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Chapter 1 

Introduction 

 Cancer is one of the leading causes of death worldwide, accounting for 8.2 million deaths 

in 2012. According to the World Health Organization, trachea bronchus, lung cancers were the 

5th leading cause of death worldwide in 2012. The locations around the world with the highest 

incidences of cancer each year are Australia/New Zealand, North America, Western Europe, and 

Northern Europe. According to the American Cancer Society, in the United States there was an 

estimated 1,660,290 newly diagnosed cancer cases in 2013. In addition, there was an estimated 

580,350 cancer related deaths in 2013. Cancers of the lung, prostate, breast, and colon were the 

most commonly diagnosed and the most common forms of cancer-related death in men and 

women in the United States in 2013. These statistics emphasize the importance of continual 

improvement in cancer research and treatment.  

 Cancer is generally characterized by the development of 8 common hallmarks which 

allow normal cells to become neoplastic and eventually malignant. The 8 common hallmarks of 

cancer are sustained proliferative signaling, evasion of growth suppressors, activation of invasion 

and metastasis, enabled replicative immortality, induction of angiogenesis, resistance to cell 

death, avoidance of immune destruction, and deregulated cellular energetics. Enabling 

characteristics that facilitate the development of cancer hallmarks are genomic 

instability/mutation, and tumor-promoting inflammation. Tumors are complicated because they 

are comprised of a heterogeneous mix of cancer cells, as well as associated cells from the 

surrounding tumor microenvironment (Hanahan & Weinberg 2011). This makes eliminating 
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cancer cells difficult because it requires targeting a repertoire of heterogeneous cells that may 

respond differently to the same treatment. 

Prostate Cancer 

According to the American Cancer Society statistics, prostate cancer (PCa) is the most 

commonly diagnosed non-subcutaneous cancer among men living in the United States. PCa is 

the second most common cause of cancer related death among American men. There were 

almost 239,000 newly diagnosed cases of PCa in American men in 2013, accounting for 28% of 

new cancer cases, which was higher than any other type of non-subcutaneous cancer diagnosed 

that year. There were almost 30,000 PCa related deaths in American men in 2013, accounting for 

10% of non-subcutaneous cancer related deaths, second only to lung and bronchus cancer. These 

statistics emphasize the importance of discovering novel drugs and therapeutics to treat this 

disease. According to the Surveillance, Epidemiology, and End Results (SEER) Program Cancer 

Statistics Review, PCa is generally considered to be a disease of old age with the average age of 

diagnoses being 66 years, and median age of death at 80 years. It is also a slow disease, with 

98.9% of diagnosed patients surviving at least 5 years post-diagnosis (2004-2010). Some PCa 

patients can live up to 10-15 years post-diagnosis. In fact, localized PCa is rarely the cause of 

cancer related death. Development of advanced PCa in the form of metastatic and castration-

resistant PCa (CRPC) is usually the ultimate cause of death in these patients. Patients with 

metastatic CRPC only have a median survival of about 9-13 months (Kirby et al. 2011). 

Therefore, it is important to develop novel drugs and therapeutics that prevent, target, and treat 

advanced forms of PCa. 

PCa is generally thought to develop in a sequential manner through a series of stages. 

First patients develop prostatic intraepithelial neoplastic (PIN) lesions, which can eventually 
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become high grade, or HGPIN lesions. This stage is considered a precursor to PCa formation. 

Primary PCa is the next stage, where the cancer is localized to the prostate gland. Many primary 

PCa cases eventually develop into advanced PCa, which is considered to be the worst and most 

aggressive form of PCa. Advanced PCa is characterized by the spread, or metastasis, of PCa 

cancer to distant tissues, such as bone or brain tissue. In addition, many advanced PCa cases 

become castration-resistant PCa (CRPC), where the PCa no longer responds to androgen ablation 

therapies that target androgen receptor (AR) signaling (Schrecengost & Knudsen 2013). 

Therefore, advanced PCa is usually referred to as metastatic PCa or CRPC, and the two are not 

mutually exclusive and often occur together. 

Normal prostate tissue is an endocrine regulated gland and therefore relies on androgen 

hormones for development, growth, and regulation (Lonergan & Tindall 2011). In many cases, 

PCa is also dependent on androgens for growth and regulation. Androgens such as 

dihydrotestostone (DHT) and testosterone bind to the AR, a nuclear hormone receptor, and 

activate intracellular signaling. The AR normally resides in the cytoplasm of prostate cells and 

PCa cells, in complex with heat shock protein. Once bound by ligand DHT or testosterone, the 

AR can dissociate from heat shock protein, translocate into the cell nucleus, homodimerize, and 

bind to target genes that activate AR signaling pathways. AR signaling can regulate cell 

proliferation, differentiation, and a multitude of other cellular processes (Lonergan & Tindall 

2011). Circulating androgen levels and AR signaling are pivotal and crucial to prostate tissue 

development and maintenance. 

A first line therapy for treatment of primary PCa is androgen deprivation therapy (ADT). 

ADT is used to prevent the testicular synthesis of testosterone and DHT (Schrecengost & 

Knudsen 2013). These therapies usually target endogenous endocrine signaling pathways that act 
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on the testis and adrenal glands where testosterone and other androgens are synthesized, thus 

preventing androgens from reaching the AR in the prostate tissue (Figure 1). Some examples of 

currently used ADT therapies are listed in Figure 1. It is important to mention that surgery is 

often also a first line treatment of primary PCa, where surgeons try to remove as much of the 

cancer from the prostate as possible. Radiation is also a treatment option for PCa patients, 

especially in combination with other treatments. Once the PCa has failed first line treatments and 

developed into advanced PCa other treatments are used such as androgen biosynthetic enzyme 

inhibitors and AR antagonist. These drugs bind to and block the action of androgen synthesizing 

enzymes and the AR. Examples of androgen enzyme inhibitors and AR antagonists are listed in 

Figure 1. Another treatment used for advanced PCa is docetaxel chemotherapy, but it is usually 

less tolerable especially in older patients due to toxic side effects. With few options to treat 

advanced PCa patients, the search continues for novel drug targets and development of more 

effective treatments for this disease. 
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Figure 1. Therapies used in the Treatment of Prostate Cancer. (Left side) List of different 

therapies used to treat prostate cancer. Orchiechtomy is surgical removal of the testis. 

Prostatectomy is surgical removal of the prostate gland. (Right side) Diagram illustrating the 

Gonadal-Hypothalamic-Pituitary signaling axis, which is a part of the endocrine system. The 

hypothalamus in the brain releases luteinizing hormone-releasing hormone (LHRH), or 

gonadotropin-releasing hormone (GnRH), which acts on the pituitary gland to release 

luteinizing hormone (LH), follicle-stimulating hormone (FSH), and adrenocorticotropic 

hormone (ACTH). These hormones act on the testes to release testosterone and on the adrenal 

glands to release Dehydroepiandrosterone (DHEA), androstenedione, and other androgens 

into circulation. These androgens are taken up by the prostate gland and synthesized into 

DHT. This in turn can activate AR signaling in the prostate gland.  
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TMPRSS2-ERG Fusion Gene in Prostate Cancer 

 The TMPRSS2-ERG fusion gene has been shown to be present in approximately 50% of 

PCa patients, including patients with advanced PCa (Perner et al. 2006). The TMPRSS2 gene 

encodes for a serine trans-membrane protease and the ERG gene encodes for a transcription 

factor that belongs to the ETS family of transcription factors. The TMPRSS2 gene and the ERG 

gene are located on chromosome 21 approximately 3 Mb apart. The TMPRSS2-ERG fusion gene 

forms through a ~3 Mb deletion on chromosome 21, which fuses the two genes together. The 

fusion gene occurs through either chromosomal deletion (Edel) or an unbalanced chromosomal 

translocation (rearrangement) (Figure 2) (Attard et al. 2008). In general, the TMPRSS2 promoter 

region is fused to the ERG coding region. This places ERG transcription under control of the 

TMPRSS2 promoter (Tomlins et al. 2005). The coding region of TMPRSS2 gene is lost during 

the chromosomal deletion resulting in loss or reduction of TMPRSS2 expression. The entire 

promoter region for ERG is lost in the chromosomal deletion, however only a portion of the 

ERG coding region on the N-terminus is lost resulting in expression of a truncated but functional 

protein (Figure 3) (King et al. 2009). It is important to note that the truncated ERG protein does 

retain its DNA binding domain, and can thus continue to perform its functions as a transcription 

factor.  

 At least 18 different splice variants of TMPRSS2-ERG have been identified, with some 

PCa patients having multiple splice variants (Figure 4) (Clark et al. 2006, Wang et al. 2006, 

Wang et al. 2008). These splice variants result from either alternative mRNA splicing or 

different chromosomal fusion break points. The most common ERG splice variant is the T1-E4 

variant (TMPRSS2 exon 1 fused to ERG exon 4), accounting for 75-86% of ERG variants in 

PCa patients (Figure 3 and Figure 4) (Shao et al. 2012, Wang et al. 2006). The high prevalence 
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of the TMPRSS2-ERG fusion suggests that this region is a hot spot for chromosomal 

rearrangements and deletions in PCa. It is not exactly known what causes the TMRPSS2-ERG 

fusion to occur, but AR signaling induced DNA double strand breaks (DSB) have been 

implicated to play a causal role in the formation of the fusion gene. It is thought that close 

proximity of high levels of AR signaling to the TMPRSS2 and ERG genes results in a higher 

amount of DNA DSB. Attempted repair using error-prone non-homologous end joining DNA 

repair mechanisms can lead to improper DNA repair and chromosome deletions and 

translocations (Haffner et al. 2010, Lin et al. 2009, Mani et al. 2009). 
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Figure 2. TMPRSS2-ERG Fusion Gene Formation: 3 Mb Deletion on Chromosome 21. A.) 

Diagram illustrating wild type ERG and TMPRSS2 genes located on chromosome 21. This 

represents TMPRSS2-ERG fusion-negative chromosomes. B.) Diagram illustrating ~3 Mb 

deletion of chromosome 21 located between TMPRSS2 and ERG, which fuses the two genes 

together on TMPRSS2-ERG fusion-positive chromosomes. C.) Diagram illustrating ~3 Mb 

unbalanced translocation of chromosome 21 located between TMPRSS2 and ERG, which fuses 

the two genes together on TMPRSS2-ERG fusion-positive chromosomes. The translocated 

portion of chromosome 21 is inserted into an unknown location in the genome. For A-C, the red 

and green colors represent ERG specific DNA hybridization probes used in fluorescent in situ 

hybridization (FISH), a technique commonly used for detection of the TMPRSS2-ERG fusion 

gene. The yellow color appears on TMPRSS2-ERG fusion-negative chromosomes due to overlap 

of the red and green probes. The blue circles located above chromosome diagrams depict how the 

FISH results commonly appear. For example in part B, when the green probe labeled 5’ end of 

ERG is lost through deletion, only a single red probe will appear for the affected chromosome.  
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Figure 3. Formation of the TMPRSS2-ERG Fusion Gene in Prostate Cancer: mRNA and 

Protein Structure. A.) Diagram illustrating the mRNA sequences of TMPRSS2 and ERG. The 

ERG sequence was modeled using transcript variant 2 (TV2) NM_004449.4, and shows in-frame 

ATG sites and amino acid numbers. For ERG the light yellow indicates non-coding regions and 

the dark yellow indicates protein coding regions. For TMPRSS2 the light green indicates non-

coding regions and the dark green indicates protein coding regions. The numbers for each mRNA 

sequence represent exon numbers. Mutant 1 (T1-E4) depicts the fusion of TMPRSS2 exon 1 to 

ERG exon 4, and mutant 2 (T1-E5) depicts the fusion of TMPRSS2 exon 1 to ERG exon 5. B.) 

Diagram illustrating the resulting protein sequence of TMPRSS2-ERG mutant 1 (T1-E4) and 

mutant 2 (T1-E5). The full length (wild type) ERG sequence is shown at the top for a reference. 

Mutant 1 has an N-terminus truncation of the first 39 amino acids, consistent with the in-frame 

ATG site (aa 40) shown in exon 4 in part A. Mutant 2 has an N-terminus truncation of the first 99 

amino acids, consistent with the in-frame ATG site (aa 100) shown in exon 5 in part A. PNT is 

the regulatory domain, and ETS is the DNA binding domain. 
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Figure 4. At Least 18 Different mRNA Splice Variants of the TMPRSS2-ERG Fusion Gene 

Have Been Identified in Prostate Cancer. Diagram illustrating each of the mRNA splice 

variants identified for the TMPRSS2-ERG fusion gene in PCa. Full length mRNA sequences for 

TMPRSS2 and ERG are shown at the top for reference. Numbers on mRNA sequences represent 

exon numbers. For ERG the light yellow indicates non-coding regions and the dark yellow 

indicates protein coding regions. For TMPRSS2 the light green indicates non-coding regions and 

the dark green indicates protein coding regions. Each splice variant is named in the white box 

according to the TMPRSS2-ERG fusion site. For example, T2-E4 indicates TMPRSS2 exon 2 is 

fused to ERG exon 4. 
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 The TMPRSS2 gene promoter contains AR response elements. In TMPRSS2-ERG 

fusion-positive PCa, ERG is aberrantly placed under control of AR signaling resulting in 

overexpression of N-terminal truncated proteins (Tomlins et al. 2005). The ERG protein is an 

ETS family member transcription factor, and contains a highly conserved, C-terminal DNA 

binding domain known as the ETS domain. ERG is capable of regulating transcription of target 

genes via binding to ETS consensus sequences (5’-GGAA/T-3’) in the promoter and enhancer 

regions of target genes (Carrere et al. 1998). ERG protein is not normally expressed in PCa cells, 

thus in TMPRSS2-ERG fusion-positive cells ERG aberrantly regulates expression of target 

genes leading to development of PIN lesions and invasive prostatic adenocarcinoma in tumors 

that have concomitant loss of the tumor suppressor PTEN (Figure 5). 

  It was shown in prostate-specific transgenic mice overexpressing ERG, that mice 

developed PIN lesions at 5 months of age (Klezovitch et al. 2008). Prostate-specific 

ERG/PTEN+/- transgenic mice developed HGPIN lesions at 2 months and invasive prostatic 

adenocarcinoma at 6 months. PTEN+/- mice did not develop prostatic adenocarcinoma, 

suggesting ERG cooperated with PTEN loss in the development of adenocarcinoma (Carver et 

al. 2009). Another study showed that prostate-specific ERG/PTEN-/- transgenic mice developed 

invasive PCa, whereas PTEN-/- mice did not (Chen et al. 2013). It was shown using tissue 

recombinant studies that ERG overexpression in combination with PTEN knockdown or 

expression of constitutively active AKT resulted in development of adenocarcinoma (Zong et al. 

2009). These data suggest that ERG fusions and loss of PTEN cooperate to enhance PCa 

progression and the development of adenocarcinoma. These findings also suggest that PTEN loss 

may act as a “second hit” in TMPRSS2-ERG fusion-positive tumors resulting in the progression 

of PIN lesions into highly penetrant invasive prostatic carcinoma (Figure 5). 
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Figure 5. The TMPRSS2-ERG Fusion Gene Results in AR Induced Overexpression of ERG 

Transcription Factor. Diagram illustrating AR induced overexpression of ERG transcription 

factor in TMPRSS2-ERG fusion-positive PCa. The TMPRSS2 gene promoter (green) contains 

androgen response elements which are bound by liganded AR. This induces ERG overexpression 

resulting in expression of ERG target genes (blue). In combination with PTEN loss in transgenic 

mice, this can lead to development of invasive prostate carcinoma. 
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Clinical Findings and Prognosis of the TMPRSS2-ERG Fusion Gene 

Frequency and clonal progression of TMPRSS2-ERG fusions in human PCa clinical specimens 

 As mentioned previously, the TMPRSS2-ERG fusion gene has been shown to be present 

in almost 50% of PCa patient clinical tumor specimens (Perner et al. 2006). Several studies have 

been performed using fluorescent in situ hybridization (FISH) analysis in PCa tumor specimens 

in order to positively identify the presence of the fusion gene. The presence of TMPRSS2-ERG 

fusion gene was not detected in normal prostate tissue or in benign prostate tissue (Han et al. 

2009). However, presence of the fusion gene started to appear in HGPIN lesions at low levels of 

15-16% (Han et al. 2009, Mosquera et al. 2008). The ERG fusion gene was present at high levels 

in primary PCa 49-54%, metastatic PCa 35-41%, and CRPC 33-47% (Figure 6A) (Attard et al. 

2009, Han et al. 2009, Mehra et al. 2007, Perner et al. 2006, Rickman et al. 2010). These FISH 

data from clinical PCa specimens suggest that TMPRSS2-ERG may be involved in the 

progression of PCa, because the presence of the fusion gene becomes more prevalent as the 

disease progresses from mild to severe stages.  

