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1

CHAPTER 1 AN OVERVIEWOF THE FORWARD PREMIUMPUZZLE, AN-

IMAL SPIRITS, AND EVERYTHING IN BETWEEN

1 Introduction

There lies a long tradition in analyzing the relationship between two country’s spot

and forward exchange rates. Early empirical works such as Hansen and Hodrick (1980)

and Bilson (1981) utilize the forward exchange rate as a predictor for future spot exchange

rates, establishing the consensus that the former is a poor indicator of future movements

of the latter. Other early important works like Frankel (1982), Hsieh (1982), Hodrick and

Srivastave (1984) focus on the question of whether forward exchange rates explained variation

contained within premiums. However, it wasn’t until Fama (1984) testing the variational

relationship between the forward exchange rate premium and expected future spot exchange

rate elements of forward exchange rates that the conanical form of the field began to take

shape. In his paper, Fama discovers that conditional on the hypothesis that markets are

rational and effi cient most of the variation in forward exchange rates is related to variation

in premiums, and more importantly, that the premium and expected future spot exchange

rates are negatively correlated. It is from this last finding that the term “forward premium

puzzle”was introduced and, according to Obstfeld and Rogoff (2000), has established itself

as one of the great international macroeconomic anomalies.

A more formal interpretation of this anomaly begins with a simple empirical framework

of the forward exchange rate and its relationship with the spot exchange rate or,
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St+1 = β0 + β1Ft + εt+1 (1)

where in (1) St+1 is the expected future spot exchange rate, Ft = ln(ft) is the log of the

forward exchange rate, and εt+1 is an i.i.d, normally distributed error term. The fundamental

null hypothesis is to test β1 = 1 where β0 can be equated to any constant. Since it is assumed

that β1 = 1 , the log of the current spot exchange rate, or St = ln(st) , is subtracted from

both sides of (1) yielding,

St+1 − St = β0 + β1 (Ft − St) + εt+1 (2)

where (2) describes Ft−St as the forward premium which explains variation in the gross

rate of depreciation (ex-post) or St+1 − St. Equation (2) is the form essentially estimated

by Fama (1984) where not only is β1different than unity, it is found to be negative, hence

the advent of the forward premium puzzle as seen through lense of this short formal walk-

through. The anomaly is connected to a failure in the uncovered interest rate parity (UIP)

by first establishing covered interest rate parity or,

(Ft − St) = (Rt −R∗t ) (3)

so that Rt is the return yielded to investors from domestic bonds and R∗t is the return

yielded to investors from foreign bonds so that excess returns from (Rt −R∗t ) is in equilibrium

with the forward exchange rate premium (Ft − St), which is the definition of covered interest
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parity. Now, inserting (3) into (2) for (Ft − St) results in,

St+1 − St = β0 + β1 (Rt −R∗t ) + εt+1 (4)

hence (4) establishes the definition of UIP, which states excess returns are in equilibrium

with the change in gross rate of depreciation, or St+1 − St = (Rt −R∗t ) which occurs if

β0 = 0 and β1 = 1. Of course, (4) cannot be directly estimated and the closest proxy is (2),

however using the discovery of β1 < 0 from (2) and applying it to (4) results in β1 6= 1so

that St+1 − St 6= (Rt −R∗t ) which is a violation in the definition of, and failure in, the UIP.

In a survey by Froot and Thaler (1990), the average estimate of β1over 75 publications is

-0.88, and as stated by Engle (1996), “only a few of the estimates is greater than 0, and

none is greater than 1 (p.125).”The breakdown in UIP, despite the validity of fluid markets

under covered interest rate parity, could occur for a variety of reasons but the predominant

scenarios as stated by Chinn (2007) are 1. Rational Expectations is an invalid assumption;

2. Risk Premium exists as an “unseen”component embedded within the forward premium

estimator, β1; and 3. Econometric Implementation.

From this point, the chapter is broken into sections that focus on major areas of research

contributing to the solution of the forward premium puzzle namely Section 2 discusses works

pertaining to the weakness of expectation formation within Rational Expectations, Section 3

encompasses articles focused on Risk Premium as a potential solution to the anomaly, Section

4 argues multiple econometric techniques that could be causing the forward premium puzzle,

Section 5 introduces literature pertaining to Robust Control and its implementation within
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Rational Expectations framework, resulting in “Animal Spirits” as being a candidate to

solving the forward premium puzzle, and Section 6 concludes.

2 Rational Expectations

The hallmark of macroeconomic modeling, originally proposed by Muth (1961), Rational

Expectations (RE) essentially has economic agents form expectations about future macro-

economic values by utilizing all information within a given time period, so that systematic

bias is theoretically non-existent and all errors are strictly random. This feature of expecta-

tion formation has led to RE monumental success but also to its most significant weakness,

which is especially prevalent within the context of forward premium puzzle literature. En-

gle (1996) and more recently Sarno (2005) both give an exhaustive survey of the state of

forward premium literature within the context of RE (as well as within the realm of risk

premium literature), however here important contributions are highlighted and focus on solv-

ing the anomaly by exploiting weaknesses within RE and develop alternative structures to

households forming expectations.

Early notable works include Froot and Frankel (1989) which decompose a RE model into

two sets of agents where the first set formulates expectations based on time-series data and

the second set based on survey-data. The authors find that measures of (St+1 − St) differ

greatly under each data set so that a survey-based data regime contributes to a greater

forward premium bias than the time-series-based data regime suggesting the types of in-

formation agents utilize to formulate expectations causes the anomaly as opposed to the
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mechanic of expectation formulation itself. An alternative annex to the definition of RE

described above is that expectations formulated by economic agents are correct over time on

average, with no systematic bias so that agents are essentially learning from random pertur-

bations, revising future forecasts of macroeconomic variables. In other words, as stated by

Chinn (2007), it may not be that households are simply irrational, on the contrary economic

agents are constantly learning so that forecasts may be embedded with long-run biases which

contribute to the forward premium anomaly. Cheung (1993) incorporate a learning feature

within economic agents through Kalman filtering to account for bias within forecasts. Che-

ung uses data in monthly frequency from July 1973 to December 1987 for the pound, the

mark, and the yen. In his work, (Ft − St) follows a low order ARMA process and ultimately

exhibits a large amount of persistence, is negatively correlated with (St − Et−1 (St)), and

very volatile emulating key features of the data.

A major weakness in RE is that agents are believed to have full information processing

capabilities. In reality, this is hardly the case as there are a wide number of media out-

lets and information sources that the modern-day consumer cannot fully take into account

when making economic decisions. To bring models closer to reality, Sims (2003) introduced

Rational Inattention (RI) within macroeconomic modeling framework via Linear-Quadratic

Control (LQC) techniques. Essentially, RI imposes a cost to the consumer for processing

data so that a limited amount of information through a “channel-capacity” (measured in

“bytes per time unit”or “bpt”). The wider the channel-capacity, the more households are

able to process information and vice versa. Applied to the forward premium puzzle frame-
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work, although explained without formal models, Froot and Thaler (1990) and Lyons (2001)

describe the ability of the anomaly to be solved by explaining economic agents’sluggishness

in responding to new information. Bacchetta and Wincoop (2005) formally apply RI to a

Dynamic Stochastic General Equilibrium (DSGE) model and discover that agents with low

costs to processing information trade assets more actively, while other agents do no trade

actively so only a small number of investors are attentive to new information. By imposing

this restriction the authors, among many discoveries, find that inattention can account for

most of the observed predictability of excess returns in the foreign exchange market, directly

leading to a solution in the forward premium puzzle1.

In macroeconomic models built on RE hypothesis, economic agents operate with no sys-

tematic bias, meaning forecasts about future macroeconomic variables are made with no

systematic error. To state that households have a deep enough understanding about the

evolutionary process of the economy is farfetched, prompting Gourchinas and Tornell (2004)

to incorprate systematic distortions in investors’beliefs about interest rate processes, ren-

dering economic agents irrational where agents believe shocks to the economic enviornment

are excessively transitory contrary to the shocks actual duration. In their paper, using sur-

vey data from G-7 countries the author’s account for a negative forward premium estimator

and exchange rate overshooting, which may or may not occur given their model structure.

Another interesting branch of literature related to implementing systematic error within

macroeconomic models are works concerning sentiment-based explanations to the forward

1See Duffi e and Sun (1990), Lynch (1996), Gabaix and Laibson (2003), and Peng and Xiong (2006) for
more examples of models incorporating costs to information processing.
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premium anomaly.

Yu (2013) describes agents perceiving higher domestic economic growth over foreign

growth as having “high sentiment”which contributes to domestic interest rates exceeding

foreign interest rates causing misperception about interest rate evolution and thus system-

atic bias in the decision of purchasing currency as an asset. Sentiment-based literature

incorporates a behavioral component within economic modeling as economic agents hav-

ing high sentiments is equivalent, according to Yu, as being optimistic. Using a 3-month

forward exchange rate from 1973-2009 for G-10 countries and Baker and Wurgler’s (2006)

investor sentiment index from July 1965 to December 2007 as a proxy to sentiment elements

mathematically embedded in the model, Yu accounts for the failure in UIP and low correla-

tion between consumption growth differentials and exchange rate changes, a key feature of

international market data2.

As the field concerning manipulations to RE assumption continues to grow, other re-

searchers prefer to maintain this hypothesis and instead focus on risk aversion manifesting

as a “risk-premium,”embedded within the forward premium estimator.

3 Risk Premium

A large body of literature focuses on embedding risk-averse agents with a risk-premium

component as a way of solving the forward premium puzzle. The canonical interpretation

of risk premium is that it drives a wedge between actual changes in the spot exchange rate,

2See Dumas, Kurshev, and Uppal (2009), and Xiong and Yan (2010) for further works relating to
sentiment-based modeling.
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(St+1 − St), and expected changes in the spot exchange rate, (Et (St+1)− St) 3, where this

discrepancy causes a negative relationship with (Ft − St). As described in Engle (1996), to

model risk premium proves to be complicating but the essential formal components follow

from (2) reproduced here for convenience,

St+1 − St = β0 + β1 (Ft − St) + εt+1

where, as stated above, the null hypothesis to be tested is β0 = 0, β1 = 1, and εt+1 ∼

N (0, σ2) where σ2 is a constant variance term. Simplifying and using statistical operators,

the estimator β1becomes,

plim
(
β̂1

)
=
Cov (Ft − St, St+1 − St)

V ar (Ft − St)
(5)

where β̂1is the estimate of β1and is assumed to be consistent. Now, according to Engle, if

expectations are rational then actual changes in the gross rate of depreciation are equivalent

to expected changes in the gross rate of depreciation systematically speaking, with albeit

random errors or more formally,

St+1 − St = Et (St+1)− St + εt+1 (6)

where Et is an economic agents’expectation given all information at time t and εt+1 ∼

N (0, σ2). Using (6) the covariance term in (5) can be redefined as,

3The phrases “changes in spot exchange rate”and “gross rate of depreciation”are synonymous.
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Cov (Ft − St, St+1 − St) = Cov (Ft − St, Et (St+1)− St) (7)

now, to embed the risk-premium component within the right-hand side of (7) the expected

change in spot exchange rates is altered by a simple manipulation,

Et (St+1)− St = Et (St+1)− St + Ft − Ft

= Ft − St − Ft + Et (St+1)

= Ft − St − rpret (8)

where,

rpret = Ft − Et (St+1) (9)

so that (9) is known as the risk-premium under the assumption of RE. The logic behind

(9) is that if agents are risk neutral, the forward exchange rate Ft would be driven to

equate with the expected future spot exchange rate Et (St+1), basically eliminating the risk-

premium so that rpret = 0. Alternatively, as explained by Engle, if agents are risk-averse

and if Ft > Et (St+1) then the investor requires a premium for purchasing foreign currency

forward at current time period t relative to the exchange-rates expected spot value at future

time period t + 1 so that rpret > 0, basically to compensate the investor for purchasing a

risky asset. Now, inserting (8) into the right-hand side of (7) results in,
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Cov (Ft − St, Et (St+1)− St) = V ar (Ft − St)− Cov (Ft − St, rpret )

= V ar (Ft − St)− Cov (Et (St+1)− St, rpret )− V ar (rpret )(10)

finally, inserting (10) into the numerator of (5) and simplifying results in,

plim
(
β̂1

)
= 1− βrp (11)

where,

βrp =
Cov (Et (St+1)− St, rpret ) + V ar (rpret )

V ar (Ft − St)
(12)

where the bias term βrp from (11) is an indirect function of rpret . A common finding in

earlier works using this methodology, such as Bilson (1981) and Fama (1984), is that β̂1 < 1

and is not necessarily negative implying that (12) is a small positive when V ar (Ft − St) is

large. Within the context of risk-premium literature, author’s have introduced a variety of

methods to ultimately enhance the general form of (11) and emulate the forward premium

puzzle inherent within international data.

Campbell and Chochrane (1999) incorporate habit persistence within an investor’s utility

function and model consumption as an exogenous process that is used to explain a wealth

of dynamic asset pricing related to international stock markets. Following Campbell and

Chochrane, Verdelhan (2010) develops a model within the realm of RE but induces an
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external habit preference over consumption in economic agents. The intuition is that assum-

ing Arrow-Debreau markets, the real exchange rate which is measured in terms of domestic

goods relative to foreign goods is equivalent to the ratio of foreign to domestic pricing kernels.

Thus, fluctuations in the exchange rate are dependent on the stochastic process underlying

domestic and foreign consumption growth shocks. Furthermore, Verdelhan explains that if

the conditional variance of the domestic stochastic discount factor is large relative to its

foreign counterpart, then domestic growth shocks in consumption determine fluctuations in

real exchange rates. Intuitively, if the economy experiences a negative consumption growth

shock, this triggers an exchange rate depreciation which lowers the domestic investor’s re-

turns on purchased assets. Alternatively, if a positive consumption growth shock occurs, this

causes appreciation in exchange rates translating as a higher return to domestic investor’s.

Conclusively, investor’s carrying currencies are exposed to consumption growth risks so that

the investor requires a risk-premium to compensate for such risk, adding a downward bias

to the forward premium estimator4. Aside from models embedding habit persistence, an-

other branch of literature popular within risk-premium modeling is incorporating nominal

rigidities within RE framework.

The introduction of sticky prices within the context of DSGE models and RE induces

risk premia to aid in explaining the forward premium anomaly. Lucas (1982), although no

nominal rigidities are incorporated, pioneered risk premium inclusion within a DSGE , two-

country, two-money model and showed structurally that risk premium drives a wedge between

4See Moore and Roche (2010) for further literature on habit preferences and its relation to forward
premium bias.
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the forward and spot exchange rates. Although a valiant attempt, the implementation of

a risk premium within Lucas’model failed to account for the forward premium bias unless

an extremely large parameter value of relative risk aversion is calibrated or the correlation

between consumption and exchange rates must be high, as explained by Sarno (2005). In

an open economy DSGE model analogous to Adolfson et al. (2007) that shares features of

benchmark new Keynesian models set forth by Christiano, Eichenbaum and Evans (2005),

Adolfson et al. (2008) incorporate nominal and real frictions that structurally enhances the

risk premium used to explain failure in UIP. In their work, Adolfson et al. (2008) alter the

structural representation of their open economy model used in Adolfson et al. (2007) and

change the UIP condition to allow for the risk premium to be negatively correlated with

the expected change in spot exchange rates. This type of modification to the UIP condition

introduces a lagged dependence between exchange rates and interest rates in the model, a

relationship otherwise absent under standard UIP framework. Using Swedish from 1980 to

2004, Adolfson et al. (2008) show that their log-linearlized system under the modified UIP

framework matches data better than its unmodified counterpart, that is to say, given the

overall structure of their model, the author’s can account for the forward premium anomaly5.

4 Econometric Implementation

Until now, the primary focus has been on structural literature pertaining to exploitation

of weaknesses within and alteration of RE as well as preserving the RE hypothesis and

5See Alvarez et al. (2002) for further interesting forms of rigidities within DSGE framwork.
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introducing risk premium to explain the forward premium puzzle. Here, attention is shifted to

the noteworthy body of literature dealing with empirical issues behind the forward premium

anomaly. Most of the before mentioned estimation has been done using simple ordinary least

squares (OLS) analysis but such estimations suffer from omitted variable bias as observed

by Fama (1984) and Liu and Maddala (1992), performing as a catalyst to the structural

discussions above.

An early common belief [see Crowder (1994); Evans and Lewis (1993); and Mark et al.

(1993)], with respect to time-series aspects, was that (Ft − St) exhibited a non-stationary

process leading to inconsistent estimates of β1. According to Crowder (1994), a standard

Augmented Dickey-Fuller (ADF) test is applied to the Canadian, German, and UK to US

exchange rates and it is found that insuffi cient evidence exists to reject the hypothesis of a

unit root within the forward premium (although this finding was mixed for the UK to US

forward premium). Similarly, Crowder also implements the KPSS6 test for stationarity and

rejects the hypothesis of I (0) (suggesting I (1) behavior) for the list of previously mentioned

forward premiums. The result of both ADF and KPSS tests imply that the forward premium

indeed contains a unit root and is non-stationary.

Baillie and Bollerslev (1994) challenge this notion of non-stationarity and use autoregres-

sive fractionally integrated moving average (ARFIMA) modeling on the forward premium,

and is estimated using approximate maximum-likelihood (MLE) methodology. The reason

for an exotic modeling technique is that Baillie and Bollerslev argue Crowder’s choice in

6See Kwiatkowski, Phillips, Schmidt, and Shin (1992).
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conducting the KPSS is rather weak, in that the econometrician only has a choice between

selecting an I (0) or I (1) cointegrated process and there may be information missing between

these degrees of cointegration. More general cointegration is allowed, namely the forward

premium is allowed to follow a fractional cointegration process, or I (d) where 0 < d < 1,

and with this identification modeled to an ARFIMA specification the forward premium be-

comes a mean-reverting process where random perturbations eventually die out. Baillie and

Bollerslev also venture to argue that the KPSS test is rather powerful against fractional

integration models so that to reject an I (0) specification should not automatically lead an

econometrician to believe a time series follows an I (1) process, but should consider the im-

plications of an I (d) process as well. In more recent work, Maynard and Phillips (2001)

utilize an ARFIMA specification with approximate MLE estimation for both short-horizon

and long-horizon data and suggest that the forward premium anomaly maybe due to the

discrepancy in persistence between both series. When a series is highly persistent, Maynard

and Phillips argue that assuming β1 = 1 and subtracting St from both sides of (1) to yield (2)

causes severe distortions to the distribution of the forward premium estimator, contributing

to its downward bias.

