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CHAPTER 1 

INTRODUCTION 

1.1. General Overview 

Cancer causes the highest number of deaths worldwide. Each year, over 8 million people 

perish from this disease.
1
 It has been estimated that by 2030 the number of patients dying from 

cancer will increase by 80%.
2
 Prostate cancer is the most common cancer affecting males, while 

the most common cancer affecting females is breast cancer. According to the American Cancer 

Society in 2014, approximately 233,000 new cases of prostate cancer are estimated to be 

diagnosed in males. About 232,670 new cases of breast cancer are projected to be diagnosed in 

females.
3 

In their lifetime, 1 in every 7 American men will be diagnosed with prostate cancer and 

1 in every 8 American women will be diagnosed with breast cancer.
3
 To date lung and bronchus 

cancer have the highest death rates with an estimated 159,260 in 2014.
4
  

Diagnosis and treatment of cancer has been developed throughout the years. Most of 

these methods include use of radiation, photodynamic therapies, surgical removal, laser, 

chemotherapy, and targeted therapy. This later method has been widely successful in the 

development of organic- and inorganic-based therapeutic drugs that selectively target specific 

genes, growth factors, and proteins, or interfere with different intracellular pathways that cause 

cancer. Understanding the chemical mechanism of action of these drugs and their interaction 

with the intracellular environment has always been a challenge.  

In the last four decades, the field of medicinal inorganic chemistry expanded rapidly 

since metals have proven to be valuable as chemotherapeutic agents for the treatment of various 

tumors.
5
 Ever since the discovery of cisplatin, [Pt

II
(NH3)(Cl)2], in the 1960s

6,7
 research has 

focused on other metal ions including ruthenium,
8
  gold,

9
 and cobalt

10
 as great candidates for 
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drug development. Although the intracellular molecular target for most of these metal-based 

drugs is the DNA, other systems such as proteins have proven to be excellent targets in 

anticancer therapy.  

1.2. Proteasome as a Target for Anticancer Therapy 

The chemical degradation of biomolecules in cells is performed by two systems including 

the lysosome and the ubiquitin-proteasome pathway (UPP). Over 80% of the intracellular protein 

degradation is carried out by the ubiquitin-proteasome system (UPS);
11

 the major proteolytic 

mechanism responsible for degradation of misfolded, oxidized, and damaged cellular proteins in 

eukaryotes.   

In 2004, the Nobel Prize in Chemistry was awarded to Aaron Ciechanover, Avram 

Hershko, and Irwin Rose for their excellent work on the discovery of UPS.
12,13

  The ubiquitin-

proteasome pathway involves two major processes: (1) ubiquitination of the damaged or 

misfolded proteins and (2) proteolysis of such proteins by the 26S proteasome (Figure 1.2.1).
14

 

During ubiquitination, misfolded proteins are appended with ubiquitins (Ub), small proteins of 

8.5 kDa which bind to a lysine residue of the substrate.
15

 This process is facilitated through a 

chain of three enzymes: Ub-activating, -conjugating, and -ligating E1, E2, E3, respectively.
16

 

The degradation process by the 26S proteasome is only performed on the poly-ubiquitinated 

(four or more ubiquitins attached to the misfolded protein) species. The second process of the 

ubiquitin-proteasome pathway is proteolysis, an ATP-dependent process, in which ubiquinated 

proteins undergo peptide bond cleavage in the 26S proteasome.
17

 The 26S proteasome is a 

multicatalytic protein complex with molecular weight of 2500 kDa, composed of the 20S 

catalytic part and the two regulatory subunits known as 19S.  
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Figure 1.2.1. Degradation of the targeted protein by ubiquitin-proteasome system (adapted from 

ref. 14). 
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The catalytic part of the 26S proteasome is flanked between the two 19S regulatory 

particles and is composed by two α and two β rings (Figure 1.2.1). Each of the four rings 

contains a total of seven subunits.
18

 Only three out of the fourteen β subunits are responsible for 

the catalytic activity of the 20S core and they are known as β1, β2, and β5. The subunit β1 is 

responsible for the caspase-like activity and cleaves a peptide bond after acidic amino acids. The 

β2 subunit performs trypsin-like activity resulting in a peptide bond cleavage after basic amino 

acids. The subunit β5 is responsible for chymotrypsin (CT)-like activity and cleaves a peptide 

bond after hydrophobic amino acids.
19

 Characteristic for the catalytic β subunits is the presence 

of an N-terminal threonine (Thr) residue which is responsible for the nucleophilic attack during 

peptide bond cleavage. The α subunits provide structural support to the overall barrel-like core of 

the 20S proteasome. Parts of the 19S regulatory particles are by two subcomplexes known as the 

lid and the base.
20

  The main function of the lid is to remove the ubiquitin tags from the substrate 

prior to degradation by the catalytic site,
21

 while the base unfolds the targeted substrate and 

directs it towards the 20S core.
22

 Degradation of ubiquitinated proteins through the catalytic 

chamber of the proteasome results in generation of smaller peptide units comprised of 3 to 22 

amino acids.   

Besides the degradation of damaged proteins, the ubiquitin proteasome system is also 

involved in regulation of various nuclear growth factors, signal transduction, and the control of 

cell apoptosis.
23

 Regulation of such cellular growth factors is crucial for normal functioning of 

the cell. One of these growth factors is NF-κB which promotes DNA transcription. Under normal 

cell conditions NF-κB is bound to the IκB inhibitor, which blocks the activation of NF-κB.
24

 Due 

to external stimuli, such as stress, the IκB complex will be ubiquinated, thus entering the UPP for 

degradation and releasing the NF-κB unit. At this point, the NF-κB factor will enter the nucleus 
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and promote transcription; hence, enhancing cellular proliferation. Cancer cells are characterized 

by uncontrolled cell growth,
25

 due to higher levels of proteasome activity
26

  compared to normal 

cells. Therefore, inhibition activity of the proteasome presents an excellent mechanism in 

anticancer therapy.  

To date, most of the known proteasome inhibitors are designed to inhibit the activity of 

the catalytic subunits of the proteasome, particularly the chymotrypsin-like activity. Classes of 

the most common proteasome inhibitors include: peptide aldehydes,
27

 boronic acid,
28

 vinyl 

sulfones,
29

 and epoxyketones.
30

 The most studied 20S proteasome inhibitor is bortezomib 

(Figure 1.2.2, top) known as VELCADE or PS341.
31

 It is the first FDA approved proteasome 

inhibitor for treatment of non-Hodgkin lymphoma and various myeloma.
32

 The chemical 

structure of this boronic acid contains the fragment of Pyz-Phe-Leu (pyrazinoic acid-

phenylalanine-leucine) which gives this drug highest affinity towards the terminal threonine the 

β5 subunit of the catalytic core.
33

 The mechanism of inhibition activity of the chymotrypsin-

pocket involves formation of a tetrahedral adduct
18

 (pharmacophore) with the terminal threonine 

residue (Figure 1.2.2, bottom). Even though bortezomib has shown much success with 

treatment of hematological malignancies, it has failed in treatment of solid tumors.
34

 This drug is 

expensive and exhibits high levels of toxic side effects, including fatigue, nausea, diarrhea, 

thrombocytopenia, and lymphopenia.
35,36

 Hence, there is a quest for the development of other 

drug candidates with higher potency against solid tumors, and to understanding the mechanisms 

of action towards the proteasome. Appropriate candidates would be metal-containing drugs 

which consist of the ligand carrier and the metal ion. The ultimate goal of the current research is 

to develop novel anti-cancer proteasome inhibitors that display multiple inhibition mechanisms 

and less toxicity. The advantage of developing metal-containing proteasome inhibitors rests on 
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the versatility in tuning the coordination number, charge, redox activity, geometry, and 

intracellular selectivity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2.2. Chemical structure of bortezomib (top) and tetrahedral adduct (bottom) (adapted 

from ref. 18). 

 

 

 

 

Bortezomib 

Bortezomib-enzyme complex 
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1.3. Metal Complexes as Potential Pro-Drugs  

The first efforts made towards the development of metal-based proteasome inhibitors 

were presented from the Dou Lab where different ligands including disulfiram,
37

 clioquinol,
38

 

and dithiocarbamate
39

 were mixed with copper salts and tested against the inhibition of 

proteasomal activity in LNCaP, C4-2B, and PC-3 prostate cancer cells,
40

 followed by in vivo 

studies.
34

 These results showed considerable inhibition activity of the proteasome and induction 

of cell apoptosis for all complexes. Inspired by these findings, we focused our efforts in the 

development of novel stochiometrically defined metal-containing anticancer pro-drugs with the 

aim of understanding the solution-based behavior of these compounds by addressing: (1) the 

chemical nature of the ligands, (2) the role of metal ions, (3) the appropriate ratio between metal 

ions and ligands, (4) the chemical structure of the pharmacophore.
41,42

 

For the past few years, we have reported on the synthesis and characterization of a series 

of gallium(III) complexes [Ga
III

(L
X
)2]ClO4, where X = methoxy (MeO–), nitro (NO2–), chloro 

(Cl–), bromo (Br–), and iodo (I–) occupy the 4
th

 and 6
th

 position of the phenolate ring in the 

asymmetric NN
’
O-containing ligand (Scheme 1.3.1).

43
  

 

 

 

 

 

 

 

Scheme 1.3.1. Chemical structure of gallium(III)-containing complexes. 
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Anti-cancer properties of these complexes were tested against the growth of 

neuroblastoma cells. The halogen-containing species on the phenolate ring possessed superior 

antineoplastic properties compared to the methoxy- and nitro-containing species. This study 

concluded that functionalization of the phenolate ring with the halogen groups (I, Br, Cl) 

enhances the anti-proliferative effects of these gallium complexes. To address the cause of 

apoptosis induction in cancer cells, the abovementioned five gallium(III) complexes were tested 

as inhibitors of the activity of proteasome.
41

 Results with purified proteasome demonstrated that 

the halogen-containing gallium(III) complexes were more potent, with the best inhibition shown 

by the iodo-substituted gallium complex.  

Consistent results were obtained when the halogen-containing gallium(III) complexes 

were tested in various prostate cancer cell lines. The [Ga
III

(L
I
)2]ClO4 complex showed the 

highest inhibitory effects of the CT-like activity of the 26S proteasome with IC50 (concentration 

at 50% cell death) = 17 µM. In addition, this complex showed promising results in vivo, by 

reducing the tumor growth in PC-3 xenografted nude mice by 66% due to proteasome 

inhibition.
44

 This data allowed us to conclude that functionalization of the phenolate ring by 

iodo-substituents is effective towards the inhibition activity of the proteasome in cancer cells.  

In order to address how the stoichiometry of metal to ligand ratio affects the inhibition 

activity of the proteasome, three copper-containing
47

 complexes were synthesized with 1:1 

[Cu
II
(L

I
)Cl],  [Cu

II
(L

I
)OAc] and 1:2 [Cu

II
(HL

I
)(L

I
)]OAc metal to ligand ratios (Scheme 1.3.2), 

where L is the deprotonated form of (2,4-diiodo-6-((pyridine-2-ylmethylamino)methyl)phenol) 

ligand. Spectroscopic and spectrometric characterization of these complexes confirmed the four 

and five coordination arrangement of the Cu(II) (d
9
 configuration) ion around the ligand.

42
 The 

anticancer properties of these copper-containing complexes resulted in comparable IC50 values of 
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~4.0 µM against the growth of human leukemia cells.
47

 Consistently, inhibition of CT-like 

activity in C4-2B cancer cells resulted in over 80% at 15 µM for all three copper complexes.  

 

 

 

 

 

 

 

Scheme 1.3.2. Chemical structures of four- and five-coordinate copper(II)-containing 

complexes. 

Due to these pharmacological results, it is suggested that 1:1 metal-to-ligand species is 

the proposed pharmacophore that could possibly interact with the threonine residue of the 

chymotrypsin-like activity of 20S core.
45

 To evaluate this hypothesis, two complexes [Zn
II
(L

I
)2] 

and [Ni
II
(L

I
)2] were synthesized and characterized (Scheme 1.3.3).

46
  

 

 

 

 

 

 

 

Scheme 1.3.3. Chemical structures of nickel(II)- and zinc(II)-containing complexes. 
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The pharmacological effects of these species have been investigated in vitro, in cultured 

human cancer cells C4-2B. The zinc-containing complex inhibits the 26S proteasome activity in 

prostate cancer cells with IC50 = 4.4 µM, whereas no such inhibition was observed for the nickel-

containing complex. The differences in the cytotoxic effects of these complexes could be 

possibly explained by the nature of the metal ion. The labile the zinc(II) ion due to lack of 

ligand-field stabilization energy (LFSE) allows the formation of 1:1 metal-to-ligand species in 

solution. On the other hand, the inert character of nickel(II) ion due to a non-zero LFSE does not 

favor the formation of 1:1 metal-to-ligand species.
43

 From these studies, we have concluded that 

the presence of an [ML
1
]
+
 species as the pharmacophore, is necessary for proteasomal inhibition. 

This observation supports the current hypothesis that ligand dissociation is required in the 

mechanism to form species capable of interacting with the proteasome (Figure 1.3). 

 

 

 

 

 

 

 

 

Figure 1.3. Proposed dissociation mechanism of pharmacophore formation. 

This dissertation focuses on understanding the fundamental use of transition and main 

group metal complexes as inhibitors of the 26S proteasome in vitro. Our approach involves: (1) 

the selection of appropriate metal ions in well-understood ligand moieties for interaction with the 
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proteasome, and (2) ligand optimization that allows for the elucidation of mechanisms of 

proteasomal inhibition in prostate cancer cell lines, since prostate cancer is classified as an 

aggressive carcinoma
47

 with even higher proteasomal activity. Therefore, prostate cancer cells 

are expected to be more sensitive against inhibition of the proteasome activity. Some of the 

factors that promote prostate cancer are related to the environment. For instance, cadmium is a 

human carcinogen
48 

and patients with smoking habits develop more aggressive forms of prostate 

cancer than non-smokers due to cadmium accumulation in the prostate.
49

 Other toxic metals such 

as mercury
50

 and lead
51

 have been found to promote prostate cancer. Hence, part of this research 

investigates whether the toxicity of these heavy metal ions can be correlated with their 

interaction with proteasome in non-cancerous epithelial prostate cells.
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1.4. Research Statements 

The principal motivation behind this research project is defined within the scope 

of the following research statements: 

I. To understand the mechanisms of metal-based inhibition of the 26S 

proteasome by developing metal-containing anticancer pro-drugs for 

the treatment of prostate cancer. This approach takes advantage of the 

tunability of the electronic properties and reactivity of the resulting 

pharmacophores. For this research, we studied the use of transition and 

main group metal complexes as inhibitors of the 26S proteasome in 

vitro, by: (1) the selection of appropriate metal ions (inert/labile, redox 

active, charge) in known ligand moieties for interaction with the 

proteasome and (2) optimization of the ligand that allows for 

elucidation of mechanisms for proteasomal inhibition.  

II. To investigate whether the proteasome is one of the targets for the 

toxicity of heavy metal ions in non-cancerous epithelial prostate cells. 

Synthesis and characterization of these complexes along with the 

biological studies will be evaluated. 

These aims will be accomplished via four research objectives presented in the next 

section. 
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1.5. Research Objectives 

The strategies and different solutions used to address the Research Statements 

will be presented as the following research objectives, described in Chapters 3-6. 

 

Objective #1: To interrogate the mechanism of inhibition of the 26S 

proteasome using inert/labile metal ions coordinated to NN
’
O tridentate and 

N2N2
’
O2 hexadentate ligands. This aim focuses on the role of the metal ion 

(kinetically inert or labile) and the nature of the chelating ligands on the 

inhibition of CT-like activity of the purified proteasome and intact prostate 

cancer cells. The results of this objective will be introduced in Chapter 3. A 

thorough analysis of synthetic and chemical characterization procedures will be 

discussed, as well as an extensive evaluation of the biological testing in purified 

proteasome and prostate cancer cells.   

Objective #2: To investigate chemical reduction as a viable mechanism for 

the generation of pharmacophore species involved in the inhibition of the 26S 

proteasome. This aim focuses on evaluating the viability of ligand dissociation 

in order to form the active pharmacophore [ML
1
]

+
 species of an inert cobalt(III) 

complex as an inhibitor of the chymotrypsin-like activity of the 26S proteasome. 

Chapter 4 details the investigation of the electrochemical behavior of this 

complex in solution. 

Objective #3: To probe the effect of the ion charge towards the inhibition 

activity of 20S proteasome. In order to advance this objective a new series of 

gallium(III) and zinc(II) ions coordinated to a hexadentate N2N2
’
O2 ligand were 
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prepared and the activity of these complexes towards purified proteasome and 

prostate cancer cells are studied. These findings are discussed in Chapter 5. 

Objective #4: To evaluate the effect of aluminum and heavy metal ions on the 

inhibition activity of the 20S and 26S proteasome in non-cancerous prostate 

cells. In this study we are interested in the comparison of the activity of the 

proteasome in CRL2221 transformed human prostate epithelial cells, which 

mimic the behavior of normal prostate cells treated with complexes containing 

toxic metal ions; such as, Al(III), Cd(II), Hg(II), Pb(II), and Sn(IV). A detailed 

discussion on the purpose of this study is provided in Chapter 6 and includes 

validation of the potential role of such heavy metal species towards the 

inhibition activity of the proteasome.  
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CHAPTER 2 

MATERIALS, METHODS, AND CHARACTERIZATION TECHNIQUES 

2.1. General     

Reagents and solvents used in Chapters 3 – 6 were obtained from commercial sources 

and handled without further purification. Infrared spectra were measured from 4000 to 400 cm
−1

 

on a Tensor 27 FTIR spectrophotometer as KBr pellets. Electrospray ionization mass spectra 

were measured in the positive mode (ESI positive) using Micromass Quattro LC triple 

quadrupole mass spectrometer. Nuclear Magnetic Resonance (NMR) experiments including 
1
H- 

and 
13

C-NMR were measured using a Varian Mercury-400 and VNMRS-500 MHz spectrometers 

in CDCl3, DMSO-d6, and DMF-d7 at 298 K. Specific experimental conditions including 2D-

NMR are described in Chapter 3. Elemental analyses were performed by Midwest Microlab, 

Indianapolis, using V2O5 for complete combustion Indiana. Diffraction data were measured on a 

Bruker X8 APEX-II kappa geometry diffractometer with Mo radiation and a graphite 

monochromator. UV–visible spectroscopy from 1.0 × 10
−4

 M N,N-dimethylformamide (DMF) 

solutions and 9.0 × 10
−5

 M DMF/H2O (90:10%, v/v) were run using a Cary 50 

spectrophotometer in the range of 250–1100 nm. Cyclic voltammetry (CV) experiments were 

performed at room temperature under anaerobic conditions using argon gas in HPLC grade N,N-

dimethylformamide at concentration of 1.0 × 10
−3

 and 9.0 × 10
−4

 M DMF/H2O (90:10%, v/v) 

solutions. The experiments were carried out using a standard three-electrode cell with an 

Ag/AgCl as the reference electrode, a glassy-carbon working electrode, a Pt-wire as the auxillary 

electrode, and. Voltammograms were recorded using a BAS 50 W voltammetric analyzer at a 

scan rate of 100 mV s
−1

. The supporting electrolyte of tetra-n-butylammonium 

hexafluorophosphate (TBAPF6) was used 0.1 M concentration. The reversibility of the redox 
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processes for the cobalt ion was determined by the peak to peak separation (ΔEp = |Epc − Epa|) 

values and |ipc/ipa| ratio. 

The fluorogenic peptide substrate SucLLVY-AMC for the proteasomal chymotrypsin-

like activity measurements was purchased from Calbiochem, Inc. (San Diego, CA). Trypan blue 

exclusion dye was purchased from Sigma Aldrich (St. Louis, MO). Mouse monoclonal antibody 

against human poly (ADP-ribose) polymerase (PARP) was purchased from BIOMOL 

International LP (Plymouth Meeting, PA). RPMI 1640, penicillin, and streptomycin were 

purchased from Invitrogen (Carlsbad, CA), whereas fetal bovine serum was purchased from 

Aleken Biologicals (Nash, TX). Antibodies against ubiquitin (P4D1), actin (C-11), and 

secondary antibodies were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). 

Biological assays and cellular culture techniques included in Chapters 3, 5, and 6, were 

performed by Sara Schmitt in the Dou Lab at Barbara Ann Karmanos Cancer Institute. 

Computational calculations for Chapter 4 were performed by Dr. Marco M. Allard, a 

former student in the Verani Lab, using Gaussian 09 suite of programs
1
 with density functional 

theory (DFT). These calculations were carried out with the B3PW91
2
 functional basis set. 

2.2. Cyclic Voltammetry 

Cyclic voltammetry is an electroanalytical technique that measures the electron transfer 

(current) of a complex solution upon an applied potential.
3
 It best describes oxidation-reduction 

reactions and the flow of electronic charge in solution. The system consists of a standard three-

electrode cell connected to a potentiostat. The three electrodes, namely working, reference, and 

auxiliary are employed in the electrochemical cell containing the complex solution of interest 

and supporting electrolyte. The electrolyte used for our experiments is tetra-n-butylammonium 

hexafluorophosphate (TBAPF6) at 0.1 M. A typical cyclic voltammogram
3
 for a reversible one 
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electron process is shown in Figure 2.2. At point E, only the oxidized form of the redox couple 

is present in solution. As the forward negative scan of the potential progresses towards point F, 

the oxidized species start to convert to its reduced form. Once the net cathodic current (ipc) is 

reached, any of the oxidized species will be quickly reduced on the surface of the electrode. At 

point G, only the reduced form of the initial species is present in solution on the electrode 

surface. When the scan is reversed towards point H, the reduced species starts to convert back to 

its oxidized form, while a net anodic current (ipa) is reached at point H. As the anodic current 

approaches zero, only the oxidized species is present in solution (point E). The equilibrium 

concentration between the oxidized and reduced species is expressed using the Nernst equation.
4
 

For a reversible one electron process the current ratio | ipc/ipa | has to equal 1.0. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Cyclic voltammogram for one electron process (adapted from ref. 3). 
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2.3. Spectroelectrochemistry 

The experimental setup of spectroelectrochemistry involves the concerted use of 

electrochemical and UV-visible techniques. This technique was employed to measure the 

reduction of a cobalt complex in solution by monitoring the disappearance of the ligand to metal 

charge transfer band (LMCT) upon an applied fixed potential. Spectroelectrochemical 

experiments were performed at room temperature by employing an optically transparent thin-

layer cell (ca. 0.1 mm) inside of which a U-shaped flat platinum wire acting as the working 

electrode was placed between two glassy slides and was extended outside of the slides for 

electrical contact. The inner parts of these slides were coated with indium-tin oxide (ITO) (8-2 

Ω/sq). A second platinum wire was used as the counter electrode and the Ag/AgCl wire was the 

reference electrode. The cobalt complex was dissolved in DMF and the solution was purged with 

argon before it was introduced into the cell through a capillary. The electrochemical potential 

applied to the cell was higher (−1200 mV versus Fc/Fc
+
) than the cathodic potential for the 

cobalt(III)/(II) couple. This potential was achieved using a BAS 50 W potentiostat and the 

spectra were collected using a Varian Cary 50 apparatus within a time interval of 30 s frames 

following the disappearance of the phenolate to cobalt(III) charge transfer (LMCT).  

2.4. Chemical Reduction  

Chemical reduction experiments were performed by UV-visible spectroscopy to observe 

the disappearance of the LMCT band of the cobalt complex in presence of ascorbic acid 

reductant to mimic the reductive intracellular environment. The chemical reduction experiments 

were carried out at room temperature in a freshly prepared DMF/H2O (90:10%, v/v). Each 

spectrum was recorded within an interval of 30 min in the range of 300–900 nm following the 

decrease of the ligand to metal charge transfer (LMCT) band over a time period of 18 h. The 
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experimental setup employed a 4 mL quartz cuvette (1 cm optical path) where 2700 μL of the 

cobalt complex was dissolved in DMF under anaerobic conditions ([complex 1] = 1.0 × 10
−4

 M) 

and then mixed with 300 μL of an aqueous oxygen-free ascorbic acid solution ([AA] = 1.0 × 10
−2

 

M) stabilized with nitric acid. The final concentration of the complex solution inside the cell was 

([complex 1 + AA]final = 9.0 × 10
−5

 M), under apparent pH 3. The control samples were prepared 

under the same conditions without the addition of the reductant (AA) ([complex 1]final = 9.0 × 

10
−5

 M) and DMF/H2O (90:10%, v/v) solution) under pH 3 and pH 1, respectively. Data was 

treated as a pseudo-first order reaction, where the excess AA is maintained near constant through 

time. The concentration of the cobalt(III) complex is monitored as a function of time and fitted 

as a pseudo-first order exponential decaying equation, [C]t = [C]o × ekt. In order to evaluate the 

rate constant, the natural log of the decay data is plotted versus time and fitted with the following 

equation: ln[C]t = −kt + ln[C]o where [C]o, is the initial concentration (mol L
−1

), [C]t is the 

concentration at a given time, k is the first order rate constant (s
−1

), and t is time in seconds. The 

half-life of the cobalt(III) complex upon reduction was calculated using the t1/2 = ln 2/kobs 

equation. 

2.5. Western Blot Analysis 

 Western blotting was used to isolate and identify proteins of interest based on the 

principle of antibody-antigen binding. It was first discovered in 1979 by the scientist Harry 

Towbin.
5
 In this chapter Western blotting technique is described based on the experiments 

performed to identify levels of ubiquinated proteins and the enzyme poly ADP ribose 

polymerase (PARP) which are extracted from treated prostate cancer cells with various 

concentrations of metal-based compounds synthesized in the Verani Lab. This section includes a 
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description of how cells were prepared for the Western blot analysis, and how this technique was 

used to identify the proteins of interest. 

Preparation of Cell Extracts 

Prostate cancer cells (PC-3) were grown in a RPMI 1640 cell culture (100*20 mm) tissue 

culture dish containing sterile media treated with 10% fetal bovine serum, 100 µg/mL of 

streptomycin, and 100 units/mL of penicillin incubated overnight with 5% CO2 at 37
o 

C. After 

they reached 80% confluence, PC-3 cells were treated with increasing concentrations of the 

metal complexes and incubated for 18-24 hours. The cells were detached from the culture plates 

and spun at 1500 rpm for 3 min in order to separate the cell media; e.g., serum. Collected cell 

pellets were washed three times with phosphorus buffer saline (PBS) solution and then were 

centrifuged at 5000 rpm for 3 min. Cells were lysed with Tris-HCl lysis buffer in order to break 

the cellular wall of the phospholipid bilayer and vortexed for 20 min at 4
o 

C followed by 

centrifugation for 12 min at 1200 rpm. This process separates proteins from the genetic material. 

The proteins of interest were collected from the supernatant (cell lysates). 

Gel Electrophoresis 

Separation of proteins based on their charge and molecular size was performed by gel 

electrophoresis.
6
 Cell lysates were treated with a loading buffer which was used to denature the 

proteins. This enables the cell lysates to travel easily through the 10% polyacrylamide gel under 

the applied voltage. Bromophenol blue dye was added to the cell lysates to track how far the 

proteins have migrated through the gel. Cell lysates (40 µg of proteins) were separated by 

sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) under 26-35 Volts. The 

SDS detergent was used due to its anionic nature, thus giving the proteins an overall negative 
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charge. Therefore, protein migration through the gel upon an applied voltage was solely based on 

their molecular size. The smaller weight proteins will travel farthest down the gel.  

Once the proteins were separated via gel electrophoresis, they were transferred to a 

nitrocellulose membrane to isolate the proteins of interest including ubiquinated proteins and 

PARP. The protein transfer process (blotting) was performed by placing the nitrocellulose 

membrane between the gel and the positive electrode where upon an applied electric field the 

negatively charged proteins migrated towards the membrane.
7
 The nitrocellulose membrane was 

incubated overnight at 4
o 

C with the primary mouse monoclonal antibody against ubiquitin 

(P4D1). Following the next day, the membrane was washed three times with Tris buffer saline 

solution to eliminate any unbound proteins, and then incubated overnight at 4
o 

C with the 

secondary antibody which specifically binds to the primary antibody, as shown in Figure 2.5. 

The nitrocellulose membrane was washed three times with Tris buffer saline solution followed 

by the addition of enhanced chemiluminescence (ECL) substrate which was cleaved by the 

enzyme horseradish peroxidase, thus emitting light.
8,7 

The same procedure is applied for isolation 

of PARP by using mouse monoclonal antibody against human PARP.
 

 

 

 

 

 

 

 

Figure 2.5. Isolation of Ub-proteins by Western blot analysis (adapted from ref. 8). 
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CHAPTER 3 

EFFECTS OF TETHERED LIGAND AND OF METAL OXIDATION STATE ON THE 

INTERACTION OF COBALT COMPLEXES WITH THE 26S PROTEASOME  
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CHAPTER 3 

EFFECTS OF TETHERED LIGAND AND OF METAL OXIDATION STATE ON THE 

INTERACTION OF COBALT COMPLEXES WITH THE 26S PROTEASOME  

Published with minor changes as Tomco, D.; Schmitt, S,; Ksebati, B.;  Heeg, M. J.; Dou, Q. P.; 

Verani, C. N.* J. Inorg. Biochem, 2011, 105, 1759.   

3.1. Introduction 

Our groups have been interested in the development of coordination complexes capable 

of inhibiting the activity of the 26S proteasome in tumorous prostate cells. The 26S proteasome 

is a large protein complex responsible for the destruction of faulty proteins and enzymes.
1,2

 In 

tumor cells the activity of the 26S proteasome goes in overdrive fostering the proteolysis of 

inhibition factors such as IκB releasing NFκB nuclear factor that support the development of 

blood vessels and promote tumor cell growth.
3,4

 Inhibition of this activity leads to cellular 

apoptosis, or programmed cell death.   