 FISH studies can determine the presence of the TMPRSS2-ERG fusion gene, but they 

cannot detect if the fusion gene is being actively expressed at the mRNA or protein level. 

However, microarray analysis can detect ERG mRNA expression using primers, and 

immunohistochemistry (IHC) analysis can detect ERG protein expression using antibodies. 

Microarray data for ERG mRNA expression in benign, primary, and metastatic PCa patient 

tumor specimens was extracted from the gene expression omnibus database GDS3289. ERG 

expression was significantly increased in primary and metastatic PCa compared to benign 

samples (Figure 6B). In addition, studies using IHC showed that ERG protein expression was 

significantly increased in advanced and primary PCa compared to HGPIN and benign prostatic 
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hyperplasia samples (Szasz et al. 2013, Verdu et al. 2013). These microarray and IHC studies for 

ERG expression indicate that not only does the presence of the TMPRSS2-ERG fusion gene 

increase from benign to advanced PCa, but the mRNA and protein expression of ERG increases 

as well. These data further suggest that ERG may play a role in the progression of PCa from 

benign to more advanced forms. 
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Figure 6. The Presence and Expression of the TMPRSS2-ERG Fusion Gene Increases as 

Prostate Cancer Progresses from Benign to Primary and Advanced Prostate Cancer. A.) 

FISH data from human PCa clinical patient tumor specimens. FISH data were extracted from 

various published literature studies. Clinical specimens are shown from top to bottom in order of 

PCa progression: normal prostate tissue  benign prostate tissue  high grade prostatic 

intraepithelial neoplastic lesions (HGPIN)  primary PCa  metastatic PCa and CRPC 

(advanced PCa). Tumor sample numbers (N values) for each study are shown in parenthesis next 

to percentages. B.) Microarray data for ERG expression in human clinical specimens of benign, 

primary PCa, and metastatic PCa. Data were extracted from the gene expression omnibus (GEO) 

database GDS3289. Statistical analysis was a two-tailed, unpaired, student’s t-test N = 22 

(benign), N = 32 (primary PCa), N = 20 (metastatic PCa), ** P<0.01. 
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 Other studies have also suggested the involvement of ERG in PCa progression. For 

example, one study showed that PCa patients who had TMPRSS2-ERG fusion-positive HGPIN 

lesions were significantly more likely to develop PCa compared to patients with fusion-negative 

HGPIN lesions (Park et al. 2014). IHC analysis in patient specimens showed that 96.5% (82/85) 

of ERG-positive PCa carcinoma specimens also had PIN lesions with ERG-positive foci, 

indicating a strong concordance between ERG expression in PIN lesions and in primary PCa. 

(Furusato et al. 2010). In addition, it was shown in patient specimens that in 73% (11/15) of 

ERG-positive HGPIN lesions were located directly adjacent to ERG-positive PCa foci. 

Interestingly, 100% (11/11) of the ERG-positive HGPIN lesions harbored the exact same ERG 

fusion molecular subtype as the adjacent ERG-positive PCa foci, with both adjacent foci 

harboring either TMPRSS2-ERG formed through deletion (Edel) or through unbalanced 

translocation. This same study showed that 100% (41/41) of metastatic sites harbored the same 

ERG fusion molecular subtype status across multiple sites in the same patient (Han et al. 2009). 

Similar results were seen where TMPRSS2-ERG mRNA expression was present in 37% (10/27) 

of metastatic CRPC patient samples. Of these 10 patients, 100% of metastatic sites contained a 

TMPRSS2-ERG fusion formed through deletion (Edel). All patients that harbored the Edel ERG 

fusion subtype at their metastatic CRPC site also harbored the Edel ERG fusion subtype at the 

primary PCa site (Mehra et al. 2008). Taken together, these data suggest a mechanism of clonal 

selection and clonal expansion of the TMPRSS2-ERG fusions in the progression of HGPIN 

lesions to PCa to metastatic CRPC. 

Clinical prognosis of TMPRSS2-ERG fusions in PCa patients 

 Since the discovery of the TMPRSS2-ERG gene fusion in 2005, there have been 

conflicting findings regarding the clinical prognosis of the fusion gene in PCa patients. Some 
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studies have shown that the presence of TMPRSS2-ERG fusion gene is associated with better 

clinical prognosis, and some have shown that it has no association with prognosis; however, the 

majority of studies have shown that TMPRSS2-ERG is associated with a worse clinical 

prognosis. One study found that the fusion gene was associated with favorable outcome in PCa 

patients who had radical prostatectomy (Saramäki et al. 2008). Two studies showed that 

TMPRSS2-ERG was associated with lower Gleason scores, and one study showed it was 

associated with better survival (Fine et al. 2010, Winnes et al. 2007). Previous studies have 

found that the fusion gene is not associated with PCa disease grade, biochemical recurrence 

(PSA), Gleason score, progression, stage, response to endocrine treatment, or prognosis 

(Albadine et al. 2009, Boormans et al. 2010, Darnel et al. 2009, Esgueva et al. 2010, Furusato et 

al. 2008, Mosquera et al. 2009, Mwamukonda et al. 2009, Rouzier et al. 2008, Teng et al. 2013, 

Tu et al. 2007). 

 Many studies have shown that TMPRSS2-ERG fusion-positive status is associated with 

factors that promote worse clinical prognosis. It was shown that copy number increases in the 

TMPRSS2-ERG fusion gene were associated with higher Gleason scores, decreased survival, 

aggressive disease, and poor prognosis (Fine et al. 2010, FitzGerald et al. 2008, Gopalan et al. 

2009, Yoshimoto et al. 2008). Interestingly, one study showed that PCa patients who harbored 

ERG fusions formed through deletion (Edel) and increased in copy number (2+Edel) had only a 

25% survival rate at 8 years (Attard et al. 2008). Other studies have supported the finding that 

Edel fusions are associated with more aggressive disease compared to translocation fusions, 

indicating that even the molecular subtype of TMPRSS2-ERG can have an influence on disease 

outcome. For example, one study showed that 54% of clinically localized (primary) PCa 

specimens harbored the TMPRSS2-ERG fusion gene, with 39% formed through Edel and 61% 
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formed through translocation. Interestingly, although the ERG translocation subtype was more 

prevalent in localized PCa, 100% of metastatic CRPC sites contained ERG Edel subtype (Mehra 

et al. 2008). Another study showed that Edel fusions were associated with lymph node 

involvement and higher tumor stage (Perner et al. 2006). These data suggest that ERG copy 

number increases and Edel ERG subtype are associated with more aggressive PCa. 

 The presence of TMPRSS2-ERG fusions has been associated with a higher rate of 

biochemical recurrence (prostate-specific antigen, PSA) compared to fusion-negative PCa 

patients (Barwick et al. 2010, Bonaccorsi et al. 2009, Nam et al. 2007b). This suggests that ERG 

may have an effect on AR activation in PCa tumors. For example, it was shown in two 

independent studies that fusion-positive PCa patients had significantly higher rates of 

biochemical recurrence at 5 years post-diagnosis compared to fusion-negative patients (58.4% 

vs. 8.1%, and 79.5% vs. 37.5%) (Nam et al. 2007a, Nam et al. 2007b). Using anti-ERG 

antibodies and IHC analysis, it was shown that PCa patients with higher ERG staining intensities 

had significantly higher rates of PSA relapse and metastasis (Spencer et al. 2013). Another study 

showed that ERG fusions were associated with higher PSA levels and Gleason scores, and more 

advanced tumor stage compared to fusion-negative PCa (Rostad et al. 2009). Using a Kaplan-

Meier survival plot, it was shown that in PCa patients treated with androgen ablation surgery that 

ERG fusion-positive patients had significantly lower PSA recurrence free-survival compared to 

fusion-negative patients at 80 months post-surgery (35% vs. 90%) (Baldi et al. 2010). Another 

Kaplan-Meier survival plot showed similar results where ERG fusion-positive patients had 

significantly lower PSA recurrence free-survival compared to fusion-negative patients at 80 

months post-diagnosis (10% vs. 90%) (Barwick et al. 2010). These data suggest that TMPRSS2-
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ERG fusions may be involved in AR activation in PCa, and the Baldi et al. study suggests ERG 

fusions may regulate androgen synthesis and AR activation in a castrate environment.  

 Further supporting that ERG fusions may be involved in regulation of androgen synthesis 

and AR activation, studies have indicated that ERG fusion-positive patients responded better to 

treatment with the CYP17A1 enzyme inhibitor, abiraterone. It was shown in CRPC patients 

treated with abiraterone that ERG fusion-positive patients had a significantly higher response 

rate to abiraterone treatment (>90% PSA decline) compared to fusion-negative CRPC patients 

(80% vs. 20%) (Attard et al. 2009). Another study in metastatic CPRC patients showed similar 

results with fusion-positive patients having a higher response rate to abiraterone treatment (>50% 

PSA decline) compared to fusion-negative patients (46.6% vs. 38.4%). In this study, the median 

baseline PSA value for ERG fusion-positive patients was 185 ng/ml, and for ERG fusion-

negative patients it was 66 ng/ml (Danila et al. 2011). These data suggest ERG may regulate 

androgen synthesis and AR activation in CPRC. It was shown in bone metastatic CRPC patients 

treated with enzalutamide, an AR antagonist, that the presence of ERG was associated with the 

lowest primary resistance (9%) to enzalutamide treatment compared to any other molecular 

markers such as CYP17A1 (42%), AR mutant receptors (50%), AR overexpression (62%), Ki-67 

(75%), phospho-Src (92%), and phospho-Met (91%) (Efstathiou et al. 2014). These data suggest 

ERG fusion-positive tumors may be less resistant to AR antagonist possibly because these 

tumors have become highly reliant on ERG regulated androgen synthesis and AR activation for 

survival and growth. 

 TMPRSS2-ERG fusion gene has been associated with additional factors that promote 

worse clinical prognosis. The presence of TMPRSS2-ERG was associated with higher Gleason 

scores and higher tumor grade (Hagglof et al. 2014, Hofer et al. 2009, Mehra et al. 2007). In 
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addition, patients with ERG fusions were shown to be more prone to developing metastatic PCa 

(Hagglof et al. 2014, Perner et al. 2010). ERG was also associated with the presence of 

prognostic tumor cell markers such as high levels of Ki67, phospho-Akt, and phospho-EGFR 

(Hagglof et al. 2014). IHC staining of ERG and Kaplan-Meier survival plot revealed that primary 

and advanced PCa patients with high ERG expressing tumors had significantly worse overall 

survival compared to patients with low ERG expressing tumors (25% vs. 65%) at 60 months 

post-diagnosis in patients who underwent radical prostatectomy (Szasz et al. 2013). Similarly, 

the presence of TMPRSS2-ERG fusion gene was also associated with significantly lower 

survival probability compared to fusion-negative patients (30% vs. 78%) at 15 years post-

diagnosis in patients who underwent transurethral resection of the prostate (Hagglof et al. 2014). 

Another study showed there was an association between ERG fusion-positive tumors and 

prostate specific death (Demichelis et al. 2007). 

 As previously mentioned, the presence of the TMPRSS2-ERG fusion gene has been 

shown to cooperate with PTEN loss to induce invasive prostate carcinoma in transgenic mice 

(Carver et al. 2009, Chen et al. 2013). Consistent with these data, the presence of the TMPRSS2-

ERG fusion gene was significantly correlated with PTEN loss in prostate patient tumors, and was 

associated with more aggressive disease (Bismar et al. 2011, Leinonen et al. 2013, Yoshimoto et 

al. 2008). One study showed significant association between PTEN loss and ERG rearrangement 

in both localized PCa and metastatic PCa tumor specimens (Han et al. 2009). ERG fusion 

occurring through deletion (Edel) was significantly correlated with PTEN deletion in CRPC 

patient specimens (Bismar et al. 2012). It was shown that the presence of TMPRSS2-ERG fusion 

gene and concomitant PTEN loss was a common event in prostate cancer specimens where 93% 

(14/15) of ERG fusion-positive tumors had weak/absent PTEN expression, and only 50% (13/26) 
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of ERG-negative tumors had weak/absent PTEN expression (Carver et al. 2009). Regarding 

clinical prognosis of ERG fusion-positive and PTEN negative tumors, it was shown that loss of 

PTEN and ERG-positive expression were significantly associated in prostatectomy and CRPC 

patient tumors, and these patients had shorter progression-free survival compared to patients with 

ERG-negative tumors (Leinonen et al. 2013). Concomitant ERG fusion and PTEN loss were also 

associated with greater risk of capsular penetration in PCa patients who underwent prostatectomy 

(Nagle et al. 2013). A Kaplan-Meier survival plot showed that PTEN deletion and TMPRSS2-

ERG occurring together was a significant predictor of early biochemical recurrence in PCa 

patients (Yoshimoto et al. 2008). These data suggest that the presence of the TMPRSS2-ERG 

fusion gene is associated with poor clinical prognosis in PCa patients. 

 

Biological Functions of the TMPRSS2-ERG Fusion Gene 

ERG overexpression in prostate cell culture models increases cellular invasion, migration, and 

proliferation rates. 

 

 Cell culture-based studies have been used to elucidate the biological functions of 

TMPRSS2-ERG. siRNA knockdown of ERG in VCaP cells was shown to significantly inhibit 

cellular invasion (Sun et al. 2008, Tomlins et al. 2008, Wang et al. 2008). Urokinase 

plasminogen activator (uPA) and plasminogen activator pathways have been shown to be 

associated with ERG overexpression. Blocking these pathways in BPH-1, VCaP, and RWPE 

cells was shown to significantly inhibit cellular invasion (Klezovitch et al. 2008, Tomlins et al. 

2008). The chemokine receptor CXCR4 increased cellular invasion in VCaP cells, and gene 

expression of CXCR4 was directly upregulated via the ERG fusion protein binding to the 

CXCR4 promoter (Cai et al. 2010). Consistent with the previous results, overexpression of ERG 
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was shown to significantly increase cellular invasion in BPH-1, RWPE, prostatic epithelial 

(PrEC), and immortalized prostatic epithelial (PNT1a) cells (Klezovitch et al. 2008, Tomlins et 

al. 2008, Wang et al. 2008). Overexpression of ERG in BPH-1, PrEC, and PNT1a cells was 

shown to increase cell proliferation rates, and overexpression of multiple ERG transcript variants 

increased cell proliferation rates even further in PNT1a cells (Klezovitch et al. 2008, Wang et al. 

2008). In addition, knockdown of ERG in VCaP cells reduced cell proliferation rate and tumor 

growth in vivo (Wang et al. 2008). Lastly, overexpression of ERG increased cellular migration 

rates in BPH-1 and PNT1a cells (Carver et al. 2009, Wang et al. 2008). These cell culture studies 

suggest that overexpression of ERG can result in increased cellular invasion, proliferation, and 

migration. These effects are due to the aberrant regulation of downstream target genes of ERG, 

which in turn are able to alter normal cellular activity. 

ERG mediates transcriptional regulation at specific gene loci via direct DNA binding 

interactions  

 ERG is associated with the aberrant expression of many genes. Over 30 genes have been 

identified thus far through chromatin immunoprecipitation (ChIP) assays to be direct binding 

targets of TMPRSS2-ERG. A list of direct ERG binding targets identified by ChIP studies is 

shown in Table 1 (Cai et al. 2010, Carver et al. 2009, Flajollet et al. 2011, Leshem et al. 2011, 

Mani et al. 2011, Mohamed et al. 2011, Rickman et al. 2010, Sreekumar et al. 2009, Sun et al. 