Another rich area of research is concerned with vector error correction modeling (VECM)

where, depending on the cointegration of St and Ft, the relationship between each series can

be split into short-run adjustment and long-run equilibrium components. A computational

convenience to VECM is that the resulting empirical structure is independent of whether

time-series data is stationary, which has led to its popularity in fitting forward premium
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data. The traditional VECM equation is represented as,

4yt = δ + Πyt−1 +

p−1∑
i=1

Φi4yt−i + εt (13)

where 4yt = yt− yt−1, δ is a constant, Π = αβ′ and is known as an “adjustment-matrix”

whose value describes the amount of time (depending on a data sets frequency) a variable

takes to reach its long-run equilibrium where α and β are k × r matrices, Φi is a k × k

coeffi cient matrix denoting long-run equilibrium values of variables in vector yt−i from lag

i = 1, . . . , p− 1 and εt conforms to a vector of gaussian white-noise processes. Sarno (2005)

explains that the spot and forward exchange rates are incorporated into (13) via the vector

yt =


St, F 1

t , F 2
t , F 3

t , . . . , F l
t

′, where St and Ft are defined as in Section 1and l
is the number of periods a forward exchange rate comes to realization where the elements

of yt must be cointegrated with l unique cointegrating vectors where each of these unique

vectors are given by the row of the matrix


ι, Il

 where ι is an l-dimensional column
vector of ones and Il is an l× l identity matrix. Clarida and Taylor (1997) utilize the form of

[eq:13] and apply this modeling technique to weekly data on the dollar/sterling, dollar/mark,

and dollar/yen data discovering that VECM fits the data features quite well. Specifically,

dynamic out of sample forecasts up to one year ahead out-perform alternative forecasts

utilizing random-walk and standard forward premium regression techniques. Clarida, Sarno,

Taylor, and Valente (2003) introduce Markov-chain regime switching within a VECM of the

form in (13) to create Markov-switching vector error correction models (MS-VECM) and fit

a variety of exchange rates across a range of forward rate time-horizons and discover that,
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in terms of forecasting, the MS-VECM outperforms general VECM, random-walk models,

and standard forward premium regression models7.

Thus far, the discussion has been concerned with literature based on failure in UIP, or the

forward premium puzzle, and its solution via weaknesses in RE, embedding risk-premia, or

econometric implementation. Now, gears are shifted toward a phenomena from the realm of

behavioral macroeconomics, better known as “Animal Spirits”and its potential in explaining

the forward premium puzzle.

5 Animal Spirits

The provocative phrase originated with Keynes (1936) to describe the underlying set of deep

human behavior that guides macroeconomic activity. The original excerpt from Keynes

(1936) on Animal Spirits reads:

“We should not conclude from this that everything depends on waves of ir-

rational psychology. On the contrary, the state of long-term expectation is often

steady, and, even when it is not, the other factors exert their compensating ef-

fects. We are merely reminding ourselves that human decisions affecting the

future, whether personal or political or economic, cannot depend on strict math-

ematical expectation, since the basis for making such calculations does not exist;

and that it is our innate urge to activity- or Animal Spirits, which makes the

wheels go round, our rational selves choosing between the alternatives as best we

7See Sarno and Valente (2005) for more literature based in MS-VECM.
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are able, calculating where we can, but often falling back for our motive on whim

or sentiment or chance.”(Ch.12, p.162-163)

To paraphrase briefly (although it is with reluctance since the passage was stated beau-

tifully), human beings do not behave in a strict mathematical (robotic) manner, but rather

a mixture of rationality and evolutionary tendencies. The essence of Animal Spirits has fit

within the realm of behavioral macroeconomics, pioneered by Akerlof (2002) who creates

an agenda to be described by behavioral macroeconomics, 1. The existence of involuntary

unemployment, 2. The impact of monetary policy on output and employment, 3. The failure

of deflation to accelerate when unemployment is high, 4. The prevalence of undersaving for

retirement, 5. The excessive volatility of stock prices relative to their fundamentals, and 6.

The stubborn persistence of a self-destructive underclass. Akerlof’s list of items have been

failed by New Classical and Neo Classical models due to their lack of behavioral insights. To

address his agenda, Akerlof describes behavioral macroeconomics as “the incorporation of

realistic assumptions grounded in psychological and sociological observation, have produced

models that comfortably account for each of these macroeconomic phenomena”(p.413). An

issue behind behavioral macroeconomics, as De Grauwe (2012) denotes, is that the world

of irrationality is dark and macroeconomists conform to the unanimity of RE theory since

the question of “what is an irrational agent?”remains robust. However, as Akerlof (2002)

states8:

8For further literature on Animal Spirits see Akerlof and Shiller (2009). Although it is aimed towards
mass-consumption, their work gives numerous examples of how human behavior fits within the context of
real-world macroeconomics.
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“Immediately after its publication, the economics profession tamed Keyne-

sian economics. They domesticated it as they translated it into the “smooth”

mathematics of classical econonomics. But economies, like lions, are wild and

dangerous. Modern behavioral economics has rediscovered the wild side of macro-

economic behavior. Behavioral economists are becoming lion tamers. The task

is as intellectually exciting as it is diffi cult.”(p. 428)

Navigating the jungle, Thomas J. Sargent and Lars Peter Hansen have ventured to bridge

a sub-theory of Optimal Control mathematics into behavioral macroeconomics in order to

capture a specific type of Animal Spirit, namely pessimism.

5.1 Robust Control

Robust Control (RC) is a subset of mathematics derived from Optimal Control theory that

deals with the problem of model misspecification. Control variables induced with a RC pol-

icy aims to achieve robust performance against bounded systematic modeling error terms9.

Hansen and Sargent (2008) explain new control and estimation methods were sought after to

improve upon adverse outcomes that come from applying ordinary control theory to a variety

of engineering and physical problems. A theory is that model misspecification explains why

actual outcomes were sometimes much worse than the results provided by control theory and

thus decision rules and estimators acknowledging model misspecification were desired, hence

the emergence of RC. A long standing issue in macroeconomics is that economic agents are as-

9See Whittle (1981), Whittle (1990), Basar and Bernhard (1995), and Whittle (1996) for works on Robust
Control as a deviation from Rational Expectations.
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sumed have no systematic biases in forecasting future economic variables (i.e. RE), meaning

agents fully “trust”their models. As a way to relax this assumption, a “malevolent nature”

is assumed to lurk subliminally within the economic environment, existing separately from

households, and cause systematic perturbations to households’systematic understanding of

the economy, whose objective is to minimize household utility. Economic agents, realizing

what is systematically expected to happen deviates from what systematically actually hap-

pens10, induces a fear that their understanding of the economy’s evolution is quite correct

or, in other words, they fear model misspecification so as to not fully trust their model. The

discrepancy between what agents believe and what actually happens induces fear where this

fear manifests itself as pessimism, captured via a parameter θ.

To formally show the difference between a RE and RC problem (as well as provide

technical-intuition), we begin by introducing macroeconomics oriented in RE which can be

cast in a Linear-Quadratic Control (LQC) framework11, a technique that accommodates a

wide ranging class of linear DSGE models. A typical linearized DSGE model cast within the

framework of LQC takes the (simple) form,

max
{ut}∞t=0

Et

∞∑
t=0

βt




xt

ut



′ 
R 0

0 Q




xt

ut




(14)

10At this point, we deviate from traditional RE and behavioral macroeconomics is incorporated within
expectation formation.
11A technique which is part of modern control theory.
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s.t. xt+1 = Axt +But + Cεt+1

where R, Q, A, B, and C are coeffi cient matrices, xt is a state variable vector, ut is a

control variable vector, and εt+1 is a Gaussian white-noise vector. (14) is cast in a LQC

setting where economic agents maximize their objective function via the control variable, ut,

and take the state-evolution constraint as an exogenous process. This optimization problem

is within the framework of RE because as can be seen from the state variable’s transition

equation, only random errors perturb the evolutionary process of the economy. Once a DSGE

model has been linearlized and put in the form of (14), the argument can be transformed

into a linear-dynamic programming problem via a Bellman equation (assuming the Certainty

Equivalence Principle12),

x′tPxt = max
{ut}




xt

ut



′ 
R 0

0 Q




xt

ut

+ βx′t+1Pxt+1


(15)

s.t. xt+1 = Axt +But

where it is assumed that the value function takes on a quadratic form, or V (x) = x′tPxt

and P is a costate variable matrix which serves strictly as a mathematical construct used

12This rule is a mathematical convenience which states that a decision rule derived from a stochastic
optimal control problem is equivalent to that derived from a static one. Technicaly, this is allows for setting
εt+1 = 0 and eliminating the expectations operator, essentially creating a static optimal control problem.
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to find a stable steady-state solution which will be described in further detail below. Now,

inserting the static constraint of (15) into its objective function and optimizing by choice of

control variable ut the following optimal decision rule is derived,

ut = Fxt (16)

so that F = −β (R + βB′PB)−1B′PA. (16) denotes the optimal decision made by

households given the state of the economy xt at time t. The Riccatti equation can be

derived out of (15) where,

P = Q+ βA
[
P − βPB (R + βB′PB)

−1
B′P

]
A (17)

where in (17) P is initialized by an identity matrix and iteration occurs until converging

on a steady-state matrix, P ∗ which is inserted into F defining a stable optimal policy rule.

Once a stable rule has been defined, economic agents’optimal decisions feed back into the

evolution process of the economy so that,

xt+1 = A0xt + Cεt+1 (18)

and A0 = (A+BF ). Thus, (18) is the equilibrium exogenous process generating dynam-

ics within the economy that agents optimally respond to. The fundamental problem with

this form of control theory is that actual results observed in nature are sometimes far worse

than the simulations behind (16) using (18) causing an inquiry into other types of control
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analysis that deviate from RE specification in the state-evolution system of (14). In order for

an optimal decision rule to accommodate model misspecification, RC is introduced within

LQC context so that,

max
{ut}∞t=0

min
{wt+1}∞t=0

−Et
∞∑
t=0

βt




xt

ut



′ 
R 0

0 Q




xt

ut

+ θβw′t+1wt+1


(19)

s.t. xt+1 = Axt +But + Cwt+1 + Cεt+1

where now (19) represents a two-player Stacklberge game where the malevolent nature

(minimizing player) that enters the optimization system quadratically and uses wt+1 as a

way of minimizing household utility, indirectly manipulating the parameter θ, or household

pessimism. The deviation from RE especially becomes apparent through the state-evolution

system in (19) where xt+1 is not only randomly perturbed by εt+1 but also systematically

perturbed by wt+1 as well, implying that agents do not have a deep understanding of the

economy’s evolutionary tendencies and hence cannot make reliable systematic forecasts, cast-

ing doubt or distrust of their beliefs about actual economic values. Continuing, (19) can be

converted into a Bellman equation and assuming Certainty Equivalence we have,
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−x′tPxt = max
{ut}

min
{wt+1}


−


xt

ut



′ 
R 0

0 Q




xt

ut

+ θβw′t+1wt+1 − βx′t+1Pxt+1


(20)

s.t. xt+1 = Axt +But + Cwt+1

unfortunately, the solution method is not quite as simple as (15). The problem presented

in (20) is independent of sequencing13 so that the minimizing player optimizes first and

assumes that the maximizing player is carrying out their optimal decision rule (16) so that

the malevolent nature’s problem reduces to,

min
{wt+1}

{
θw′t+1wt+1 − x′t+1Pxt+1

}
(21)

s.t. xt+1 = A0xt + Cwt+1

Inserting the constraint into its objective function results in an unconstrained minimiza-

tion problem that yields the first order condition (FOC),

wt+1 = Kxt (22)

13Meaning the solution method is independent of whether minimization or maximization is chosen first.
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where K = θ−1
(
I − θ−1C′PC

)−1
C′PA0. The intuition behind (22) is that based on

economy’s state xt, a malevolent nature will choose a sequence of “worst-case”shocks, wt+1

that minimize the maximizing player’s utility. Additionally, an artifact derived from (21) by

taking the derivative with respect to xt in the unconstrained optimization problem results

in,

D (P ) = P + PC (θI − C′PC)−1C′P (23)

where (23) represents a portion of the Ricatti equation derived from the minimization

“part”of (20). Intuitively speaking, (23) is information the minimizing player uses to sublim-

inally imbed their malevolent schematic within the maximizing player’s optimization prob-

lem. Now that the minimizing player has optimized, the maximizing player chooses next

and assumes the world is systematically unbias, implying wt+1 = 0 so that,

x′tD (P )xt = max
{ut}




xt

ut



′ 
R 0

0 Q




xt

ut

+ βx′t+1D (P )xt+1


(24)

s.t. xt+1 = Axt +But

where V (x) = x′tD (P )xt is a minimized value function that households unknowingly

maximize against (hence the malevolent nature “lurking in the background”). Taking the

FOC of (24) results in,
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ut = Fxt (25)

and F = −β (R + βB′D (P )B)−1B′D (P )A. (25) is similar to (16) but here (23) is

embedded instead. The full Ricatti equation can be derived by taking the derivative of

unconstrained optimization problem with respect to xt or,

T (P ) = Q+ βA′
[
D (P )− βD (P )B (R + βB′D (P )B)

−1
B′D (P )

]
A (26)

now iterating on (23) until convergence and inserting into (22) and (25) for K and F

respectively yield stable FOC’s for the minimizing and maximizing players. Once stability is

reached, insert both FOC’s into the constraint from (19) resulting in an equilibrium transition

equation,

xt+1 = Ãxt + Cεt+1 (27)

where Ã = (A+BF + CK). Notice that the difference between equilibrium transition

equations of (18) and (27) is that the latter accounts for systematic misspecification captured

via the extra CK term embedded within the system. Now that the economy is in equilibrium

households realize that there is discrepancy between what they systematically thought is

happening (this belief is reflected by the constraint from (24) known as the “approximating

system”) and what is systematically actually happening ( where this actuality is represented

by the constraint in (20) known as the “perturbed system”) which induces fear or pessimism
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through the parameter θ. Without too much technical detail, the further the economy

deviates systematically from what is expected to occur, the higher a households’pessimism

which is intuitive because, as human beings, if an event occurs worse than expected this

causes pessimism which corrects our next forecast by discounting our expectations closer to

what is observed in reality. To close this explanation, for an optimal value function iterate

(26) until convergence and inserting into the value function results in,

V ∗ (xt) = x∗′t T ◦D (P )x∗t (28)

where V ∗ (xt) represents an optimized value function, x∗t is an equilibrium state equation

containing steady-state FOC’s (22) and (25), and T ◦ D (P ) is the Riccatti equation (26)

evaluated at (23). Hopefully this segment has given the reader context and intuition behind

RC problems and methodology.

Literature applying RC to the forward premium puzzle is extremely scarce. Li and Tornell

(2008) apply RC to a simple investor model of exchange rates to account for the forward

premium anomaly. According to the author’s, in equilibrium optimizing investor’s do not

hold misperceptions about their model and distort their forecasts to in an attempt to attain

robustness against potential misspecification. Additionally, this forecast distortion triggers

delayed overreaction of exchange rates with respect to interest rate differential disturbances

directly leading to a negative correlation between those exchange rates and interest rate

differentials, hence an accounting of the forward premium anomaly.



27

6 Conclusion

This work is not exhaustive as the field pertaining to the famous forward premium puzzle and

Animal Spirits is extremely large. The discussion presented above was an attempt to aim the

reader towards a direction of foundational works and those literature that set the stage for

present and future research. Macroeconomics has been a thriving and provocative enterprise

contributing to great advancements of to our social complex. The advent of Behavioral

Macroeconomics hopes to unite elements of economics, psychology, and sociology in order

to gain a better understanding of our economic system. By introducing and explaining a

well-known international puzzle, dissecting it into three branches of major research (those

concerning RE, Risk Premia, and econometric implementation) and discussing RC, hopefully

the reader has gained perspective behind Behavioral Macroeconomics and its application to

diffi cult questions posed by the science.
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CHAPTER 2 INCORPORATING ROBUST CONTROL IN AN INTERNA-

TIONALDSGEMODEL: CANPESSIMISMEXPLAIN THE FORWARDPRE-

MIUM PUZZLE?

7 Introduction

Keynes (1936) introduced the concept of "Animal Spirits" into economic literature,

describing a set of human characteristics underlying macroeconomic activity. The advent

and implementation of Robust Control (RC) by Hansen and Sargent (2008) in traditional

Rational Expectations (RE) framework allows agents to realize initial systematic expecta-

tions differ from actual systematic occurrences, where this discrepancy induces fear of model

misspecification or "pessimism", a specific type of Animal Spirit, in households. Building

on research discussed in Shkrelja (Ch.1, 2014), this work uses a dynamic stochastic general

equilibrium (DSGE) two-country two-money model from Lucas (1982), fitted with RC es-

sentially equipping households with pessimism, the penultimate component in solving the

well-documented forward premium puzzle14 (FPP). Varying pessimism regimes both emulate

data features and validate RE assumptions about movements in forward premium (discount)

estimator, fully transmitting to movements in the gross rate of depreciation (appreciation).

This chapter is organized as follows: Section 8 defines the model, Section 9 calibrates

pessimism, Section 10 derives FPP bias and estimation results, Section 11 concludes.

14See Fama (1984), Engle (1996), Sarno (2005), and Chinn (2007), among others.
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8 Model

8.1 Inducing Malevolent Nature

Household agents ("maximizing player") believes the state of the world evolves according to

AR(1) stochastic processes, known as the approximating system of stochastic equations, so

xt+1 =

Systematic belief︷ ︸︸ ︷
(1− ρ1) + ρ1xt + εxt+1 (29)

yt+1 = (1− ρ2) + ρ2yt + εyt+1 (30)

Mt+1 = (1− ρ3) + ρ3Mt + εMt+1 (31)

Nt+1 = (1− ρ4) + ρ4Nt + εNt+1 (32)

where xt+1 is domestic output, yt+1 is foreign output, Mt+1 is gross domestic money

supply, Nt+1 is gross foreign money supply, and where the maximizing player believes the

economy to evolve according to their systematic understanding of (94) − (97). In addition

the maximizing player believes error terms are distributed according to

εjt ∼ N(0, σ2
j) for j = x, y,M,N (33)

where σ2
j is constant variance term for j = x, y,M,N

Now, the malevolent nature ("minimizing player") perturbs approximating system through

error terms
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xt+1 = (1− ρ1) + ρ1xt + ε̃xt+1 (34)

yt+1 = (1− ρ2) + ρ2yt + ε̃yt+1 (35)

Mt+1 = (1− ρ3) + ρ3Mt + ε̃Mt+1 (36)

Nt+1 = (1− ρ4) + ρ4Nt + ε̃Nt+1 (37)

where ε̃jt for j = x, y,M,N represents perturbed error terms distributed as

ε̃jt ∼ N(wt+1, σ
2
j) for j = x, y,M,N (38)

ε̃jt − wt+1 ∼ N(0, σ2
j) for j = x, y,M,N (39)

εjt = ε̃jt − wt+1 (40)

ε̃jt = εjt + wt+1 (41)

where wt+1 is the disruption used by the malevolent nature to systematically perturb

(94)− (97). Inserting (154) for j = x, y,M,N into (147)− (150) yields the perturbed system

of stochastic equations
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xt+1 = (1− ρ1) + ρ1xt + wt+1 + εxt+1 (42)

yt+1 = (1− ρ2) + ρ2yt + wt+1 + εyt+1 (43)

Mt+1 = (1− ρ3) + ρ3Mt + wt+1 + εMt+1 (44)

Nt+1 = (1− ρ4) + ρ4Nt + wt+1 + εNt+1 (45)

Ultimately, (94)− (97) represents the state of nature that the maximizing player assumes

to systematically exist and (155) − (158) represents the state of nature that systematically

actually exists. Next, the Lucas model is outfitted with RC.