 We have demonstrated recently that a series of gallium complexes [Ga(L
NN’O

)2] with the 

substituted ligand 2,4-di-X-6-((pyridine-2-ylmethylamino)methyl)phenol (where X = bromo or 

iodo)
5,6

 were active against the proteasome, as measured by the inhibition of its chymotrypsin-

like activity (CT)  and resulting accumulation of ubiquitinated proteins. This activity triggered 

cell death both in vitro and in vivo. Thus, we proposed that in order to inhibit the proteasome 

activity, this species would likely bind to available amino acids along the α channels of the 

proteasome, or to the terminal threonines of the β active sites in a similar way as reported to the 

antineoplastic agent bortezomib (valcade).
7
 The [ML2]

+
 species would need to be converted into 

a [ML]
+
 species, in order to establish a metal/amino acid chemical bond. Evidence for such 

mechanism was gathered when 2:1 and 1:1 copper(II) complexes showed comparable CT 
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inhibition activities in purified 20S and 26S proteasomes, in C4-2B and PC-3 cell extracts, as 

well as in intact cells.
8
 Consistently we have also observed that [ML2] complexes with labile 

zinc(II) ions show considerable activity, whereas more inert and redox-inactive metal ions such 

as nickel(II) show negligible results.
9
  

In this chapter, we further this investigation by comparing the inhibition activity of three 

cobalt complexes described as [Co
II

(L
1
)2] (1), [Co

II
(L

2
)] (2), and [Co

III
(L

1
)2ClO4] (3) (Scheme 

3.1). We are interested in the comparison of 1 and 2 that allows further analysis for the need of 

ligand dissociation, where the newly designed ligand used in 2 hinders such dissociation. 

Similarly we want to compare 1 and 3 to examine the role of the oxidation states and the 

potential of redox changes in proteasome inhibition. The antitumor activity of cobalt species is 

fairly understudied,
10

 but activity against prostate cancer has been recently demonstrated by 

McNeil et al. for bivalent cobalt.
11

 On the other hand, Teicher, Ware, Hambley,
12

 and more 

recently Donelly
13

 have taken advantage of bioreductive activation of its trivalent counterpart for 

the treatment of hypoxic tumors. In this case, intracellular redox conversion of Co(III) into 

Co(II) releases alkylating mustards. 

 

 

 

 

 

 

 

 

                                                      

 

Scheme 3.1. Cobalt complexes. 
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3.2. Results and Discussion 

 3.2.1. Synthesis and Characterization 

Both ligands HL
1
 and H2L

2
 were synthesized in moderate yields following procedures 

available in the literature.
14,15

 The condensation reaction of picolinaldehyde with ethane-1,2-

diamine produced the corresponding Schiff base ligand. This was followed by reduction with 

sodium borohydride to generate the intended N
1
,N

2
-bis(pyridin-2-ylmethyl)ethane-1,2-diamine 

precursor. Formation of the new H2L
2
 ligand, as shown in Scheme 3.2.1, was obtained by 

reaction of this amino-pyridine precursor with 2-(chloromethyl)-4,6-diiodophenol in the presence 

of base. The 
1
H-NMR spectra of the ligands were measured and will be relevant for future 

comparisons. The spectrum for HL
1 

was recorded in DMSO-d6 in order to compare with the 
1
H 

NMR of 3. A complete characterization of HL
1
 ligand including the 

1
H-NMR spectra and 

1
H-

1
H 

COSY is given in Figures A.3.2.1.1, A.3.2.1.2, and A.3.2.1.3. From the 
1
H-NMR spectra, the 

two methylene protons from both the pyridine rings (H5, H5
’
) and phenol (H6, H6

’
) appear as 

two distinct singlet resonances centered at 3.83 ppm and 3.87 ppm, respectively, whereas the 

aromatic protons lie between the 7.28-8.60 ppm region. The exchangeable protons from the 

aliphatic nitrogen atom (H9) and the phenol group (H10) are observed as a broad resonance 

between 6.60-7.10 ppm. The (H1) proton from the pyridine ring resonates as a doublet at 8.54 

ppm.  

 

 

 

 

Scheme 3.2.1. Synthesis of the H2L
2
 ligand.  
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The spectrum for H2L
2
 recorded in CDCl3, provides evidence for a symmetric ligand in 

the solution, as Orvig et al
16

 and Neves et al
17

 have similarly observed with other related 

H2bbpen ligands. Therefore, three sharp singlet resonances are shown at 2.67 ppm, 3.61 ppm, 

and 3.72 ppm representing the four protons from ethane-1,2-diamine, phenolic-methyl, and 

pyridyl-methyl groups, respectively; whereas the aromatic protons are displayed between the 

region of 7.11-8.60 ppm. Complexes 1-3 were synthesized by the reaction of the metal salt with 

the appropriate ligand in methanol or dichloromethane in the presence of triethylamine base. 

Characterization of all of the metal complexes includes spectroscopic and spectrometric 

techniques consisting of IR, NMR, ESI-MS, and elemental analyses. Infrared analysis confirms 

that both C=N and C=CAr stretching modes shift ca. 40-60 cm
-1

 to lower frequencies due to 

metal coordination. Characteristic for the infrared spectrum of the [Co
III

(L
1
)2]ClO4 (3) complex 

is the presence of a strong broad band at 1098 cm
-1

, corresponding to the perchlorate counterion. 

Spectrometric analysis for complexes 1-3 was performed by ESI-MS in the positive mode and in 

methanol solutions. The results showed excellent agreement between the experimental and the 

simulated data as presented in Figure 3.2.1. As previously published,
14

 complex 1 shows the 

presence of the molecular ion peak observed at m/z
+
 = 989.9 (100%) which corresponds to the 

{[Co(L
1
)2] + H

+
}

+
 species. Alternatively, for complex 3 the main peak is detected at m/z

+
 = 988.9 

(100%) and assigned to the [Co(L
1
)2]

+
 species providing strong evidence for the coordination of 

the cobalt(III) ion. ESI-MS for complex 2 shows the parent peak for {[Co(L
2
)] + H

+
}

+
 species at 

m/z
+
 = 1015.7 (100%). The isotopic distribution for both complexes 2 and 3 are shown in Figure 

3.2.1. All of the above data confirm the expected configurations of 1:2 and 1:1 metal-to-ligand 

species containing six-coordinate cobalt ions bound to HL
1
 or H2L

2
, respectively. 
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Figure 3.2.1. Isotopic distribution for complex 2 (left) and 3 (right). The bars indicate the 

experimental results and the continuous spectra indicate the simulated results. 

 

3.2.2 Molecular Structural Characterization of [Co
II

L
2
] (2) 

X-ray diffraction was used to determine the molecular structure of single crystals of 

compound 2 isolated from slow solvent evaporation of a 1:1 mixture of dichloromethane and 

methanol. Figure 3.2.2 displays the ORTEP diagram for complex 2 with selected bond lengths 

and angles. Compound 2 consists of a neutral cobalt(II) species with coordination environment 

arranged about a fully deprotonated hexadentate ligand (L
2
)
2-

, containing two [NN′O] donor sets. 

The pseudo-octahedral cobalt(II) center is oriented in a two-fold rotation axis with each half of 

the ligand in a facial arrangement. We have previously reported on similar coordination spheres 

for cobalt(II) complexes containing two independent [NN
′
O] ligands, in which all equivalent 

donors are positioned trans to each other.
14,18

 In contrast, complex 2 displays an arrangement of 

cis phenolates, trans pyridines, and cis nitrogen atoms, rather observed for iron(III) and 
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manganese(III) complexes with similar hexadentate ligand.
19,20,21

 The short cobalt-donor bonds, 

along with the absence of counterions support the bivalent nature of the metal ion. The observed 

Co-Ophenolate distance is 2.00 Å, whereas Co-Npyridine is 2.14 Å, and Co-Namine is 2.23 Å. These 

values are in good agreement with the literature.
14 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.2. ORTEP diagram at 50% probability level for 2. Selected bond lengths include 

Co(1)-O(1) = 2.003(3), Co(1)-N(1) = 2.139(3), Co(1)-N(2) = 2.234(3) Å. Selected angles include 

N(1)-Co(1)-N(2) = 76.57(12), O(1)-Co(1)-N(1) = 90.32(12), O(1)-Co(1)-N(2) = 89.65(11). 

Goodness of fit is given by R(F) (%) = 3.13. 
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3.2.3. NMR Spectroscopic Studies 

The 
1
H-NMR spectra for compound 3 were taken in DMSO-d6 at 298 K, and are shown 

in Figure 3.2.3.  A comparison of the proton chemical shifts of HL
1
 and 3 is given in Table 

3.2.3 and (Table A.3.2.3). 

 The 
1
H-NMR spectrum of 3 showed eleven distinctive resonances between 3.41 and 

9.00 ppm, indicating that the compound has a diamagnetic 3d
6

low-spin electronic configuration. 

The 
13

C-NMR spectrum of complex 3 confirmed the presence of thirteen different carbon 

chemical peaks corresponding with half the number of carbons present in the molecule, 

suggesting that this complex is symmetric in solution. A combination of DEPT, COSY (Figures 

A.3.2.3.1 and A.3.2.3.2), and HMQC experiments were used to establish proton and carbon 

connectivity in the isolated spin systems for 3, whereas NOE was employed to confirm the 

proposed structure. DEPT analysis revealed two signals corresponding to two methylene groups, 

and six distinct CH peaks giving a total of ten protons, whereas 
13

C-NMR/DEPT studies 

confirmed the presence of five fully-substituted aromatic carbons.  

Characteristic for the 
1
H NMR spectra for complex 3 is the observation of the chemical 

shifts and splittings of the proton resonances attributed to metal coordination for the two 

methylene protons Figure 3.2.3 (a). The original singlet peak observed at 3.83 ppm (H5) in the 

non-metallated ligand now appears as the two doublets observed at 4.39 and 5.58 ppm for the 

complex, possibly due to the coupling with the aliphatic amine proton (H9). The same 

phenomenon was observed for the initial singlet peak at 3.87 ppm (H6), which transforms into 

two distinct resonances appearing as doublets at 3.48 and 3.66 ppm for 3. 

The connectivity of the protons to the carbons for complex 3 was supported by the 

HMQC experiment, as shown in (Figure 3.2.3 (b) and Figure A.3.2.3.3; where the identity of 



36 
 

the exchangeable proton attached to the aliphatic nitrogen atom (H9) was revealed. In this 

spectrum, one resonance corresponding to the proton on the aliphatic amine (H9) appears as a 

broad singlet and is shifted downfield to 8.33 ppm. Also, in comparison to the 
1
H NMR spectra 

of the ligand HL
1
, where the exchangeable proton of the phenol group is centered between 6.60 

and 7.10 ppm, complex 3 has no such peak present which indicates ligand deprotonation.  

The aromatic proton found on the 1-position of the pyridine ring (H1) shifts downfield to 

8.99 ppm and appears as a doublet of a doublet due to metal coordination. Only slight changes of 

the proton chemical shifts were observed for all aromatic protons as shown in Table 3.2.3, and 

no broadening of the signal indicative of dynamic equilibria
22

 were observed.  

To confirm the thermodynamic stability of 3 in solution, variable-temperature 
1
H-NMR 

experiments were performed in DMSO-d6 (25 to 80 °C, not shown), as well as in DMF-d7 (25 

to − 40 °C, Figure A.3.2.3.4). No significant changes were observed, thus supporting the idea 

that the 3d
6

low spin assignment for 3 is the stable conformation in the timeframe of these 

experiments. 
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Table 3.2.3. 
1
H NMR assignment for HL

1
 and [Co(L

1
)2]ClO4 (3) in DMSO-d6. 

 

 

 

 

 

 

 

Proton 

H 

  HL
1
                   

(ppm) 

[Co
III

(L
1
)2ClO4] 

(ppm) 

H1 8.54 (d) 8.99 (dd) 

H2 7.29 (dd) 7.46 (t) 

H3 7.8 br (dt) 7.95 (t) 

H4 7.37 (d) 7.57 (d) 

H5 H5
’ 

3.83 (s) 4.39(d) 5.58 (dd) 

H6 H6
’ 

3.87 (s) 3.48(dd) 3.66 (d) 

H7 7.33 (d) 7.39 (s) 

H8 7.78 (d) 7.34 (s) 

H9 6.60-7.10 br (s) 8.33 (s) 

H10 6.60-7.10 br (s) no peak 
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Figure 3.2.3. NMR spectroscopic measurements for complex 3; (a) 
1
H-NMR spectrum and (b) 

HMQC spectra. 
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3.2.4. UV-visible Spectroscopy 

The UV–visible spectra of complexes 1–3 were taken in 1.0 × 10
−4

 M DMF solutions to 

assure consistency of solubility properties (Figure 3.2.4). The noticeable absence
18

 of a ligand-

to-metal charge transfer band at about 450 nm is diagnostic of the 3d
7

high spin cobalt(II) center in 

complexes 1 and 2. This very characteristic process is observed for complex 3 at 441 nm 

corresponding to a pπphenolate – dσ
*
cobalt (III) charge transfer. Another band at 630 nm usually 

attributed to d-d transitions is also present, confirming the trivalent character of the 3d
6

low spin 

cobalt(III) species. Other observed features include the intense π – π
*
 intraligand bands at about 

320 nm for all species. These results are in good agreement with the previously published data 

on cobalt complexes containing [NN′O] donor ligands
10,23

. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.4. UV–visible spectra of complexes 1–3 in N,N-dimethylformamide, 1.0 × 10
−4

 M. 

 

 

http://www.sciencedirect.com/science/article/pii/S0162013411002698#f0025
http://www.sciencedirect.com/science/article/pii/S0162013411002698#f0025
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3.2.5. Biological Results 

Biological data were gathered regarding the inhibition activity of species 1–3 toward cell 

proliferation, the purified 20S proteasome, and intact PC-3 prostate cancer cells. Inhibition of 

cell proliferation in human PC3 cells was successful with species 3. Cell proliferation was 

decreased by 40% upon treatment with 20 μM, and reached nearly 100% inhibition at a 

concentration of 30 μM. A less remarkable activity was observed for 1, where noticeable 

inhibition required considerably higher concentrations, e.g. ~ 30% inhibition at 50 μM (Figure 

3.2.5.1). Initially, this observation seems to contradict the proposed ligand exchange mechanism 

observed for similar copper, nickel and zinc complexes with similar ligand.
8,9 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.5.1. MTT, PC-3 cells after 18 h treatment. Control is DMSO, for each concentration 

from 10 to 50 μM, compound 1 is indicated in the left column and 3 is indicated in the right 

column. 
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To test the in vitro 20S proteasome inhibition ability of these species, a comparison of the 

inhibitory activity of 1, 2 and 3 to the 20S proteasomal activity was performed under cell-free 

conditions. Human purified 20S proteasome was incubated with the Co(ClO4)2·6H2O salt as 

control, as well as with 1, 2, and 3 at different concentrations, followed by measurement of CT-

like activity. This activity was marginally inhibited by the ligands and was inhibited by the 

highest concentration (50 μM) of cobalt salt at a 50% level. This result confirms that in 20S 

proteasome – where the regulatory 19S caps have been removed – metal ions will show some 

inhibitory effect, as previously observed for gallium salts.
24

 In spite of modest activities, 

comparison between complexes 1 and 2, displayed in Figure 3.2.5.2 (top) shows the highest 

inhibition for 1 (40% at 10 μM), where two independent ligands are present. This result 

reinforces the notion that facilitated ligand exchange will foster inhibition. No activity is 

observed for 2 even at 50 μM. The activities of 1 and 3 were also compared, as shown in Figure 

3.2.5.2 (bottom). These species show constant 1:2 metal-to-ligand ratio but allow for the 

respective comparison between a labile 3 d
7
 and an inert 3 d

6
 metal center. The latter is expected 

to display little or no inhibitory effects, as observed for the equally inert nickel(II) ion.
9
 

Unexpectedly, species 3 displays remarkably better CT-like activity inhibition of the 20S core 

than its labile counterpart. 
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Figure 3.2.5.2. Chymotrypsin-activity inhibition in human purified 20S proteasome; DMSO and 

Co
II
(ClO4)2 are controls. Top: comparison between 1 (left column) and 2 (right column); bottom 

comparison between 1 (left column) and 3 (right column). 
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Intrigued by the previous results, proteasome inhibition and apoptosis induction were 

tested in intact PC-3 human prostate cancer cells to confirm the potential activity of 3. Cells were 

first treated with different concentrations (up to 50 μM) of 1 and 3 for 18 h, followed by 

measurement of proteasome inhibition. PC-3 cells treated with 3 showed a dose-dependent 

inhibition of the proteasomal activity by ~ 35% at 30 μM and ~ 95% at 50 μM (Figure 3.2.5.3). 

Consistently, levels of ubiquitinated proteins were increased in a dose-dependent manner in PC-3 

cells for 3, whereas 1 showed negligible inhibition. 

 

 

 

 

 

 

 

 

Figure 3.2.5.3. Chymotrypsin-activity inhibition in PC-3 cell lysates after 18 h treatment. 

Compound 1 was measured at 40 and 50 μM and is shown in the left column. Compound 3 is 

shown as a single column for 1–30 μM and in the right column for 40 and 50 μM. DMSO is the 

control. 

 

Previous reports have indicated that inhibition of proteasomal chymotrypsin-like activity 

in tumor cells may result in the induction of apoptosis.
25

 To investigate whether proteasome 

inhibition is associated with apoptotic cell death, apoptotic-specific caspase-3 induction (Figure 

3.2.5.4) and related PARP disappearance (Figure 3.2.5.5) were measured spectrophotometrically 

and by Western blotting, respectively. Dramatic induction of caspase-3 was observed in cells 
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treated with 3 at 40 μM. As expected, abrogation of full length PARP only occurred in cells 

treated with 30–50 μM of 3, whereas cells treated with 1 at the highest concentration tested had 

little visible effect. These results show that induction of apoptosis by 3 in PC-3 cells is associated 

with inhibition of proteasomal chymotrypsin-like activity. 

 

 

 

 

 

 

Figure 3.2.5.4. Comparison between 1 (left column) and 3 (right column) for Caspase-3 

(apoptosis) Induction in PC-3 cell lysates after 18 h treatment. DMSO is the control. 

 

 

These results confirm the need for ligand dissociation, as shown by comparison between 

the activities of 1 and 2, both with a labile 3 d
7
 configuration. However, it is puzzling that 

compound 1 has proven to be less active than the inert 3 d
6
 metal-containing complex 3. Unlike 

the previously studied inert 3 d
8
 nickel(II) ion, cobalt(III) is a redox-active species capable of 

being reduced to cobalt(II) within the reducing cellular environment by available reductants. 

This reduction has been demonstrated individually by several groups
12,13

 and utilized for release 

of alkylating agents such as nitrogen mustards. The redox potential for the cytosolic environment 

is reported to be around − 0.3 V vs. NHE by Østegaard.
26

 A preliminary cyclic voltammogram 

for 3 in DMSO/TBAPF6 suggests the Co(III)/Co(II) couple at around − 0.5 V vs. NHE. Although 
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more negative, the result suggests bioreductive activation as a valid working hypothesis in need 

of further exploration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.5.5. Western blot for PC-3 cell lysates after 18 h treatment. 
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3.3. Conclusions 

In this paper we have investigated the interaction of cobalt complexes with the 26S 

proteasome. We have compared the behavior of 1:2 and 1:1 metal-to-ligand six-coordinate cobalt 

species toward cell proliferation, the purified 20S proteasome, and intact PC-3 prostate cancer 

cells. The 1:2 species described as 1 and 3 are formed respectively between cobalt(II) or 

cobalt(III) ions and two deprotonated [NN′O] ligands (L
1
)
-
, whereas the 1:1 species 2 is based on 

a cobalt(II) ion and the new [N2N′2O2] ligand H2L
2
 in its deprotonated form. Detailed 

characterization along with a crystal structure allows for unquestionable identification of 2, 

whereas meticulous NMR spectroscopic evaluation indicated configurational stability of 3 from 

80 to − 40 °C. The CT-like activity inhibition is severely hampered for the 1:1 species 2, 

reinforcing the current hypothesis of ligand dissociation as a requirement for proteasome 

inhibition. Surprisingly, the kinetically inert 3 showed remarkable proteasome inhibition, far 

superior to that observed for the labile 1. We hypothesize that this difference is due to the fact 

that cobalt is redox-active and species 3 is likely to be reduced intracellularly. In this process a 

labile cobalt(II) species would be generated, favoring ligand dissociation and interaction with the 

proteasome. We also hypothesize that species 1, already containing a labile cobalt(II) species 

will not remain intact intracellularly in order to reach the targeted proteasome. The possibility of 

using redox-active metals that can be intracellularly bioreduced opens a stimulating window of 

opportunity to explore proteasome inhibition, both by metal activation as demonstrated here and 

as suggested by Scarpellini
10

 as well as by using metal ions as carriers for drug delivery.
12

 Such 

studies are currently under investigation in our group. 
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3.4. Experimental  

3.4.1. Materials and Methods 

Chemical solvents and reagents were used as described in Chapter 2.  

  

3.4.2. X-ray Structural Determination of [Co
II

L
2
] (2) 

Diffraction data were measured on a Bruker X8 APEX-II kappa geometry diffractometer 

with Mo radiation and a graphite monochromator. Frames were collected at 100 K with the 

detector at 40 mm and 0.3° between each frame and were recorded for 10 s. APEX-II
27

 and 

SHELX 28
 software were used in the collection and refinement of the model. Crystals of [Co

II
L

2
] 

(2) appeared as amber plates. A total of 23770 reflections were measured, yielding 3750 unique 

data (Rint = 0.049). Hydrogen atoms were placed in calculated positions. The asymmetric unit 

contains one neutral complex without solvate. The complex crystallized in 1:1 ratio of 

dichloromethane and methanol solution Table 3.4.2. 

3.4.3 NMR Spectroscopic Measurements 

NMR spectra were measured using a Varian Mercury-400 and VNMRS-500 MHz 

spectrometers. Proton, carbon-13, distortionless enhancement by polarization transfer (DEPT), 

homonuclear correlation spectroscopy (COSY), and heteronuclear multiple quantum coherence 

(HMQC), and nuclear Overhauser effect (NOE) spectroscopy experiments were acquired in 

CDCl3, DMSO-d6 at 298 K and DMF-d7 between 233 and 273 K. 
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 [Co
II

(L
2
)] (2) 

Formula C28H24CoI4N4O2 

M 1015.04 

Space group C2/c 

a / Å 13.8089(4) 

b/ Å 9.9958(4) 

c/ Å 22.0818(9) 

α/ 
o
  

β/ 
o
 96.013(2) 

γ/ 
o
  

V/ Å
3
 3031.20(19) 

Z 4 

T/ K 100(2) 

λ/ Å 0.71073 

Dcalc/ g cm
-3

 2.224 

µ/ mm
-1

 4.673 

R(F)
 
(%) 3.13 

Rw(F) (%) 6.82 

a
 R(F) = ∑║Fo│-│Fc║ ∕ ∑│Fo│ for I > 2s(I); Rw(F) = [∑w(Fo

2
 – Fc

2
)
2 
/ ∑w(Fo

2
)
2
]
1/2 

for I > 2s(I). 

Table 3.4.2. Crystal data and structure refinement results for [Co
II

L
2
] (2). 
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3.4.4. Biological Assays 

 3.4.4.1 Proteasomal activity in purified 20S proteasome 

Purified human 20S proteasome (35 ng) was incubated with 10 μM of CT substrate, 

SucLLVYAMC, in 100 μL of assay buffer [20 mM Tris–HCl (pH 7.5)] in the presence of 

complexes 1–3 at various concentrations, as well as the salt [Co(H2O)6](ClO4)2 and DMSO 

solvent as control experiments. After 2 h of incubation at 37 °C, the production of hydrolyzed 

AMC groups was measured using a Wallac Victor3 multilabel counter with an excitation filter of 

365 nm and an emission filter of 460 nm.
29 

3.4.4.2 Cell cultures and whole cell extract preparation 

PC-3 human prostate cancer cells were grown in RPMI1640 supplemented with 10% 

fetal bovine serum and maintained at 37 °C and 5% CO 

2. A whole cell lysate was prepared as previously described.
30 

3.4.4.3 Cell proliferation assay 

Cells were seeded in quadruplicate in a 96 well plate and grown to 70−80% confluence, 

followed by treatment with the indicated agents for 18 h followed by measurement of cell 

proliferation by the 3(4,5dimethylthiazol-2-yl)2,5diphenyltetrazolium bromide (MTT) assay as 

described previously.
31 

3.4.4.4 Proteasome CT-like activity in cells 

Proteins extracted from cells after each treatment were incubated for 2 h at 37 °C in 

100 μL of assay buffer (50 mM Tris–HCl, pH 7.5) with 10 μM of fluorogenic CT substrate 

SucLLVYAMC, as described previously.
31 

 

 



50 
 

3.4.4.5 Western blot analysis  

Cell extracts were separated by SDS-PAGE and transferred to a nitrocellulose membrane. 

A western blot analysis was performed using specific antibodies to PARP or ubiquitin, followed 

by visualization using the HyGLO reagent (Denville Scientific, Metuchin, NJ). 

3.4.5. Syntheses 

3.4.5.1. Ligand syntheses 

The iodo-substituted ligand HL
1
 was synthesized as previously described

14,32
 by the 

treatment of 2-hydroxy-3,5-diiodobenzaldehyde with pyridin-2-ylmethanamine in methanol 

followed by reduction with sodium borohydride. 

The organic precursor 2,4-di-iodo-6-(chloromethyl)phenol was synthesized as previously 

reported [21]. Yield: 90%. IR (KBr, cm
−1

, s = strong) 1450(s) (C = Car); 1265 (s) (C − O); 

1
H − NMR [δ, ppm; s = singlet, 400 MHz, CDCl3, 300 K] = 4.60, [2x s 2x 1H (CH2)]; 7.60 [s, 1 

H (aryl) ]; 7.93 [s, 1 H (aryl)]. 

The new tethered ligand 6,6′-((ethane-1,2-diylbis((pyridin-2-ylmethyl)azanediyl)) 

bis(methylene))bis(2,4-diiodophenol) H2L
2
 was synthesized by adapting available procedures for 

similar species [22]. The precursor N1,N2-bis(pyridin-2-ylmethyl)ethane-1,2-diamine was 

obtained when a 40 mL methanolic solution (0.9 g, 15 mmol) of ethane-1,2-diamine, was treated 

with two equivalents of picolinaldehyde (3.21 g, 30 mmol) and refluxed for 2 hours. The 

resulting yellow Schiff base was reduced by addition of sodium borohydride (1.4 g, 37 mmol) at 

0 °C. The solvent was rotoevaporated and the crude product was dissolved in 100 mL of brine. 

Extraction with 4 × 25 mL of dichloromethane followed, and the combined extracts were dried 

over MgSO4. The solution was rotoevaporated and the product was obtained as a viscous oil. 

http://www.sciencedirect.com/science/article/pii/S0162013411002698#bb0105
http://www.sciencedirect.com/science/article/pii/S0162013411002698#bb0110
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The precursor N
1
,N

2
-bis(pyridin-2-ylmethyl)ethane-1,2-diamine (0.31 g, 1.3 mmol) was 

dissolved in 40 mL dichloromethane, when triethylamine base (0.6 g, 6.4 mmol) was added 

dropwise and followed by the addition of 2-(chloromethyl)-4,6-diiodophenol (1.0 g, 2.5 mmol). 

The solution was refluxed for 48 h. The product was extracted with 3 × 25 mL of 

dichloromethane to remove the triethylammonium chloride salt. The organic layer was dried 

over MgSO4 and rotoevaporated to give a yellow amorphous foamy solid which was then 

recrystallized in methanol to yield a microcrystalline solid. Yield: 75%. Mp 158–160 °C; IR 

(KBr, cm
−1

, s = strong, m = medium) 2818(s) (C-H), 1596(s), 1540(s) (C = NPy, C = CAr); 

1363(m) (C-O); 1250 (s), (C-N); 
1
H NMR [δ, ppm; s = singlet, d = doublet, dd = doublet of 

doublet, 400 MHz, CDCl3, 300 K] 2.67, [4x s, 4x 1H (2 CH2) -N-CH2-CH2-N-]; 3.61, [4x s, 4x 

1H (2 CH2) –N-CH2-phenol]; 3.72, [4x s, 4x 1H (2 CH2) –N-CH2-pyridyl]; 7.11-7.13, [4x 4x 1H 

(phenol)]; 7.20-7.23, [2x dd, 2x 1H (py-2)]; 7.66-7.70, [2x dd, 2x 1H (py-3)]; 7.91, [2x d, 2x 1H 

(py-4)]; 8.59, [2x d, 2x 1H (py-1)]; ESI
+
 in MeOH: m/z (100%) = 959.1 for [H2L

2
 + H

+
]

+
. 

3.4.5.2. Complex syntheses  

[Co
II

(L
1
)2] (1). Synthesis of this complex followed the previously described procedure.

14
  

Yield: 85%; IR data: (KBr, cm
−1

, s = strong, m = medium) 1603(m), 1560(s), 1446(s) (C = NPy, 

C = CAr); 1328(m) (C-O); ESI
+
 in MeOH: m/z (100%) = 990.1 for [Co

II
(L

1
)2 +H

+
]
+
; Anal. Calc. 

(%) for 1·H2O (%, C26H24CoI4N4O3, FW = 1007.04 g.mol
-1

) C, 31.01; H, 2.40; N, 5.56. Found 

(%): C, 31.14; H, 2.16; N, 5.39. 