2008, Tomlins et al. 2008, Wu et al. 2013, Yin et al. 2011, Yu et al. 2010). These ChIP assays 

demonstrate that many genes are direct targets of ERG, providing a potential explanation for 

their aberrant regulation. ERG has been shown to exhibit positive regulation of certain genes, 

and negative regulation of other genes. Therefore, ERG can act as a transcriptional activator or 

repressor depending on the specific gene loci. One study even showed that ERG acted as a 
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positive and negative regulator for the same gene. The study showed that ERG regulated 

expression of TFF3 via direct binding to the TFF3 gene region in hormone-naïve PCa and in 

CRPC (Rickman et al. 2010). Interestingly, ERG suppressed TFF3 expression in hormone naïve 

PCa, and induced TFF3 expression in CRPC. This is an important finding because it suggests 

that ERG can positively and negatively regulate the expression of the same gene, depending on 

the context or developmental stage of the PCa.  
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Table 1. Direct Binding Targets of TMPRSS2-ERG. 
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 The ERG target genes listed in Table 1. display a diverse repertoire of biological 

functions. This indicates that ERG can regulate a variety of cellular processes that contribute to 

an oncogenic phenotype in PCa. As mentioned previously, ERG was shown to increase cellular 

migration and invasion in PCa cells. Several ERG target genes are known to regulate these 

cellular processes such as MMP3, MMP9, PLAU, PLAT, CXCR4, ADAMTS1, OPN, WNT, and 

LEF1 (Cai et al. 2010, Deryugina & Quigley 2006, Flajollet et al. 2011, Tomlins et al. 2008, Wu 

et al. 2013). ERG has been shown to regulate AR signaling through inhibition of AR target 

genes, KLK3, KLK2, CUTL2, ZBTB16, NDRG1, SLC43A1, SLC45A3, FKBP5, PSMA and 

TFF3 (Rickman et al. 2010, Yin et al. 2011, Yu et al. 2010). Several of these AR target genes are 

involved in promoting prostate differentiation including KLK3, KLK2, PSMA, NDRG1, and 

SLC45A3 (Dong et al. 2005, Pflueger et al. 2009, Sun et al. 2008, Yao et al. 2008). ERG has 

been shown to inhibit PCa differentiation by inhibiting these AR pro-differentiation target genes 

(Yu et al. 2010). In addition, ERG upregulates the expression of C-MYC and EZH2, which are 

genes known to inhibit prostate differentiation (Sun et al. 2008, Yu et al. 2010). In this manner 

ERG can promote PCa dedifferentiation and help the PCa cells maintain a more stem cell-like 

state. Consistent with these findings, ERG has been shown to regulate epithelial-mesenchymal-

transition, or EMT, through regulation of ZEB1, SPINT1, ILR12, and TWIST (Leshem et al. 

2011). Cells that have undergone EMT tend to have more stem-like properties and resemble stem 

cells (Mani et al. 2008). 

 ERG was also shown to increase cell proliferation rate in PCa cells. ERG may increase 

cell proliferation through transcriptional regulation of C-MYC, AR, WNT, and LEF1 all of 

which are known to regulate cell proliferation (Balk & Knudsen 2008, Reya et al. 2000, Schmidt 

1999). Although ERG was shown to negatively regulate AR target genes involved in 
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differentiation, it has not been shown to negatively regulate AR target genes involved in cell 

proliferation. In fact, the data published that ERG inhibits AR expression (Yu et al. 2010) was 

shown to occur through extremely high levels of ERG overexpression in VCaP cells. Indeed, 

ERG and AR protein expression do normally co-exist in VCaP cells, suggesting ERG may 

cooperate with AR to regulate genes involved in cell proliferation and other cellular processes 

that facilitate an oncogenic phenotype. Recent studies suggest that ERG and AR do in fact 

cooperate to positively regulate gene expression in PCa, and this will be discussed in further 

detail in an upcoming section of this introduction. 

ERG mediates transcriptional regulation at specific gene loci via direct protein-protein 

interactions  

 

 In addition to ERG transcription regulation via direct binding to target genes, ERG has 

also been shown to regulate gene expression via protein-protein interactions. In vitro studies on 

ERG protein structure and interactions using co-immunoprecipitation (Co-IP) revealed that the 

ETS domain was involved in DNA binding and protein interactions. Studies showed that wild 

type ERG proteins physically interacted through their ETS domain via heterodimerization with 

other ETS transcription factor family members such as Fli-1, ETS-2, Er81, and Pu-1 (Basuyaux 

et al. 1997, Carrere et al. 1998). Different ERG isoforms were also involved in the formation of a 

ternary complex with AP1 family members Fos and Jun, forming an ERG/Fos/Jun complex. In 

this same study, ERG proteins were shown to physically interact via homodimerization and 

homo-iso-dimerization with the same isoform or with other ERG isoforms (Carrere et al. 1998). 

Another study verified that these wild type ERG protein-protein interactions influenced the 

regulation and expression of the MMP1 and MMP3 gene promoter regions. ERG interacted with 
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Fos and Jun in order to activate MMP1 promoter activity, and in contrast, ERG inhibited ETS-2-

induced activation of MMP3 promoter activity (Buttice et al. 1996). 

ERG physically interacted with PARP1 and DNA-PKcs in a DNA independent manner 

and with Ku70 and Ku80 in a DNA dependent manner. This was shown by Co-IP followed by 

mass spectrometry analysis or western blot analysis in VCaP cells and ERG fusion-positive 

human PCa tissues. ERG interacted with all four proteins through its C-terminal region, and it 

interacted with DNA-PKcs specifically through the ERG-ETS domain amino acid Y373. These 

protein interactions mediate DNA double stranded breaks and transcriptional regulation. In this 

same study, PARP1, DNA-PKcs, Ku70, and Ku80 were shown via Co-IP assay to bind to ERG 

target genes, and PARP1 and DNA-PKcs were required for ERG transcriptional activation of the 

gene PLA1 (Brenner et al. 2011). Another study in VCaP cells showed that ERG physically 

interacted with the AR, as verified by Co-IP. In vitro studies revealed that the ERG-AR protein-

protein interaction was mediated through the ERG-ETS domain in a DNA independent manner 

(Yu et al. 2010).  

Interestingly, a recent study showed that ERG was phosphorylated at serine residues 81 

and 215 by AKT and IKK kinases in VCaP cells. AKT serine phosphorylation of ERG was 

shown to affect ERG transcriptional regulation of the CXCR4 gene, a known ERG binding target 

(Singareddy et al. 2013). This serine post-translation modification may facilitate ERG protein-

protein interactions with other CXCR4 binding proteins and enhance CXCR4 transcription. This 

study further supports the importance of ERG protein-protein interactions in the regulation of 

target gene expression. Taken together, these results suggest that ERG can regulate gene 

transcriptional activity in a protein interaction dependent manner, which is coupled with DNA 

binding transcriptional regulation. In summary, TMPRSS2-ERG has been shown to regulate a 
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multitude of oncogenic signaling pathways in PCa including cellular invasion, migration, 

proliferation, dedifferentiation, AR signaling, EMT, and DNA repair.  

 

Crosstalk between ERG and AR Signaling Pathway 

It has been well established for some time now that TMPRSS2-ERG is an AR regulated 

gene, but more recent findings are suggesting that TMPRSS2-ERG gene regulation and AR 

signaling are tightly coupled in PCa. Data are beginning to emerge that strongly support the 

hypothesis that ERG cooperates with AR to negatively and positively regulate select AR target 

genes. It is almost as if ERG hijacks the AR and redirects AR target gene expression and 

regulation in order to facilitate tumor growth. As previously mentioned, ERG physically 

interacted with AR, as verified by Co-IP. In addition, ERG transcriptional regulation often 

occurred concomitantly with AR. ChIP assays demonstrated that ERG and AR co-occupied 

many androgen regulated genes, such as KLK3 (PSA) and AR. ERG had an inhibitory effect on 

several AR target genes involved in prostate cell differentiation, thereby inducing prostate tumor 

dedifferentiation (Yu et al. 2010). 

Other studies have indicated that ERG activates AR target genes. One study found that 

ERG redirected AR to a fairly large set of genes including SOX9, and positively regulated their 

expression. The AR/ERG regulation of SOX9 was shown to mediate increased proliferation in 

mice prostates and increased invasion and proliferation in VCaP PCa cells. ChIP studies revealed 

that ERG and AR were bound to the SOX9 gene at an overlapping site, and AR binding to this 

site was dependent on ERG (Cai et al. 2013). As previously mentioned, ERG was shown to 

regulate the AR target gene TFF3. ERG negatively regulated TFF3 in hormone naïve PCa cells 

and positively regulated TFF3 in CPRC cells, and this regulation was dependent on AR 
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signaling. Furthermore, ERG regulation of TFF3 in CRPC cells (DU145) was shown to increase 

cellular invasiveness (Rickman et al. 2010). Using lentiviral infection and dissociated cell 

prostate regeneration approach, with engraftment in mice prostate tissue, ERG and AR 

cooperation was investigated. ERG overexpression alone was sufficient to induce PIN lesions in 

lentiviral prostate grafts, whereas AR overexpression alone did not give rise to any hyperplastic 

lesions. Interestingly, overexpression of ERG and AR caused development of poorly 

differentiated, invasive adenocarcinoma in mice lentiviral prostate grafts (Zong et al. 2009). 

These data strongly suggest cooperation of ERG with the AR to facilitate PCa tumor growth. 

Further support that ERG can activate the AR pathway includes a previous study by Chen 

et al. that showed that ERG increased AR transcriptional output specifically in the context of 

homozygous PTEN loss. In ERG(+) and PTEN-/- prostate-specific transgenic mice, ERG 

increased AR binding across the genome. ERG reprogrammed the AR cistrome, meaning that in 

ERG(+)/PTEN-/- mice the AR had a significant amount of new binding peaks compared to 

control mice. In addition, 44% of ERG binding peaks overlapped with AR binding peaks. 

Consistent with other studies, the ERG(+)/PTEN-/- transgenic mice developed invasive prostate 

carcinoma (Chen et al. 2013). Another study showed that ETV1, an ERG family member, was 

associated with androgen synthesis and AR signaling activation, and that ERG was not 

associated with androgen synthesis or activation of AR signaling (Baena et al. 2013). However, 

this study used PTEN+/- transgenic mice, and not PTEN-/- mice as the Chen et al. study used. 

The difference in PTEN status of homozygous vs. hemizygous deletion may account for the 

differences observed between the two studies. It was shown in two independent studies that the 

TMPRSS2-ERG fusion was present at higher frequencies in PCa patients with PTEN-/- tumors 

compared to PTEN+/- tumors (71.4% vs. 44.2% and 44% vs. 18.9%, respectively), suggesting 
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ERG may cooperate more with a PTEN-/- environment rather than a PTEN+/- environment 

(Bismar et al. 2012, Bismar et al. 2011). In addition, it was shown that PCa patients with PTEN-

/- tumors had a much higher risk of biochemical (PSA) failure compared to PTEN+/- tumors 

(Hazard Ratio 5.93 vs. 1.53; P=0.0009), further suggesting involvement of PTEN-/- status with 

AR signaling (Yoshimoto et al. 2008). 

In contrast to the previously mentioned study that suggested ERG was not involved in 

androgen synthesis, findings from another study did provide a link between AR, ERG, and 

androgen biosynthetic enzyme expression in CRPC. VCaP tumor xenografts were injected into 

mice and allowed to grow to 1 cm, a time point at which mice were castrated. The xenograft 

tumors in castrated mice initially regressed to almost 1/4th their original size, but after 6 weeks 

the tumors relapsed and grew back to 1 cm, and these tumors were collected for analysis. The 

relapsed tumors from castrated mice showed upregulation of AR, PSA, ERG, and several 

enzymes from the androgen biosynthetic pathway compared to pre-castration tumors. The 

upregulated androgen biosynthetic enzymes (ABEs) in the relapsed tumors included AKR1C3, 

HSD17B3, and HSD17B6 (Cai et al. 2009). The fact that AR, ERG, and several ABEs were all 

present at high levels in the relapsed tumors of castrated mice suggests that these factors may 

play a role in the development of CRPC through increased intratumoral DHT and testosterone 

synthesis and AR signaling. 

 

Androgen Biosynthetic Pathway 

The androgen biosynthetic pathway begins with cholesterol as a precursor and results in 

the synthesis of testosterone and DHT. Under normal physiological conditions, this pathway is 

most prevalent in the testis and adrenal glands. These organs release testosterone and weaker 
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androgens such as DHEA and androstenedione into the blood stream where they enter 

circulation. These androgens are taken up by the prostate gland where they are synthesized into 

DHT (Lonergan & Tindall 2011). This pathway is important in PCa because DHT is the ligand 

for the AR. AR signaling helps the PCa tumor grow and progress, therefore inhibition of the 

androgen biosynthetic pathway can reduce AR signaling in PCa tumors (Danila et al. 2011). 

Several mechanisms of ADT resistance and AR antagonist resistance have been proposed. Some 

of these include AR overexpression and gene amplification, AR mutations that result in a gain-

of-function promiscuous receptor, AR splice variants that result in a constitutively active 

receptor, and upregulation of ABEs resulting in intratumoral androgen synthesis (Schrecengost 

& Knudsen 2013).  

Upregulation of ABEs and intratumoral androgen synthesis have been shown to facilitate 

the development of CRPC (Cai et al. 2009, Mitsiades et al. 2012, Pfeiffer et al. 2011, Rasiah et 

al. 2009). It is thought that upregulation of ABEs results in higher levels of intratumoral DHT 

and testosterone synthesis. This can be seen with the success of CYP17A1 enzyme inhibitor, 

abiraterone, to reduce serum and intratumoral DHT and testosterone levels in CRPC patients (de 

Bono et al. 2011, Efstathiou et al. 2012, Ryan et al. 2013). For example, CRPC bone metastasis 

patients treated with abiraterone showed reduced levels of DHT and testosterone at their tumor 

site as well as in their blood plasma. Patients with high AR and high CYP17A1 expression 

showed significantly longer time to treatment discontinuation compared to patients with lower 

expression. As expected, patients with higher pretreatment levels of CYP17A1 expression had 

significantly higher levels of testosterone at their tumor site (Efstathiou et al. 2012). Another 

CRPC patient study showed that high AR and high CYP17A1 expression were significantly 

associated with benefit in patients treated with enzalutamide, an AR antagonist (Efstathiou et al. 
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2014). These results suggest that overexpression of the ABE CYP17A1 results in higher levels of 

intratumoral testosterone and DHT synthesis, and inhibition of this enzyme can greatly reduce 

this synthesis. A diagram of the androgen biosynthetic pathway including the androgen 

metabolites and enzymes that synthesize DHT is shown in Figure 7 (Lubik et al. 2011). Also 

shown are the sites in the pathway where abiraterone inhibits the CYP17A1 enzyme. 
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Figure 7. Diagram of the Androgen Biosynthetic Pathway. The androgen biosynthetic pathway 

begins at cholesterol and results in DHT synthesis. Androgen metabolites are shown as underlined 

and androgen biosynthetic enzymes are shown next to biochemical reaction arrows. Red text 

indicates sites in the pathway that are inhibited by the FDA approved drug, abiraterone, which 

inhibits the CYP17A1 enzyme. Green text indicates the FDA approved drug, enzalutamide, which 

is an AR antagonist. The backdoor pathway is shown in bold font. The dashed arrow for 

testosterone binding to the AR versus the bold arrow for DHT binding to the AR signifies that 

DHT binds to the AR with a much greater affinity compared to testosterone. 
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Despite the success of abiraterone in the clinic to treat CRPC patients, resistance has been 

shown to be a problem. In addition, patients who initially respond well to treatment may stop 

responding and show signs of relapse (Mostaghel et al. 2011, Yuan et al. 2014). This suggests 

that there may be other factors involved in intratumoral DHT synthesis, in addition to CYP17A1. 

In fact, it was shown in VCaP cells treated with abiraterone that this drug effectively inhibited 

AR signaling; however, treatment with androstenedione, a metabolite downstream of CYP17A1 

enzyme, was able to restore AR signaling and induce resistance to CYP17A1 treatment. In 

addition, PSA levels were reduced even further in a castration-resistant VCaP cell line following 

treatment with a combination of abiraterone and indomethacin, an AKR1C3 enzyme inhibitor 

(Cai et al. 2011a). Figure 8 shows the androgen biosynthetic pathway downstream of the 

CYP17A1 enzyme (Bauman et al. 2006, Chang et al. 2013, Chang et al. 2011, Hamid et al. 2012, 

Ishizaki et al. 2013, Lubik et al. 2011, Mohler et al. 2011, Mostaghel et al. 2011, Penning 2010, 

Pfeiffer et al. 2011). As shown in Figure 8, there are multiple ABEs downstream of CYP17A1 

that may play an important role in DHT and testosterone synthesis in PCa patients.  