8.2 Model with Robust Control

8.2.1 Optimization Problem

The international model fitted with robust control is represented as,
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max

{cxt, c∗xt,

cyt, c
∗
yt,

ωxt, ω
∗
xt,

ωyt, ω
∗
yt,

ψMt, ψ
∗
Mt,

ψNt, ψ
∗
Nt}

∞
t=0

min
{wt+1}∞t=0

Et

∞∑
t=0

βt

{
φ

[
−

(cθxtc
1−θ
yt )1−γ

1− γ + βθw2
t+1

]
+ (1− φ)

[
−

(c
∗θ
xtc
∗1−θ
yt )1−γ

1− γ + βθ∗w2
t+1

]}

s.t. φ
∞∑
t=0

βt
{
cxt +

StP
∗
t

Pt
cyt + ωxtet + ωyte

∗
t + ψMtrt + ψNtr

∗
t −

Pt−1

Pt
ωxt−1xt−1 −

StP
∗
t−1

Pt
ωyt−1yt−1

−ψMt−1∆Mt

Pt
− ψNt−1St∆Nt

Pt
− ωxt−1et − ωyt−1e

∗
t − ψMt−1rt − ψNt−1r

∗
t

}
= 0
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(1− φ)
∞∑
t=0

βt
{
c∗xt +

StP
∗
t

Pt
c∗yt + ω∗xtet + ω∗yte

∗
t + ψ∗Mtrt + ψ∗Ntr

∗
t −

Pt−1

Pt
ω∗xt−1xt−1 −

StP
∗
t−1

Pt
ω∗yt−1yt−1

−
ψ∗Mt−1∆Mt

Pt
−
ψ∗Nt−1St∆Nt

Pt
− ω∗xt−1et − ω∗yt−1e

∗
t − ψ∗Mt−1rt − ψ∗Nt−1r

∗
t

}
= 0

CIA︷ ︸︸ ︷
mt = Ptcxt

Equity Shares︷ ︸︸ ︷
ωxt + ω∗xt = 1

Re source Constraints︷ ︸︸ ︷
cxt + c∗xt = xt

(46)

nt = P ∗t cyt ωyt + ω∗yt = 1 cyt + c∗yt = yt
(47)

m∗t = Ptc
∗
xt ψMt + ψ∗Mt = 1 mt +m∗t = Mt

(48)

n∗t = P ∗t c
∗
yt ψNt + ψ∗Nt = 1 nt + n∗t = Nt (49)

Where cxt and cyt represent home good-x and good-y consumption respectively, mt and

nt represent home holdings of home and foreign currency, ωxt and ωyt represent home output

shares of good-x and good-y respectively valued at price et for ωxt and e∗t for ωyt , ψMt and

ψNt represent home holdings of home and foreign currency shares respectively valued at price

rt for ψMt and r
∗
t for ψNt, Pt and St represent home prices and spot exchange rate respec-

tively. Finally, all variables containing * are foreign variable counterparts to the preceding

home variable list. Beginning with the objective function, domestic and foreign households

optimize weighted average CRRA utility (consisting of domestic and foreign consumptions
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of goods x and y), so that βt is discount factor, φ represents importance of country in decen-

tralized world economy, θand θ
∗
represent home and foreign pessimism respectively, wt+1 is

malevolent nature’s control variable, representing an intertemporal sequence of "worst-case"

shocks that are used to perturb (94) − (97). Constraints to the objective function include

home and foreign budget constraints, the first column of (159)− (160) represents CIA con-

straints, the second and third columns are adding up constraints to close the model where

(94)− (97) and (155)− (158) are the stochastic systems which generate dynamics.

8.2.2 Maximizing Player Chooses First

Household agents choose first, maximizing their objective function, believing that the econ-

omy evolves according to the approximating system of stochastic equations. Setting up the

Lagrangian, deriving FOC’s, finding steady-states, and log-linearlizing around steady-states,

and using matrix-algrebra to simplify results in

S̃t = ΠXt (50)

F̃t = ΓXt (51)

Remark 1 See Technical Appendix Section 20.2.1 for derivation of (181) and (183) .
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where Π =


1 −1

US, Γ =


ρ3 −ρ4

US, and US =


0 0 1 0

0 0 0 1

 , representing
a selection matrix that allows certain stochastic equations to effect (181) and (183), or spot

and forward exchange rates respectively. Again, maximizing player believes (181) and (183)

to evolve according to (94)-(97), represented in matrix algebra as

Xt+1 = AXt + Cεt+1 (52)

where

Xt =



x̃t

ỹt

M̃t

Ñt



, εt+1 =



εxt+1

εyt+1

εMt+1

εNt+1



, A =



ρ1 0 0 0

0 ρ2 0 0

0 0 ρ3 0

0 0 0 ρ4



, C =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


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8.2.3 Minimizing Player Chooses Second

The malevolent nature assumes the maximizing player is both optimizing and in equilib-

rium15. Exploiting second-order taylor expansion of the objective function and Linear-

Quadratic Gaussian Control (techniques the minimizing player’s problem results in,

wt+1 = KXt (53)

P = R + βA′PA+ A′PC
(
θI4 − C ′PC

)−1

C ′PA (54)

Remark 2 See Technical Appendix Section 20.2.2 for derivation of (53) and (229) .

where K =
(
θI4 − C ′PC

)−1

C ′PA. Equation (53) represents malevolent nature’s in-

tertemporal worst-case feed back rule, rather, based on the state of the economy Xt ,nature

chooses a sequence of worst-case outcomes, wt+1, that minimizes the maximizing player’s

utility. Equation (229) represents the Ricatti equation whose properties are well-known in

control theory. Iterating on (229) until convergence to P̂ and inserting intoK for (53) results

in a stable worst-case feed back rule, where placing this stable wt+1 into a matrix-algebra

representation of (155)− (158),

Xt+1 = AXt + Cwt+1 + Cεt+1 (55)

15Symmetric pessimism is assumed across countries so that θ = φθ + (1 − φ)θ∗ where θ = θ
∗
and θ is

essentially "world-pessimism."
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results in,

Xt+1 = A0Xt + Cεt+1 (56)

where A0 =
(
A+ CK(θ)

)
.Ultimately, (234) is the dynamic-producing perturbed state-

evolution system embedded with malevolent natures feedback rule wt+1.Intuitively, nature

selects its sequence of worst-case occurrences and places them in (55) so as the economy

evolves agents now realize that (234) produces dynamics, so that what is systematically

expected differs from what systematically happens where this discrepancy induces pessimism

in households, where households are "doubtful" of their expectations of the economy, and is

captured by parameter θ.

9 Detection Error Probabilities

In order to calibrate or discipline the choice of θ, detection error probabilities (DEP) must

be used. Low values of DEP mean maximizing players are better at deciphering between

evolution systems (52) and (234), implying households have low pessimism since they are

better at determining what they think is going on and what is actually going on . Alterna-

tively, high values of DEP mean households have diffi culty in deciphering between evolution

systems (52) and (234), invoking high amounts of pessimism in the household’s psyche since

they are worse at determining what they think is going on and what is actually going on.
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Let model A denote the approximating stochastic system (52) and Let model B denote

the perturbed stochastic system (234).Define,

pA = Pr (r|A < 0) (57)

where r|A is the log-likelihood ratio. When model A generates the data, pA measures

the probability that the maximizing player selects model B instead. Similarly define,

pB = Pr (r|B > 0) (58)

where r|B is the log-likelihood ratio. When model B generates the data, pB measures

the probability that the maximizing player selects model A instead. Following Hansen and

Sargent (2008), the DEP, p, is defined as

p
(
θ
)

=
1

2
(pA + pB) (59)

where p is the probability of error in choosing the correct model which implies that 1− p

is the probability of success in choosing the correct model and θ is the pessimism parameter

used to generate model B. Since there lies a positive relationship between θ and p, as θ

decreases its associated p will decrease as well so that the desired level of detection error will

implicitly discipline the value of θ.For this work, a θ is chosen that corresponds to p = 0.100,

following Luo and Young (2010) and Hansen and Sargent (2008), meaning for the level of
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calibrated pessimism, the maximizing player will correctly decipher between model A and

model B 90% of the time. Thus by choosing a specific θ that corresponds to a desired DEP,

the choice of θ is disciplined.

10 Forward Premium Puzzle

10.1 Downward Bias of Estimator

To generate the forward premium regression, use (181) as dependent variable and (183)

independent variable so that a linear regression can be formed as,

St+1−St = β̂0 + β̂1 (Ft−St) + et+1 (60)

where is St+1−St the gross rate of depreciation, Ft−St is the forward premium,β̂1 is

the forward premium estimator , β̂0is intercept estimator, and et+1 ∼ N(0, σ2) where σ2

is constant variance term . To begin analyzing slope and intercept estimators we exploit

relationships developed for gross rate of depreciation and forward premium by inserting

(234) into (181) and (183) for Xt and this expansion into (60), utilize OLS optimization, and

taking the probability limit of both β0 and β1 yields,

plim
(
β̂1

)
= 1− tr [Ψ′V ′Mi (V −Q) Ψ]

tr (Ψ′V ′MiVΨ)
(61)

Remark 3 See Technical Appendix Section 22.1 for derivation of (61) .
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where,

Ψ =



I 0 · · · 0

−A0 . . . . . .
...

...
. . . . . . 0

0 · · · −A0 I



−1 

C 0 · · · 0

0
. . . . . .

...

...
. . . . . . 0

0 · · · 0 C



V −Q =



Γ− ΠA0 · · · 0

...
. . .

...

0 · · · Γ− ΠA0



Mi =
(
I − ii′

T

)
and A0 = A+C

(
θI4 − C ′PC

)−1

C ′PA where we note that the intercept

estimator β̂0 disappears in the probability limit. In (61), the RHS second element is the bias

term that forces β̂1 downward from 1. Technically speaking, this bias term is an artefact of

RC modeling with θ embedded in the term itself via Ψ and Q matrices, allowing for misspec-

ification to an extent and ultimately resulting in a robust estimator. Intuitively speaking,

now that economic agents face a malevolent nature that subliminally tries to reduce house-

hold utility, pessimism is induced in the agent to account for systematic evolutions in the

economy that may not have been anticipated. Since the malevolent nature systematically
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perturbs the economy, this behavior induces households to be systematically pessimistic as

well, given the state of the economy they face. Now, given that households are system-

atically pessimistic, this behavior ultimately maps into (61) as a downward bias. Agents,

given their realization that what is systematically forecasted at an initial date may not be

what systematically manifests at a later terminal date (as in RE), now understand that the

economy systematically changes in the time between a forecast of gross rate of depreciation

(forward premium) and the gross rate of depreciation ex-post. Taking state of economy as

given and making a forecast based on that state, agents don’t " systematically believe" or

are doubtful of the initial forward premium (of course, because they’re pessimistic) and will

adjust domestic/foreign cash holdings conservatively meaning if, for example, the forward

premium suggests appreciation of domestic currency against foreign then agents won’t sell

off the foreign currency (due, again, for fear that things may not go as expected) as much

as they would have under RE (where there is complete confidence in things going as ex-

pected due obliviousness of any systematic perturbations) resulting in the ex-post gross rate

of depreciation not appreciating as much as it would have under RE, hence the downward

bias.

10.2 Consistency of Estimator

In this section, to show how biasness disappears so as to establish consistency, we begin with

taking the limit of θ →∞ to (61) or,
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lim
θ→∞

{
plim

(
β̂1

)}
= 1 (62)

Remark 4 See Technical Appendix Section 22.2 for derivaiton of (62) .

where (62) is a direct result of (V −Q) = 0 as θ → ∞. Intuitively, (62) implies that

as pessimism becomes increasingly large, households become "systematically-oblivious" to

any perturbations in their beliefs about the economy’s evolution since they are abysmal at

deciphering between what is believed and what is actually occurring. Continuing with this

logic, if agents are unaware of perturbations then they do not behave in a systematically

conservative manner, eliminating downward bias altogether.

10.3 Estimation & Simulation

Using $/$ 1-month forward exchange rate data in quarterly frequency from 1986:III to

2013:III (Bank of England) and $/$ spot exchange rate data in quarterly frequency from

1986:III to 2013:III (St. Louis Federal Reserve) so as to create the gross rate of depreciation

as well as the forward premium, and using OLS regression (60) yields,

St+1−St = − 0.000897
(0.0042)

− 0.2037
(0.0966)∗∗

(Ft−St) + et+1 (63)

where β̂0 = −0.000897 and β̂1 = −0.2037 with their respective standard deviations given

in parenthesis where (∗∗) implies significance at both 5% and 10% alpha levels. The slope

coeffi cient of (63) means if the forward premium,Ft−St, increases by 1% then the change
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Figure 1: Slope Coeffi cient Estimator PDF Simulation
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in the spot exchange rate,St+1−St, will decrease (appreciate) by 0.2037% and the intercept

term is statistically indifferent from 0. The puzzle is evident in (63) because the a priori

hypothesis implied above that β1 > 0 is clearly violated as β̂1 < 0. Thus, the downward

bias is prevalent in the data. Now, using pseudo-produced16 observations from (181)− (183)

generated by (234) with pessimism corresponding to p
(
θ
)

= 10%, the regression becomes,

St+1−St = 0.0668
(0.1476)

+ 0.7712
(0.1719)∗∗∗

(Ft−St) + et+1 (64)

where β̂0 = 0.0668 and β̂1 = 0.7712 with their respective standard deviations given

in parenthesis where (∗∗∗) implies significance at 1%, 5% and 10% alpha levels. The slope

coeffi cient of (63) means if the forward premium,Ft−St, increases by 1% then the change in

the gross rate of depreciation,St+1−St, increases (depreciates further ex-post) by 0.7712%

and the intercept term is statistically indifferent from 0. Thus, θ ↑ means downward bias

diminishes resulting in β̂1 → 1. Alternatively, using an identical experiment with p
(
θ
)

= 0%

16See Technical Appendix Section 6.4 for simulation procedure.
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instead implies,

St+1−St = 0.1432
(0.2210)

− 0.0640
(0.0279)∗∗∗

(Ft−St) + et+1 (65)

where β̂0 = 0.1432 and β̂1 = −0.0640 .The slope coeffi cient of (63) means if the forward

premium,Ft−St, increases by 1% then the change in the gross rate of depreciation,St+1−St,

decreases (appreciates further ex-post) by 0.0640% and the intercept term is statistically

indifferent from 0. Thus, θ ↓ means downward bias exacerbates so much that it results in

(for this case) β̂1 < 0. By implementing a lower amount of pessimism in the model, (65)

captures a main feature of (63) in that β̂1 < 0 and verifies arguments developed above.

For concreteness, Figure (1) shows Gaussian Monte-Carlo simulations conducted for normal

PDF’s of β̂1 5,000 times for various θ
′
s where the transition from positive to negative domain

can be seen as θ decreases and hence p
(
θ
)
decreases, which again implies that as pessimism

decreases in agents, forward premium bias is exacerbated.

11 Conclusion

Ultimately, Animal Spirits can play an important role in macroeconomic activity when ex-

pressed through appropriate models. In this paper, the FP bias was contained through

exploiting relationships developed in an international DSGE model fitted with RC and it

was shown that biasness disappears when households are "systematically-oblivious" or have

high amounts of pessimism,θ. By using varying regimes of pessimism, both features of the

data (negative relationship between (St+1 − St) and (Ft − St) exists) and unbiasness of un-

covered interest parity (positive relationship between (St+1 − St) and (Ft − St) exists) were
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produced in the forward premium estimator β̂1.

Exploration within behavioral macroeconomic framework is beneficial in that this type of

framework offers explanations into various economic inquiries. Implementing psychological

behaviors of households within economic models can facilitate further understanding how

complex systems, such as exchange rates, operate.



46

CHAPTER 3 AN INQUIRY INTO PESSIMISM: USING DETECTION ER-

ROR PROBABILITIES TO CALIBRATE AN ANIMAL SPIRIT

12 Introduction

Since Keynes (1936) development of Animal Spirits within macroeconomic literature,

economists such as Akerlof (2002), Hansen and Sargent (2008), and Akerlof and Shiller

(2009) have strived to incorporate deviations from rational expectations (RE) into main-

stream macroeconomics, hence the advent of behavioral macroeconomics. Hansen and Sar-

gent venture from simple deviations of RE by incorporating robust control (RC) within a

max-min optimization framework and press that one particular Animal Spirit, namely pes-

simism, is captured through a parameter,θ.Luo, Nie, and Young (2012) incorporate RC and

use pessimism (or model uncertainty) in an intertemporal current account model which is

grounded in linear-quadratic permanent income hypothesis17 to account for international

consumption and current account patterns. In growth theory literature, Bidder and Smith

(2012) incorporate RC so that agents become pessimistic where under model uncertainty

adverse shocks become more volatile, negatively impacting economic growth.

Outside of the general implementation of RC in dynamic-stochastic general equilibrium

(DSGE) settings for studying specific variables , there lies scarce examination of using de-

tection error probabilities (DEP)18 as prescribed by Hansen and Sargent (2008) to, not only

17See Hall (1978).
18See Burnham and Anderson (1998) for an exhaustive study of detection error probabilities and the

statistical theory of model selection in general.
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calibrate pessimism, but to compare simulated pessimism to data-driven pessimism. This

work sees to examine the proximity that a macroeconomic model is able to generate behav-

ioral tendencies of real households, by way of DEP. In order to execute such a comparison,

a Lucas (1982) two-country two money model is fitted with RC, so that international agents

contain a fear of model misspecification, or pessimism. Ultimately, there lies two stochastic

processes 1. The "approximating system" that preserves RE and 2. The "perturbed sys-

tem" that incorporates a systematic sequence of worst-case shocks to the economy. These

two models induce a selection problem to agents, and depending on the ability of the agent to

select the correct data generating process (measured by DEP) will determine how pessimistic

the agent is, where data-driven and simulation-driven pessimism are compared.

This chapter is organized as follows: Section 13 introduces the international DSGEmodel,

Section 14 utilizes artefacts from the model into DEP methodology, Section 15 produces

results from estimation and simulation, Section 16 concludes.

