Journal of Modern Applied Statistical Methods

Volume 14 | Issue 2

11-1-2015

JMASM34: Two Group Program for Cohen's d, Hedges' g, η2, Radj2, ω2, ε2, Confidence Intervals, and Power

David A. Walker
Northern Illinois University, dawalker@niu.edu

Follow this and additional works at: http://digitalcommons.wayne.edu/jmasm

Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the Statistical Theory Commons

Recommended Citation

Available at: http://digitalcommons.wayne.edu/jmasm/vol14/iss2/21

This Algorithms and Code is brought to you for free and open access by the Open Access Journals at DigitalCommons@WayneState. It has been accepted for inclusion in Journal of Modern Applied Statistical Methods by an authorized editor of DigitalCommons@WayneState.
JMASM34: Two Group Program for Cohen's d, Hedges' g, η^2, ω^2, ε^2, Confidence Intervals, and Power

Erratum
This paper was originally published in JMASM Algorithms & Code without its enumeration, JMASM34.
JMASM Algorithms and Code:
Two Group Program for Cohen's d, Hedges’ g, η^2, R_{adj}^2, ω^2, ε^2, Confidence Intervals, and Power

David A. Walker
Northern Illinois University
DeKalb, IL

The purpose of this research is to provide an application for users interested in a SPSS syntax program to determine an array of commonly-employed effect sizes and confidence intervals not readily available in SPSS functionality, such as the standardized mean difference and r-related squared indices, for a between-group design.

Keywords: Effect size, confidence intervals, SPSS, syntax

Introduction

The purpose of this research is to provide an application for researchers and practitioners interested in a SPSS syntax program (Walker, 2015) to determine an array of commonly-employed effect sizes and confidence intervals not readily available in SPSS functionality, such as the standardized mean difference and r-related squared indices, for a between-group design using descriptive statistics: means, standard deviations, and sample sizes.

As a brief précis, in the social sciences, there has been a sustained effort by researchers, editorial boards, and professional organizations for mandatory reporting of effect sizes with statistical significance testing (American Educational Research Association, 2006; American Psychological Association [APA], 2010; Cohen, 1992; Ferguson, 2009; Levine & Hullett, 2002; Thompson, 1998; Wilkinson & The APA Task Force on Statistical Inference, 1999). Cohen (1988, p. 10) noted that an effect size, “…serves as an index of degree of departure from the null hypothesis.” When reported with statistically significant results, effect sizes can provide information, for example, pertaining to the extent

Dr. Walker is a Professor of Educational Research, Technology, and Assessment in the College of Education. Email him at dawalker@niu.edu.
of the difference between means or the magnitude of a relationship in terms of the proportion of the total variance accounted for in an outcome (Cohen, 1988). Effect sizes can also be employed to indicate the functional, applied effect of an outcome (Nickerson, 2000).

Ferguson (2009) and Thompson (2009) proposed that effect sizes differentiate generally into the subsequent categories: 1) variance accounted for measures such as squared indices of r; 2) corrected estimates, typically employed to reduce estimation bias, such as R_{adj}^2; and 3) standardized mean differences, for example, Cohen’s d. The current study’s program will extrapolate effect sizes from all of these categories.

Cohen (1988) suggested that for r-related squared indices, which indicate the proportion of variance in the dependent variable accounted for by the effect of the independent variable, values of .01, .06, and .14 should serve as markers of small, medium, and large effects, respectively. Further, Cohen (1988) defined the values of effect sizes for the standardized difference between means as small = .20, medium = .50, and large = .80. However, it should be appropriately noted that it is at the discretion of the researcher to determine the context in which qualifying labels such as “small,” “medium,” and “large” effects are being defined when using any effect size index. This caution has been stated by Glass, McGaw, and Smith (1981) with reiteration from Cohen (1988) and Thompson (2009).

Lastly, there has been an emphasis in the literature (APA, 2010; Cohen, 1994; Sapp, 2004; Vacha-Haase & Thompson, 2004; Wilkinson & The APA Task Force on Statistical Inference, 1999) that not only should effect sizes be reported with statistically significant results, but confidence intervals ought to complement said point estimate indices for more comprehensive analysis and interpretation of outcomes. As noted by Levin and Robinson (2003, p. 235), “Reporting and interpreting effect sizes (with corresponding confidence intervals) in multiple experiment studies where the effect of interest is replicated (i.e., its direction is confirmed) may provide readers with more useful information concerning the believability and magnitude of the effect…”

Two group program

The SPSS syntax program will create an internal matrix table to assist users in determining the effects pertaining to the standardized mean difference and/or the proportion of variance in the dependent variable accounted for by the effect of the independent variable for two groups. The preponderance of the ensuing formulas
TWO GROUP EFFECT SIZE PROGRAM

The variance accounted for effect size measures include eta squared (η^2): Note equal to R^2 (Beasley & Schumacker, 1995), which is known to be a positively-biased index, particularly with small sample sizes, and is defined as:

$$\eta^2 = \frac{d^2}{d^2 + 4}$$

where $d = $ Cohen’s d value.