One ABE that has recently become of particular interest is AKR1C3; this enzyme has 

been shown to be highly upregulated in CRPC tumors, emphasizing its importance in the 

progression of this disease (Hamid et al. 2012, Mitsiades et al. 2012). AKR1C3 may play a 

pivotal role in the bypass pathway of DHT synthesis in CRPC. DHT is synthesized through three 

sources 1.) the classical pathway where DHT is synthesized from androstenedione to testosterone 

to DHT 2.) the bypass pathway where testosterone synthesis is bypassed and DHT is synthesized 

from androstenedione to 5α-androstanedione (5α-Adione)  to DHT 3.) the backdoor pathway 

where testosterone synthesis is bypassed and DHT is synthesized from progesterone or 17-OH-

progesterone to androsterone to DHT (Figure 7 and Figure 8) (Chang et al. 2011, Lubik et al. 
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2011, Mitsiades et al. 2012, Mohler et al. 2011). Interestingly, it was shown that bypass pathway 

synthesis of DHT (androstenedione  5α-Adione) as oppose to classical pathway synthesis of 

DHT (androstenedione  testosterone) was the predominant pathway in 6 different PCa cell 

lines, as well as in metastatic CRPC tumor specimens (Chang et al. 2011). The synthesis of 

androstenedione  5α-Adione  DHT is catalyzed by SRD5A1 and AKR1C3 enzymes, both of 

which have been shown to be overexpressed in CRPC tumors (Mitsiades et al. 2012). Inhibitors 

specific for AKR1C3 are currently being developed (Adeniji et al. 2013, Jamieson et al. 2012, 

Liedtke et al. 2013), and may prove to be beneficial for treatment of CRPC.  
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Figure 8. Diagram of the Androgen Biosynthetic Pathway Downstream of the CYP17A1 

Enzyme. The androgen biosynthetic pathway downstream of the CYP17A1 enzyme is where the 

immediate synthesis of testosterone and DHT occur. The bypass pathway is shown where 

testosterone synthesis is bypassed and DHT is synthesized from androstanedione or 

androstanediol. Also shown are the chemical structures of the immediate androgen metabolites 

involved in testosterone and DHT synthesis. The arrows represent forward and backward 

biochemical reactions, with the enzymes that catalyze the reaction shown next to each arrow.  
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AKR1C3 Enzyme 

 AKR1C is family of aldo-keto reductases consisting four isozymes (numbered 1 to 4) 

with 84% amino acid sequence identity and catalyze similar reduction reactions. AKR1C 

isozymes are involved in the synthesis of oestrogens, progestins, and androgens, thus having an 

impact on hormone levels and hormone signaling. Aldo-keto reductases are NADPH dependent 

reductases that reduce aldehydes and ketones to their corresponding alcohols (Penning & Drury 

2007). The AKR1C3 enzyme is part of the aldo-keto reductase family of enzymes. In humans, 

AKR1C3 has been shown to be expressed in tissues of the prostate and breast and to a lesser 

extent the lungs and liver. Interestingly, AKR1C3 was expressed at far greater levels in the 

prostate and breast tissue compared to other AKR isoforms (Penning et al. 2000). It was also 

shown to be expressed in tissues of the adrenal cortex (Nakamura et al. 2009). 

 AKR1C3 has been shown to be the predominant AKR isoform to catalyze C17-ketone 

reduction of several androgen metabolites in the androgen biosynthetic pathway. This results in 

synthesis of potent androgens testosterone and DHT, as well as weaker androgens androstanediol 

and androstenediol (Figure 9). Only the AKR1C3 and AKR1C1 isoforms showed measurable 

rates of C17-ketone reduction, and AKR1C3 catalyzed this reaction at a much higher rate and 

lower Km compared to AKR1C1 (Penning et al. 2000). AKR1C3 was shown to convert 5α-

Adione into DHT at nearly the same rate as androstenedione into testosterone (Rheault et al. 

1999). AKR1C3 has also been shown to catalyze the reduction of weak estrogen, estrone to 

potent estrogen, 17β-estradiol, and reduce progesterone to 20a-hydroxyprogesterone. AKR1C3 

has been shown to regulate ligand access of testosterone to the AR and 17β-estradiol to the ER in 

prostate and breast tissues, respectively (Penning & Drury 2007, Penning et al. 2004). These 

findings emphasize the pivotal role of AKR1C3 as a regulator of nuclear hormone actions. 
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Figure 9. AKR1C3 Catalyzes C17-Ketone Reduction of Several Androgens in the 

Androgen Biosynthetic Pathway. Diagram illustrating AKR1C3 C17-Ketone Reduction of 

androstenedione, 5α-androstanedione, DHEA, and androsterone. These biochemical reactions 

use NADPH as a cofactor, and are therefore NADPH dependent. AKR1C3 is responsible for 

the synthesis of potent androgens testosterone and DHT, as well as weak androgens 

androstenediol and androstanediol. 
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 Over the past decade AKR1C3 has become a focus of interest in PCa. Using 

immunohistochemistry (IHC), it was shown to be expressed at higher levels in human prostate 

carcinoma specimens compared to normal prostate specimens, and its expression was co-

localized with AR expression (Fung et al. 2006). Microarray analysis showed that AKR1C3 was 

expressed 5.27-fold higher in androgen-independent bone metastasis prostate tumors compared 

to primary prostate tumors, and this was confirmed by PCR and IHC analysis. In addition, the 

AR and other androgen biosynthetic enzymes (ABEs), AKR1C1, AKR1C2, SRD5A1, and 

HSD3B2 were also shown to be overexpressed in androgen-independent bone metastatic prostate 

tumors, suggesting the presence of intratumoral androgen synthesis (Stanbrough et al. 2006). 

Similar results were seen in another study where AKR1C3 and SDR5A1 were upregulated in 

metastatic tumors, and AKR1C3 transcript was detected in circulating-tumor cells from CRPC 

patients (Mitsiades et al. 2012). AKR1C3 was shown to be associated with increased testosterone 

production in adrenal gland tissue (Nakamura et al. 2009), a mechanism which could possibly 

provide continual circulating testosterone in PCa patients being treated with ADT. 

Overexpression of AKR1C3 in PC3 PCa cells resulted in upregulation of genes involved in 

androgen signaling, activation of AKT signaling, and promotion of angiogenesis (Dozmorov et 

al. 2010). 

 More recent studies have shown that AKR1C3 is upregulated in CRPC tumors, and it has 

been suggested to use AKR1C3 as a biomarker for CRPC in the clinic (Hamid et al. 2012, 

Hofland et al. 2010). The biomarker study showed that AKR1C3 protein was more highly 

expressed in CRPC tumors compared to primary PCa tumors and BPH tissue. However, it was 

not highly expressed in all the CRPC tumors, suggesting screening CRPC patient tumors for the 

presence of the enzyme may be more beneficial (Hamid et al. 2012). Another study showed that 
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overexpression of AKR1C3 promoted growth of CRPC xenografts. This same study tested the 

ability of an AKR1C3 specific inhibitor, GT-x560, to inhibit AKR1C3 enzyme activity and 

androgen synthesis. GT-x560 treatment of HEK293 cells overexpressing AKR1C3 was shown to 

inhibit the synthesis of androstenedione to testosterone. Importantly, GT-x560 treatment was 

able to inhibit PSA activation in VCaP cells, as well as significantly inhibit xenograft tumor 

growth in VCaP xenograft mice and LNCaP-AKR1C3 overexpression xenograft mice in vivo 

(Yepuru et al. 2013). The abundance of studies published in the past decade showing 

overexpression of AKR1C3 in CRPC tumors, and a functional role of AKR1C3 in intratumoral 

androgen synthesis in PCa and CRPC, have prompted the development of AKR1C3 specific 

inhibitors for treatment of CRPC. 

 

Implications for ERG and AKR1C3 as Therapeutic Targets in Prostate Cancer 

  AKR1C3 inhibition is an attractive therapeutic target for multiple reasons. AKR1C3 is 

an enzyme and therefore contains substrate binding pockets and cofactor binding pockets. This 

makes targeting the protein with small-molecule inhibitors a much more feasible task. In 

addition, the protein structure of AKR1C3 has been previously elucidated and can serve as a 

guide for development of small-molecule inhibitors (Flanagan et al. 2012, Lovering et al. 2004). 

Moreover, AKR1C3 is commonly overexpressed in PCa patient tumors, making it a relevant 

target for the clinic. AKR1C3 specific inhibitors are currently being developed for clinical use 

(Adeniji et al. 2013, Gazvoda et al. 2013, Heinrich et al. 2013, Jamieson et al. 2012, Liedtke et 

al. 2013, Watanabe et al. 2013, Yin et al. 2014); however there are currently no FDA approved 

AKR1C3 specific inhibitors used to treat PCa patients in the clinic.  
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 There are some considerations to think about regarding AKR1C3 inhibitor development 

and treatment. Inhibitors targeting AKR1C3 should be designed to be specific for AKR1C3 and 

should not target other isoforms such AKR1C2. AKR1C3 synthesizes DHT and testosterone, 

whereas AKR1C2 breakdowns DHT (Bauman et al. 2006). It would not be wise to inhibit the 

breakdown of DHT for PCa treatment. In addition, it has been suggested from recent study 

findings that AKR1C3 specific inhibitors should only be used to treat PCa patients that 

overexpress this enzyme (Yin et al. 2014). Therefore, PCa patients should have their tumor 

biopsy validated for AKR1C3 overexpression before being treated with this drug. It has been 

suggested that multiple enzymes in the androgen biosynthetic pathway play a role in DHT and 

testosterone synthesis in PCa; therefore it may be beneficial to treat PCa patients with a 

combination ABE inhibitors. A patient may have greater benefit from a combination treatment of 

a CYP17A1 inhibitor (Abiraterone), SRD5A inhibitor (Dutasteride), and AKR1C3 specific 

inhibitor, compared to any of these treatments alone. 

 TMPRSS2-ERG inhibition is an attractive therapeutic target for multiple reasons. Almost 

50% of PCa patients, including primary and advanced PCa patients, have been shown to harbor 

the TMPRSS2-ERG fusion gene. This provides a large population of PCa patients who may 

benefit from an ERG inhibitor. Only PCa tumor cells express the TMPRSS2-ERG fusion gene, 

which reduces the possibilities of adverse side effects in healthy tissue. TMPRSS2-ERG has 

been shown to have multiple oncogenic biological functions in PCa, so targeting it would impair 

multiple cancer pathways including cell migration and invasion, DHT biosynthesis, cell 

dedifferentiation, and cell proliferation. Although TMPRSS2-ERG is an attractive therapeutic 

target, it is a transcription factor and therefore does not contain any substrate or cofactor binding 

pockets. This makes targeting ERG protein with small-molecule inhibitors a very difficult task. 
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Inhibitors for ERG are currently being developed (Rahim et al. 2011, Shao et al. 2012); however, 

there are currently no FDA approved TMPRSS2-ERG inhibitors used to treat PCa patients in the 

clinic. 

 One study published findings with a small-molecule inhibitor for ERG called YK-4-297, 

but this inhibitor has not moved into clinical trials for ERG inhibition (Rahim et al. 2011). 

Another used heterocyclic dithiophene diamidines, which disrupted ERG/DNA binding, but this 

inhibitor has not moved into clinical trials either (Nhili et al. 2013). With small molecule 

inhibition of ERG being a difficult task, alternative approaches to TMPRSS2-ERG inhibition are 

currently being investigated. Some of these include liposomal nanovectors, peptide based 

vaccines, and deubiquitinase inhibition (Kissick et al. 2013, Shao et al. 2012, Wang et al. 2014). 

Liposomal nanovectors use siRNAs which target and inhibit the TMPRSS2-ERG mRNA 

sequences, preventing ERG protein synthesis. Peptide based vaccines are ERG-derived 

immunogenic peptides that ultimately aim to elicit an antigen-specific response in cytotoxic 

lymphocytes against ERG fusion-positive PCa tumor cells. Deubiquitinase inhibition is a method 

to inhibit the deubiquitination of ERG which ultimately leads to higher levels of ERG 

ubiquitination and increased ERG protein degradation. With many different groups of 

investigators working to discover an effective inhibitor for AKR1C3 and ERG, only time will 

tell whether these drug targets will be viable options for clinical trial use. 
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Chapter 2 

Materials and Methods 

Cell Lines and Treatments 

Prostate cancer cell lines VCaP, LNCaP, and HEK293T cells were obtained from 

American Type Culture Collection (ATCC; Manassas, VA). BPH-1 cells were obtained from Dr. 

Shije Sheng (Wayne State University). VCaP cells were maintained in ATCC DMEM media 

supplemented with 10% fetal bovine serum (FBS) and 1% penicillin streptomycin (PS). LNCaP 

and BPH-1 cells were maintained in Gibco RPMI media (Life Technologies, Gibco, Carlsbad, 

CA) supplemented with 10% FBS and 1% PS. HEK293T cells were maintained in Gibco 

DMEM media supplemented with 10% FBS, 1% PS, and 1% sodium pyruvate. HPLC-MS/MS, 

Immunocytochemistry, and PSA expression experiments were performed using Gibco DMEM 

phenol red-free media supplemented with 1% charcoal stripped serum (C.S.S.) and 1% PS. 

Lentiviral Plasmids and Transduction 

The pGIPZ lentivector was used for shRNA ERG knockdown (5’-

TGGACAGACTTCCAAGATG-3’) and shRNA AKR1C3 knockdown (5’-

ACACCAGTGTGTAAAGCTA-3’) and the pLOC lentivector was used for ERG overexpression 

(Open BioSystems, GE Dharmacon, Lafayette, CO). Truncated ERG and full length ERG were 

cloned into the pLOC lentivector using restriction enzyme digest with SpeI and AscI. Cloning 

primers are listed in Table 3. Lentiviral particles were generated in HEK293T cells using a 

Trans-Lentiviral Packaging Kit (Thermo Fisher Scientific, Waltham, MA). VCaP cells were 

infected with pGIPZ lentiviral particles and selected with (0.3 µg/ml) puromycin for 10 days 

post-infection. LNCaP and BPH-1 cells were infected with pLOC lentiviral particles and selected 
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with (2-4 µg/ml) blasticidin for 10 days post-infection. A pooled lentiviral cell population was 

used for all lentiviral experiments. Transient transfections were performed using 

Lipofectamine2000 Transfection Reagent (Life Technologies, Invitrogen, Carlsbad, CA) in 

OptiMEM media obtained from Gibco. 

Western Blotting and Antibodies 

Western blotting was performed using SDS-PAGE with gel transfer to a nitrocellulose 

membrane. Membranes were blocked with 5% nonfat milk and probed with primary antibody in 

5% milk. Membranes were probed with HRP-linked secondary antibody in 5% milk. Protein 

bands were detected using enhanced chemiluminescence (ECL) substrate and autoradiography 

film. Primary and secondary antibodies are listed in Table 2. 

RT-PCR and RT-qPCR 

RNA was extracted from VCaP, LNCaP and BPH-1 cells using the Trizol method, 

TRIzol was obtained from Life Technologies (Carlsbad, CA). RNA was synthesized into cDNA 

using the iScript cDNA synthesis kit obtained from Bio-Rad (Hercules, CA). cDNA was used as 

a template for primer amplification, PCR primers are listed in Table 3. For RT-PCR experiments 

cDNA was amplified with primers and DNA Taq polymerase using an Eppendorf Mastercycler 

PCR machine. PCR was performed for 25 to 40 cycles, and PCR products were loaded onto a 

0.8% agarose gel containing ethidium bromide. For RT-qPCR experiments cDNA was amplified 

with primers and SYBR green from the SensiFAST SYBR No-Rox kit obtained from Bioline 

(Taunton, MA). An Eppendorf Mastercycler Realplex
2
 qPCR machine was used to quantify 

transcript amplification levels for 40 cycles of PCR. All qPCR samples were normalized to 

GAPDH. 
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Chromatin Immunoprecipitation (ChIP) PCR 

ChIP-PCR was carried out using the ChIP-IT Express kit obtained from Active Motif 

(Carlsbad, CA). VCaP cells were plated at a cell density of 10-20 million cells per flask. Cells 

were fixed with formaldehyde and chromatin was extracted according to the kit instructions. 

Samples containing 5 million cells per sample were sonicated using the EpiSonic Multi-

Functional Bioprocessor 1000 sonicator. For IP pull downs, 15-25 µg of chromatin and 3-5 µg of 

primary antibody were used per sample. ERG primary antibody ERG1/2/3 (H-95)X  (sc-

28680X) and IgG antibody (sc-2027) were obtained from Santa Cruz Biotechnology (Dallas, 

TX). A control IgG pulldown was performed for each ERG pulldown in order to serve as a 

control for non-specific (background) pulldown. PCR was performed using 750-1000 ng DNA 

template per sample and run at 30-40 cycles using an Eppendorf Mastercycler PCR machine. 

ChIP-PCR primers are listed in Table 3. PCR products were loaded onto a 0.8% agarose gel 

containing ethidium bromide. 