13 Model

In order to have a fruitful discussion about DEP, the Lucas (1982) international dynamic sto-

chastic general equilibrium (DSGE) model embedded with Robust Control (RC) introduced

in Shkrelja (Ch.2, 2014) is reproduced here for convenience,
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max

{cxt, c∗xt,

cyt, c
∗
yt,

ωxt, ω
∗
xt,

ωyt, ω
∗
yt,

ψMt, ψ
∗
Mt,

ψNt, ψ
∗
Nt}

∞
t=0

min
{wt+1}∞t=0

Et

∞∑
t=0

βt

{
φ

[
−

(cθxtc
1−θ
yt )1−γ

1− γ + βθw2
t+1

]
+ (1− φ)

[
−

(c
∗θ
xtc
∗1−θ
yt )1−γ

1− γ + βθ∗w2
t+1

]}

s.t. φ
∞∑
t=0

βt
{
cxt +

StP
∗
t

Pt
cyt + ωxtet + ωyte

∗
t + ψMtrt + ψNtr

∗
t −

Pt−1

Pt
ωxt−1xt−1 −

StP
∗
t−1

Pt
ωyt−1yt−1

−ψMt−1∆Mt

Pt
− ψNt−1St∆Nt

Pt
− ωxt−1et − ωyt−1e

∗
t − ψMt−1rt − ψNt−1r

∗
t

}
= 0



49

(1− φ)
∞∑
t=0

βt
{
c∗xt +

StP
∗
t

Pt
c∗yt + ω∗xtet + ω∗yte

∗
t + ψ∗Mtrt + ψ∗Ntr

∗
t −

Pt−1

Pt
ω∗xt−1xt−1 −

StP
∗
t−1

Pt
ω∗yt−1yt−1

−
ψ∗Mt−1∆Mt

Pt
−
ψ∗Nt−1St∆Nt

Pt
− ω∗xt−1et − ω∗yt−1e

∗
t − ψ∗Mt−1rt − ψ∗Nt−1r

∗
t

}
= 0

CIA︷ ︸︸ ︷
mt = Ptcxt

Equity Shares︷ ︸︸ ︷
ωxt + ω∗xt = 1

Re source Constraints︷ ︸︸ ︷
cxt + c∗xt = xt

(66)

nt = P ∗t cyt ωyt + ω∗yt = 1 cyt + c∗yt = yt
(67)

m∗t = Ptc
∗
xt ψMt + ψ∗Mt = 1 mt +m∗t = Mt

(68)

n∗t = P ∗t c
∗
yt ψNt + ψ∗Nt = 1 nt + n∗t = Nt (69)

Where cxt and cyt represent home good-x and good-y consumption respectively, mt and

nt represent home holdings of home and foreign currency, ωxt and ωyt represent home output

shares of good-x and good-y respectively valued at price et for ωxt and e∗t for ωyt , ψMt and

ψNt represent home holdings of home and foreign currency shares respectively valued at price

rt for ψMt and r
∗
t for ψNt, Pt and St represent home prices and spot exchange rate respec-

tively. Finally, all variables containing * are foreign variable counterparts to the preceding

home variable list. Beginning with the objective function, domestic and foreign households

optimize weighted average CRRA utility (consisting of domestic and foreign consumptions

of goods x and y), so that βt is discount factor, φ represents importance of country in decen-
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tralized world economy, θand θ
∗
represent home and foreign pessimism respectively, wt+1 is

malevolent nature’s control variable, representing an intertemporal sequence of "worst-case"

shocks that are used minimize household utility. Constraints to the objective function in-

clude home and foreign budget constraints, the first column of (66) − (69) represents CIA

constraints, the second and third columns are adding up constraints. To close the model,

the stochastic system pertaining to no systematic deviations, or the approximating system,is

represented as,

xt+1 = (1− ρ1) + ρ1xt + εxt+1 (70)

yt+1 = (1− ρ2) + ρ2yt + εyt+1 (71)

Mt+1 = (1− ρ3) + ρ3Mt + εMt+1 (72)

Nt+1 = (1− ρ4) + ρ4Nt + εNt+1 (73)

where xt+1 is domestic output, yt+1 is foreign output, Mt+1 is gross domestic money

supply, Nt+1 is gross foreign money supply. The stochastic system associated with systematic

deviations, or the perturbed system, is represented as,
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xt+1 = (1− ρ1) + ρ1xt + wt+1 + εxt+1 (74)

yt+1 = (1− ρ2) + ρ2yt + wt+1 + εyt+1 (75)

Mt+1 = (1− ρ3) + ρ3Mt + wt+1 + εMt+1 (76)

Nt+1 = (1− ρ4) + ρ4Nt + wt+1 + εNt+1 (77)

where wt+1 is represented as a systematic perturbation to an economic agents under-

standing of (70) − (73) . Now, as discussed in Shkrelja (Ch.2, 2014), out of the maximizing

player’s problem, log linearized first-order conditions (FOCs) in matrix form for both spot

exchange rate, St and forward exchange rate, Ft can be derived. For purposes of this discus-

sion, the approximating system (70)− (73) can be represented log-linearized matrix-algebra

form,

Xt+1 = AXt + Cεt+1 (78)

where,
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Xt =



x̃t

ỹt

M̃t

Ñt



, εt+1 =



εxt+1

εyt+1

εMt+1

εNt+1



, A =



ρ1 0 0 0

0 ρ2 0 0

0 0 ρ3 0

0 0 0 ρ4



, C =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



and x̃t, ỹt, M̃t, Ñt are log-linearized counterparts to xt, yt, Mt, Nt respectively. Next, the

optimal worst-case sequence (and its associated Riccatti equation for stabilization matrix P )

chosen by the malevolent nature, wt+1 can be derived from the minimizing player’s problem

as in Shkrelja (2014b) which feeds back into the perturbed system (74) − (77) ultimately

resulting in,

Xt+1 = A0Xt + Cεt+1 (79)

where A0 =
(
A+ CK(θ)

)
, which contains households’pessimism, θ19. The purpose of

the next section is to utilize (78) and (79) in calibrating pessimism via DEP methodology.

19Introduced from Shkrelja (2014b), "world-pessimism," θ , is a weighted-average of home and foreign

pessimism (θ and θ
∗
respectively) or, θ = φθ+(1− φ) θ∗. See the Technical Appendix Section 4.2.2 for more

details.
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14 Detection Error Probabilities

The intuition behind (78) and (79) play a role into the following DEP analysis. Both ap-

proximating and perturbed systems will essentially be "chosen" some fraction of the time,

where depending on which model correctly generates the state of nature and that chosen by

the economic agents, will determine to what percentage the agent is incorrect in deciphering

the true state of nature. This will, indirectly, discipline the choice of pessimism used in the

model from Section 2. To begin, the approximating stochastic system is specified as "Model

A,"

Xt+1 = AXt + Cε̂t+1 (80)

where (80) is essentially equivalent to (78) with the exception of ε̂t+1, which are normally

distributed error terms whose mean is implicitly perturbed by the malevolent nature’s se-

quence of worst-case shocks, wt+1 or ε̂t+1 ∼ N (wt+1, σ
2) where σ2 is a constant variance20.

Alternatively, the perturbed stochastic system will be defined as "Model B,"

Xt+1 = A0Xt + Cεt+1 (81)

where, again, (81) is equivalent to (79) where error terms are now normally distributed

with a mean of zero or, εt+1 ∼ N (0, σ2) with constant variance σ2. It is stressed that the

discipline of pessimism is determined indirectly through (81) since A0 is embedded with

20See Section 2.1 of Shkrelja (2014b) for futher details on perturbed error terms.
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θ.Both Model A and Model B are used in Log-Likelihood Ratio Tests (LRT), where through

these tests pessimism can be indirectly calibrated. The intuition behind a LRT is that it is

basically used to compare the fit of two models, where one of the models is a special case

of the other model. The test, based primarily on the likelihood ratio, determines how likely

a data set exists in one model over the other. In terms of this paper’s analysis, (80) is a

special case of (81) where wt+1 = 0 is assumed in the former. By adjusting θ the likelihood

of which model exists given a set of data is manipulated to a degree, until a desired DEP is

achieved.

14.1 Log-Likelihood Ratio Test with Model A

Initially, it is assumed that the malevolent natures sequence of worst-cast shocks are gener-

ated under Model A,

wAt+1 = KXA
t+1 (82)

where (82) is an FOC of the minimizing player’s problemwhereK =
(
θI4 − C ′PC

)−1

C ′PA

and XA
t+1 is produced under Model A. Next, the innovations to (80) are defined as,

Xt+1 = AXt + Cε̂t+1

Cε̂t+1 = Xt+1 − AXt

ε̂t+1 = (C ′C)
−1
C ′ (Xt+1 − AXt) (83)
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so that ε̂t+1 is primarily a mapping of the discrepancy between a one-period in advance

state of the economy, Xt+1 and its dependency on the current state, AXt. Similarly, the

innovation to (81) are defined as,

Xt+1 = A0Xt + Cεt+1

Cεt+1 = Xt+1 − A0Xt

εt+1 = (C ′C)
−1
C ′
(
Xt+1 − A0Xt

)
εt+1 = (C ′C)

−1
C ′ (Xt+1 − AXt)− (C ′C)

−1
C ′CKXt (84)

where A0 = (A+ CK) was used. if the fact that ε̂t+1 = (C ′C)−1C ′ (Xt+1 − AXt) and

since (C ′C)−1C ′C = I4, the second element of the right-hand side of (84) can be equated to

wt+1 so that (84) is ultimately consolidated to,

εt+1 = ε̂t+1 − wt+1 (85)

so that εt+1 in (85)accounts for wt+1. Alternatively it can be easily seen, algebraically

speaking, that the systematic error, wt+1, in a linear combination with random error term,

εt+1, forms the perturbed error term ε̂t+1. Now that both (83) and (85) have been defined

from (80) and (81) respectively, the log-likelihood tests can be constructed with respect to

Model A and Model B as,
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Log LA = − 1

T

T−1∑
t=0

{
n log

√
2π +

1

2

(
ε̂t+1

′ε̂t+1

)}
(86)

Log LB = − 1

T

T−1∑
t=0

{
n log

√
2π +

1

2

(
ε′t+1εt+1

)}
(87)

where Log LA is the log-likelihood associated with innovations constructed from Model

A (as implied by the subscript A), Log LB is the log-likelihood associated with innovations

constructed from Model B (as implied by the subscript B), and T is the total number of

periods within a time-series data set ranging from time t = 0, ..., T − 1. Using (86) and (87)

the log-likelihood ratio test conditional on Model A can finally be constructed,

r|A = Log LA − Log LB

= − 1

T

T−1∑
t=0

{
n log

√
2π +

1

2

(
ε̂t+1

′ε̂t+1

)}
+

1

T

T−1∑
t=0

{
n log

√
2π +

1

2

(
ε′t+1εt+1

)}

=
1

T

T−1∑
t=0

{
1

2

(
ε′t+1εt+1

)
− 1

2

(
ε̂t+1

′ε̂t+1

)}

=
1

T

T−1∑
t=0

{
1

2

(
ε̂t+1 − wAt+1

)′ (
ε̂t+1 − wAt+1

)
− 1

2

(
ε̂t+1

′ε̂t+1

)}

=
1

T

T−1∑
t=0

{
1

2

(
ε̂t+1

′ε̂t+1 − ε̂t+1
′wAt+1 − wA′t+1ε̂t+1 + wA′t+1w

A
t+1

)
− 1

2

(
ε̂t+1

′ε̂t+1

)}

hence,
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r|A =
1

T

T−1∑
t=0

{
1

2
wA′t+1w

A
t+1 −

1

2
wA′t+1ε̂t+1

}
(88)

where εt+1 = ε̂t+1 − wt+1 was used and since Model A is assumed to be the true data

generating process, malevolent nature’s sequence of worst-case shocks can be reinterpreted as

wt+1 = wAt+1. Basically, (88) is simulated through a large number of T observations assuming

wAt+1 = KXA
t+1 and the number of times r|A < 0 is summed, resulting in a probability

conditional on Model A or more formally21,

pA = Pr (r|A < 0) (89)

where pA gives the probability associated with an economic agent choosing Model B,

when in fact, the true data generating process is Model A. Thus, pA denotes the fraction of

time an economic agent incorrectly chooses Model B so that 1− pA specifies the fraction of

time the agent correctly chooses Model A. The full DEP has not been fully crafted however,

a similar exercise needs to be conducted for the log-likelihood with respect to Model B.

14.2 Log-Likelihood Ratio Test with Model B

A strategy similar to the exercise for constructing r|A can be also be done for log-likelihood

conditional on Model B instead, where now the malevolent nature’s worst-case sequence is

assumed to be generated from Model B,

21See Technical Appendix Section 5.4 for further details on simulation strategy for pA.
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wBt+1 = KXB
t+1 (90)

where XB
t+1 is produced from (81). Additionally, (86) and (87) can be used to construct

the log-likelihood ratio test under Model B (following a similar procedure to constructing

r|A),

r|B = − 1

T

T−1∑
t=0

{
1

2
wB′t+1w

B
t+1 +

1

2
wB′t+1ε̂t+1

}
(91)

from (91) a large sequence of T observations can be simulated from (90) and imple-

mented into (91) and the occurrences of r|B > 0 are summed which results in a probability

conditional on Model B being the true data generating process22,

pB = Pr (r|B > 0) (92)

where pB gives the probability that an economic agent incorrectly selects Model A when

the true data generating process is Model B. Alternatively, 1-pB is the probability that the

economic agent correctly selects Model B.

14.3 The Detection Error Probability

Now that pA and pB have been constructed, both are linearly averaged as in Hansen et. al

(2002), Hansen and Sargent (2008), and Luo, Nie, and Young (2012) so that,

22See Technical Appendix Section 5.4 for further details on simulation strategy for pB .
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p
(
θ
)

=
1

2
(pA + pB) (93)

where p
(
θ
)
is the objective DEP that describes the probability international households

will incorrectly choose the true data generating process with respect to the model intro-

duced in Section 2. Alternatively, 1− p
(
θ
)
implies the fraction of time that international

households correctly choose the true data generating process. Values of θ are initially very

large which in turn determine p
(
θ
)
and pessimism is then decreased until the desired DEP

is reached. Theoretically speaking, there lies a positive relationship between θ and p
(
θ
)

where p
(
θ
)
→ 0.5 as θ → ∞ meaning as pessimism becomes increasingly high, interna-

tional households become increasingly worse at deciphering which stochastic process is the

true data generating process, where agents incorrectly select the true state of nature 50% of

the time. Using the theoretical excursion given through this section, both simulated and ac-

tual data values are applied to ultimately produce DEP from (93) and its implied pessimism

value, θ.

15 Calibrated Pessimism

15.1 Data-Based Pessimism

To generate a comparison between data-driven and simulated pessimism parameters, a brief

overview of the data is necessary. The state vector Xt contains xt designated as aggregate

U.S. real GDP observations in millions of chained 2009 dollars (Federal Reserve Bank of St.

Louis) in quarterly frequency from 1986:III to 2013:III; yt is defined as U.K. real GDP in
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millions of pounds deflated by UK CPI (with base year 2010) in quarterly frequency from

1986:III to 2013:III; Mt is home currency designated as a time-series data vector containing

aggregate U.S. Household Financial Assets and Currency observations (Federal Reserve Bank

of St. Louis) in quarterly frequency from 1986:III to 2013:III; and Nt is foreign currency

defined as U.K. Household Outstanding Holdings of Notes/Coin (Bank of England) observa-

tions in quarterly frequency from 1986:III to 2013:III. The data vector Xt is then applied to

(88) and (91) in order to generate (89) and (92) respectively. Finally, both (89) and (92) are

linearly averaged to generate (93) where a data-driven world pessimism value is generated

with its associated DEP. Table 1 below gives calibrated θ values and their associated DEP

values.

As θ increases, it can be seen that its associated DEP, p
(
θ
)
increases as well, where for

large values of θ the DEP converges towards 0.5000. Within the context of the data and

starting with low values of DEP, p (500.0000) = 0.0000 implies that agents are incorrectly

choosing the true data generating process 0% of the time which alternatively implies that

1− p (500.0000) means households correctly choose the state of nature 100%. Intuitively,

households are fully aware of the systematic bias within the economic environment and factor

this perturbation within their expectations when making forecasts about future economic
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values. On the other hand, for large values of pessimism where θ = 11, 000.0000, its asso-

ciated DEP yields p (11, 000.0000) = 0.5000 meaning households incorrectly choose the state

of nature 50% of the time. It can easily be seen that this value also implies 1−p (11, 000.0000),

or households correctly choose the true data generating process 50% of the time. As the

malevolent nature’s systematic perturbations become more miniscule, it becomes increas-

ingly diffi cult for the agent to decipher between an approximating stochastic system and its

perturbed system counterpart. This diffi culty translates as increased pessimism in house-

holds where there lies an equal chance in correctly and incorrectly realizing what is actually

occurring within the economic environment.

15.2 Simulation-Based Pessimism

In this section, pessimism and associated DEP values are calibrated using simulations from

systems (80) and (81) where the coeffi cient matrix A of both systems are estimated from the

same data described in Section 4.123. The resulting state vectors of both systems are then

23See Technical Appendix Section 7.2 for details on estimation procedure.
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used to generate (93) where Table 2 lists calibrated values of both pessimism and related

DEP values24.

Same principles apply to Table 2 as in Table 1 where as increasingly large values of

pessimism lead associated DEP values converging towards 0.5000. Here, simulated pessimism

of θ = 798.8450 results in p (798.8450) = 0.0000 implying as before that agents incorrectly

choose the true data generating process 0% of the time implying agents correctly choose

the true data generating process 100% of the time. Alternatively, simulated pessimism of

θ = 14, 000.0000 implies p (14, 000.0000) = 0.4693 where households incorrectly choose the

state of nature 46.93% of the time and 1 − p (14, 000.0000) implies agents correctly choose

53.07% of the time.

To clearly see the difference between data-driven and simulated pessimism values, Figure

1 plots values of Table 1 and Table 2 within the same diagram. The blue line indicates

values generated from the data and the red-line from simulation and it can be seen that

as pessimism continues into larger values, both lines converge towards 0.5000. Clearly, for

24See Technical Appendix Section 5.4 for simulation strategy.
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each θ value, its associated p
(
θ
)
is understated in the simulation when compared to their

data-driven counterparts, essentially inflating the selection ability of agents. This implies

that agents within the simulation can better decipher between states of nature than what the

data suggests, for all values of pessimism. For low values of pessimism where p
(
θ
)
< 0.1000,

the simulated DEP’s perform rather well against the data as there is not a large discrepancy

present, however shortly beyond the p
(
θ
)

= 0.1000 threshold, there lies a large distance

between simulated and data-based DEP’s, until high values of pessimism are reached where

both lines eventually converge.

This "inflated-selction ability" of the simulated model over its data counterpart suggests

that the behavioral nature of international economic agents is not well described by the model

in Section 2 for a broad range of pessimism, especially those for p
(
θ
)
> 0.1000. The data

suggests that for values of pessimism, people are actually not very good at selecting between

what they think and what actually is going on (which, through natural observation, is not far

from truth), when comparing to simulated pessimism. Through a simple thought experiment,

if the behavioral nature of international agents can be accounted for, estimators produced

from FOC artefacts of Section 2’s model (when estimated under some statistical procedure)

could produce results closer to reality. It must be noted that both θ and p
(
θ
)
are context-

specific as far as what data is used and how the coeffi cient matrix A is estimated. Changing

the methodology alters the outcome of both pessimism and DEP, suggesting a different

stochastic representation of (70) − (73) or estimation procedure to A could dampen the

behavioral discrepancy between data and simulation. Additionally, it is assumed that "world-
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Figure 2: Simulated vs. Data-Based Pessimism
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pessimism" or θ has been assumed to be a weighted average of domestic (US) pessimism,

θ and foreign (UK) pessimism, θ
∗
so that both are essentially homogenous (θ = θ

∗
), when

calibrating θ. Perhaps separating each term into non-homogenous components so that θ 6= θ
∗

would be more appropriate in trying to match simulated pessimism with what data suggests.