Additionally, correction indices for η^2, such as omega squared (ω^2), epsilon squared (ϵ^2), and R_{adj}^2, all algebraically and theoretically-related measures (Cohen, 1988), are part of the program and formulated as:

$$\omega^2 = \frac{(t^2 - 1)}{(t^2 + N_1 + N_2 - 1)}$$

$$\epsilon^2 = 1 - (1 - \eta^2) \times \frac{(N_1 + N_2 - 1)}{(N_1 + N_2 - 2)}$$

$$R_{adj}^2 = \eta^2 - \left[(1 - \eta^2) \times \left(\frac{2}{(N_1 + N_2 - 3)} \right) \right]$$

where t is the t value derived from the model as

$$d \times SQRT \left[\frac{(N_1 \times N_2)}{(N_1 + N_2)} \right]$$

M_1, SD_1, N_1 and M_2, SD_2, N_2 are the means, standard deviations, and sample sizes for Group 1 and Group 2, respectively.

Finally, Cohen’s d is a measure of standardized mean difference and is defined as:
Note that Kraemer (1983) indicated the formula for d is optimal when both sample sizes are relatively equal and also large. Further, Cohen’s d is recognized as a biased estimate (Hedges, 1981) and; thus, Hedges’ g is a correction measure for this concern. It should be mentioned; however, that d and g are approximately equivalent when $n = 30$ (Hedges & Olkin, 1985). Hedges’ g is defined as:

$$
g = d \times \left(1 - \frac{3}{4 \times (N_1 + N_2) - 9}\right)
$$

For the syntax program, the squared indices’ estimated confidence intervals (CI) are set at 90% and based on the work of Cohen, Cohen, West, and Aiken (2003). For these estimated CIs, it is agreed that the sample size should be > 60, which, comparatively, assumes negligible error and; therefore, the absence of an adjustment for noncentrality. The error term for this approximated CI is defined as:

$$
R^2E = \text{SQRT}(4 \times \eta^2) \times (1 - \eta^2)^2 \times \frac{(N - 1 - 1)^2}{(N^2 - 1)} \times (N + 3) \ldots \times R^2 \pm R^2E \times 1.645
$$

For the standardized mean difference CIs, these are set at 95%. The program’s estimated CI formula is based on previous research by Grissom and Kim (2005), Hedges and Olkin (1985), and Steiger (2004). Bird (2002) found that if $d \leq 2.00$, which in social science research frequently can be the circumstance with middling-sized effects (Richard, Bond, & Stokes-Zoota, 2003; Rosnow & Rosenthal, 2003), adjustment for noncentrality is not compulsory. The error term for this approximated CI is defined as:

$$
dl; \ g1 = \frac{N}{(N_1 \times N_2)} + \frac{d^2}{(2 \times N)} \ldots d \pm d1 \times 1.96
$$
Note: For any CI within the program, the user can alter it by changing the Z value within the syntax, for example, to values such as 1.28 (80% CI), 1.645 (90% CI), 1.96 (95% CI), or 2.58 (99% CI), where Cohen (1990, p. 1310) observed “I don't think that we should routinely use 95% intervals: Our interests are often better served by more tolerant 80% intervals.”

Results

As seen in Appendix A, the user would put the two-group descriptive data \((M_1, SD_1, N_1\) for Group 1 and \(M_2, SD_2, N_2\) for Group 2) in the space between BEGIN DATA and END DATA along with the total sample size \((N)\). Thus, these descriptive data in the example from the program are, in group order, 16.45 2.23 30 11.77 4.66 34 64 and represent continuous data for the dependent variable (Depression Score) and categories for the independent variable Group (i.e., Group 1 [Treatment] and Group 2 [Control]).

Once the program is run, the results show that the matrix produced will cluster the effect sizes by the categories noted previously: standardized means difference, squared index, and corrected squared indices. Additionally, the matrix generates an overall model post-hoc power value, which is predicated on alpha established at .05 and the particular sample sizes for Group 1 and Group 2.

As can be seen in the results from Table 1, the standardized mean difference effect size for Cohen’s \(d\) was 1.256 or a “large” effect of over one standard deviation difference in Depression Score between Group 1 and Group 2 with 95% CI at (1.109, 1.403) and overall model power = .999, where power \(\geq .80\) is desired in social science research (Nunnally, 1978). The correction for Cohen’s \(d\), Hedges’ \(g\), was very comparable in value at 1.241 (1.094, 1.387).