Mass Spectrometry (HPLC-MS/MS)   

Androgen metabolites obtained from Steraloids and Sigma-Aldrich (St. Louis, MO) 

(Table 4.) were used as MS standards and in vitro steroid treatments. VCaP Scrambled and 

VCaP shERG cells were plated at a cell density of 500,000 cells per well in a 6-well plate. Cells 

were serum starved for 24 hours using 1% C.S.S. phenol red-free DMEM media. Cells were 

treated with androgen metabolites or 0.1% ethanol (vehicle control) for 24 hours in 1% C.S.S. 

phenol red-free media. Depending on the experiment, cells were treated with either 100 nM 

androgen metabolites or concentrations of 10 nM, 50 nM, or 100 nM androgen metabolites. At 

the end of incubation, cells and the incubation media were extracted and analyzed by LC-MS as 

follows: Deuterated internal standards (1 ng each of DHEA-d2 and DHT-d3) were added to the 
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wells and mixed thoroughly. The cells and media were collected by scraping and stored at -80 

˚C. The stored samples were thawed on ice, sonicated and the homogenate was applied to 

conditioned C18 solid phase extraction cartridges (Sep-Pak, Waters, Milford, MA). The 

cartridges were washed with water and the compounds were eluted with acetonitrile into LC-MS 

maximum recovery screw top glass vials obtained from MicroSOLV Technology (Eatontown, 

NJ). The eluates were evaporated to dryness and the residue was reconstituted in 100 µl of HPLC 

mobile phase (acetonitrile:water:formic acid, 60:40:0.2 v/v). The samples were analyzed for 

steroids by LC-MS by Wayne State University Lipidomics Core Facility using standard 

protocols. Data were normalized to the number of cells used in each experiment. 

Immunocytochemistry and Immunofluorescence 

VCaP cells were plated on cover slips at a cell density of 400,000 cells per cover slip. 

Cells were serum starved for 24 hours using 1% C.S.S. phenol red-free DMEM media. Cells 

were treated with (100 nM) 5α-Androstanedione or 0.1% ethanol (vehicle control) for 24 hours 

in 1% C.S.S. phenol red-free DMEM media. Cell coverslips were washed with 1X PBS, fixed 

with 4% Formaldehyde, permeabilized with 0.5% Triton X-100, blocked with 2% horse serum, 

and incubated overnight at 4 °C with either 1.) AR (rabbit) primary antibody (sc-816) obtained 

from Santa Cruz Biotechnology (Dallas, TX) used at dilution 1:1000 in PBS; or 2.) AR (mouse) 

primary antibody (sc-7305) obtained from Santa Cruz Biotechnology used at a dilution 1:1000 in 

PBS. Cover slips were washed with PBS and incubated at room temperature in a dark box for 1 

hour with either 1.) fluorophore conjugated antibody Texas Red (rabbit) (TI-1000) obtained from 

Vector Labs (Burlingame, CA) used at dilution 1:200 in PBS; or 2.) fluorophore conjugated 

antibody Alexa Fluor 633 (mouse) (A-21050) obtained from Life Technologies, Molecular 

Probes (Carlsbad, CA) used at dilution 1:200 in PBS. Cover slips were mounted onto slides 
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using Vectashield mounting medium with DAPI obtained from Vector Labs. Slides were 

subjected to confocal imaging at the Wayne State University School of Medicine Microscropy, 

Imaging, and Cytometry Resources Core Facility using the Ziess LSM 780 confocal microscope 

at a magnification of 40X.  

Immunohistochemistry 

  Formalin-fixed, paraffin-embedded serial tissue sections from human prostate tumor 

tissue specimens and LuCaP xenograft tumors were deparaffinized with xylene and rehydrated in 

graded EtOH. Endogenous peroxidase activity was blocked by incubating in 3% H2O2 for 20 

min. Antigen retrieval was performed with Antigen Retrieval Citra Plus Solution (BioGenex, 

Freemont, CA) in a steamer. Slides were then blocked with Blocking Serum from ABC 

Vectastain Kit (Vector Labs, Burlingame, CA). Slides were incubated at 4°C overnight in a 

humidified chamber with antibodies directed against ERG (1:100; Epitomics, Burlingame, CA) 

or AKR1C3 (1:5000; Sigma-Aldrich, St. Louis, MO). After washing, sections were incubated 

with ABC Vectastain Kit, according to the manufacturer’s protocol, followed by incubation with 

3,3-diaminobenzidine tetrahydrochloride (Vector Labs). Nuclei were counterstained with 

Mayer’s hematoxylin (Sigma-Aldrich). Sections were then dehydrated with graded EtOH, 

washed with xylene, and mounted with Permount (Sigma-Aldrich). 

Cell Proliferation Assay 

VCaP shRNA-ERG and VCaP Scrambled cells were seeded in a 96 well plate at a cell 

density of 17,000 cells per well in 100 µl media (DMEM ATCC + 10% Regular FBS + 1% PS + 

10 µM HEPES Buffer). Cells were seeded in triplicate for day 1, day 2, day 5, and day 10 

analyses. VCaP shRNA-AKR1C3 and VCaP Scrambled cells were seeded in a 96 well plate at a 

cell density of 19,000 cells per well in 100 µl media (DMEM ATCC + 10% Regular FBS + 1% 
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PS + 10 µM HEPES Buffer). Cells were seeded in triplicate for day 1, day 2, and day 5 analyses. 

The Cyquant NF Cell Proliferation Assay fluorescence kit (Life Technologies, Molecular Probes, 

Carlsbad, CA) was used to detect fluorescence for each respective day. Relative fluorescence 

units were quantified using a fluorescent plate reader. 

Gene Expression Analysis Using Gene Expression Omnibus Database 

Gene expression omnibus (GEO) publicly available microarray data was used to analyze 

correlation between ERG expression and AKR1C3 expression. The 25 metastatic prostate cancer 

expression profiles were extracted from database GDS2545 using ERG accession ID 914_g_at 

and AKR1C3 accession ID 37399_at, and analyzed using “GEO2R.” The in vitro cell line 

expression profiles were extracted from databases GSE22010, GSE39353, and GSE39354 using 

ERG accession ID’s 8070297, 211626_x_at, and 211626_x_at respectively, and AKR1C3 

accession ID’s 7925929, 209160_at, and 209160_at respectively.  

Patient Survival Analysis Using Oncomine Database 

The Oncomine database was used to extract survival data for 363 prostate tumor 

specimens from Setlur et al. “prostate cancer” (Setlur et al. 2008). Tumor specimens were from a 

Swedish watchful waiting cohort of patients who were diagnosed with localized PCa at stages 

T1-T2. Survival data was given as dead or alive at 1 year, 3 years, 5 years, and endpoint. For 

survival data past 5 years, the last time to follow up was used as the endpoint. Prostate tumor 

expression profiles were extracted from the GEO database GSE8402 using AKR1C3 accession 

ID DAP4_3222. AKR1C3 expression was determined as high or low by taking the median 

expression value of 363 tumor specimens, and adding or subtracting the standard deviation. This 

gave a sample size of 46 high tumors and 51 low tumors, with their respective available survival 

data taken from the Oncomine database. For ERG analysis, the presence or absence of the 
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TMPRSS2-ERG fusion gene was determined in the Setlur et al. study by FISH or PCR analysis, 

and this data was available in the Oncomine database as well as the GEO database. Survival data 

and TMPRSS2-ERG fusion status data were available for analysis from 354 of the prostate 

tumor specimens.  
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Table 2. Antibodies Used for Western Blotting Experiments. 
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Table 3. Primers Used for PCR, Cloning, and ChIP-PCR Experiments.  
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Table 4. Androgen Metabolites Used for Mass Spectrometry Experiments. 
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Chapter 3 

TMPRSS2-ERG Regulation of the Androgen Biosynthetic Pathway in 

Prostate Cancer 

  
 As previously mentioned, TMPRSS2-ERG fusion gene expression persists in patients 

with CRPC; however, the biological role of ERG in CRPC is still currently unknown. Despite 

the fact that ERG is an AR regulated gene, ERG expression has been shown to be present in 

CRPC patients. One study showed that 60% (9/15) of CRPC patient tumor specimens expressed 

the TMPRSS2-ERG transcript (Attard et al. 2009). Another study showed that 73% (14/19) of 

CRPC patient tumor specimens expressed the ERG fusion transcript (Rickman et al. 2010). 

These data suggest that AR signaling does remain active in a CRPC state, even when patients 

may be treated with ADT that target testosterone and DHT synthesis. The exact sources of 

testosterone and DHT in CRPC patients still remain to be fully elucidated, but intratumoral 

androgen synthesis is a contributing factor (Efstathiou et al. 2012, Ryan et al. 2013). This 

dissertation study is focused on investigating the role of ERG in the development and 

progression of CRPC through upregulation of androgen biosynthetic enzyme gene expression 

and intratumoral DHT production. 

 

3.1 Effects of ERG Knockdown on Androgen Biosynthetic Enzyme Expression 

RESULTS 

TMPRSS2-ERG fusion gene positively regulates the gene expression of androgen biosynthetic 

enzymes in VCaP prostate cancer cells 

 

VCaP prostate cancer (PCa) cells naturally harbor and express the TMPRSS2-ERG 

fusion gene, making them a suitable model to study ERG regulation of androgen biosynthetic 

enzymes (ABEs) (Tomlins et al. 2005). The VCaP cells harbor the truncated form of ERG 
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protein formed through the T1-E4 gene fusion, with exon 1 of TMPRSS2 gene fused to exon 4 of 

ERG gene, resulting in truncation of the first 39 amino acids from the N-terminal of the ERG 

protein (King et al. 2009). T1-E4 ERG does however retain its C-terminal DNA binding domain, 

making transcriptional regulation of target genes still feasible. The VCaP PCa cell line was 

extracted from a vertebral bone metastasis tumor in a patient with castration-resistant prostate 

cancer (CRPC) (Korenchuk et al. 2001), and therefore this cell line represents an advanced form 

of PCa.  

Lentiviral shRNA stable knockdown was used to knockdown endogenous ERG protein 

levels in VCaP cells. Lentiviral ERG knockdown was validated at the mRNA level (Figure 10A) 

as well as at the protein level (Figure 10B) in VCaP shERG cells; shScrambled cells were used 

as a non-targeted control. In addition, VCaP cells were shown to express high levels of the 

androgen receptor (AR), making them a relevant model to study ERG regulation of ABEs 

(Figure 10C). In order to test the quality of the VCaP shRNA-ERG knockdown model system, 

ERG target gene expression was analyzed. ERG has been shown to regulate the gene expression 

of plasminogen activator urokinase (PLAU), plasminogen activator tissue (PLAT), and 

chemokine receptor CXCR4 (Carver et al. 2009, Tomlins et al. 2008, Yu et al. 2010). 

Quantitative PCR (RT-qPCR) analysis revealed a significant decrease in expression of PLAU, 

PLAT, and CXCR4 target genes in VCaP shERG cells (Figure 11A and 11B), suggesting that the 

shRNA-ERG knockdown model is reliable for studying ERG gene regulation.  
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Figure 10. VCaP Prostate Cancer Cells are a Relevant Model to Study ERG 

Regulation of Androgen Biosynthetic Enzyme Gene Expression. A.) RT-qPCR 

analysis of ERG expression in VCaP shScrambled (shScr) and VCaP shERG lentiviral 

cells. Samples were normalized to GAPDH. Statistical analysis was a two-tailed, 

paired, student’s t-test (N = 3) ** P<0.01. MOI = multiplicity of infection for lentiviral 

transduction. B.) Western blot analysis of ERG expression in VCaP shScrambled and 

shERG cells. Numbers above blot represent fold changes for ERG determined by 

densitometry. C.) Western blot analysis of AR expression in prostate cancer cell lines 

LNCaP and VCaP, as well as in benign prostatic hyperplasia cells BPH-1. For western 

blots GAPDH was used as a loading control. 
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Figure 11. ERG Target Gene Expression is Reduced in ERG Knockdown Cells. A.) 

RT-qPCR analysis of known ERG target genes PLAU and PLAT in VCaP shScrambled 

and shERG cells. B.) RT-qPCR analysis of known ERG target gene CXCR4 in VCaP 

shScrambled and shERG cells. Samples were normalized to GAPDH. Statistical analysis 

was a two-tailed, paired, student’s t-test (N = 3) * P<0.05, ** P<0.01, *** P<0.001.  
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RT-qPCR primers for 15 ABEs in the DHT biosynthesis pathway were used to perform a 

non-bias screening of ABE expression in the context of ERG knockdown. RT-qPCR analysis 

showed a significant decrease in many of the ABEs in VCaP shERG cells compared to 

shScrambled controls (Figure 12). CT values were shown in order to obtain an idea of which 

enzymes were most highly expressed in VCaP cells. In order to help validate the qPCR data, RT-

PCR analysis of the 15 ABEs was performed in VCaP shERG and shScrambled cells at 3 

different PCR cycle numbers. VCaP shERG cells had reduced expression of AKR1C3, 

HSD17B4, HSD17B6, and HSD3B2 enzymes compared to shScrambled controls (Figure 13A). 

Consistent with the RT-PCR data, RT-qPCR data indicated a significant decrease in expression 

of AKR1C3, HSD17B4, HSD17B6, and HSD3B2 in VCaP shERG cells (Figure 13B). Western 

blot analysis of VCaP shERG cells revealed a decrease in AKR1C3 (Figure 14A) and HSD17B4 

(Figure 14B) protein expression compared to VCaP shSrcambled controls and VCaP cells. 

HSD17B6 enzyme was not detectable at the protein level in VCaP cells, as indicated by the 

human liver lysate positive control, which expressed high levels of HSD17B6 (Figure 14C).  
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Figure 12. ERG Knockdown Reduces Androgen Biosynthetic Enzyme Gene Expression: CT 

Values Included. RT-qPCR analysis of ABEs in VCaP shScrambled and shERG cells. Samples 

were normalized to GAPDH, CT values are listed at the top of graph. CT values for ABEs are 

listed above each bar graph. Statistical analysis was a two-tailed, paired, student’s t-test (N = 3) * 

P<0.05, ** P<0.01, *** P<0.001.  



59 
 

 

 

 

               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. ERG Knockdown Reduces Androgen Biosynthetic Enzyme mRNA Expression. A.) 

RT-PCR analysis of ABE expression in VCaP shScrambled (shScr) and VCaP shERG cells. PCR 

cycle numbers are indicated above each DNA gel. B.) RT-qPCR analysis of ABEs in VCaP 

shScrambled and shERG cells. ABEs that were most consistent between RT-PCR and RT-qPCR 

data are shown (red boxes in panel A). Samples were normalized to GAPDH. Statistical analysis 

was a two-tailed, paired, student’s t-test (N = 3) * P<0.05, ** P<0.01, *** P<0.001.  
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Figure 14. ERG Knockdown Reduces Androgen Biosynthetic Enzyme 

Protein Expression. A.) Western blot analysis of AKR1C3 expression in VCaP, 

VCaP shScrambled, and VCaP shERG cells. Numbers above blots represent fold 

changes for ERG and AKR1C3 determined by densitometry. B.) Western blot 

analysis of HSD17B4 expression in VCaP, VCaP shScrambled and shERG cells. 

Numbers above blots represent fold changes for ERG and HSD17B4 determined 

by densitometry. C.) Western blot analysis of HSD17B6 expression in Human 

Liver Lysate, VCaP, VCaP shScrambled and shERG cells. For western blots 

GAPDH was used as a loading control. 
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DISCUSSION 

 Results from the VCaP shERG knockdown model suggest that TMPRSS2-ERG 

positively regulates the expression of several androgen biosynthetic enzymes (ABEs) involved in 

DHT synthesis, including AKR1C3, HSD17B4, HSD17B6, and HSD3B2. According to the RT-

PCR data at cycle 30, and the CT values from the RT-qPCR data, the most highly expressed 

ABEs in VCaP cells were HSD17B4, AKR1C3, HSD17B6, SRD5A1, and AKR1C1. It is 

interesting that ERG was shown to regulate 3 of the 5 most highly expressed enzymes in the 

DHT synthesis pathway. These data suggest that ERG may increase the production of DHT in 

VCaP cells through upregulation of ABEs. In addition, this would provide a feed-forward 

activation loop for TMPRSS2-ERG expression by providing continual ligand to the AR. 

 It was surprising to see that HSD17B6 enzyme was not expressed at detectable amounts 

at the protein level in VCaP cells, as the RT-PCR data indicated otherwise. However, the RT-

qPCR data in VCaP shScrambled cells did indicate that AKR1C3 and HSD17B4 had CT values 

of 23.5, whereas the CT value for HSD17B6 was only 27; indicating much lower expression. It 

is unclear at this time as to why ERG was shown to regulate HSD17B6 at the mRNA level when 

it was not expressed at the protein level. Thus, the significance of ERG’s regulation of HSD17B6 

gene expression in VCaP cells is currently unknown. The HSD3B2 enzyme has not yet been 

investigated at the protein level; thus, future experiments will be needed to further investigate 

ERG’s regulation of the HSD3B2 enzyme.  
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3.2 Effects of ERG Overexpression on AKR1C3 Enzyme Expression 

 

RESULTS 

 

Overexpression of ERG in LNCaP PCa cells and BPH-1 cells leads to upregulation of AKR1C3 

enzyme expression 

 

 Previous data indicated that knockdown of endogenous TMPRSS2-ERG expression in 

VCaP cells reduced the expression of AKR1C3 enzyme. As a proof of principle model, truncated 

ERG (ERG40) was overexpressed in LNCaP PCa cells and BPH-1 benign prostatic hyperplasia 

cells, and AKR1C3 expression was assessed. LNCaP and BPH-1 cells do not harbor the 

TMPRSS2-ERG fusion gene and do not express ERG protein, thus making these cell lines a 

suitable model for ERG40 overexpression. Lentivirus was used to overexpress ERG40 in LNCaP 

and BPH-1 cells, and ERG40 mRNA expression (Figure 15B and 15D) and protein expression 

(Figure 15A and 15C) were shown to be increased compared to empty vector controls. The 

correct truncation size of ERG40 was confirmed in LNCaP ERG40 cells by comparing protein 

band size to VCaP cells, which were shown to harbor the truncated ERG40 protein (Figure 15E). 

