figure 44. AFM Images of 25 nm Thick Films Deposited at 180 °C with RMS Surface  

Roughness Values of (a) 0.256 nm and (b) 0.236 nm. 

(a) (b) 

(a) (b) 
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The scanning electron micrograph images show a uniform surface which is free from 

cracks and pinholes (Figure 45). 

 

 

 

Figure 45. Top SEM View of a 25 nm Thick NixN Film Deposited at 150 °C Using the  

Two-Step NixN ALD Process. 

 

Films deposited at all temperatures passed the scotch tape test demonstrating good adhesion. 

7.2.3 Conclusions 

 The research work documented herein describes the first example of substrate-dependent 

catalytic thermal ALD film growth. Two new low temperature ruthenium substrate-catalyzed 

nickel nitride ALD processes were developed. For the three-step process the ALD window was 

observed between 120 and 180 °C where a constant growth rate of ~0.35 Å/cycle was obtained. 

For the two-step process an ALD window between 140 and 180 °C was observed with a constant 
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growth rate of ~0.25 Å/cycle. Both the two-step and three-step processes produced smooth thin 

films with RMS surface roughness values around 0.38-4.4 nm for the three-step process, and 

around 0.25 nm for the two step process. Crystalline films were obtained from the three-step 

process whereas amorphous films were produced from the two-step process. Amorphous films 

are desired for applications where the diffusion of materials through grain boundaries should be 

avoided. On the other hand, crystalline films are preferred in some applications where high purity 

films are needed with low resistivity values.  

7.2.4 Future Work 

 Resistivity measurements will be performed at selected temperatures on films obtained 

from both the two-step and three-step ruthenium substrate-catalyzed low-temperature NixN ALD 

processes. Due to the selective sputtering of nitrogen that can take place in XPS experiments, the 

composition of films deposited from both processes will be analyzed by Rutherford 

Backscattering measurements. A sufficient number of films for the measurements are prepared. 

Performance of the resistivity and Rutherford Backscattering measurements was assigned to 

Thomas J. Knisely by Prof. Charles H. Winter. 

7.2.5 Experimental  

 Nickel Nitride Film Depositions. Thin film deposition experiments were carried out 

using an R-75BE ALD reactor manufactured by Picosun Oy. The reactor was operated under a 

flow of nitrogen (99.9995%) and the reactor pressure was kept at 8-12 m bar. Nitrogen was 

obtained by purification of air using a Texol GeniSys nitroGenerator. Nitrogen thus obtained was 

used as both carrier and purge gas. The deposition of NixN thin films by ALD was studied using 

1 as the nickel source, formic acid as a reducing agent, and anhydrous hydrazine (Sigma-Aldrich) 

as both a reducing agent and a source of nitrogen in the three-step process, and 1 as the nickel 
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source, anhydrous hydrazine as the reducing agent and nitrogen source in the two-step process. 1 

was prepared according to a literature procedure.
154e

 The optimum sublimation temperature for 1 

at the reactor pressure was 100 °C from the initial growth trials. Depositions were carried out at 

substrate temperatures between 100 to 200 °C. To determine the extent of the surface saturation 

the pulse lengths of 1 and anhydrous hydrazine were varied in the two-step process and the pulse 

lengths of 1, formic acid, and anhydrous hydrazine were varied in the three-step process. Films 

were deposited on 5 nm Ru/100 nm SiO2/Si (5 x 5 cm) from Intel Corporation. The ruthenium 

oxide layer, which can be present on the surface, was not removed prior to depositions. 

 Film Characterization Methods. Film thickness measurements were performed using 

cross-sectional SEM micrographs collected on a JEOL-6510LV electron microscope. To 

determine the film growth rates, film thicknesses were divided by the number of deposition 

cycles. Five separate film thickness measurements were performed at different positions of the 

thin film and an average film thickness calculated. Powder X-ray diffraction spectra were 

collected with a Rigaku R200B 12 kW rotating anode diffractometer. The Cu Kα radiation 

(1.54056 Å) was used in the diffractometer at 40 kV and 150 mA. Atomic force micrograph 

images were obtained using a MultiMode nanoscope IIIa (Digital Instruments, VEECO). The 

samples were measured using the tapping mode in air. The measurements were taken using an E 

scanner with a maximum scanning size of 12 μm at a frequency of 1 or 2 Hz. A Tap150AI-G tip 

was employed with a resonance frequency of 150 kHz and a force constant of 5 N/m. Surface 

roughness was determined as root mean square values. X-ray photoelectron spectroscopy was 

performed using a PerkinElmer 5500 XPS system. Monochromatic Al Kα radiation was used in 

the XPS system. Surface sputtering was performed using an argon ion beam of 0.5 kV. 
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CHAPTER 8 

CONCLUSIONS ON SUBSTRATE-CATALYZED ATOMIC LAYER DEPOSITION 

RESEARCH PROJECT 

 

 A new substrate-dependent catalytic thermal ALD film growth process was developed. 

