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CHAPTER 1 INTRODUCTION 

General 

 The elastic stability of flexural members has been an important consideration in 

civil engineering design since the beginning of the 20th century. With all buildings, 

bridges and the majority of the United States’ critical infrastructure containing beams, 

the limit state of lateral torsional buckling continues to be prevalent even to this day. 

Bucking or instability is the propensity of a structural component or member to distort 

and deflect in directions that are not consistent with the direction of the applied loading. 

Elastic lateral torsional buckling of a flexural member is the instability associated with 

displacement of that member in both the lateral (with respect to the load) and torsional 

(with respect to the member) directions. This limit state is limited to the elastic material 

behavior region of the material being considered. 

 Buckling in flexural members may occur on both the local level and global level. 

On the local level, buckling occurs when the components that make up the larger 

structure or member begin to distort. This distortion is always in directions orthogonal to 

the direction of the stress in the component. Global buckling is the displacement on the 

member or structure level that occurs in directions that are orthogonal to the applied 

loading.  

 Design codes around the world have provisions for designing flexural members 

considering the limit state of lateral torsional buckling. The United States, Australia, 

Europe and Canada have advanced this limit in their design codes since their inception 

and continue to improve its characterization for practical designers to use. These 
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codices recognize that design engineers in ordinary circumstances do not have the 

resources to perform complex structural analyses for this limit state. As a result, efforts 

have been to produce shorthand methods that more or less adequately predict the 

strength of these members. These shorthand methods typically involve decoupling the 

effects that make up the lateral torsional buckling limit state and describing them using 

closed form factors. Although not all effects are as yet functionally described in 

prevailing design codes, the effects have been identified as: moment distribution 

between supports, effect of load height, restraint at member ends and along members’ 

length, and buckling interaction. 

Moment distribution between supports refers to the shape the moment function 

takes between support locations; brace points are not considered. The effect of load 

height refers to the vertical position of the load with respect to the shear center of the 

member. Restraint at member ends and along members’ length refers to how the 

member is supported and what levels of bracing is applied. Buckling interaction is how 

buckling of the member is affected by adjoining structural elements. 

Problem Statement 

 Flexural member design for the lateral torsional buckling limit state using the 

prevalent design codes of the United States, Australia, Europe and Canada consider 

the effect of moment distribution between supports and the effect of load height with 

respect to the shear center. All codices consider the effect of moment distribution 

between supports. Only the Canadian and Australian codes attempt to describe the load 

height effect. The effects of end restraint and buckling interaction are simply neglected 
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as they produce less of an effect on the stability of flexural members compared to 

moment distribution and load height.  

 To describe the effects of moment distribution between supports a closed form 

expression called the equivalent uniform moment factor is used. This factor (termed 

moment factor) is an attempt at modifying the basic strength of a loaded member by 

indexing its strength against the strength of a member loaded with a constant moment 

distribution. The factors used by these code works are inaccurate for some loading 

circumstances on both the conservative and unconservative ends of capacity prediction. 

This issue arises due to the broad range of moment distributions for which the factor is 

intended to predict capacities. Current efforts to improve the effectiveness of these 

moment factors involve producing expressions for specific loading types. Although 

extensive effort has been put into producing solutions for possible distributions, many 

loading scenarios remain uncharacterized. Without solutions for a comprehensive range 

of load distributions, it is unlikely design codes will alter their methods and use moment 

factors tailored to specific load distribution types. 

The effects of load height are characterized in the design codes that consider this 

effect by modifying the members’ effective length. This approximation is suggested in 

place of a more complex rational method. In the case of a load that serves to restrain 

the member against buckling from the load, the height of the loading is simply neglected 

for these codes that consider load height. When a member is loaded below its shear 

center the effective capacity of the member increases because the load acts to correct 

the torsional displacement tendency. When the load is above the shear center, 

however, the capacity decreases significantly as the load produces additional 
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destabilizing forces in the torsional direction. The design codes that neglect the effect of 

load height are in danger of producing structural components and therefor entire 

structures that are structurally deficient during critical phases of their life. The most 

significant of these phases being the construction period, as many of the members will 

be loaded in a standalone temporary fashion where they do not have suitable lateral 

bracing to ensure negation of the load height effect. 

 Objective and Scope of Research 

The objective and scope of this research is to study the effects of moment 

distribution on the lateral torsional stability of flexural members for new and as yet 

uncharacterized load distribution types, and to produce load height factors for these 

distributions using a new method for decoupling load height and moment distribution 

effects using continuum mechanics derivation as substantive proof and to investigate 

the effect of moment distribution and load height on the reliability of steel members. 

 The moment distributions studied are those produced from an nth degree 

spandrel load type with variable end moments. These spandrel load types can be 

converted into other continuous load types, such as a uniformly distributed load, 

uniformly increases load, and a parabolic nonlinear load. Moment factors are produced 

for these load types and compared with design codes to show the discrepancy that 

exists between their approximation and the true solution. 

 The load height effect is characterized by decoupling it from the effect of moment 

distribution and presenting it in terms of a load height factor. Load height factors are 

provided for these new load types studied and are intended to modify the basic strength 
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of a member in the same way the moment factors do. The moment factors and load 

height factors are intended to be used in conjunction while describing the lateral 

torsional buckling capacity of a member with the spandrel type loading. Either factor 

may be used exclusively without affecting the other to determine the change in capacity 

associated with each effect. Load heights are described from 0 inches to 22 inches 

which covers top flange loading of AISC 360 (AISC 2010) wide flange sections depths 

up to and including a W44. 

Organization 

This dissertation contains 8 chapters. 

Chapter 1 provides an introduction to the instability problem associated with 

flexural members and describes the problem statement and objective and scope 

of the research. 

Chapter 2 presents a state of the art review of the available literature sources 

that are used as the foundation for this work. 

Chapter 3 provides derivation and general discussion on the mechanics used to 

model the instability issue. 

Chapter 4 outlines the numerical method used to solve the governing differential 

equation relating to lateral torsional stiffness 

Chapter 5 describes the mechanics used to develop the load height factors and 

presents them with practical design examples. 
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Chapter 6 presents some additional developments in elastic stability from the 

effect of various kinds of restraint. 

Chapter 7 shows the results of a reliability analysis targeted to AISC 360 steel 

beams subject to loading above the shear center and moment distribution. 

Chapter 8 presents the final conclusions drawn from the body of research 

presented heir in and the need for future research in the elastic stability area 
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CHAPTER 2 LITERATURE REVIEW 

Introduction 

Buckling or instability can be described as a sudden displacement or deformation 

in a direction not consistent with the direction of the applied load. That is to say that the 

displacement associated with instability is apparent in one or more of the axis 

orthogonal to the axis of the applied load. Lateral torsional buckling is instability 

associated with flexural members. The resulting instability from lateral torsional buckling 

is apparent in the direction orthogonal to the primary axis being loaded and directly, the 

member’s torsional axis (Trahair 1993, Timoshenko and Gere 1961). This makes lateral 

torsional buckling a combination of destabilization of two of the six total primary planes 

of a member. The axis transverse to the length of the member and orthogonal to the 

plane of loading is referred to as the member’s weak axis and the member’s flexural 

stiffness in this direction resists destabilization in this direction. The torsional axis runs 

the length of the member and destabilization in this direction is resisted by the members 

torsional stiffness and warping stiffness. The warping stiffness of a cross section is the 

ability of the cross section to maintain its shape against distortion from an applied 

torsional load. Inherent to lateral torsional buckling for flexural members is that only 

members bent about their strong axis are capable of buckling this way (Nethercot and 

Trahair 1976). It is possible for these types of members to fail through torsional 

buckling; however, this failure mechanism is not the focus of this investigation (Clark 

and Hill 1960). Members that fail through lateral torsional buckling may be in two 

possible stress states at the onset of instability. These stress states are elastic and 

plastic for ductile materials such as steel. Elastic lateral torsional buckling is the result of 
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a member destabilizing while in the elastic stress range of the material. Inelastic lateral 

torsional buckling is the result of a member destabilizing while in a stress state beyond 

the elastic limit of the material. Typically, long thin flexural members are prone to elastic 

lateral torsional buckling while short stocky members are more susceptible to inelastic 

lateral torsional buckling, if buckling occurs at all (Kirby and Nethercot 1979). 

Mechanisms Affecting Flexural Member Instability in Literature 

Analytical computation of the lateral torsional stability of flexural members is 

practically impossible for all cases and exact solutions, in many cases, do not exist in 

the realm of current mathematics. Numerical solution methods are the resulting tools 

used to investigate these phenomena. It cannot be expected for the typical design 

engineer to employ these advanced methods to solve routine structural stability related 

limit state problems. Therefor it is necessary to develop alternative methods that 

produce accurate, conservative results that do not require significant computational 

effort. To develop these types of methods, a full review of relevant lateral torsional 

buckling literature is necessary. Review of relevant lateral torsional buckling literature 

shows four mechanisms that affect the elastic lateral torsional stability of flexural 

members (Nethercot and Trahair 1976, Wong and Driver 2010, Clark and Hill 1960): 

1. Moment distribution between restraints 

2. Varying levels of out of plane restraint at member ends and brace points 

3. Load height with respect to shear center 

4. Buckling interaction 
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Moment Distribution between Restraints 

In most flexural member design scenarios, moment distributions between 

restraint locations are not uniform. These cases result in significant computational effort 

to solve bending stiffness equations, which is undesirable. To reduce computational 

effort, design codes almost exclusively use what is called the equivalent uniform 

moment factor approach (AISC 360 2010, Zuraski 1992). This method takes the 

analytical solution for the worst case scenario moment loading and assumes this to be 

the lowest possible destabilizing capacity for the member. Termed the basic strength, 

this worst case scenario corresponds to a simply supported beam, loaded with a 

constant moment distribution on its strong axis, at the members shear center (Kirby and 

Nethercot 1979). This is shown in Figure 1 and Figure 2. 

 

Figure 1: Simply supported beam, global view 

L

Mx Mx

y

z
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Figure 2: Simply supported beam, cross section view 

To formulate a mathematical description of a flexural member that undergoes 

lateral torsional buckling affected by the described factors, the coordinate references 

shown in Figures 1 and 2 are used. Moment directions Mx’ and My’ correspond to a local 

coordinate system oriented on the buckled cross section, shown in Figure 2. Double 

arrows indicate moment directions following the right hand rule. The applied loads to the 

member are Mx, while other loads indicated are to show positive force directions only. 

Warping and twisting at the members ends, are assumed to be free and fully restrained 

respectively, with rotation about the members weak axis unrestrained. Bending stiffness 

equations for the beam are written about the local coordinates <x,y,>’ as shown in 

Eq.’s 1, 2, and 3 respectively. 

2

x x '2

d y
EI M

dz
                   (1) 

2

y y '2

d x
EI M

dz
                   (2) 



Mx

My

M x'

M y'



x'y' x

y

-x

-y
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3

w z '3

d d
GJ EC M

dz dz

 
                  (3) 

Eq.’s 1, 2, and 3 can be combined into one expression representing the twisting 

stiffness of the member as shown in Eq. 4 using directional cosine information between 

local and global coordinates (Trahair 1993, Timoshenko and Gere 1961). 

24 2
x

4 2 2

w y w

Md GJ d
0

ECdz dz E I C

 
                   (4) 

The variable parameters used in the elastic lateral torsional buckling analysis for 

doubly symmetric members shown, more formally, are the member’s weak axis moment 

of inertia, Iy, and the member’s torsional parameter which contains warping and torsion 

stiffness relations. The torsion parameter is expressed in Eq. 5 as: 

wEC

L GJ

  
 
 

                  (5) 

Where E is the materials modulus of elasticity, Cw is the cross sections warping 

constant, G is the materials shear modulus, J is the torsional inertia of the cross section, 

and L is the lateral and torsional unbraced length of the member. Eq. 5 can be seen in 

the equation for the basic lateral torsional buckling strength, Eq. 6. Eq. 6 is the 

analytically exact solution for Mx in Eq. 4, corresponding to a simply supported member 

loaded with a constant moment distribution (Trahair 1993, Timoshenko and Gere 1961). 

2
w

x,cr y 2

EC
M EI GJ 1

L GJ L

  
  

 
               (6)  
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With the basic strength shown in Eq. 6, numerical solutions are developed for 

other moment distributions and indexed against the basic strength so as to produce an 

equivalent uniform moment factor. This equivalent uniform moment factor multiplied by 

the basic strength for a member produces an approximate solution to the lateral 

torsional stability that flexural member with accuracy dependent on the method used. To 

eliminate the need for numerical analysis and thus increase computational efficiency, 

the equivalent uniform moment factor using the basic strength approach is employed. 