16 Conclusion

This work has strived to capture the behavioral nature of international economic agents

with respect to pessimism. Through a two-country, two-money international DSGE model

incorporated with RC, two stochastic systems (approximating and perturbed systems) were

assumed exist causing a selection problem for households. Through detection error proba-

bility estimation methodology, the ability of agents to realize which state of nature is the

true data generating process is reflected in how pessimistic an agent is so that the lower an

agents’ability to correctly select a true data generating process, the higher the agents’pes-

simism. To account for this behavioral phenomenon empirically, US and UK data was taken
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and applied to DEP methodology to generate data and simulation-based pessimism values

and their associated DEP’s. The simulated model inflated households’ability to select ap-

propriate models when compared to the data, so the stylized international economy perhaps

is not the most effective in trying to capture context-specific macroeconomic behaviors.

Other issues associated with the discrepancy between simulated and data-based pes-

simism is the stochastic structure of approximating and perturbed systems, estimation

methodology of the coeffi cient matrix A, and the homogeneity assumption of θ.These av-

enues for future research could potentially enhance proximity of simulated pessimism to its

data counterpart, and bring behavioral macroeconomics closer to explaining Animal Spirits.
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APPENDIX

17 Elements

• Home Country Utility Function

u(cxt, cyt) =
(cθxtc

1−θ
yt )1−γ

1− γ (94)

• Foreign Country Utility Function

u(c∗xt, c
∗
yt) =

(c
∗θ
xtc
∗1−θ
yt )1−γ

1− γ (95)

• Home Country Budget Constraint

cxt +
StP

∗
t

Pt
cyt + ωxtet + ωyte

∗
t + ψMtrt + ψNtr

∗
t =

Pt−1

Pt
ωxt−1xt−1

+
StP

∗
t−1

Pt
ωyt−1yt−1 +

ψMt−1∆Mt

Pt
+
ψNt−1St∆Nt

Pt
+ ωxt−1et + ωyt−1e

∗
t

+ ψMt−1rt + ψNt−1r
∗
t (96)

• Foreign Country Budget Constraint

c∗xt +
StP

∗
t

Pt
c∗yt + ω∗xtet + ω∗yte

∗
t + ψ∗Mtrt + ψ∗Ntr

∗
t =

Pt−1

Pt
ω∗xt−1xt−1

+
StP

∗
t−1

Pt
ω∗yt−1yt−1 +

ψ∗Mt−1∆Mt

Pt
+
ψ∗Nt−1St∆Nt

Pt
+ ω∗xt−1et + ω∗yt−1e

∗
t

+ ψ∗Mt−1rt + ψ∗Nt−1r
∗
t (97)
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• Cash-in-Advance Constraints

mt ≥ Ptcxt

nt ≥ P ∗t cyt (98)

m∗t ≥ Ptc
∗
xt (99)

n∗t ≥ P ∗t c
∗
yt (100)

• Adding-Up Constraints

ωxt + ω∗xt = 1 (101)

ωyt + ω∗yt = 1 (102)

ψMt + ψ∗Mt = 1 (103)

ψNt + ψ∗Nt = 1 (104)

cxt + c∗xt = xt (105)

cyt + c∗yt = yt (106)

mt +m∗t = Mt (107)

nt + n∗t = Nt (108)

• Stochastic Processes

xt+1 = (1− ρ1) + ρ1xt + εxt+1 (109)

yt+1 = (1− ρ2) + ρ2yt + εyt+1 (110)

Mt+1 = (1− ρ3) + ρ3Mt + εMt+1 (111)

Nt+1 = (1− ρ4) + ρ4Nt + εNt+1 (112)
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18 Equilibrium

18.1 Centralized Economy

For simplicity, the log utility functions of (94) and (95) respectively can be defined as

log u(cxt, cyt) = θ log(cxt) + (1− θ) log(cyt) (113)

log u(c∗xt, c
∗
yt) = θ log(c∗xt) + (1− θ) log(c∗yt) (114)

The central planner maximizes a weighted average of (113) and (114) subject to (105)

and (106).

max
{cxt,cyt,c∗xt,c∗yt}∞t=0

Et

∞∑
t=0

βt
{
φ [θ log(cxt) + (1− θ) log(cyt)] + (1− φ)

[
θ log(c∗xt) + (1− θ) log(c∗yt)

]}

s.t. cxt + c∗xt = xt

cyt + c∗yt = yt

The central planner’s problem can be reduced to a static problem (where t = 0)

max
cx,cy ,c∗x,c

∗
y

φ [θ log(cx) + (1− θ) log(cy)] + (1− φ)
[
θ log(c∗x) + (1− θ) log(c∗y)

]

s.t. cx + c∗x = x

cy + c∗y = y
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Inserting (106) and (107) into the object function yields an unconstrained maximization

problem

max
cx,cy

φ [θ log(cx) + (1− θ) log(cy)] + (1− φ) [θ log(cx − x) + (1− θ) log(cy − y)]

Optimizing the unconstrained objective function w.r.t control variables yields F.O.C’s

∂

∂cx
= 0 :

φθ

cx
− (1− φ) θ

x− cx
= 0 (115)

∂

∂cy
= 0 :

φ(1− θ)
cy

− (1− φ) (1− θ)
y − cy

= 0 (116)

Using (115) − (116) ,(106) − (107) , and allowing time to evolve the pareto effi cient

allocations become

cxt = (1− φ)xt (117)

cyt = (1− φ) yt (118)

c∗xt = φxt (119)

c∗yt = φyt (120)

If both countries are weighted equally by the central planner so that φ = 1
2
then this

results in a perfect sharing pareto effi cient allocation
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cxt =
xt
2

(121)

cyt =
yt
2

(122)

c∗xt =
xt
2

(123)

c∗yt =
yt
2

(124)

19 Decentralized Economy

19.1 Home Country Decentralized Economy

Home country maximizes (113) subject to (96)

max
{cxt,cyt,ωxt,ωyt,ψMt,ψNt}∞t=0

Et

∞∑
t=0

βt {θ log(cxt) + (1− θ) log(cyt)}

s.t. cxt +
StP

∗
t

Pt
cyt + ωxtet + ωyte

∗
t + ψMtrt + ψNtr

∗
t =

Pt−1

Pt
ωxt−1xt−1

+
StP

∗
t−1

Pt
ωyt−1yt−1 +

ψMt−1∆Mt

Pt
+
ψNt−1St∆Nt

Pt
+ ωxt−1et + ωyt−1e

∗
t

+ψMt−1rt + ψNt−1r
∗
t

The decentralized problem can be reduced to static form (where t = 0)

max
cx,cy ,ωx,ωy ,ψM ,ψN

[θ log(cx) + (1− θ) log(cy)]

s.t. cx+
SP ∗

P
cy +ωxe+ωye

∗+ψMr+ψNr
∗ = ωxx+

SP ∗

P
ωyy+ωxe+ωye

∗+ψMr+ψNr
∗

To "peg" a decentralized allocation that matches the centralized allocation, set ωx = ωy =
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ψM = ψN = 1
2
where inserting these values into (96) for t = 0 , the problem further reduces

to

max
cx,cy

[θ log(cx) + (1− θ) log(cy)] (125)

s.t. cx +
SP ∗

P
cy =

1

2

(
x+

SP ∗

P
y

)
(126)

Inserting (126) into (125) the unconstrained maximization problem becomes

max
cy

[
θ log

(
1

2

(
x+

SP ∗

P
y

)
− SP ∗

P
cy

)
+ (1− θ) log(cy)

]

∂

∂cy
= 0 :

−(SP
∗

P
)θ

cx
+

(1− θ)
cy

= 0 (127)

Rearranging (127), applying to (126),and redefining SP ∗

P
= q (real exchange rate) the

resulting Home demand functions are

cx =
θ (x+ qy)

2
(128)

cy =
θ (x+ qy) (1− θ)

2q
(129)

19.2 Foreign Country Decentralized Economy

Foreign country maximizes (114) subject to (97)

max
{c∗xt,c∗yt,ω∗xt,ω∗yt,ψ∗Mt,ψ

∗
Nt}∞t=0

Et

∞∑
t=0

βt
{
θ log(c∗xt) + (1− θ) log(c∗yt)

}
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s.t. c∗xt +
StP

∗
t

Pt
c∗yt + ω∗xtet + ω∗yte

∗
t + ψ∗Mtrt + ψ∗Ntr

∗
t =

Pt−1

Pt
ω∗xt−1xt−1

+
StP

∗
t−1

Pt
ω∗yt−1yt−1 +

ψ∗Mt−1∆Mt

Pt
+
ψ∗Nt−1St∆Nt

Pt
+ ω∗xt−1et + ω∗yt−1e

∗
t

+ψ∗Mt−1rt + ψ∗Nt−1r
∗
t

The decentralized problem can be reduced to static form (where t = 0)

max
c∗x,c
∗
y ,ω
∗
x,ω
∗
y ,ψ
∗
M ,ψ

∗
N

[θ log(c∗x) + (1− θ) log(c∗y)]

s.t. c∗x+
SP ∗

P
c∗y +ω∗xe+ω∗ye

∗+ψ∗Mr+ψ∗Nr
∗ = ω∗xx+

SP ∗

P
ω∗yy+ω∗xe+ω∗ye

∗+ψ∗Mr+ψ∗Nr
∗

To "peg" a decentralized allocation that matches the centralized allocation, set ω∗x =

ω∗y = 1
2

= ψ∗M = 1
2

= ψ∗N = 1
2
where inserting these values into (97) for t = 0, the problem

further reduces to

max
c∗x,c
∗
y

[θ log(c∗x) + (1− θ) log(c∗y)] (130)

s.t. c∗x +
SP ∗

P
c∗y =

1

2

(
x+

SP ∗

P
y

)
(131)

Inserting (131) into (130) the unconstrained maximization problem becomes

max
c∗y

[
θ log

(
1

2

(
x+

SP ∗

P
y

)
− SP ∗

P
c∗y

)
+ (1− θ) log(c∗y)

]

∂

∂c∗y
= 0 :

−(SP
∗

P
)θ

c∗x
+

(1− θ)
c∗y

= 0 (132)

Rearranging (132), applying to (131), and redefining SP ∗

P
= q (real exchange rate) the
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resulting Foreign demand functions are

c∗x =
θ (x+ qy)

2
(133)

c∗y =
θ (x+ qy) (1− θ)

2q
(134)

19.3 World Decentralized Equilibrium

The static version of (101)− (106) necessary for world economy equilibrium are

ωx + ω∗x = 1 (135)

ωy + ω∗y = 1 (136)

ψM + ψ∗M = 1 (137)

ψN + ψ∗N = 1 (138)

cx + c∗x = x (139)

cy + c∗y = y (140)

using (128)− (129) with ( 139), or (133)− (134) with (140), and allowing time to evolve

yields the equilibrium real exchange rate associated with decentralized economy

StP
∗
t

Pt
= qt =

xt (1− θ)
ytθ

(141)

Finally, Constraints (135)− (140) are satisfied due to ωx = ω∗x = ωy = ω∗y = ψM = ψ∗M =

ψN = ψ∗N = 1
2
(perfect risk pooling equilibrium). Using (141), (128) − (129) (133) − (134),

(139) − (140), and allowing time to evolve the resulting decentralized world equilibrium

allocation is
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cxt =
xt
2

(142)

cyt =
yt
2

(143)

c∗xt =
xt
2

(144)

c∗yt =
yt
2

(145)

20 Model

20.1 Inducing Malevolent Nature

Maximizing player believes state of the world to evolve according to the approximating

system of stochastic equations, restated for convenience

xt+1 = (1− ρ1) + ρ1xt + εxt+1

yt+1 = (1− ρ2) + ρ2yt + εyt+1

Mt+1 = (1− ρ3) + ρ3Mt + εMt+1

Nt+1 = (1− ρ4) + ρ4Nt + εNt+1

where the maximizing player believes the error terms are distributed according to

εjt ∼ N(0, σ2
j) for j = x, y,M,N (146)

where σ2
j is constant variance term for j = x, y,M,N

The minimizing player perturbs approximating system through error terms
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xt+1 = (1− ρ1) + ρ1xt + ε̃xt+1 (147)

yt+1 = (1− ρ2) + ρ2yt + ε̃yt+1 (148)

Mt+1 = (1− ρ3) + ρ3Mt + ε̃Mt+1 (149)

Nt+1 = (1− ρ4) + ρ4Nt + ε̃Nt+1 (150)

where ε̃jt for j = x, y,M,N represents perturbed error terms distributed as

ε̃jt ∼ N(wt+1, σ
2
j) for j = x, y,M,N (151)

ε̃jt − wt+1 ∼ N(0, σ2
j) for j = x, y,M,N (152)

εjt = ε̃jt − wt+1 (153)

ε̃jt = εjt + wt+1 (154)

inserting (154) for j = x, y,M,N into (147)−(150) yields the perturbed stochastic system

xt+1 = (1− ρ1) + ρ1xt + wt+1 + εxt+1 (155)

yt+1 = (1− ρ2) + ρ2yt + wt+1 + εyt+1 (156)

Mt+1 = (1− ρ3) + ρ3Mt + wt+1 + εMt+1 (157)

Nt+1 = (1− ρ4) + ρ4Nt + wt+1 + εNt+1 (158)

20.2 Max-Min Optimization Problem

• Objective Function and Budget Constraints
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max

{cxt, c∗xt,

cyt, c
∗
yt,

ωxt, ω
∗
xt,

ωyt, ω
∗
yt,

ψMt, ψ
∗
Mt,

ψNt, ψNt}
∞
t=0

min
{wt+1}∞t=0

Et

∞∑
t=0

βt

{
φ

[
−

(cθxtc
1−θ
yt )1−γ

1− γ + βθw2
t+1

]
+ (1− φ)

[
−

(c
∗θ
xtc
∗1−θ
yt )1−γ

1− γ + βθ∗w2
t+1

]}

s.t. φ

∞∑
t=0

βt
{
cxt +

StP
∗
t

Pt
cyt + ωxtet + ωyte

∗
t + ψMtrt + ψNtr

∗
t −

Pt−1

Pt
ωxt−1xt−1 −

StP
∗
t−1

Pt
ωyt−1yt−1

−ψMt−1∆Mt

Pt
− ψNt−1St∆Nt

Pt
− ωxt−1et − ωyt−1e

∗
t − ψMt−1rt − ψNt−1r

∗
t

}
= 0
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(1− φ)

∞∑
t=0

βt
{
c∗xt +

StP
∗
t

Pt
c∗yt + ω∗xtet + ω∗yte

∗
t + ψ∗Mtrt + ψ∗Ntr

∗
t −

Pt−1

Pt
ω∗xt−1xt−1 −

StP
∗
t−1

Pt
ω∗yt−1yt−1

−
ψ∗Mt−1∆Mt

Pt
−
ψ∗Nt−1St∆Nt

Pt
− ω∗xt−1et − ω∗yt−1e

∗
t − ψ∗Mt−1rt − ψ∗Nt−1r

∗
t

}
= 0

where θand θ∗represent Home and Foreign pessimism respectively, wt+1 is malevolent

nature’s control variable used to perturb (109) − (112), and φ represents importance of

country in decentralized world economy. Remaining constraints are reproduced below for

convenience

• Cash-in-Advance Constraints

mt = Ptcxt (159)

nt = P ∗t cyt (160)

m∗t = Ptc
∗
xt (161)

n∗t = P ∗t c
∗
yt (162)

note that CIA constraints bind in equilibrium.

• Approximating Stochastic Processes

xt+1 = (1− ρ1) + ρ1xt + εxt+1

yt+1 = (1− ρ2) + ρ2yt + εyt+1

Mt+1 = (1− ρ3) + ρ3Mt + εMt+1

Nt+1 = (1− ρ4) + ρ4Nt + εNt+1
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• Perturbed Stochastic Processes

xt+1 = (1− ρ1) + ρ1xt + wt+1 + εxt+1

yt+1 = (1− ρ2) + ρ2yt + wt+1 + εyt+1

Mt+1 = (1− ρ3) + ρ3Mt + wt+1 + εMt+1

Nt+1 = (1− ρ4) + ρ4Nt + wt+1 + εNt+1

• Adding-Up Constraints

ωxt + ω∗xt = 1

ωyt + ω∗yt = 1

ψMt + ψ∗Mt = 1

ψNt + ψ∗Nt = 1

cxt + c∗xt = xt

cyt + c∗yt = yt

mt +m∗t = Mt

nt + n∗t = Nt

20.2.1 Maximizing Player Chooses First

The optimization problem is broken into two components with maximizing player choosing

first
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max

{cxt, c∗xt,

cyt, c
∗
yt,

ωxt, ω
∗
xt,

ωyt, ω
∗
yt,

ψMt, ψ
∗
Mt,

ψNt, ψNt}
∞
t=0

− Et
∞∑
t=0

βt

{
φ

[
(cθxtc

1−θ
yt )1−γ

1− γ

]
+ (1− φ)

[
(c
∗θ
xtc
∗1−θ
yt )1−γ

1− γ

]}

s.t. φ
∞∑
t=0

βt
{
cxt +

StP
∗
t

Pt
cyt + ωxtet + ωyte

∗
t + ψMtrt + ψNtr

∗
t −

Pt−1

Pt
ωxt−1xt−1 −

StP
∗
t−1

Pt
ωyt−1yt−1

−ψMt−1∆Mt

Pt
− ψNt−1St∆Nt

Pt
− ωxt−1et − ωyt−1e

∗
t − ψMt−1rt − ψNt−1r

∗
t

}
= 0

(1− φ)

∞∑
t=0

βt
{
c∗xt +

StP
∗
t

Pt
c∗yt + ω∗xtet + ω∗yte

∗
t + ψ∗Mtrt + ψ∗Ntr

∗
t −

Pt−1

Pt
ω∗xt−1xt−1 −

StP
∗
t−1

Pt
ω∗yt−1yt−1

−
ψ∗Mt−1∆Mt

Pt
−
ψ∗Nt−1St∆Nt

Pt
− ω∗xt−1et − ω∗yt−1e

∗
t − ψ∗Mt−1rt − ψ∗Nt−1r

∗
t

}
= 0
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where (159)−(162), (101)−(108), and (109)−(112) completes maximizing player problem

specification. Forming the lagrangian,

$ = Et

∞∑
t=0

βt

{
φ

[
(cθxtc

1−θ
yt )1−γ

1− γ − λ1
t

(
cxt +

StP
∗
t

Pt
cyt + ωxtet + ωyte

∗
t + ψMtrt + ψNtr

∗
t −

Pt−1

Pt
ωxt−1xt−1

−
StP

∗
t−1

Pt
ωyt−1yt−1−

ψMt−1∆Mt

Pt
−ψNt−1St∆Nt

Pt
−ωxt−1et

−ωyt−1e
∗
t − ψMt−1rt − ψNt−1r

∗
t

)]
+(1−φ)

