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Chapter I 

Introduction 

 Over a century ago, Spearman noticed positive correlations among scores on diverse 

cognitive tasks, and proposed the hypothesis of general intelligence, or g factor, to explain the 

observed commonality among mental abilities (Spearman, 1904, 1927). According to Spearman’s 

hypothesis, the g factor is an expression of commonality among diverse cognitive abilities. 

According to the general intelligence theory, persons with higher g scores are expected to 

perform better on a variety of different tests. Decades later, Spearman’s student Raymond Cattell 

proposed that intelligence is not a unitary entity, as he introduced the concepts of fluid (Gf) and 

crystallized intelligence (Gc) as independent components of general intelligence (Cattell, 1943). 

The Gf-Gc theory was further refined by Cattell’s student John Horn (Horn & Cattell, 1966), who 

introduced additional second-order factors, such as visualization capacity, perceptual speed, and 

fluency. Fluid intelligence refers to the capacity for logical reasoning and problem-solving 

independent of acquired knowledge (Cattell, 1971). Gf is typically evaluated with nonverbal tests 

such as the Cattell Culture Fair IQ test (CFIT, Cattell & Cattell, 1973) and the performance subscale 

of the Wechsler Adult Intelligence Scale (WAIS, Wechsler, 1958), which require implementation 

of reasoning skills based on novel information but not on acquired knowledge. Crystallized 

intelligence (Gc), on the other hand, is the capacity to make use of acquired and acculturated 

knowledge, is affected by individual's education and cultural experience, and can be assessed by 

tests of vocabulary and general knowledge. Although Gf and Gc are distinct factors of intelligence, 

they correlate with each other (Carroll, 1993), usually  greater than r = 0.3 (Flanagan & McGrew, 

1998; Li, et al., 2004). 
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 Fluid and crystalized components of intelligence exhibit different age-related trajectories 

of change (Desjardins & Warnke, 2012; McArdle, Ferrer-Caja, Hamagami, & Woodcock, 2002). 

Fluid intelligence (Gf) increases rapidly during childhood and adolescence, peaks in early 

adulthood and then declines substantially across the later part of the life span. Age-related 

differences were reported in various indices of Gf, and  Gf has become viewed as an age-

vulnerable or age-sensitive ability (Horn & Blankson, 2005). Crystalized intelligence indices show 

higher scores in older children compared to their younger counterparts, and Gc is thus assumed 

to rise in the course of early development, just as the fluid intelligence does. However, as 

indicated in a longitudinal study, Gc does not decline in healthy adults, but it may increase further 

when Gf peaks and starts to decline (McArdle, Hamagami, Meredith, & Bradway, 2000).  

 Fluid intelligence is associated with many types of cognitive operations and shows a  

strong relationship with executive functions (Unsworth, et al., 2009). Executive functions are 

referred to as "an umbrella term comprising a wide range of cognitive processes and behavioral 

competencies which include verbal reasoning, problem-solving, planning, sequencing, the ability 

to sustain attention, resistance to interference, utilization of feedback, multitasking, cognitive 

flexibility, and the ability to deal with novelty" (Chan, Shum, Toulopoulou, & Chen, 2008). A study 

of patients with frontal lesions revealed that for some typical executive functioning tasks such as 

Wisconsin Card Sorting Test and verbal fluency, executive functioning scores highly correlated 

with fluid intelligence: r = 0.61 for WCST and 0.56 for verbal fluency, both p < 0.001 (Roca, et al., 

2010). Working memory capacity, a component of executive functions, is also highly correlated 

with fluid intelligence (Colom, Rebollo, Palacios, Juan-Espinosa, & Kyllonen, 2004; de Jong & Das-

Smaal, 1995; Engle, Tuholski, Laughlin, & Conway, 1999; Kyllonen & Christal, 1990). Blair used 
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fluid intelligence, working memory and executive function as interchangeable terms that are 

distinctly different than crystalized cognition (Blair, 2006). Although the isomorphisms of 

executive function, working memory and Gf are not universally accepted, all concur that 

executive functions, working memory and Gf are strongly related (Burgess, Braver, & Gray, 2006; 

Garlick & Sejnowski, 2006; Heitz, et al., 2006), with the magnitude of the correlation between Gf 

and working memory attaining values up to r = 0.8 (Kyllonen & Christal, 1990).  

 Just as executive functions are related to the volume and thickness of the prefrontal 

cortex (for review, see Yuan & Raz, 2014), fluid intelligence also is associated with the integrity 

of frontal lobes. For example, patients with prefrontal lesions exhibit impaired performance on 

CFIT (Roca, et al., 2010). In addition to the frontal lobe, lesions in parietal cortex also result in 

deficits in fluid intelligence (Woolgar, et al., 2010). In functional neuroimaging studies, increased 

activation in frontal and parietal cortex is observed during fluid reasoning (Masunaga, Kawashima, 

Horn, Sassa, & Sekiguchi, 2008; Prabhakaran, Smith, Desmond, Glover, & Gabrieli, 1997) and fluid 

analogies (Geake & Hansen, 2005). The anterior cingulate, a region that is responsible for 

selection of responses and inhibition of alternative actions (Braver, Barch, Gray, Molfese, & 

Snyder, 2001; Turken & Swick, 1999), shows increased activation in tasks requiring fluid 

intelligence (Duncan, et al., 2000; Geake & Hansen, 2005). In the temporal lobe, many regions 

support diverse cognitive operations that are relevant to Gf. Some regions, such as posterior 

superior temporal gyrus (Luo, et al., 2003), inferior and middle temporal gyri (Goel & Dolan, 2004; 

Knauff, Mulack, Kassubek, Salih, & Greenlee, 2002), as well as fusiform gyrus (Goel & Dolan, 2004; 

Luo, et al., 2003), have been linked to reasoning.  Specifically, the fusiform area is involved in 

pattern recognition (Gauthier, et al., 2000; Tarr & Gauthier, 2000); the inferior temporal gyrus 
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appears to be dedicated to high-level visual processing and memory (Miyashita, 1993); and 

portions of the superior and middle temporal gyri participate in processing of auditory 

information (Jancke, Wustenberg, Scheich, & Heinze, 2002).  

 Jung and Haier reviewed a number of structural, PET and fMRI studies of reasoning 

intelligence, and proposed the Parieto-Frontal Integration Theory (P-FIT) to account for the inter-

person difference in intelligence and reasoning tasks (Jung & Haier, 2007). Jung and Haier’s P-FIT 

model describes a network of brain regions that includes the dorsolateral prefrontal cortex, the 

inferior and superior parietal lobule, the anterior cingulate, and some areas within the temporal 

and occipital lobes, which are hypothesized to be involved in fluid reasoning tasks. The P-FIT 

model assumes the following roles in reasoning and intelligence: The temporal and occipital 

regions are involved in the early processing of sensory information; then this information is fed 

to the parietal cortex, which interacts with frontal areas; frontal cortex generates the best 

solution to a given problem; and anterior cingulate constrains the selected response and inhibits 

other competing process. In light of the P-FIT model, the current study evaluated the relationship 

between fluid intelligence and frontal, parietal, temporal, and anterior cingulate cortices. 