For these types of systems as they pertain to routine design, two methods are 

employed. These methods employed, capture the relative trends in the rates of change 

of various moment distributions between braces both generally and discretely. That is to 

say, some expressions cover all possible types of moment distribution between braces 

with one closed form expression, while others cover specific moment distributions 

individually (Serna et al. 2006, Lopex et al. 2006). In general, the methods that cover 

general types of moment distributions are less accurate when compared against 

numerically convergent solutions than those that are tailored to specific distributions of 

moment directly (Suryoatmono and Ho 2002, Wong and Driver 2010)]. The work done 

in these areas can be classified as follows: 

a. Methods developed for unequal end moments (Austin 1961, Salvadori 

1955) 

b. Methods developed for general moment distributions (Serna et al. 2006, 

Kirby and Nethercot 1979) 
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c. Methods developed for specific moment distributions (Trahair 1993, 

Suryoatmono and Ho 2002, Clark and Hill 1960) 

a. Methods developed for unequal end moments 

The first attempts at describing the impact of moment distribution on later 

torsional buckling of flexural members produced results that are capable of handling 

cases where the rate of change of the moment functions are constant, that is to say the 

moment functions are uniform or linear only. More specifically, they are capable of 

handling cases that have applied end moments as the only applied forces causing 

bending. These relations are shown in Eq. 7 (Salvadori 1955) and Eq. 8 (Austin 1961). 

2

bC 1.75 1.05 0.3 2.3                    (7) 

 
0.1

bC 0.6 0.4 2.5                   (8) 

Cb represents the equivalent uniform moment factor (often referred to as the 

moment gradient factor) and  is a parameter that quantifies the bending induced flange 

compression force variation along the length of the unbraced segment (Zuraski 1992). 

These show that members having variation that result in both compression and tension 

within the unbraced segment are less susceptible to destabilization than those under 

compression through the entire length. Eq. 7 represents a lower bounded solution using 

the Rayleigh-Ritz method while Eq. 8 comes from analysis work done on beam-

columns. The limitation to these equations is obvious. Very few practical cases have 

flexural members loaded with only end moments.  
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b. Methods developed for general moment distributions 

Due to the limitations of Eq.’s 7 and 8, expressions for general moment 

distributions are available as shown in Eq. 9 (Serna et al. 2006) and Eq. 10 (Kirby and 

Nethercot 1979).  

2

max
b 2 2 2 2

max a b c

35M
C

M 9M 16M 9M


  
                (9) 

max
b

max a b c

12M
C

2M 3M 4M 3M


  
              (10) 

In these equations, Mmax is the absolute value of the maximum moment with an 

unbraced segment, Ma is the absolute value of the moment at 25% of the unbraced 

segment, Mb is the absolute value of the moment at 50% of the unbraced segment, and 

Mc is the absolute value of the moment at 75% of the unbraced segment. Although in 

these papers it does not indicate to use the absolute value of these moments, it is 

generally recognized that this is to be true (AISC 360 2010, Wong and Driver 2010). Eq. 

9 is the simplified result of curve fitting the data of numerical analysis that focused on 

the gradient of moment and the various level of lateral, torsional, and warping restraint 

at support locations. This section deals specifically with the effect of moment distribution 

between support locations, therefore Equation 9 represents a simplified version that 

considers free lateral restraint, and fixed torsional and warping restraint at supports.  

Eq. 10 is developed to allow for calculation independence of the magnitude of the end 

moments, unless one or both are the maximum moment within the unbraced segment 

under consideration. Additionally, Eq. 10 is developed to provide a way to describe the 
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degree of non-uniformity and its effect on flexural member stability. The issue with these 

general expressions for moment factor is their lack of accuracy in predicting capacity 

based on lateral torsional buckling. in some cases these expressions produce 

unconservative results. Some circumstances where unconservative results are 

produced are when there are abrupt changes in the distribution of moment, as is the 

case when members are loaded with concentrated moments along their unbraced 

length. Cases of reverse curvature bending also cause inherent problems with these 

closed form type expressions. Some preliminarily work has been done to show a 

divergence in these solution types as member length changes (Serna et al. 2006). 

c. Methods developed for specific moment distributions 

Instead of the general approach taken above, methods are available that consider 

specific moment distributions and have results tailored specifically to each type. A total 

of 12 moment distributions are studied and presented in the available technical 

literature. These moment distributions are covered by (Trahair 1993, Clark and Hill 

1960, Suryoatmono and Ho 2002). The 12 moment distribution types are shown below 

in Table 1. 

Distribution Type Loading and Support Conditions 

1 

 L

MM
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10 

 

11 

 

12 

    

Table 1: Moment distribution types studied in literature 

Contained within Table 1 are common load and dimension variables. The load 

variables are represented by P, M and w which represent concentrated loads, applied 

moments, and distributed loads respectively. Dimension variables are represented by L 

and a. In addition to these common variables are more complex factors  and β. Factor 

L
2

w
wL²
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12
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 represents the ratio of the absolute value of the smaller to larger end moments. Factor 

 is considered as positive for double curvature bending and negative for single 

curvature bending. These end moments for this factor are taken from within each 

unbraced segment. β represents the ratio of the applied end moment to the fixed end 

moment. Moment types 8, 9, and 10 have a lateral and torsional brace at the midspan 

and are otherwise simply supported. All other moment types are unbraced along their 

span lengths and are simply supported at the member ends. While these 12 cases do 

not provide a comprehensive set of solutions for all possible design scenarios, they are 

thought to provide a substantial enough reference point for moment factors relating to 

typical design (Trahair 1993, Clark and Hill 1960). Some important load cases are 

missing from the literature and they are uniform loading (triangular) and parabolic or 

nonlinear load types.  

An inherent drawback to this type of moment factor classification is the wide 

variety of brace dimensions required for typical design. Braces are likely to occur in 

many different placed along the members length, the middle is just one possible 

location. Often, brace locations are not determined by the engineer, but architects and 

others responsible for facilitation of the overall structures aesthetics and functionability. 

A wider range of brace location possibilities for this type of method are required to cover 

more typical design cases.  

Varying Levels of Out of Plane Restraint 

The second factor affecting the lateral torsional stability of flexural members 

addresses the effects of torsional, lateral and warping end restraint in the out of plane 



19 
 

 
 

directions. Some work is done in the literature to characterize free and fixed end 

conditions in the out of plane directions, but no trend information is presented to 

accommodate intermediate values of restraint. Further, these sources consider only the 

effects of lateral bending restraint and warping restraint, torsional restraint is not 

considered (Serna et al. 2006, Lopex et al. 2006, Austin et al. 1955). The boundary 

conditions associated with these types of end restraint are represented in Expressions 

11, 12 and 13, respectively. These expressions are shown as being set to zero, but they 

may be changed otherwise to represent other restraint types. 

2

2

0d x
0,      at     z

Ldz

 
   

 
             (11) 

2

2

0d
0,      at     z

Ldz

  
   

 
             (12) 

0
0,      at     z

L


 
   

 
              (13) 

Expressions 11 and 12 represent unrestrained lateral bending and warping end 

conditions, while Expression 13 represents fully fixed end conditions for twisting type 

deformation about the z-axis. Literature sources use factors k1 and k2, which are similar 

to column effective length factors (AISC 360 2010), to handle end conditions associated 

with Expressions 11 and 12. For a free lateral bending restraint end condition and a free 

warping restraint end condition k1 is equal to k2, which is equal to 1.0. For fully fixed 

lateral bending and warping end restraint k1 is equal to k2, which is equal to 0.5 (Serna 

et al. 2006, Lopez et al. 2006). To better describe the end restraint factors as analogous 
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to column effective length factors, a simple graphical approach is described using 

Figure 3 and 4. 

 

Figure 3: First buckled shape for simply supported member 

Figure 3 shows a simply supported member and the relative buckled shape. If 

this shape is considered as the first buckled shape corresponding to k values of 1.0, it 

can be compared against the buckled shapes of other restraint cases to try and find the 

number of occurrences within a unit unbraced length being considered. The ratio of 

these occurrences is essentially the effective length for a particular support condition.  

This is graphically analogous to indexing the mathematical solution for a specific 

restraint condition to the base simply supported case. 

 

Figure 4: First buckled shape for a fully fixed member 
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Figure 4 shows directly the implementation of the effective length factor. For the 

fully fixed member shown, it can be identified that locations d and e are inflection points 

and therefore beam segment dce  represents the basic buckled shape shown in Figure 

3. Beam segments ad  and eb  when superimposed at points a and b, also form the 

basic buckled shape in Figure 3. Totaling the number of times this basic shape appears 

reveals 2 total occurrences making the effective length of this equal to 0.5. For other 

end conditions such as those that are unsymmetrical and those that are not idealized 

(pin, fix, free), it can be difficult if not impossible to use this graphical method to 

determine effective length factors as it relies heavily on symmetry and geometrically 

identifiable mathematical relationships such as inflection points and locations of zero 

rotation. For cases such as these, the problem must be formulated mathematically. The 

formulation can be as simple as performing a numerical analysis for a member with 

determinant end conditions and indexing these against the results of an analysis 

considering this same member as simply supported. 

Load Height With Respect to Shear Center 

The resistance of flexural members against lateral torsional instability can be 

affected significantly by the location of applied loads vertically relative to a cross 

sections shear center. A conclusion drawn previously in this work is that members bent 

about their weak axis are not capable of lateral torsional instability. It can be shown that 

members bent about their weak axis where Ix ≥ Iy will destabilize laterally under 

appropriate circumstances where the load is applied above the shear center of the 

cross section [6]. Further, under certain circumstances members will undergo a form of 

pure torsional destabilization.  
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To develop an analytical approach to assess the effect of load height, a free body 

diagram is composed with a load P acting some height yv away from a cross sections 

shear center, shown in Figure 5.  

 

Figure 5: Free body diagram, load height analysis 

This case considering a variable concentrated load is used for initial explanation 

because of its simplicity. Figure 5 shows the displaced cross section as a result of 

lateral torsional instability. As the cross section undergoes twisting type deformation () 

additional torsion is imposed as a result of the applied transverse loads offset from the 

cross sections shear center (yv) caused by the differential rotational displacement along 

the beam length. The additional torsional load imposed is equal to the rotation angle 

multiplied by the distance from the load to shear center (in the plane of the load) and 

multiplied by the magnitude of the load. This can be seen mathematically in Expression 

14 and graphically in Figure 5.  
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z,p vM Py                    (14) 

Here, Mz,p is the additional torsional load that is imposed. In terms of the torsional 

stiffness equation presented in Eq. 3, Mz,p is considered as negative for cases where 

the load is applied below the cross sections shear center. This will result in an increase 

in the member’s lateral torsional stability. Consider applying the load P in Figure 5 to the 

bottom flange of the member cross section shown. It is apparent that doing so will 

produce helping rotation to restore the member to its stable position. For cases with 

loads above the cross sections shear center, Mz,p is considered as positive.  

Work in this area is limited in scope and as a result practical solutions for designs 

are not well developed. Australian and Canadian design codes use an effective length 

factor approach where the beam length is considered as slightly longer to modify the 

basic strength for the equivalent uniform moment factor approach presented previously 

(CSA 2001, SAA 1998). This approach is for circumstances where the beams are not 

restrained by the loads causing the buckling and where lateral bracing at the top flange 

is not otherwise provided. Methods to handle concentrated loads and distributed loads 

above the shear center are available for specific locations respective to the shear center 

of the member only. That is to say for global member analysis simplified methods do not 

exist without performing higher level numerical methods. Some work is needed in this 

area to address this effect for some common load cases. The common load cases 

discussed in Table 1 would benefit from the study of this effect. A general trend as load 

height changes would be beneficial along with some kind of load height factor to be 

used in ordinary design circumstances that will provide an approximate solution. 
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Buckling Interaction 

Buckling interaction deals specifically with the ability of unbraced adjacent 

unbuckled elements to restrain buckling of a more critical section. A simple example of 

this is a two span simply supported continuous beam, with unsymmetrical loadings 

relative to each span. When one span becomes unstable, assuming the beam 

deflection remains smooth and continuous, an inflection point will form and at this 

location buckling resistance is negligible. This is shown in Figure 6 with the dashed line 

representing an overhead view of the three dimensional buckled shape. 

 

Figure 6: Buckling interaction for 2 span simply supported continuous beam 

Essentially the unbraced segment that does not buckle (the right span) provides 

elastic restrain to the segment that does buckle (the left span). Based on the type and 

geometry of the structure a set of cases can be developed to describe the different 

types of buckling interaction cases apparent in this two span continuous system. For the 

symmetric structure shown in Figure 6 there are 3 possible cases considering the two 
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discrete load types W1 and W2 shown. These cases (a, b, and c) can be seen in Figure 

7.  