As expected, the LNCaP ERGwt (wild type) protein band was shifted higher on the gel 

compared to the ERG40 protein band (Figure 15E). This is due to the fact that ERG40 protein 

has a truncation of the first 39 amino acids from the N-terminus of the protein (King et al. 2009) 

(Figure 15F). Truncated ERG40 results from TMPRSS2 exon 1 being fused to ERG exon 4, and 

this form of TMPRSS2-ERG has been shown to be the most commonly expressed ERG variant 

in PCa patients (Wang et al. 2006). 
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Figure 15. Validation of ERG40 Lentiviral Overexpression. A.) Western blot analysis of ERG 

expression in LNCaP cells infected with ERG40 lentivirus at multiplicity of infection (MOI) 1 and 

MOI 2. B.) RT-qPCR analysis of ERG expression in LNCaP ERG40 cells. C.) Western blot 

analysis of ERG expression in BPH-1 cells infected with ERG40 lentivirus at MOI 2 and MOI 3. 

D.) RT-qPCR analysis of ERG expression in BPH-1 ERG40 cells. For RT-qPCR samples were 

normalized to GAPDH. Statistical analysis was a two-tailed, paired, student’s t-test (N = 3) ** 

P<0.01. For western blots GAPDH was used as a loading control. EV = empty vector control. E.) 

Western blot analysis of ERG40 expression in VCaP cells and LNCaP ERG40 cells, and ERG 

wild type (wt) expression in LNCaP ERGwt cells. F.) Diagram representing the amino acid (aa) 

protein structure of ERGwt protein and ERG40 protein, showing truncation of the first 39 aa from 

the N-terminus of ERG40. ETS is the DNA binding domain; PNT is the regulatory domain. 
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ABE gene expression was screened in LNCaP ERG40 cells and CT values were shown in 

order to obtain an idea of which enzymes were most highly expressed in LNCaP cells. RT-qPCR 

analysis revealed a significant increase in AKR1C3 and HSD17B2 expression in LNCaP ERG40 

cells compared to empty vector controls; however the CT value for HSD17B2 was so high that 

conclusions from this would be unreliable (Figure 16). In addition, a small but significant 

increase in expression of HSD17B4, HSD17B6, HSD17B10, and AKR1C2 was seen in LNCaP 

ERG40 cells compared to empty vector controls (Figure 16). Data from the LNCaP ERG40 cells 

revealed that the AKR1C3 enzyme was the most highly regulated by ERG40 overexpression, 

warranting further investigation at the protein level. Using the ERG40 overexpression models, 

AKR1C3 mRNA and protein expression levels were assessed in LNCaP and BPH-1 cells. 

AKR1C3 mRNA and protein expression were significantly increased in LNCaP ERG40 cells 

compared to empty vector controls (Figure 17A and 17B). In addition, AKR1C3 mRNA and 

protein expression were increased in BPH-1 ERG40 cells compared to empty vector controls 

(Figure 17C and 17D). Interestingly, AKR1C3 mRNA and protein expression were also 

significantly increased in LNCaP ERGwt cells compared to empty vector controls (Figure 17E 

and 17F). These data are consistent with the ERG knockdown data and suggest that ERG 

positively regulates the expression of AKR1C3 in PCa cells.  
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Figure 16. ERG Overexpression Increases Androgen Biosynthetic Enzyme Gene 

Expression: CT Values Included. RT-qPCR analysis of ABEs in LNCaP ERG40 cells. Cells 

were grown in 1% C.S.S. phenol-red free for 48 hours prior to RNA collection. Samples were 

normalized to GAPDH, CT values are listed at the top of graph. CT values for ABE are listed 

above each bar graph. Statistical analysis was a two-tailed, paired, student’s t-test (N = 3) * 

P<0.05, ** P<0.01.  
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Figure 17. ERG40 and ERGwt Overexpression Increases AKR1C3 mRNA and Protein 

Expression in LNCaP and BPH-1 Cells. A.) Western blot analysis of AKR1C3 expression in 

LNCaP ERG40 lentiviral cells. B.) RT-qPCR analysis of AKR1C3 expression in LNCaP ERG40 

cells. C.) Western blot analysis of AKR1C3 expression in BPH-1 ERG40 lentiviral cells. D.) 

RT-qPCR analysis of AKR1C3 expression in BPH-1 ERG40 cells. E.) Western blot analysis of 

AKR1C3 expression in LNCaP ERGwt cells. F.) RT-qPCR analysis of AKR1C3 expression in 

LNCaP ERGwt cells. For RT-qPCR samples were normalized to GAPDH. Statistical analysis 

was a two-tailed, paired, student’s t-test (N = 3) * P<0.05, ** P<0.01. For western blots GAPDH 

was used as a loading control. EV = empty vector control. Numbers above blot represent fold 

changes in AKR1C3 determined by densitometry. 
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AKR1C3 gene expression has been shown to be regulated by androgen levels in the 

media, with high androgen levels inhibiting AKR1C3 expression and low androgen levels 

increasing AKR1C3 expression (Cai et al. 2011b, Hamid et al. 2012, Mitsiades et al. 2012). This 

hypothesis was investigated in VCaP and LNCaP cells in the context of ERG regulation. 

Consistent with published data, AKR1C3 was shown to be increased in expression when treated 

with androgen starved media (1% charcoal stripped serum, 1% C.S.S.), and this increase was 

diminished with the addition of 100 nM 5α-Adione, a DHT precursor androgen (Figure 18A). 

ERG expression was shown to be reduced when treated with androgen starved media (1% 

C.S.S.), and this reduction was rescued with the addition of 100 nM 5α-Adione (Figure 18A). 

VCaP shERG cells were treated with 1% C.S.S. media or 100 nM 5α-Adione supplemented 

media in order to investigate ERG’s regulation of AKR1C3 expression in low and high androgen 

media conditions; with 1% C.S.S being low androgen conditions and 5α-Adione supplemented 

media being high androgen conditions. RT-PCR data showed that VCaP shERG cells had 

reduced AKR1C3 expression in both 1% C.S.S. media and 5α-Adione supplemented media 

compared to shScrambled controls (Figure 18B). LNCaP ERG40 cells were treated with 1% 

C.S.S. media or 100 nM 5α-Adione supplemented media in order to further investigate ERG’s 

regulation of AKR1C3 expression in low and high androgen media conditions. RT-qPCR data 

showed that LNCaP ERG40 cells had significantly increased AKR1C3 expression in both 1% 

C.S.S. media and 5α-Adione supplemented media compared to empty vector controls (Figure 

18C). 

Microarray data of AKR1C3 and ERG expression in VCaP siRNA knockdown cells 

treated with either 1% C.S.S. media or DHT supplemented media were extracted from Gene 

Expression Omnibus database GSE39354. The microarray data were used to investigate ERG’s 
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regulation of AKR1C3 expression under different androgen media conditions; with 1% C.S.S 

being low androgen conditions and DHT supplemented media being high androgen conditions. A 

Pearson’s correlation plot was performed for AKR1C3 and ERG expression in 1% C.S.S. media, 

and data revealed that there was a very strong and significant correlation between AKR1C3 and 

ERG expression (r = 0.90) (Figure 19A). In addition, a correlation plot was performed for 

AKR1C3 and ERG expression in DHT supplemented media, and data revealed that there was a 

very strong and significant correlation between AKR1C3 and ERG expression (r = 0.87) (Figure 

19B). 
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Figure 18. ERG Regulates AKR1C3 Gene Expression During High and Low Androgen 

Conditions in Prostate Cancer Cells. A.) Western blot analysis of AKR1C3 and ERG expression 

in VCaP cells treated with four different androgen media conditions 1.) 10% FBS 2.) 1% C.S.S. for 

24 hours 3.) 1% C.S.S. for 48 hours 4.) 1% C.S.S. 24 hours + 100 nM 5α-Adione for 24 hours. 

GAPDH was used as a loading control. Numbers above blots represent fold changes determined by 

densitormetry. B.) RT-PCR analysis of AKR1C3 and ERG expression in VCaP shERG cells treated 

with either 1% C.S.S. for 48 hours or 100 nM 5α-Adione for 24 hours. GAPDH was used as a 

loading control. NTC is non-template control. C.) RT-qPCR analysis of AKR1C3 expression in 

LNCaP ERG40 cells treated with either 1% C.S.S. for 48 hours or 100 nM 5α-Adione for 24 hours. 

Samples were normalized to GAPDH. Statistical analysis was a two-tailed, paired, student’s t-test 

(N = 6) * P<0.05, *** P<0.001. 
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Figure 19. Positive Correlation Between ERG Expression and AKR1C3 Expression 

During High and Low Androgen Conditions in Prostate Cancer Cells. Correlation plots 

of ERG and AKR1C3 expression in VCaP siRNA cells treated with A.) 1% C.S.S. media for 

48 hours or B.) DHT treated media for 48 hours. Microarray data for ERG and AKR1C3 

expression was extracted from Gene Expression Omnibus database GSE39354. Statistical 

analysis was a Pearson’s correlation plot (N =6) with an r value of r = 0.90, * P <0.05.  
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DISCUSSION 

 The ERG overexpression data in LNCaP and BPH-1 cells suggests that TMPRSS2-ERG 

transcription factor positively regulates AKR1C3 enzyme expression. Importantly, ERG was not 

only shown to regulate AKR1C3 gene transcription at the mRNA transcript level, but also at the 

protein level. This suggests a functional consequence of ERG’s regulation of AKR1C3, wherein 

this enzyme can enhance DHT production and increase AR activation in PCa cells. It was 

interesting to see that truncated ERG40 and ERGwt protein overexpression were both shown to 

increase AKR1C3 expression. This is not surprising considering the ERG40 protein does retain 

its highly conserved ETS, C-terminal, DNA binding domain. ERG40 can therefore retain its 

ability to directly bind DNA, in the same manner as its full-length ERGwt counterpart. This 

finding does not rule out the possibility that truncated ERG40 may have novel biological 

functions compared to ERGwt in certain contexts. It does however suggest that ERG induced 

AKR1C3 overexpression is mediated by overexpression of TMPRSS2-ERG, and not by novel 

biological functions of the ERG40 protein.  

 The androgen conditioned media studies indicated that ERG and AKR1C3 are inversely 

regulated by androgen levels and most likely AR signaling. At first appearance this finding 

seems to contradict the previous results which showed that ERG positively regulated AKR1C3 

expression, because in Figure 18A as ERG expression decreased, AKR1C3 expression increased. 

However, further results suggested that although ERG and AKR1C3 are inversely regulated by 

the AR, ERG still regulated AKR1C3 expression independent of androgen levels (Figure 18B 

and 18C; Figure 19A and 19B). It may be that AR regulates AKR1C3, AR regulates ERG, and 

ERG regulates AKR1C3 expression. These data indicate that ERG regulates AKR1C3 

expression independent of AR and DHT regulation. Interestingly, it has been suggested in the 
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published literature that AKR1C3 regulation by androgens is a feedback mechanism used by the 

cell in order to maintain a steady balance of intracellular androgen levels (Cai et al. 2011b, 

Mitsiades et al. 2012). This prevents androgen levels from becoming too high or too low, neither 

of which are optimal for PCa tumor growth. Indeed, many enzymes in biochemical pathways are 

subject to feedback loops; when their product becomes too high the gene is turned off, and when 

their product becomes too low the gene is turned back on. This may very well be the case for the 

AKR1C3 gene, and this further supports the pivotal role of AKR1C3 as a DHT synthesis enzyme 

in PCa cells. 

 

3.3 Direct Binding of ERG to the AKR1C3 gene  

RESULTS 

TMPRSS2-ERG fusion gene binds directly to three regions of the AKR1C3 gene  

 

Chromatin immunoprecipitation (ChIP) PCR was used in order to determine if 

TMPRSS2-ERG regulation of AKR1C3 enzyme was occurring through a direct DNA binding 

mechanism. Genomic ChIP-PCR primers were designed that spanned -2 kb and + 2 kb of the 

AKR1C3 gene region, relative to the transcription start site (TSS). This region includes the 

promoter and intron 1 region of the AKR1C3 gene; therefore primers were designated as P1-P4 

for the promoter region and I1-I4 for the intron 1 region. Primers were specifically designed to 

amplify regions of the AKR1C3 gene that contained putative ERG consensus binding sites (5’-

GGAA/T-3’), and each primer amplified a region of approximately 500 bp (Figure 20A). ChIP-

PCR data from VCaP cells indicated that ERG was bound to the intron 1 region directly 
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downstream of the TSS for AKR1C3, and was not bound to the promoter region upstream of the 

TSS (Figure 20B).  

Plasminogen activator urokinase (PLAU) gene has been shown previously to be a direct 

binding target gene of TMPRSS2-ERG in VCaP cells (Tomlins et al. 2008, Yu et al. 2010). 

PLAU gene was used as a positive control for ERG binding in the ChIP-PCR assay, and was 

indeed shown to be bound by ERG in VCaP cells. In addition, negative control primers were 

designed that amplified two separate regions of the AKR1C3 gene that do not contain any 

putative ERG consensus binding sites (-2.5 kb and -6 kb upstream of TSS). Negative control 

primers revealed that there was no ERG binding to these sites in the AKR1C3 gene in VCaP 

cells. Positive and negative control primers helped validate that ERG was bound to the AKR1C3 

intron 1 region, directly downstream of the TSS (Figure 20C). In order to further interrogate 

ERG binding to the AKR1C3 gene region in VCaP cells, ChIP-Seq was performed in duplicate. 

ChIP-Seq data revealed that ERG was bound to the AKR1C3 gene region in three separate 

locations along the gene. ERG binding could be positively identified by binding enrichment 

peaks seen along the AKR1C3 gene. A smaller ERG binding peak was identified near the intron 

1 region downstream of the TSS, which was consistent with the ChIP-PCR data. In addition, two 

larger ERG binding peaks were identified far upstream of the TSS near -50 kb and -75 kb 

(Figure 21). 
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Figure 20. Selective Binding of ERG to the AKR1C3 Intron 1 Gene Region. A.) Diagram 

illustrating the AKR1C3 gene region located on chromosome 10. Black tick marks indicate ERG 

binding sites (5’-GGAA/T-3’) located in the region of -2 Kb to +2 Kb relative to the transcription 

start site (TSS). P1-P4 and I1-I4 represent genomic primer amplification sites for the promoter and 

intron 1 region, respectively. B.) ChIP-PCR analysis of putative ERG binding sites in the AKR1C3 

gene. ChIP was performed in VCaP cells using anti-ERG antibody; IgG antibody was used as a 

control for non-specific binding. NTC = non-template control. ChIP-PCR primer amplification 

regions in the AKR1C3 gene are indicated to the left of each DNA gel. C.) ChIP-PCR analysis of a 

known ERG binding site in PLAU promoter region using VCaP cells. ChIP-PCR analysis of ERG 

binding in AKR1C3 gene in VCaP cells. Negative control primers were used in VCaP cells to 

demonstrate specificity of the ChIP-PCR technique to detect only ERG binding. 
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Figure 21. Selective Binding of ERG to Three Sites Along the AKR1C3 Gene. ChIP-Seq 

analysis was performed in duplicate using anti-ERG antibody in VCaP cells (Data provided by 

Dr. Chinnaiyan’s lab at University of Michigan). The AKR1C3 gene is located on 

chromosome 10 and is depicted on the scale representing 20 kb intervals shown by black tick 

marks above the data. ChIP-Seq ERG enrichment binding peaks are shown in red. The 

AKR1C3 transcription start site is shown by the green arrow below the data, along with exons 

shown by black tick marks. 