[
(c
∗θ
xtc
∗1−θ
yt )1−γ

1− γ − λ2
t

(
c∗xt +

StP
∗
t

Pt
c∗yt + ω∗xtet + ω∗yte

∗
t + ψ∗Mtrt + ψ∗Ntr

∗
t −

Pt−1

Pt
ω∗xt−1xt−1

−
StP

∗
t−1

Pt
ω∗yt−1yt−1−

ψ∗Mt−1∆Mt

Pt
−
ψ∗Nt−1St∆Nt

Pt
−ω∗xt−1et

−ω∗yt−1e
∗
t − ψ∗Mt−1rt − ψ∗Nt−1r

∗
t

)]}

∂$

∂cxt
= 0 :

(
cθxtc

1−θ
yt

)−γ
θcθ−1
xt c

1−θ
yt − λ1

t = 0 (163)

∂$

∂cyt
= 0 :

(
cθxtc

1−θ
yt

)−γ
(1− θ) cθxtc−θyt − λ1

t

StP
∗
t

Pt
= 0 (164)

∂$

∂ωxt
= 0 : −λ1

t et + βEt

(
λ1
t+1et+1 + λ1

t+1

Pt
Pt+1

xt

)
= 0 (165)

∂$

∂ωyt
= 0 : −λ1

t e
∗
t + βEt

(
λ1
t+1e

∗
t+1 + λ1

t+1

St+1P
∗
t

Pt+1

xt

)
= 0 (166)

∂$

∂ψMt

= 0 : −λ1
t rt + βEt

(
λ1
t+1rt+1 + λ1

t+1

∆Mt+1

Pt+1

xt

)
= 0 (167)

∂$

∂ψNt
= 0 : −λ1

t r
∗
t + βEt

(
λ1
t+1r

∗
t+1 + λ1

t+1

St+1∆Nt+1

Pt+1

xt

)
= 0 (168)
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Foreign has an analogous set of F.O.C’s. Using (159) − (162) and (107) − (108) derive

aggregate relative prices

Pt =
Mt

xt
(169)

P ∗t =
Nt

yt
(170)

Solving (163) for λ1
t , insert the result along with (169) − (170) into (164) − (168) and

rearranging yields

St =
(1− θ)Mt

θNt

(171)

et
xt

= βEt

[(
Ct+1

Ct

)1−γ (
et+1

et
+

Mt

Mt+1

)]
(172)

e∗t
qtyt

= βEt

[(
Ct+1

Ct

)1−γ ( e∗t+1

qt+1yt+1

+
Nt

Nt+1

)]
(173)

rt
xt

= βEt

[(
Ct+1

Ct

)1−γ (
rt+1

xt+1

+
∆Mt+1

Mt+1

)]
(174)

r∗t
xt

= βEt

[(
Ct+1

Ct

)1−γ (
rt+1

xt+1

+
(1− θ)
θ

∆Nt+1

Nt+1

)]
(175)

where Ct = cθxtc
1−θ
yt . (171) − (175) represent maximizing player’s Euler equations in

terms of exogenous state variables which evolve according to the approximating system

(109)− (112).Although no explicit foreign exchange market exists in the model , the forward

exchange rate can be written as
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Ft = St

βEt

[(
Ct+1
Ct

)1−γ
Nt
Nt+1

]
βEt

[(
Ct+1
Ct

)1−γ
Mt

Mt+1

] (176)

The focus will be on (171) and (176).

Steady-State Beginning with (171) and eliminating time subscripts,

S =
(1− θ)M

θN
(177)

where the bar above each variable represents its steady-state counterpart and M aswell

as N are steady-state Home and Foreign money respectively whose values are developed in

minimizing player’s section.

Next given (176) and removing time subscripts in addition to expectations operators

results in

F = S

β

[(
C
C

)1−γ
N
N

]
β

[(
C
C

)1−γ
M
M

]

F = S (178)

where C = cθxc
1−θ
y and both cx aswell as cy values are developed in minimizing player’s

section.

Log-Linearlization
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Spot Exchange Rate Beginning with and applying Uhlig’s Method to log-linearlize

(171),

St =
(1− θ)Mt

θNt

SeS̃t =
(1− θ)MeM̃t

θNeÑt

θSN

(1− θ)M
= eM̃t−Ñt−S̃t

1 = eM̃t−Ñt−S̃t (179)

where (177) was used.Taking the first-order taylor expansion to natural exponential in

(179)

eM̃t−Ñt−S̃t ' eM̃−Ñ−S̃ + eM̃−Ñ−S̃
(
M̃t − M̃

)
− eM̃−Ñ−S̃

(
Ñt − Ñ

)
− eM̃−Ñ−S̃

(
S̃t − S̃

)

eM̃t−Ñt−S̃t ' 1 + M̃t − Ñt − S̃t (180)

where M̃ = Ñ = S̃ = 0 was used. Inserting (180) into (179) and simplifying results in

S̃t = M̃t − Ñt (181)

Forward Exchange Rate Next, simplifying (176)
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Ft = St

βEt

[(
Ct+1
Ct

)1−γ
Nt
Nt+1

]
βEt

[(
Ct+1
Ct

)1−γ
Mt

Mt+1

]
Ft = St

Nt

Mt

Et

[
Mt+1

Nt+1

]
Ft =

(1− θ)
θ

Et

[
Mt+1

Nt+1

]
(182)

where (171) was used. Applying Uhlig’s method to (182) and first order taylor expansion

results in

Ft =
(1− θ)
θ

Et

[
Mt+1

Nt+1

]
FeF̃t =

(1− θ)
θ

Et

[
MeM̃t+1

NeÑt+1

]
1 = eEt[M̃t+1]−Et[Ñt+1]−F̃t

F̃t = Et

[
M̃t+1

]
− Et

[
Ñt+1

]
(183)

where (177) and (178) were used. Thus (181) and (183) are expressed in terms of log-

linearlized exogenous stochastic state variables.

Approximating Stochastic Processes Finally, the log-linearlized counterparts to

(109)− (112) are
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x̃t+1 = ρ1x̃t + εxt+1 (184)

ỹt+1 = ρ2ỹt + εyt+1 (185)

M̃t+1 = ρ3M̃t + εMt+1 (186)

Ñt+1 = ρ4Ñt + εNt+1 (187)

System (184)− (187) can be converted into linear algebra

Xt+1 = AXt + Cεt+1 (188)

where

Xt =



x̃t

ỹt

M̃t

Ñt



, εt+1 =



εxt+1

εyt+1

εMt+1

εNt+1



A =



ρ1 0 0 0

0 ρ2 0 0

0 0 ρ3 0

0 0 0 ρ4



, C =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


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20.2.2 Minimizing Player Chooses Second

The malevolent nature assumes the maximizing player is both optimizing and in equilibrium

so that perfect risk sharking equilibrium, (142)−(145), (171)−(175) all hold, and (96)−(97)

bind so that the minimizing player’s problem is presented as

min
{wt+1}∞t=0

Et

∞∑
t=0

βt

{
φ

[
−

(cθxtc
1−θ
yt )1−γ

1− γ + βθw2
t+1

]
+ (1− φ)

[
−

(c
∗θ
xtc
∗1−θ
yt )1−γ

1− γ + βθ∗w2
t+1

]}

s.t. xt+1 = (1− ρ1) + ρ1xt + wt+1 + εxt+1

yt+1 = (1− ρ2) + ρ2yt + wt+1 + εyt+1

Mt+1 = (1− ρ3) + ρ3Mt + wt+1 + εMt+1

Nt+1 = (1− ρ4) + ρ4Nt + wt+1 + εNt+1

(105)− (108), (159)− (162), aswell as aforementioned conditions complete specification

of minimizing player’s problem.

Lemma 1 Home and Foreign have homogenous pessimism so that θ = θ∗

The resulting minimization problem with homogenous pessimism is

min
{wt+1}∞t=0

Et

∞∑
t=0

βt

{
−
[
φ

(cθxtc
1−θ
yt )1−γ

1− γ + (1− φ)
(c
∗θ
xtc
∗1−θ
yt )1−γ

1− γ

]
+ βθw2

t+1

}

s.t. xt+1 = (1− ρ1) + ρ1xt + wt+1 + εxt+1

yt+1 = (1− ρ2) + ρ2yt + wt+1 + εyt+1

Mt+1 = (1− ρ3) + ρ3Mt + wt+1 + εMt+1

Nt+1 = (1− ρ4) + ρ4Nt + wt+1 + εNt+1
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where θ = φθ+(1−φ)θ∗ , in other words world pessimism θ is an implicit weighted average

of θ and θ∗ so since θ = θ∗ and φ = 1
2
, θ becomes a parameter used by both Home and Foreign

as a concern for model misspecification.To solve the minization problem, Linear-Quadratic

Approximation Control is used

Steady-State The steady-states needed for log-linearlization of minimizing player problem

involve (142)− (145), (155)− (158), and (169)− (170). Initially, eliminating time subscripts

and turning off both perturbation and error terms of (155)− (158) yields

x = (1− ρ1) + ρ1x

y = (1− ρ2) + ρ2y

M = (1− ρ3) + ρ3M

N = (1− ρ4) + ρ4N

simplifying results in

x = 1 (189)

y = 1 (190)

M = 1 (191)

N = 1 (192)

where (189)−(192) are steady-state versions of their time-varying stochastic counterparts.

Next, eliminating time subscripts from (142) − (145) and inserting (189) − (190) where

appropriate results in
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cx =
1

2
(193)

cy =
1

2
(194)

c∗x =
1

2
(195)

c∗y =
1

2
(196)

where (193)−(196) are steady-state versions of their time-varying stochastic counterparts.

Finally, following similar steps for (169)− (170) and using (189)− (192) results in

P = 1 (197)

P ∗ = 1 (198)

where (197)− (198) represent steady-state home price and foreign price respectively.

Log-Linearlization To properly use LQA-Control techniques, the minimizing agents prob-

lem must be transfored using log-linearlization techniques .

Minimizing Agent’s Weighted Average Component Beginning with (94) and us-

ing Uhlig’s Method
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(cθxtc
1−θ
yt )1−γ

1− γ =

[(
cθxe

θc̃xt
)(

c
(1−θ)
y e(1−θ)c̃yt

)]1−γ

1− γ

=

(
cθxc

(1−θ)
y

)(1−γ)

e(1−γ)(θc̃xt+(1−θ)c̃yt)

1− γ (199)

Performing a second order taylor expansion (Kim and Kim 2007) on the natural expo-

nential component of (199)

e(1−γ)(θc̃xt+(1−θ)c̃yt) ' e(1−γ)(θc̃x+(1−θ)c̃y) + e(1−γ)(θc̃x+(1−θ)c̃y) (1− γ) θ (c̃xt − c̃x)

+ e(1−γ)(θc̃x+(1−θ)c̃y) (1− γ) (1− θ) (c̃yt − c̃y)

+
1

2

[
e(1−γ)(θc̃x+(1−θ)c̃y) (1− γ)2 θ2 (c̃xt − c̃x)2

+2e(1−γ)(θc̃x+(1−θ)c̃y) (1− γ)2 (1− θ) θ (c̃xt − c̃x) (c̃yt − c̃y)

+e(1−γ)(θc̃x+(1−θ)c̃y) (1− γ)2 (1− θ)2 (c̃yt − c̃y)2] (200)

Inserting c̃x = c̃y = 0 into (200) and simplifying results in

e(1−γ)(θc̃xt+(1−θ)c̃yt) ' 1 + (1− γ) θc̃xt + (1− γ) (1− θ) c̃yt +
1

2

[
(1− γ)2 θ2c̃xt

2

+2 (1− γ)2 (1− θ) θc̃xtc̃yt + (1− γ)2 (1− θ)2 c̃yt
2] (201)
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Inserting c̃xtc̃yt = 0 into (201) for the cross-product term

e(1−γ)(θc̃xt+(1−θ)c̃yt) ' 1 + (1− γ) θc̃xt + (1− γ) (1− θ) c̃yt +
1

2

[
(1− γ)2 θ2c̃xt

2

+ (1− γ)2 (1− θ)2 c̃yt
2] (202)

∴
(cθxtc

1−θ
yt )1−γ

1− γ '

(
cθxc

(1−θ)
y

)(1−γ)

1− γ +
(
cθxc

(1−θ)
y

)(1−γ)

[θc̃xt + (1− θ) c̃yt

+
1

2

(
(1− γ) θ2c̃xt

2 + (1− γ) (1− θ)2 c̃yt
2)] (203)

where (202) is inserted into (199) for the natural exponential term, and simplified result-

ing in (203). The constant term implies that (203) is expressed in terms of levels but the

expression must be in terms of log-deviations so subtract the constant term from both sides

to yield

ŨH '
(
cθxc

(1−θ)
y

)(1−γ)
[
θc̃xt + (1− θ) c̃yt +

1

2

(
(1− γ) θ2c̃xt

2 + (1− γ) (1− θ)2 c̃yt
2)] (204)

where ŨH =
(cθxtc

1−θ
yt )1−γ

1−γ −

(
cθxc

(1−θ)
y

)(1−γ)
1−γ . Analogously for Foreign,
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ŨF '
(
c∗θx c

∗(1−θ)
y

)(1−γ)
[
θc̃∗xt + (1− θ) c̃∗yt +

1

2

(
(1− γ) θ2c̃∗xt

2
+ (1− γ) (1− θ)2 c̃∗yt

2
)]
(205)

where ŨF =
(c∗θxtc

∗1−θ
yt )1−γ

1−γ −

(
c∗θx c

∗(1−θ)
y

)(1−γ)
1−γ .

The minimizing player’s objective function contains a weighted average component of

(94) and (95) or

φ
(cθxtc

1−θ
yt )1−γ

1− γ + (1− φ)
(c
∗θ
xtc
∗1−θ
yt )1−γ

1− γ (206)

Inserting (204) for (94) and (205) for (95) in (206)

φŨH + (1− φ) ŨF (207)

Setting φ = 1
2
, expanding, and simplifying (207)

α

[
θ
(
c̃xt + c̃∗xt

)
+ (1− θ)

(
c̃yt + c̃∗yt

)
+

1

2
(1− γ) θ2

(
c̃2
xt + c̃2∗

xt

)
+

1

2
(1− γ) (1− θ)2

(
c̃2
yt + c̃2∗

yt

)]
(208)

where α =

(
cθxc

(1−θ)
y

)(1−γ)
2

and (208) ultimately is the log-linearlized (in terms of deviations

froms steady-state) form of (206). Now in order to express (208) in terms of exogenous

variables xt, yt,Mt, and Nt the remainder of minimizing player’s specification is used namely

(105)− (108), and (159)− (162). Log-linearlize (105) using Uhlig’s method and second-order

taylor approximation,
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cxt + c∗xt = xt

cxe
c̃xt + cxe

c̃∗xt = xex̃t

cx

(
1 + c̃xt +

1

2
c̃xt

2

)
+ c∗x

(
1 + c̃∗xt +

1

2
c̃∗xt

2
)

= x

(
1 + x̃t +

1

2
x̃t

2

)
cx + cxc̃xt +

cx
2
c̃xt

2 + c∗x + c∗xc̃xt
∗ +

c∗x
2
c̃∗xt

2
= x+ xx̃t +

x

2
x̃t

2

cxc̃xt + +c∗xc̃xt
∗ = xx̃t +

x

2
x̃t

2 − cx
2
c̃xt

2 − c∗x
2
c̃∗xt

2

c̃xt + c̃xt
∗ =

x

cx
x̃t +

x

2cx
x̃t

2 − 1

2
c̃xt

2 − 1

2
c̃∗xt

2

c̃xt + c̃xt
∗ =

x

cx
x̃t +

x

2cx
x̃t

2 − 1

2

(
c̃xt

2 + c̃∗xt
2
)

(209)

where cx = c∗x is used. Following a similar procedure for (106) results in

c̃yt + c̃yt
∗ =

y

cy
ỹt +

y

2cy
ỹt

2 − 1

2

(
c̃yt

2 + c̃∗yt
2
)

(210)

where cy = c∗y is used. Plug (209) and (210) into (208) for linear consumptions

α

[
θ

(
x

cx
x̃t +

x

2cx
x̃t

2

)
− θ

2

(
c̃xt

2 + c̃∗xt
2
)

+ (1− θ)
(
y

cy
ỹt +

y

2cy
ỹt

2

)
− (1− θ)

2

(
c̃yt

2 + c̃∗yt
2
)

+
1

2
(1− γ) θ2

(
c̃2
xt + c̃2∗

xt

)
+

1

2
(1− γ) (1− θ)2

(
c̃2
yt + c̃2∗

yt

)]

further simplification yields
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α

[
θ

(
x

cx
x̃t +

x

2cx
x̃t

2

)
+ (1− θ)

(
y

cy
ỹt +

y

2cy
ỹt

2

)
+

(
1

2
(1− γ) θ2 − θ

2

)(
c̃2
xt + c̃2∗

xt

)
+

(
1

2
(1− γ) (1− θ)2 − (1− θ)

2

)(
c̃2
yt + c̃2∗

yt

)]
(211)

Next, combining (107)− (108) with (159)− (162), log-linearlizing using Uhlig’s method

with second-order taylor expansion so that a similar process to (209) and (210) is followed

results in

c̃2
xt + c̃∗2xt =

2M

Pcx
M̃t +

M

Pcx
M̃2

t − 2
(
c̃xt + c̃∗xt

)
(212)

and analogously,

c̃2
yt + c̃∗2yt =

2N

P ∗cy
Ñt +

N

P ∗cy
Ñ2
t − 2

(
c̃yt + c̃∗yt

)
(213)

Inserting (212) and (213) into (211) for quadratic consumption terms yields

α

[
θ

(
x

cx
x̃t +

x

2cx
x̃t

2

)
+ (1− θ)

(
y

cy
ỹt +

y

2cy
ỹt

2

)
+

(
1

2
(1− γ) θ2 − θ

2

)(
2M

Pcx
M̃t +

M

Pcx
M̃2

t − 2
(
c̃xt + c̃∗xt

))
+

(
1

2
(1− γ) (1− θ)2 − (1− θ)

2

)(
2N

P ∗cy
Ñt +

N

P ∗cy
Ñ2
t − 2

(
c̃yt + c̃∗yt

))]
(214)

Since the minimizing player assumes the maximizing player is in equilibrium, use log-

linear versions of (142)− (145) or
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c̃xt =
x̃t
2

c̃yt =
ỹt
2

(215)

c̃∗xt =
x̃t
2

(216)

c̃∗yt =
ỹt
2

(217)

Insert (215) − (217) into (214) for remaining linear consumption terms and expanding

results in

α

[
θx

cx
x̃t +

θx

2cx
x̃t

2 +
(1− θ) y

cy
ỹt +

(1− θ) y
2cy

ỹt
2

+
2M

Pcx

(
1

2
(1− γ) θ2 − θ

2

)
M̃t +

M

Pcx

(
1

2
(1− γ) θ2 − θ

2

)
M̃2

t − 2

(
1

2
(1− γ) θ2 − θ

2

)
x̃t

+
2N

P ∗cy

(
1

2
(1− γ) (1− θ)2 − (1− θ)

2

)
Ñt +

N

P ∗cy

(
1

2
(1− γ) (1− θ)2 − (1− θ)

2

)
Ñ2
t

−2

(
1

2
(1− γ) (1− θ)2 − (1− θ)

2

)
ỹt

]
(218)

consolidating linear and quadratic terms in (218)
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α

{[
θx

cx
− 2

(
1

2
(1− γ) θ2 − θ

2

)]
x̃t +

[
(1− θ) y

cy
− 2

(
1

2
(1− γ) (1− θ)2 − (1− θ)

2

)]
ỹt

+
2M

Pcx

(
1

2
(1− γ) θ2 − θ

2

)
M̃t +

2N

P ∗cy

(
1

2
(1− γ) (1− θ)2 − (1− θ)

2

)
Ñt

+
θx

2cx
x̃t

2 +
(1− θ) y

2cy
ỹt

2 +
M

Pcx

(
1

2
(1− γ) θ2 − θ

2

)
M̃2

t +
N

P ∗cy

(
1

2
(1− γ) (1− θ)2 − (1− θ)

2

)
Ñ2
t

}
(219)

For small deviations in each state variable, the linear terms in (219) can be ignored

(Levine and Pearlman 2006) yielding

α

[
θx

2cx
x̃t

2 +
(1− θ) y

2cy
ỹt

2 +
M

Pcx

(
1

2
(1− γ) θ2 − θ

2

)
M̃2

t +
N

P ∗cy

(
1

2
(1− γ) (1− θ)2 − (1− θ)

2

)
Ñ2
t

]
(220)

Distributing α and redefining each coeffi cient where

r1 = α
θx

2cx

r2 = α
(1− θ) y

2cy

r3 = α
M

Pcx

(
1

2
(1− γ) θ2 − θ

2

)
r4 = α

N

P ∗cy

(
1

2
(1− γ) (1− θ)2 − (1− θ)

2

)

(220) is reduced to
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r1x̃t
2 + r2ỹt

2 + r3M̃2
t + r4Ñ2

t (221)

(221) expresses the weighted average component of minizing agent’s objective fuction as

a quadratic in terms exogenous state variables.