 

Figure 7: Buckling interaction cases a, b and c 

Case a for this structure is shown in Figure 7. This case represents a scenario 

when W1 > W2 and an inflection point forms within the buckled span (left span). Case b 

occurs when W1 < W2 and an inflection point forms in the right span. In these two cases, 

it is assumed that the span containing the larger load dominates the overall structures 

buckling. Cases a and b are antitheses of one another. Case 3 corresponds to a 

scenario when W1 = W2 and the inflection point forms at the middle support. For this 

case the two unbraced segments are considered to buckle equally and because the 

inflection point forms at the support for this case, the effect of buckling interaction is not 

apparent. Buckling interaction is caused by the influence of other adjacent members 

providing some degree of variable restraint at locations of the members’ intersection. 
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Because of this, the breadth of coverage in literature sources is minimal with a need for 

additional research with regards to specific system characterization. 

In general current code works do not consider the effects of load height, end 

restraint, and buckling interaction. Excluding the effects of buckling interaction is 

acceptable because it will improve the resistance of flexural members against lateral 

torsional instability. The effects of load height and end restraint should not be excluded 

because unconservative results are possible in many circumstances. End restraint and 

load height in fact can produce the most severe effects as their influence can change 

the governing flexural limit state that causes a member to fail. Discussed above are the 

two limits that may be produced from this effect as induced lateral torsional buckling of 

weak axis bent member where Ix > Iy, and the propagation of the limit state of pure 

torsional buckling.  

Relevant Code Procedure 

To understand the current state of the practice in handling the elastic stability of 

flexural members, several design specifications and code manuals are reviewed. The 

specific codes and specifications studied are: 

1. Specification for Structural Steel Buildings (AISC 360 2010) 

2. LRFD Bridge Design Specifications (AASHTO 2012)  

3. Structural Use of Steelwork in Building: Code of Practice for Design – 

Rolled and Welded Sections (BSI 2000) 

4. Australian Standard: Steel Structures, (SAA 1998) 
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5. Limit States Design of Steel Structures, (CSA 2001) 

6. Canadian Highway Bridge Design Code, (CSA 2006) 

7. Design of Steel Structures, (ECS 1992) 

These code works and specifications present a comprehensive review of the 

current relevant standards used throughout the international construction and design 

community. Contained within this list are two American specifications, two Canadian 

specifications, two European specifications and one Australian specification. All works 

use the equivalent uniform moment factor approach to handle the moment distribution 

between supports. 

1. AISC 360-10, Specifications for Structural Steel Buildings 

The American steel works specification considers only the distribution of moment 

between supports as having an effect on flexural member stability. A quarter points 

moment method is used here as described for Eq.’s 9 and 10. The expression for 

moment factor is shown in Eq. 14. 

max
b

max a b c

12.5M
C 3.0

2.5M 3M 4M 3M
 

  
       (14) 

The difference between Eq.’s 10 and 14 is the coefficient applied to the 

segments maximum moment, Mmax. This coefficient has been adjusted to more 

adequately fit scenarios with fixed member ends (AISC 2010). Eq. 14 is applicable to all 

moment distributions with the exception of cantilever members where the free end is 

unbraced. In this such case, the moment factor Cb = 1.0. For all other applicable cases, 



28 
 

 
 

the moment factor is limited to 3.0. This value of 3.0 is the largest allowance for this 

type of factor amongst any of the design specifications considered (AISC 360 2010). 

This general closed form factor which is intended for use with any moment distribution is 

in many cases inaccurate. 

2. AASHTO, LRFD Bridge Design Specifications 

Similar to the American steel works specification, the AASHTO bridge code 

considers only the effects of moment gradient on flexural member stability. The 

expression for equivalent moment factor is the same as AISC 360 and also allows for 

the consideration of the expression shown in Equation 7 (presented differently however) 

under the appropriate circumstances. The form of this expression used by AASHTO is 

shown in Eq. 15. 

2

1 1

2 2

1.75 1.05 0.3 2.3
   

      
   

b

f f
C

f f
            (15) 

Variable f1 is the stress without consideration of lateral bending at the brace point 

opposite to the one corresponding to f2. The variable f2 is the largest compressive stress 

without consideration of lateral bending at either end of the unbraced length of the 

flange under consideration. Further, Eq. 15 is limited to Cb = 1.0 for cantilevers with the 

free end unbraced, for members where fmid/f2 > 1 or f2 = 0, and for situations when the 

larger end moment is not the largest moment within the unbraced segment under 

consideration. The variable fmid is the stress without consideration of lateral bending at 

the middle of the unbraced length of the flange under consideration. This equation is 
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applicable to members loaded with only end moments therefor moment diagrams must 

be transformed to accommodate this requirement (AASHTO 2012).  

3. BS 5950-1, Structural Use of Steelwork in Building: Code of Practice for Design 

The British specification considers the effects of moment gradient between 

supports using the same approach as shown in Eq. 14, however, the upper limit is lower 

and different weights are applied to the mid span moments. The moment factor used is 

shown in Equation 16. This specification has the lowest upper limit of any of the code 

works studied (BSI 2000). 

max
b

max a b c

M
C 2.273

0.2M 0.15M 0.5M 0.15M
 

  
          (16) 

4. AS 4100, Australian Standard: Steel Structures 

The Australian specification considers the effects of moment gradient between 

supports, the type of support at unbraced segment ends, and the height of the load with 

respect to the shear center. The moment factor used employs a square root format and 

is shown in Eq. 17.  

max
b

2 2 2

a b c

1.7M
C 2.5

M M M
 

 
                  (17) 

The effects of end restraint and load height are addressed through the use of 

factors to be applied directly to change the unbraced length to an equivalent unbraced 

length. Le, the equivalent unbraced length, is the unbraced length multiplied by factors 

kt, kl and kr. These factors represent the twist restraint factor, the load height factor and 
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the lateral rotation restraint factor respectively. This effective length, Le, is used in the 

basic strength equation shown previous in Eq. 6. To determine these k factors, SAA 

refers designers to the use of some code works published design tables (SAA 1998). 

5. CSA-S16-01, Limit States Design of Steel Structures 

The Canadian design specification uses an equivalent uniform moment factor 

approach to handle moment gradient between support locations. The equation used is 

the same as shown in Eq. 7, however, with an upper limit of 2.5 instead of 2.3. This is 

shown in Eq. 18. 

2

bC 1.75 1.05 0.3 2.5                 (18) 

No indication is provided as to whether expression applies to transverse loads. 

The typical assumption with this expression is that it is for end moments and 

distributions that are linear. Additionally, this specification requires that Cb = 1.0 for any 

circumstance where there exists a moment within an unbraced segment that is larger 

than either end moment, effectively negating the beneficial effect entirely (CSA 2001). 

Load height is also addressed in the form of an effective length modification factor. 

6. CSA-S6-06, Canadian Highway Bridge Design Code 

The Canadian equivalent to the United States AASHTO bridge code, this 

specification has adopted the methods required in CSA 2001. In addition to the methods 

described in CSA 2001, some alternative methods are described. These methods 

correspond directly to those published by Clark and Hill for moment Types 1 through 12 

shown in Table 1 (Clark and Hill 1960, CSA 2006). 
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7. Eurocode 3 EN-1993-1-1, Design of Steel Structures 

The European design code is adopted in part of whole by many countries and is 

among the most popular codes in amongst the international community. To handle the 

stability of flexural members, Eurocode uses an equivalent moment factor approach and 

refers users to lateral torsional buckling curves along with table values for specific 

moment distributions. The moment distributions described correspond directly to Types 

1, 2, 4 and 7 shown in Table 1 (ECS 1992).  

Testing and Experimental Studies 

To verify the aforementioned mechanisms’ effects on lateral torsional stability of 

flexural members has been quantified accurately, or at least conservatively, 

experimental data are needed. These data are required to prove each effect individually 

and superimposed onto one another. These data are also required to prove elastic 

buckling theory for the system being studied. Elastic buckling theory must be verified 

through testing so the limits to these mechanisms effecting stability defined analytically 

are proven experimentally. An example of this is the boundary at which a member fails 

while in an elastic stress range or plastic stress range for the material, assuming 

buckling occurs as opposed to yielding or fracture of some type prior to these other 

failure mechanisms propagating. Because these other failure mechanisms are possible, 

clearly defining the boundaries between them (in terms of stress or force) is critically 

important to the proper implementations of limit state design procedures.  

Elastic lateral torsional buckling has been verified for a few load cases and cross 

section types. Testing has primarily been done on sections made of aluminum. The test 
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cases include: tests on thin walled structures in general (Wang et al. 2012), symmetrical 

I-beams under uniform moment (Dumont and Hill 1940), unequal end moments (Clark 

and Jombock 1957), concentrated load at center span (Flint 1950), and rectangular 

cross sections (Dumont 1937), channels and z-shapes (Hill 1954). These tested cases 

prove elastic lateral torsional buckling theory for each of the cross sections studied. 

They also provide a good description of the limits of specific members for elastic lateral 

torsional buckling. 

A study performed by Wang, Yuan, Shi and Cheng describes an experimental 

setup for fixed end restrained aluminum I-beams (Wang et al. 2012). The beams are 

provided by a manufacturer and material properties are verified by cutting sections from 

flanges and webs. The dimensions of each specimen are recorded along with other 

material properties tested such as modulus of elasticity and yield stress. The test setup 

uses bolted angles to provide fixity at the members ends. The members are loaded with 

2 symmetric concentrated loads.  
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CHAPTER 3 ELASTIC STABILITY MECHANICS 

General 

The lateral torsional buckling stiffness is formulated using differential equations to 

allow for the solution to be tailored to the effects of moment distribution and load height. 

These differential equations are based on the work of Timoshenko and Gere (1961) and 

Trahair (1998) with some modifications. These differential equations are formulated 

according to the cross section undergoing lateral torsional displacement shown in 

Figure 2. Force equilibrium is used as the method for constructing the differential 

equation from the differential stiffness in the primary rotational directions. 

Basic Strength 

 The basic strength is the elastic lateral torsional buckling capacity of a member 

loaded with a constant moment distribution. To determine the basic strength, rotational 

equilibrium is taken about the x, y, and z axes as defined in Figure 1. The rotational 

equilibrium equations about these axes are shown in Eq.’s 1, 2, and 3. Combining these 

equations and using the directional cosine information found in Table 2 to transform 

between the displaced and undisplaced cross sections (
x ' xm m , 

y ' xm m , and 

z ' x

dx
m m

dz
  ), yielding Eq. 19. 
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Coordinates x y z 

x’ 1  
dx

dz
  

y’ - 1 
dy

dz
  

z’ 
dx

dz
 

dy

dz
 1 

Table 2: Directional cosines between buckled and unbuckled cross sections 

3

w x3

d d dx
GJ EC m

dz dzdz

 
             (19) 

 By putting Eq. 19 into standard form, as shown in Eq. 4, the differential equation 

may be solved for analytically using standard methods as outlined in Nagle et al. 2004. 

The general solution to the differential equation shown in Eq. 4 and the auxiliary solution 

are provided in Eq. 20 and Eq. 21 respectively. 

      kz kz

1 2 3 4z c sin gz c cos gz c e c e            (20) 

4 2r Ar B 0             (21) 
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             (22) 
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             (23) 
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4 2r Ar B 0              (24) 

2
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1 2

A A 4B
k,g r ,r

2

 
             (25) 

 The boundary conditions imposed on this system correspond to a simply 

supported beam with torsion fixed and warping unrestrained at the member ends. The 

relations for these boundary conditions are shown in Eq.’s 26 and 27 respectively. 

0
0,      at     z

L


 
   

 
          (26) 
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0d
0,      at     z

Ldz

  
   

 
         (27) 

 Once these boundary conditions are imposed, the general solution may be 

differentiated and solved at these values. The resulting expressions allow a system of 

equations to be used to solve for constants c1, c2, c3, and c4. The expressions are as 

follows: 

  2 3 40 c c c 0               (28) 

     1 4L c sin gL 2c sinh kL 0            (29) 

 2

2 2 2

2 3 42

d 0
g c k c k c 0

dz


             (30) 
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   
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1 42

d L
g c sin gL 2k c sinh kL 0

dz


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Solving for the constants yields the equation for twist as shown in Eq. 32. Once 

these constants are determined, Eq. 20 is used along with the auxiliary equation shown 

in Eq. 21 and its solution form shown in Eq. 25 to obtain the expression for critical 

moment. 