[Co
II

L
2
] (2). [Co(H2O)6](ClO4)2 (0.12 g, 0.31 mmol) was dissolved in 5 mL of methanol and was 

added dropwise under anaerobic conditions to a 10 mL dichloromethane solution containing 

(0.3 g, 0.31 mmol) of the H2L
2
 ligand and Et3N (0.079 g; 79.2 mmol). The solution was stirred at 

room temperature for 3 h, when a color change was observed from yellow to brown. No 
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precipitate was formed observed. The solution gave orange colored crystals after 48 h. Yield: 

65%; IR data: (KBr, cm
−1

, s = strong, m = medium) 2839(m) (C-H), 1558(s), 1483(s) (C = NPy, 

C = CAr); 1363(m) (C-O); ESI
+
 in MeOH: m/z (100%) = 1015.7 for [Co

II
L

2
]

+
; Anal. Calc. for 2 

(%, C28H24CoI4N4O2, FW = 1014.74 g.mol
−1)

; C, 33.13; H, 2.38; N, 5.52. Found (%): C, 33.25; 

H, 2.44; N, 5.44. 

[Co
III

(L
1
)2]ClO4(3). The [Co(H2O)6](ClO4)2 salt (0.37 g, 1.0 mmol) was dissolved in 5 mL of 

methanol and added to a 30 mL dichloromethane solution containing the ligand HL
1
 (0.98 g, 

2.0 mmol) and Et3N (0.28 mL; 2.0 mmol) under aerobic condition. The solution was refluxed for 

4 h, when a brownish product was vacuum filtered and washed with cold methanol and ether. 

Yield: 70%; IR data (KBr, cm
−1

, s = strong, m = medium): 1603(m), 1560(s), 1446(s) (C = NPy, 

C = CAr); 1099(s) cm
−1

 (ClO4
-
) 1328(m) (C-O); ESI

+
 in MeOH: m/z (100%) = 989 for 

[Co
III

(L
1
)2]

+
 ; Anal. Calc. for 3 (%,C26H22CoI4N4O6Cl, FW = 1088.48 g.mol

−1
) C, 28.69; H, 2.04; 

N, 5.15. Found (%): C, 28.72; H, 2.17; N, 5.05. 
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CHAPTER 4 
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CHAPTER 4  

PROBING CHEMICAL REDUCTION IN A COBALT(III) COMPLEX AS A VIABLE 

ROUTE FOR THE INHIBITION OF THE 20S PROTEASOME  

Published with minor changes as Tomco, D.; Xavier, F.; Allard, M. M.; Verani, C. N.* Inorg. 

Chim. Acta, 2012, 393, 269. 

4.1. Introduction 

In the previous chapter, we compared the inhibition activity of the complex [Co
II

(L
1
)2] 

and its counterpart [Co
III

(L
1
)2ClO4]

1
 (Scheme 4.1). The former species contains a relatively 

labile bivalent high-spin cobalt ion,
2
 whereas the latter contains an inert trivalent low-spin cobalt 

ion that has shown unexpectedly better CT inhibition in cells. Considering the evidence for a 

relationship between cytotoxic activity and metal ion lability observed for [Ni
II

(L
1
)2],

3
 the 

biological accessibility of different oxidation states in the abovementioned cobalt complexes is 

the most relevant mechanism to allow for the switching between an inert d
6
 low-spin and a labile 

d
7
 high-spin character. In spite of the rich cobalamin chemistry

4,5
 the use of cobalt species for 

antitumor applications remains underdeveloped.
6,7 

Evidence for cobalt(III) complexes used as chaperones to carry specific matrix 

metalloproteinases including marimastat
8
 drug have been reported by Hambley

9
 and co-

workers,
10,11,12

 where enhanced antitumor activity was observed once marimastat was chelated to 

a Co
III

-tris(methylpyridyl)amine complex. The inert character of the cobalt(III) ion increases the 

intracellular transportation of the complex, and depending on the redox potential of 

Co(III)/Co(II) couple bioreductive activation allows for conversion to a more labile Co(II) 

species, hence release of the drug. In this chapter, we evaluate the chemical and electrochemical 

reduction of the cobalt complex [Co
III

(L
1
)2]ClO4 (1) and the viability of ligand dissociation in 

http://www.sciencedirect.com/science/article/pii/S002016931200388X#f0040
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order to form an active pharmacophore [ML]
+
. We aim to (i) evaluate the redox potentials for the 

Co(II)/Co(III) couple, (ii) observe the spectroelectrochemical and chemical reduction behavior at 

controlled pH via monitoring of the phenolate-to-cobalt LMCT band observed at 440 ± 5 nm in 

the UV–Vis spectrum, and (iii) assess resulting products of reduction by HR-ESI
+
 mass 

spectrometry. These results will be presented and discussed in detail. 

 

Scheme 4.1. Structure of complex [Co
III

(L
1
)2]ClO4 (1). 

4.2. Results and Discussion 

Complex 1 was synthesized according to a previously published procedure in our group.
1
 

UV–Vis spectroscopy in DMF confirms the presence of pπphenolate → dσ∗cobalt(III) charge transfer 

band at 440 nm. The CT-like activity inhibition of 1 was measured in purified 20S proteasome 

showing over than 90% inhibition at a concentration of 25 μM. Cell proliferation inhibition tests 

resulting with IC50 ⩽ 25 μM were obtained in PC-3 cells once treated with 1. 

4.2.1 Cyclic Voltammetry  

The redox properties of complex 1 were recorded in two solvent systems namely DMF 

and DMF/H2O (90:10% v/v) under argon, where TBAPF6 was used as a supporting electrolyte. 
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The potential values are measured versus Ag/AgCl and reported against the Fc/Fc
+
 redox couple 

as an internal standard.
13

 This data is summarized in Table 4.2.1. For the DMF solution, 

complex 1 demonstrates a quasi-reversible metal-centered Co
III

/Co
II
 couple (Figures B.4.2.1.1 

and B.4.2.1.2) at E½ = −705 mV versus Fc/Fc
+
 (ΔEp = 105 mV; |ipc/ipa| = 1.12). This redox 

potential changes slightly for the DMF/H2O (90:10% v/v) solvent system (Figure 4.2.1 and 

Figure B.4.2.1.3), where E½ = −668 mV versus Fc/Fc
+
 (ΔEp = 120 mV; |ipc/ipa| = 0.90). The 

reversibility of the Co
III

/Co
II
 couple given by the |ipc/ipa| is nearly equivalent between the two 

solvent systems. It has been observed that the Co
III

/Co
II
 reduction potential is highly effected by 

the substituents (electron withdrawing/donating) present on the ligand.
14

 Previously published 

cobalt(III) complexes
15

 with similar ligands containing t-butyl groups decreased the redox 

potential on the cobalt ion, whereas the chloro-substituents increased such potential.
16,17 

 The redox potential for bioactivated cobalt(III) complexes is found between −600 and 

−800 mV versus Fc/Fc
+
 (−200 to −400 mV versus NHE).

18
 Therefore, the observed potential for 

1 is well within this range and the complex is a viable candidate for intracellular reduction. 

 

 

Table 4.2.1. Electrochemical values for complex 1 in DMF and DMF/H2O (90:10% v/v) 

solvents. Potentials are measured for Co(III)/Co(II) couple vs. Ag/AgCl and plotted vs. Fc/Fc
+
 

reference standards in mV. 

http://www.sciencedirect.com/science/article/pii/S002016931200388X#t0005
http://www.sciencedirect.com/science/article/pii/S002016931200388X#s0065
http://www.sciencedirect.com/science/article/pii/S002016931200388X#s0065
http://www.sciencedirect.com/science/article/pii/S002016931200388X#f0005
http://www.sciencedirect.com/science/article/pii/S002016931200388X#s0065
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Figure 4.2.1. Cyclic voltammograms of complex (1) in DMF/H2O 90:10% v/v solvent system 

with concentration of 9.0 × 10
−4

 M. TBAPF6 was used as supporting electrolyte. The redox 

potential for Co(III)/(II) couple is measured vs. Ag/AgCl and plotted using Fc/Fc
+
 as an internal 

reference at room temperature. 

 

 

4.2.2. Computational Studies  

Polyphenolate complexes with metal centers are long known to be difficult for 

differentiating and identifying their formal redox centers.
19,20

 We have previously
21

 used 

computational methods for this purpose, and reported on the electronic structure of similar 

cobalt,
15,22

 zinc,
3
 and iron(III) complexes. In this report, we are interested in the redox 

properties relating to the reduction of these complexes. Calculations were performed on the 

[Co(L
1
)2]

+
 (S = 0) and high-spin [Co(L

1
)2]

0
 (S = 3/2) to assess information on bonding 

interactions and identify the frontier orbitals involved in both the electrochemistry and 

electronic spectroscopy. It is clearly indicated in Figure 4.2.2 that the initial Co(III) complex is 

consistent with a low-spin Co d
6
 with no unpaired electron (left). Upon reduction, the resulting 

 

-300 -400 -500 -600 -700 -800 -900 -1000 -1100

 Potential (mV) vs. Fc/Fc
+

http://www.sciencedirect.com/science/article/pii/S002016931200388X#f0010


61 
 

complex is consistent with a Co(II) d
7
 high-spin complex with three unpaired electrons, as can 

be shown in the spin density plot (right). The Co(III) shows that the first two empty unoccupied 

orbitals, namely LUMO and LUMO+1 are cobalt-based, consistent with empty anti-bonding d 

orbitals expected for a low-spin d
6
 metal complex. The first two occupied orbitals (HOMO, and 

HOMO−1) are phenolato-based, consistent with our previously shown assessments.
15,22,23

  

It is interesting to note that unlike our previous electronic structure on –H substituted 

[35] phenolate groups, it seems the –iodo groups are heavily involved in some of the frontier 

orbitals in HOMO−2, −3, −4, and −5. As expected, the remaining three d metal cobalt orbitals 

are low in energy. Upon addition of an electron to reduce [Co
III

(L
1
)2]

+
, one would expect the 

population of the LUMO, which is cobalt centered, and upon oxidation we would expect to 

form a phenoxyl radical as per the nature of the HOMO. Indeed, for the reduced species, namely 

[Co
II
(L

1
)2]

0
, we observed a Co(II) d

7
 high-spin complex with the three magnetically relevant 

orbitals shown in Figure 4.2.2 on the right (Table B.4.2.2), consistent with our cyclic 

voltammetry assignment. 

 

 

 

 

 

 

 

 

 

http://www.sciencedirect.com/science/article/pii/S002016931200388X#b0175
http://www.sciencedirect.com/science/article/pii/S002016931200388X#f0010
http://www.sciencedirect.com/science/article/pii/S002016931200388X#s0065
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Figure 4.2.2. Relevant frontier orbitals for [Co
III

(L
1
)2]

+
 (left) and [Co

II
(L

1
)2]

0
 (right) including 

their spin density (top). TD-DFT electronic transitions for [Co(L
1
)2]

+
 are shown in the middle. 
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4.2.3. Electronic Spectroscopy  

According to time-dependent density functional theory (TD-DFT) the spectra of the 

cobalt(III) complexes are dominated by three low energy charge transfer bands. The 

HOMO → LUMO transition at 612 nm is identified as a phenolate → cobalt LMCT, and the two 

bands close in energy are associated with HOMO−1 → LUMO and HOMO−1 → LUMO+1 at 

405 and 395 nm, respectively (see inset Figure 4.2.2). These prominent bands are the result of 

phenolato-to-cobalt charge transfer bands, and are consistent with the frontier orbitals discussed 

in the previous section. This behavior is expected for Co(III) complexes with electroactive 

ligands, in which charge transfer from fully occupied ligand orbitals to low energy Co(III) empty 

d orbitals can be expected to dominate the low energy end of the spectra (>350 nm). The higher 

energy (<350 nm) is dominated by intra-ligand π → π∗ inter-valence charge transfers (IVCT). 

Thus upon reduction of these complexes, the change from a singlet d
6
 metal complex to a quartet 

high-spin d
7
 complex spectra should result in a complex with very low energy (>1000 nm) d–d 

charge transfer bands (mostly absent in the Co(III) spectra), and similar intra-ligand charge 

transfers, but the LMCT charge transfer bands should either be absent or have very small molar 

absorptivity. Our modeling indicates the near absence of bands with wavelengths above 500 nm 

and IVCT bands centering around 375–400 nm; all related to various π → π∗ transitions within 

the ligand. Therefore according to these calculations, we conclude that the bands at 440 and 

625 nm can be assigned to phenolato-to-cobalt charge transfers (LMCT) and both are expected to 

disappear upon reduction. 

In order to investigate the spectroscopic properties of the reduced complex 1, reductive 

room temperature spectroelectrochemical spectra were obtained under argon using TBAPF6 in 

DMF. Upon an applied fixed potential of −1200 mV versus Fc/Fc
+
, a marked decrease of the 

http://www.sciencedirect.com/science/article/pii/S002016931200388X#f0010
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LMCT bands was observed over time Figure 4.2.3. The calculated spectra are shown in (Figure 

B.4.2.3). 

 

 

Figure 4.2.3. Spectroelectrochemical spectra for complex 1 in DMF in the presence of TBAPF6 

as supporting electrolyte. The decrease of the phenolate to Co(III) charge transfer band at 

440 nm was followed over time upon the applied fixed potential of −1200 mV vs. Fc/Fc
+
.  

 

4.2.4. Chemical Reduction  

Chemical reduction using ascorbic acid (AA) was performed in order to evaluate whether 

biological agents can carry on the Co(III)/Co(II) reduction and to assess the timeframe required 

for such process. We conducted these experiments at room temperature under inert conditions 

using a large excess of AA as to mimic a pseudo-first order reaction mechanism. The results 

http://www.sciencedirect.com/science/article/pii/S002016931200388X#f0015
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allow us to estimate an approximate reduction rate constant and to analyze the resulting products 

of this chemical reduction. The experiment was performed in a freshly prepared DMF/H2O 

(90:10% v/v) solution and followed spectrophotometrically at the maxima (λmax = 440 nm) by the 

decrease of the phenolate to cobalt(III) charge transfer band over time, as well as the decrease of 

the second LMCT band at 625 nm shown in Figure 4.2.4.1.  

 

Figure 4.2.4.1. Chemical reduction experiment of complex 1 with ascorbic acid in DMF/H2O 

(90:10% v/v) with final concentration of 9.0 × 10−
5
 M. Each spectrum is recorded every 30 min 

and the decrease of pπphenolate → dσ∗
cobalt(III) charge transfer band at 440 nm over time was 

observed for a time period of 18 h. 
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Each spectrum was recorded periodically every 30 min for 18 h until the equilibrium 

between the oxidized/reduced species was reached. A control sample was prepared under the 

same conditions without the presence of the reductant AA (Figure B.4.2.4.1). Two other control 

experiments were performed without AA, but the solutions were adjusted to an apparent pH 3 

and pH 1, (Figures B.4.2.4.2 and B.4.2.4.3), respectively. The phenolate-to-cobalt(III) charge 

transfer band was monitored spectrophotometrically overnight. These data showed no change in 

the absorbance, position, or shape of the LMCT band thus indicating that the stability of 1 is 

maintained in both of the acidic solutions. This observation implies that even under these 

conditions the phenolato groups from the ligand are not being protonated. Both experiments 

strengthen the conclusion that AA is reducing the metal center rather than promoting the 

protonation of the ligand. The concentration dependence of complex 1 versus time was measured 

following the decrease of the LMCT band and the data was fitted using a pseudo-first order 

approach and treated using a first order rate equation (Figure 4.2.4.2). The approximate rate 

constant (kobs) value was obtained from the linearized data (curve slope) and half-life (t½) was 

calculated. The values for kobs = 2.03 ± 0.04 × 10−5 s
−1

 and t½ ∼ 9.5 h which indicates that the 

reduction of the cobalt center is occurring at a considerably slow pace. This time window falls 

well within the observed time frame for biological experiments.
1 
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Figure 4.2.4.2. Linearized plot of the pseudo-first order rate law. 

 

4.2.5. Product Analysis via HR-ESI
+
-MS After Chemical Reduction 

High resolution mass spectrometry, HR-(+)-ESI-MS, was used in fresh solutions of 1 in 

order to evaluate the products of chemical reduction and possibly detect ligand dissociation. All 

the experimental m/z results were in good agreement with calculated m/z values and with the 

expected isotopic distributions for the species of interest (Figure 4.2.5.1). 
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Figure 4.2.5.1. Mass spectrometry results for 1 after treatment with AA; peak position and 

isotopic distribution for (a) [Co
II
(L

1
)+2DMF]

+
 and (b) [HL

1
+H

+
]

+
. The bars represent the 

experimental data, whereas the continuous spectra show the simulated data. 

 

Immediately after the completion of the chemical reduction, an aliquot of the reaction 

was diluted in methanol and injected in the mass spectrometer and relevant peak clusters were 

detected. The molecular ion peak observed at m/z = 988.72 (100%) corresponds to the 

[Co
III

(L
1
)2]

+
 complex (Figure B.4.2.5.1). We were unable to detect the reduced [Co

II
(L

1
)2] 

species by mass spectrometry, both due to its neutral charge as well as to in situ oxidation. In 

fact, the mass spectrometry data for the isolated and previously published [Co
II

(L
1
)2] complex 

showed the presence of [Co
III

(L
1
)2]

+
 at m/z = 988.64 rather than the peak at 989.64 attributed to 

[Co
II
(L

1
)2+H

+
]

+
 even a lower cone voltages (Figure B.4.2.5.2).

22
 These results strongly suggest 

that the [Co
II

(L
1
)2] complex obtained by chemical reduction would be easily reoxidized in the 
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mass spectrometer. Thus, the observed peak at m/z = 988.72 is associated with the [Co
III

(L
1
)2]

+
 

species from non-reduced 1 as well as from reoxidation of [Co
II

(L
1
)2]. Therefore, we looked for 

other species in which the cobalt(II) ion can be detected; we observed a peak at m/z = 669.98 

(Fig. 6a, S8) attributed to [Co
II
(L

1
)+2DMF]

+
 species. The presence of DMF solvent in the peak 

confirms that this species is formed in the original solution. This peak has not been detected in 

the control solution (Figure B.4.2.5.3) and  reinforces the idea of ligand dissociation due to 

metal reduction. The ligand itself is observed exclusively in the chemically reduced sample as 

the [HL
1
+H

+
]

+
 species at m/z = 466.91 (Figure 4.2.5.1 (b) and Figure B.4.2.5.1). The presence 

of these peaks suggests that ascorbic acid has indeed reduced the inert cobalt(III) ion to the more 

labile cobalt(II) ion, thus increasing the probability of the loss of one ligand in the solution 

generating the biologically active pharmacophore species. Based on the available 

spectroelectrochemical, chemical reduction, and product analysis evidence, a plausible scheme 

for these transformations is offered in Figure 4.2.5.2. 

 

Figure 4.2.5.2. Proposed mechanism for the ligand release upon chemical reduction in the 

presence of ascorbic acid. 
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4.3. Conclusions 

In this chapter we have investigated a possible way on how complex 1, containing an 

inert cobalt(III) ion, can be reduced into a more labile Co(II) species, as well as the viability of 

ligand dissociation from this labile species in order to form a pharmacophore able to inhibit the 

20S proteasome such as the [Co
II
L(DMF)2]

+
 species. We evaluated the redox potentials for the 

Co(III)/Co(II) couple in DMF and DMF/H2O and found them to be compatible with the range for 

bioactivation and spectroelectrochemical results support this assessment with a decrease of the 

phenolate-to-cobalt MLCT band. The experimental results were corroborated by DFT 

calculations. Chemical reduction with ascorbic acid also indicated a decrease of the LMCT band 

and MS data confirmed the presence of [Co
II
L(DMF)2]

+
 along with the dissociated ligand. These 

species were not observed in control samples lacking the reducing agent even if at considerably 

acidic conditions. These results point out to biological reduction as a viable way to promote 

ligand dissociation and, therefore, pharmacophore formation in cobalt(III) prodrugs. 

4.4. Experimental Section 

Materials and methods were used as described in Chapter 2. Electronic structure 

calculations were carried out with the GAUSSIAN 09 suite of programs
24

 using density functional 

theory (DFT) calculations with the B3PW9
25,26

 and SDDAll basis set.
27,28,29

 The closed shell 

cobalt(III) (S = 0) complexes are calculated as singlets, using spin restricted wavefunctions, 

whereas the cobalt(II) (S = 3/2) complexes were calculated as quartets using open-shell 

unrestricted wavefunctions. The geometries were fully optimized and vibrational frequencies 

were computed to confirm that the structures were energy minima.
30,31

 Solvent effects in DMF 

were estimated using the IEF-PCM polarizable continuum model.
32

 Vertical electronic excitation 

energies and intensities were calculated by time-dependent density functional theory (TD-
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DFT).
33,34

 Molecular orbitals were plotted with GaussView.
35

 All geometries match well with 

previously reported
15,22

 crystallographic data. 
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CHAPTER 5 

IN VITRO STUDIES OF GALLIUM(III) AND ZINC(II) SPECIES ON THE INHIBITION 

ACTIVITY OF THE 26S PROTEASOME  

Tomco, D.; Schmitt, S.; Heeg, M. J.; Dou, Q. P.; Verani, C. N.* 

5.1. Introduction 

In Chapters 3 and 4, we concluded that the inhibition activity of the 20S proteasome is 

highly dependent on the redox properties of the metal ion of choice and the ligand design. The 

hexadentate H2L
2 

ligand coordinated to a cobalt(II) metal ion showed no inhibition properties 

towards purified 20S and 26S proteasome. Because the increased chelation effect of the H2L
2
 

ligand prevented the inhibition of the chymotrypsin-like (CT) activity of the proteasome, the 

question remains whether this ligand will possess the same properties if it is coordinated to a 

more labile metal ion with higher oxidation state. To address this issue, we synthesized and 

characterized two complexes coordinated to the H2L
2
 ligand, namely [Ga

III
(L

2
)]ClO4 (1) and 

[Zn
II

(L
2
)] (2), (Scheme 5.1), and investigated the inhibition properties towards purified human 

proteasome and proteasome in prostate cancer cells. The selection of gallium(III) and zinc(II) 

ions
1
 is related not only by their wide therapeutic properties towards of various diseases,

2
 but 

also by their redox inertness. 

A gallium nitrate salt has been used in treatment of hypercalcemia, a metabolic disorder 

related to increased concentration of the calcium ions in blood. Gallium nitrate inhibits calcium 

resorption from bones and stimulates bone formation.
3
 To date, the coordination compound 

gallium maltolate has completed phase I clinical trials in treatment of renal cancer.
4
 One of the 

possible mechanisms of action for gallium maltolate is generation of reactive oxygen speciesin 

mitochondria.
5
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As a trace element zinc is associated with various metabolic processes in cells including 

structural stabilization of various proteins such as zinc fingers, signal transduction, and 

regulation of cellular apoptosis.
6 

The ability of both gallium- and zinc-containing complexes as 

proteasome inhibitors has been successfully demonstrated by the Verani and Dou labs,
7,8,9

 and 

the following study will investigate the effect that redox-inactive metal ions have on the CT-

inhibition activity of the proteasome in PC-3 cells. 

 

 

 

 

 

 

 

 

 

Scheme 5.1. Chemical structures of [Ga
III

(L
2
)]ClO4 (1) and [Zn

II
(L

2
)] (2) complexes. 
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5.2. Results and Discussion 

 5.2.1. Synthesis and Characterization 

The H2L
2
 ligand was synthesized and characterized using methods from previously 

reported procedures.
10

 Synthesis of the complexes was accomplished following procedures as 

shown in Scheme 5.2. Complex 1 was synthesized using Schlenk technique under nitrogen gas 

by dissolving the ligand H2L
2 

(0.3 g, 0.31mmol) in 15 mL methanol while stirring and heating 

the solution followed by addition of triethylamine base (0.063 g, 0.62 mmol). A methanolic 

solution of GaCl3 salt (0.06 g, 0.34 mmol) was added to the ligand dropwise under anaerobic 

conditions and the reaction was refluxed for three hours. Concentrated sodium perchlorate 

solution was then added to the reaction mixture for counterion exchange which resulted in 

formation of a white precipitate. The solution was concentrated until most of the methanol 

solvent was removed and the crude product was filtered and washed with cold methanol and 

distilled water. The collected precipitate was dissolved in methanol and set for crystallization 

under room temperature for 48 hours. This resulted in formation of rod-shaped crystals.  

Complex 2 was synthesized by dissolving the H2L
2
 ligand (0.2 g, 0.21 mmol) and 

triethylamine base (0.043 g, 0.42 mmol)  in 15 mL methanol while heating and stirring (Scheme 

5.2.1). ZnCl2 salt (0.032 g, 0.23 mmol) was dissolved in 3 mL methanol and then added slowly 

to the deprotonated ligand. The solution was refluxed under aerobic conditions for 3 hours and 

then concentrated under vacuum. No precipitate was obtained, so the solution was set for 

crystallization at room temperature. Rod shaped crystals were collected within 72 hours and 

characterized by X-ray crystallography. 

Chemical characterization of complexes 1 and 2 was performed by spectroscopic and 

spectrometric techniques to confirm the composition and purity of both complexes. Infrared 
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analysis shows strong bands at 1602-1611, 1560-1569, and 1433-1444 cm
-1

 attributed to 

C=Npyridine and C=CAromatic stretches. The perchlorate counterion shift at 1088 cm
-1 

is present as a 

broad band for complex 1. Elemental analysis for complexes 1 and 2 were found to be in good 

agreement between the theoretical and the experimental values. Characterization of both 

complexes by mass spectrometry in the positive mode resulted in excellent agreement between 

the experimental and simulated data. The molecular ion peak for complex 1 is detected at m/z
+
 = 

1024.76 (100%) and attributed to the [Ga
III

(L
2
)]

+
 species without the perchlorate ion. For 

complex 2, the molecular ion peak associated with {[Zn
II
(L

2
)] + H

+
}

+
 species is found at m/z

+
 = 

1020.85 (100%) and confirms the bivalent nature of the zinc ion. The above spectrometric data 

support the assignment of 1:1 metal ion to ligand ratio for both complexes 1 and 2. 

Scheme 5.2. Synthetic routes for complexes 1 and 2. 

5.2.2. Crystal Structure Characterization for [Ga
III

(L
2
)]ClO4 (1) and [Zn

III
(L

2
)] (2) 

X-ray diffraction analysis was used to determine the chemical structures of complexes 1 

and 2 which are displayed in Figures 5.2.2.1 and 5.2.2.2, respectively. Both structures reveal 

the presence of the deprotonated hexadentate (L
2
)
2-

 ligand chelating the gallium(III) and zinc(II) 

ions in a pseudo-octahedral geometry. The arrangement of the donor sets around the both metal 

ions can be described as cis phenolates, cis aliphatic amines, and trans pyridines which is in 

agreement with the previously reported [Co
II
(L

2
)] complex

10
 and other complexes from the 

literature.
11,12 

The presence of the perchlorate counterion in complex 1 neutralizes the 3+ charge 
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of the gallium ion (Figure 5.2.2.1) and confirms the fully deprotonated form of the ligand. In 

contrast to complex 1, no counterions are observed for complex 2 (Figure 5.2.2.2). Average 

bond lengths between the gallium ion and the donor sets are as follows: Ga-Ophenolate as 1.890 Å, 

Ga-Naliphatic as 2.138 Å, and Ga-Npyridine as 2.102 Å. These values are slightly shorter compared 

to the zinc analog with bond distances of 1.992 Å for Zn-Ophenolate, 2.259 Å for Zn-Naliphatic, and 

2.169 Å for Zn-Npyridine. These corresponding bond distances are similar to those found in the 

[Co
II
(L

2
)] complex

10
 and other reported zinc-containing complexes.

9
 Such shortening of bond 

distances in the [Ga
III

(L
2
)]ClO4 complex could be explained due to the higher charge of the 

metal ion. Selected bond lengths and angles are presented in the figures below. 

Figure 5.2.2.1. Crystal structure for Ga complex (1). ORTEP diagram reported at 50% 

probability level. Selected bond lengths include: Ga(1)-O(2) = 1.880(3), Ga(1)-O(1) = 1.900(3), 

Ga(1)-N(4) = 2.091(5), Ga(1)-N(1) = 2.113(5), Ga(1)-N(2) = 2.127(4), Ga(1)-N(3) = 2.149(4) Å. 

Selected angles include: O(2)-Ga(1)-O(1) = 95.65(15), N(4)-Ga(1)-N(1) = 170.69(16), N(2)-

Ga(1)-N(3) = 82.66(16), O(1)-Ga(1)-N(4) = 90.62(16), O(2)-Ga(1)-N(1) = 87.07(16). Goodness 

of fit is given by R(F) (%) = 4.20. 
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Figure 5.2.2.2. Crystal structure for Zn complex (2). ORTEP diagram reported at 50% 

probability level. Selected bond lengths include: Zn(1)-O(1) = 1.992(2), Zn(1)-N(2) = 2.169(3), 

Zn(1)-N(1) = 2.259(3) Å. Selected angles include: O(1)-Zn(1)-N(2) = 90.38(11), N(2)-Zn(1)-

N(1) = 75.88(11), O(1)-Zn(1)-N(1) = 89.99(10). Goodness of fit is given by R(F) (%) = 3.95. 
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5.2.3. Biological Results 

The biological activity of both complexes against the 20S purified proteasome and 26S 

proteasome from both PC-3 and non-cancerous CRL2221 cells were measured and the results 

are discussed. The anti-proliferative effect of the gallium- and zinc-containing complexes on 

prostate cancer cells were evaluated by MTT assay treating PC-3 cells with 1 and 2 (Figure 

5.2.3.1). The results reveal a distinct difference in the percent cell proliferation remaining after 

treatment with both complexes. Complex 1 is highly potent against the growth of these cells 

even at lower concentrations (20 µM and 30 µM with 15% and 8.0% respectively of cellular 

proliferation left after treatment). Almost no cell growth is observed after treatment with the 

highest concentration of 50 µM. On the contrary, complex 5 shows insignificant anti-

proliferative effects at lower concentrations and ~85% cell growth remaining at the highest 

concentration of 50 µM (Figure 5.2.3.1). These results suggest that the gallium-containing 

complex suppresses the proliferation of the prostate cancer cells very effectively even at lower 

concentrations.  