Table 1. Standardized Mean Difference, Confidence Intervals, and Model Post-Hoc Power.

<table>
<thead>
<tr>
<th>Cohen’s (d)</th>
<th>95%CI(L)</th>
<th>95%CI(U)</th>
<th>Hedges’ (g)</th>
<th>95%CI(L)</th>
<th>95%CI(U)</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.256</td>
<td>1.109</td>
<td>1.403</td>
<td>1.241</td>
<td>1.094</td>
<td>1.387</td>
<td>0.999</td>
</tr>
</tbody>
</table>

Note. CI = Confidence Interval; L = Lower; U = Upper.

For the squared and corrected squared indices, the results in Table 2 indicated that the proportion of variance in the dependent variable accounted for by the effect of the independent variable was “large” overall for all of the various indices. As would be expected, these effect size measures ranged from a low of
25.9% for the correction $R_{adj}^2 (90\% \text{ CI } .089, .430)$ to a high of 28.3% for the non-corrected $\eta^2 (90\% \text{ CI } .107, .458)$.

<table>
<thead>
<tr>
<th>η^2</th>
<th>90% CI L</th>
<th>90% CI U</th>
<th>R_{adj}^2</th>
<th>90% CI L</th>
<th>90% CI U</th>
<th>ω^2</th>
<th>90% CI L</th>
<th>90% CI U</th>
<th>ϵ^2</th>
<th>90% CI L</th>
<th>90% CI U</th>
</tr>
</thead>
<tbody>
<tr>
<td>.283</td>
<td>.107</td>
<td>.458</td>
<td>.259</td>
<td>.089</td>
<td>.430</td>
<td>.274</td>
<td>.100</td>
<td>.448</td>
<td>.271</td>
<td>.098</td>
<td>.444</td>
</tr>
</tbody>
</table>

References

Walker, D. A. (2015). Two group program for Cohen's d, Hedges’ g, η^2, R_{adj}^2, ω^2, ϵ^2, confidence intervals, and power. [Computer program]. DeKalb, IL: Author.

Appendix A: SPSS syntax two group program for Cohen's d, Hedges’ g, η^2, R_{adj}^2, ω^2, ε^2, confidence intervals, and power.

DATA LIST LIST /M1 SD1 (2F9.3) N1 (F8.0) M2 SD2 (2F9.3) N2 N (2F8.0).

Put your two-group data (M1, SD1, N1 for Group 1 and M2, SD2, N2 for Group 2) in
the space between BEGIN DATA and END DATA along with the total sample size (N)
***.
BEGIN DATA
16.45 2.23 30 11.77 4.66 34 64
END DATA.

COMPUTE POOLD = ((N1-1)*(SD1**2)+(N2-1)*(SD2**2))/((N1+N2)-2).
COMPUTE COHEND = ABS((M1-M2)/SQRT(POOLD)).
COMPUTE D1 = N/(N1*N2) + COHEND**2/(2*N).
COMPUTE HEDGESG = COHEND*(1-(3/(4*(N1 + N2)-9))).
COMPUTE G1 = N/(N1*N2) + HEDGESG**2/(2*N).
COMPUTE CRITICAL = 0.05.
COMPUTE K = 1.
COMPUTE H = (2*N1*N2)/(N1+N2).
COMPUTE NCP = ABS((COHEND*SQRT(H))/SQRT(2)).
COMPUTE ALPHA = IDF.T(1-CRITICAL/2,N1+N2-2).
COMPUTE POWER1 = 1-NCDF.T(ALPHA,N1+N2-2,NCP).
COMPUTE POWER2 = 1-NCDF.T(ALPHA,N1+N2-2,-NCP).
COMPUTE B = POWER1 + POWER2.

COMPUTE ETA2 = COHEND**2/(COHEND ** 2 + 4).
COMPUTE EPSILON = 1-(1-ETA2) * (N1 + N2-1) / (N1 + N2-2).
COMPUTE TTEST = COHEND * SQRT((N1 * N2) /(N1 + N2)).
COMPUTE OMEGA = (TTEST**2-1)/(TTEST**2 + N1 + N2 -1).
COMPUTE SEETA1 = (1-ETA2)/SQRT(N1 + N2-1).
COMPUTE SEETA2 = 2/(N1 + N2 - 2).
COMPUTE SEETA3 = SQRT(SEETA2 + 4*ETA2).
COMPUTE SEETA = SEETA1 * SEETA3.