   1

0
z c sin gz ,      at     z ,      0

L
 

 
   

 
       (32) 

 Solving for g shows that the first buckled shape appears when g
L


 . Combining 

this result with the auxiliary equation produces the expression for critical moment as 

shown in Eq. 33. With significant factoring and simplification Eq. 33 becomes Eq. 6, 

which presents Eq. 33 in terms of the critical moment. 

2 2

x

2

w w y w

mGJ GJ

L 2EC 2EC E I C

  
    

 
        (33) 

Moment Distribution Characterization 

 For circumstances where the applied moment mx is not constant, as shown in 

Eq. 19, the moment function must be described continuously. In cases where the 

moment distribution is not continuous, it may be considered as piece wise continuous 

where a set of functions are used describe its effects. A simple moment distribution 

which corresponds to an applied end moment (m0) is shown to see how Eq. 4 would be 

modified to accept a function for moment rather than a constant. The moment function 

for the end moment at the left end of a beam of length, L is shown in Eq. 34. Inserting 
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Eq. 34 into Eq. 4, results in the new governing differential stiffness equation as shown in 

Eq. 35. 

  0

z
m z m (1 )

L
            (34) 
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 


  
  

  
          (35) 

 Evidently the moment function may be inserted directly into the differential 

stiffness equation where the constant moment was previously present. Moment 

functions that are produced from an nth degree spandrel distributed load type with 

possible end moments, as shown in Figures 8, 9, and 10, are described in Eq.’s 36, 37, 

and 38.  

                                 

Figure 8: Spandrel load type with variable right end moment 

 
        

n 2

x n

wz wL wL
m z z

n 2 n 4 n 1 n 2n 1 n 2 L


  
    

      
    (36) 

wz

L
n

n

w(z)=

 wL
(n+2)(n+4)

2



38 
 

 
 

 

Figure 9: Spandrel load type with variable left end moment 
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Figure 10: Spandrel load type with variable end moments 
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This spandrel type load distribution is selected, here, because by varying the 

linearity factor, n, other simpler load types can be recovered. These simpler distribution 

types that may be recovered correspond to a uniformly distributed load and a uniformly 

increasing load when n equals 0 and 1 respectively. The end moments applied are the 

same as the fixed end moment corresponding to each linearity factor, n. Additionally, 

the relative magnitude of this fixed end moment can be scaled according to the input 
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variable, . The fixed end moments are calculated using the double integration method 

(Hibbeler 2009) 

Effect of Load Height 

 In nearly all circumstances when flexural members are loaded, they are loaded at 

locations other than their shear center. This causes additional eccentricity when the 

cross section begins to undergo lateral torsional buckling, as illustrated in Figure 5. 

When the loading is not as shown in Figure 5 the expression is Eq. 14 changes. The 

additional twisting associated with this eccentricity for a more generalized load 

distribution is constructed based on the shear as the concurrent force as shown in 

Figure 11. Eq. 39 shows this additional twist with the variable vy(z) as the shear 

function. 

 

Figure 11: Eccentricity associated with shear loading above the shear center 
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 Adding this component to the twisting causes Eq. 19 to change, reflecting the 

twist from load height, as shown in Eq. 40. Putting Eq. 40 in standard form allows 

stiffness properties for the weak axis of the beam to be used in the analysis. This may 

be seen in Eq. 41 as E (the modulus of elasticity) and Iy (the weak axis moment of 

inertia) enter in to the differential equation. 

 
3

w v y x3

d d dx
GJ EC y v z m

dz dzdz

 
           (40) 

  
 24 2

x

w v y4 2

y

m zd d d
EC GJ y v z 0

dz EIdz dz

  
          (41) 

 The input functions of vy(z), for which there are many, in this study are based on 

the spandrel load type with end moments shown in Figures 8, 9, and 10 and 

corresponding to the moment functions in Eq.’s 36, 37, and 38. The shear functions 

corresponding to these moment functions in Eq.’s 36, 37, and 38 are shown in Eq.’s 42, 

43, and 44 respectively. These shear functions must be used with the moment function 

that goes with it when inserted into Eq. 41. Furthermore, the shear functions cannot be 

for the reactive shear. They must be directionally correct in the analysis to be used as 

applied shear. A simple sign change from plus to minus is all that is needed to adjust for 

this effect. The change may be applied to the twisting component associated with the 

load height in the governing differential equation or in the shear functions themselves. 

The change was made in Eq. 41. 

 
       

n 1

y n

wz wL wL
v z

n 2 n 4 n 1 n 2n 1 L




   
   

    (42) 
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 
 

 

      

n 1

y n

wL n 6wz wL
v z

2 n 2 n 3 n 4 n 1 n 2n 1 L


 
   

    
    (43) 

 
           

n 1

y n

wz 2wL wL wL
v z

n 2 n 3 n 4 n 3 n 4 n 1 n 2n 1 L
 



    
      

  (44) 
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CHAPTER 4 NUMERICAL METHOD 

General 

 The elastic stiffness equation shown in Eq. 41 is difficult to solve analytically 

when the moment distribution is not constant and there is an applied shear load 

considered. To solve this differential equation a numerical method is used which 

considers the stiffness continuum as the summation of a series of finite difference 

elements. The numerical method used is a Taylor series polynomial expansion, with the 

expansion centered about each expansion point. Termed as a central difference 

approximation, the number of difference elements needed is determined by the 

convergence of the answer produced by the approximation.  

 Other methods are available to solve for the elastic lateral torsional buckling 

resistance of flexural members such as finite element modeling and energy methods, to 

name a couple. Using these methods are less desirable as they are not as versatile in 

adjusting for the various effects studied.  

Central Difference Approximation 

 A Taylor series polynomial approximation is used to solve the differential 

equation shown in Eq. 41. The polynomial is expanded centrally about the point being 

characterized numerically to form a central difference approximation. The approximation 

(fi), is dependent with respect to the approximate function f(zi) where the expansion 

point is characterized as iz z * ch   and 
N 1 N 1

c ,...,
2 2

 
  . This results in the 
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interpolation vector i i{(z ,f )} for which to solve the differential point by point. This can be 

seen illustratively in Figure 12. 

 

Figure 12: Central difference approximation for an arbitrary curve 

 To solve the 4th order differential equation in Eq. 41, an N-1 degree polynomial 

approximation requires that N 5 . The Taylor series takes the form as shown in Eq. 45 

for each .expansion point (Nagle et al. 2004). 

 
N 1

j

N 1 j

j 0

P z a z






           (45) 

 To describe each differential operator in Eq. 41, Eq. 45 is differentiated so that 

instantaneously: 

   n * n *

N 1f z P z  

And, 

z iz i-1 z i+1

f(z  )i

f(z    )i-1

f(z    )i+1

f0

f-1

f1

0-h +h
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  *

5 1
* j *2 *3 *4

5 1 j 0 1 2 3 4 0z 0
j 0

P z a z a a z * a z a z a z a


 


            (46) 

  *

I * * *2 *3

5 1 1 2 3 4 1z 0
P z a 2a z 3a z 4a z a 

           (47) 

  *

II * * *2

5 1 2 3 4 2z 0
P z 2a 6a z 12a z 2a 

           (48) 

  *

III * *

5 1 3 4 3z 0
P z 6a 24a z 6a 

           (49) 

  *

IV *

5 1 4 4z 0
P z 24a 24a 

           (50) 

 Referring to Figure 12, the uniform distance (h) from the central expansion point 

is used to solve for the constants ai’s. Because this distance h is constant, the constants 

may be solved for in relative proportion so that later in the numerical analysis, the 

distance h may be scaled to suit the number of expansion points used to describe the 

whole solution function. To solve for the first and second derivatives using the 

approximation, three terms are required. These terms correspond to –h from the 

expansion point located relatively at position 0, the position 0 itself, and a position +h 

from the expansion point located relatively at 0. This results in the system of equations 

to solve for ai’s requiring only three terms, as follows: 

  2

3 1 1 0 1 2P h f a a h a h               (51) 

 3 1 0 0P 0 f a             (52) 

  2

3 1 1 0 1 2P h f a a h a h              (53) 
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Solving for ai’s recovers expressions for a0, a1, and a2. 

0 0a f             (54) 

1 1
1

f f
a

2h

 
            (55) 

1 0 1
2 2

f 2f f
a

2h

  
           (56) 

 To obtain the remaining constants within the context of the central difference 

approximation, five terms are required. The terms required correspond to -2h, -h, 0, +h, 

and +2h. The system of equations that results to solve for these remaining ai’s are as 

follows: 

  2 3 4

5 1 2 0 1 2 3 4P 2h f a 2a h 4a h 8a h 16a h              (57) 

  2 3 4

5 1 1 0 1 2 3 4P h f a a h a h a h a h               (58) 

 5 1 0 0P 0 f a             (59) 

  2 3 4

5 1 1 0 1 2 3 4P h f a a h a h a h a h              (60) 

  2 3 4

5 1 2 0 1 2 3 4P 2h f a 2a h 4a h 8a h 16a h             (61) 

Solving for the remaining ai’s (a3 and a4) yields the final expressions needed to 

describe Eq. 41 in numerical form. 

2 1 1 2
3 3

f 2f 2f f
a

12h

    
          (62) 
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2 1 0 1 2
4 4

f 4f 6f 4f f
a

h

    
          (63) 

Using these constants, the differential operators in Eq. 41 may be described 

numerically as: 

 *

0 0f z a f             (64) 

 I * 1 1
1

f f
f z a

2h

 
            (65) 

 II * 1 0 1
2 2

f 2f f
f z 2a

h

  
           (66) 

 III * 2 1 1 2
3 3

f 2f 2f f
f z 6a

2h

    
          (67) 

 IV * 2 1 0 1 2
4 4

f 4f 6f 4f f
f z 24a

h

    
         (68) 

 Using these operators to describe Eq. 41 produces the differential equation in 

numerical format, with 
L

h
m

  where m is the number of segments used in the analysis. 

   
 

 
 2

v y xw
2 1 0 1 2 1 0 1 1 1 04 2

y

y v i m iEC GJ
f 4f 6f 4f f f 2f f f f f 0

2h EIh h
                 (69) 

 The boundary conditions shown in Eq.’s 26 and 27 in numeric form are as 

follows: 

0

0
f 0,      at     i

m

 
   

 
          (70) 
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1 0 1

0
f 2f f 0,      at     i

m


 
     

 
        (71) 

 The numerical expression for the elastic stiffness shown in Eq. 69 can be 

arranged into a system of equations which are dependent on the number of expansion 

points. This system of equations takes the form  c {f} 0 , where the value for the critical 

load is contained within the coefficient matrix  c . Contained within this matrix are the 

numeric moment and shear functions. These functions are the same as those shown in 

Eq.’s 36, 37, and 38 for moment and Eq.’s 42, 43, and 44 for shear with the exception 

that they are transformed into numeric expressions discretized using the relation 
iL

z
m



for the independent variable z at each expansion point i. Here, i is the expansion point, 

L is the beam length and m is the number or segments used in the approximation. 

These moment and shear equations are shown in Eq.’s 72, 73, 74, 75, 76, and 77 

respectively 

 
  

 

 

2 n 2

x n 2

i n 1wL i i
m i

n 1 n 2 m n 4 m m

 



 
   

   
       (72) 

 
  

  

  

2 n 2

x n 2

n 1 n 6wL i i i
m i 1

n 1 n 2 2 n 3 n 4 m m m






    
     

      
    (73) 

  
  

 

  

  

  

2 n 2

x n 2

2 n 1 n 1 n 2 iwL i i i
m i 1

n 1 n 2 n 3 n 4 m n 3 n 4 m m m
 





    
      

       
  (74) 

 
  

 

 

 n 1

y n 1

n 1 i n 2wL
v i 1

n 1 n 2 n 4 m






  
   

    
      (75) 
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 
  

  

  

 n 1

y n 1

n 1 n 6 i n 2wL
v i 1

n 1 n 2 2 n 3 n 4 m






   
   

     
     (76) 

 
  

 

  

  

  

 n 1

y n 1

2 n 1 n 1 n 2 i n 2wL
v i 1

n 1 n 2 n 3 n 4 n 3 n 4 m
 





    
    

       
   (77) 

 An example of how to generate this coefficient matrix c  is presented for a beam 

comprised of 2 finite difference elements. The coefficients in Eq. 69 are presented as 

constants to make the expression more compact. These constants are w

4

EC
a

h
 , 

2

GJ
b

h
  , 

 v yy v i
c

2h
  and 

 2

x

y

m i
d

EI
  . The differential equation in numeric format at each 

expansion point i for 2 finite difference elements and boundary conditions is shown in 

the expression below. 