Perturbed Stochastic Processes The log-linearlization of (155)− (158) yields

x̃t+1 = ρ1x̃t + wt+1 + εxt+1 (222)

ỹt+1 = ρ2ỹt + wt+1 + εyt+1 (223)

M̃t+1 = ρ3M̃t + wt+1 + εMt+1 (224)

Ñt+1 = ρ4Ñt + wt+1 + εNt+1 (225)

Replacing the weighted average component of minimizing player’s problem with (221)

and using (222)− (225) as constraints instead, the malevolent nature’s problem becomes

min
{wt+1}∞t=0

Et

∞∑
t=0

βt
{
−
(
r1x̃t

2 + r2ỹt
2 + r3M̃2

t + r4Ñ2
t

)
+ βθw2

t+1

}

s.t. x̃t+1 = ρ1x̃t + wt+1 + εxt+1

ỹt+1 = ρ2ỹt + wt+1 + εyt+1

M̃t+1 = ρ3M̃t + wt+1 + εMt+1

Ñt+1 = ρ4Ñt + wt+1 + εNt+1
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Linear Quadratic Approximation Control To cast in LQA framework, transform the

above minimization problem in terms of matrix algebra

min
{wt+1}∞t=0

Et

∞∑
t=0

βt



−



x̃t

ỹt

M̃t

Ñt



′ 

r1 0 0 0

0 r2 0 0

0 0 r3 0

0 0 0 r4





x̃t

ỹt

M̃t

Ñt



+ βθI4w
′

t+1wt+1



s.t.



x̃t+1

ỹt+1

M̃t+1

Ñt+1



=



ρ1 0 0 0

0 ρ2 0 0

0 0 ρ3 0

0 0 0 ρ4





x̃t

ỹt

M̃t

Ñt



+



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



wt+1+



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1





εxt+1

εyt+1

εMt+1

εNt+1



or

min
{wt+1}∞t=0

Et

∞∑
t=0

βt
{
−X ′tRXt + βθI4w

′

t+1wt+1

}

s.t. Xt+1 = AXt + Cwt+1 + Cεt+1
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where

Xt =



x̃t

ỹt

M̃t

Ñt



, εt+1 =



εxt+1

εyt+1

εMt+1

εNt+1



, R =



r1 0 0 0

0 r2 0 0

0 0 r3 0

0 0 0 r4



,

A =



ρ1 0 0 0

0 ρ2 0 0

0 0 ρ3 0

0 0 0 ρ4



, C =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



, and I4 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



where the minimizing player’s LQA-C problem is expressed in terms of exogenous state

variables (i.e. excludes maximizing player’s control variables), which is natural to purely ex-

ogenous endowment economies, and malevolent nature’s control variable wt+1.The problem

can be translated into a Bellman equation,

−X ′tPXt − p = min
wt+1

{
−X ′tRXt + βθI4w

′

t+1wt+1 + βEt

(
−X ′t+1PXt+1 − p

)}

s.t. Xt+1 = AXt + Cwt+1 + Cεt+1
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where V (Xt) = −X ′tPXt−p is a specific quadratic structure of the value function and the
symmetric matrix P is a fixed point used to find a stable solution that minimizes malevolent

nature’s problem . Using certainty equivalence, all uncertainty in the problem is eliminated

so that εt+1 = 0 which in turn eliminates p,

−X ′tPXt = min
wt+1

{
−X ′tRXt + βθI4w

′

t+1wt+1 + β
(
−X ′t+1PXt+1

)}

s.t. Xt+1 = AXt + Cwt+1

Inserting state-evolution constraint into the objective function yields the unconstrained

minimization problem,

−X ′tPXt = min
wt+1

{
−X ′tRXt + βθI4w

′

t+1wt+1 + β
[
− (AXt + Cwt+1)

′
P (AXt + Cwt+1)

]}

∂V

∂wt+1

= 0 : 2βθI4wt+1 − 2βC ′PAXt − 2βC ′PCwt+1 = 0 (226)

∂V

∂Xt

= 0 : −2RXt − 2βA′PAXt − 2A′PCwt+1 = 0 (227)

Beginning with (226),

2βθI4wt+1 − 2βC ′PAXt − 2βC ′PCwt+1 = 0

θI4wt+1 − C ′PAXt − C ′PCwt+1 = 0

wt+1 =
(
θI4 − C ′PC

)−1

C ′PAXt
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wt+1 = KXt (228)

where K =
(
θI4 − C ′PC

)−1

C ′PA. (228) represents movement of malevolent nature’s

perturbation wt+1 as a function of the state vector Xt. Next, utilizing (227) and inserting

(228) for expanded K,

−2RXt − 2βA′PAXt − 2A′PC
(
θI4 − C ′PC

)−1

C ′PAXt = 0

R + βA′PA+ A′PC
(
θI4 − C ′PC

)−1

C ′PA = 0

P = R + βA′PA+ A′PC
(
θI4 − C ′PC

)−1

C ′PA (229)

(229) represents the Riccati equation whose properites are well-known in linear-quadratic

control theory. The fixed-point matrix P is used to find a stable solution so that (229)

becomes

Pk+1 = R + βA′PkA+ A′PkC
(
θI4 − C ′PkC

)−1

C ′PkA (230)

Setting P0 = 0 as an initial condition and iterating (230) until convergence yields

P̂ = R + βA′P̂A+ A′P̂C
(
θI4 − C ′P̂C

)−1

C ′P̂A (231)

where P̂ is a steady-state fixed point that when inserted into (228) for expanded K,
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wt+1 =
(
θI4 − C ′P̂C

)−1

C ′P̂AXt (232)

wt+1 = K(P̂ )Xt (233)

where K(P̂ ) =
(
θI4 − C ′P̂C

)−1

C ′P̂A and (233) is malevolent nature’s perturbation

encoded with fixed-point matrix P̂ .

(233) feeds back into the perturbed state-evolution system

Xt+1 = AXt + Cwt+1 + Cεt+1

Xt+1 = AXt + CKXt + Cεt+1

Xt+1 = A0Xt + Cεt+1 (234)

where A0 = (A+ CK) .Ultimately, (234) is the perturbed state-evolution system embed-

ded with malevolent natures feedback rule wt+1.

20.3 Spot & Forward Exchange Rates

Generating inference involves (181), (183), and (234) but recall that both (181) and (183)

are in terms of two exogenous state variables and (234) is in terms of four exogenous state

variables. To remedy the issue, convert (181) into linear-algebra form
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S̃t = M̃t − Ñt

S̃t =


1 −1



M̃t

Ñt



S̃t =


1 −1




0 0 1 0

0 0 0 1





x̃t

ỹt

M̃t

Ñt


S̃t =


1 −1

UsXt

S̃t = ΠXt (235)

where Π =


1 −1

Us and Us =


0 0 1 0

0 0 0 1

 is known as a selection matrix that
creates dependence between S̃t and M̃t, Ñt.

Next, insert (186) and (187) into (183) ,distribute expectation operator, and convert into

linear algebra
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F̃t = Et

[
M̃t+1

]
− Et

[
Ñt+1

]
F̃t = ρ3M̃t − ρ4Ñt

F̃t =


ρ3 −ρ4



M̃t

Ñt



F̃t =


ρ3 −ρ4




0 0 1 0

0 0 0 1





x̃t

ỹt

M̃t

Ñt


F̃t =


ρ3 −ρ4

UsXt

F̃t = ΓXt (236)

where Γ =


ρ3 −ρ4

Us and Us is defined as above.

20.4 Gross Rate of Depreciation & Forward Premium

The Gross Rate of Depreciation can be constructed using (235) and a lead of (235) or
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S̃t+1 − S̃t (237)

where S̃t+1 is ex-post.

and the Forward Premium can be constructed using both (235) and (236)

F̃t − S̃t (238)

Again, the motivator for dynamics of (235)− (238) is perturbed stochastic system

Xt+1 = A0Xt + Cεt+1 (239)

21 Detection Error Probabilities

To discipline the choice of θ, detection error probability method is enforced so state the

approximating state-evolution system (188)

Xt+1 = AXt + Cε̂t+1 (240)

which will be known as "Model A." State the perturbed state-evolution system (234)

Xt+1 = A0Xt + Cεt+1 (241)

which will be known as "Model B."
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21.1 Log-Likelihood Ratio Test with Model A

Assume the worst-case shock is generated under Model A,

wAt+1 = KXA
t+1 (242)

Define Model A innovations,

Xt+1 = AXt + Cε̂t+1 (243)

Cε̂t+1 = Xt+1 − AXt (244)

ε̂t+1 = (C ′C)
−1
C ′ (Xt+1 − AXt) (245)

Define Model B innovations,

Xt+1 = A0Xt + Cεt+1 (246)

Cεt+1 = Xt+1 − A0Xt (247)

εt+1 = (C ′C)
−1
C ′
(
Xt+1 − A0Xt

)
(248)

εt+1 = (C ′C)
−1
C ′ (Xt+1 − AXt)− (C ′C)

−1
C ′CKXt (249)

εt+1 = ε̂t+1 − wt+1 (250)

where A0 = (A+ CK) was used. Next, define both
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Log LA = − 1

T

T−1∑
t=0

{
n log

√
2π +

1

2

(
ε̂t+1

′ε̂t+1

)}
(251)

Log LB = − 1

T

T−1∑
t=0

{
n log

√
2π +

1

2

(
ε′t+1εt+1

)}
(252)

where (251) is generated under innovations from (245) and (252) is generated under

innovations from (250). To construct log-likelihood ratio test w.r.t Model A define,

r|A = Log LA − Log LB

= − 1

T

T−1∑
t=0

{
n log

√
2π +

1

2

(
ε̂t+1

′ε̂t+1

)}
+

1

T

T−1∑
t=0

{
n log

√
2π +

1

2

(
ε′t+1εt+1

)}

=
1

T

T−1∑
t=0

{
1

2

(
ε′t+1εt+1

)
− 1

2

(
ε̂t+1

′ε̂t+1

)}

=
1

T

T−1∑
t=0

{
1

2

(
ε̂t+1 − wAt+1

)′ (
ε̂t+1 − wAt+1

)
− 1

2

(
ε̂t+1

′ε̂t+1

)}

=
1

T

T−1∑
t=0

{
1

2

(
ε̂t+1

′ε̂t+1 − ε̂t+1
′wAt+1 − wA′t+1ε̂t+1 + wA′t+1w

A
t+1

)
− 1

2

(
ε̂t+1

′ε̂t+1

)}

r|A =
1

T

T−1∑
t=0

{
1

2
wA′t+1w

A
t+1 −

1

2
wA′t+1ε̂t+1

}
(253)

The objective of this section is to give the probability associated with incorrectly choosing

Model B when the true data driving process is Model A or

pA = Pr (r|A < 0) (254)
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21.2 Log-Likelihood Ratio Test with Model B

Assume the worst-case shock is generated under Model B,

wBt+1 = KXB
t+1 (255)

(251) and (252) can be used to construct the log-likelihood ratio test under Model B,

r|B = − 1

T

T−1∑
t=0

{
1

2
wB′t+1w

B
t+1 +

1

2
wB′t+1ε̂t+1

}
(256)

where (256) is produced under a similar process to (253) except that the worst-case shocks

are generated by (255). The objective of this section is to give the probability associated with

incorrectly choosing Model A when the true data driving process is Model B or

pB = Pr (r|B > 0) (257)

21.3 Probability of Detection Error

Using (254) and (257) yields the formula

p =
1

2
(pA + pB) (258)

where p is the probability of error in choosing the correct model which implies that 1− p
is the probability of success in choosing the correct model.
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Remark 5 There lies a positive relationship between p and θ

Thus, as θ decreases its associated p will decrease as well so that the desired level of

detection error will implicitly discipline the value of θ.

21.4 Probability of Detection Error Estimation

The following steps denote detection error probability estimation:

For pA

Step 1) Set prior about θ and generate {ε̂t+1}Tt=0 from ε̂t˜N (04, I4) for data observations

of length T where 04 is a 4x4 matrix of zero’s and I4 is 4x4 identity matrix.

Step 2) Use pseudo {ε̂t+1}Tt=0 to iterate on (240) resulting in
{
XA
t

}T
t=0

Step 3) Use
{
XA
t

}T
t=0

to iterate on (242) resulting in
{
wAt+1

}T
t=0

Step 4) Insert pseudo-generated {ε̂t+1}Tt=0 and
{
wAt+1

}T
t=0

into (253) and sum

Step 5) Simulate (Repeat steps 1-4) for large sample size

Step 6) Count number of times r|A < 0 from simulation and average by number of times

simulated: The result is pA

For pB

Step 1) Using same prior θ generate {εt+1}Tt=0 from εt˜N (04, I4) for data observations of

length T where 04 is a 4x4 matrix of zero’s and I4 is 4x4 identity matrix.

Step 2) Use pseudo {εt+1}Tt=0 to iterate on (241) resulting in
{
XB
t

}T
t=0

Step 3) Use
{
XB
t

}T
t=0

to iterate on (255) resulting in
{
wBt+1

}T
t=0

Step 4) Insert pseudo-generated {εt+1}Tt=0 and
{
wBt+1

}T
t=0

into (256) and sum

Step 5) Simulate (Repeat steps 1-4) for large sample size
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Step 6) Count number of times r|B > 0 from simulation and average by number of times

simulated: The result is pB

Once pA and pB are obtained insert into (258) to obtain p. When estimating p using the

above process, begin with prior about θ and drive down θ until desired level of p is achieved.

Reaching this desired level of p in turn disciplines the choice of θ.

22 Forward Premium Puzzle

22.1 Downward Bias of Estimator

To derive the downward bias of the forward premium estimator, we begin by using an OLS

regression of (237) on to (238) so that,

S̃t+1−S̃t = β̂0 + β̂1

(
F̃t−S̃t

)
+ εt+1 (259)

where et+1 ∼ N (0, σ2) . Inserting (235) and (236) into (259) results in,

ΠXt+1 − ΠXt = β̂0 + β̂1

(
F̃t − S̃t

)
+ εt+1

ΠA0Xt + ΠCεt+1 − ΠXt = β̂0 + β̂1

(
F̃t − S̃t

)
+ εt+1

Π (A− I)Xt + ΠCεt+1 = β̂0 + β̂1 (Γ− Π)Xt + εt+1

Next, expand each matrix and vector by the number of observations from t = 1, ..., T so

that,
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

Π (A− I) · · · 0

...
. . .

...

0 · · · Π (A− I)


︸ ︷︷ ︸

Q



X1

...

XT


+



ΠC · · · 0

...
. . .

...

0 · · · ΠC


︸ ︷︷ ︸

R



ε2

...

εT+1


=

β̂0 + β̂1

z︷ ︸︸ ︷

(Γ− Π) · · · 0

...
. . .

...

0 · · · (Γ− Π)


︸ ︷︷ ︸

V



X1

...

XT


+



ε2

...

εT+1



QX +Rε︸ ︷︷ ︸
Y

=


i z


︸ ︷︷ ︸

W


β̂0

β̂1


︸ ︷︷ ︸

β̂

+ ε

Where subscripts have been eliminated from X and ε which imply current time-period.

Utilizing ordinary least squares optimal slope estimator formula,
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β̂ = (W ′W )
−1
W ′Y

β̂ =




i′

z′



i z




−1 
i′

z′

 (QX +Rε)

β̂ =


i′i i′z

z′i z′z



−1 
i′

z′

 (QX +Rε)

β̂ =


i′i i′z

z′i z′z



−1 
i′QX + i′Rε

z′QX + z′Rε

 (260)

To rid the X term on the RHS of (260), exploit equation (241) where if t = 0,

X1 = A0X0 + Cε1 (261)

X1 − A0X0 = Cε1

X1 = Cε1 (262)

where it’s assumed X0 = 0 in (262). "Pushing" (261) forward in time results in,
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X2 = A0X1 + Cε2

X2 − A0X1 = Cε2

continuing in this manner results from t = 1, ..., T results in a system of equations,

X1 = Cε1

X2 − A0X1 = Cε2

X3 − A0X2 = Cε3
...

XT − A0XT−1 = CεT

converting to matrix form,



I 0 0 · · · 0

−A0 I 0
. . .

...

0 −A0 I
. . . 0

...
. . . . . . . . . 0

0 · · · 0 −A0 I





X1

X2

X3

...

XT



=



C 0 0 · · · 0

0 C 0
. . .

...

0 0 C
. . . 0

...
. . . . . . . . . 0

0 · · · 0 0 C





ε1

ε2

ε3

...

εT


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

X1

X2

X3

...

XT



=



I 0 0 · · · 0

−A0 I 0
. . .

...

0 −A0 I
. . . 0

...
. . . . . . . . . 0

0 · · · 0 −A0 I



−1 

C 0 0 · · · 0

0 C 0
. . .

...