Contemporary in vivo neuroimaging makes it possible to investigate brain structures of 

healthy human adults, and it has revealed substantial morphological alterations in prefrontal and 

parietal cortices with increasing age. Significant age-related shrinkage in the lateral prefrontal 

and/or orbito-frontal cortices is suggested by studies of regional brain volumes (Raz, Ghisletta, 

Rodrigue, Kennedy, & Lindenberger, 2010; Raz, et al., 2005). Some studies reported significant 

age-related difference in the volume of superior parietal cortex (Raz, et al., 1997), although in 

some other studies, the age difference in parietal cortex was non-significant (Raz, et al., 2004). 
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As observed in a longitudinal study with a mean follow-up interval of about 5 years, the shrinkage 

rate could be as high as 0.91% per year in lateral prefrontal cortex, 0.85% per year in orbito-

frontal cortex and 0.87% annually in the inferior parietal lobule, corresponding to effect sizes 

(Cohen's d) of 0.92, 0.79 and 0.89, respectively, for five-year mean changes (Raz, et al., 2005). 

However, other studies using same measurement methods but shorter follow-ups replicated 

significant shrinkage only in orbito-frontal (with effect sizes of 0.41 and 0.42 over two consecutive 

intervals) but not in lateral prefrontal cortex, although individual differences in change rates were 

observed in all of these samples (Raz, et al., 2010). Besides the volume of gray matter, age-related 

cortical thinning in prefrontal and parietal cortices is also confirmed by studies measuring cortical 

thickness (Fjell, Westlye, et al., 2009; Salat, et al., 2004). Based on the findings of cortical 

thickness and volume, the vulnerability of PFC has been proposed, as the age effects on PFC are 

greater than age effects on the other neocortical regions (Fjell, Westlye, et al., 2009; Raz, et al., 

1997; Raz & Rodrigue, 2006; Resnick, Pham, Kraut, Zonderman, & Davatzikos, 2003). 

 In cross-sectional studies, positive correlations have been reported between fluid 

intelligence and frontal cortex volume in healthy adults (Colom, et al., 2009; Gong, et al., 2005; 

Schretlen, et al., 2000). As summarized in a meta-analysis study, larger prefrontal volume or 

thickness is also associated with better executive functioning (Yuan & Raz, 2014), which overlaps 

to a large extent with fluid intelligence. In addition, the Gf-cortex relationship is also found in 

parietal and temporal cortices, although the clusters of significant voxels in parietal regions were 

much smaller than the clusters in frontal lobe (Colom, et al., 2009).  

 In contrast to cross-sectional investigations of associations between age-related 

differences in brain and cognition, longitudinal studies of the change in Gf and cortical size are 
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rare. A cross-sectional approach to studying age-related change is not informative in this regard, 

because in an age-heterogeneous sample, it is difficult to distinguish individual-level change from 

the age-related difference at population-level (Hofer & Sliwinski, 2001; Lindenberger & Pötter, 

1998). The estimates of longitudinal mediation based on cross-sectional design can be biased 

(Maxwell & Cole, 2007), as the age-related variance revealed by cross-sectional data do not 

describe dynamic causal processes that can only be revealed in longitudinal analyses 

(Lindenberger, Von Oertzen, Ghisletta, & Hertzog, 2011; Raz & Lindenberger, 2011). In order to 

overcome the limitations of a cross-sectional design, the current study aimed to evaluate the 

relationship between longitudinal change in Gf and longitudinal change in prefrontal and parietal 

cortices in a sample of middle-aged and older healthy adults.  

 The current study tried to address the following questions. First, how does Gf change over 

time, and are there individual differences in change? Second, how do the volume and cortical 

thickness of prefrontal and parietal cortices change over time, and do the change trajectories 

differ among individuals? What is the shape of the change trajectories, i.e., does shrinkage 

accelerate with age? Third, are the baseline values and rates of change in Gf related to the 

parameters of trajectory (i.e., initial value and rate of shrinkage) of regional volume or cortical 

thickness change? 

 Specifically, we hypothesized that Gf, but not Gc, would decline with age. Older age at 

baseline was expected to be associated with lower Gf scores at baseline. At the same time, we 

hypothesized that older age would be associated with thinner prefrontal and parietal cortices at 

baseline.  Furthermore, better baseline Gf performance was expected to be associated with 
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thicker prefrontal and parietal cortices at baseline. Steeper decline in Gf was hypothesized to be 

associated with faster thinning of prefrontal and parietal cortices. 

 In longitudinal studies, participants’ performance can improve because of repeated 

exposure to tests. Practice effects have been evidenced in fluid intelligence (Rabbitt, Diggle, 

Holland, & McInnes, 2004), processing speed (Ferrer, Salthouse, McArdle, Stewart, & Schwartz, 

2005), as well as memory (Ferrer, et al., 2005; Salthouse, Schroeder, & Ferrer, 2004), which can 

persist for several years (Salthouse, et al., 2004). It is possible that the rate of age-related decline 

could be underestimated if practice effects in the longitudinal data are not taken into account 

(Ferrer, et al., 2005; Rabbitt, Diggle, Smith, Holland, & Mc Innes, 2001). The current study tried 

to separate the practice gain and age-related longitudinal change in cognitive abilities. After 

controlling for practice effects, we were able to assess longitudinal change in fluid intelligence 

and crystallized intelligence. 
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Chapter II 

Methods 

Participants 

 Participants were healthy volunteers from the metropolitan Detroit area, who attained a 

minimum of high school education. They were native English speakers and were strongly right-

handed (75% and above on the Edinburgh Handedness Questionnaire; (Oldfield, 1971). 

Individuals who reported a history of cardiovascular disease, neurological or psychiatric 

conditions, diabetes, head trauma with a loss of consciousness for more than 5 min, thyroid 

problems, drug and alcohol problems were excluded from participation in the study. Persons who 

were taking anti-seizure medication, anxiolytics, or antidepressants were excluded, too. Mini 

Mental State Examination (MMSE) (Folstein, Folstein, & McHugh, 1975) and Geriatric Depression 

Questionnaire (CES-D) (Radloff, 1977) were used to exclude probable individuals of dementia and 

depression, and only those who scored at least 26 on MMSE and below 16 on CES-D were 

admitted in the study. All participants provided informed consent for participation in this study, 

which was approved by university human investigations committee. There were 76 participants 

age 49 years and older eligible for the longitudinal study, 46 of whom returned for at least one 

follow-up. The participants who returned for follow-ups did not differ from the other participants 

in age or education (both p > 0.2). However, the 46 returning participants had higher MMSE than 

30 participants who did not return for follow-up measures: M ± SD: 28.8 ± 1.1 vs. 28.1 ± 1.0, t (74) 

= 3.056, p = 0.003. Only the 46 returning participants were included in the current study. The 

sample descriptive statistics are presented in Table 1. 
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Cognitive measures 

 Fluid intelligence. The Cattell Culture Fair Intelligence Test (CFIT, Form 3B, Raymond 

Bernard Cattell & Cattell, 1973) was administrated to measure fluid intelligence. Four subtests 

were administrated, each of which consisted of 10 to 14 nonverbal reasoning problems of a wide 

range of difficulty. The subtests covered different abstract reasoning domains such as detecting 

similarity in designs, completing matrices, and solving nonverbal syllogisms. Participants had to 

derive the rules required to solve the problems. Subjects were allowed to finish the entire test, 

but the items that had been completed at a certain limited time (2.5 to 4 minutes for each subtest) 

were noted. The indices of performance are the numbers of total correct items across four 

subtests, both timed and untimed. 