COMPUTE TTEST = COHEND * SQRT((N1 * N2) /(N1 + N2)).
COMPUTE ADJR2 = ETA2 - ((1-ETA2)*(2/(N1 + N2 -3))).
COMPUTE ADJR2A = (((4*ADJR2)*(1-ADJR2)*(N-K-1)**2)).
COMPUTE ADJR2B = (N**2-1)FN+(N+3).
COMPUTE ADJR2C = ADJR2A/ADJR2B.
DAVID A. WALKER

COMPUTE ADJR21 = SQRT(ADJR2C).
**
NOTE: Confidence Intervals can be altered below by changing the Z = value to
either 1.96 = (95%) or 2.58 = (99%) For the squared indices, they are at 90%
**.
COMPUTE Z = 1.645.
COMPUTE ADJR2L = (ADJR2-(Z*ADJR21)).
COMPUTE ADJR2H = (ADJR2+(Z*ADJR21)).
COMPUTE OMEGA = (TTEST**2-1)/(TTEST**2 + N1 + N2 -1).
COMPUTE SEE1 = (1-EPSILON)/SQRT(N1 + N2-1).
COMPUTE SEE2 = 2/(N1 + N2 - 2).
COMPUTE SEE3 = SQRT(SEE2 + 4*EPSILON).
COMPUTE SEEPSILON = SEE1 * SEE3.
COMPUTE SEO1 = (1-OMEGA)/SQRT(N1 + N2-1).
COMPUTE SEO2 = 2/(N1 + N2 - 2).
COMPUTE SEO3 = SQRT(SEO2 + 4*OMEGA).
COMPUTE SEOPSILON = SEO1 * SEO3.
COMPUTE ETAA = (((4*ETA2)*(1-ETA2)*(N-K-1)**2)).
COMPUTE ETAB = (N**2-1)*(N+3).
COMPUTE ETAC = ETAA/ETAB.
COMPUTE ETA1 = SQRT(ETAC).
COMPUTE ETAL = (ETA2-(Z*ETA1)).
COMPUTE ETAH = (ETA2+(Z*ETA1)).
COMPUTE OMEGAA = (((4*OMEGA)*(1-OMEGA)*(N-K-1)**2)).
COMPUTE OMEGAB = (N**2-1)*(N+3).
COMPUTE OMEGAC = OMEGAA/OMEGAB.
COMPUTE OMEGA1 = SQRT(OMEGAC).
COMPUTE OMEGAL = (OMEGA-(Z*OMEGA1)).
COMPUTE OMEGAH = (OMEGA+(Z*OMEGA1)).
COMPUTE EPSILONA = (((4*EPSILON)*(1-EPSILON)*(N-K-1)**2)).
COMPUTE EPSILONB = (N**2-1)*(N+3).
COMPUTE EPSILONC = EPSILONA/EPSILONB.
COMPUTE EPSILON1 = SQRT(EPSILONC).
COMPUTE EPSILONL = (EPSILON-(Z*EPSILON1)).
COMPUTE EPSILONH = (EPSILON+(Z*EPSILON1)).
**
NOTE: Confidence Intervals for Cohen's d are at 95%
**.
TWO GROUP EFFECT SIZE PROGRAM

COMPUTE Z = 1.96.
COMPUTE GH = (HEDGESG+(G1*Z)).
COMPUTE GL = (HEDGESG-(G1*Z)).
COMPUTE DH = (COHEND+(D1*Z)).
COMPUTE DL = (COHEND-(D1*Z)).
EXECUTE.

FORMAT POOLD to DL (F9.3).
VARIABLE LABELS COHEND 'Cohens d'/B 'Power'/ETA2 'Eta Squared'/OMEGA 'Omega Squared'/EPSILONL '90% CI Lower'/ EPSILONH '90% CI Upper'/OMEGAL '90% CI Lower'/ OMEGAH '90% CI Upper'/ETAL '90% CI Lower'/ADJR2L '90% CI Lower'/ GL '95% CI Lower'/ GH '95% CI Upper'/HEDGESG 'Hedges g'/ADJR2H '90% CI Upper'/ADJR2 'Adjusted R2'/DL '95% CI Lower'/
DH '95% CI Upper'/ETAH '90% CI Upper'/EPSILON 'Epsilon Squared'.

REPORT FORMAT=LIST AUTOMATIC ALIGN(CENTER)
/VARIABLES= COHEND DL DH HEDGESG GL GH B
/TITLE "Standardized Mean Difference, Confidence Intervals, and Model Post-Hoc Power".

REPORT FORMAT=LIST AUTOMATIC ALIGN(LEFT)
MARGINS (*,150)
/VARIABLES= ETA2 ETAL ETAH ADJR2 ADJR2L ADJR2H OMEGA OMEGAL OMEGAH EPSILONL EPSILONH EPSILONH
/TITLE "Proportion of Variance in the DV Accounted for by the Effect of the IV and Confidence Intervals".