The inhibitory properties of complexes 1 and 2 against the chymotrypsin-like activity 

have been investigated (Figure 5.2.3.2). Treatment of human purified proteasome with both 

complexes at concentrations from 5-50 µM resulted in unexpected findings. Complex 1 

demonstrates excellent CT-like activity inhibition in a concentration dependent manner with 

97% at 10 µM, 99% at 25 µM, and ~100% at 50 µM, and overall IC50 ≈ 0.6 µM. Complex 2 

shows much less inhibitory effect against purified proteasome with the following values: 23%, 

31%, and 50% at 10, 25, and 50 µM concentrations, respectively, and IC50 ≈ 50 µM. 
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Figure 5.2.3.1. Anti-proliferative effects of complexes 1 and 2 in prostate cancer PC-3 cells.  

 

 

 

 

 

 

 

 

 

 

Figure 5.2.3.2. Chymotrypsin-like activity inhibition of purified 20S proteasome after treatment 

with complexes 1 and 2. 

 

 

 



85 
 

The ability of complexes 1 and 2 to inhibit chymotrypsin-like activity of cellular 

proteasome was measured by treatment of PC-3 cells with different concentrations of both 

complexes following 24 hours incubation. Consistent with the purified proteasome results, 

complex 1 showed excellent inhibitory effects against chymotrypsin-like activity of the 

proteasome in PC-3 cells, as shown in Figure 5.2.3.3. These results indicate a direct relationship 

of CT-inhibition activity and the increase in concentration of complex 1 pro-drug. Complex 1 

showed IC50 ≈ 22 µM comparable to the values of the [Co
III

(L
1
)2]ClO4 complex

10
 with IC50 ≈ 23 

µM. On the other hand, complex 2 did not show any chymotrypsin-like activity inhibition even 

at high concentrations. These findings correspond with the previously published results of the 

[Co
II
(L

2
)] complex which showed no inhibition properties against CT-like activity of the 

proteasomes in PC-3 cells. Based on these results, we suggest that the higher oxidation state 

metal ions present higher inhibition levels of chymotrypsin-like activity of the proteasome. 

To determine whether proteasome inhibition induces cancer cell apoptosis, PC-3 cells 

were treated with both complexes 1 and 2 at various concentrations. Upon cell lysis, Western 

blot analysis was performed to detect increased levels of ubiquitianted (Ub) proteins and PARP 

cleavage or disappearance. As observed in Figure 5.2.3.4, increased levels of Ub-proteins are 

present for complex 1 specifically at 30-50 µM concentrations indicated by the appearance of 

darker bands in the gel. These results strongly support that complex 1 does indeed inhibit the 

proteasome activity in the PC-3 cells. Surprisingly, complex 2 shows increased levels of 

ubiquitinated proteins at 40 and 50 µM concentrations. These are unexpected results because 

complex 2 does not inhibit the chymotrypsin-like activity of the proteasome in PC-3 cells, yet the 

proteasome is not active since Ub-proteins are present. These findings suggest that complex 2 

could possibly inhibit the activity of the proteasome by interacting with other proteolytic sites 
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including caspase- and trypsin-like activities. Another possible target could be the 19S regulatory 

subunit particularly, the JAMM domain.
13,14

  Further studies have to be performed in the future 

in order to investigate whether the Zn-containing complex 2 could inhibit the activity of such 

catalytic or regulatory sites of the 26S proteasome.  

To prove that proteasome inhibition activity leads to prostate cancer cell apoptosis, poly 

ADP ribose polymerase (PARP) cleavage was measured (Figure 5.2.3.4.). The data confirms 

that at 30 µM and 50 µM concentrations, complex 1 shows PARP cleavage (reduced band) and 

disappearance, respectively. No such results were obtained for complex 2.  

Figure 5.2.3.3. Comparison of the chymotrypsin-like activity levels of the proteasome in PC-3 

cells after treatment with complexes 1 and 2 at different concentrations. 
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Figure 5.2.3.4. Comparison of Western blot analysis for complexes 1 and 2. Increased levels of 

Ub-proteins are shown for complex 1 at 30-50 µM. PARP cleavage is observed for complex 1. 

 

 

Confirmation of cellular apoptosis was demonstrated by monitoring the prostate cancer 

cellular morphological changes upon treatment with complexes 1 and 2. As expected, the 

gallium-containing species caused apoptotic bleeding of the PC-3 cells at increasing 

concentrations; whereas, the zinc-containing analog showed no such effects (Figure 5.2.3.5). 

Thus, we conclude, that prostate cancer cells undergo apoptosis through the inhibition activity of 

the chymotrypsin-like activity of the proteasome due to treatment with complex 1.  
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Figure 5.2.3.5. Morphological changes of PC-3 cells upon treatment with 1 and 2. Rounded 

detached cells have undergone apoptosis. 
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Toxicity of [Ga
III

(L
2
)]ClO4 and [Zn

II
(L

2
)] complexes was tested against non-cancerous 

immortalized human epithelial prostate cell extracts upon treatment with different concentrations 

of both compounds. Inhibition of the chymotrypsin-like activity was measured and the results are 

included in Figure 5.2.3.6. Neither of the complexes shows inhibition activity at lower 

concentrations and the Ga-containing compound shows only 20% inhibition at the highest 

concentration of 50 µM. These findings are significant because they confirm selectivity of 

complex 1 towards cancer cells.   

 

 

 

 

 

 

 

 

 

Figure 5.2.3.6. Selectivity of complexes 1 and 2 towards non-cancerous CRL2221 cells.  
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5.3. Conclusions 

In this chapter, we evaluated the inhibitory effects of two complexes [Ga
III

(L
2
)]ClO4 and 

[Zn
II

(L
2
)] against proteasome activity. The chemical structures of both complexes were 

confirmed by X-ray crystallography. From these studies we concluded that the Ga-containing 

complex is considerably more potent towards inhibition of the CT-like activity compared to the 

zinc analog in both purified and cellular proteasome. Complex 1 induces prostate cancer cellular 

apoptosis as supported by PARP cleavage resulting from the inhibition activity of the 

proteasome. On the contrary, the Zn-containing complex 2 showed insignificant CT-like 

activity inhibition in prostate cancer PC-3 cells, but increased levels of the ubiquinated proteins. 

This suggests that other proteolytic sites could be the targets of action. Cytotoxic properties of 

both complexes were tested in non-cancerous CRL2221 cells showing minimal CT-like activity 

inhibition even at the highest concentration of 50 μM. Based on these findings, we conclude that 

the complex containing the higher oxidation state metal ion gallium(III) induces inhibition of 

CT-like activity at higher levels compared to metal ions with lower oxidation states; such as the 

zinc counterpart. 

Compared to the other metal-based proteasome inhibitors reported by the Verani and Dou 

groups, complex 1 is the most effective CT-inhibitor in purified proteasome with IC50 values of 

0.6 μM which makes this pro-drug an excellent candidate for in vivo studies.  

 

5.4. Experimental Procedures 

Chemical characterization of both complexes was performed using the techniques 

described in Chapter 2. The biological assays were run under the same conditions as described 

in Chapter 3, Section 3.4.4. 
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5.4.1. Crystal Structure Analysis of [Ga
III

(L
2
)]ClO4 and [Zn

II
(L

2
)] Complexes 

 

         (1)          (2) 

Formula C30.75H32.25ClGaI4N4O7.38   C28H24I4N4O2Zn 

M 1188.63   1021.48 

Space group Monoclinic, P21/c   Monoclinic, C2/c 

a / Å 16.8166 (9)   13.8723 (4) 

b/ Å 26.2253 (14)   9.9255 (4) 

c/ Å 19.3957 (10)   21.9417 (7) 

α/ 
o
 90   90 

β/ 
o
 113.43 (2)   95.772 (2) 

γ/ 
o
 90   90 

V/ Å
3
 7848.9 (7)   3005.8 (18) 

Z 8    4 

T/ K 100 (2)   100 (2) 

λ/ Å 0.71073   0.71073 

Dcalc/ g cm
-3

 2.012   2.257 

µ/ mm
-1

 3.964   4.958 

R(F)
 
(%) 4.20   3.95 

Rw(F) (%) 8.98   8.76 

a
 R(F) = ∑║Fo│-│Fc║ ∕ ∑│Fo│ for I > 2s(I); Rw(F) = [∑w(Fo

2
 – Fc

2
)
2 
/ ∑w(Fo

2
)
2
]
1/2 

for I > 2s(I). 

Table 5.4.1. Crystal data and structure refinement results for complexes 1 and 2. 
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5.4.2. Characterization of [Ga
III

(L
2
)]ClO4 and [Zn

II
(L

2
)] Complexes  

[Ga
III

(L
2
)]ClO4 (1). Yield: 90%; IR data: (KBr, cm

-1
) 1611, 1569, 1433, (C=NPyridine 

C=CAromatic); 1302, (C-O); ESI
+
 in MeOH: m/z (100%) = 1024.73 for to [Ga

III
(L

2
)]

+
; Anal. Calc. 

(%) for ([Ga
III

(L
2
)]ClO4, C28H24ClGaI4N4O6) C, 29.89; H, 2.15; N, 4.98 Found (%): C, 29.60; H, 

2.21; N, 4.78. 

[Zn
II

(L
2
)] (2). Yield: 80%; IR data: (KBr, cm

-1
) 1602, 1560, 1444, (C=NPyridine 

C=CAromatic); 1328, (C-O); ESI
+
 in MeOH: m/z (100%) = 1020.85 for {[Zn

II
(L

2
)] + H

+
}

+
; Anal. 

Calc. (%) for ([Zn
II
(L

2
)]·H2O, C28H26ZnI4N4O3) C, 32.35; H, 2.52; N, 5.39 Found (%): C, 32.29; 

H, 2.52; N, 4.81. 
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CHAPTER 6 

INHIBITION OF THE 26S PROTEASOME AS A POSSIBLE MECHANISM FOR 

TOXICITY OF HEAVY METAL SPECIES  

Published with minor changes as Tomco, D.; Schmitt, S.; Heeg, M. J.; Dou, Q. P.; Verani, C. 

N.* J. Inorg. Biochem. 2014, 132, 96. 

6.1. Introduction 

In this chapter, we hypothesize that heavy metal ions associated to the toxic 

organoaluminum, organocadmium, organomercury, organolead and organotin species might 

inhibit the proteasome as a secondary mechanism for toxicity in non-cancerous cells. These 

species are associated with a number of conditions that affect normal cell function. It is well 

established that organoaluminum species are linked to bone and central nervous system 

accumulation by interaction with erythrocytes and desferrioxamine, as well as to mitochondrial 

functions accompanying globular astrocyte generation.
1,2

 Cadmium poisoning
3
 is related to lack 

of specificity towards cell organelles, interactions with the DNA, and increased oxidative 

stress.
4,5

 Organomercury species can accumulate in the mitochondria and irreversibly inhibit 

selenoenzymes
6
, leading to the damage of the nervous system.

7,8
 Organolead species substitute 

divalent metal ions and disrupt homeostasis, thus affecting the central nervous system as a 

substitute for calcium in ATPase pumps.
9
 Finally, organotin

10
 species are related to the 

incorporation of cationic tin to the Golgi apparatus, as well as in the coordination to intracellular 

phospholipids.
11 

 Although considerable knowledge on the primary toxicity mechanisms for such 

species has been established, some evidence is available linking proteasome inhibition to 

cadmium and lead in erythrocytes
12

 and with organometallic polyphenyl and polybutyl tin 

species,
13

 and it is likely that other cellular secondary targets are involved.  
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In order to verify our hypothesis we have generated five new coordination complexes 

containing aluminum, cadmium, mercury, lead and tin with the proteasome-innocuous ligand 

HL
iodo

. We report on the new species [Al
III

(L
iodo

)2]ClO4 (1), [Cd
II
(L

iodo
)Cl]•H2O (2), 

[Hg
II
(L

iodo
)2]•4DMSO (3), [Pb

II
(L

iodo
)NO3] (4), and [Sn

IV
(L

iodo
)Cl3] (5), Scheme 6.1, thoroughly 

characterized by spectrometric, spectroscopic, and structural methods, and their action on 

CRL2221 transformed human prostate epithelial cells. These cells mimic the behavior of normal 

non-cancerous prostate cells. We conclude discussing the validity of the potential role of such 

heavy metal species on proteasome inhibition. 

 

 

 

 

 

 

 

 

 

 

Scheme 6.1. Metal complexes. 
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6.2. Chemical Results and Discussion 

 6.2.1. Synthesis and Characterization 

Complexes 1-5 were synthesized by adding the appropriate metal salt to a methanol or 

ethanol solution of the [NN’O] ligand HL
iodo

 previously treated with triethylamine. The purity of 

the complexes was confirmed by standard characterization techniques including IR, ESI-MS, and 

elemental analyses. Species 3 and 5 had their structures solved by X-ray crystallography. 

Infrared spectroscopy indicates that strong ligand bands at 1593, 1570, 1428 cm
-1

 associated with 

C=Npy and C=CAr vibrations, show characteristic shifting upon coordination with the metal ions. 

A strong broad band at 1095 cm
-1

 observed for the aluminum-containing 1 is assigned to the 

perchlorate counterion. All species were analyzed by room temperature 
1
H- and 

13
C-NMR 

spectroscopy and show the expected ligand peaks shifted by metal coordination. Details, 

including the stability of the compounds in solution, are discussed in Section 6.2.3. Good 

agreement was found between elemental analyses and the proposed compositions for 1-5. ESI-

MS results were taken in the positive mode and show good agreement with the expected 

fragmentation and isotopic distribution for complexes 1-5. Complex 1 shows the presence of the 

cationic species [Al
III

(L
iodo

)2]
+
observed at m/z

+
 = 956.8 (100 %), whereas complex 3 shows the 

molecular ion peak assigned to the [Hg
II
(L

iodo
)2 + H

+
]
+
 at m/z

+
 = 1132.77 (100 %). ESI-MS for 

complex 4 reveals the main peaks present at m/z (100 %) = 672.8 for [Pb
II
(L

iodo
)]

+
. Simulation 

assignments for the peak to peak position between the experimental and calculated values for 

complexes 3 and 4 are included in the supplementary material (Figure D.6.2.1). Complex 5 

shows some variance in its fragmentation patterns, indicating that solvent molecules can replace 

one of the chlorido coligands, as seen for species [Sn
IV

(L
iodo

)Cl2(CH3OH)]
+
 detected at m/z (100 

%) = 686.8. Equally distinctive, the isotopic distributions for complexes 1 and 3-5 are a 
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reflection of their compositions. As such the [Al
III

(L
iodo

)2]
+
 fragment displays a simpler profile 

than that of [Hg
II
(L

iodo
)2 + H

+
]

+
. Whereas the former has three main peaks associated with the 

contributions of 100 % 
27

Al and the ligand, the latter displays seven peaks associated with the 

contributions of mercury (
196

Hg, 0.5 %;  
198

Hg, 34.1 %; 
199

Hg, 57.3 %; 
200

Hg, 77.9 %; 
201

Hg, 

44.5 %; 
202

Hg, 100 %; 
204

Hg, 22.9 %) and the ligand. Similar results are found for [Pb
II
(L

iodo
)]

+
 

and [Sn
IV

(L
iodo

)Cl2(CH3OH)]
+
.  

6.2.2 Solid State Structural Information 

The structures of 3 and 5 were determined using X-ray crystallography.Their ORTEP 

diagrams along with selected bond lengths and angles are shown in Figures 6.2.2.1 and 6.2.2.2, 

respectively. Complex 3 crystallized as single colorless crystals under slow solvent evaporation 

from a concentrated dimethylsulfoxide solution at room temperature. The X-ray data reveals a 

single mercury(II) ion coordinated to two deprotonated HL
iodo

 ligands in a pseudo-octahedral 

geometry. Each ligand displays a facial arrangement around the Hg(II) ion, as previously 

described for other metal ions
11,14 

with the same HL
iodo

 ligand. The equivalent 

[NpyrdineNamineOphenolate] donor sets from each ligand are trans-oriented to each other, and the 

Hg
II
–Npyridine and Hg

II
–Namine bond distances reach 2.50 and 2.22 Å. The Hg

II
–Ophenolate bond 

lengths are 2.51 Å, thus in good agreement with other available mercury(II) species in the 

literature.
15,16

 Due to an inversion center, all angles comprised of equivalent trans donors are 

180° from each other. Complex 5 was isolated as colorless crystals from an ethanolic solution. 

The tin ion is chelated to one deprotonated HL
iodo 

ligand and three anionic chlorido ligands 

complete the octahedron occupying the fourth, fifth and sixth position. Considering the overall 

charges, as well as the lack of counterions, this arrangement confirms the tetravalent character of 

the metal center. The bond lengths of Sn
IV

–Npyridine, Sn
IV

–Namine, and Sn
IV

–Ophenolate are 2.21, 
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2.24, and 2.06 Å respectively; whereas Sn
IV

–Cl bond distances average to 2.38 Å. These values 

are comparable to those found in the literature.
17,18

 As expected, the ligand is facially coordinated 

to the tin(IV) cation, which is favored over the meridional arrangement due to the structural 

flexibility of the [NN’O] ligand.
19,20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2.2.1. ORTEP diagram for complex 3. Selected bond lengths: Hg(1)-O(1) = 2.506(19), 

Hg(1)-N(1) = 2.505(2), Hg(1)-N(2) = 2.225(2) Å. Selected angles: N(1)-Hg(1)-O(1) = 96.51(7), 

N(2)-Hg(1)-N(1) = 72.42(8), N(2)-Hg(1)-O(1) =  87.14(8). Hydrogen atoms have been omitted. 
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Figure 6.2.2.2. ORTEP diagram for complex 5. Selected bond lengths: Sn(1)-O(1) = 2.056(18), 

Sn(1)-N(1) = 2.215(2), Sn(1)-N(2) = 2.243(2), Sn(1)-Cl(4) = 2.423(7), Sn(1)-Cl(5) = 2.348(7), 

Sn(1)-Cl(6) = 2.356(7) Å. Selected angles: O(1)-Sn(1)-N(1) = 83.87(8), N(1)-Sn(1)-N(2) = 

76.41(9), O(1)-Sn(1)-N(2) = 87.27(8), Cl(5)-Sn(1)-Cl(4) = 92.70(3), Cl(5)-Sn(1)-Cl(6) = 

97.99(3), Cl(6)-Sn(1)-Cl(4) = 93.34(2). Hydrogen atoms have been omitted. 
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6.2.3. Structural Information in Solution 

Proton and carbon NMR spectra for complexes 1-5 were recorded in DMSO-d6 at 

ambient temperature. In addition, time-dependent NMR spectra were measured over a period of 

48 hours to determine the stability of the complexes in solution. Both 
1
H- and 

13
C-NMR spectra 

showed peak signals associated with the ligand between 3.00 to 9.90 and 45.0 to 170 ppm, 

respectively. These spectra were compared to the chemical shifts of the ligand HL
iodo

 in DMSO-

d6, as previously reported [15]. 
 
Selected NMR data for the complexes are included in Appendix 

D where the recorded spectra showed considerable peak shift when compared to the 

unmetallated and protonated ligand due to metal coordination. The data is summarized in Table 

6.2.3. 
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Table 6.2.3. 
1
H-NMR spectra assignments for complexes 1-5 compared to the HL

iodo
 ligand in DMSO-d6 at room temperature. Table 

legend: br. = broad; d = doublet; dd = doublet of doublet; dt = doublet of triplet; m = multiplet; s = singlet; Ex. = exchangable. 

 

 H1 

(ppm) 

H2 

(ppm) 

H3 

(ppm) 

H4 

(ppm) 

H5,5’/H6,6’ 

(ppm) 

H7 

(ppm) 

H8 

(ppm) 

H9 

(ppm) 

HL
iodo

 d  (8.54) dd  (7.29) br. dt 

(7.80) 

d  (7.37) s (3.83) 

s (3.87) 

d (7.33) d (7.78) s br. 6.60 – 

7.10 

1 d  (9.68) (7.26 – 8.13) (3.60 – 4.79) (7.26 – 8.13) 

2 d  br. 

(8.58) 

m br.  

(7.34-7.41) 

t br. (7.87) m br.  

(7.34-7.41) 

d br. (3.75 

&3.61) 

s br. (4.16) 

s br. (3.98) 

s br. (7.12) s br.  (7.54) s br. (8.28) 

3 (7.25 – 8.75) (3.55 – 4.51) (7.25 – 8.75) 

4 d (8.66) m (7.31-

7.34) 

dt (7.79) m (7.31-

7.34) 

d (4.54) 

s br. (4.07) 

s (7.23) s (7.55) Ex. proton 

5 d (8.87) t (7.69) dt (8.09) d  (7.40) dd (4.53) 

d (4.42) 

d (4.36) 

dd (3.85) 

s (7.44) s (7.53) s br. (7.77) 
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The 
1
H- and 

13
C- NMR spectra for the aluminum-containing complex 1 show twice the 

number of signals related to the ligand, as in the previously reported [Zn
II
(L

iodo
)2] complex [13]. 

This behavior is suggestive of lack of symmetry about the aluminum(III) ion indicating the 

presence of non-equivalent ligands with different geometries in solution. The 
1
H-NMR spectrum 

is shown in Figure D.6.2.3.1 In the case of [Zn
II
(L

iodo
)2], an available X-ray crystallographic 

structure allowed us to confirm the cis geometry among the phenolates. In absence of structural 

information for 1 in the solid state, confirmation of geometry is challenging. Nonetheless, a 

similar spectrum is observed after 48 hours, as shown in Figure D.6.2.3.2, and we tentatively 

attribute this behavior to the orientation of the phenolates and nitrogen donor sets. 

For both the cadmium(II)- and lead(II)-based complexes 2 and 4 the methylene protons display 

peak broadening upon metal coordination (Figure D.6.2.3.3). For the tin-complex 5 the 

coordinated L
iodo

 yields a well-behaved spectrum comparable to that of the unmetallated ligand. 

The methylene protons appear as multiplets between 3.8 and 4.5 ppm, suggesting ligand 

rearrangement (Figure D.6.2.3.4). Since there is only one ligand present, the generation of 

different isomeric species in solution cannot be ruled out, as expected for a main group ion.  The 

solid state structure of the mercury-containing complex 3 shows two equivalent ligands 

positioned around the Hg(II) ion, where the phenolates and nitrogen donor sets are trans-oriented 

to each other. This geometry relates to the described geometry for the counterpart 

[Co
III

(L
iodo

)2]ClO4 as measured by heteronuclear multiple quantum coherence (HMQC) in 

DMSO-d6 and also in agreement with the X-ray structure for other [Co
III

(L
tBu

)2]ClO4 species 

reported by our group.
21

 In spite of the general agreement on the positions of bonds, species 3 

shows considerably broad signals indicative of a non-rigid structure in solution.
22

 Nonetheless 
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time-dependent NMR data confirms the stability of 3 at ambient conditions, as these peaks 

persist over a 48 hour period, indicating that no major decomposition takes place in DMSO-d6, 

as shown in Figure 6.2.3. The stability of all complexes was also verified over a 48 hour period, 

where the position and intensity of the proton peaks remained unchanged. 
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Figure 6.2.3. Time dependent 1H-NMR spectra for complex 3 in DMSO-d6 at room temperature. 

Each spectrum was taken under the highlighted time over a period of 48 h. 
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6.3. Biological Results  

 6.3.1. Cell Viability 

In order to evaluate the effect of the heavy metal complexes on cell proliferation, 

CRL2221 transformed human prostate epithelial cells were treated with various concentrations 

of 1-5 and DMSO as a control for 72 h followed by measurement by MTT assays, as shown in 

Figure 6.3.1. The complexes show a dose-dependent decrease in cell proliferation.  The IC50 

values for complexes 1-5 are 2 µmol/L, 4 µmol/L, 6 µmol/L, 3 µmol/L, and 4 µmol/L 

respectively. At lower concentrations the aluminum-containing 1 and the lead-containing 4 show 

the highest inhibition of cell proliferation (89 and 95% and 84 and 86%, at 5 and 10 µmol/L, 

respectively), followed by complex 2 (99% at 10 µmol/L). Treatment with 2, 3, and 4 resulted in 

even higher inhibition of cellular proliferation (97-99%) at 25 and 50 µmol/L. Complex 5 shows 

a dose-dependent decrease of cell proliferation with the highest inhibition of 95% at 50 µmol/L. 

The above results allow us to draw some conclusions about the action of complexes 1-5 on 

toxicity in epithelial CRL2221 prostate cells. These MTT results suggest that all species are toxic 

towards intact cells and lead to cell death.  The aluminum-containing 1 is rather toxic at all tested 

concentrations, while the cadmium-containing 2 and the lead-containing 4 show similar profiles 

where toxicity is marked at concentrations  of 10, 25, 50 μmol/L. The mercury- and tin-

containing species 3 and 5 exhibit pronounced toxicity at higher concentrations. These results 

indicate cell toxicity, although per se, they cannot be directly linked to proteasome activity.  
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Figure 6.3.1. Percent cell proliferation in CRL2221 cells. Cells were treated with complexes 1-5 

for 72 h at the given concentrations of 5-50 µmol/L incubated under 37 ˚C. DMSO is used as a 

control. 

 

6.3.2. Inhibition of the Chymotrypsin-like Activity in Purified 20S Proteasome  

To confirm the ability of these complexes to inhibit chymotrypsin-like activity of the 

proteasome, species 1-5 were incubated with purified human 20S proteasome under cell-free 

conditions and the CT fluorogenic substrate N-Succinyl-Leucine-Leucine-Valine-Tyrosine-(7-

amino-4-methyl-coumarin) (SucLLVYAMC) followed by measurement of the hydrolyzed 7-

amino-4-methylcoumarin groups. Figure 6.3.2 summarizes the data. At lower concentrations of 

1 and 5 µmol/L the mercury-containing complex 3 shows the highest CT-like activity inhibition 

of 88 % and 98 % respectively, followed by the cadmium-containing 2 with 70 % and 84 % for 

the same concentrations. Both complexes 1 and 4 show dose-dependent decreases of 84% and 

83%, respectively, in CT-like activity in purified proteasome at the highest concentration of 25 
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Figure 3. Percent cell proliferation in CRL2221 cells after 72 h treatment with complexes 1-5 at various 

concentrations, and control DMSO.
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µmol/L, whereas 5 showed only 30-40% inhibition regardless of the concentration. Complexes 

1-5 show toxicity towards 20S proteasome, whereas previously reported results indicated that the 

ligand HL
iodo

 had negligible effect on the CT-like activity of the 20S proteasome even at higher 

concentrations.
14 

By monitoring the inhibition of CT-like activity in purified 20S proteasome, a 

better correlation between the toxicity of species 1-5 and the proteasome can be observed. It 

becomes evident that high concentrations of 1, 4, and 5 are needed for inhibition of the purified 

20S proteasome, and while 2 shows increased potency, 3 is extremely potent from 10 to 50 

μmol/L, thus suggesting a potential link between proteasome inhibition and cell toxicity.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3.2. Measurement of chymotrypsin-like activity inhibition in human purified 20S 

proteasome upon treatment with complexes 1-5 at concentrations 1-25 µmol/L.  
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6.3.3. Inhibition of Proteasomal Chymotrypsin-like Activity in Intact CRL2221 Cells 

To verify the ability of 2-5 to inhibit proteasome activity, intact transformed human 

prostate epithelial cells CRL2221 were treated with different concentrations (up to 25 μmol/L) of 

complex for 48 h, followed by measurement of proteasome inhibition, as shown in Figure 6.3.3. 

CRL2221 cells treated with the lead-containing 4 showed dose-dependent inhibition of 

proteasomal CT-like activity by 41 % at 5 μmol/L, 46 % at 10 μmol/L, and 73 % at 25 μmol/L. 

Consistently, levels of proteasomal CT-like activity were decreased after treatment with the 

cadmium- and mercury-species 2 and 3 at 10 μmol/L by 52 % and 43 %, respectively. On the 

other hand, cells treated with the tin-containing 5 showed negligible proteasome inhibition at 

lower concentrations, and only at 25 μmol/L was about 50% inhibition of CT-like activity 

observed. The results with intact cells suggest that higher concentrations of 2-5 are necessary for 

CT-inhibition of the proteasome, implying that some of these toxic species might be prevented 

from crossing the cell membrane or be deterred by other intracellular targets before reaching the 

proteasome. Nonetheless, at 5 and 10 μmol/L , the cadmium- , mercury-, and lead-containing 

species 2, 3, and 4 show inhibition of about 40-60 %, whereas 4 shows a noticeable 70 % 

inhibition at higher concentrations. 
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Figure 6.3.3. Chymotrypsin-like activity inhibition in intact CRL2221 cells. Proteins extracted 

from the CRL2221 cells after 48 h treatment with complexes 2-5 at concentrations 5-10 µmol/L 

were incubated at 37 ˚C with the chymotrypsin substrate for 4 h. DMSO is used as control. 