 Crystalize intelligence. Gc was evaluated by vocabulary scores (V-2 and V-3) from the 

Educational Test Services Kit of Factor-Referenced Tests (Ekstrom, French, Harman, & Dermen, 

1976). The subtest V-2 consisted of 18 items and subtest V-3 consisted of 24 items, all of which 

were 5-choice synonym tests. Participants were allowed to finish the entire tests, but the items 

that had been completed at 4 minutes for V-2 and 6 minutes for V-3 were noted. Subjects were 

instructed not go guess unless they could eliminate one or more answer choices as wrong. The 

indices of performance were the numbers of correct items minus 25% of incorrect items, 

separately for V-2 and V-3, both timed and untimed. 

 Processing speed (PS). Processing speed was assessed by letter comparison and pattern 

comparison tests (Salthouse & Meinz, 1995). The letter comparison task consisted of pairs of 

letter strings and the pattern comparison task consisted of pairs of line patterns. Participants 
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were required to make rapid judgments about whether two sets of stimuli were the same or 

different. The numbers of correct responses served as indices of performance on both tests. 

 Processing speed, fluid and crystalized intelligence were measured at each of the four 

occasions. The scores were standardized according to the means and standard deviations at 

baseline. 

MRI protocol 

Imaging was acquired on the same 1.5 Tesla Siemens Magnetom Sonata MRI system 

(Siemens Medical Systems, Erlangen, Germany) at Detroit Medical Center for all four waves. The 

cortical surface was reconstructed from a T1-weighted magnetization-prepared rapid gradient-

echo (MPRAGE) sequence acquired in the coronal plane with the following parameters: 

repetition time (TR) = 800 ms, echo time (TE) = 3.93 ms, inversion time (TI) = 420 ms, field of view 

(FOV) = 192×192 mm, acquisition matrix = 256×256 mm, flip angle = 20°, and voxel size = 

0.75×0.75×1.5 mm3, 144 slices acquired in the coronal plane.  

Image processing  

 To extract reliable cortical thickness and volume estimates, images were semi-

automatically processed using FreeSurfer’s longitudinal stream (Reuter, Schmansky, Rosas, & 

Fischl, 2012). A within-subject template was created for each individual subject (Reuter & Fischl, 

2011; Reuter, Rosas, & Fischl, 2010), and subsequent processing were performed using the 

common information from the template, thus increasing the reliability and statistical power 

(Reuter, et al., 2012). The white matter and gray matter surfaces reconstructed from Freesurfer 

were inspected by the author (PY) and manually edited if necessary. All cases required manual 
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editing in orbito-frontal or/and temporal regions, e.g., removing dura and orbit that were 

wrongly classified as gray matter. Two cases needed manual removal of skull from the dorsal 

prefrontal cortex. Cortical thickness was computed as the average distance between pial surface 

and gray/white matter boundary within each region of interest (ROI). 

Selection of ROIs for analysis 

 In Freesurfer, the cortex in each hemisphere is divided into 34 neuroanatomically labeled 

regions (Desikan, et al., 2006; Fischl, et al., 2004). Some of them were selected to constitute 6 

ROIs in each hemisphere. The volume and cortical thickness of each ROI were calculated from 

Freesurfer output. I selected ROIs with theoretical propositions of P-FIT in mind. The selected FS 

labels and ROIs formed from them were as follows: 

a. Middle PFC (MF): including caudal middle frontal gyrus, rostral middle frontal gyrus. 

b. Inferior PFC (IF): including pars-opercularis, pars-orbitalis, and pars-triangularis. 

c. Parietal cortex (PC): including superior parietal, inferior parietal, supramarginal gyri. 

d. Anterior cingulate cortex (ACC): including caudal anterior cingulate, rostral anterior 

cingulate. 

e. Temporal cortex (TC): including superior temporal, middle temporal, inferior temporal and 

fusiform gyri. 

f. Visual cortex (VC): consisted of the pericalcarine area.  

 The definition of MF, IF, PC, TC and ACC tried to cover the frontal, parietal, temporal and 

cingulate areas proposed in Jung-Haier’s P-FIT model. VC was supposed to be unrelated to 

intelligence, and served as a control area. Because the target cognitive index in this study, Gf 
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represented a confluence of many cognitive operations, it was appropriate to aggregate specific 

anatomical regions into larger entities. All such agglomerations were tested with Confirmatory 

Factor Analysis. 

Statistical analyses 

 Confirmatory factor analysis (CFA) on the structures of PFC and PC. The cortical thickness 

and volume of each region at baseline were regressed on age, and the residual values were used 

in CFA. CFAs were conducted to test whether the inclusions of the sub-regions in prefrontal 

cortex and parietal cortex are proper. Models were estimated using FIML (full-Information 

maximum likelihood) method. Missing cases were handled under the MAR (missing at random) 

assumption. CFA on PFC started from a measurement model that included measures of caudal 

middle frontal gyrus, rostral middle frontal gyrus, pars-opercularis, pars-orbitalis, and pars-

triangularis (Figure 1a). Alternatively, the measures in superior frontal gyrus and frontal pole 

were added to examine whether the inclusion of superior frontal gyrus and/or frontal pole could 

make better fit (Figure 1b, 1c, 1d). Additionally, we split PFC into two regions, MF and IF, and 

checked whether the measurement model would fit better (Figure 1e). Similarly, CFA on PC 

started from a measurement model that included measures of superior parietal, inferior parietal, 

and supramarginal gyri (Figure 2a). An alternative measurement model with precuneus included 

was also examined (Figure 2b). 

 Measurement models of cortical thickness and volume. Two competing measurement 

models regarding cortical thickness were tested using the cortical data at baseline. In the 6-factor 

measurement model, the cortical thickness in each of the 6 ROIs (MF, IF, PC, ACC, TC and VC) 
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were presumed to be directly affected by age (Figure 3a). The 1-factor measurement model 

reflected the possibility that all measures of the regional cortical thickness formed one latent 

factor, directly affected by age (Figure 3b). This single-factor measurement model was specified 

to test the possibility that age-associated variance in regional cortical thickness could be 

explained by one single factor, without specifying the reasons and mechanisms that might 

contribute to in coherence common (e.g., developmental influences, or commonality of 

measurements). Similarly, 6-factor and 1-factor measurement models on ROI volume were also 

compared. 