0 0 C
. . . 0

...
. . . . . . . . . 0

0 · · · 0 0 C


︸ ︷︷ ︸

Ψ



ε1

ε2

ε3

...

εT


︸ ︷︷ ︸

ε−1

or,

X = Ψε−1 (263)

Inserting (263) into (260) results in,
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β̂ =


i′i i′z

z′i z′z



−1 
i′QΨε−1 + i′Rε

z′QΨε−1 + z′Rε



β̂ =


i′i i′z

z′i z′z



−1 
i′QΨε−1 + i′Rε

(V X)′QΨε−1 + (V X)′Rε



β̂ =


i′i i′z

z′i z′z



−1 
i′QΨε−1 + i′Rε

(VΨε−1)′QΨε−1 + (VΨε−1)′Rε



β̂ =


i′i i′z

z′i z′z



−1 
i′QΨε−1 + i′Rε

ε′−1Ψ′V ′QΨε−1 + ε′−1Ψ′V ′Rε



β̂ =


i′i i′z

z′i z′z



−1 
i′QΨε−1 + i′Rε

ε′−1Ψ′V ′QΨε−1 + ε′−1Ψ′V ′Rε



β̂ =
1

(i′i) (z′z)− (i′z) (z′i)


z′z −i′z

−z′i i′i




i′QΨε−1 + i′Rε

ε′−1Ψ′V ′QΨε−1 + ε′−1Ψ′V ′Rε


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β̂ =
1

T
[
(V X)′ V X

]
− (i′V X)

[
(V X)′ i

]


(V X)′ V X −i′V X

− (V X)′ i i′i




i′QΨε−1 + i′Rε

ε′−1Ψ′V ′QΨε−1 + ε′−1Ψ′V ′Rε



β̂ =
1

TX ′V ′V X − i′V XX ′V ′i


X ′V ′V X −i′V X

−X ′V ′i i′i




i′QΨε−1 + i′Rε

ε′−1Ψ′V ′QΨε−1 + ε′−1Ψ′V ′Rε


Thus,

β̂ =
1

Tε′−1Ψ′V ′VΨε−1 − i′VΨε−1ε′−1Ψ′V ′i


ε′−1Ψ′V ′VΨε−1 −i′VΨε−1

−ε′−1Ψ′V ′i T




i′QΨε−1 + i′Rε

ε′−1Ψ′V ′QΨε−1 + ε′−1Ψ′V ′Rε


(264)

where extensive use of z = V X and X = Ψε−1 was made. Taking the probability limit

of (264) results in,

p lim
(
β̂
)

= E {·}

where the · inside the brackets represents RHS terms of (264) .Distributing the expecta-

tions term,
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p lim
(
β̂
)

= ΩE




ε′−1Ψ′V ′VΨε−1 −i′VΨε−1

−ε′−1Ψ′V ′i T




i′QΨε−1 + i′Rε

ε′−1Ψ′V ′QΨε−1 + ε′−1Ψ′V ′Rε




whereΩ = 1/

[
Ttr(Ψ′V ′VΨ)σ2 + εm′−1Ψ′V ′VΨεm−1 − tr (i′VΨΨ′V ′i)σ2 + i′VΨεm−1ε

m′
−1Ψ′V ′i

]
.

Further consolidation yields,

p lim
(
β̂
)

= Ω∗E




ε′−1Ψ′V ′VΨε−1 (i′QΨε−1 + i′Rε)− i′VΨε−1

(
ε′−1Ψ′V ′QΨε−1 + ε′−1Ψ′V ′Rε

)
−ε′−1Ψ′V ′i (i′QΨε−1 + i′Rε) + T

(
ε′−1Ψ′V ′QΨε−1 + ε′−1Ψ′V ′Rε

)




where Ω∗ = 1/σ2 [Ttr(Ψ′V ′VΨ)− tr (i′VΨΨ′V ′i)] .Distributing E operator through the

matrix results in,

p lim
(
β̂
)

= Ω∗


0

E
{
−ε′−1Ψ′V ′i (i′QΨε−1 + i′Rε) + T

(
ε′−1Ψ′V ′QΨε−1 + ε′−1Ψ′V ′Rε

)}


where further simplification finally results in,

p lim (β1) =
E
{
−ε′−1Ψ′V ′i (i′QΨε−1 + i′Rε) + T

(
ε′−1Ψ′V ′QΨε−1 + ε′−1Ψ′V ′Rε

)}
Ttr(Ψ′V ′VΨ)σ2 − tr (i′VΨΨ′V ′i)σ2

(265)
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where the superscript m in εm
′
−1 denotes the mean of ε

′
−1 so that ε

m′
−1 = 0. Additionally,

manipulations using E(ε−1) = E(ε) = E(ε−1ε
′) = 0 aided in eliminating β̂0 from the β̂

vector. Further simplification of (265) results in,

p lim
(
β̂1

)
=

E
{
−ε′−1Ψ′V ′ii′QΨε−1 − ε′−1Ψ′V ′ii′Rε+ T

(
ε′−1Ψ′V ′QΨε−1 + ε′−1Ψ′V ′Rε

)}
σ2 [Ttr(Ψ′V ′VΨ)− tr (i′VΨΨ′V ′i)]

p lim
(
β̂1

)
=

σ2 [−tr (Ψ′V ′ii′QΨ) + Ttr (Ψ′V ′QΨ)]

σ2 [Ttr(Ψ′V ′VΨ)− tr (i′VΨΨ′V ′i)]

p lim
(
β̂1

)
=

tr [TΨ′V ′QΨ−Ψ′V ′ii′QΨ]

tr [TΨ′V ′VΨ− i′VΨΨ′V ′i]

p lim
(
β̂1

)
=

tr [TΨ′V ′QΨ−Ψ′V ′ii′QΨ]

tr [TΨ′V ′VΨ−Ψ′V ′ii′VΨ]

p lim
(
β̂1

)
=

tr [Ψ′V ′ (TI − ii′)QΨ]

tr [Ψ′V ′ (TI − ii′)VΨ]

p lim (β1) =
Ttr

[
Ψ′V ′

(
I − ii′

T

)
QΨ
]

Ttr
[
Ψ′V ′

(
I − ii′

T

)
VΨ
]

p lim
(
β̂1

)
=

tr (Ψ′V ′MiQΨ)

tr (Ψ′V ′MiVΨ)

p lim
(
β̂1

)
= 1− 1 +

tr (Ψ′V ′MiQΨ)

tr (Ψ′V ′MiVΨ)

p lim
(
β̂1

)
= 1− 1 +

tr (Ψ′V ′MiQΨ)

tr (Ψ′V ′MiVΨ)

p lim
(
β̂1

)
= 1−

[
tr (Ψ′V ′MiVΨ)− tr (Ψ′V ′MiQΨ)

tr (Ψ′V ′MiVΨ)

]

∴ p lim
(
β̂1

)
= 1− tr [Ψ′V ′Mi (V −Q) Ψ]

tr (Ψ′V ′MiVΨ)
(266)

22.2 Consistency of Estimator

To show consistency of the slope estimator, take the limit of θ →∞ to p lim
(
β̂1

)
or,

lim
θ→∞

{
p lim

(
β̂1

)}
= lim

θ→∞

{
1− tr [Ψ′V ′Mi (V −Q) Ψ]

tr (Ψ′V ′MiVΨ)

}
(267)
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Focusing on the (V −Q) matrix,

(V −Q) =



(Γ− Π) · · · 0

...
. . .

...

0 · · · (Γ− Π)


−



Π (A0 − I) · · · 0

...
. . .

...

0 · · · Π (A0 − I)



(V −Q) =



Γ− ΠA0 · · · 0

...
. . .

...

0 · · · Γ− ΠA0



lim
θ→∞

(V −Q) =



lim
θ→∞
{Γ− ΠA0} · · · 0

...
. . .

...

0 · · · lim
θ→∞
{Γ− ΠA0}



lim
θ→∞

(V −Q) =



Γ− ΠA · · · 0

...
. . .

...

0 · · · Γ− ΠA


(268)
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where we recall thatA0 = A+ C
[
θI4x4 − C ′PC

]−1

C ′PA andC
[
θI4x4 − C ′PC

]−1

C ′PA→

0 as θ → ∞. Now, to show that (268) is essentially a null matrix, we show that Γ = ΠA

where recall,

Γ =


ρ3 −ρ4




0 0 1 0

0 0 0 1


Γ =


0 0 ρ3 −ρ4


and

ΠA =


1 −1




0 0 1 0

0 0 0 1





ρ1 0 0 0

0 ρ2 0 0

0 0 ρ3 0

0 0 0 ρ4


ΠA =


0 0 ρ3 −ρ4


Implementing this null matrix back in (267) eliminates the bias term reducing (267) to



120

lim
θ→∞
{p lim (β1)} = 1 (269)

Hence an unbiased slope estimator.

22.3 Estimation

Step 1) Generate sequence of pseudo errors {εt}Tt=1 where εt ∼ N (04, I4) and T is equivalent

to length of observational data

Step 2) Insert generated {εt}Tt=1 into (239) and iterate to generate {Xt}Tt=1

Step 3) Insert {Xt}Tt=1 into (235) and (236) to generate
{
S̃t

}T
t=1

and
{
F̃t

}T
t=1

respectively

Step 4) Construct
{
S̃t+1 − S̃t

}T−1

t=1
=
{
S̃t+1

}T−1

t=1
−
{
S̃t

}T−1

t=1
and

{
F̃t − S̃t

}T−1

t=1
=
{
F̃t

}T−1

t=1
−{

S̃t

}T−1

t=1

Step 5) Convert into vector so that

St+1−St =



S̃2 − S̃1

...

S̃T − S̃T−1



Ft−St =



F̃1 − S̃1

...

F̃T−1 − S̃T−1


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From Step 5, utilize vectors and perform the following regression

St+1−St = β̂0 + β̂1 (Ft−St) + et+1 (270)

where (273) uses standard ordinary least squares. If Ft−St and St+1−St are temporarily
defined as X and Y respectively then the estimators β̂0 and β̂1 are

β̂1 = (X′X)
−1

(X′Y) (271)

β̂0 = Y − β̂1X (272)

where X and Y represent the mean of X and Y respectively. θ which correspond to

detection error probabilities of p(θ) = 0.100 and p(θ) = 0.000 can be inserted within Step 2)

in order to yield β̂1 > 0 and β̂1 < 0 respectively.

22.4 Simulation

Parameter Values Model parameters used for simulation are,

β = 0.99

γ = 10

θ = 0.5

φ = 0.5

Step 1) Generate sequence of pseudo errors {εt}Tt=1 where εt ∼ N (04, I4) and T is equivalent

to length of observational data
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Step 2) Insert generated {εt}Tt=1 into (239) and iterate to generate {Xt}Tt=1

Step 3) Insert {Xt}Tt=1 into (235) and (236) to generate
{
S̃t

}T
t=1

and
{
F̃t

}T
t=1

respectively

Step 4) Construct
{
S̃t+1 − S̃t

}T−1

t=1
=
{
S̃t+1

}T−1

t=1
−
{
S̃t

}T−1

t=1
and

{
F̃t − S̃t

}T−1

t=1
=
{
F̃t

}T−1

t=1
−{

S̃t

}T−1

t=1

Step 5) Convert into vector so that

St+1−St =



S̃2 − S̃1

...

S̃T − S̃T−1



Ft−St =



F̃1 − S̃1

...

F̃T−1 − S̃T−1


From Step 5, utilize vectors and perform the following regression

St+1−St = β̂0 + β̂1 (Ft−St) + et+1 (273)

where (273) uses standard ordinary least squares. If Ft−St and St+1−St are temporarily
defined as X and Y respectively then the estimators β̂0 and β̂1 are
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β̂1 = (X′X)
−1

(X′Y) (274)

β̂0 = Y − β̂1X (275)

where X and Y represent the mean of X and Y respectively. Repeat Step 1)-Step

5) for large simulation size N where the simulation size is conducted under a specific θ

corresponding to detection error probability p(θ). This will generate N number of β̂1 under

a specific θ regime, ultimately yielding desired PDF.

23 Data

23.1 Description

1. Home Output: Defined as

xDt =



x1986:III

...

x2013:III


(276)

where xDt represents a time-series data vector containing aggregate U.S. real G.D.P ob-

servations in millions of chained 2009 dollars ( from Federal Reserve Bank of St.Louis) and

quarterly frequency from 3rd quarter of 1986 to 3rd quarter of 2013.

2. Foreign Output: This variable is constructed using
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yDt =
ynt
pt

(277)

where yt represents U.K. real G.D.P constructed from ynt which is aggregate U.K. nominal

G.D.P observations in millions of pounds (from Federal Reserve Bank of St. Louis) and pt
which is U.K. C.P.I (with 2010=100 and from Federal Reserve Bank of St. Louis). Using

(277) the following can be formed

yDt =



y1986:III

...

y2013:III


(278)

where yDt represents a time-series data vector containing constructed aggregate U.K. real

G.D.P observations in quarterly frequency from 3rd quarter of 1986 to 3rd quarter of 2013.

3. Home Money: Defined as

MD
t =



M1986:III

...

M2013:III


(279)

where MD
t is a time-series data vector containing aggregate U.S. Household Financial

Assets and Currency observations ( from Federal Reserve Bank of St.Louis) in quarterly

frequency from 3rd quarter of 1986 to 3rd quarter of 2013.
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4. Foreign Money: Defined as

ND
t =



N1986:III

...

N2013:III


(280)

where Nt is a time-series data vector containing aggregate U.K. Household Outstanding

Holdings of Notes/Coin observations in millions of pounds ( from Bank of England) and

quarterly frequency from 3rd quarter of 1986 to 3rd quarter of 2013.

5. Spot Exchange Rate: Defined as

SDt =



S1986:III

...

S2013:III


(281)

where SDt is a time-series data vector containing $/$ spot exchange rate observations

(from Federal Reserve Bank of St.Louis) in quarterly frequency from 3rd quarter of 1986 to

3rd quarter of 2013.

6. Forward Exchange Rate: Defined as
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FDt =



F1986:III

...

F2013:III


(282)

where FDt is a time-series data vector containing $/$ 1-month forward exchange rate

observations (from Bank of England) in quarterly frequency from 3rd quarter of 1986 to 3rd

quarter of 2013.

23.2 Stochastic Processes Estimation with Data

In this paper’s model, the stochastic process are assumed to evolve according to (109)−(112)

restated below for convenience

xt+1 = (1− ρ1) + ρ1xt + εxt+1

yt+1 = (1− ρ2) + ρ2yt + εyt+1

Mt+1 = (1− ρ3) + ρ3Mt + εMt+1

Nt+1 = (1− ρ4) + ρ4Nt + εNt+1

The following steps indicate how to process data:

Step 1) Take log of each element in (276), (278), (279), and (280) producing log(xDt ), log(yDt ), log(MD
t ),

and log(ND
t ) respectively.

Step 2) HP-Filter each logged data vectors which separates trend and cyclical components
producing log(xDt )C , log(yDt )C , log(MD

t )C , and log(ND
t )C where each superscript C de-

notes the logged cyclical component of the superscripts respective data vector.
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Step 3) Insert log(xDt )C , log(yDt )C , log(MD
t )C , and log(ND

t )C in place of xt, yt,Mt, and Nt

respectively yielding

log(xDt+1)C = (1− ρ1) + ρ1 log(xDt )C + εxt+1 (283)

log(yDt+1)C = (1− ρ2) + ρ2 log(yDt )C + εyt+1 (284)

log(MD
t+1)C = (1− ρ3) + ρ3 log(MD

t )C + εMt+1 (285)

log(ND
t+1)C = (1− ρ4) + ρ4 log(ND

t )C + εNt+1 (286)

Step 4) Convert system (283)− (286) into VAR form

Xt+1 = ρC + ρSXt + εt+1 (287)

where

Xt =



log(xDt )C

log(yDt )C

log(MD
t )C

log(ND
t )C



, εt+1 =



εxt+1

εyt+1

εMt+1

εNt+1



, ρC =



(1− ρ1)

(1− ρ2)

(1− ρ3)

(1− ρ4)



, ρS =



ρ1 0 0 0

0 ρ2 0 0

0 0 ρ3 0

0 0 0 ρ4



Step 5) Estimate (287) via ordinary least squares resulting in
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ρ̂S =


ρ̂1 ρ̂2 ρ̂3 ρ̂4

 (288)

ρ̂C = (1− ρ̂S)X (289)

where the elements of (288) and (289) are used in place of their true counterparts in

system (109)− (112)

23.3 Forward Premium Regression with Data

Above, pseudo observations were generated for the regression of forward premium on gross

rate of depreciation so for comparison to data-driven regression, the following steps are

performed:

Step 1) Take the log of each element in (281)and (282) producing log(St) and log(Ft)

respectively

Step 2) Construct log(FDt ) − log(SDt ) which is forward premium

Step 3) Construct log(SDt+1)− log(SDt ) which is gross rate of depreciation

Step 4) Define Ft− St = log(FDt ) − log(SDt ), St+1 − St = log(SDt+1)− log(SDt ), and perform

the following regression via ordinary least squares

St+1−St = α0 + α1 (Ft−St) + et+1 (290)

where α̂0 and α̂1 are estimators to α0 and α1 respectively.
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ABSTRACT

CAN ANIMAL SPIRITS SOLVE THE FORWARD PREMIUM PUZZLE?

by
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Advisor: Dr. Tatsuma Wada

Major: Economics (Macroeconomics)

Degree: Doctor of Philosophy

This dissertation decomposes, discusses, and ventures to solve an international macroeco-

nomic anomaly known as the "Forward Premium Puzzle" into three main chapters. Chapter

1 explores the state of research pertaining to the Forward Premium Puzzle, which derives

from a failure in the Uncovered Interest Parity (UIP). The body of literature is split into

three branches i. Those works advocating the presence of an anomaly due to assumption

of Rational Expectations, ii. Works preserving the assumption of Rational Expectations

and instead discuss a bias due to Risk Premia, and iii. Research focused on econometric

implementation of the forward premium estimator. Furthermore, a tour of Animal Spirits

is given and how applications out of control theory, or Robust Control, serves as a vehicle

of implementing Animal Spirits within modern macroeconomics as a potential resolution to

the anomaly.
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In Chapter 2, a dynamic stochastic general equilibrium (DSGE) two-country two-money

model is fitted with Robust Control, inducing fear of model misspecification, or pessimism, in

international households. The forward premium bias, produced from a collapse in uncovered

interest parity (UIP), is a direct function of pessimism. Under various regimes of pessimism,

the forward premium estimator emulates both features of international data and unbias UIP.

In Chapter 3 pessimism, via a parameter θ, is implemented in a two-country, two-money

dynamic stochastic general equilibrium (DSGE) model fitted with robust control (RC). Using

detection error probability methodology, pessimism is calibrated using international data

and simulations from the RC-DSGE model. Data-driven pessimism and its simulation-based

counterpart are compared to determine how the animal spirit, produced from the model,

performs against pessimism implied by the data.
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