 

 

 

6.3.4. Inhibition of Proteasomal Chymotrypsin-like Activity Cell Extracts 

Inhibition of proteasomal CT-like activity was also measured in CRL2221 cell extracts 

after 24 h treatment with complexes 1-5, as shown in Figure 6.3.4. Data indicate that the 

mercury-containing complex 3 showed the highest CT-like inhibition values in a dose-dependent 

manner reaching 99% inhibition at 25 μmol/L. On the contrary, complex 1 demonstrated no 

proteasome inhibitory effect even at the highest concentration of 25 μmol/L. We found that when 

these CRL2221 cell extracts were treated with 4 and 5 only about 30 % of the CT-like activity 
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was inhibited at 25 μmol/L. Our data suggest that 3 is the most potent proteasome inhibitor in 

cell extracts, further supporting the hypothesis that toxicity towards epithelial prostate cells 

might be associated with proteasome inhibition.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3.4. Chymotrypsin-like activity inhibition in CRL2221 cell extracts. CRL2221 protein 

extract was treated with complexes 1-5 at various concentrations 5-10 µmol/L. DMSO as a 

control. 
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6.4. Overview and Conclusions 

The toxicity of five metal complexes was investigated towards transformed human 

prostate epithelial CRL2221 cells at various concentrations.  The percent cell proliferation after 

treatment with complexes 1-5 was measured and all five species demonstrated high levels of 

inhibition of cell growth in a concentration-dependent manner. Particularly, aluminum-

containing species 1 seemed to be the most toxic against cell viability even at lower 

concentrations, whereas the tin-containing complex 5 showed toxicity only at very high 

concentrations. The ability of species 1-5 to inhibit the proteasomal activity was tested and the 

results indicate that the cadmium, mercury and lead species 2, 3, and 4 have the highest 

inhibitory ability against the chymotrypsin-like activity of purified 20S, as well as in intact 

CRL2221 cells. In cell extracts, the mercury species 3 proved to be the most potent against CT-

like activity, with 2 and 4 as distant next candidates.  

Considering the above results, the toxicity of the aluminum species, albeit high, cannot be 

directly associated to the proteasome. A similar conclusion can be drawn regarding the tin-

containing complex. On the other hand, the toxicity of other species such as cadmium and lead 

are potentially associated with proteasome inhibition, although CT-activity inhibition in cell 

extracts makes it difficult to be categorically affirmative. The mercury species, particularly at 

higher concentrations, has shown cell toxicity and CT-like inhibition in purified proteasome, cell 

extracts and intact cells, and its relationship towards the proteasome is strongly suggested. 

Therefore, in spite of the known prevalent mechanisms of cellular toxicity for mercury species, 

in particular the inhibition of selenoenzymes, proteasome inhibition is a viable secondary route 

for toxicity. Further studies will be necessary to elucidate the nature of the final agent of 

inhibition, either as a complex or ionic entity. 
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6.5. Experimental  

6.5.1. Materials and Methods 

Reagents and solvents were purchased from commercial sources. Time-dependent NMR 

experiments were recorded over 48 hours at room temperature. Other characterization methods 

were used as described in Chapter 2.  

6.5.2. X-ray Structural Determination of [Hg
II

(L
iodo

)2]•4DMSO (3) and 

[Sn
IV

(L
iodo

)Cl3] (5) 

Diffraction data were measured on a Bruker APEX-II kappa geometry diffractometer
23 

with Mo radiation and a graphite monochromator at 100 K. Frames were collected as a series of 

sweeps with the detector at 40 mm and 0.3 degrees between each frame. All structures were 

refined using Sheldrick's SHELX-97 software.
24

 A summary of the crystal structure parameters is 

contained in Table 6.5.2. The species [Hg
II

(L
iodo

)2]•4DMSO (3) was crystallized as tiny 

colorless rods. A sample 0.17 x 0.08 x 0.07 mm
3 

was used for data collection. A total of 3759 

frames was collected at 10 s/frame, yielding 19903 reflections, of which 5455 were independent. 

Hydrogen atoms were placed at calculated positions. The asymmetric unit contains one half 

complex with Hg occupying an inversion center plus two DMSO solvates. [Sn
IV

(L
iodo

)Cl3] (5) 

crystallized as colorless rod fragments. A sample 0.20 x 0.16 x 0.10 mm
3 

was used for data 

collection. A total of 3445 frames was collected at 10 s/frame, yielding 14665 reflections, of 

which 4368 were independent. Hydrogen positions were calculated. The asymmetric unit 

consists of 1 neutral molecule without ions or solvates. 
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         (3)          (5) 

Formula C34H46HgI4N4O6S4 C13H11SnI4N4OCl3 

M 1443.18 690.08 

Space group Triclinic, P-1 Triclinic, P-1 

a / Å 10.3784 (4) 7.8380 (5) 

b/ Å 10.7497 (4) 10.1607 (6) 

c/ Å 11.0349 (4) 11.8911 (7) 

α/ 
o
 77.982 (2) 101.008 (2) 

β/ 
o
 89.147 (2) 103.100 (2) 

γ/ 
o
 71.429 (2) 97.885 (2) 

V/ Å
3
 1139.67 (7) 889.11 (9) 

Z 1 2 

T/ K 100 (2) 100 (2) 

λ/ Å 0.71073 0.71073 

Dcalc/ g cm
-3

 2.103 2.578 

µ/ mm
-1

 6.312 5.361 

R(F)
 
(%) 2.26 2.07 

Rw(F) (%) 4.48 4.98 

a
 R(F) = ∑║Fo│-│Fc║ ∕ ∑│Fo│ for I > 2s(I); Rw(F) = [∑w(Fo

2
 – Fc

2
)
2 
/ ∑w(Fo

2
)
2
]
1/2 

for I > 2s(I). 

Table 6.5.2. Crystal data and structure refinements for [Hg
II

(L
iodo

)2] •4DMSO (3) and 

[Sn
IV

(L
iodo

)Cl3] (5) 
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6.5.3. Syntheses 

6.5.3.1. Ligand syntheses 

The HL
iodo

 ligand has been previously synthesized according to well established procedures 

in our lab.
21,25

 

6.5.3.2. Complex syntheses  

[Al
III

(L
iodo

)2]ClO4 (1). The HL
iodo

 ligand (0.50 g, 1.1 mmol) was dissolved in 30 mL of 

methanol followed by the dropwise addition of Et3N (0.16 g, 1.6 mmol). Anhydrous AlCl3 salt 

(0.072 g, 0.54 mmol) dissolved in minimum amount of methanol was added slowly to the ligand 

solution while stirring under heating. The reaction mixture was refluxed for 2 h under aerobic 

conditions then cooled to room temperature. Counterion exchange was followed by addition of a 

methanolic solution containing NaClO4 to the reaction mixture. A yellow precipitate formed 

immediately, which was isolated and washed with cold methanol and water to eliminate the 

excess salts. After washing with ether, the product was vacuum dried and characterized. Yield: 

93%; IR data: (KBr, cm
-1

) 1616, 1574, 1451, (C=NPy, C=CAr); 1319, (C-O); 1095, (Cl-O, 

perchlorate); 
1
H-NMR (MR-400, DMSO, 298 K) δ 9.68 (d, 1H, J = 5.40 Hz), δ 8.05-8.13 (m, 

2H), δ 7.86-7.92 (m, 1H),  δ 7.68 (t, 1H, J = 6.16 Hz), δ 7.53 (d, 2H, J = 2.35 Hz), δ 7.47 (s, 1H), 

δ 7.42 (d, 1H, J = 7.33 Hz), δ 7.35-7.41 (m, 2H), δ 7.27 (d, 2H, J = 3.81 Hz),  δ 6.59 (d, 1H, J = 

6.56), δ 5.75 (s, 1H),  δ 4.78 (dd, 1H, J = 10.72, 5.46 Hz, –CH2), δ 4.54 (d, 1H, J = 11.79 Hz, –

CH2), δ 4.44 (d, 1H, J = 13.40 Hz, –CH2), δ 3.87-4.02 (m, 4H, –CH2),  δ 3.81 (d, 1H, J = 11.25 

Hz, –CH2), δ 3.58 (d, 1H, J = 13.40 Hz, –CH2), ESI
+
 in MeOH: m/z (100%) = 956.8 for 

[Al
III

(L
iodo

)2]
+
; Anal. Calc. for 2 (%, C26H22AlI4N4ClO6, FW = 1056.53 g.mol

-1
); C, 29.56; H, 

2.10; N, 5.30. Found (%): C, 29.51; H, 2.02; N, 5.20. 
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[Cd
II

(L
iodo

)Cl]·H2O (2). The metal salt CdCl2 (87 mg, 0.48 mmol) was dissolved in 5 

mL of ethanol and slowly added to a 30 mL ethanol solution containing the ligand HL
iodo

 (0.20 g, 

0.43 mmol) and Et3N (0.07 g; 0.69 mmol). The solution was refluxed for 24 h under aerobic 

conditions, when a light yellow precipitate was formed and then filtered and washed with cold 

ether. Yield: 70%; IR data (KBr, cm
-1

): 1601, 1564, 1422, (C=NPy, C=CAr); 1303, (C-O);  
1
H-

NMR (MR-400, DMSO, 298 K) δ 8.58 (d br., 1H, J = 2.74 Hz), δ 7.87 (t br., 1H, J = 7.33, 7.10 

Hz), δ 7.54 (s br., 1H), δ 7.34-7.41 (m br., 3H), δ 7.12 (s br., 1H), δ 4.16 (s br., 1H, –CH2), δ 3.98 

(s br., 1H, –CH2), δ 3.75-3.61(d br., 5H, –CH2),   Anal. Calc. (%) for (%,C13H13CdI2N2O2Cl, FW 

= 630.93 g.mol
-1

)  C, 24.75; H, 2.08; N, 4.44. Found (%): C, 25.09; H, 1.95; N, 4.36. 

  [Hg
II

(L
iodo

)2]·4DMSO (3). To a methanolic solution containing HL
iodo

 ligand (0.31 g, 

0.66 mmol) and Et3N (0.10 g, 0.99 mmol), Hg(NO3)2·H2O salt (0.11 g, 0.31 mmol) was added 

and the reaction was stirred for 2 h under 30 °C. The solvent was rotoevaporated until half of the 

solvent was removed, and the resulting yellow precipitate was filtered and washed with cold 

methanol. The product was dissolved in a minimum amount of dimethylsulfoxide, and colorless 

crystals were obtained after 48 h under slow solvent evaporation.  Yield: 70%; IR data: (KBr, 

cm
-1

) 1599, 1559, 1421, (C=NPy C=CAr); 1318, (C-O); ESI
+
 in MeOH: m/z (100%) = 1132.8 for 

[Hg
II
(L

iodo
)2 + H

+
]

+
; Anal. Calc. (%) for [Hg

II
(L

iodo
)2]·2DMSO (ground, vacuum dried sample: 

%, C30H34HgI4N4O4S2, FW = 1286.95 g.mol
-1

) C, 28.00; H, 2.66; N, 4.35. Found (%): C, 28.06; 

H, 2.21; N, 4.57. 

[Pb
II

(L
iodo

)NO3] (4). The Pb(NO3)2 salt (0.40 g, 1.2 mmol) was dissolved in 5 mL 

ethanol and added to a 30 mL ethanolic solution containing the ligand HL
iodo

 (0.50 g, 1.1 mmol) 

and Et3N (0.17 g; 1.7 mmol) under aerobic condition. The solution was refluxed for 24 h, when a 

white product was vacuum filtered and washed with cold ethanol and ether. Yield: 86%; IR data 
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(KBr, cm
-1

): 1602, 1562, 1421, (C=NPy, C=CAr); 1301, (C-O); 
1
H-NMR (MR-400, DMSO, 298 

K) δ 8.66 (d, 1H, J = 5.18 Hz), δ 7.79 (dt, 1H, J = 7.12 Hz), δ 7.55 (s, 1H), δ 7.31-7.34 (m, 2H), 

δ 7.23 (s, 1H), δ 4.54 (d br., 3H, –CH2), δ 4.07 (s br., 1H, –CH2); ESI
+
 in MeOH: m/z (100%) = 

672.8 for [Pb
II
(L

iodo
)]

+
; Anal. Calc. for 3 (%,C13H11PbI4N3O4, FW = g.mol

-1
)  C, 21.27; H, 1.51; 

N, 5.72. Found (%): C, 21.30; H, 1.50; N, 5.55. 

[Sn
IV

(L
iodo

)Cl3] (5). The HL
iodo

 ligand (0.50 g, 1.1 mmol) was dissolved in 30 mL of 

ethanol and Et3N (0.14 g, 1.3 mmol) was added dropwise. SnCl2·2H2O (0.24 g, 1.1 mmol) was 

dissolved in minimum amount of ethanol and added slowly to the ligand solution while stirring. 

The reaction mixture was then refluxed for 48 h under aerobic conditions. No precipitate was 

observed; hence the solution was concentrated by rotoevaporation and set for crystallization. 

Colorless crystals were afforded after 72 h under room temperature by slow solvent evaporation. 

Yield: 88%; IR data: data (KBr, cm
-1

): 1609 1568, 1432 (C=NPy, C=CAr); 1294 (C-O); 
1
H-NMR 

(MR-400, DMSO, 298 K) δ 8.87 (d, 1H, J = 6.46 Hz), δ 8.09 (dt, 1H, J = 7.81, 1.70 Hz), δ 7.77 

(s br., 1H), δ 7.69 (t, 1H, J = 7.03 Hz), δ 7.53 (s, 1H), δ 7.44 (s, 1H), δ 7.40 (d, 1H, J = 8.09 Hz),  

δ 4.53 (dd, 1H, J = 16.73, 6.23 Hz, –CH2), δ 4.42 (d, 1H, J = 12.84 Hz, –CH2), δ 4.32 (d, 1H, J = 

17.51 Hz, –CH2), δ 3.85 (dd, 1H, J = 13.23, 1.95 Hz, –CH2), ESI
+
 in MeOH: m/z (100%) = 686.8 

for [Sn
IV

(L
iodo

)Cl2CH3OH]
+
; Anal. Calc. for 2 (%, C13H11SnI2N2OCl3, FW = 690.12 g.mol

-1
); C, 

22.63; H, 1.61; N, 4.06. Found (%): C, 22.85; H, 1.78; N, 3.92. 

6.5.4. Biological Assays 

6.5.4.1. Inhibition of Proteasomal Activity in Purified 20S Proteasome 

Purified human 20S proteasome (35 ng; Boston Biochem; Cambridge, MA) was 

incubated with 10 μM of CT substrate, SucLLVYAMC (AnaSpec; Fremont, CA) , in 100 μL of 

assay buffer [20 mM Tris-HCl (pH 7.5)] in the presence of complexes 1-5 at various 
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concentrations, with DMSO as the solvent control. After 2 h incubation at 37 °C, the production 

of hydrolyzed AMC groups was measured using a Wallac Victor3 multilabel counter 

(PerkinElmer; Waltham, MA) with an excitation filter of 365 nm and an emission filter of 460 

nm.
25

 

6.5.4.2. Cell Cultures and Whole Cell Extract Preparation 

CRL2221 transformed human prostate epithelial cells were grown in RPMI1640 

supplemented with 10% fetal bovine serum, 100 units/ml penicillin and 100 μg/ml streptomycin 

and maintained at 37 °C with 5% CO2. Whole cell lysates were prepared as previously 

described.
26

 

6.5.4.3. Cell Proliferation Assay 

Cells were seeded in quadruplicate in a 96-well plate and grown to 70−80% confluence, 

followed by treatment with the indicated agents for 72 h followed by measurement of cell 

proliferation by the 3(4,5dimethylthiazol-2-yl)2,5diphenyltetrazolium bromide (MTT) assay as 

described previously.
27

 

6.5.4.4. Proteasome CT-like Activity in Intact CRL2221 Cells  

Proteins extracted from cells after each treatment were incubated at 37 °C for 2-4 h in 

100 μL of assay buffer (50 mM Tris-HCl, pH 7.5) with 10 μM of fluorogenic CT substrate 

SucLLVYAMC, and production of hydrolyzed AMC groups was measured using a Wallac 

Victor3 multilabel counter with an excitation filter of 365 nm and an emission filter of 460 nm, 

as described previously.
27 

6.5.4.5. Proteasome CT-like Activity in Cell Extracts 

CRL2221 protein extract (10 µg) was treated with complexes 1-5 at various 

concentrations (or DMSO as solvent control) for 24h at 37 °C with 10 µM of CT substrate in 100 
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μL assay buffer [20 mM Tris-HCl (pH 7.5)]. After incubation, the production of hydrolyzed 

AMC groups was measured using a Wallac Victor3 multilabel counter (PerkinElmer; Waltham, 

MA) with an excitation filter of 365 nm and an emission filter of 460 nm. 
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CHAPTER 7 

CONCLUSIONS AND FUTURE DIRECTIONS 

7.1. Conclusions 

My contributions through this research have furthered our understanding of the 

metal-based behavior proteasome inhibitors. We have successfully demonstrated the 

appropriate selection of the metal ions based on their oxidation state, redox properties, 

coordination numbers, and chemical properties including the inertness and lability of 

these metal ions. We have also showed that tuning the properties of the ligand can 

dramatically change the effects of these complexes against the inhibition of the 26S 

proteasome activity.  

In Chapter 3, the first Research Objective of interrogating the mechanism of 

inhibition of the 26S proteasome using inert/labile metal ions coordinated to 

tri/hexadentate ligands has been accomplished by the synthesis and characterization of 

three cobalt complexes described as [Co
II
(L

1
)2], [Co

II
(L

2
)], and [Co

III
(L

1
)2]ClO4. These 

complexes contain the deprotonated forms of the [NN′O] tridentate ligand HL
1
 and its 

newly synthesized [N2N′2O2] hexadentate counterpart H2L
2
, namely, 2,4-diiodo-6-

((pyridine-2-ylmethylamino)methyl)phenol and 6,6′-((ethane-1,2-diylbis((pyridin-2-

ylmethyl)azanediyl))bis(methylene))bis(2,4-diiodophenol). Characterizations of these 

three complexes included electrospray ionization (ESI) spectrometry, infrared and UV–

visible spectroscopies, and elemental analyses. A detailed 
1
H-NMR study was conducted 

for [Co
III

(L
1
)2]ClO4 and X-ray structural data was obtained for [Co

II
(L

2
)] complex. The 

viability of this series as potential agents for proteasome inhibition and cell apoptotic 

induction involving PC-3 cancer cells is presented comparing the behavior of the 



124 
 

untethered [NN′O]2 six-coordinate [Co
II
(L

1
)2] and [Co

III
(L

1
)2]ClO4 and the tethered 

counterpart [Co
II
(L

2
)]  with a 1:1 metal-to-ligand ratio. It is observed that the tethering in 

[Co
II
(L

2
)] decreases inhibition activity. When [Co

II
(L

1
)2] and [Co

III
(L

1
)2]ClO4 were 

compared, the most inert, but redox-active, cobalt(III) species showed the highest 

chymotrypsin-like activity inhibition on purified proteasome and PC-3 cancer cells. 

In the second Research Objective, described in Chapter 4, we have evaluated the 

chemical reduction as a viable mechanism for the inhibition of the 20S proteasome. The 

viability of ligand dissociation in the cobalt complex [Co
III

(L
1
)2]ClO4 following 

biological reduction has been established. We performed detailed electrochemical 

characterization of [Co
III

(L
1
)2]ClO4 in several solvents, along with 

spectroelectrochemical and chemical reduction to monitor the phenolate-to-cobalt(III) 

LMCT band observed at 440 nm in the UV–Vis region in presence and absence of a 

sacrificial reductant. DFT calculations were performed to confirm the nature of this band. 

Species [Co
III

(L
1
)2]ClO4 displays no signs of ligand protonation at pH 3 over a period of 

24 h while probing its stability in solution. Spectrophotometric monitoring at pH 3 in 

presence of ascorbic acid shows clearly a decrease of the LMCT band, implying that 

reduction of the metal center has taken place. 

The products of chemical reduction were analyzed by high resolution ESI
+
 mass 

spectrometry and support a mechanism in which biological reduction leads to ligand 

dissociation. This mechanism explains why the substitutionally inert cobalt (III) complex 

[Co
III

(L
1
)2]ClO4 revealed high levels of proteasomal inhibition via deactivation of 

chymotrypsin-like activity; hence, induction of cellular apoptosis in PC-3 cells compared 

to the more labile Co(II) containing species [Co
II
(L

1
)2]. These promising results support 



125 
 

our hypothesis that loss of one ligand from 2:1 ligand to metal ratio is required for the 

pharmacophore species [ML]
+
 to be formed. Such pharmacophore species provides the 

available open coordination sites for the appropriate amino acid chains such as threonine, 

tyrosine, and histidine containing hydroxyl or imidazole functional groups in the 

chymotrypsin pocket to coordinate to the metal ion center.  

Chapter 5 covers the third Research Objective of comparing the effect of the ion 

charge towards the inhibition activity of the 26S proteasome. Two new complexes 

containing a higher oxidation state gallium(III) metal ion [Ga
III

(L
2
)]ClO4 and a lower 

oxidation state zinc(II) ion [Zn
II
(L

2
)] with the deprotonated form of H2L

2
 ligand 6,6′-

((ethane-1,2-diylbis((pyridin-2-ylmethyl)azanediyl))bis(methylene))bis(2,4-

diiodophenol) were successfully synthesized and characterized. The structural 

information of the deprotonated hexadentate ligand coordinated to the Ga and Zn ions 

was confirmed by X-ray crystallography where both complexes are arranged in a 1:1 

metal to ligand ratio. Their biological effect against the proliferation of prostate cancer 

PC-3 cells via proteasome inhibition activity was measured. From the biological results it 

is concluded that the Ga-containing complex is highly potent towards the inhibition 

activity of the purified 20S proteasome (IC50 = 0.6 µM) and 26S proteasome as well as 

apoptosis induction in PC-3 cells, compared to the zinc-containing analog. Western 

blotting analysis reveals that both complexes inhibit the 26S proteasome activity by the 

increased levels of the ubiquitinated proteins. Thus, we can hypothesize that the 

[Zn
II
(L

2
)] complex possibly inhibits the activity of the proteasome not by the inhibition of 

chymotrypsin-like activity, but by other proteolytic sites such as trypsin- or caspase-like. 

Further studies have to be completed in order to fully support such a hypothesis.  
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Chapter 6, which includes the fourth Research Objective, addresses the effect of 

aluminum and heavy metal ions on inhibition activity of the 20S and 26S proteasome in 

non-cancerous prostate cells. In this chapter, we report on the synthesis of five metal 

complexes coordinated to the [NN′O] ligand HL
iodo

 (2,4-diiodo-6-((pyridine-2-

ylmethylamino)methyl)phenol), namely [Al
III

(L
iodo

)2]ClO4, [Cd
II
(L

iodo
)Cl]·H2O, 

[Hg
II
(L

iodo
)2]·4DMSO, [Pb

II
(L

iodo
)NO3], and [Sn

IV
(L

iodo
)Cl3]. These species are 

thoroughly characterized by spectroscopic and spectrometric methods, as well as by 

elemental analysis. X-ray crystallographic results for complex [Hg
II
(L

iodo
)2]·4DMSO 

indicate the presence of Hg(II) ion hexacoordinated to two facially oriented [NN′O] 

ligands, whereas for complex [Sn
IV

(L
iodo

)Cl3] an Sn(IV) ion chelates to one deprotonated 

ligand and three chlorido coligands. The toxicity of these complexes is tested against 

transformed human prostate epithelial cells CRL2221 and we observed that the five 

complexes demonstrate high levels of cell growth inhibition in a dose-dependent manner. 

In order to evaluate the relationship between these species and the proteasome, we test 

them against purified 20S, CRL2221 cell extracts, and intact cells, followed by the 

measurement of the percent chymotrypsin-like activity inhibition levels. Results suggest 

a good correlation between the toxicity of [Hg
II
(L

iodo
)2]·4DMSO and proteasome 

inhibition. 

7.2. Future Directions 

 Innovative ideas in development of the next generation metal-based proteasome 

inhibitors are focused on the challenges of increasing drug selectivity and introducing 

low levels of intracellular toxicity. These challenges will be addressed by designing and 

synthesizing 26S proteasome inhibitors incorporating new ligand scaffolds. Since the 
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ligand HL
iodo

 (2,4-diiodo-6-((pyridine-2-ylmethylamino)methyl)phenol)  has been proven 

to successfully carry various metal ions intracellulary, it is wise to link this ligand with 

the peptide unit of bortezomib and MG132 aldehyde inhibitor. The secondary amine 

group found in the HL
iodo

 ligand will serve as the attachment site of these peptide-based 

fragments. Therefore, we should develop these new ligands  Pyz-Phe-Leu-L
iodo

H, (Pyz = 

pyrazinoic acid), and Z-Leu-Leu-Leu-L
iodo

H, (Z = benzyloxycarbonyl) by incorporating 

amino acid sequences of Pyz-Phe-Leu- and  Z-Leu-Leu-Leu- found in highly selective 

proteasome inhibitors such as bortezomib and the aldehyde MG132
1 , 2  

(Figure 7.2.). 

Synthesis of the Pyz-Phe-Leu-L
iodo

H ligand series can be obtained by Suzuki
3
 or Stille

4
 

coupling, whereas the Z-Leu-Leu-Leu-L
iodo

H series can be synthesized by Schiff 

condensation/alkylation. Such amino acid chains are accepted to form hydrogen bonding 

with the chymotrypsin-like pocket of the 20S proteasome, therefore increasing drug 

selectivity for such site.
 

  

 

 

 

 

 

 

 

 

Figure 7.2. New ligands containing bortezomib (top) and MG132 (bottom) derivatives. 
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Also, the interesting results obtained in Chapter 5 where the zinc-containing 

complex [Zn
II
(L

2
)] did not show inhibition activity of chymotrypsin in purified 20S and 

cellular 26S proteasome, but demonstrated increased levels of ubiquitinated proteins from 

PC-3 cell extracts, should be further investigated for proteasome inhibition activity. The 

next step is to validate [Zn
II
(L

2
)] complex against other proteolytic sites of the 

proteasome including trypsin-, and caspase-like activity as well as the JAMM domain of 

the 19S particle of the proteasome.
5 

The Verani group also needs to address the proteasome inhibition activity in vivo. 