 Latent growth curve modeling of longitudinal change. Latent growth curve (LGC) 

modeling was used to estimate the trajectories of change in Gf, Gc, and the cortical thickness and 

volume of each ROI.  The analyses were conducted using Mplus software. The intercept (INT) and 

slope (SLP) of change were separately estimated in Gf (Figure 4), Gc (Figure 5), MF, IF, PC, ACC, 

TC and VC (Figure 6). Their associations with age were also assessed. Before conducting structural 

equation modeling (SEM), each of the cognitive and cortical measures was standardized 

according to the mean and standard deviation at baseline. Age as centered at 65 years old and 

scaled as units of decade.  

 Modeling practice effect. In the current study, we modeled the practice effect by 

introducing variables that indicated magnitude of practice gains. In Figures 4 and 5, the variables 

re-test2, re-test3 and re-test4 respectively represented the levels of previous exposure to 

particular cognitive tasks at the first, second and third follow-ups. They were defined as k-1, 

where it was the k-th time that the Gf or Gc test was longitudinally administered. For example, if 
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a subject participated at baseline and at the 1st and 3rd follow-ups, but skipped the 2nd follow-up, 

then re-test2 = 1 and re-test4 = 2. 
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Chapter III 

Results 

Confirmatory factor analysis (CFA) on the structures of PFC and PC. 

 CFA were conducted to examine whether combining individual sub-regions of dorsal 

prefrontal cortex (PFC) and parietal cortex (PC) was proper. The cortical thickness and volume of 

each region at baseline were regressed on age, and the standardized residual values were used 

in CFA. CFA on PFC began with a measurement model that included measures of caudal middle 

frontal gyrus, rostral middle frontal gyrus, pars-opercularis, pars-orbitalis, and pars-triangularis 

(model a, figure 1).  Alternatively, the measures in superior frontal gyrus and/or frontal pole were 

added (models b, c, and d, figure 1). Additionally, we also tested a measurement model (model 

e, figure 1) in which DPFC was split into two factors: middle frontal gyrus (MF) and inferior PFC 

(IF). i.e., MF included caudal middle frontal gyrus and rostral middle frontal gyrus; IF included 

pars-opercularis, pars-orbitalis, and pars-triangularis. The regional cortical thickness and volume 

were separately examined. 

 AIC and BIC served as primary indices of model fit. When two models had similar AIC and 

BIC, the normed chi-square (χ2/df) would be referred. As listed in table 2 and table 3, the 

inclusion of superior frontal gyrus and/or frontal pole did not result in a model that fit better than 

the basic model.  Therefore, superior frontal gyrus and the frontal pole were not included as part 

of the ROI of DPFC. Furthermore, splitting DPFC into MF and IF resulted in better model fit than 

the basic model, as indicated by smaller normed chi-square. Thus, in further analyses, MF and IF 

would be treated as two individual latent regions. 
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 Similarly, CFA on PC started from a measurement model (model a, figure 2) that included 

measures of superior parietal, inferior parietal, and supramarginal gyri. An alternative 

measurement model with precuneus included was also examined (model b, figure 2). As listed in 

table 4 and table 5, the inclusion of precuneus did not result in better fit than the basic model, 

as indicated by smaller AIC and BIC. Thus, precuneus was not included as part of the ROI of PC.  

Measurement models of cortical thickness and volume 

 Competing measurement models regarding regional cortical thickness, surface area and 

ROI volume were tested using regional size data at baseline. In each model of cortical thickness, 

the cortical thickness of each ROI was calculated by averaging cortical thickness values across the 

sub-regions included in the ROI, weighted by the surface areas of sub-regions. 

 As listed in table 6, the 6-factor measurement models had similar AIC and BIC with 1-

factor model, but smaller normed chi-square, smaller SRMR and smaller RMSEA than the 1-factor 

models. The 1-factors model did not fit better, so the 6-factor measurement models were 

retained for further analyses. As indicated by the measurement models, smaller cortical thickness 

and smaller volume were associated with older age, whereas surface area was unrelated to age. 

Thus, we focused on cortical thickness and volume in examining the relationship with Gf, which 

is an age-sensitive cognitive measure. 

Latent growth curve modeling of longitudinal change 

 Latent growth curve (LGC) modeling was used to estimate the trajectories of change in Gf, 

Gc, and the cortical measures of MF, IF, PC, ACC, TC and VC. 
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LGC of cognitive measures. 

 In the latent growth curve model of Gf (Figure 4), the performance on Gf task varied with 

the number of previous tests (estimate = 0.180, p = 0.043), revealing that Gf performance can 

benefit from repeated exposure (re-test effect). The effect of age on the growth intercept was 

significantly negative (estimate = -0.470, p = 0.002), indicating that advanced age was associated 

with poorer performance at baseline. After controlling for the repeated exposure (practice) effect, 

the slope of Gf change was significantly negative (estimate of Slope = -0.718, p = 0.016), i.e., the 

Gf performance declined over time (figure 7). There was also a significant age effect on slope of 

Gf change (estimate = -0.334, p = 0.040), suggesting that the decline of Gf is accelerated with age. 

The variance of slope was not significant, indicating the lack of individual differences in Gf decline 

over time. 

 For the untimed Gf scores, the effect of age on baseline performance was still significantly 

negative (estimate = -0.326, p = 0.019). After controlling for the repeated exposure (practice) 

effect, the slope of Gf change was significantly negative (estimate of slope = -1.071, p = 0.002). 

However, the age effect on slope of Gf change was no longer significant (estimate = -0.283, p = 

0.233). Thus, in contrast to the significant acceleration of longitudinal decline for the timed scores, 

the untimed scores showed no such effect, suggesting that the acceleration of Gf decline 

observed in timed scores might result from age-related slowing. 

To test this hypothesis, we examined processing speed (PS) in the same LGC framework. 

The PS factor was measured by letter comparison and pattern comparison tasks (figure 8). 

Advanced age was associated with poorer PS at baseline (estimate = -0.468, p = 0.003), but the 
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slope of PS change was not significant.  When Gf was modeled together with PS, and their 

intercepts and slopes were allowed to correlate, the age effect on timed Gf change slope became 

non-significant (estimate = -0.297, p = 0.090). Notably, the estimated magnitude of age effect on 

Gf slope with PS controlled was very close to the estimated value for untimed Gf (-0.297 vs. -

0.283). Given the small sample size of the current study, it is possible that the non-significance 

could be due to low power. In the combined model of Gf and PS, a positive correlation was found 

between baseline scores on timed (estimate = 0.311, p = 0.012), but not untimed (estimate = 

0.186, p = 0.107) Gf and PS. The non-significant correlation could also result from low power that 

was related to sample size. No relationship was found between the slopes of fluid intelligence 

and processing speed.  

 In contrast to Gf, in the latent growth curve model of Gc, directional paths were not 

significant (all p’s > 0.3), suggesting the absence of practice effect on the Gc task, and the 

independence of baseline Gc from age (figure 9). The estimate of Gc slope change did not 

significantly differ from zero (estimate = 0.156, p = 0.271), indicating that Gc did not significantly 

change over time. Similar to the timed scores for vocabulary, none of the directional paths was 

significant in the untimed data. When Gf and Gc were entered together into one model (Figure 

10), a significant positive correlation was found between the intercepts of Gf and Gc (estimate = 

0.308, p = 0.005).  