     

     

     

0

1 0 1

2 1 0 1 2 1 0 1 1 1 0

1 0 1 2 3 0 1 2 0 2 1

0 1 2 3 4 1 2 3 1 3 2

2

1 2 3

i 0 f 0

i 0 f 2f f 0

i 0 a f 4f 6f 4f f b f 2f f c f f df 0

i 1 a f 4f 6f 4f f b f 2f f c f f df 0

i 2 a f 4f 6f 4f f b f 2f f c f f df 0

i 2 f 0

i 2 f 2f f 0



   





  

    

             

             

             

  

    

   (78) 

 The coefficient matrix c  that is produced from Eq. 78 is shown below. 
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 
     

     

     

0 0 1 0 0 0 0

0 1 2 1 0 0 0

a 4a b c 6a 2b d 4a b c a 0 0

c 0 a 4a b c 6a 2b d 4a b c a 0

0 0 a 4a b c 6a 2b d 4a b c a

0 0 0 0 1 0 0

0 0 0 1 2 1 0

 
 


 
        
 

         
        
 
 
  

 (79)

 Setting the determinant of  c to zero allows the critical load w contained within 

the moment and shear functions in Eq.’s 72 through 77 to be solved as shown in Eq. 80. 

 c 0            (80) 
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CHAPTER 5 LOAD HEIGHT FACTORS FOR AISC STEEL BEAMS 

Abstract 

An analytical procedure is used to study the effects of moment distribution and 

load height on the elastic stability of AISC wide flange steel beams. Lateral torsional 

buckling is the limit state considered. Solutions are developed for a series of general 

moment distributions which are produced by continuous load types with possible end 

moments. For each load type, an equivalent uniform moment factor is developed. 

Additionally, a load height factor is developed to modify the equivalent uniform moment 

factor for these load types where loading is applied above the shear center. Solutions 

are processed numerically using a Taylor series polynomial approximation. Results are 

presented in terms of an equivalent uniform moment factor and a load height factor. 

Comparison with AISC code procedures for moment factor shows discrepancies that 

are conservative in some circumstances by approximately 51% and unconservative in 

others by approximately 8%. These differences appear to become amplified under the 

effect of reverse curvature bending and load position above the shear center. Results 

for load position show that members loaded above their shear center are more 

susceptible to lateral torsional buckling than those loaded at their shear center. Some 

design examples are presented using the load height factors developed.  

Introduction 

The existing analytical solutions describing lateral torsional stability provide 

coverage of a limited range of applicable design scenarios (Timoshenko and Gere 

1961, Trahair 1998). Various additional studies have been performed to produce closed 
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form solutions based on analytical, numerical, and experimental data to estimate the 

lateral torsional buckling capacity of flexural members (Dumont 1937, Dumont and Hill 

1940, Austin et al. 1955, Salvadori 1955, Clark and Jombock 1957, Nethercot and 

Trahair 1976, Kirby and Nethercot 1979, Suryoatmono and Ho 2002, Lopez et al. 2006, 

Serna et al. 2006, White and Kim 2008). These studies in general cover the distribution 

of moment between supports, load height with respect to the shear center, various 

levels of out of plane restraint at member ends, and buckling interaction (Wong and 

Driver 2010). To further study these effects, finite element, finite difference and other 

numerical methods have been employed. For example, finite element methods have 

been used by Serna et al. (2006) to study the effects of moment distribution between 

supports, while a finite difference approach was employed by Suryoatmono and Ho 

(2002) and Lopez et al. (2006) for the same purpose. Similarly, numerical methods have 

been used by Nethercot and Rockey (1972) to study the coupled effects of moment 

gradient and load height with respect to the shear center. 

To account for the effect of moment distribution between supports, most 

approaches use an equivalent uniform moment factor to modify the capacity of flexural 

members loaded with nonuniform moment distributions. This factor is the ratio of the 

critical moment for a member with a particular moment distribution to the critical 

moment for the member with a uniform moment distribution (Wong and Driver 2010), 

where the critical moment refers to that which causes an instability failure. Two general 

approaches to develop closed form solutions for the equivalent uniform moment factor 

are presented in the literature. One is based on developing moment factors for specific 

load types (for example, a uniformly distributed load with variable end moments or a 
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concentrated load with variable end moments) (Austin 1961, Salvadori 1955, Clark and 

Hill 1960, Trahair 1998, Suryoatmono and Ho 2002), and the other for any arbitrary 

moment distribution (Kirby and Nethercot 1979, Serna et al. 2006). Typically, as might 

be expected, the moment factors developed for specific load types are more accurate 

than universal factors meant to describe a wider range of arbitrary moment distributions. 

Suryoatmono and Ho (2002) illustrate this variance in accuracy between the 

approaches for several closed form solutions of moment factor presented by various 

authors. Their results have generally shown that moment factor expressions based on 

arbitrary moment distributions produced generally conservative results, with some 

instances of unconservatism.  

Another interest is the effect of load height with respect to shear center. Efforts 

that have considered this issue have coupled this effect with that of moment distribution 

between supports to produce one combined equivalent uniform moment factor 

(Nethercot and Rockey 1972). This results in expressions for moment factors at specific 

locations within the depth of the section which are typically provided at the shear center 

and the top and bottom flanges. Some design specifications simply neglect this effect 

entirely (AISC 360 2010, AASHTO 2012). For example, the prevailing US design 

specifications for steel structures and bridges, the American Institute of Steel 

Construction’s Specification for Structural Steel Buildings, AISC 360 (AISC 2010) and 

the American Association of State Highway and Transportation Officials Load and 

Resistance Factor Design Bridge Design Specifications (AASHTO 2010), do not 

consider the effect of load height but provide a general expression for the effect of 

moment distribution between supports. The expression used in AISC 360 as well as 



53 
 

 
 

AASHTO is the same as that proposed by Kirby and Nethercot (1979) with slightly 

modified coefficients. Because the specifications for AISC and AASHTO are the same, 

reference to AISC will be used herein. 

Despite the significant body of existing knowledge in this area, there are 

important details which have not been addressed. In particular, the precise account of 

the effects of a broad range of moment distributions as well as the effect of load height 

for these distributions. As noted above, although general solutions for arbitrary moment 

functions exist, the accuracy of this approach can be significantly improved, as will be 

shown below.  To this end, the focus of this study is to accurately determine the effect 

on the lateral torsional stability of flexural members subjected to a set of moment 

functions for which precise solutions are currently unavailable. Additionally, a load 

position factor is developed to characterize the effect of load height on wide flange AISC 

steel sections. This load position factor is meant to modify the equivalent uniform 

moment factor for specific wide flange AISC sections. The moment functions considered 

are those produced by general, continuous type load distributions, as detailed below.  

General Analytical Background 

The governing differential equation representing the elastic stiffness of a flexural 

member under simple bending is produced by considering the rotational stiffness about 

each of the primary axes of the displaced (i.e. buckled) cross section (Timoshenko and 

Gere 1961, Trahair 1998). Combining expressions for Euler-Bernoulli bending about the 

x and y axes results in the well-known expression for lateral torsional buckling: 
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24 2

4 2 2
0x

w y w

md GJ d

ECdz dz E I C

 
           (81) 

Here, refers to rotation about the z-axis (i.e. twisting); E is Young's modulus; Ix 

and Iy are the strong and weak moments of inertia, respectively; G is shear modulus; J 

is the torsion constant; Cw is the warping constant; L is the length of the member; and 

mx, my, and mz represent the moments about the principle axes, such that 'x xm m ,

'y xm m , and 'z x

dx
m m

dz
  .  

The boundary conditions presented in this study are those associated with simple 

supports with twisting deformation fixed ( 0  ) and warping free (
2

2
0

d

dz


 ) at the 

member ends. 

For a particular member, the desired solution is generally the moment required to 

initiate lateral torsional buckling, or when the effective lateral and torsional stiffness of 

the system subtend to zero relative to the applied load. The solution for m0_cr, the critical 

moment to cause lateral torsional buckling, can be determined for a simply supported 

member subjected to constant moment as (Timoshenko and Gere 1961, Trahair 1998): 

2

0 _ 2
1 w

cr y

EC
m EI GJ

L GJ L

  
  

 
        (82) 

This critical moment applies for the case when a member is subjected to a 

constant moment function; for other moments, the result must be modified.  The desire 
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here is to develop solutions for specific load types that have not yet been covered in 

literature sources to be used by typical design engineers.    

The equivalent uniform moment factor (EUMF) for a particular load distribution is 

formulated by dividing the critical moment (mcr) for that load type by the critical moment 

for a uniform moment distribution Eq. 83.  

0 _

cr

cr

m
EUMF

m
            (83) 

Considering moment equilibrium about the displaced cross section shows the 

effects of two different twisting effects. The twisting effect caused by the offset of the 

load height with respect to the shear center is denoted as mz’v, while the twisting effect 

caused by an applied (non-uniform) moment distribution is denoted as mz’b. The 

resistance of the member against these effects is denoted mz’. Note a similar approach 

formulated for concentrated loads is presented by Trahair (1998). The resulting 

equilibrium equation is: 

' ' ' 0z v z b zm m m             (84) 

where, 

' ( )z v v ym y v z            (85) 

' ( )z b x

dx
m m z

dz
            (86) 

The variable yv represents the distance from the load application point to the 

shear center of the member (upwards as positive), vy(z) is the shear force distribution 
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along the length of the member, and mx(z) is the moment distribution along the length of 

the member about the x-axis (strong axis). 

Combining Eq.’s 84, 85, and 86 with the expression for Euler-Bernoulli bending 

(above) about the y axis forms the governing differential equation representing 

resistance to lateral torsional buckling considering the additional effects of non-uniform 

moment distribution and load height:  

24 2

4 2 2

( ) ( )
0

v y x

w w y w

y v z m zd GJ d d

EC EC dzdz dz E I C

  
           (87) 

Note that in the third term, representing the twisting contribution from load height, 

the applied shear vy(z) is typically taken as a negative value to represent a force acting 

in the downward direction.  The value of Eq. 87 is that it presents the applied shear as a 

continuous variable component. This allows for the substitution of general shear 

distributions into the expression.  Moreover, it shows that the components for load 

height and moment distribution are independent, indicating that a separate factor for 

load height is obtainable that is not directly coupled to the component related to moment 

distribution. Thus, while the applied and reactive shear and moment distributions are of 

course directly related, the load height factor may be formulated with respect to either 

the shear or moment distribution. Inspection of Eq. 87 indicates that if yv>0, the critical 

moment decreases as additional destabilizing twist is produced, whereas if yv<0, the 

critical moment increases as the resulting twisting moment acts to resist the twist 

caused by the applied moment.  
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Because the load height and moment distribution components in Eq. 87 are 

independent, development of the load position factor is achieved by decoupling the 

effects of moment and load height. This is done by comparing the equivalent uniform 

moment factor for a beam loaded at its shear center to the same beam loaded at its top 

flange. The formulation for this load position factor, Ch is as follows: 

0

0

1 f
h

EUMF EUMF
C

EUMF

 
   

 
         (88) 

The term EUMF0 is the equivalent uniform moment factor for a member loaded at 

its shear center, for a specific load distribution. The term EUMFf is the equivalent 

uniform moment factor for the same member, but loaded at its top flange. Solution plots 

for Ch are shown below in the results section.  

The load position factor, Ch is multiplied by the equivalent uniform moment factor 

for the load types studied in this paper to account for loading at the top flange (above 

the shear center). The nominal resistance for a member subject to elastic lateral 

torsional buckling loaded above its shear center is described in Eq. 89. The limit is set 

to FySx because the analysis is for elastic behavior only.  

0 _ 0( )n h cr y xR C M EUMF F S             (89) 

Solution Procedures 

Solving the differential equations representing lateral torsional stiffness 

analytically is difficult and in some cases may be impossible. Therefore, alternative 

numerical methods have been used to produce approximate solutions. For example, a 
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finite difference approach was used by Suryoatmono and Ho (2002), while finite 

element methods have also been considered (Wang et al. 2012). 

In this study, a finite difference approach is used to solve Eq. 87. The approach 

uses a central difference approximation considering the first non-zero terms of a Taylor 

series polynomial expansion to describe the differential operators. The twisting 

deformation () is approximated by the quadratic polynomial f(z). The N-1 degree 

polynomial approximation has the form 

1

1

0

( )
N

j

N j

j

P z a z






 , where the differential operators 

n

n

d

dz


 may then be expressed in terms of the polynomial approximation (Nagle et al. 

2004). For example, the first term becomes  

 
5 1

2 3 4

5 1 0 1 2 3 4 0
0

0

( ) j

j
z

j

P z a z a a z a z a z a z a







       , while the last term is: 

 5 1 4 40
( ) 24 24IV

z
P z a a 

   (intermediate terms not shown for brevity). 