This substrate-dependent catalytic method addresses the problem of low reactivity of precursors 

for obtaining thin-film materials. Using the newly developed method, the low temperature 

growth of high purity, smooth, uniform, and conformal nickel nitride thin films was 

demonstrated. 

 In both nickel nitride ALD processes, hydrazine is activated by catalytic ruthenium sites 

on the substrate to afford nickel nitride thin films. The substrate dependent nature of the film 

growth is demonstrated by the growth plateau of thickness versus number of cycles graphs, 

caused by the cessation of film growth after reaching a certain film thickness. The present 

method can be used to carry out ALD reactions at low deposition temperatures by lowering the 

activation energy of the reaction. Achieving low deposition temperatures provides smooth films 

with low impurity incorporation and low resistivity values. Further, the method will enable the 

use of precursors which otherwise need high temperatures or may be unreactive due to a high 

activation energy barrier. Therefore, new material depositions which were not possible with 

conventional thermal ALD and plasma ALD will be possible using the substrate-dependent 

catalytic thermal ALD method reported herein. 

 The substrate-dependent catalytic process can be used with any catalytic substrate, 

including the noble metal substrates, and can be used with any co-reagent or precursor 

catalytically activated by the substrate material. Since the catalytic substrates can be easily 

manufactured by sputter coatings, the technique developed in this work can be used efficiently 
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for the production of large batches of thin-film materials. Because the new method addresses the 

low reactivity of precursors, it allows the deposition of films at low temperatures, and can be 

easily used in the production of thin film materials. The research work reported herein is a 

significant breakthrough in ALD process technology. 
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ABSTRACT 
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 Determination of distribution levels of environmentally important compounds in various 

environmental compartments is a major procedure in many fields including environmental risk 

assessment, food and drug safety, and the perfumery industry. Models for direct estimation of 

environmental properties were developed using gas chromatography and liquid-liquid 

partitioning. The developed models were used to derive descriptor values for environmentally 

important organic compounds. The accuracy of the developed models and descriptor values were 

demonstrated by the application to the estimation of standard environmental properties and by 

comparison with experimental solute property values.  

 Quantitative structure property relationships were constructed for totally organic biphasic 

partition systems of different polarity containing ethanolamine as the base solvent. The models 

demonstrate high accuracy and are of good statistical quality. The descriptor space for the 

determination of the hydrogen bond acidity descriptor was enhanced by the characterization of 

ethanolamine based partition systems. Models with high statistical quality were also developed 
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for the totally organic biphasic partition systems containing triethylamine as a counter solvent. 

The triethylamine-formamide system was identified as a suitable system to supplement the 

currently available totally organic biphasic systems for the determination of the hydrogen bond 

basicity descriptor. 

 Descriptor values for polycyclic aromatic hydrocarbons were determined using totally 

organic biphasic systems and gas and liquid chromatography methods. These descriptors were 

validated using theoretical models, standard environmental models, and by comparison with 

experimentally determined values. The descriptor values are homogeneous and accurate as a 

group. Therefore, the research work reported herein will enable the accurate measurement of 

solute properties for the estimation of environmental properties. 

 A substrate-dependent catalytic thermal ALD process was developed to address the low 

reactivity of precursors in atomic layer deposition processes. The developed process can be used 

to obtain smooth, high purity thin films at low deposition temperatures, and also for the 

deposition of materials which were found challenging so far using thermal and energy enhanced 

atomic layer deposition methods. Substrate-dependent catalytic thermal ALD technique can be 

conveniently used for the commercial production of thin-film materials. The deposition of pure, 

uniform and conformal nickel nitride thin films were demonstrated using Ni(OCHMeCH2NMe2)2 

precursor, and anhydrous hydrazine in a two-step process, and Ni(OCHMeCH2NMe2)2 precursor, 

formic acid, and anhydrous hydrazine in a three-step process on ruthenium substrates. Films were 

characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron 

microscopy, and atomic force microscopy techniques. The ALD window for the two-step process 

was observed between 140 and 180 °C with a growth rate of 0.25 Å/cycle. The ALD window for 

the three-step process was observed between 120 and 180 °C with a growth rate of 0.35Å/cycle. 
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Atomic force microscopy measurements demonstrated smooth thin films for the two-step process 

which was ~0.25 nm for 25 nm thick films deposited between 120-180 °C. The surface 

roughness of films varied between 0.38-4.4 nm for 35 nm thick films deposited by three-step 

process between 120-180 °C.  
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