LGC of change in cortical thickness, volume, and surface area. 

 Table 7 listed the results of LGC models on ICV-adjusted ROI volumes. Age was centered 

at 65 years and scaled as units of decades. The time intervals were also scaled in decades. The 
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volumes in two hemispheres served as two indicators of the latent variables of ROI volume. The 

slopes were significantly negative for all the investigated ROIs except VC, although there was no 

significant slope variance. Age was negatively associated with baseline volumes of MF, IF, PC and 

VC, but not with slopes (Figures 11, 12, 13, 14, 15, 16, respectively). These results evidenced 

longitudinal shrinkage in MF, IF, PC, ACC and TC but not VC, as indicated by the 95% confidence 

intervals. No significant difference in the magnitude of age differences in baseline volume was 

found across regions.  

 Table 8 listed the results of LGC models on ROI cortical thickness. Similar to the LGC on 

volume measures, the age effect on baseline cortical thickness was significant in all ROIs except 

for ACC (Figures 11, 12, 13, 14, 15, 16, respectively). However, the slope was not significant in 

MF, ACC, and in VC, the direction of slope was even reversed. None of the regions demonstrated 

a significant slope-intercept correlation: -0.147 < r < 0.178 for volume and -0.049 < r < 0.261 for 

thickness, all p > 0.05. 

 Additionally, the latent changes in regional surface area were modeled. As previously 

tested in the measurement model, baseline surface areas of MF, IF, PC, ACC, TC and VC were 

unrelated to age. However, surface areas in all these regions longitudinally reduced. The 

shrinkage rates were -0.368, -0.501, -0.380, -0.281, -0.376 and -0.245 respectively for MF, IF, PC, 

ACC, TC and VC, all p’s < 0.001. 

 LGC models for Gf, Gc, PS, and ROI measures were merged into combined models to 

examine possible associations between intercept and slope of cortical structural and cognitive 
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change. No significant associations were found between slopes and intercepts of changes in Gf, 

Gc, PS and changes in the examined ROI volume and cortical thickness (Table 9). 
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Chapter IV 

Discussion 

 The current 4-wave study modeled longitudinal change in fluid intelligence, crystallized 

intelligence, processing speed and regional cortical thickness and volume in middle aged and 

aged healthy human adults. Longitudinal decline was observed in Gf. Advanced age was 

associated with poorer Gf at baseline and a steeper decline rate. In contrast, neither longitudinal 

decline nor age differences at baseline were observed in Gc. In most of the examined regions, 

i.e., middle frontal, inferior frontal, parietal, temporal and primary visual cortices, advanced age 

was associated with smaller volume and thinner cortex at baseline. Longitudinal shrinkage was 

observed in frontal, parietal, anterior cingulate, and temporal cortices, but not in primary visual 

cortex. However, no relationship was found between cortical shrinkage and cognitive decline.   

Longitudinal decline in Gf. 

 By modeling practice effects in the current study, we separated improvement due to 

practice and age-related longitudinal decline in cognitive skills. Notably, we observed a practice 

effect for Gf that was 2.5 times the annual longitudinal decline, or 3.8 times the annual cross-

sectional age difference. The results are consistent with previous reports in fluid intelligence that 

practice effects can persist for several years (Rabbitt, et al., 2004; Salthouse, et al., 2004). 

Salthouse and colleagues (2004) demonstrated that the practice effects on reasoning ability 

could persist for more than 9 years, and the magnitude of re-test gain was 17 times greater than 

the annual cross-sectional age-related variance (Salthouse, et al., 2004). The ratio of re-test 

improvement to annual cross-sectional age difference was lower in the current study than in 
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Salthouse’s findings. Such a discrepancy might result from several reasons. First, practice gains 

are smaller with increased age (Salthouse, et al., 2004), and our subjects were older than their 

subjects. Therefore, the participants in the current study might benefit less from practice gains. 

Second, in the current study, the magnitude of the practice effects was computed from data from 

all four waves, assuming the amount of practice gain was linearly additive, i.e., the benefit from 

exposure to three previous test sessions was assumed to equal three times the benefit of one 

previous test session. However, this assumption was not verified. Thus, the practice effect could 

be underestimated if the gain from three previous test sessions was actually smaller than three 

times the benefit of one previous exposure to a test.  Nevertheless, by taking practice effect into 

account, we were able to more precisely estimate the age-related longitudinal decline. These 

gains, if not estimated, could lead to underestimation or even failure to identify the true 

longitudinal decline (Ferrer, et al., 2005; Rabbitt, et al., 2001). 

 Significant longitudinal decline in Gf, as well as significantly negative age differences in 

the baseline level of Gf, are consistent with age-related decline of Gf in middle-aged and older 

adults, described in the extant literature (e.g., Desjardins & Warnke, 2012; Horn & Blankson, 2005; 

Horn & Cattell, 1967; McArdle, et al., 2002). Interestingly, in our sample, the rate of decline in Gf 

is accelerated by advancing age. We further found that the age-related acceleration of Gf decline 

is associated with age-related slowing. This conclusion is based on two analyses: First, the 

acceleration of longitudinal decline, which was originally observed in timed Gf scores, was not 

significant for untimed Gf. Having sufficient time seems to equalize the individual rates of decline, 

while preserving the magnitude of mean change. Second, when the processing speed was 

controlled, the longitudinal decline in timed Gf did not accelerate with age. Thus age-related 
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slowing is an important factor contributing to the acceleration of Gf decline. In the current study, 

processing speed was measured by letter comparison and pattern comparison, both of which 

require aspects of processing speed that are necessary for completing CFIT. The tests included in 

the CFIT task require participants to read the problem, compare the designs, and search for the 

correct items to match. Therefore, not surprisingly, faster processing speed was related to better 

timed Gf at baseline, but it was not related to untimed Gf. 

Longitudinal shrinkage of cortices. 

 In our sample, cortices of healthy participants underwent significant shrinkage. We 

observed shrinkage of the prefrontal, parietal, anterior cingulate, and temporal cortices, and 

relative stability of the primary visual cortex. The differential change across cortical regions was 

consistent with previous reports that association (prefrontal and parietal) cortices were more 

vulnerable to aging than the occipital region (Raz, et al., 2010; Raz, et al., 2005; Resnick, et al., 

2003). In addition, in cross-sectional studies, greater age differences have been demonstrated in 

prefrontal and parietal cortices (Fjell, Westlye, et al., 2009; Raz, et al., 1997; Salat, et al., 2004). 