Constants ai’s may then be solved for in order to write the differential operators in 

numerical form ( )i if f z . For example, the first term becomes 0 0( )f z a f  , while the last 

term is 2 1 0 1 2
4 4

4 6 4
( ) 24IV f f f f f

f z a
h

    
  . 

Applying the numerical operators to Eq. 87 produces the governing differential 

equation for lateral torsional stiffness including non-uniform moment and load height 

effects in numerical format (Eq. 90): 
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 
2

2 1 0 1 2 1 0 1 1 1
04 2

4 6 4 2 ( )
( ) 0

2

x
w v y

y

f f f f f f f f f f m z
EC GJ y v z f

h EIh h

               
       

    
 (90) 

To transform the moment (mx
2(z)) and shear (vy(z)) functions into numerical form, 

the variable z is discretized at each expansion point (not including expansion points at 

boundary conditions) as: 
iL

z i z
m

   , where m is the number of discretized segments 

for the beam length considered.  

Once discretized, Eq. 90 can be expressed as a series of algebraic equations 

   0c f  , where the critical load of interest is contained within the coefficient matrix c . 

In this case, the smallest load that allows the determinant of  c  to equal zero indicates 

the critical load for the system. The value solved for is the independent variable 

component to the moment and shear functions, represented as w. Examples of this for 

both moment and shear a provided below in Eq.’s 92 and 93. 

Convergence of the solutions is achieved by increasing the number of segments 

m used in the analysis and comparing the critical moment to subsequent results. When 

the difference in results becomes sufficiently small (taken as less than 0.5%) the 

solution has converged. In general, this required 40 segments. To verify the validity of 

the approach, some cases with known solutions (for example, a simply supported 

member with a uniformly distributed load, as well as that with equal and unequal end 

moments applied) were considered and compared to the analytical solutions.  All test 

cases considered produced matching results to the known solutions (Timoshenko and 

Gere 1961, Trahair 1998). 
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Load Distributions Considered 

Previous studies provide a range of different moment distributions and their 

effects on lateral torsional buckling. There are a total of 12 such distributions previously 

studied, and are summarized by Wong and Driver (2010). In general, these cases 

include combinations of uniform loads, concentrated loads and end moments, with 

simple support conditions and loading at the shear center. 

In this study, a more generalized moment distribution is considered, which can 

model a wider variety of load possibilities; in particular, an nth-degree spandrel 

distributed load with possible end moments, as shown in Figure 1. For this load 

distribution type, fixed end moments are considered at both ends and each end 

individually to produce a comprehensive range of results. The spandrel load itself is 

described as: 

 

  
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Figure 13: Load types studied 
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( )
n

n

wz
w z

L
            (91) 

Note that when n=0, a simple beam with uniform load (and possible end 

moments) is recovered, and when n=1, a linearly increasing (triangular) distributed load 

is obtained. For cases where n>1, the load distribution becomes increasingly nonlinear 

as n increases. To solve Eq. 88 with the loads shown in Figure 13, the corresponding 

moment and shear equations are transformed into numerical form, as previously 

described. For example, the resulting shear and moment equations for Type 1 in Figure 

13 are: 

       

1

( )
2 4 1 21

n

y n

wz wL wL
v z

n n n nn L




   
   

     (92) 

        

2

( )
2 4 1 21 2

n

x n

wz wL wL
m z z

n n n nn n L


  
    

       

    (93) 

Numerically, where
iL

z
m

 : 

  

 1

, 1

21
1

1 2 4

n

y i n

i nwL n
v

n n n m






 
   

    

      (94) 

  

 

 

2 2

, 2

1

1 2 4

n

x i n

i nwL i i
m

n n m n m m

 



 
   

    

       (95) 

In these expressions,  is an indexing factor that allows the fixed end moments to 

be arbitrarily increased or decreased. 
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Current Code Procedures 

To understand the current practice used to determine the elastic stability of 

flexural members as loaded in Figure 13; specifications from the AISC 360 are 

compared with numerical results. Numerical results for different load height are not 

directly compared to AISC because they do not have provisions covering this effect. 

The code comparison effort is to show deviation from the moment factor for the load 

types described in this paper. 

An equivalent uniform moment factor is used. AISC 360 only considers the 

distribution of moment between supports, whereas provisions for other effects are not 

specifically addressed. In AISC 360, an equivalent (in terms of critical moment) uniform 

moment factor is developed by considering the absolute values of the maximum 

moment Mmax, and the quarter points moments Ma, Mb, and Mc, within the span, where 

the moment factor is expressed as: 

max
b

max a b c

12.5M
C

2.5M 3M 4M 3M


  
          (96) 

Eq. 96 is similar to that proposed by Kirby and Nethercot (1979) with the 

coefficients slightly adjusted to more accurately describe the effects for a beam with 

fixed ends. Eq. 96 is applicable to general moment distributions with the exception of 

cantilever members where the free end is unbraced. In this case, the moment factor Cb 

= 1.0. 
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Results and Code Comparison 

The three load distributions shown in Figure 13 are applied to an example beam 

(W14x132) spanning 30 feet. Because the results are normalized by using the 

equivalent uniform moment factor approach, these plots will remain approximately the 

same for reasonable input values of E, I, G, and J (i.e. any reasonable beam size).  This 

is recognized in design specifications as the same process is used for equivalent 

uniform moment factor regardless of beam size. Note that this assumes that the input 

parameters will allow the beam to buckle elastically.  In this study, the fixed end moment 

index, β, is varied from -2 to 2 to represent cases for applied end moments found with 

simply supported ends. The linearity factor, n, is varied discretely from 0 to 2 to present 

a range of solutions for the load and end moment configuration considered. The results 

are found by first determining the critical load intensity, w, which causes instability for 

the case considered (see Eq’s. 94 and 95). This critical load (wcr) is then transformed 

into a moment (mcr), and then divided by the critical moment obtained from Eq. 82 

(m0_cr). This ratio (mcr/m0_cr) is the equivalent uniform moment factor. 

Figures 14 presents the equivalent uniform moment factor for distribution Types 

1-3 with n=0,1 and 2 for members loaded at their shear centers. Figures 15-23 present 

load height factor results for load Types 1-3 and variable load heights. The equivalent 

uniform moment factor and load height factor are plotted against the end moment factor, 

. In these plots, the load height factor is plotted against the end moment factor for load 

heights at 6, 9, 12, 15, 18, and 22in above the shear center. These load heights 

correspond to AISC beams by section depth W12, W18, W24, W30, W36, and W44 

respectively considering the member loaded at its top flange. These results for load 
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height factors also apply for members with loading is above the top flange but only up to 

22in above the shear center.   

 

Figure 14: Load Types 1-3 solution plot, Yv=0 
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Figure 15: Load Type 1 load height factors, n=0 

 

Figure 16: Load Type 1 load height factors, n=1 
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Figure 17: Load Type 1 load height factors, n=2 

 

Figure 18: Load Type 2 load height factors, n=0 
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Figure 19: Load Type 2 load height factors, n=1 

 

Figure 20: Load Type 2 load height factors, n=2 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

C
h
 

End Moment Factor,  

6 in

9 in

12 in

15 in

18 in

22 in

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

C
h
 

End Moment Factor,  

6 in

9 in

12 in

15 in

18 in

22 in



68 
 

 
 

 

Figure 21: Load Type 3 load height factors, n=0 

 

Figure 22: Load Type 3 load height factors, n=1 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

C
h
 

End Moment Factor,  

6 in

9 in

12 in

15 in

18 in

22 in

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

C
h
 

End Moment Factor,  

6 in

9 in

12 in

15 in

18 in

22 in



69 
 

 
 

 

Figure 23: Load Type 3 load height factors, n=2 
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torsional buckling decreases. For end moment factors 0   for Type 1 loading and

0   for Types 2 and 3 loadings, the change in capacity due to the vertical position of 

the load can become large, showing particularly high reductions in lateral torsional 

buckling capacity when the load is placed above the shear center. 

 For comparison, solutions provided by AISC 360 are presented in Figures 24, 25 

and 26 along with the numerical solutions found in this study for a member loaded at the 

shear center. It was found that in general, for end moment factors greater than -0.5 for 

Type 1 loading and for factors less than 0.5 for loading Types 2 and 3, the code 

expressions well match the theoretical solutions.  However, outside of these ranges, 

large differences may result, where code predictions may be very conservative, and in 

some cases, overestimate capacity. In particular, the code specifications begin to 

display significant discrepancies from the true solution in some regions of reverse 

curvature bending (i.e. when both positive and negative moments appear on the span).  

For distribution Type 1, meaningful discrepancies begin to occur where 0.5    (Figure 

24), while for distribution Types 2 and 3, code results diverge significantly from the true 

solution when 0.5   (Figures 25 and 26).  
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Figure 24: Load Type 1 code procedure comparison, n=0, 1 and 2 

 

Figure 25: Load Type 2 code procedure comparison, n=0, 1 and 2 
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Figure 26: Load Type 3 code procedure comparison, n=0, 1 and 2 
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supports considered. First the basic strength of the W18x106 is determined by using 

Eq. 82. This basic strength is then modified by the equivalent uniform moment factor 

and the load height factor. These factors are read directly from Figure 14 and Figure 21 

respectively. Once each of these values is obtained, Eq. 89 is used to determine the 

nominal moment capacity of the beam, limited to the elastic moment. The results for 

each step are presented in Table 3. It should be noted that for a particular member, half 

the beam depth is appropriate for the load height above the shear center. For this case, 

the member is a W18 which has a shear center located 9in below the top flange; 

therefor the 9in curve is used. For beam depths that fall between those that are listed, 

linear interpolation may be used to approximate the equivalent uniform moment factor 

and the load height factor. Furthermore, this same method may be used for load 

situations where loading is above the top flange of the beam, but within 22in of the 

shear center. 

m0_cr 

(in-k) 
EUMF Ch FySx 

Rn      

(in-k) 

7705 1.79 0.67 10200 9241 

Table 3: Design example results 

Need for Further Work 

To the extent of load height factors, more work is needed. The load distributions 

studied in this paper only cover a small range of those scenarios seen in typical design. 

The load types summarized by Wong and Driver (2010) provide an example of 
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additional distributions to be characterized, among other more exotic types such as 

those produced by design trucks on bridges and nonlinear aerodynamic loads on 

building components and cladding. Other work is needed to characterize these load 

height factors for members under alternative restraint conditions including end supports 

and continuous and discrete bracing. Exotic beam types also need characterized such 

as those with copes and other unstiffened elements. 

Conclusion 

An analytical procedure is formulated to describe the effects of moment 

distribution and load height on the elastic stability of flexural members. Lateral torsional 

buckling is the limit state considered. Solutions for a series of general moment 

distributions are developed for nth degree spandrel type distributed loads with fixed end 

moments. The height of the load with respect to the shear center is varied to correspond 

to a range of AISC wide flange steel beams. Solutions are processed numerically using 

a Taylor series polynomial expansion. Results are presented in terms of an equivalent 

uniform moment factor, and a load height factor. 

The load types studied are intended to add to the database of established 

results. The flexibility of the spandrel-type solutions allows consideration of a wide 

range of continuous loads, including uniformly distributed and increasing load 

distribution types with variable fix end moments. Based on the data presented in this 

paper up to n=2, the equivalent uniform moment factor and shear factor can be read 

from the figures for specific values of n, yv  and  .Solutions show that current code 

procedures have significant discrepancies in capacity prediction for the ranges of fixed 
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end moment discussed above. For loading at the shear center, comparison against 

code procedures reveals discrepancies that are conservative in some circumstances by 

approximately 51% and unconservative by approximately 8%. These differences appear 

to become amplified as reverse curvature bending becomes more pronounced. In 

general, for distribution Type 1, significant differences from code procedures appear 

when 0.5   , while for distribution Types 2 and 3, differences become significant when

0.5  .  

 The results also show that the effect of load height causes large changes in 

capacity for AISC steel beams. As expected, loading above the shear center causes a 

reduction in capacity. Load height factors are provided for AISC wide flange beams 

W12 through W44. These factors are a numerical approximation of the exact solution 

for an elastically buckling beam. 
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CHAPTER 6 ADDITIONAL ELASTIC STABILITY DEVELOPMENTS 

Introduction 

 Other developments in the elastic stability of flexural members are important to 

note, particularly those that relate to the level and type of restraint provided by both 

continuous and discrete bracing mechanisms. These bracing mechanisms are those 

associated with flooring systems, the way in which the load is applied, and point braces 

applied at specific locations along the length of the beam.  