Data Courtesy of  

Dr. Arul Chinnaiyan’s Lab 
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DISCUSSION 

The ChIP data confirms that TMPRSS2-ERG regulates AKR1C3 enzyme gene 

expression via direct binding to the AKR1C3 gene. The RT-PCR data and western blot data 

implies that ERG positively regulates the gene expression of AKR1C3. Thus the ChIP data 

suggests that TMPRSS2-ERG directly binds to the AKR1C3 gene and enhances its gene 

transcription. The individual significance of each of the three ERG binding sites is currently 

unknown at this time. It is possible that each site recruits different cofactors involved in 

AKR1C3 transcription. It is also possible that the intron 1 binding site is a direct activator of 

AKR1C3 transcription, while the two distal sites further upstream of the transcription start site 

serve as enhancer regions. 

 It was surprising to see that ERG was bound to the intron 1 region as opposed to the 

promoter region of AKR1C3. However, there is evidence in the published literature that other 

androgen biosynthetic enzymes are regulated through their intron regions. For example, 

HSD3B2 enzyme transcription was positively regulated by YY1 transcription factor binding to 

the intron 1 region (Foti & Reichardt 2004). Sp3 transcription factor was shown to bind HSD3B1 

and HSD3B2 intron 1 regions and regulate gene transcription (Foti & Reichardt 2004). Sp family 

members are known to bind consensus sequences called GC boxes (5’-GGGCGG- 3’) (Kolell & 

Crawford 2002, Liu et al. 2006). Interestingly, the only GC box in the entire AKR1C3 gene is 

located in intron 1, near the same site as ERG binding was identified. This suggests that ERG 

may co-regulate AKR1C3 gene expression with Sp3 in the intron 1 region. Additionally, ERG 

has been shown to co-regulate gene expression with Fos and Jun transcription factors (Basuyaux 

et al. 1997, Buttice et al. 1996), which are known to bind as Fos/Jun heterodimers to consensus 

sequences called AP-1 sites (5’-TGACTCA-3’) (Nakabeppu et al. 1988, Sitlani & Crothers 



77 
 

 

1996). Interestingly, the only AP-1 site in the entire AKR1C3 gene is located in intron 1, near the 

same site as ERG binding was identified. This suggests that ERG may co-regulate AKR1C3 

gene expression with Fos/Jun in the intron 1 region. The co-regulation of AKR1C3 gene 

expression by ERG and other transcription factors remains to be further elucidated; indeed it 

seems unlikely that ERG exerts its regulation of AKR1C3 gene expression in a solo fashion. 
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Chapter 4 
 

TMPRSS2-ERG and AKR1C3 Regulation of AR Activation and Cell Cycle 

Progression 
 

4.1 ERG Promotes Bypass Pathway Synthesis of 5α-Androstanedione into DHT via 

Upregulation of AKR1C3 

 

RESULTS 

 

Bypass pathway metabolite 5α-androstanedione is converted into DHT in TMPRSS-ERG fusion-

positive cells, and DHT synthesis is impaired in ERG knockdown cells. 

 

 Previous results indicated that ERG positively regulated the gene expression of AKR1C3 

enzyme; therefore HPLC tandem mass spectrometry (HPLC-MS/MS) analysis was used in order 

to quantify androgen synthesis in TMPRSS2-ERG fusion-positive VCaP cells. This would 

determine 1.) if AKR1C3 has an effect on DHT synthesis in PCa cells and 2.) if ERG regulation 

of AKR1C3 has an effect on DHT synthesis in PCa cells. In order to deplete the media of 

androgens, 1% charcoal stripped serum (1% C.S.S.), phenol-red free media was used for all 

HPLC-MS/MS experiments. VCaP shScrambled cells were serum starved and androgen starved 

for 24 hours prior to treatment with 10 nM, 50 nM, and 100 nM of bypass pathway androgen 

metabolites 5α-androstanedione (5α-Adione), androsterone, and androstanediol for 24 hours 

(Figure 22). These DHT precursor metabolites were used as a substrate feeding experiment in 

order to determine which enzymes in the DHT pathway were actively synthesizing DHT. 

Treatment with 5α-Adione caused a significant dose-dependent increase in DHT synthesis in 

VCaP shScrambled cells (Figure 23). These data suggest the importance of 5α-Adione as a 

precursor metabolite for DHT synthesis, a reaction that is known to be catalyzed by the AKR1C3 

enzyme (Figure 22). 
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Figure 22. DHT Biosynthetic Pathway: Highlighting the Bypass Pathway and its 

Androgen Metabolites Used for Mass Spectrometry Analysis.  The red asterisk signifies the 

bypass pathway to DHT synthesis where testosterone synthesis is bypassed and DHT is 

produced from 5α-Adione. The red boxes indicate substrate feeding androgen metabolites used 

for HPLC-MS/MS analysis of bypass pathway DHT synthesis. Metabolites in the red boxes 

were used to treat VCaP shScrambled cells at 10 nM, 50 nM, and 100 nM for 24 hours prior to 

collection for HPLC-MS/MS analysis. AKR1C3 enzyme is shown in underlined bold red to 

emphasize its position in the pathway where it catalyzes the biochemical reduction of 5α-

Adione to DHT.   
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Figure 23. DHT is Produced from Bypass Pathway Androgen 5α-Adione in VCaP 

Cells. HPLC-MS/MS analysis of DHT levels in VCaP shScrambled cells treated with 10 

nM, 50 nM, and 100 nM bypass pathway androgen metabolites for 24 hours. Androgen 

metabolite treatments are listed on the x-axis. Vehicle controls represent 0.1% EtOH 

treated samples. Cells and media were collected for HPLC-MS/MS analysis and quantified 

as pmol/1,000,000 cells. Statistical analysis was a two-tailed, unpaired, student’s t-test (N = 

3) ** P<0.01, *** P<0.001. 
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In order to determine if ERG regulation of AKR1C3 has an effect on DHT synthesis in 

VCaP cells, a substrate feeding experiment was performed and androgens were quantified with 

HPLC-MS/MS analysis. VCaP shScrambled and shERG cells were serum starved and androgen 

starved in 1% C.S.S. phenol-red free media for 24 hours prior to being treated with 100 nM of 

androgen metabolites androstenedione, androstenediol, 5α-Adione, and androsterone for 24 

hours (Figure 24). These DHT and testosterone precursor metabolites were used as a substrate 

feeding experiment in order to determine which enzymes in the DHT pathway were actively 

synthesizing DHT and testosterone. Treatment with androstenedione and androstenediol caused a 

significant increase in testosterone synthesis in both VCaP shRNA cell lines compared to vehicle 

controls (Figure 25A). There was a significant decrease in testosterone synthesis in VCaP shERG 

cells treated with androstenediol compared to shScrambled controls; however there was not a 

significant difference between VCaP shRNA cell lines following treatment with androstenedione 

(Figure 25A). The largest increase in DHT production was seen in VCaP shScrambled cells 

following treatment with 5α-Adione (Figure 25B). DHT synthesis was significantly decreased in 

VCaP shERG cells treated with bypass pathway metabolites 5α-Adione and androsterone 

compared to VCaP shScrambled controls (Figure 25B). Testosterone precursor metabolites 

androstenedione and androstenediol did not elicit an increase in DHT synthesis in either VCaP 

shRNA cell lines compared to the vehicle controls (Figure 25B). 
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Figure 24. DHT Biosynthetic Pathway: Androgen Metabolites Used for Mass 

Spectrometry Analysis in ERG Knockdown Cells. The red boxes indicate substrate feeding 

androgen metabolites used for HPLC-MS/MS analysis of testosterone and DHT synthesis. 

Metabolites in the red boxes were used to treat VCaP shScrambled and shERG cells at 100 nM 

for 24 hours prior to collection for HPLC-MS/MS analysis.  
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Figure 25. DHT Production from 5α-Adione is Impaired in ERG Knockdown Cells. A.) 

HPLC-MS/MS analysis of Testosterone levels in VCaP shScrambled and shERG cells treated 

with 100 nM androgen metabolites for 24 hours. B.) HPLC-MS/MS analysis of DHT levels in 

VCaP shScrambled and shERG cells treated with 100 nM androgen metabolites for 24 hours. 

Androgen metabolite treatments are listed on the x-axis. Vehicle controls represent 0.1% EtOH 

treated samples. Cells and media were collected for HPLC-MS/MS analysis and quantified as 

pmol/1,000,000 cells. Statistical analysis was a two-tailed, unpaired, student’s t-test (N = 3) * 

P<0.05, ** P<0.01, *** P<0.001. 



84 
 

 

DISCUSSION 

 The HPLC-MS/MS data indicates that 5α-Adione is a key precursor metabolite for DHT 

synthesis in VCaP cells, and that ERG may regulate this reaction through upregulation of the 

AKR1C3 enzyme. Treatment with testosterone bypass pathway metabolites 5α-Adione and 

androsterone induced the largest amounts of DHT synthesis. It is interesting that the enzymes 

that are known to be active in the synthesis of androsterone  5α-Adione  DHT are HSD17B6 

and AKR1C3. These are the same enzymes that were shown from the RT-PCR and RT-qPCR 

data to be regulated by TMPRSS2-ERG in VCaP cells. This suggests that ERG may enhance 

DHT production through upregulation of these enzymes. HSD17B3 is also known to synthesize 

5α-Adione to DHT; however the RT-PCR and RT-qPCR data indicated that HSD17B3 was 

expressed at very low levels and AKR1C3 was expressed at very high levels in VCaP cells. The 

CT value for AKR1C3 was 23, whereas the CT value for HSD17B3 was 35. In addition, the 

AKR1C3 PCR band showed up at cycle 30, whereas the HSD17B3 PCR band showed up at 

cycle 40. These data suggest that AKR1C3 is the more likely enzyme to catalyze the biochemical 

reduction of 5α-Adione to DHT in PCa cells, rather than the HSD17B3 enzyme. 

 It was surprising to see that the testosterone produced from 100 nM androstenedione and 

androstenediol treatment did not elicit a significant increase in DHT synthesis. It is well known 

that testosterone is converted into DHT by SRD5A enzyme in the classical DHT synthesis 

pathway (Penning 2010). The SRD5A enzyme was shown to be highly expressed from the RT-

PCR and RT-qPCR data; therefore the reasoning as to why this reaction was not highly active in 

the VCaP cells is currently unknown. It may be that in PCa cells SRD5A has a higher affinity to 

convert androstenedione to 5α-Adione for bypass pathway production of DHT rather than 

androstenedione to testosterone for classical pathway production of DHT. Indeed, this concept 
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has been shown previously in a study that showed PCa cells treated with androstenedione had a 

higher rate of 5α-Adione synthesis compared to testosterone synthesis (Chang et al. 2011). These 

data suggest that the bypass pathway is the predominant pathway for DHT synthesis in PCa cells, 

rather than the classical pathway. It may also be that the testosterone being synthesized is 

binding directly to the AR before it is converted to DHT. It is possible that in PCa cells 

testosterone binds AR with a greater affinity than the SRD5A1 enzyme. This would leave 

SRD5A1 less occupied with testosterone and more available to bind androstenedione. 

 

4.2 AKR1C3 synthesis of 5α-Androstanedione into DHT Activates the AR and Promotes 

Cell Cycle Progression 

 

RESULTS 

 

5α-Adione treatment induces AR nuclear translocation and PSA gene activation in VCaP cells, 

and PSA gene activation is reduced in ERG and AKR1C3 knockdown cells 

 

 The HPLC-MS/MS data indicated that 5α-Adione treatment induced DHT synthesis in 

VCaP cells. In order to determine whether this had a functional consequence on AR activation, 

AR nuclear translocation and PSA gene expression were investigated. When the AR is activated 

by its ligands DHT and testosterone, it translocates from the cytoplasm into the nucleus. Once 

inside the nucleus, the AR can homodimerize and bind to the DNA of its target genes and 

activate gene expression (Lonergan & Tindall 2011). A well-known target gene of the AR is 

KLK3, or prostate specific antigen (PSA) (Lonergan & Tindall 2011, Yu et al. 2010). Therefore, 

AR nuclear translocation and PSA gene expression activation can be used to determine if AR 

signaling has been activated. 

 Immunocytochemistry was used to analyze AR localization in the nucleus. VCaP cells 

were plated on cover slips and serum starved and androgen starved for 24 hours in 1% C.S.S. 
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phenol-red free media prior to treatment with either 100 nM 5α-Adione or 0.1% EtOH vehicle 

for 24 hours. Cells were fixed with formaldehyde, the AR was stained with fluorescent 

antibodies, and the nucleus was stained with DAPI fluorescent dye. Treatment with 100 nM 5α-

Adione caused a marked increase in AR translocation into the nucleus compared to vehicle 

controls (Figure 26). In VCaP vehicle cells AR can be seen in the cytoplasm surrounding the 

nucleus, as indicated by the distinct red color (cytoplasmic AR) and green color (nucleus) 

(Figure 27A). In VCaP 5α-Adione cells the AR can be seen predominantly inside the nucleus, as 

indicated by the distinct yellowish orange color (AR/nucleus overlap) (Figure 27A). AR 

colocalization with the nucleus was quantified using Volocity colocalization software 

(PerkinElmer) and represented as a Pearson’s correlation coefficient. In VCaP cells treated with 

0.1% vehicle there was a weak to moderate correlation of AR with the nucleus (r = 0.35); 

however, in 5α-Adione treated cells there was a strong correlation of AR with the nucleus (r = 

0.72) (Figure 27B).  
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Figure 26. 5α-Adione Treatment Induces AR Activation in VCaP Cells. 

Immunocytochemistry was performed in VCaP cells treated with 100 nM 5α-Adione for 

24 hours. Vehicle cells represent 0.1% EtOH treated control cells. Cells were plated on 

cover slips and stained with anti-AR antibody, Texas Red fluorophore conjugated 

antibody, and DAPI. Cover slips were mounted onto slides and subjected to confocal 

imaging at 40X magnification. Vehicle cells represent 0.1% EtOH treated control cells. 
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Figure 27. 5α-Adione Treatment Induces AR Nuclear Translocation in VCaP Cells. 

A.) Immunocytochemistry was performed in VCaP cells treated with 100 nM 5α-Adione 

for 24 hours. Cells were plated on cover slips and stained with anti-AR antibody, Alexa 

Flour 633 fluorophore conjugated antibody, and DAPI. Cover slips were mounted onto 

slides and subjected to confocal imaging at 40X magnification. B.) VCaP confocal 

images shown in part A. were quantified for nuclear AR using merged images 

(AR/DAPI) in the Volocity colocalization software program. Statistical analysis was a 

two-tailed, unpaired, student’s t-test (N = 4) *** P<0.001. The dashed line indicates a 

strong Pearson’s correlation value of r > 0.7. 
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AR translocation into the cell nucleus was previously verified, thus warranting 

investigation of AR target gene activation. RT-qPCR and RT-PCR was used to analyze PSA 

expression in VCaP shScrambled, shERG, and shAKR1C3 cells. Cells were serum starved and 

androgen starved for 24 hours in 1% C.S.S. phenol-red free media prior to treatment with either 

100 nM 5α-Adione or 0.1% EtOH vehicle for 24 hours. VCaP shERG cells had significantly 

decreased PSA expression in 5α-Adione treated cells compared to VCaP shScrambled controls 

(Figure 28A and 28B). In addition, VCaP shAKR1C3 cells also had significantly decreased PSA 

expression in 5α-Adione treated cells compared to VCaP shScrambled controls (Figure 28C). 

ERG knockdown and reduced AKR1C3 expression were validated in VCaP shERG cells (Figure 

28D). AKR1C3 knockdown was validated in VCaP shAKR1C3 cells (Figure 28E). The absence 

of AKR1C3 enzyme and reduced PSA gene activation during 5α-Adione treatment in both 

knockdown cell lines suggests that AKR1C3 may use 5α-Adione as a substrate to synthesize 

DHT and activate the AR in PCa cells. 
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Figure 28. 5α-Adione Induced PSA Gene Activation is Decreased in ERG and AKR1C3 

Knockdown Cells. A.) RT-qPCR and B.) RT-PCR analysis of PSA expression in VCaP 

shScrambled and shERG cells treated with 100 nM 5α-Adione for 24 hours. NTC = non-template 

control. C.) RT-qPCR analysis of PSA expression in VCaP shScrambled and shAKR1C3 cells 

treated with 100 nM 5α-Adione for 24 hours. Statistical analysis was a two-tailed, unpaired, 

student’s t-test A.) (N = 5) and C.) (N = 2) * P<0.05, *** P<0.001. D.) Western blot analysis of ERG 

and AKR1C3 expression in VCaP shScrambled and shERG cells. E.) Western blot analysis of 

AKR1C3 expression in VCaP shScrambled and shAKR1C3 cells. GAPDH was used as a loading 

control. Numbers above blots represent fold changes determined by densitometry.  



91 
 

 

 The AR has been shown to regulate cell cycle progression in androgen-independent PCa 

cells through upregulation of cell cycle genes UBE2C, CDK1, and CDC20 (Wang et al. 2009). 