The results of the current study replicated a number of previous findings (Driscoll, et al., 2009; 

Fjell, Walhovd, et al., 2009; Fjell, Westlye, et al., 2009; Raz, et al., 2010; Raz, et al., 2005). However, 

some previous findings were not replicated, such as the accelerated shrinkage of frontal and 

parietal cortices (Driscoll, et al., 2009). This discrepancy might result from two reasons. First, our 

participants were younger than Driscoll’s subjects (63.81 ± 9.08 years in our sample vs. 70.58 ± 

6.11 in Driscoll’s normal sample). It is possible that the accelerated decline is more noticeable in 

the oldest old. The second possible reason is the difference in the method used to identify 

accelerated atrophy. In the current study, we modeled the latent growth curves and estimated 
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intercept (baseline) and slope of change (i.e., the changes in cortical measures were assumed to 

be linear for each individual participants, and accelerated shrinkage was defined by the age effect 

on individuals’ slope of change). However, Driscoll’s study employed linear mixed models, and 

included age2 in their model, which indicated the accelerated atrophy. Thus, both linear and 

quadratic components of individual change were modeled. We also tried including the quadratic 

slopes in LGC models of cortical change. However, as presented in table 10, negative quadratic 

slope was not found in prefrontal or parietal cortices, thus acceleration of shrinkage was not 

supported. Driscoll’s study had scans of up to 10 waves, sufficient to describe linear and non-

linear change. However, in the current 4-wave study, we had only 18 participants with MRI scans 

of all 4 waves. Small sample size and substantial missing data might lead to non-significance of 

the quadratic slope factor.  

 Another discrepancy with previous findings involves the presence of individual 

differences in shrinkage rate. In the current study, the shrinkage rate variance was not significant 

in any of the investigated regions. However, in a previous study (Raz, et al., 2010), in which the 

measures and subjects overlapped to a large extent with the current project, individual 

differences in shrinkage rates were significantly related to volumes of lateral prefrontal cortex. 

In that study, the shrinkage rates were estimated from two consecutive waves (wave 1 and wave 

2, or wave 2 and wave 3), while in the current study, shrinkage rates were calculated across all 

the 4 waves. Thus, while the individual differences in prefrontal cortex shrinkage rates were 

significant in one study but were not significant in the other study, the results from two studies 

did not necessarily conflict with each other, because they employed shrinkage measures that 

were defined differently. Nevertheless, when we model latent difference using similar method, 
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individual variances in the change of cortical thickness and volume were significant in middle 

frontal cortex, as presented in table 11. 

 For MF in the current study, a significant rate of shrinkage was observed for atrophy, but 

not for cortical thickness. Age-related shrinkage in cortical volume was not equivalent to 

shrinkage in cortical thickness. In contrast, the reduction of surface area was significant in all 

cortical regions examined. Because cortical volume could be seen as the product of cortical 

thickness and surface area, the results suggested that the age-related reduction of cortical 

volume combines cortical thinning and shrinkage in surface area. Correlation ranges for volume-

thickness ranged between r = 0.151 and 0.601; for volume-area: [0.276, 0.697]. Median values of 

r were 0.23, 0.40, 0.49, 0.38, 0.21, 0.58 for the volume-thickness of IF, MF, PC, VC, ACC, TC, 

respectively; and 0.57, 0.48, 0.41, 0.66, 0.68, 0.34 for the volume-area of IF, MF, PC, VC, ACC, TC, 

respectively. Median r‘s in each wave were 0.37, 0.37, 0.46, 0.40 for volume-thickness and 0.51, 

0.54, 0.50, 0.47 for volume-area. 

Relationship between changes in Gf and cortices. 

 We hypothesized positive associations between Gf and cortical size at baseline, and 

between the change rates of cortices and Gf. However, no such relationship was found between 

the parameters of Gf change and parameters of cortical change. According to Jung and Haier’s P-

FIT, Gf depends on the integrity of parietal and frontal regions. Nevertheless, it is possible that 

CFIT is not sensitive to the volume and thickness of the cortical regions investigated in the current 

study. Perhaps only the volume or thickness of very small regions within prefrontal and parietal 

cortices are related to CFIT. For example, a study using voxel-based morphometry (VBM) 
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reported Gf to be correlated with the volumes of small clusters in dorsolateral prefrontal cortex 

(Colom, et al., 2009). The clusters included some sub-regions within middle and inferior frontal 

gyri, but not the entire MF and IF, and it is unclear if the observed associations would remain 

after mapping the function on anatomically defined regions rather than arbitrary units like voxels. 

Previous studies have also suggested that using neuroanatomically-defined voxel clusters based 

on automated techniques produces results that may differ from manually traced regions.  

However, this discrepancy disappears once the realistic anatomical boundaries are drawn 

(Kennedy, et al., 2009). The ROI method employed in the current study is a straightforward 

approach for estimating relationships with behavior in selected target regions that are based on 

their neuroanatomical properties and previously demonstrated associations with the tested 

indices of cognition. If the cortex-behavior correlation is uniform over the ROI, then the 

association may be highlighted by averaging across the whole ROI. On the other hand, when 

there is random correlation between cognition and cortical size in one part of the ROI, it can be 

averaged out using the uncorrelated regions or regions with correlations in the opposite direction. 

Thus, spurious findings due to random noise can be diminished. 

Limitations of the current study.  

 The current study has some limitations. First, in modeling the LGC of Gf change, re-test 

effect was simply interpreted in term of number of previous assessment. In fact, several factors 

might influence the magnitude of practice effects (e.g., time interval from last assessment 

(Salthouse, et al., 2004), and interaction between time intervals and numbers of previous 

assessment). Longitudinal measures with varying time intervals between measures would be 

needed to address this complex issue. Second, small sample size in the current study could limit 
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the power of analyses. It is possible that some marginally significant effects would become 

significant when the sample size gets larger. 

Conclusion. 

 In summary, the current longitudinal study modeled age-related change in fluid 

intelligence, crystallized intelligence, processing speed, as well as the longitudinal shrinkage in 

prefrontal, parietal, anterior cingulate, temporal and primary visual cortex. Longitudinal decline 

was observed in Gf and was accelerated by older age. By referring to the LGCs of processing speed 

and untimed CFIT, we proposed that the acceleration of Gf decline could be at least partly 

explained by age-related slowing of processing speed. Intra-person longitudinal shrinkage was 

observed for cortical thickness and volume of prefrontal, parietal, anterior cingulate, and 

temporal cortices, but not in primary visual cortex. However, reduction of cortical surface area 

was observed in all the examined regions, including primary visual cortex. No association was 

found between the parameters of cognitive change and parameters of cortical change. 
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TABLES 

Table 1. Descriptive statistics of longitudinal measures. 

  Interval from baseline (month) 
N 

age (year) 
  mean sd range mean sd range 

baseline 0 -- -- 46 63.81 9.08 49.50 - 83.33 
1st follow-up 16.0 1.7 13 - 23 40 65.45 9.28 50.75 - 84.67 
2nd follow-up 31.3 2.9 27 - 39 31 66.59 9.43 52.17 - 85.67 
3rd follow-up 90.2 6.0 81 - 102 27 71.02 9.10 57.17 - 91.17 
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Table 2. Fit indices of CFA models on prefrontal cortical thickness. 