Restraint from Applied Loads 

 When loads are applied to flexural members there may be a tendency for these 

loads to restrain the cross section from displacing laterally and torsionally by the way 

the load connects to the member it is loading. This effect is mainly prevalent when 

members are not designed as part of a system connected by a diaphragm type 

structure to distribute the load and when members are in the construction phase where 

they often are loaded individually by workers, equipment and construction materials. 

Additionally when joists are framed into a collector girder the joists that are applying the 

load to the collector girder act to restrain the collector girder by their level of 

connectivity.  

 To understand the effect of restraint from applied loads, a free body diagram is 

developed to illustrate how the load acts on the cross section as shown in Figure 27. 



77 
 

 
 

 

Figure 27: Restraining force from applied load 
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 To describe this effect equilibrium equations are composed with the lateral 

friction force opposing the twisting stiffness 'zm , as shown below. 

' ' ' 'z z v z f z bm m m m            (97) 

 'z f v L ym y v z            (98) 

3

' ' '3w z b z v z f

d d
GJ EC m m m

dz dz

 
            (99) 

The term 'z fm  refers to the rotational component caused by the friction force. As 

shown in Eq. 98 this imposed force is related to the friction coefficient between the load 

and the member L . Otherwise, this term is the same as the rotational force produced 

by the load height as described by 'z vm  however acting in the opposite direction. 

Because this interdependence between the shear force causing load height twisting and 

the shear force imposed friction force causing twisting, the term 1L   appears in the 

governing differential equation, shown in Eq. 100. 

  24 2

4 2 2

1 ( ) ( )
0

L v y x

w w y w

y v z m zd GJ d d

EC EC dzdz dz E I C

  



          (100) 

 Numerical methods are the best option to solve Eq. 100. The same method that 

is proposed in Chapter 4 is suitable and the numeric version is shown in Eq. 101. 
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EC GJ y v z f

h EIh h
   

       
    

     
    
    

 (101) 
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 This numeric expression can be arranged into a system of equations dependent 

on the number of expansion points as described by Eq. 78. 

Restraint Provided by Continuous Sources 

In much the same way, Eq. 100 may be altered for continuous restraint situations 

where the restraint applied is insufficient to restrain buckling. Such situations can arise 

from thin membranes attached to systems of members such as fabrics intended to block 

wind loading. These membranes are in some situations insufficient to provide restraint 

to prevent the members attached to it from buckling. Eq. 100 may be altered so that 

instead of a friction force imposed by the applied shear load, as shown in Figure 27, a 

stiffness function for the membrane may be substituted. The stiffness function would 

need to have components representing the rotational stiffness of the membrane and the 

lateral stiffness. Figure 28 illustrates how the continuous restraint would be applied, 

shown as the function  xr z . 
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Figure 28: Restraint provided by continuous sources 

Restraint Provided by Discrete Torsional Braces 

 Discrete torsional braces may be applied at any location along the length of the 

member under consideration to improve its capacity. Torsional braces do not act to 

restrain the lateral displacement of the cross section but instead constrain rotation at the 

location of the brace. A situation where a brace is likely to act as a torsional brace as 

opposed to a lateral-torsional brace is when a system of discretely braced members all 

buckle in the same direction at the same time i.e. roof trusses failing due to wind 

loading. The braces in these circumstances are most certainly lateral-torsional braces, 

but due to the way the structure fails, they are only able to resist torsional forces, Figure 

29 illustrates a discrete brace at some location  along the length of a member. 
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Figure 29: Discrete torsional brace 

 To include this torsional brace in the analysis it is handled in much the same way 

as the boundary conditions shown in Eq.’s 26 and 27. The condition imposed at the 

brace location , is for torsion fixed and warping free. The constraints are written as 

follows: 

0,     at     z             (102) 

2

2

d
0,      at     z

dz


            (103) 

 These may be transformed into numerical expression and input into the 

coefficient matrix  c  (shown in Eq. 79) to solve for the critical load. It should be noted 

that if this numerical method proposed above is used, the brace must coincide with the 

location of an expansion point otherwise there is no accurate place for it in the 

coefficient matrix  c . 

 

 

 


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CHAPTER 7 RELIABILITY OF BEAMS SUBJECT TO ELASTIC LTB 

Abstract 

A reliability analysis of steel beams subjected to lateral torsional buckling is 

presented. This involves setting up a load model and establishing a resistance model 

considering lateral torsional buckling as the limit state. Resistance is modeled using an 

analytical approach to calculate equivalent uniform moment factors for different load 

distributions. The equivalent moment factors are calculated considering the effects of 

load height. The reliability analysis is conducted using a Monte Carlo Simulation and 

results are reported in terms of reliability index β. The results indicate that for most 

cases, reasonably uniform levels of reliability with regard to lateral torsional buckling are 

obtained with beams designed using AISC 360 specifications. However, in cases of 

reverse curvature bending, the AISC 360 specifications tend to underestimate actual 

safety level, in some cases significantly. It was also observed that for positive load 

heights, the AISC 360 specifications overestimate safety level, whereas for negative 

load heights, safety is underestimated.  

Introduction 

A wide range of literature describing the lateral torsional buckling (LTB) behavior 

of structural steel beams based on analytical, numerical and experimental data is 

currently available (Dumont 1937, Dumont and Hill 1940, Hill 1954, Austin et al. 1955, 

Salvadori 1955, Clark and Jombock 1957, Nethercot and Trahair 1976, Kirby and 

Nethercot 1979, Suryoatmono and Ho 2002, Lopez et al. 2006, Serna et al. 2006, White 

and Kim 2008). Moment distribution between the supports, effect of load height with 
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respect to shear center, buckling interaction, and out-of-plane restraints at member 

ends are some of the common issues considered while studying the lateral torsional 

stability of beams.  Two of the primary considerations, moment distribution between 

supports and placement of load height with respect to shear center, are further 

discussed below. 

For flexural members loaded with non-uniform moment distributions, an 

equivalent uniform moment factor approach is often considered. This factor is the ratio 

of the critical moment for a member with a particular moment distribution to the critical 

moment for the member with a uniform moment distribution (Wong and Driver 2010), 

where the critical moment refers to that which causes an instability failure. The work of 

various researchers has developed this concept. For example, Nethercot and Rockey 

(1972) used numerical data in an effort to describe a general procedure to determine 

the elastic critical moment of beams. Much more recently, Suryoatmono and Ho (2002) 

used a finite difference technique to solve the governing differential equation for elastic 

stiffness, and have shown that the results produced by the AISC equivalent uniform 

moment factor are unconservative in some circumstances.  

To consider the effect of load height with respect to shear center, past research 

has coupled this effect with that of moment distribution between supports to produce a 

combined equivalent uniform moment factor (Nethercot and Rockey 1972). This 

resulted in moment factor expressions for different load placement depths (in the 

vertical direction) on the beam cross-section, where results are usually presented for 

loads placed the shear center and at the top and bottom flanges. The difference in 

moment factor values due to the load height effect, in practice, become amplified as the 
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members depth deviates from the depth of the members used in the study. This 

essentially means that because the load height effect was not considered, the numerical 

curve fitting that was used to create the moment factors is skewed based on the actual 

members depth compared to that depth of the member used to produce the numeric 

data. Coupling load height and moment distribution effects into one normalized factor, 

the equivalent uniform moment factor, causes this issue to become prevalent in state of 

the practice design culture as load heights are not specifically addressed. Coupling 

these effects from numeric data can also be dangerous especially during erection when 

members may be temporarily braced and often see near maximum loads from 

construction equipment and materials. 

Despite the research conducted on this issue, it can be observed that some 

design specifications such as American Institute of Steel Construction 360 (AISC 2010) 

and the AASHTO LRFD Bridge Design Specifications (AASHTO 2012) have neglected 

the effect of load height while estimating the equivalent moment factor. The expressions 

provided for the equivalent moment factor in these design specifications implicitly 

consider loads to be acting at the shear center, neglecting the effect of load height 

throughout the depth of the cross-section. Moreover, the equivalent moment factor 

expressions used in these design specifications use a general closed form expression 

which, for some load scenarios, produces significantly unconservative results. A 

potential solution to this issue is to produce moment factor values for specific moment 

distributions and load heights. This approach is further described in the ‘Resistance 

Model’ section, below. As noted above, a significant body of literature is available that 

addresses LTB.  However, few studies have investigated the failure probability of 
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structural steel members with regard to LTB. Ellingwood et al. (1980) and Galambos 

(REF) developed initial resistance statistics for LTB, while more recently, a statistical 

evaluation of LTB resistance of steel I-beams for Eurocode is presented by Robelo et al 

(2008), wherein a new partial safety factor was proposed. Szalai and Papp (2008) 

presented a new probabilistic evaluation of standard resistance models for the stability 

of columns and beams, while Badari (2008) validated the method proposed by Szalai 

and Papp (2013) by examining a simply supported steel beam subjected to LTB. 

However, currently there exists no systematic probabilistic assessment of steel beam 

sections subjected to LTB. This paper aims to develop a resistance model for LTB valid 

for a broad range of moment distributions as well as the effect of load height, and to 

estimate the reliability of these cases if designed per AISC 360 provisions. . 

Load Models 

During its design lifetime, a structure is subjected to various loads such as dead 

load, occupancy and roof live loads, wind, snow, and earthquake loads, as well as 

others. Many interior beams in common braced frame steel construction are not 

subjected to significant lateral and environmental loads, and hence the load 

combination that frequently dominates is that of dead load and live load only, which is 

considered in this study. Dead load (DL) statistical parameters are given by Nowak and 

Szerszen (2003), where DL is described as normally distributed with bias factor (ratio of 

mean value to nominal value) of λ=1.5 and coefficient of variation (COV) of 0.10.   

Occupancy live load represents the weight of people, furniture, partitions and 

other movable contents, and may be categorized into sustained ("arbitrary-point-in-
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time") and transient (extreme event) components. Transient live load considers unusual 

occurrences of high load concentration such as a large number of people crowding 

together in a small room. It governs over the sustained effect with the load combination 

considered in this study, where  50 year maximum load statistics are given by Nowak 

and Szerszen (2003) as λ=1.0 and COV=0.18. It is assumed to follow a Gumbel 

distribution (Nowak and Szerszen 2003). In this study, a dead load to total load ratio      

(
DL

DL LL
) of 0.2 was selected in order to have the target reliability index in the range of 

3.0 to 3.5.  

Resistance Model 

The failure mode employed in this study is elastic lateral torsional bucking (LTB), 

where the effect on LTB resistance from different loading patterns and vertical load 

positions with respect to the shear center is considered. To determine buckling 

resistance, the elastic stiffness is described using Euler-Bernoulli elastic flexure theory 

for simply supported beams. The end conditions are taken as warping free and 

torsionally fixed. The lateral torsional behavior of the beam under these constraint 

conditions can be described as: 

24 2

4 2 2

( ) ( )v y x

w w y w

y v z m zd GJ d d

EC EC dzdz dz E I C

  
          (103) 

In Eq. 103, load height is represented as variable component yv, while angle of 

twist is given by . The applied moments and shears are represented as functions mx(z) 

and vy(z), respectively. In this study, these applied moments and shears correspond to 

the three load distributions considered in Figure 13. In Figure 13, w is the applied load, 
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z is the variable component in the length direction of the beam (also appearing in Eq. 

103), n is the linearity factor, m is the applied end moment, and  is the end moment 

factor. By adjusting these factors, various common load types may be recovered from 

this general distribution including a uniformly distributed load with possible end 

moments and a linearly increasing distribution load with possible end moments. The 

applied end moments can be scaled based on the factor  , and more complex 

parabolic load distributions can be considered by adjusting the linearity factor n.  

Once a desired load distribution is chosen for consideration, the corresponding 

shear and moment functions are developed. For example, the resulting moment and 

shear functions for the Type 1 (linearly increasing) distribution shown in Figure 13 are:  

        

2

( )
2 4 1 21 2

n

x n

wz wL wL
m z z

n n n nn n L


  
    

       
    (104) 
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y n

wz wL wL
v z
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



   
   

     (105) 

The smallest load value (w) to cause the stiffness of the beam to approach zero 

is the critical lateral torsional buckling load. This load is converted into a critical moment, 

Mcr and normalized using an equivalent uniform moment factor (EUMF) approach, as 

given by eq. (106).  