Considering our best proteasome inhibitor pro-drugs [Ga
III

(L
2
)]ClO4 and [Co

III
(L

1
)2]ClO4 

in vitro, we will continue these studies following the protocols established in the Dou Lab 

for in vivo measurements.
6,7,8 
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APPENDIX A 

Supplementary Material for Chapter 3 

 

 

Figure A.3.2.2.1 
1
H-NMR of HL

1
 ligand. 
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Figure A.3.2.1.2. 
1
H-

1
H COSY for HL

1
 ligand. 
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Figure A.3.2.1.3. Expanded picture of the aromatic region of 
1
H-

1
H COSY for HL

1
 ligand. 
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Figure A.3.2.3.1. 
13

C NMR / DEPT for complex 3. 
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Figure A.3.2.3.2. 
1
H-

1
H COSY for complex 3. 

 

 

 

 

 

 



135 

 

 

 

 

Proton 

H 

HL
1
   (ppm) 

J-coupling (Hz) 

[Co
III

(L
1
)2ClO4] (ppm)                        

J-coupling (Hz) 

H1 8.54 d (J1-2 = 4.8) 8.99 dd (J1-2 = 5.5) 

H2 7.29 dd (J2-3 = 7.7) 

(J2-4 = 4.8) 

7.46 t (J2-3 = 6) 

H3 7.8 br dt (J3-2 = 7.7) 

(J3-1 = 1.8) 

7.95 t (J3-4 = 7.7) 

H4 7.37 d (J4-3 = 7.7) 7.57 d (J4-3 = 7.7) 

H5 H5
’ 

3.83 (s) 4.39 d (J = 16.6) 

5.58 dd (J = 16.6, 5.5) 

H6 H6
’ 

3.87 (s) 3.48 dd (J = 16.6, 4.1) 

3.66 br d (J = 11.6) 

H7 7.33 d (J7-8 = 2.1) 7.39 (s) 

H8 7.78 d (J8-7 = 2.1) 7.34 (s) 

H9 6.60-7.10 br (s) 8.33 (s) 

H10 6.60-7.10 br (s) no peak 

 

Table A.3.2.3 
1
H NMR assignment including J-coupling values for HL

1
 and [Co(L

1
)2]ClO4 (3) 

in DMSO-d6. 
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Figure A.3.2.3.3 HMQC for complex 3. 
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Figure A.3.2.3.4. Low Temperature 
1
H NMR for complex 3. 
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Table S2.  Atomic coordinates ( x 10^4) and equivalent isotropic displacement parameters (A^2 

x 10^3) for 2. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.  
         ________________________________________________________________  

   

                         x             y             z           U(eq)  

         ________________________________________________________________  

   

          I(1)         8862(1)       5403(1)        311(1)       29(1)  

          I(2)         6038(1)       2026(1)       1522(1)       30(1)  

          Co(1)        5000          5900(1)       2500          17(1)  

          N(1)         4436(2)       5877(3)       1560(2)       21(1)  

          C(1)         3841(3)       4895(4)       1330(2)       27(1)  

          C(2)         3621(4)       4700(4)        711(2)       31(1)  

          C(3)         4019(3)       5558(5)        314(2)       33(1)  

          C(4)         4633(3)       6562(4)        545(2)       30(1)  

          C(5)         4825(3)       6698(4)       1172(2)       23(1)  

          C(6)         5459(3)       7808(4)       1449(2)       25(1)  

          N(2)         5784(2)       7586(3)       2101(2)       21(1)  

          C(7)         5548(3)       8754(4)       2467(2)       26(1)  

          C(8)         6838(3)       7256(4)       2193(2)       24(1)  

          C(9)         7087(3)       6086(4)       1808(2)       21(1)  

          C(10)        7733(3)       6238(4)       1367(2)       23(1)  

          C(11)        7932(3)       5164(4)       1001(2)       24(1)  

          C(12)        7476(3)       3941(4)       1053(2)       21(1)  

          C(13)        6831(3)       3802(4)       1490(2)       20(1)  

          C(14)        6634(3)       4831(4)       1893(2)       18(1)  

          O(1)         6071(2)       4654(2)       2324(1)       20(1)  

         ________________________________________________________________  
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           Table S3.  Bond lengths [A] and angles [deg] for 2.  
           _____________________________________________________________  

   

            I(1)-C(11)                    2.106(4)  

            I(2)-C(13)                    2.091(4)  

            Co(1)-O(1)                    2.003(3)  

            Co(1)-O(1)#1                  2.003(3)  

            Co(1)-N(1)#1                  2.139(3)  

            Co(1)-N(1)                    2.139(3)  

            Co(1)-N(2)#1                  2.234(3)  

            Co(1)-N(2)                    2.234(3)  

            N(1)-C(5)                     1.339(5)  

            N(1)-C(1)                     1.346(5)  

            C(1)-C(2)                     1.382(6)  

            C(2)-C(3)                     1.381(6)  

            C(3)-C(4)                     1.376(7)  

            C(4)-C(5)                     1.389(6)  

            C(5)-C(6)                     1.503(6)  

            C(6)-N(2)                     1.480(5)  

            N(2)-C(7)                     1.476(5)  

            N(2)-C(8)                     1.485(5)  

            C(7)-C(7)#1                   1.535(8)  

            C(8)-C(9)                     1.506(5)  

            C(9)-C(10)                    1.396(5)  

            C(9)-C(14)                    1.424(5)  

            C(10)-C(11)                   1.389(6)  

            C(11)-C(12)                   1.385(6)  

            C(12)-C(13)                   1.388(5)  

            C(13)-C(14)                   1.405(5)  

            C(14)-O(1)                    1.302(4)  

   

            O(1)-Co(1)-O(1)#1           103.12(15)  

            O(1)-Co(1)-N(1)#1            88.91(11)  

            O(1)#1-Co(1)-N(1)#1          90.32(12)  

            O(1)-Co(1)-N(1)              90.32(12)  

            O(1)#1-Co(1)-N(1)            88.91(12)  

            N(1)#1-Co(1)-N(1)           178.76(18)  

            O(1)-Co(1)-N(2)#1           160.79(12)  

            O(1)#1-Co(1)-N(2)#1          89.65(11)  

            N(1)#1-Co(1)-N(2)#1          76.57(12)  

            N(1)-Co(1)-N(2)#1           104.40(12)  

            O(1)-Co(1)-N(2)              89.65(11)  

            O(1)#1-Co(1)-N(2)           160.79(12)  

            N(1)#1-Co(1)-N(2)           104.40(12)  

            N(1)-Co(1)-N(2)              76.57(12)  

            N(2)#1-Co(1)-N(2)            82.03(16)  

            C(5)-N(1)-C(1)              118.4(4)  

            C(5)-N(1)-Co(1)             119.0(3)  

            C(1)-N(1)-Co(1)             121.4(3)  

            N(1)-C(1)-C(2)              122.6(4)  

            C(3)-C(2)-C(1)              118.6(4)  

            C(4)-C(3)-C(2)              119.3(4)  

            C(3)-C(4)-C(5)              119.1(4)  

            N(1)-C(5)-C(4)              122.0(4)  

            N(1)-C(5)-C(6)              116.6(4)  

            C(4)-C(5)-C(6)              121.3(4)  

            N(2)-C(6)-C(5)              112.9(3)  

            C(7)-N(2)-C(6)              110.6(3)  

            C(7)-N(2)-C(8)              111.7(3)  

            C(6)-N(2)-C(8)              111.1(3)  

            C(7)-N(2)-Co(1)             103.7(2)  

            C(6)-N(2)-Co(1)             112.8(2)  
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            C(8)-N(2)-Co(1)             106.7(2)  

            N(2)-C(7)-C(7)#1            109.2(3)  

            N(2)-C(8)-C(9)              111.9(3)  

            C(10)-C(9)-C(14)            120.6(4)  

            C(10)-C(9)-C(8)             120.6(3)  

            C(14)-C(9)-C(8)             118.8(3)  

            C(11)-C(10)-C(9)            120.1(4)  

            C(12)-C(11)-C(10)           121.0(3)  

            C(12)-C(11)-I(1)            118.5(3)  

            C(10)-C(11)-I(1)            120.4(3)  

            C(11)-C(12)-C(13)           118.4(4)  

            C(12)-C(13)-C(14)           123.3(3)  

            C(12)-C(13)-I(2)            119.0(3)  

            C(14)-C(13)-I(2)            117.6(3)  

            O(1)-C(14)-C(13)            122.2(3)  

            O(1)-C(14)-C(9)             121.3(3)  

            C(13)-C(14)-C(9)            116.5(3)  

            C(14)-O(1)-Co(1)            124.6(2)  

           _____________________________________________________________  

   

           Symmetry transformations used to generate equivalent atoms:  

           #1 -x+1,y,-z+1/2      
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    Table A.3.4.2.1. Anisotropic displacement parameters (A^2 x 10^3) for 2.  

    The anisotropic displacement factor exponent takes the form:  

    -2 pi^2 [ h^2 a*^2 U11 + ... + 2 h k a* b* U12 ]  
   

    _______________________________________________________________________  

   

              U11        U22        U33        U23        U13        U12  

    _______________________________________________________________________  

   

    I(1)     25(1)      34(1)      28(1)       4(1)      12(1)      -1(1)  

    I(2)     31(1)      19(1)      41(1)      -5(1)      12(1)      -8(1)  

    Co(1)    21(1)      13(1)      18(1)       0          6(1)       0  

    N(1)     21(2)      18(2)      24(2)       1(1)       7(1)      -1(1)  

    C(1)     32(2)      23(2)      25(2)       2(2)       5(2)      -6(2)  

    C(2)     39(3)      26(2)      27(2)      -4(2)      -4(2)      -2(2)  

    C(3)     43(3)      35(3)      18(2)       2(2)      -3(2)       1(2)  

    C(4)     43(3)      24(2)      24(2)       5(2)       8(2)       8(2)  

    C(5)     30(2)      17(2)      22(2)       4(2)       6(2)       4(2)  

    C(6)     33(2)      16(2)      25(2)       4(2)       8(2)      -3(2)  

    N(2)     27(2)      14(2)      24(2)      -1(1)       7(2)      -3(1)  

    C(7)     33(2)      13(2)      32(2)      -4(2)      11(2)      -2(2)  

    C(8)     24(2)      21(2)      27(2)      -6(2)       4(2)      -8(2)  

    C(9)     20(2)      21(2)      23(2)      -1(2)       3(2)      -4(2)  

    C(10)    20(2)      20(2)      28(2)       1(2)       4(2)      -5(2)  

    C(11)    21(2)      31(2)      20(2)       3(2)       4(2)      -1(2)  

    C(12)    23(2)      23(2)      18(2)      -2(2)       0(2)      -1(2)  

    C(13)    21(2)      15(2)      23(2)       2(2)       1(2)      -5(2)  

    C(14)    18(2)      17(2)      20(2)       1(2)       1(2)      -2(2)  

    O(1)     24(1)      16(1)      21(1)       2(1)      10(1)       0(1)  

    _______________________________________________________________________  
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Table A.3.4.2.1 Hydrogen coordinates ( x 10^4) and isotropic displacement parameters (A^2 x 

10^3) for 2.  

         ________________________________________________________________  

   

                         x             y             z           U(eq)  

         ________________________________________________________________  

   

          H(1)         3560          4312          1603          32  

          H(2)         3204          3991           562          38  

          H(3)         3872          5456          -113          39  

          H(4)         4920          7155           279          36  

          H(6A)        6038          7895          1222          29  

          H(6B)        5093          8660          1404          29  

          H(7A)        5728          9589          2265          31  

          H(7B)        5922          8712          2874          31  

          H(8A)        7023          7043          2628          29  

          H(8B)        7220          8046          2089          29  

          H(10)        8037          7078          1318          27  

          H(12)        7602          3214           795          26  

         ________________________________________________________________  
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         Table A.3.4.2.3 Torsion angles [deg] for 2.  
         ________________________________________________________________  

   

          O(1)-Co(1)-N(1)-C(5)                                -83.4(3)  

          O(1)#1-Co(1)-N(1)-C(5)                              173.5(3)  

          N(1)#1-Co(1)-N(1)-C(5)                             -135.0(3)  

          N(2)#1-Co(1)-N(1)-C(5)                               84.1(3)  

          N(2)-Co(1)-N(1)-C(5)                                  6.1(3)  

          O(1)-Co(1)-N(1)-C(1)                                 83.6(3)  

          O(1)#1-Co(1)-N(1)-C(1)                              -19.5(3)  

          N(1)#1-Co(1)-N(1)-C(1)                               32.0(3)  

          N(2)#1-Co(1)-N(1)-C(1)                             -108.9(3)  

          N(2)-Co(1)-N(1)-C(1)                                173.2(3)  

          C(5)-N(1)-C(1)-C(2)                                   0.3(6)  

          Co(1)-N(1)-C(1)-C(2)                               -166.8(3)  

          N(1)-C(1)-C(2)-C(3)                                  -0.8(7)  

          C(1)-C(2)-C(3)-C(4)                                   1.0(7)  

          C(2)-C(3)-C(4)-C(5)                                  -0.8(7)  

          C(1)-N(1)-C(5)-C(4)                                  -0.1(6)  

          Co(1)-N(1)-C(5)-C(4)                                167.3(3)  

          C(1)-N(1)-C(5)-C(6)                                 178.0(4)  

          Co(1)-N(1)-C(5)-C(6)                                -14.6(5)  

          C(3)-C(4)-C(5)-N(1)                                   0.3(6)  

          C(3)-C(4)-C(5)-C(6)                                -177.6(4)  

          N(1)-C(5)-C(6)-N(2)                                  16.9(5)  

          C(4)-C(5)-C(6)-N(2)                                -165.0(4)  

          C(5)-C(6)-N(2)-C(7)                                -126.9(3)  

          C(5)-C(6)-N(2)-C(8)                                 108.5(4)  

          C(5)-C(6)-N(2)-Co(1)                                -11.3(4)  

          O(1)-Co(1)-N(2)-C(7)                               -146.5(3)  

          O(1)#1-Co(1)-N(2)-C(7)                               81.3(4)  

          N(1)#1-Co(1)-N(2)-C(7)                              -57.7(3)  

          N(1)-Co(1)-N(2)-C(7)                                123.1(3)  

          N(2)#1-Co(1)-N(2)-C(7)                               16.1(2)  

          O(1)-Co(1)-N(2)-C(6)                                 93.8(3)  

          O(1)#1-Co(1)-N(2)-C(6)                              -38.4(5)  

          N(1)#1-Co(1)-N(2)-C(6)                             -177.4(2)  

          N(1)-Co(1)-N(2)-C(6)                                  3.4(2)  

          N(2)#1-Co(1)-N(2)-C(6)                             -103.5(3)  

          O(1)-Co(1)-N(2)-C(8)                                -28.4(2)  

          O(1)#1-Co(1)-N(2)-C(8)                             -160.6(3)  

          N(1)#1-Co(1)-N(2)-C(8)                               60.4(2)  

          N(1)-Co(1)-N(2)-C(8)                               -118.8(2)  

          N(2)#1-Co(1)-N(2)-C(8)                              134.2(3)  

          C(6)-N(2)-C(7)-C(7)#1                                75.2(4)  

          C(8)-N(2)-C(7)-C(7)#1                              -160.5(4)  

          Co(1)-N(2)-C(7)-C(7)#1                              -45.9(4)  

          C(7)-N(2)-C(8)-C(9)                                -178.5(3)  

          C(6)-N(2)-C(8)-C(9)                                 -54.5(4)  

          Co(1)-N(2)-C(8)-C(9)                                 68.8(3)  

          N(2)-C(8)-C(9)-C(10)                                118.3(4)  

          N(2)-C(8)-C(9)-C(14)                                -60.2(5)  

          C(14)-C(9)-C(10)-C(11)                                0.7(6)  

          C(8)-C(9)-C(10)-C(11)                              -177.8(4)  

          C(9)-C(10)-C(11)-C(12)                                1.8(6)  

          C(9)-C(10)-C(11)-I(1)                               177.6(3)  

          C(10)-C(11)-C(12)-C(13)                              -1.5(6)  

          I(1)-C(11)-C(12)-C(13)                             -177.3(3)  

          C(11)-C(12)-C(13)-C(14)                              -1.5(6)  

          C(11)-C(12)-C(13)-I(2)                              174.2(3)  

          C(12)-C(13)-C(14)-O(1)                             -175.8(4)  

          I(2)-C(13)-C(14)-O(1)                                 8.4(5)  
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          C(12)-C(13)-C(14)-C(9)                                3.8(6)  

          I(2)-C(13)-C(14)-C(9)                              -171.9(3)  

          C(10)-C(9)-C(14)-O(1)                               176.2(4)  

          C(8)-C(9)-C(14)-O(1)                                 -5.2(6)  

          C(10)-C(9)-C(14)-C(13)                               -3.4(6)  

          C(8)-C(9)-C(14)-C(13)                               175.1(4)  

          C(13)-C(14)-O(1)-Co(1)                             -132.7(3)  

          C(9)-C(14)-O(1)-Co(1)                                47.7(5)  

          O(1)#1-Co(1)-O(1)-C(14)                             139.2(3)  

          N(1)#1-Co(1)-O(1)-C(14)                            -130.7(3)  

          N(1)-Co(1)-O(1)-C(14)                                50.3(3)  

          N(2)#1-Co(1)-O(1)-C(14)                             -90.3(4)  

          N(2)-Co(1)-O(1)-C(14)                               -26.3(3)  

         ________________________________________________________________  

   

         Symmetry transformations used to generate equivalent atoms:  

         #1 -x+1,y,-z+1/2      

  

 

 

 

 

 Least-squares planes (x,y,z in crystal coordinates) and deviations from them 

 (* indicates atom used to define plane) 
 

  10.9112 (0.0152) x - 6.1256 (0.0142) y - 2.0561 (0.0377) z = 0.9207 (0.0149)  

 

 *   -0.0007 (0.0027)  N1 

 *   -0.0018 (0.0030)  C1 

 *    0.0044 (0.0032)  C2 

 *   -0.0046 (0.0032)  C3 

 *    0.0021 (0.0031)  C4 

 *    0.0005 (0.0028)  C5 

     -0.0454 (0.0066)  C6 

      0.4070 (0.0058)  Co1 

 

 Rms deviation of fitted atoms =   0.0029 

 

 

  9.5697 (0.0166) x - 2.8548 (0.0155) y + 12.9335 (0.0301) z = 7.3948 (0.0141)  

 

 Angle to previous plane (with approximate esd) = 44.30 ( 0.15 ) 

 

 *   -0.0115 (0.0029)  C9 

 *   -0.0071 (0.0030)  C10 

 *    0.0153 (0.0030)  C11 

 *   -0.0038 (0.0029)  C12 

 *   -0.0152 (0.0029)  C13 

 *    0.0223 (0.0028)  C14 

      0.0918 (0.0056)  O1 

     -0.0858 (0.0067)  C8 

     -1.0609 (0.0070)  Co1 

 

 Rms deviation of fitted atoms =   0.0139 
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Figure A.3.4.2.1 Unit cell structure for complex 2. 
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APPENDIX B 

Supplementary Material for Chapter 4 

 

 

Figure B.4.2.1.1 Cyclic voltammograms of complex 1 in DMF with concentration [C] = 9.0 x 

10
-4

 M. TBAPF6 was used as supporting electrolyte.  The redox potential for Co(III)/(II) couple  

is measured vs. Ag/AgCl and plotted vs. Fc/Fc
+
 at room temperature. Potential parameters for the 

cobalt processes are: Epc = -826 mV; Epa = -679 mV; E½ = -753 mV; ΔEp = 147 mV; vs. Fc/Fc
+
. 
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Figure B.4.2.1.2 Cyclic voltammogram of complex 1 in DMF with concentration [C] = 9.0 x 10
-

4
 M. TBAPF6 was used as supporting electrolyte. The redox potential for Co(III)/(II) couple is 

measured vs. Ag/AgCl and plotted vs. Fc/Fc
+
 at room temperature and the data are shown in 

Table 1 in the text. 
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Figure B.4.2.1.3 Cyclic voltammogram of complex 1 in DMF/H2O 90:10% v/v. solvent system 

with concentration [C] = 0.9 x 10
-3

 M. TBAPF6 was used as supporting electrolyte.  The redox 

potential for Co(III)/(II) couple is measured versus Ag/AgCl and plotted vs. Fc/Fc
+
 at room 

temperature. Potential parameters for the cobalt processes are: Epc = -777 mV; Epa = -629 mV; 

E½ = -703 mV; ΔEp = 148 mV; vs. Fc/Fc
+
. 
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Figure B.4.2.3 TD-DFT calculated spectroelectrochemistry. 
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Figure B.4.2.4.1 UV-visible spectroscopy for complex 1 in DMF/H2O (90:10% v/v.) with final 

concentration of 9.0 x 10
-5

 M. The presence of pπphenolate  dσ*cobalt(III) charge transfer band at 

was observed at 440 nm. 
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Figure B.4.2.4.2 Chemical stability of complex 1 in DMF/H2O (90:10% v/v.). with final 

concentration of 9.0 x 10
-5

 M without ascorbic acid at pH 3. Each spectrum is recorded every 30 

min over a time period of 24 h. No decrease of pπphenolate  dσ*cobalt(III) charge transfer band at 

440 nm was observed over time. 
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Figure B.4.2.4.3 Chemical stability of complex 1 in DMF/H2O (90:10% v/v.)  with final 

concentration of 9.0 x 10
-5

 M without ascorbic acid at pH 1.0 adjusted with nitric acid. Each 

spectrum is recorded every 30 min over a time period of 24 h. No decrease of pπphenolate  

dσ*cobalt(III) charge transfer band at 440 nm was observed over time. 
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Figure 4.2.5.1 High resolution ESI
+
 mass spectrometry results for complex 1 after the 

completion of the chemical reduction experiment. Theoretical and experimental data are given 

for species (a) and (b) as indicated, being in good agreement.   
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Figure 4.2.5.2 ESI
+
-MS spectrum for the previously synthesized [Co(L

1
)2] complex. The charge 

on cobalt is (II), therefore the compound is neutral. We expected to observe a peak for [Co(L
1
)2 

+ H
+
]

+
 species m/z = 989.64 at 100%; instead we found the 100% peak at m/z = 988.64 which 

corresponds with the [Co(L
1
)2]

+
 species. Therefore, in the mass spectrometry instrument, 

oxidation of cobalt(II) has occurred. 
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Figure 4.2.5.3 High resolution ESI
+
 mass spectrometry results for 1, the control sample no 

ascorbic acid added.  As shown from the spectrum, there is no indication of the molecular ions 

peaks related to species (a) and (b). 
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Table B.4.2.2 Cartesian Coordinates for [Co(L
1
)2]

+
 and [Co(L

1
)2]

0
 species. 

[Co(L1)2]+   

 H                  4.50227200    2.43264400   -1.04177000 

 H                  2.37303800    2.94403900    3.17284500 

 H                  1.73950400    3.27808800    0.68982200 

 C                  4.31970000    1.38768100   -0.82001600 

 H                  2.22686100    2.76630400   -1.56259200 

 C                  5.37016000    0.53746600   -0.47619700 

 C                  2.06112400    1.91505500    3.04613000 

 H                  2.89723200    1.21697100    4.90454300 

 C                  0.97335300    2.51240500    0.83436500 

 H                  0.04173700    3.00977900    1.11393600 

 C                  1.88650900    1.74161200   -1.38562000 

 C                  3.01852500    0.88625700   -0.89895300 

 C                  2.35451400    0.95029600    4.00632700 

 C                  1.35994300    1.54526300    1.89937500 

 H                 -0.06040200    2.24785600   -0.89422800 

 H                  1.50201900    1.34455000   -2.33020000 

 C                  5.14361000   -0.81405300   -0.21025600 

 N                  0.71973700    1.77421400   -0.44052500 

 H                  5.95999600   -1.47475400    0.05006100 

 C                  2.75034000   -0.47358200   -0.61156000 

 C                  1.95041500   -0.36767500    3.78472500 

 C                  3.83829900   -1.30035400   -0.27442900 

 N                  0.95592200    0.26611200    1.69598100 

 H                 -0.96489600    1.69333600   -2.42655300 

 H                  2.16888100   -1.15259400    4.49632700 

 C                  1.26098100   -0.67436000    2.61937400 

 O                 -1.49721600    0.96137500    0.68274700 

 Co                -0.00001300   -0.00003600    0.00005500 

 O                  1.49720100   -0.96145100   -0.68263000 

 C                 -1.26114900    0.67432900   -2.61918200 

 H                 -2.16912500    1.15257800   -4.49609500 

 C                 -3.83829200    1.30037100    0.27451100 

 C                 -1.95054000    0.36763500   -3.78455700 

 H                  0.96457200   -1.69333800    2.42683700 

 N                 -0.95594800   -0.26617500   -1.69587000 

 C                 -2.75036400    0.47353800    0.61159500 

 H                 -5.95997000    1.47485600   -0.05005500 

 C                 -5.14361000    0.81410700    0.21022400 

 N                 -0.71974900   -1.77430500    0.44057900 

 H                  0.06034600   -2.24792200    0.89438400 

 C                 -2.35444100   -0.95038000   -4.00626500 

 H                 -1.50226300   -1.34480600    2.33019300 

 C                 -1.35980800   -1.54536300   -1.89934800 

 C                 -3.01859200   -0.88632500    0.89883400 

 H                 -2.89711300   -1.21706400   -4.90450600 

 H                 -0.04142300   -3.00970000   -1.11386700 

 C                 -1.88664300   -1.74175900    1.38552100 
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 C                 -0.97314700   -2.51249700   -0.83435700 

 C                 -2.06092800   -1.91517000   -3.04613500 

 C                 -5.37020100   -0.53743800    0.47600000 

 C                 -4.31977600   -1.38771200    0.81977700 

 H                 -2.22704700   -2.76645800    1.56234900 

 H                 -1.73918800   -3.27830700   -0.68990100 

 H                 -2.37270700   -2.94418500   -3.17292200 

 H                 -4.50238100   -2.43269400    1.04141200 

 I                 -7.36804900   -1.31723700    0.35074800 

 I                 -3.45939500    3.36611100   -0.13642800 

 I                  7.36799900    1.31732000   -0.35114000 

 I                  3.45946200   -3.36605300    0.13676500 

 

[Co(L1)2]0 

 H                 -4.63187300    2.32272700    1.24551900 

 H                 -2.90913600    3.27263400   -2.68486900 

 H                 -2.02709200    3.40515100   -0.36372200 

 C                 -4.45161500    1.29217400    0.95975300 

 H                 -2.46288600    2.61116200    1.89131200 

 C                 -5.50552500    0.47776400    0.54555500 

 C                 -2.50410800    2.26916000   -2.74577400 

 H                 -3.45038700    1.79235700   -4.62272900 

 C                 -1.24908100    2.66137800   -0.57641200 

 H                 -0.34650600    3.20813600   -0.86738900 

 C                 -2.04435900    1.64697900    1.57329000 

 C                 -3.15090400    0.78687400    1.02346900 

 C                 -2.80639700    1.44038800   -3.82537700 

 C                 -1.66934100    1.79257700   -1.73015000 

 H                 -0.15331200    2.33557800    1.11873200 

 H                 -1.61156900    1.16428200    2.45647400 

 C                 -5.28229600   -0.85414400    0.19669800 

 N                 -0.91354200    1.87067700    0.62668400 

 H                 -6.09687700   -1.49334700   -0.11843800 

 C                 -2.86851600   -0.56586900    0.65682100 

 C                 -2.27423900    0.14841400   -3.85985000 

 C                 -3.98055200   -1.34849900    0.25812600 

 N                 -1.15720700    0.54231200   -1.76842800 

 H                  1.04100300    1.26034700    2.78913500 

 H                 -2.48904600   -0.52767500   -4.67774000 

 C                 -1.46020100   -0.26331600   -2.80911400 

 O                  1.63163500    1.04734800   -0.70120800 

 Co                 0.00000100    0.00000900    0.00000200 

 O                 -1.63163400   -1.04735000    0.70120200 

 C                  1.46021500    0.26334800    2.80912200 

 H                  2.48907600    0.52771300    4.67773800 

 C                  3.98055500    1.34849200   -0.25813600 

 C                  2.27425700   -0.14838100    3.85985500 

 H                 -1.04098000   -1.26031200   -2.78913200 

 N                  1.15720800   -0.54228500    1.76844400 
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 C                  2.86851600    0.56586300   -0.65682400 

 H                  6.09688100    1.49333700    0.11842200 

 C                  5.28229700    0.85413300   -0.19670500 

 N                  0.91353000   -1.87066900   -0.62666100 

 H                  0.15329300   -2.33556400   -1.11870300 

 C                  2.80640400   -1.44036000    3.82538900 

 H                  1.61156600   -1.16430700   -2.45646100 

 C                  1.66933100   -1.79255600    1.73017200 

 C                  3.15089800   -0.78688500   -1.02345600 

 H                  3.45039600   -1.79232800    4.62274000 

 H                  0.34647200   -3.20809900    0.86742800 

 C                  2.04434900   -1.64699300   -1.57326700 

 C                  1.24905600   -2.66136100    0.57644400 

 C                  2.50410100   -2.26913700    2.74579500 

 C                  5.50552200   -0.47777800   -0.54555200 

 C                  4.45160700   -1.29219000   -0.95973600 

 H                  2.46287300   -2.61118300   -1.89127200 

 H                  2.02705500   -3.40515100    0.36376100 

 H                  2.90911900   -3.27261600    2.68489500 

 H                  4.63186100   -2.32274600   -1.24549300 

 I                  7.50088700   -1.28117800   -0.44655700 

 I                  3.63690100    3.40194800    0.27111800 

 I                 -7.50089400    1.28115900    0.44656300 

 I                 -3.63689000   -3.40194800   -0.27114900 
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APPENDIX C 

Supplementary Material for Chapter 5 

Crystal Structure Data for Complex 1 

Table C.1. Atomic coordinates ( x 10^4) and equivalent isotropic displacement parameters (A^2 

x 10^3) for 1. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.  