  

Model a 
basic 
regions 
 

Model b 
Basic + frontal 
pole & superior 
frontal 

Model c 
Basic + 
superior 
frontal 

Model d 
Basic + 
frontal pole 
 

Model e 
Split PFC into 
middle & 
inferior frontal  

χ2 61.549 153.273 96.879 96.538 48.024 
df 35 77 54 54 34 
p-Value 0.004 <0.001 <0.001 <0.001 0.056 
χ2/df 1.758 1.990 1.794 1.787 1.412 
AIC 1150.204 1545.991 1321.173 1363.600 1138.679 
BIC 1203.730 1620.927 1385.404 1427.831 1193.989 
RMSEA 0.131 0.150 0.134 0.134 0.097 
CFI 0.828 0.761 0.832 0.800 0.909 
SRMR 0.084 0.091 0.086 0.091 0.082 
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Table 3. Fit indices of CFA models on prefrontal cortical volume. 

  

Model a 
basic 
regions 
 

Model b 
Basic + frontal 
pole & superior 
frontal 

Model c 
Basic + 
superior 
frontal 

Model d 
Basic + frontal 
pole 
 

Model e 
Split PFC into 
middle & inferior 
frontal 

χ2 82.258 139.114 112.282 105.217 66.049 
df 35 77 54 54 34 
p-Value <0.001 <0.001 <0.001 <0.001 0.001 
χ2/df 2.350 1.807 2.079 1.948 1.943 
AIC 1118.047 1518.945 1278.714 1360.889 1103.838 
BIC 1171.572 1593.881 1342.945 1425.119 1159.148 
RMSEA 0.175 0.135 0.157 0.147 0.146 
CFI 0.772 0.813 0.814 0.772 0.845 
SRMR 0.091 0.086 0.084 0.091 0.082 

 

  



31 
 

 
 

Table 4. Fit indices of CFA models on parietal cortical thickness. 

  
Model a  
Basic regions 

Model b 
Basic + precuneus 

χ2 5.721 21.041 
df 6 16 
p-Value 0.455 0.177 
χ2/df 0.954 1.315 
AIC 642.848 843.879 
BIC 680.316 893.836 
RMSEA 0.000 0.085 
CFI 1.000 0.973 
SRMR 0.025 0.041 
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Table 5. Fit indices of CFA models on parietal cortex volume. 

  
Model a 

Basic regions 
Model b 

Basic + precuneus 
χ2 29.158 48.437 
Df 6 16 
p-Value 0.0001 0.000 
χ2/df 4.860 3.027 
AIC 615.987 769.991 
BIC 653.455 819.949 
RMSEA 0.296 0.215 
CFI 0.869 0.888 
SRMR 0.042 0.058 
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Table 6. Fit indices of measurement models of cortical measures. 

  cortical thickness   surface area   volume 
 6-factor 1 factor  6-factor 1 factor  6-factor 1 factor 

χ2 70.080 91.265   58.397 81.724   75.789 99.371 
df 45 59  45 59  49 59 
p-Value 0.010 0.005  0.087 0.027  0.008 0.001 
χ2/df 1.557 1.547  1.298 1.385  1.547 1.684 
AIC 1221.471 1214.656  999.438 994.765  1117.692 1121.275 
BIC 1323.170 1291.376  1101.137 1071.485  1212.254 1197.995 
RMSEA 0.113 0.111  0.082 0.094  0.111 0.125 
CFI 0.932 0.913  0.977 0.961  0.910 0.864 
SRMR 0.049 0.072   0.030 0.052   0.076 0.101 

  

  



 
 

 
 

Table 7. Results of LGC models on ROI volumes. 
 

ROI 
age difference in baseline volume 

  

age differences in slope 

  

slope of change 

  

residual variance of slope 

mean p 95% CI mean p mean p 95% CI mean p 
MF -0.370 0.018 -0.676 -0.064 0.046 0.662 -0.783 <0.001 -0.965 -0.601 0.054 0.417 
IF -0.373 0.006 -0.638 -0.108 0.034 0.718 -0.738 <0.001 -0.907 -0.569 0.093 0.100 
PC -0.417 0.005 -0.707 -0.127 -0.088 0.310 -0.770 <0.001 -0.954 -0.586 0.090 0.102 
ACC -0.030 0.825 -0.312 0.252 0.008 0.930 -0.203 0.002 -0.328 -0.078 0.022 0.492 
TC -0.279 0.175 -0.683 0.125 -0.255 0.089 -0.805 <0.001 -1.023 -0.587 0.115 0.310 
VC -0.519 <0.001 -0.786 -0.252 -0.011 0.916 -0.061 0.537 -0.255 0.133 0.086 0.423 
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Table 8. Results of LGC models on ROI thickness. 
 

ROI 
age effect on baseline thickness 

  

age effect on  slope 

  

slope of change 

  

residual variance of slope 

mean p 95% CI mean p mean p 95% CI mean p 
MF -0.405 0.008 -0.705 -0.105 0.203 0.419 -0.125 0.499 -0.488 0.238 0.194 0.564 
IF -0.195 <0.001 -0.262 -0.128 0.035 0.178 -0.233 <0.001 -0.284 -0.182 0.014 0.449 
PC -0.511 <0.001 -0.756 -0.266 -0.127 0.259 -0.551 <0.001 -0.784 -0.318 0.016 0.848 
ACC -0.010 0.953 -0.351 0.331 0.163 0.346 -0.155 0.250 -0.420 0.110 0.124 0.625 
TC -0.537 <0.001 -0.780 -0.294 -0.127 0.383 -0.740 <0.001 -0.999 -0.481 0.106 0.537 
VC -0.561 <0.001 -0.820 -0.302 0.061 0.659 0.324 0.013 0.069 0.579 0.188 0.273 

 
 
  

35 



36 
 

 
 

Table 9. Correlations between change parameters of timed CFIT, vocabulary scores, processing 
speed, and regional volume/thickness. 
 

 Correlation with Gf Correlation with Gc Correlation with speed 
 intercept slope intercept slope intercept slope 
MF volume -0.089 0.067 0.015 0.016 -0.074 0.000 
IF volume -0.097 0.108 -0.003 0.002 -0.032 0.019 
PC volume -0.038 0.059 0.066 -0.002 0.077 0.010 
ACC volume -0.017 0.026 0.049 0.002 0.065 0.001 
TC volume -0.102 0.083 0.046 -0.007 -0.048 0.019 
VC volume 0.102 -0.036 0.004 0.031 0.017 -0.010 
MF thickness -0.069 0.056 -0.036 0.071 0.035 0.009 
IF thickness -0.053 0.035 -0.046 -0.004 -0.062 0.019 
PC thickness 0.000 -0.011 0.005 0.019 0.092 -0.044 
ACC thickness 0.016 0.095 -0.107 0.072 -0.044 -0.013 
TC thickness -0.001 0.007 0.009 0.041 0.007 0.003 
VC thickness 0.004 0.000 0.011 0.048 -0.036 0.003 

All p > 0.05. 
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Table 10. Results of LGC models including quadratic slope factor. 