0 _

cr

cr

M
EUMF

M
            (106) 

The EUMF is the ratio of the applied moment needed to cause LTB instability 

(i.e. the critical load) for the load distribution and boundary conditions considered and 
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the basic strength. The basic strength, M0_cr is the LTB resistance of a simply supported 

member subject to a constant moment distribution. The basic strength is taken as 

(Timoshenko and Gere 1961, Trahair 1998): 

2

0 _ 2
1 w

cr y

EC
M EI GJ

L GJ L

  
  

 
        (107) 

The EUMF is multiplied by the basic strength of the specific member under 

consideration to determine its elastic LTB resistance without the need for a complex 

numerical or finite element analysis. Equivalent uniform moment factor approaches are 

considered by various design codes. For example, the American Institute of Steel 

Construction’s Specification for Structural Steel Buildings, AISC 360 (AISC 2010) and 

the American Association of State Highway and Transportation Officials Load and 

Resistance Factor Design Bridge Design Specifications (AASHTO 2010) use the same 

expression, and is similar to that proposed by Kirby and Nethercot (1979): 

max
b

max a b c

12.5M
C

2.5M 3M 4M 3M


  
        (108) 

Cb, the moment gradient factor, allows approximate consideration of the effects 

of arbitrary moment distributions.  In the standard code procedure, to determine the 

nominal resistance for elastic LTB, Cb is multiplied by the basic strength (AISC 360): 

0 _n b crR C M            (109) 

Although very useful, the drawback to this expression is that it inaccurately 

describes resistance under certain load situations. The problem is further exacerbated 
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in that it does not account for vertical load position with respect to the shear center. 

Because of these drawbacks, rather than basing resistance on Eq.’s 108 and 109, Eq. 

103 is set to zero and a finite difference analysis is used to solve for the minimum load 

w, the exact critical load for the load type considered (Types 1 through 3 in Figure 13). 

For reliability analysis, the nominal elastic LTB resistance is assumed to have a bias 

factor, λ=1.03 and COV of 0.12, (Nowak and Collins 2003). Mean resistance is thus 

taken as Mcr= λ Mcr. In this study, a W14 X 132 simply supported A992 Grade 50 beam 

with a span of 30 feet is considered to support load distributions Types 1 through 3, 

combined with three different linearity factors n=0, 1, and 2.  The resulting EUMFs are 

shown in Figures 30-33. The beam is assumed to be subjected to dead and live load 

with a resulting load combination of 1.2DL + 1.6LL and designed according to AISC 360 

(2010), with strength reduction factor taken as ϕ = 0.9.  

 

Figure 30: Load Types 1-3 solution for reliability analysis plot, Yv=0 
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Figure 31: Load Type 1 load height effects, n=0, 1 and 2 

 

Figure 32: Load Type 2 load height effects, n=0, 1 and 2 
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Figure 33: Load Type 3 load height effects, n=0, 1 and 2 

 

Reliability Analysis 

 Dead load (DL), live load (LL) and critical LTB moment capacity (Mcr) are the 

random variables (RVs) considered for the analysis, with statistical parameters 

described above. The resulting limit state function is: 

𝑔 = 𝑀𝑐𝑟 − 𝐷𝐿 − 𝐿𝐿          (110) 

Monte Carlo Simulation (MCS) is used to compute failure probability pf, then 

results are transformed to reliability index with the standard normal transformation      

β=-Φ-1(pf). 
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Results 

Results are presented in Figures 34-37, where the reliability index is given as a 

function of different load types and vertical positions relative to the shear center. 

Normalizing the critical moments will produce approximately the same results for EUMF 

for a given load type and for a set of parameters (E, I, G and J). This goes to say that 

the results will be the same for any reasonable stiffness parameters input that allow the 

member to fail elastically The reliability indices are plotted against the end moment 

factor index varying from -2 to 2 where an end moment factor of 0 represents a simply 

supported case with no applied end moments. In Figure 34, where load is applied at the 

shear center, it can be observed that for all load cases, when the end moment factor  

is between approximately -1 and 1, reliability index falls between 3.0 and 3.5, which is 

expected, as this is the target reliability range for beams subjected to LTB if designed 

according to AISC 360 (2010)   However, as the load type deviates from uniform, the  

deviation between the EUMF’s obtained from the numerical analysis and that of the 

AISC 360 approximate method (i.e. as a result of using Eq. 108) increases, reliability 

index also increases, as Eq. 108 more inaccurately (conservatively) estimates capacity. 

These cases are those for which the beam experiences reverse curvature bending; i.e. 

for Type 1 loading, where the end moment factor  < 0 and for Type 2 and Type 3 

loads, for  > 0.  It can also be seen that for a Type 1 load, the reliability indices from 

AISC 360 are fairly consistent for  > -0.5, indicating a close match between the code 

estimation method and the true section capacity.  However for  < -0.5, significant 

deviations occur, resulting in much higher reliabilities due to significant overdesign. 

Similar observations are made for Types 2 and 3 loads where  > 0.5, where cases of 
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reverse curvature bending cause inconsistent, higher levels of reliability.  Figures 35, 36 

and 37 show the effect of load height. It is observed that when the load is applied below 

the shear center of the section, the LTB resistance of the member increases due to 

increased rotational stability and hence reliability index increases. However, since the 

moment factor guidelines in AISC 360 does not have a provision that adjusts for  the 

effect of load height, the nominal resistance calculated using the code procedure does 

not change. In these cases, the  AISC 360 procedure underestimated beam capacity by 

as much as 43% for a Type 3 load with linearity factor n = 2. This resulted in reliability 

indices as that are significantly over the target value.  Conversely, when the load was 

applied above the shear center, beam instability increases and, reliability may decrease 

very significantly. For example, for a Type 1 load with corresponding FEM indices 

between -0.5 to -1.125, the discrepancy between the moment factors from numerical 

analysis to those obtained from the AISC 360 procedure reached as high as 50%, 

resulting in a decrease in section resistance by approximately the same amount, and a 

correspondingly large decrease in reliability, to such an extent that in some extreme 

cases, the reliability index falls below zero (i.e. greater than 50% failure probability).  

Similar phenomena are observed for Type 2 and 3 load cases, where a negative β is 

recorded for FEM indices between 0.5 to 1.125 and 0.5 to 1.75 respectively. 
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Figure 34: Reliability Indices for Load Types 1-3 with Yv=0 

 

Figure 35: Effect of Load height on Safety Levels for Load Type 1, n=0, 1 and 2 
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Figure 36: Effect of Load height on Safety Levels for Load Type 2, n=0, 1 and 2 

 

Figure 37: Effect of Load height on Safety Levels for Load Type 3, n=0, 1 and 2 
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Conclusion 

A reliability analysis of the elastic lateral torsional buckling of beams was 

conducted. The process involves identifying load and resistance random variables, 

defining the appropriate limit state function, and establishing a suitable resistance 

model. The resistance model considered in this study properly accounts for the effect of 

load height under a wide range of moment distributions, where equivalent moment 

factors were formulated up to 2nd degree spandrel load types. Using this resistance 

model, it was found that the reliability index of the section investigated experienced a 

significant change, as a function of load type and position. As expected, the safety level 

of the beam increased from the target level of approximately 3.5 when load is applied 

below the shear center, with a reliability index as high as 7.8 for Type 1 loads. 

Correspondingly, the resistance and thereby the reliability of the beam decreased 

greatly when load was applied above the shear center, where reliability index was less 

than zero in some cases. It was also found that when the beam experiences reverse 

curvature bending, the discrepancy between the AISC 360 procedure to determine LTB 

capacity and the true solution increased, resulting in increases in reliability index, 

reflecting the conservativeness of the code procedure in these cases. This occurs for 

Type 1 distributions when   < -0.5, and when   > 0.5 for distribution Types 2 & 3. 
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CHAPTER 8 FINAL CONCLUSION 

Introduction 

This research involves the study of flexural members as they are subjected to the 

elastic lateral torsional buckling limit state. To this end, various effects on their stability 

are discussed with some studied in detail using calculations, figures and design 

examples. The items studied include moment distribution, load height with respect to 

the shear center, various types of lateral restraint both discrete and continuous, and the 

reliability of these members under the effects of moment distribution and load height. 

Further, a code comparison is done for AISC 360 to understand when circumstances 

preclude the use of their specifications in designing doubly symmetric wide flange 

sections for use as flexural members. These areas are selected due to the need that is 

present in the state of the art and state of the practice in handling the effects described.  

Moment Effects 

 The study of the independent effect of moment distribution between supports has 

yielded interesting conclusions regarding the current state of the practice in flexural 

member design. The methods currently ascribed by the prevalent codices around the 

world prefer approximation methods that are inaccurate under certain design 

circumstances. These design circumstances found in this study are reflective of a 

philosophy issue in how flexural member design considering the elastic lateral torsional 

buckling limit state should be addresses. The current close form approximation method 

falls short when members are loaded as described in Chapter 3 and in nearly all 

circumstances where reverse curvature bending is severe. In general this reverse 
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curvature bending occurs for distribution Type 1 when 0  , and for Types 2 and 3 

when 0  . Unconservative results reach a maximum error from moment effects of 8%. 

Conservative results reach a maximum error from moment effects of 51%.  

Load Height Effects 

 Load height effects are studied in this paper due to their neglect in prevalent 

design specifications. This effects absence from design codes is likely due to the 

difficulty in describing its effect in a general way that is not tailored to specific situations. 

It is also likely neglected in design codes in part due to the difficulty in factoring in its 

effects. As shown in Chapter 5, the effects of load height are severe. The strength 

reduction due to loading members above their shear center is significant with a 

reduction as high as 75% in some circumstances. Loading members above their shear 

center can be deceptive as simply applying the loading to the top flange of a wide flange 

beam effectively loads the beam by a height equal to half the beams depth. 

 The technical aspects of the study of load height show through intensive 

derivation that the load height effects are able to be decoupled from those effects 

associated with moment distribution. In essence this means that a separate factor may 

be developed for load height that is able to be used in conjunction with existing moment 

factors and moment factor data. A load height factor is developed and plotted for a 

series of AISC wide flange steel beams. 
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Reliability of Flexural Members 

 A reliability analysis of members subject to elastic lateral torsional buckling is 

performed using a Monte Carlo Simulation. The analysis is performed considering the 

effects of moment distribution between supports and load height. A comparison with 

AISC 360 is used to determine how well these solutions perform in comparison to those 

specifications mandated by AISC 360. For the independent effect of moment distribution 

for load types studied, it is shown that as the solution AISC 360 produces deviates from 

the solution produced by the numerical analysis, the reliability index decreases rapidly. 

These values occur for all load cases with the end moment factor causes reverse 

curvature bending as previously described. When the effect of load height is included 

the reliability index reduces drastically. In most cases the index falls below zero and 

produces a negative number which indicated a failure rate of 50% or higher. In these 

circumstances the double effects of reverse curvature bending and load height work 

together to reduce the ability of AISC 360 in adequately predicting strength member 

strengths. Separate solution methods for moment effects and load height effects in the 

form of independent factors are provided to remedy these issues. 

Need for Future Research 

 The need for future research on the topic is mainly described in Chapter 6. The 

types and levels of lateral-torsional restraint need to be described and studied in further 

detail. Methods also need to be devised for design codes to use that allow discrete 

torsional braces to be solved for. Membranes such as fabrics that cover systems of 
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beams and are assumed to provide bracing also need to be studied. And lastly the 

restraint that loads provide to members as they load them needs to be studied. 

 Future work is also needed for load height factors. The curves provided in 

Chapter 5 for the load height factors that correspond to loading types 1, 2, and 3 only 

apply to these load types. All of the load types presented in Table 1 need to be studied 

and described so that all of the most typical design scenarios are covered. Since these 

factors are developed for double symmetric flexural members, members that are not 

symmetric such as C and Z shapes need to be studied and have an additional 

eccentricity applied. 
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ABSTRACT 

ELASTIC STABILITY OF FLEXURAL MEMBERS IN CIVIL ENGINEERING DESIGN 

by 

ALEXANDER W. LAMB 

December 2014 

Advisor: Dr. Christopher D. Eamon 

Major: Civil and Environmental Engineering 

Degree: Doctor of Philosophy  

 The elastic lateral torsional stability of flexural members is studied. The effects of 

moment distribution between supports and load height with respect to shear center are 

examined using numerical and analytical methods. From these methods, independent 

moment and shear factors are developed for a range of load types and load heights. A 

code comparison is performed comparing numeric results with those produced by AISC 

360 to illustrate situations where issues occur in terms of strength prediction. A reliability 

analysis is performed from this data to quantify the difference in terms of the reliability 

index using a Monte Carlo Simulation. The results of the analysis show large 

discrepancies between the results produced by the code and those produced by the 

numerical analysis in circumstance where reverse curvature bending is apparent. 

Further, large discrepancies result when the load is positioned above the shear center 

of the member. This difference indicates a need for the code to change to have special 

provisions that handle the circumstances surrounding the load types studied and the 

load height effect. A method is proposed to adjust for these effects by the introduction of 
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independent moment and load height factors with a design example to illustrate the 

method.  
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