Through upregulation of these M-phase cell cycle genes, AR can increase cell cycle progression 

and facilitate tumor growth in CRPC. Data from previous figures suggests that TMPRSS2-ERG 

and AKR1C3 enhance DHT production and increase AR activation in PCa cells; therefore cell 

cycle progression in ERG and AKR1C3 knockdown cells was investigated. Knockdown of ERG 

or AKR1C3 in VCaP cells significantly reduced cell proliferation rate compared to VCaP 

shScrambled controls (Figure 29A and 29B). The cell proliferation rate may be partially 

impacted by CDC20 expression during 5α-Adione treatment. CDC20 expression was increased 

by 2-fold in VCaP shScrambled cells treated with 100 nM 5α-Adione for 24 hours compared to 

vehicle controls (Figure 29C). PSA was used as a positive control for AR activation and was 

increased by 9-fold compared to vehicle controls, whereas CDK1 expression was not affected by 

5α-Adione treatment (Figure 29C). Interestingly, there was no induction of CDC20 or PSA 

expression in VCaP shERG cells treated with 100 nM 5α-Adione for 24 hours compared to 

vehicle controls (Figure 29D). ERG40 was transiently overexpressed in LNCaP cells and cell 

cycle genes and AKR1C3 were analyzed. LNCaP ERG40 cells had significantly increased 

expression of AKR1C3, and a moderate increase in CDC20 and CDK1 expression compared to 

empty vector controls (Figure 29E). UBE2C was not significantly increased in LNCaP ERG40 

cells compared to empty vector controls (Figure 29E). A model diagram summarizing the 

findings from the data thus far can be seen in Figure 30. 
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Figure 29. Cell Proliferation is Hindered in ERG and AKR1C3 Knockdown Cells. Cell 

proliferation assay in VCaP shScrambled and A.) shERG B.) shAKR1C3 cells grown in regular 

10% FBS media for 5-10 days. RFU = relative fluorescent units. Statistical analysis was a two-

tailed, unpaired, student’s t-test A.) (N = 3) and B.) (N = 4) * P<0.05, ** P<0.01, *** P<0.001. 

C.) RT-PCR analysis of CDK1, CDC20, and PSA in VCaP shScrambled cells treated with 100 

nM 5α-Adione for 24 hours. Numbers above DNA gel represent fold changes determined by 

densitometry. D.) RT-PCR analysis of CDC20 and PSA in VCaP shScrambled and shERG cells 

treated with 100 nM 5α-Adione for 24 hours. NTC = non-template control. GAPDH was used as 

a loading control. E.) RT-qPCR analysis of AKR1C3, CDC20, CDK1 and UBE2C expression in 

LNCaP ERG40 cells. Samples were normalized to GAPDH. Statistical analysis was a two-tailed, 

paired, student’s t-test (N = 3) * P<0.05, ** P<0.01. 
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Figure 30. A Model Diagram Summarizing ERG Regulation of Androgen Biosynthetic 

Enzyme Expression and AR Activation in Prostate Cancer Cells. The TMPRSS2-ERG fusion 

gene is activated by the AR in PCa cells. This leads to overexpression of ERG and activation of 

AKR1C3 gene expression via direct binding of ERG to the AKR1C3 gene. AKR1C3 can use 5α-

Adione as a substrate to synthesize DHT, which can then activate AR signaling. The AR can 

translocate into the cell nucleus, activate expression of target genes including cell cycle genes, 

and promote tumor growth in CRPC. Note the feed-forward activation loop of AR ERG 

AKR1C3 DHT AR and so on. Under this model, PCa cells can continue to activate AR 

signaling even in the presence of androgen ablation therapies and low intratumoral androgen 

levels. 
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DISCUSSION 

 

  The immunocytochemistry data clearly indicated that treatment of VCaP cells with 100 

nM 5α-Adione for 24 hours activated translocation of AR into the cell nucleus. This finding is 

consistent with the HPLC-MS/MS data where it was shown that treatment of VCaP cells with 

100 nM 5α-Adione for 24 hours caused a significant increase in DHT production. Once inside 

the cell nucleus, AR activated expression of its target gene PSA. This PSA activation was very 

significant in the VCaP shScrambled cells where it was shown to be almost ~18-fold higher than 

the vehicle control. The PCR data was also consistent with the HPLC-MS/MS data where it was 

shown that knockdown of ERG caused a significant decrease in DHT production. This was 

reflected in the VCaP shERG cells that showed a significant decrease in PSA activation 

following 5α-Adione treatment. Consistent with previous data where it was shown that 

knockdown of ERG caused a significant reduction in AKR1C3 expression; AKR1C3 knockdown 

cells also had significantly reduced PSA activation following 5α-Adione treatment. These data 

suggest that AKR1C3 converts 5α-Adione to DHT, and that ERG regulates this step through 

upregulation of AKR1C3 expression in PCa cells. These data suggest a model where ERG 

regulates ABE gene expression, which enhances DHT production and AR activation. This can 

fuel AR regulated cell cycle progression, and provide a feed-forward activation loop for 

continuous ERG and AKR1C3 expression (Figure 30). Under this model, PCa cells can continue 

to activate AR signaling even in the presence of androgen ablation therapies and low 

intratumoral androgen levels. 

 It was clear from the cell proliferation assay data that knockdown of ERG or AKR1C3 

caused impairment in PCa cell proliferation compared to shScrambled controls. However, the 

cell cycle genes responsible for impaired proliferation remain to be fully elucidated. The data 
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indicated CDC20 may have been responsible to a moderate degree because it was not induced by 

5α-Adione treatment in VCaP shERG cells; however, it was only induced by 2-fold in VCaP 

shScrambled cells. In addition, CDK1 was not affected by AR activation suggesting it is not the 

cell cycle gene responsible for impaired proliferation rate in ERG and AKR1C3 knockdown 

cells. The LNCaP ERG40 cells showed only slight increases in CDC20 and CDK1. This may 

have been induced by the presence of higher AKR1C3 levels and therefore higher DHT 

production and AR activation. However, this data was not performed under 5α-Adione 

stimulation, so further experiments will need to be investigated in order to directly link these 

findings to the model in figure 30.  

 The effects of ERG on cell cycle progression and cell survival signals mediated through 

AR activation remain to be fully characterized. There are a large number of genes involved in 

cell cycle progression that remain to be interrogated under this model. The small analysis 

performed thus far focused on several M-phase genes. It may be beneficial to perform a cell 

cycle analysis in ERG and AKR1C3 knockdown cells in order to determine which phase of the 

cell cycle is being directly hindered. This will help yield a better understanding of which cell 

cycle genes may be affected by the ERG  AKR1C3  AR signaling axis in PCa cells. Cell 

survival signals also need to be investigated in this model as it appears shERG and shAKR1C3 

cells are not growing and eventually dying. It may be that AR regulates cell proliferation signals 

as well as cell survival signals in the VCaP cells. 
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Chapter 5 

 

Clinical Implications for TMPRSS2-ERG and AKR1C3 in Prostate Cancer 

Patients 
 

RESULTS 

 The cell line data in PCa cells and BPH-1 cells indicated that ERG regulated AKR1C3 

expression. In order to access the clinical implications of this regulation process, ERG and 

AKR1C3 expression were analyzed in human prostate tumor tissue specimens using 

immunohistochemistry (IHC) analysis, microarray database analysis, and Kaplan-Meier survival 

outcome analysis. IHC analysis was performed using formalin-fixed, paraffin embedded serial 

sections from human prostate tumor tissue specimens that were stained with anti-ERG and anti-

AKR1C3 antibodies. IHC data revealed that ERG and AKR1C3 were co-expressed in human 

prostate tumor tissue specimens (Figure 31A). The IHC data was scored based on the presence 

(+) or absence (-) of ERG and AKR1C3 expression, and co-expression of the two genes was 

shown to be statistically significant (Figure 31B). In addition, formalin-fixed, paraffin embedded 

serial sections from LuCaP PCa tumor xenografts were also subjected to IHC analysis. IHC data 

revealed that ERG and AKR1C3 were co-expressed in LuCaP tumor xenograft samples (Figure 

32). 
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Figure 31. AKR1C3 and ERG are Co-Expressed in Human Prostate Tumor Tissue 

Specimens. A.) Immunohistochemistry staining analysis in human prostate tumor tissue 

specimens (N = 64) using anti-AKR1C3 (left) and anti-ERG (right) antibodies. B.) IHC 

staining analysis in 64 human prostate tumor tissue specimens was scored based on the 

presence (+) or absence (-) of ERG and AKR1C3 staining. Values are presented in a 

quantification table and statistical analysis was performed.  
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Figure 32. AKR1C3 and ERG are Co-Expressed in LuCaP Xenograft Tumor Tissue 

Specimens. Immunohistochemistry staining analysis in LuCaP xenograft tumor tissue 

specimens using anti-AKR1C3 (left) and anti-ERG (right) antibodies.  
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 Publicly available microarray data were utilized to investigate whether ERG and 

AKR1C3 expression correlated in human metastatic prostate tumor tissue samples (N = 25). 

Microarray data for ERG and AKR1C3 expression was extracted from Gene Expression 

Omnibus (GEO) database GDS2545. A Pearson’s correlation plot was performed for ERG and 

AKR1C3 expression and the two genes were shown to have a fairly strong and significant 

correlation in human metastatic prostate tumor tissue samples (r = 0.69) (Figure 33).  

 In order to investigate whether ERG and AKR1C3 expression in human prostate tumor 

tissue samples had an effect on patient survival outcome, Kaplan-Meier survival plots were 

performed. Patient survival data for AKR1C3 high and low expression tumors, as well as 

TMPRSS2-ERG fusion-positive and fusion-negative tumors was extracted from the Oncomine 

database study Setlur et al. prostate cancer (Setlur et al. 2008). These patients were diagnosed by 

transurethral resection performed for obstruction many years ago in the pre-PSA era. They were 

thought to have clinically localized cancer and had no further treatment. This is a unique data set 

that provides insight into the natural history of prostate cancer followed for decades until death.  

Microarray data for AKR1C3 expression was extracted from GEO database GSE8402. AKR1C3 

expression in PCa tumors was divided into low expression tumors and high expression tumors 

(Figure 34A). The presence or absence of the TMPRSS2-ERG fusion gene was determined by 

FISH and PCR analysis, and this data was extracted from GEO database GSE8402. Patient 

survival data from the GSE8402 database was available on the Oncomine database. Kaplan-

Meier survival plots revealed that patients with AKR1C3 high expression tumors had 

significantly lower survival probability compared to AKR1C3 low expression tumors (Figure 

34B). In addition, patients with TMPRSS2-ERG fusion-positive tumors had significantly lower 

survival probability compared to fusion-negative tumors (Figure 34C). Patients with AKR1C3 
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low expression tumors or TMPRSS2-ERG fusion-negative tumors had a median survival of 15 

years, whereas patients with AKR1C3 high expression tumors or TMPRSS2-ERG fusion-

positive tumors had a median survival of 10 years. A limitation in using these data, however, is 

that the patients had untreated disease as opposed to castrate-resistant disease. A model diagram 

summarizing the hypothesis presented in this paper is shown in Figure 35. 
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Figure 33. Correlation of AKR1C3 and ERG Expression in Human Metastatic 

Prostate Tumor Samples. A correlation plot was performed for AKR1C3 and ERG 

expression in 25 metastatic prostate tumor samples. Microarray expression data for 

AKR1C3 and ERG was extracted from the Gene Expression Omnibus database 

GDS2545. Statistical analysis was a Pearson’s Correlation plot (N = 25) with an r value 

of r = 0.69, *** P<0.001. 
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Figure 34. The Presence of AKR1C3 or TMPRSS2-ERG fusion gene in PCa Tumors 

Predicts for Worse Survival Outcome. A.) AKR1C3 microarray expression values extracted 

from Gene Expression Omnibus database GSE8402 (N = 363) used to determine high vs. low 

expression tumors. B.) Kaplan-Meier survival plot of AKR1C3 low expression tumors (N = 51) 

vs. AKR1C3 high expression tumors (N = 46). Patient survival data was extracted from the 

Oncomine database Setlur et al. prostate cancer (2008). C.) Kaplan-Meier survival plot of 

TMPRSS2-ERG fusion-negative tumors (N = 292) vs. TMPRSS2-ERG fusion-positive tumors (N 

= 62). Patient survival data was extracted from the Oncomine database Setlur et al. prostate 

cancer (2008). TMPRSS2-ERG fusion status was determined by FISH and PCR. For statistical 

analysis a Gehan-Breslow-Wilcoxon Test and a Mantel-Cox Test were performed ** P<0.01, *** 

P<0.001. 
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Figure 35. A Model Diagram Summarizing the Hypothesis of ERG Regulation of Androgen 

Biosynthetic Enzyme Expression in Prostate Cancer. The TMPRSS2-ERG fusion gene is 

activated by the AR in PCa cells. This leads to overexpression of ERG and activation of 

AKR1C3 gene expression via direct binding of ERG to the AKR1C3 gene. AKR1C3 can use 5α-

Adione as a substrate to synthesize DHT, which can then activate AR signaling. The AR can 

translocate into the cell nucleus, activate expression of target genes including cell cycle genes, 

and promote tumor growth in CRPC. Increased tumor growth results in lower patient survival 

outcome. Under this model, PCa cells can continue to activate AR signaling even in the presence 

of androgen ablation therapies and low intratumoral androgen levels. This may result in the 

development and progression of CRPC. 
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DISCUSSION 

 The PCa patient tumor data was consistent with the PCa cell line data. The cell line data 

indicated that ERG positively regulated the expression of AKR1C3 enzyme in PCa. The PCa 

patient tumor data and LuCaP tumor xenograft data indicated that there was co-expression of 

ERG and AKR1C3 in human prostate tumor tissue specimens. This suggests that ERG regulates 

the expression of AKR1C3 in PCa tumor tissue specimens and LuCaP tumor xenografts. In 

addition, the Kaplan-Meier survival data showed that the presence of AKR1C3 or ERG in PCa 

tumor tissue specimens was correlated with lower survival probability. The IHC data and the 

Kaplan-Meier survival data support the model presented in Figure 35, where ERG regulates 

AKR1C3 expression and induces an AR regulated increase in tumor growth. It is interesting to 

note that ERG and AKR1C3 are associated with reduced survival even prior to the institution of 

androgen deprivation therapy. Future studies may help determine whether ERG and AKR1C3 

are prognostic in CRPC patients. In any case, these data support a rationale for therapeutically 

targeting ERG and AKR1C3 in the clinic. The data presented in this paper suggest it may be 

beneficial to treat PCa patients with a combination of TMPRSS2-ERG inhibitor, AR antagonist, 

and ABE inhibitors. Specifically, TMPRSS2-ERG fusion-positive and AKR1C3-positive PCa 

patients may respond well to combination treatment with TMPRSS2-ERG inhibitor, AR 

antagonist (Enzalutamide), CYP17A1 inhibitor (Abiraterone), and AKR1C3 specific inhibitor.  
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Intratumoral androgen synthesis in prostate cancer (PCa) contributes to the development 

of castration-resistant prostate cancer (CRPC). Several enzymes responsible for androgen 

biosynthesis have been shown to be overexpressed in CRPC, thus, contributing to CRPC in a 

castrated environment.  Although intratumoral androgen synthesis is thought to contribute to the 

development and progression of CRPC, currently little is known regarding the regulation of 

androgen biosynthetic enzyme gene expression in PCa. The TMPRSS2-ERG transcription factor 

has been shown to be present in primary PCa tumors as well as CRPC tumors. The hypothesis 

was investigated that TMPRSS2-ERG fusions regulate androgen biosynthetic enzyme (ABE) 

gene expression and the production of androgens, which contributes to the development of 

CRPC. Data revealed that ERG regulated the expression of ABE, AKR1C3, in PCa cells via 

direct binding to the AKR1C3 gene region. Knockdown of ERG resulted in reduced AKR1C3 

expression, which caused a reduction in both DHT synthesis and PSA expression in VCaP PCa 

cells treated with 5α-Androstanedione, a DHT precursor metabolite. Immunohistochemical 
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staining revealed that ERG was co-expressed with AKR1C3 in PCa tissue samples. These data 

suggest that AKR1C3 catalyzes the biochemical reduction of 5α-Androstanedione to DHT in 

PCa cells, and that ERG regulates this step through upregulation of AKR1C3 expression. 

Elucidation of ERG regulation of ABEs in CRPC may help to stratify TMPRSS2-ERG fusion-

positive PCa patients in the clinic for anti-hormone driven therapies; and AKR1C3 may serve as 

a valuable therapeutic target in the treatment of CRPC. 
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