ROI 
Age effect on baseline Linear slope Quadratic slope 

mean p mean p mean p 
MF volume -0.422 0.002 -0.764 0.001 -0.025 0.940 
IF volume -0.367 0.005 -0.677 0.011 -0.098 0.790 
PC volume -0.428 0.003 -1.327 <0.001 0.782 0.014 

ACC volume -0.032 0.822 0.255 0.217 -0.599 0.036 
TC volume -0.294 0.069 -0.418 0.203 -0.527 0.244 
VC volume -0.174 0.094 -0.533 0.014 0.506 0.053 

MF thickness -0.400 0.002 0.361 0.409 -0.579 0.276 
IF thickness -0.189 0.043 -0.130 0.660 -0.140 0.700 
PC thickness -0.540 <0.001 -0.266 0.469 -0.342 0.446 

ACC thickness 0.008 0.877 0.041 0.784 -0.145 0.436 
TC thickness -0.520 <0.001 -0.907 0.019 0.245 0.627 
VC thickness -0.545 <0.001 0.888 0.007 -0.799 0.057 

 
 
 



 
 

 
 

Table 11. Latent difference in regional volume and cortical thickness. 

ROI 
  change in regional volume variances of  

volume change change in cortical thickness variances of  
thickness change 

 mean p 95% CI Est. p mean p 95% CI Est. p 

MF 
LD12 -0.157 0.001 -0.247 -0.067 0.053 0.004 -0.144 0.133 -0.332 0.044 0.311 <.001 
LD23 -0.042 0.442 -0.148 0.064 0.065 0.006 0.198 0.011 0.045 0.351 0.122 0.012 
LD34 -0.421 <.001 -0.558 -0.284 0.076 0.019 -0.208 0.073 -0.435 0.019 0.231 0.020 

IF 
LD12 -0.117 0.005 -0.197 -0.037 0.031 0.062 -0.116 0.126 -0.265 0.033 0.105 0.090 
LD23 -0.084 0.023 -0.157 -0.011 0.011 0.386 0.142 0.071 -0.013 0.297 0.056 0.261 
LD34 -0.392 <.001 -0.510 -0.274 0.040 0.088 -0.351 <.001 -0.549 -0.153 0.039 0.551 

PC 
LD12 -0.181 <.001 -0.277 -0.085 0.082 <.001 -0.108 0.138 -0.251 0.035 0.156 0.002 
LD23 -0.143 0.005 -0.241 -0.045 0.073 0.004 0.020 0.805 -0.141 0.181 0.170 0.010 
LD34 -0.312 <.001 -0.455 -0.169 0.083 0.005 -0.359 <.001 -0.522 -0.196 0.067 0.063 

AC 
LD12 0.015 0.514 -0.032 0.062 0.016 0.005 0.005 0.751 -0.022 0.032 0.019 0.578 
LD23 0.052 0.132 -0.017 0.121 0.034 0.002 -0.011 0.666 -0.060 0.038 0.024 0.652 
LD34 -0.146 0.011 -0.258 -0.034 0.040 0.023 -0.012 0.712 -0.075 0.051 0.018 0.574 

TC 
LD12 -0.116 0.054 -0.234 0.002 0.102 0.002 -0.221 0.002 -0.362 -0.080 0.147 0.003 
LD23 -0.010 0.899 -0.161 0.141 0.149 0.001 0.016 0.858 -0.155 0.187 0.180 0.005 
LD34 -0.460 <.001 -0.662 -0.258 0.205 0.023 -0.364 <.001 -0.556 -0.172 0.170 0.028 

VC 
LD12 -0.092 0.018 -0.168 -0.016 0.033 0.024 -0.054 0.409 -0.181 0.073 0.091 0.018 
LD23 -0.037 0.302 -0.108 0.034 0.023 0.076 0.193 0.013 0.040 0.346 0.117 0.045 
LD34 -0.015 0.807 -0.137 0.107 0.101 0.020 -0.013 0.831 -0.131 0.105 0.013 0.643 

LD12: latent difference between time 1 and time 2; LD23: latent difference between time 2 and time 3; LD34: latent difference 
between time 3 and time 4. 
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FIGURES 

Figure 1. CFA models on prefrontal cortex. 
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Figure 2. CFA models on parietal cortex. 
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Figure 3. 6-factor vs. 1-factor measurement models. 
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Figure 4. Latent growth curve model of Gf. 
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Figure 5. Latent growth curve model of Gc.  
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Figure 6. Latent growth curve model of ROI measures. 
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Figure 7. Longitudinal change of timed CFIT scores. Top: CFIT raw scores; bottom: CFIT scores 
with re-test effect controlled. Scores of the same persons were marked with same colors in two 
plots. 

 

  



46 
 

 
 

Figure 8. Longitudinal change of processing speed. Top: letter comparison; bottom: pattern 
comparison. Scores of the same persons were marked with same colors in two plots. 
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Figure 9. Longitudinal change of vocabulary scores. Top: scores of vocabulary test 2; bottom: 
scores of vocabulary test 3. Scores of the same persons were marked with same colors in two 
plots. 

 

  



 
 

 
 

Figure 10. Combined LGC model of Gf and Gc. 
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Figure 11. Longitudinal changes in cortical thickness and volume of middle frontal cortex. Volumes are adjusted for ICV.  
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Figure 12. Longitudinal changes in cortical thickness and volume of inferior frontal cortex. Volumes are adjusted for ICV.  
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Figure 13. Longitudinal changes in cortical thickness and volume of parietal cortex. Volumes are adjusted for ICV.   

 

 

  

51 



 
 

 
 

Figure 14. Longitudinal changes in cortical thickness and volume of anterior cingulate cortex. Volumes are adjusted for ICV.  
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Figure 15. Longitudinal changes in cortical thickness and volume of temporal cortex. Volumes are adjusted for ICV.  
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Figure 16. Longitudinal changes in cortical thickness and volume of primary visual cortex. Volumes are adjusted for ICV.  
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 Fluid intelligence (Gf) and crystalized intelligence (Gc) are two factors of the general 

intelligence. They have distinct age-related trajectories of change. Jung and Haier proposed 

Parieto-Frontal Integration Theory (P-FIT, 2007) to account for the inter-person variance in 

reasoning intelligence. Some brain regions such as prefrontal, parietal, temporal and anterior 

cingulate cortices were included in the P-FIT model and were hypothesized to be involved in 

fluid reasoning task. Therefore, in the current study, we examined latent growth curves (LGC) of 

longitudinal change in Gf, Gc, prefrontal cortex, parietal cortex, anterior cingulate, temporal 

cortex and primary visual cortex. Forty-six healthy middle-aged and older adults were involved 

in baseline assessment. In addition, there were 3 follow-ups, and each of the 46 participants 

returned back for at least one follow-up. We observed longitudinal decline in Gf, which 

accelerated with advanced age. We proposed that the acceleration of Gf decline could be 

explained by age-related slowing. Intra-person longitudinal shrinkage was observed in the 

cortical thickness and volume of prefrontal, parietal, anterior cingulate and temporal cortices, 

but not in primary visual cortex. Furthermore, longitudinal shrinkage of surface area was 
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observed in all the examined regions, including prefrontal, parietal, anterior cingulate, temporal 

and primary visual cortices, although the surface areas at baseline were not correlated with 

age. Nevertheless, no association was found between the parameters of cognitive change and 

parameters of cortical change. 
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