   
         ________________________________________________________________  

   

                         x             y             z           U(eq)  

         ________________________________________________________________  

   

          Cl(1)       -3808(1)       1956(1)       -797(1)       60(1)  

          O(5)        -3988(3)       2455(2)      -1104(3)       88(2)  

          O(6)        -3053(3)       1759(2)       -874(3)       92(2)  

          O(7)        -4531(3)       1633(2)      -1184(3)       78(2)  

          O(8)        -3676(3)       1978(2)        -27(3)       95(2)  

          Cl(2)        4821(1)       1369(1)       1954(1)       71(1)  

          O(9)         5437(3)       1270(2)       2679(2)      111(2)  

          O(10)        3968(2)       1426(2)       1893(3)       95(2)  

          O(11)        5043(4)       1830(2)       1708(4)      150(3)  

          O(12)        4886(5)       1039(3)       1413(3)      151(3)  

          Ga(1)       -1336(1)       1575(1)       3077(1)       37(1)  

          N(1)         -875(3)       2331(2)       3328(2)       37(1)  

          C(1)         -311(3)       2558(2)       3093(3)       39(1)  

          C(2)          -51(3)       3057(2)       3272(3)       42(1)  

          C(3)         -416(4)       3330(2)       3676(3)       47(2)  

          C(4)         -989(4)       3099(2)       3928(3)       45(1)  

          C(5)        -1196(3)       2599(2)       3740(3)       38(1)  

          C(6)        -1807(4)       2314(2)       3997(3)       46(1)  

          N(2)        -2251(3)       1906(2)       3450(2)       39(1)  

          C(7)        -2577(3)       1519(2)       3836(3)       43(1)  

          C(8)        -1869(3)       1298(2)       4541(3)       37(1)  

          C(9)        -2066(4)       1216(2)       5162(3)       42(1)  

          C(10)       -1479(4)        984(2)       5800(3)       46(1)  

          C(11)        -703(4)        805(2)       5814(3)       41(1)  

          C(12)        -488(3)        901(2)       5216(3)       37(1)  

          C(13)       -1037(3)       1172(2)       4572(3)       37(1)  

          O(1)         -747(2)       1297(1)       4054(2)       40(1)  

          C(14)       -2987(4)       2105(2)       2788(3)       47(2)  

          C(15)       -2724(3)       2239(2)       2148(3)       42(1)  

          N(3)        -2280(3)       1793(2)       1992(2)       37(1)  

          C(16)       -2918(3)       1375(2)       1637(3)       42(1)  

          C(17)       -2711(3)        892(2)       2070(3)       37(1)  

          C(18)       -3236(4)        467(2)       1839(3)       42(1)  

          C(19)       -2975(4)         15(2)       2233(3)       52(2)  

          C(20)       -2194(4)          0(2)       2848(3)       46(1)  

          C(21)       -1716(3)        438(2)       3068(3)       38(1)  

          N(4)        -1969(3)        881(2)       2693(2)       39(1)  

          C(22)       -1814(3)       1926(2)       1495(3)       37(1)  

          C(23)       -1287(3)       1487(2)       1414(3)       35(1)  

          C(24)       -1453(3)       1282(2)        705(3)       37(1)  

          C(25)        -936(3)        899(2)        629(3)       38(1)  

          C(26)        -244(4)        712(2)       1241(3)       41(1)  
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          C(27)         -91(3)        915(2)       1945(3)       36(1)  

          C(28)        -602(3)       1291(2)       2050(3)       37(1)  

          O(2)         -444(2)       1468(1)       2741(2)       40(1)  

          I(1)        -1787(1)        904(1)       6741(1)       63(1)  

          I(2)          710(1)        655(1)       5257(1)       47(1)  

          I(3)        -1232(1)        549(1)       -422(1)       49(1)  

          I(4)          940(1)        632(1)       2895(1)       47(1)  

          Ga(2)        2544(1)       2857(1)       3556(1)       35(1)  

          N(5)         2131(3)       2494(2)       4309(2)       37(1)  

          C(29)        1490(4)       2147(2)       4116(3)       44(1)  

          C(30)        1238(4)       1928(2)       4651(3)       47(2)  

          C(31)        1662(4)       2070(3)       5385(4)       53(2)  

          C(32)        2313(4)       2430(2)       5582(3)       50(2)  

          C(33)        2537(3)       2634(2)       5026(3)       38(1)  

          C(34)        3235(4)       3020(2)       5187(3)       45(1)  

          N(6)         3591(3)       3017(2)       4602(2)       41(1)  

          C(35)        3972(3)       3522(2)       4567(3)       45(2)  

          C(36)        3355(3)       3960(2)       4430(3)       41(1)  

          C(37)        3696(3)       4414(2)       4809(3)       41(1)  

          C(38)        3191(4)       4846(2)       4700(3)       41(1)  

          C(39)        2338(3)       4841(2)       4192(3)       35(1)  

          C(40)        2007(3)       4391(2)       3831(3)       32(1)  

          C(41)        2474(3)       3938(2)       3938(3)       34(1)  

          O(3)         2083(2)       3509(1)       3596(2)       36(1)  

          C(42)        4273(4)       2616(2)       4750(3)       50(2)  

          C(43)        3894(4)       2121(2)       4378(3)       46(2)  

          N(7)         3337(3)       2210(2)       3570(3)       40(1)  

          C(44)        3904(4)       2315(2)       3156(3)       47(2)  

          C(45)        3674(4)       2811(2)       2721(3)       43(1)  

          C(46)        4046(4)       2935(3)       2223(3)       52(2)  

          C(47)        3796(4)       3386(3)       1834(3)       57(2)  

          C(48)        3184(4)       3699(2)       1933(3)       51(2)  

          C(49)        2846(4)       3534(2)       2430(3)       47(2)  

          N(8)         3087(3)       3113(2)       2832(2)       39(1)  

          C(50)        2775(3)       1760(2)       3239(3)       40(1)  

          C(51)        2123(3)       1849(2)       2430(3)       37(1)  

          C(52)        2100(3)       1502(2)       1881(3)       40(1)  

          C(53)        1453(4)       1528(2)       1172(3)       39(1)  

          C(54)         835(3)       1903(2)        999(3)       37(1)  

          C(55)         885(3)       2264(2)       1539(3)       34(1)  

          C(56)        1534(3)       2253(2)       2263(3)       37(1)  

          O(4)         1549(2)       2602(1)       2761(2)       36(1)  

          I(5)         3746(1)       5520(1)       5285(1)       50(1)  

          I(6)          708(1)       4391(1)       3049(1)       37(1)  

          I(7)         1468(1)       1007(1)        360(1)       51(1)  

          I(8)          -28(1)       2857(1)       1252(1)       39(1)  

         ________________________________________________________________  
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Table C.2. Bond lengths [A] and angles [deg] for 1  
           _____________________________________________________________  

   

            Cl(1)-O(5)                    1.419(5)  

            Cl(1)-O(8)                    1.422(6)  

            Cl(1)-O(7)                    1.425(5)  

            Cl(1)-O(6)                    1.432(5)  

            Cl(2)-O(12)                   1.3984(10)  

            Cl(2)-O(10)                   1.3994(10)  

            Cl(2)-O(9)                    1.3997(10)  

            Cl(2)-O(11)                   1.4019(10)  

            Ga(1)-O(2)                    1.880(3)  

            Ga(1)-O(1)                    1.900(3)  

            Ga(1)-N(4)                    2.091(5)  

            Ga(1)-N(1)                    2.113(5)  

            Ga(1)-N(2)                    2.127(4)  

            Ga(1)-N(3)                    2.149(4)  

            N(1)-C(5)                     1.329(6)  

            N(1)-C(1)                     1.344(6)  

            C(1)-C(2)                     1.380(8)  

            C(2)-C(3)                     1.373(7)  

            C(3)-C(4)                     1.380(8)  

            C(4)-C(5)                     1.368(8)  

            C(5)-C(6)                     1.508(8)  

            C(6)-N(2)                     1.484(7)  

            N(2)-C(14)                    1.480(6)  

            N(2)-C(7)                     1.489(6)  

            C(7)-C(8)                     1.525(7)  

            C(8)-C(9)                     1.387(7)  

            C(8)-C(13)                    1.415(7)  

            C(9)-C(10)                    1.380(7)  

            C(10)-C(11)                   1.377(8)  

            C(10)-I(1)                    2.097(6)  

            C(11)-C(12)                   1.370(7)  

            C(12)-C(13)                   1.414(7)  

            C(12)-I(2)                    2.086(5)  

            C(13)-O(1)                    1.321(6)  

            C(14)-C(15)                   1.515(7)  

            C(15)-N(3)                    1.482(6)  

            N(3)-C(16)                    1.495(7)  

            N(3)-C(22)                    1.505(6)  

            C(16)-C(17)                   1.483(7)  

            C(17)-N(4)                    1.348(6)  

            C(17)-C(18)                   1.382(7)  

            C(18)-C(19)                   1.382(8)  

            C(19)-C(20)                   1.380(8)  

            C(20)-C(21)                   1.368(8)  

            C(21)-N(4)                    1.347(7)  

            C(22)-C(23)                   1.498(7)  

            C(23)-C(24)                   1.396(7)  

            C(23)-C(28)                   1.409(7)  

            C(24)-C(25)                   1.375(7)  

            C(25)-C(26)                   1.380(7)  

            C(25)-I(3)                    2.107(5)  

            C(26)-C(27)                   1.391(7)  

            C(27)-C(28)                   1.374(7)  

            C(27)-I(4)                    2.100(5)  

            C(28)-O(2)                    1.342(6)  

            Ga(2)-O(4)                    1.890(3)  

            Ga(2)-O(3)                    1.893(3)  

            Ga(2)-N(8)                    2.066(4)  

            Ga(2)-N(5)                    2.081(4)  

            Ga(2)-N(6)                    2.134(4)  
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            Ga(2)-N(7)                    2.153(4)  

            N(5)-C(33)                    1.334(6)  

            N(5)-C(29)                    1.345(7)  

            C(29)-C(30)                   1.390(8)  

            C(30)-C(31)                   1.366(8)  

            C(31)-C(32)                   1.380(8)  

            C(32)-C(33)                   1.384(8)  

            C(33)-C(34)                   1.486(8)  

            C(34)-N(6)                    1.478(7)  

            N(6)-C(35)                    1.486(7)  

            N(6)-C(42)                    1.496(7)  

            C(35)-C(36)                   1.498(7)  

            C(36)-C(37)                   1.398(7)  

            C(36)-C(41)                   1.410(7)  

            C(37)-C(38)                   1.380(8)  

            C(38)-C(39)                   1.381(7)  

            C(38)-I(5)                    2.108(5)  

            C(39)-C(40)                   1.372(7)  

            C(40)-C(41)                   1.393(7)  

            C(40)-I(6)                    2.106(5)  

            C(41)-O(3)                    1.337(6)  

            C(42)-C(43)                   1.500(8)  

            C(43)-N(7)                    1.491(7)  

            N(7)-C(50)                    1.487(7)  

            N(7)-C(44)                    1.496(7)  

            C(44)-C(45)                   1.514(8)  

            C(45)-N(8)                    1.349(7)  

            C(45)-C(46)                   1.381(8)  

            C(46)-C(47)                   1.377(9)  

            C(47)-C(48)                   1.389(8)  

            C(48)-C(49)                   1.368(8)  

            C(49)-N(8)                    1.320(7)  

            C(50)-C(51)                   1.534(7)  

            C(51)-C(52)                   1.388(7)  

            C(51)-C(56)                   1.399(7)  

            C(52)-C(53)                   1.376(7)  

            C(53)-C(54)                   1.371(7)  

            C(53)-I(7)                    2.094(5)  

            C(54)-C(55)                   1.389(7)  

            C(55)-C(56)                   1.394(7)  

            C(55)-I(8)                    2.100(5)  

            C(56)-O(4)                    1.324(6)  

   

            O(5)-Cl(1)-O(8)             108.7(4)  

            O(5)-Cl(1)-O(7)             109.4(3)  

            O(8)-Cl(1)-O(7)             108.7(3)  

            O(5)-Cl(1)-O(6)             109.7(3)  

            O(8)-Cl(1)-O(6)             110.5(3)  

            O(7)-Cl(1)-O(6)             109.7(3)  

            O(12)-Cl(2)-O(10)           112.7(4)  

            O(12)-Cl(2)-O(9)            113.0(4)  

            O(10)-Cl(2)-O(9)            115.4(4)  

            O(12)-Cl(2)-O(11)            99.6(5)  

            O(10)-Cl(2)-O(11)           106.4(4)  

            O(9)-Cl(2)-O(11)            108.1(4)  

            O(2)-Ga(1)-O(1)              96.65(15)  

            O(2)-Ga(1)-N(4)              96.31(16)  

            O(1)-Ga(1)-N(4)              90.62(16)  

            O(2)-Ga(1)-N(1)              87.07(16)  

            O(1)-Ga(1)-N(1)              97.62(16)  

            N(4)-Ga(1)-N(1)             170.69(16)  

            O(2)-Ga(1)-N(2)             164.47(17)  

            O(1)-Ga(1)-N(2)              88.83(15)  
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            N(4)-Ga(1)-N(2)              98.15(17)  

            N(1)-Ga(1)-N(2)              77.78(17)  

            O(2)-Ga(1)-N(3)              94.62(15)  

            O(1)-Ga(1)-N(3)             165.44(16)  

            N(4)-Ga(1)-N(3)              78.99(17)  

            N(1)-Ga(1)-N(3)              92.13(16)  

            N(2)-Ga(1)-N(3)              82.66(16)  

            C(5)-N(1)-C(1)              118.5(5)  

            C(5)-N(1)-Ga(1)             115.8(4)  

            C(1)-N(1)-Ga(1)             125.6(4)  

            N(1)-C(1)-C(2)              122.1(5)  

            C(3)-C(2)-C(1)              117.9(5)  

            C(2)-C(3)-C(4)              120.5(6)  

            C(5)-C(4)-C(3)              117.7(5)  

            N(1)-C(5)-C(4)              123.2(5)  

            N(1)-C(5)-C(6)              115.4(5)  

            C(4)-C(5)-C(6)              121.4(5)  

            N(2)-C(6)-C(5)              109.7(5)  

            C(6)-N(2)-C(14)             112.0(4)  

            C(6)-N(2)-C(7)              108.3(4)  

            C(14)-N(2)-C(7)             109.2(4)  

            C(6)-N(2)-Ga(1)             108.1(3)  

            C(14)-N(2)-Ga(1)            108.6(3)  

            C(7)-N(2)-Ga(1)             110.7(3)  

            N(2)-C(7)-C(8)              113.4(4)  

            C(9)-C(8)-C(13)             120.0(5)  

            C(9)-C(8)-C(7)              117.8(5)  

            C(13)-C(8)-C(7)             122.2(5)  

            C(10)-C(9)-C(8)             121.0(5)  

            C(11)-C(10)-C(9)            120.1(5)  

            C(11)-C(10)-I(1)            120.6(4)  

            C(9)-C(10)-I(1)             119.3(4)  

            C(12)-C(11)-C(10)           119.2(5)  

            C(11)-C(12)-C(13)           122.7(5)  

            C(11)-C(12)-I(2)            119.2(4)  

            C(13)-C(12)-I(2)            118.1(4)  

            O(1)-C(13)-C(12)            119.1(5)  

            O(1)-C(13)-C(8)             124.6(5)  

            C(12)-C(13)-C(8)            116.3(5)  

            C(13)-O(1)-Ga(1)            130.5(3)  

            N(2)-C(14)-C(15)            112.1(4)  

            N(3)-C(15)-C(14)            108.7(4)  

            C(15)-N(3)-C(16)            110.2(4)  

            C(15)-N(3)-C(22)            112.4(4)  

            C(16)-N(3)-C(22)            109.7(4)  

            C(15)-N(3)-Ga(1)            104.2(3)  

            C(16)-N(3)-Ga(1)            111.8(3)  

            C(22)-N(3)-Ga(1)            108.6(3)  

            C(17)-C(16)-N(3)            113.6(4)  

            N(4)-C(17)-C(18)            121.1(5)  

            N(4)-C(17)-C(16)            116.9(5)  

            C(18)-C(17)-C(16)           122.0(5)  

            C(19)-C(18)-C(17)           119.3(5)  

            C(20)-C(19)-C(18)           119.2(6)  

            C(21)-C(20)-C(19)           118.9(6)  

            N(4)-C(21)-C(20)            122.4(5)  

            C(17)-N(4)-C(21)            118.9(5)  

            C(17)-N(4)-Ga(1)            117.3(4)  

            C(21)-N(4)-Ga(1)            123.5(4)  

            C(23)-C(22)-N(3)            111.7(4)  

            C(24)-C(23)-C(28)           119.7(5)  

            C(24)-C(23)-C(22)           120.3(5)  

            C(28)-C(23)-C(22)           120.0(5)  
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            C(25)-C(24)-C(23)           119.9(5)  

            C(24)-C(25)-C(26)           121.4(5)  

            C(24)-C(25)-I(3)            120.4(4)  

            C(26)-C(25)-I(3)            118.1(4)  

            C(25)-C(26)-C(27)           118.1(5)  

            C(28)-C(27)-C(26)           122.5(5)  

            C(28)-C(27)-I(4)            118.0(4)  

            C(26)-C(27)-I(4)            119.5(4)  

            O(2)-C(28)-C(27)            120.6(5)  

            O(2)-C(28)-C(23)            121.1(5)  

            C(27)-C(28)-C(23)           118.3(5)  

            C(28)-O(2)-Ga(1)            122.0(3)  

            O(4)-Ga(2)-O(3)              96.24(14)  

            O(4)-Ga(2)-N(8)              92.72(16)  

            O(3)-Ga(2)-N(8)              91.87(16)  

            O(4)-Ga(2)-N(5)              88.66(16)  

            O(3)-Ga(2)-N(5)              97.40(16)  

            N(8)-Ga(2)-N(5)             170.43(17)  

            O(4)-Ga(2)-N(6)             166.78(17)  

            O(3)-Ga(2)-N(6)              88.86(15)  

            N(8)-Ga(2)-N(6)              99.32(18)  

            N(5)-Ga(2)-N(6)              78.57(17)  

            O(4)-Ga(2)-N(7)              94.27(16)  

            O(3)-Ga(2)-N(7)             166.99(16)  

            N(8)-Ga(2)-N(7)              79.98(18)  

            N(5)-Ga(2)-N(7)              90.47(17)  

            N(6)-Ga(2)-N(7)              82.55(17)  

            C(33)-N(5)-C(29)            119.9(5)  

            C(33)-N(5)-Ga(2)            115.5(4)  

            C(29)-N(5)-Ga(2)            124.7(4)  

            N(5)-C(29)-C(30)            121.3(5)  

            C(31)-C(30)-C(29)           118.6(6)  

            C(30)-C(31)-C(32)           120.2(6)  

            C(31)-C(32)-C(33)           118.8(6)  

            N(5)-C(33)-C(32)            121.4(5)  

            N(5)-C(33)-C(34)            116.1(5)  

            C(32)-C(33)-C(34)           122.5(5)  

            N(6)-C(34)-C(33)            111.2(4)  

            C(34)-N(6)-C(35)            110.1(4)  

            C(34)-N(6)-C(42)            111.7(4)  

            C(35)-N(6)-C(42)            108.9(4)  

            C(34)-N(6)-Ga(2)            107.3(3)  

            C(35)-N(6)-Ga(2)            109.9(3)  

            C(42)-N(6)-Ga(2)            108.9(3)  

            N(6)-C(35)-C(36)            114.2(4)  

            C(37)-C(36)-C(41)           119.4(5)  

            C(37)-C(36)-C(35)           116.8(5)  

            C(41)-C(36)-C(35)           123.8(5)  

            C(38)-C(37)-C(36)           121.4(5)  

            C(39)-C(38)-C(37)           120.2(5)  

            C(39)-C(38)-I(5)            120.3(4)  

            C(37)-C(38)-I(5)            119.5(4)  

            C(38)-C(39)-C(40)           117.9(5)  

            C(39)-C(40)-C(41)           124.5(5)  

            C(39)-C(40)-I(6)            117.4(4)  

            C(41)-C(40)-I(6)            118.0(4)  

            O(3)-C(41)-C(40)            120.4(4)  

            O(3)-C(41)-C(36)            123.1(5)  

            C(40)-C(41)-C(36)           116.4(5)  

            C(41)-O(3)-Ga(2)            130.7(3)  

            N(6)-C(42)-C(43)            111.6(4)  

            N(7)-C(43)-C(42)            109.9(5)  

            C(50)-N(7)-C(43)            110.8(4)  
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            C(50)-N(7)-C(44)            110.3(4)  

            C(43)-N(7)-C(44)            109.0(4)  

            C(50)-N(7)-Ga(2)            109.6(3)  

            C(43)-N(7)-Ga(2)            105.2(3)  

            C(44)-N(7)-Ga(2)            111.8(3)  

            N(7)-C(44)-C(45)            112.4(5)  

            N(8)-C(45)-C(46)            122.5(6)  

            N(8)-C(45)-C(44)            117.2(5)  

            C(46)-C(45)-C(44)           120.3(5)  

            C(47)-C(46)-C(45)           117.5(6)  

            C(46)-C(47)-C(48)           120.9(6)  

            C(49)-C(48)-C(47)           116.7(6)  

            N(8)-C(49)-C(48)            124.4(6)  

            C(49)-N(8)-C(45)            118.0(5)  

            C(49)-N(8)-Ga(2)            124.0(4)  

            C(45)-N(8)-Ga(2)            117.8(4)  

            N(7)-C(50)-C(51)            113.2(4)  

            C(52)-C(51)-C(56)           121.2(5)  

            C(52)-C(51)-C(50)           118.4(5)  

            C(56)-C(51)-C(50)           120.3(5)  

            C(53)-C(52)-C(51)           120.2(5)  

            C(52)-C(53)-C(54)           120.1(5)  

            C(52)-C(53)-I(7)            118.6(4)  

            C(54)-C(53)-I(7)            121.3(4)  

            C(53)-C(54)-C(55)           119.4(5)  

            C(54)-C(55)-C(56)           122.2(5)  

            C(54)-C(55)-I(8)            119.1(4)  

            C(56)-C(55)-I(8)            118.6(4)  

            O(4)-C(56)-C(55)            120.1(5)  

            O(4)-C(56)-C(51)            123.3(5)  

            C(55)-C(56)-C(51)           116.6(5)  

            C(56)-O(4)-Ga(2)            126.5(3)  

           _____________________________________________________________  

   

Symmetry transformations used to generate equivalent atoms. 

             
 

 

 

Table C.3. Anisotropic displacement parameters (A^2 x 10^3) for 1. The anisotropic 

displacement factor exponent takes the form:  -2 pi^2 [ h^2 a*^2 U11 + ... + 2 h k a* b* U12 ]  
   

    _______________________________________________________________________  

   

              U11        U22        U33        U23        U13        U12  

    _______________________________________________________________________  

   

    Cl(1)    28(1)      72(1)      73(1)      38(1)      12(1)       8(1)  

    O(5)     54(3)      78(4)     137(5)      59(3)      42(3)      19(3)  

    O(6)     42(3)      81(4)     152(5)      47(4)      38(3)      15(3)  

    O(7)     41(3)     103(4)      82(3)      26(3)      17(2)       3(3)  

    O(8)     44(3)     140(5)      78(4)       4(3)       0(3)       2(3)  

    Cl(2)    33(1)     119(2)      50(1)     -16(1)       6(1)      11(1)  

    O(9)     83(4)     142(6)      63(3)      31(3)     -19(3)     -42(4)  

    O(10)    50(3)     147(5)     100(4)     -17(4)      43(3)      -2(3)  

    O(11)    56(4)     244(10)    113(5)      69(6)      -6(4)      -4(5)  

    O(12)   127(6)     194(8)     130(6)     -51(5)      50(5)      57(6)  

    Ga(1)    28(1)      41(1)      39(1)       7(1)      11(1)       6(1)  

    N(1)     30(2)      41(3)      37(3)       7(2)      10(2)       8(2)  

    C(1)     34(3)      44(4)      38(3)       5(3)      15(3)       6(3)  

    C(2)     35(3)      44(4)      47(3)      12(3)      15(3)       2(3)  

    C(3)     52(4)      38(3)      56(4)      -1(3)      27(3)       3(3)  
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    C(4)     50(4)      49(4)      41(3)       4(3)      23(3)       6(3)  

    C(5)     36(3)      43(4)      35(3)      11(3)      14(3)       8(3)  

    C(6)     45(3)      48(4)      49(4)      11(3)      23(3)       9(3)  

    N(2)     30(2)      45(3)      42(3)      15(2)      16(2)       8(2)  

    C(7)     32(3)      50(4)      47(3)      14(3)      17(3)       8(3)  

    C(8)     28(3)      44(3)      36(3)       3(2)      10(2)       2(2)  

    C(9)     39(3)      43(3)      42(3)       8(3)      14(3)      -1(3)  

    C(10)    43(3)      47(4)      48(4)       5(3)      18(3)       0(3)  

    C(11)    38(3)      36(3)      40(3)       7(2)       7(3)      -2(3)  

    C(12)    31(3)      36(3)      41(3)       4(2)      11(2)       1(2)  

    C(13)    31(3)      45(3)      36(3)       2(2)      14(2)      -3(3)  

    O(1)     24(2)      48(2)      42(2)       8(2)       7(2)       7(2)  

    C(14)    39(3)      61(4)      44(3)      17(3)      18(3)      14(3)  

    C(15)    33(3)      44(3)      48(3)       5(3)      16(3)      14(3)  

    N(3)     30(2)      38(3)      42(3)      11(2)      13(2)       5(2)  

    C(16)    24(3)      50(4)      45(3)      14(3)       5(2)       4(3)  

    C(17)    33(3)      44(3)      38(3)       3(3)      17(3)       6(3)  

    C(18)    35(3)      45(4)      44(3)       2(3)      13(3)       3(3)  

    C(19)    52(4)      49(4)      53(4)       6(3)      19(3)       1(3)  

    C(20)    43(3)      48(4)      43(3)       5(3)      13(3)      16(3)  

    C(21)    31(3)      46(4)      34(3)       1(3)       9(2)       4(3)  

    N(4)     30(2)      43(3)      39(3)       7(2)       9(2)       6(2)  

    C(22)    32(3)      38(3)      38(3)      10(2)      11(2)       2(2)  

    C(23)    29(3)      32(3)      46(3)       6(2)      17(3)       2(2)  

    C(24)    30(3)      32(3)      48(3)       3(3)      15(3)      -1(2)  

    C(25)    36(3)      39(3)      39(3)      -5(2)      15(3)      -7(3)  

    C(26)    39(3)      33(3)      58(4)       2(3)      26(3)       1(3)  

    C(27)    26(3)      32(3)      51(3)       4(3)      15(3)      -3(2)  

    C(28)    33(3)      38(3)      45(3)       3(3)      20(3)      -1(3)  

    O(2)     28(2)      46(2)      43(2)       4(2)      13(2)       5(2)  

    I(1)     57(1)      85(1)      51(1)      20(1)      25(1)      14(1)  

    I(2)     34(1)      49(1)      52(1)      12(1)      10(1)       7(1)  

    I(3)     55(1)      41(1)      55(1)      -3(1)      26(1)      -2(1)  

    I(4)     32(1)      44(1)      59(1)       9(1)      12(1)       7(1)  

    Ga(2)    28(1)      36(1)      38(1)      -4(1)       9(1)       2(1)  

    N(5)     27(2)      37(3)      40(3)       0(2)       8(2)       4(2)  

    C(29)    35(3)      45(4)      47(3)       3(3)       9(3)      11(3)  

    C(30)    36(3)      47(4)      59(4)       5(3)      18(3)       2(3)  

    C(31)    45(4)      64(4)      58(4)       7(3)      30(3)       9(3)  

    C(32)    49(4)      48(4)      46(4)       0(3)      12(3)      15(3)  

    C(33)    39(3)      39(3)      33(3)       0(2)      11(3)      14(3)  

    C(34)    44(3)      49(4)      34(3)      -6(3)       6(3)       5(3)  

    N(6)     31(2)      36(3)      47(3)      -7(2)       4(2)       3(2)  

    C(35)    23(3)      56(4)      47(3)     -10(3)       5(3)       6(3)  

    C(36)    32(3)      47(4)      42(3)      -1(3)      14(3)       5(3)  

    C(37)    29(3)      47(4)      43(3)     -12(3)      11(2)      -7(3)  

    C(38)    38(3)      45(4)      43(3)     -10(3)      18(3)     -11(3)  

    C(39)    36(3)      31(3)      42(3)       2(2)      18(3)      -2(2)  

    C(40)    24(3)      41(3)      32(3)      -3(2)      11(2)      -1(2)  

    C(41)    23(3)      43(3)      33(3)      -6(2)       9(2)      -7(2)  

    O(3)     28(2)      38(2)      38(2)      -7(2)       8(2)       0(2)  

    C(42)    36(3)      46(4)      50(4)     -11(3)      -2(3)      12(3)  

    C(43)    35(3)      49(4)      47(3)      -2(3)       7(3)      11(3)  

    N(7)     28(2)      36(3)      51(3)      -5(2)      11(2)       4(2)  

    C(44)    33(3)      45(4)      62(4)     -11(3)      18(3)      -1(3)  

    C(45)    36(3)      41(3)      47(3)      -9(3)      13(3)      -3(3)  

    C(46)    39(3)      62(4)      52(4)      -9(3)      17(3)       2(3)  

    C(47)    57(4)      68(5)      48(4)       1(3)      22(3)      -8(4)  

    C(48)    52(4)      53(4)      47(4)      -1(3)      18(3)       8(3)  

    C(49)    45(3)      51(4)      47(3)      -2(3)      22(3)       5(3)  

    N(8)     32(2)      38(3)      46(3)      -2(2)      13(2)       2(2)  

    C(50)    31(3)      29(3)      54(3)       0(3)      11(3)       7(2)  

    C(51)    32(3)      38(3)      42(3)      -7(3)      16(3)      -9(3)  
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    C(52)    35(3)      39(3)      47(3)      -3(3)      17(3)      -3(3)  

    C(53)    44(3)      34(3)      46(3)      -3(3)      26(3)      -7(3)  

    C(54)    41(3)      32(3)      40(3)      -1(2)      19(3)       1(3)  

    C(55)    29(3)      34(3)      37(3)       2(2)      10(2)      -5(2)  

    C(56)    32(3)      40(3)      42(3)      -5(3)      19(3)      -6(3)  

    O(4)     29(2)      36(2)      37(2)      -8(2)       7(2)       1(2)  

    I(5)     45(1)      44(1)      55(1)     -12(1)      15(1)      -9(1)  

    I(6)     31(1)      38(1)      39(1)      -1(1)      11(1)       1(1)  

    I(7)     58(1)      47(1)      56(1)     -16(1)      30(1)      -5(1)  

    I(8)     38(1)      44(1)      35(1)       1(1)      13(1)       5(1)  

    _______________________________________________________________________  

 

 

 

 

Table C.4. Hydrogen coordinates ( x 10^4) and isotropic displacement parameters (A^2 x 10^3) 

for 1.  
   

         ________________________________________________________________  

   

                         x             y             z           U(eq)  

         ________________________________________________________________  

   

          H(1)          -84          2369          2794          46  

          H(2)          368          3208          3120          51  

          H(3)         -273          3679          3784          57  

          H(4)        -1231          3281          4221          54  

          H(6A)       -1480          2163          4498          55  

          H(6B)       -2242          2553          4040          55  

          H(7A)       -2853          1237          3481          51  

          H(7B)       -3027          1677          3975          51  

          H(9)        -2614          1320          5147          50  

          H(11)        -322           617          6234          49  

          H(14A)      -3221          2413          2936          57  

          H(14B)      -3453          1846          2614          57  

          H(15A)      -3243          2327          1694          50  

          H(15B)      -2330          2536          2287          50  

          H(16A)      -3501          1491          1582          50  

          H(16B)      -2940          1309          1127          50  

          H(18)       -3772           484          1414          51  

          H(19)       -3328          -280          2082          62  

          H(20)       -1991          -310          3114          55  

          H(21)       -1187           429          3500          46  

          H(22A)      -2242          2026           993          44  

          H(22B)      -1427          2221          1712          44  

          H(24)       -1924          1407           276          45  

          H(26)         116           451          1183          50  

          H(29)        1204          2049          3604          53  

          H(30)         781          1686          4509          57  

          H(31)        1508          1920          5761          63  

          H(32)        2601          2536          6090          60  

          H(34A)       3000          3363          5210          54  

          H(34B)       3705          2948          5682          54  

          H(35A)       4187          3515          4160          54  

          H(35B)       4476          3581          5046          54  

          H(37)        4287          4427          5148          49  

          H(39)        1991          5139          4095          42  

          H(42A)       4572          2563          5299          60  

          H(42B)       4708          2735          4561          60  

          H(43A)       4365          1880          4423          56  

          H(43B)       3543          1967          4631          56  

          H(44A)       3849          2031          2803          56  
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          H(44B)       4516          2329          3520          56  

          H(46)        4459          2717          2153          62  

          H(47)        4046          3485          1493          69  

          H(48)        3009          4013          1670          61  

          H(49)        2408          3736          2489          56  

          H(50A)       2454          1674          3555          48  

          H(50B)       3146          1465          3248          48  

          H(52)        2532          1245          1997          48  

          H(54)         377          1916           514          44  

         ________________________________________________________________  

  

 

 

 

Table C.5. Torsion angles [deg] for 1  
         ________________________________________________________________  

   

          O(2)-Ga(1)-N(1)-C(5)                               -168.2(4)  

          O(1)-Ga(1)-N(1)-C(5)                                -71.9(4)  

          N(4)-Ga(1)-N(1)-C(5)                                 80.2(11)  

          N(2)-Ga(1)-N(1)-C(5)                                 15.2(3)  

          N(3)-Ga(1)-N(1)-C(5)                                 97.3(4)  

          O(2)-Ga(1)-N(1)-C(1)                                 13.4(4)  

          O(1)-Ga(1)-N(1)-C(1)                                109.7(4)  

          N(4)-Ga(1)-N(1)-C(1)                                -98.2(11)  

          N(2)-Ga(1)-N(1)-C(1)                               -163.1(4)  

          N(3)-Ga(1)-N(1)-C(1)                                -81.1(4)  

          C(5)-N(1)-C(1)-C(2)                                   0.6(7)  

          Ga(1)-N(1)-C(1)-C(2)                                179.0(4)  

          N(1)-C(1)-C(2)-C(3)                                  -2.8(8)  

          C(1)-C(2)-C(3)-C(4)                                   3.4(8)  

          C(2)-C(3)-C(4)-C(5)                                  -2.0(9)  

          C(1)-N(1)-C(5)-C(4)                                   1.0(8)  

          Ga(1)-N(1)-C(5)-C(4)                               -177.5(4)  

          C(1)-N(1)-C(5)-C(6)                                -178.6(5)  

          Ga(1)-N(1)-C(5)-C(6)                                  2.9(6)  

          C(3)-C(4)-C(5)-N(1)                                  -0.3(8)  

          C(3)-C(4)-C(5)-C(6)                                 179.2(5)  

          N(1)-C(5)-C(6)-N(2)                                 -28.5(6)  

          C(4)-C(5)-C(6)-N(2)                                 152.0(5)  

          C(5)-C(6)-N(2)-C(14)                                -80.6(5)  

          C(5)-C(6)-N(2)-C(7)                                 159.0(4)  

          C(5)-C(6)-N(2)-Ga(1)                                 39.0(5)  

          O(2)-Ga(1)-N(2)-C(6)                                -42.3(7)  

          O(1)-Ga(1)-N(2)-C(6)                                 68.8(3)  

          N(4)-Ga(1)-N(2)-C(6)                                159.2(3)  

          N(1)-Ga(1)-N(2)-C(6)                                -29.3(3)  

          N(3)-Ga(1)-N(2)-C(6)                               -123.1(3)  

          O(2)-Ga(1)-N(2)-C(14)                                79.4(7)  

          O(1)-Ga(1)-N(2)-C(14)                              -169.5(4)  

          N(4)-Ga(1)-N(2)-C(14)                               -79.1(4)  

          N(1)-Ga(1)-N(2)-C(14)                                92.4(4)  

          N(3)-Ga(1)-N(2)-C(14)                                -1.4(4)  

          O(2)-Ga(1)-N(2)-C(7)                               -160.7(5)  

          O(1)-Ga(1)-N(2)-C(7)                                -49.7(3)  

          N(4)-Ga(1)-N(2)-C(7)                                 40.8(4)  

          N(1)-Ga(1)-N(2)-C(7)                               -147.7(4)  

          N(3)-Ga(1)-N(2)-C(7)                                118.5(3)  

          C(6)-N(2)-C(7)-C(8)                                 -56.3(6)  

          C(14)-N(2)-C(7)-C(8)                               -178.5(5)  

          Ga(1)-N(2)-C(7)-C(8)                                 62.0(5)  

          N(2)-C(7)-C(8)-C(9)                                 139.9(5)  

          N(2)-C(7)-C(8)-C(13)                                -41.1(7)  
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          C(13)-C(8)-C(9)-C(10)                                -3.7(8)  

          C(7)-C(8)-C(9)-C(10)                                175.4(5)  

          C(8)-C(9)-C(10)-C(11)                                -3.7(9)  

          C(8)-C(9)-C(10)-I(1)                                176.8(4)  

          C(9)-C(10)-C(11)-C(12)                                6.0(9)  

          I(1)-C(10)-C(11)-C(12)                             -174.5(4)  

          C(10)-C(11)-C(12)-C(13)                              -1.1(9)  

          C(10)-C(11)-C(12)-I(2)                              177.5(4)  

          C(11)-C(12)-C(13)-O(1)                              172.8(5)  

          I(2)-C(12)-C(13)-O(1)                                -5.8(7)  

          C(11)-C(12)-C(13)-C(8)                               -6.0(8)  

          I(2)-C(12)-C(13)-C(8)                               175.4(4)  

          C(9)-C(8)-C(13)-O(1)                               -170.5(5)  

          C(7)-C(8)-C(13)-O(1)                                 10.4(9)  

          C(9)-C(8)-C(13)-C(12)                                 8.2(8)  

          C(7)-C(8)-C(13)-C(12)                              -170.8(5)  

          C(12)-C(13)-O(1)-Ga(1)                              170.9(4)  

          C(8)-C(13)-O(1)-Ga(1)                               -10.4(8)  

          O(2)-Ga(1)-O(1)-C(13)                              -167.9(5)  

          N(4)-Ga(1)-O(1)-C(13)                               -71.5(5)  

          N(1)-Ga(1)-O(1)-C(13)                               104.2(5)  

          N(2)-Ga(1)-O(1)-C(13)                                26.6(5)  

          N(3)-Ga(1)-O(1)-C(13)                               -27.4(9)  

          C(6)-N(2)-C(14)-C(15)                                93.4(6)  

          C(7)-N(2)-C(14)-C(15)                              -146.7(5)  

          Ga(1)-N(2)-C(14)-C(15)                              -25.9(6)  

          N(2)-C(14)-C(15)-N(3)                                52.2(6)  

          C(14)-C(15)-N(3)-C(16)                               70.8(5)  

          C(14)-C(15)-N(3)-C(22)                             -166.6(4)  

          C(14)-C(15)-N(3)-Ga(1)                              -49.2(5)  

          O(2)-Ga(1)-N(3)-C(15)                              -136.9(3)  

          O(1)-Ga(1)-N(3)-C(15)                                82.5(7)  

          N(4)-Ga(1)-N(3)-C(15)                               127.6(3)  

          N(1)-Ga(1)-N(3)-C(15)                               -49.6(3)  

          N(2)-Ga(1)-N(3)-C(15)                                27.8(3)  

          O(2)-Ga(1)-N(3)-C(16)                               104.2(3)  

          O(1)-Ga(1)-N(3)-C(16)                               -36.5(8)  

          N(4)-Ga(1)-N(3)-C(16)                                 8.7(3)  

          N(1)-Ga(1)-N(3)-C(16)                              -168.6(3)  

          N(2)-Ga(1)-N(3)-C(16)                               -91.2(3)  

          O(2)-Ga(1)-N(3)-C(22)                               -16.9(3)  

          O(1)-Ga(1)-N(3)-C(22)                              -157.6(6)  

          N(4)-Ga(1)-N(3)-C(22)                              -112.5(3)  

          N(1)-Ga(1)-N(3)-C(22)                                70.3(3)  

          N(2)-Ga(1)-N(3)-C(22)                               147.7(3)  

          C(15)-N(3)-C(16)-C(17)                             -121.1(5)  

          C(22)-N(3)-C(16)-C(17)                              114.7(5)  

          Ga(1)-N(3)-C(16)-C(17)                               -5.8(5)  

          N(3)-C(16)-C(17)-N(4)                                -3.2(7)  

          N(3)-C(16)-C(17)-C(18)                              178.5(5)  

          N(4)-C(17)-C(18)-C(19)                               -3.3(8)  

          C(16)-C(17)-C(18)-C(19)                             174.9(5)  

          C(17)-C(18)-C(19)-C(20)                              -0.1(9)  

          C(18)-C(19)-C(20)-C(21)                               2.5(9)  

          C(19)-C(20)-C(21)-N(4)                               -1.9(8)  

          C(18)-C(17)-N(4)-C(21)                                4.0(7)  

          C(16)-C(17)-N(4)-C(21)                             -174.3(5)  

          C(18)-C(17)-N(4)-Ga(1)                             -170.5(4)  

          C(16)-C(17)-N(4)-Ga(1)                               11.3(6)  

          C(20)-C(21)-N(4)-C(17)                               -1.4(8)  

          C(20)-C(21)-N(4)-Ga(1)                              172.7(4)  

          O(2)-Ga(1)-N(4)-C(17)                              -104.7(4)  

          O(1)-Ga(1)-N(4)-C(17)                               158.6(4)  
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          N(1)-Ga(1)-N(4)-C(17)                                 6.3(13)  

          N(2)-Ga(1)-N(4)-C(17)                                69.7(4)  

          N(3)-Ga(1)-N(4)-C(17)                               -11.2(4)  

          O(2)-Ga(1)-N(4)-C(21)                                81.2(4)  

          O(1)-Ga(1)-N(4)-C(21)                               -15.6(4)  

          N(1)-Ga(1)-N(4)-C(21)                              -167.9(9)  

          N(2)-Ga(1)-N(4)-C(21)                              -104.5(4)  

          N(3)-Ga(1)-N(4)-C(21)                               174.7(4)  

          C(15)-N(3)-C(22)-C(23)                              173.6(4)  

          C(16)-N(3)-C(22)-C(23)                              -63.6(5)  

          Ga(1)-N(3)-C(22)-C(23)                               58.9(5)  

          N(3)-C(22)-C(23)-C(24)                              120.1(5)  

          N(3)-C(22)-C(23)-C(28)                              -62.1(6)  

          C(28)-C(23)-C(24)-C(25)                              -1.6(8)  

          C(22)-C(23)-C(24)-C(25)                             176.2(5)  

          C(23)-C(24)-C(25)-C(26)                              -0.4(8)  

          C(23)-C(24)-C(25)-I(3)                              175.5(4)  

          C(24)-C(25)-C(26)-C(27)                               1.0(8)  

          I(3)-C(25)-C(26)-C(27)                             -175.0(4)  

          C(25)-C(26)-C(27)-C(28)                               0.4(8)  

          C(25)-C(26)-C(27)-I(4)                              178.9(4)  

          C(26)-C(27)-C(28)-O(2)                              178.4(5)  

          I(4)-C(27)-C(28)-O(2)                                -0.1(7)  

          C(26)-C(27)-C(28)-C(23)                              -2.3(8)  

          I(4)-C(27)-C(28)-C(23)                              179.2(4)  

          C(24)-C(23)-C(28)-O(2)                             -177.8(5)  

          C(22)-C(23)-C(28)-O(2)                                4.4(7)  

          C(24)-C(23)-C(28)-C(27)                               2.9(7)  

          C(22)-C(23)-C(28)-C(27)                            -174.9(5)  

          C(27)-C(28)-O(2)-Ga(1)                             -135.6(4)  

          C(23)-C(28)-O(2)-Ga(1)                               45.2(6)  

          O(1)-Ga(1)-O(2)-C(28)                               137.2(4)  

          N(4)-Ga(1)-O(2)-C(28)                                45.9(4)  

          N(1)-Ga(1)-O(2)-C(28)                              -125.4(4)  

          N(2)-Ga(1)-O(2)-C(28)                              -112.7(6)  

          N(3)-Ga(1)-O(2)-C(28)                               -33.5(4)  

          O(4)-Ga(2)-N(5)-C(33)                              -166.6(4)  

          O(3)-Ga(2)-N(5)-C(33)                               -70.4(4)  

          N(8)-Ga(2)-N(5)-C(33)                                95.0(11)  

          N(6)-Ga(2)-N(5)-C(33)                                16.9(4)  

          N(7)-Ga(2)-N(5)-C(33)                                99.2(4)  

          O(4)-Ga(2)-N(5)-C(29)                                11.9(4)  

          O(3)-Ga(2)-N(5)-C(29)                               108.1(4)  

          N(8)-Ga(2)-N(5)-C(29)                               -86.5(11)  

          N(6)-Ga(2)-N(5)-C(29)                              -164.6(4)  

          N(7)-Ga(2)-N(5)-C(29)                               -82.3(4)  

          C(33)-N(5)-C(29)-C(30)                               -0.1(8)  

          Ga(2)-N(5)-C(29)-C(30)                             -178.6(4)  

          N(5)-C(29)-C(30)-C(31)                               -0.5(8)  

          C(29)-C(30)-C(31)-C(32)                               1.3(9)  

          C(30)-C(31)-C(32)-C(33)                              -1.4(9)  

          C(29)-N(5)-C(33)-C(32)                                0.0(8)  

          Ga(2)-N(5)-C(33)-C(32)                              178.6(4)  

          C(29)-N(5)-C(33)-C(34)                             -179.8(5)  

          Ga(2)-N(5)-C(33)-C(34)                               -1.2(6)  

          C(31)-C(32)-C(33)-N(5)                                0.7(8)  

          C(31)-C(32)-C(33)-C(34)                            -179.4(5)  

          N(5)-C(33)-C(34)-N(6)                               -23.8(7)  

          C(32)-C(33)-C(34)-N(6)                              156.3(5)  

          C(33)-C(34)-N(6)-C(35)                              154.9(4)  

          C(33)-C(34)-N(6)-C(42)                              -84.0(5)  

          C(33)-C(34)-N(6)-Ga(2)                               35.4(5)  

          O(4)-Ga(2)-N(6)-C(34)                               -43.1(9)  
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          O(3)-Ga(2)-N(6)-C(34)                                69.9(3)  

          N(8)-Ga(2)-N(6)-C(34)                               161.6(3)  

          N(5)-Ga(2)-N(6)-C(34)                               -27.9(3)  

          N(7)-Ga(2)-N(6)-C(34)                              -119.9(4)  

          O(4)-Ga(2)-N(6)-C(35)                              -162.8(6)  

          O(3)-Ga(2)-N(6)-C(35)                               -49.8(3)  

          N(8)-Ga(2)-N(6)-C(35)                                41.9(4)  

          N(5)-Ga(2)-N(6)-C(35)                              -147.6(4)  

          N(7)-Ga(2)-N(6)-C(35)                               120.4(3)  

          O(4)-Ga(2)-N(6)-C(42)                                78.0(8)  

          O(3)-Ga(2)-N(6)-C(42)                              -169.0(4)  

          N(8)-Ga(2)-N(6)-C(42)                               -77.3(4)  

          N(5)-Ga(2)-N(6)-C(42)                                93.2(4)  

          N(7)-Ga(2)-N(6)-C(42)                                 1.2(4)  

          C(34)-N(6)-C(35)-C(36)                              -56.4(6)  

          C(42)-N(6)-C(35)-C(36)                             -179.2(5)  

          Ga(2)-N(6)-C(35)-C(36)                               61.5(5)  

          N(6)-C(35)-C(36)-C(37)                              142.6(5)  

          N(6)-C(35)-C(36)-C(41)                              -38.9(8)  

          C(41)-C(36)-C(37)-C(38)                              -1.2(8)  

          C(35)-C(36)-C(37)-C(38)                             177.4(5)  

          C(36)-C(37)-C(38)-C(39)                              -2.1(8)  

          C(36)-C(37)-C(38)-I(5)                             -179.8(4)  

          C(37)-C(38)-C(39)-C(40)                               2.9(8)  

          I(5)-C(38)-C(39)-C(40)                             -179.4(4)  

          C(38)-C(39)-C(40)-C(41)                              -0.5(8)  

          C(38)-C(39)-C(40)-I(6)                             -179.4(4)  

          C(39)-C(40)-C(41)-O(3)                              175.9(5)  

          I(6)-C(40)-C(41)-O(3)                                -5.2(6)  

          C(39)-C(40)-C(41)-C(36)                              -2.7(8)  

          I(6)-C(40)-C(41)-C(36)                              176.2(4)  

          C(37)-C(36)-C(41)-O(3)                             -175.1(5)  

          C(35)-C(36)-C(41)-O(3)                                6.3(8)  

          C(37)-C(36)-C(41)-C(40)                               3.4(8)  

          C(35)-C(36)-C(41)-C(40)                            -175.1(5)  

          C(40)-C(41)-O(3)-Ga(2)                              174.0(3)  

          C(36)-C(41)-O(3)-Ga(2)                               -7.4(7)  

          O(4)-Ga(2)-O(3)-C(41)                              -166.1(4)  

          N(8)-Ga(2)-O(3)-C(41)                               -73.2(4)  

          N(5)-Ga(2)-O(3)-C(41)                               104.4(4)  

          N(6)-Ga(2)-O(3)-C(41)                                26.1(4)  

          N(7)-Ga(2)-O(3)-C(41)                               -22.4(10)  

          C(34)-N(6)-C(42)-C(43)                               90.9(6)  

          C(35)-N(6)-C(42)-C(43)                             -147.3(5)  

          Ga(2)-N(6)-C(42)-C(43)                              -27.5(6)  

          N(6)-C(42)-C(43)-N(7)                                51.1(7)  

          C(42)-C(43)-N(7)-C(50)                             -164.9(4)  

          C(42)-C(43)-N(7)-C(44)                               73.5(6)  

          C(42)-C(43)-N(7)-Ga(2)                              -46.6(5)  

          O(4)-Ga(2)-N(7)-C(50)                               -23.5(4)  

          O(3)-Ga(2)-N(7)-C(50)                              -167.4(6)  

          N(8)-Ga(2)-N(7)-C(50)                              -115.5(4)  

          N(5)-Ga(2)-N(7)-C(50)                                65.2(4)  

          N(6)-Ga(2)-N(7)-C(50)                               143.6(4)  

          O(4)-Ga(2)-N(7)-C(43)                              -142.7(3)  

          O(3)-Ga(2)-N(7)-C(43)                                73.5(8)  

          N(8)-Ga(2)-N(7)-C(43)                               125.3(4)  

          N(5)-Ga(2)-N(7)-C(43)                               -54.0(3)  

          N(6)-Ga(2)-N(7)-C(43)                                24.4(3)  

          O(4)-Ga(2)-N(7)-C(44)                                99.1(3)  

          O(3)-Ga(2)-N(7)-C(44)                               -44.8(9)  

          N(8)-Ga(2)-N(7)-C(44)                                 7.1(3)  

          N(5)-Ga(2)-N(7)-C(44)                              -172.2(4)  
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          N(6)-Ga(2)-N(7)-C(44)                               -93.8(4)  

          C(50)-N(7)-C(44)-C(45)                              112.4(5)  

          C(43)-N(7)-C(44)-C(45)                             -125.7(5)  

          Ga(2)-N(7)-C(44)-C(45)                               -9.8(6)  

          N(7)-C(44)-C(45)-N(8)                                 7.9(7)  

          N(7)-C(44)-C(45)-C(46)                             -170.9(5)  

          N(8)-C(45)-C(46)-C(47)                                0.0(9)  

          C(44)-C(45)-C(46)-C(47)                             178.7(5)  

          C(45)-C(46)-C(47)-C(48)                              -0.8(9)  

          C(46)-C(47)-C(48)-C(49)                              -0.4(9)  

          C(47)-C(48)-C(49)-N(8)                                2.6(9)  

          C(48)-C(49)-N(8)-C(45)                               -3.5(9)  

          C(48)-C(49)-N(8)-Ga(2)                             -178.1(4)  

          C(46)-C(45)-N(8)-C(49)                                2.1(8)  

          C(44)-C(45)-N(8)-C(49)                             -176.7(5)  

          C(46)-C(45)-N(8)-Ga(2)                              177.0(4)  

          C(44)-C(45)-N(8)-Ga(2)                               -1.7(6)  

          O(4)-Ga(2)-N(8)-C(49)                                77.7(5)  

          O(3)-Ga(2)-N(8)-C(49)                               -18.7(5)  

          N(5)-Ga(2)-N(8)-C(49)                               175.7(9)  

          N(6)-Ga(2)-N(8)-C(49)                              -107.8(5)  

          N(7)-Ga(2)-N(8)-C(49)                               171.5(5)  

          O(4)-Ga(2)-N(8)-C(45)                               -96.9(4)  

          O(3)-Ga(2)-N(8)-C(45)                               166.7(4)  

          N(5)-Ga(2)-N(8)-C(45)                                 1.2(12)  

          N(6)-Ga(2)-N(8)-C(45)                                77.6(4)  

          N(7)-Ga(2)-N(8)-C(45)                                -3.1(4)  

          C(43)-N(7)-C(50)-C(51)                              174.3(4)  

          C(44)-N(7)-C(50)-C(51)                              -64.9(5)  

          Ga(2)-N(7)-C(50)-C(51)                               58.6(5)  

          N(7)-C(50)-C(51)-C(52)                              126.5(5)  

          N(7)-C(50)-C(51)-C(56)                              -57.3(6)  

          C(56)-C(51)-C(52)-C(53)                              -4.7(8)  

          C(50)-C(51)-C(52)-C(53)                             171.5(5)  

          C(51)-C(52)-C(53)-C(54)                               1.0(8)  

          C(51)-C(52)-C(53)-I(7)                              178.5(4)  

          C(52)-C(53)-C(54)-C(55)                               2.1(8)  

          I(7)-C(53)-C(54)-C(55)                             -175.4(4)  

          C(53)-C(54)-C(55)-C(56)                              -1.6(8)  

          C(53)-C(54)-C(55)-I(8)                              177.0(4)  

          C(54)-C(55)-C(56)-O(4)                             -179.3(5)  

          I(8)-C(55)-C(56)-O(4)                                 2.2(7)  

          C(54)-C(55)-C(56)-C(51)                              -1.9(8)  

          I(8)-C(55)-C(56)-C(51)                              179.5(4)  

          C(52)-C(51)-C(56)-O(4)                             -177.7(5)  

          C(50)-C(51)-C(56)-O(4)                                6.2(8)  

          C(52)-C(51)-C(56)-C(55)                               5.0(7)  

          C(50)-C(51)-C(56)-C(55)                            -171.1(5)  

          C(55)-C(56)-O(4)-Ga(2)                             -149.7(4)  

          C(51)-C(56)-O(4)-Ga(2)                               33.2(7)  

          O(3)-Ga(2)-O(4)-C(56)                               151.2(4)  

          N(8)-Ga(2)-O(4)-C(56)                                59.0(4)  

          N(5)-Ga(2)-O(4)-C(56)                              -111.5(4)  

          N(6)-Ga(2)-O(4)-C(56)                               -96.6(8)  

          N(7)-Ga(2)-O(4)-C(56)                               -21.1(4)  

         ________________________________________________________________  

   

 Symmetry transformations used to generate equivalent atoms. 
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Crystal Structure Data for Complex 2 

Table C.6. Atomic coordinates ( x 10^4) and equivalent isotropic displacement parameters (A^2 

x 10^3) for 2. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.  

   
         ________________________________________________________________  
   
                         x             y             z           U(eq)  
         ________________________________________________________________  
   
          I(1)         6051(1)       8016(1)       6499(1)       36(1)  
          I(2)         8882(1)       4591(1)       5324(1)       34(1)  
          Zn(1)        5000          4147(1)       7500          23(1)  
          O(1)         6046(2)       5408(2)       7309(1)       25(1)  
          C(1)         6626(2)       5208(3)       6894(2)       22(1)  
          C(2)         6836(3)       6232(3)       6482(2)       24(1)  
          C(3)         7493(3)       6087(4)       6052(2)       27(1)  
          C(4)         7943(3)       4852(4)       6006(2)       28(1)  
          C(5)         7742(3)       3789(4)       6382(2)       31(1)  
          C(6)         7092(3)       3945(3)       6819(2)       26(1)  
          C(7)         6841(3)       2773(4)       7204(2)       30(1)  
          C(8)         5544(3)       1263(3)       7476(2)       35(1)  
          C(9)         5484(3)       2199(4)       6449(2)       32(1)  
          N(1)         5795(2)       2427(3)       7098(1)       28(1)  
          C(10)        4825(3)       3280(3)       6170(2)       28(1)  
          C(11)        4652(3)       3427(4)       5537(2)       35(1)  
          C(12)        4012(3)       4387(4)       5307(2)       40(1)  
          C(13)        3571(3)       5217(4)       5705(2)       39(1)  
          C(14)        3777(3)       5016(4)       6322(2)       32(1)  
          N(2)         4392(2)       4068(3)       6551(1)       27(1)  
         ________________________________________________________________  
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           Table C.7. Bond lengths [A] and angles [deg] for 2. 
           _____________________________________________________________  
   
            I(1)-C(2)                     2.081(3)  
            I(2)-C(4)                     2.095(3)  
            Zn(1)-O(1)                    1.992(2)  
            Zn(1)-O(1)#1                  1.992(2)  
            Zn(1)-N(2)#1                  2.169(3)  
            Zn(1)-N(2)                    2.169(3)  
            Zn(1)-N(1)#1                  2.259(3)  
            Zn(1)-N(1)                    2.259(3)  
            O(1)-C(1)                     1.290(4)  
            C(1)-C(2)                     1.410(5)  
            C(1)-C(6)                     1.427(4)  
            C(2)-C(3)                     1.383(5)  
            C(3)-C(4)                     1.384(5)  
            C(4)-C(5)                     1.384(5)  
            C(5)-C(6)                     1.390(5)  
            C(6)-C(7)                     1.499(5)  
            C(7)-N(1)                     1.487(5)  
            C(8)-N(1)                     1.484(5)  
            C(8)-C(8)#1                   1.524(9)  
            C(9)-N(1)                     1.464(5)  
            C(9)-C(10)                    1.499(5)  
            C(10)-N(2)                    1.332(4)  
            C(10)-C(11)                   1.391(5)  
            C(11)-C(12)                   1.364(6)  
            C(12)-C(13)                   1.386(6)  
            C(13)-C(14)                   1.372(6)  
            C(14)-N(2)                    1.333(5)  
   
            O(1)-Zn(1)-O(1)#1           102.20(13)  
            O(1)-Zn(1)-N(2)#1            90.23(11)  
            O(1)#1-Zn(1)-N(2)#1          92.38(11)  
            O(1)-Zn(1)-N(2)              92.38(11)  
            O(1)#1-Zn(1)-N(2)            90.23(11)  
            N(2)#1-Zn(1)-N(2)           175.83(16)  
            O(1)-Zn(1)-N(1)#1           162.04(11)  
            O(1)#1-Zn(1)-N(1)#1          89.88(10)  
            N(2)#1-Zn(1)-N(1)#1          75.88(11)  
            N(2)-Zn(1)-N(1)#1           100.90(11)  
            O(1)-Zn(1)-N(1)              89.88(10)  
            O(1)#1-Zn(1)-N(1)           162.04(11)  
            N(2)#1-Zn(1)-N(1)           100.90(11)  
            N(2)-Zn(1)-N(1)              75.88(11)  
            N(1)#1-Zn(1)-N(1)            81.80(15)  
            C(1)-O(1)-Zn(1)             124.9(2)  
            O(1)-C(1)-C(2)              121.7(3)  
            O(1)-C(1)-C(6)              122.5(3)  
            C(2)-C(1)-C(6)              115.8(3)  
            C(3)-C(2)-C(1)              123.7(3)  
            C(3)-C(2)-I(1)              118.9(2)  
            C(1)-C(2)-I(1)              117.3(2)  
            C(2)-C(3)-C(4)              118.3(3)  
            C(3)-C(4)-C(5)              120.8(3)  
            C(3)-C(4)-I(2)              118.6(3)  
            C(5)-C(4)-I(2)              120.5(3)  
            C(4)-C(5)-C(6)              120.7(3)  
            C(5)-C(6)-C(1)              120.6(3)  
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            C(5)-C(6)-C(7)              120.4(3)  
            C(1)-C(6)-C(7)              118.9(3)  
            N(1)-C(7)-C(6)              111.7(3)  
            N(1)-C(8)-C(8)#1            109.1(3)  
            N(1)-C(9)-C(10)             113.3(3)  
            C(9)-N(1)-C(8)              111.2(3)  
            C(9)-N(1)-C(7)              112.0(3)  
            C(8)-N(1)-C(7)              111.9(3)  
            C(9)-N(1)-Zn(1)             112.8(2)  
            C(8)-N(1)-Zn(1)             102.7(2)  
            C(7)-N(1)-Zn(1)             105.7(2)  
            N(2)-C(10)-C(11)            121.4(4)  
            N(2)-C(10)-C(9)             117.3(3)  
            C(11)-C(10)-C(9)            121.3(3)  
            C(12)-C(11)-C(10)           118.9(4)  
            C(11)-C(12)-C(13)           119.6(4)  
            C(14)-C(13)-C(12)           118.3(4)  
            N(2)-C(14)-C(13)            122.4(4)  
            C(10)-N(2)-C(14)            119.3(3)  
            C(10)-N(2)-Zn(1)            117.9(3)  
            C(14)-N(2)-Zn(1)            120.5(2)  
           _____________________________________________________________  

   Symmetry transformations used to generate equivalent atoms:  

           #1 -x+1,y,-z+3/2      
 
 
 
 

Table C.8. Anisotropic displacement parameters (A^2 x 10^3) for 2. The anisotropic 

displacement factor exponent takes the form: -2 pi^2 [ h^2 a*^2 U11 + ... + 2 h k a* b* U12 ]  
   
    _______________________________________________________________________  
   
              U11        U22        U33        U23        U13        U12  
    _______________________________________________________________________  
   
    I(1)     40(1)      24(1)      48(1)       9(1)      18(1)      11(1)  
    I(2)     32(1)      41(1)      33(1)      -6(1)      15(1)       2(1)  
    Zn(1)    31(1)      16(1)      22(1)       0          9(1)       0  
    O(1)     32(1)      20(1)      25(1)       0(1)      13(1)       2(1)  
    C(1)     26(2)      20(1)      22(2)       1(1)       5(1)       4(1)  
    C(2)     30(2)      21(1)      23(2)       1(1)       7(1)       4(1)  
    C(3)     30(2)      27(2)      25(2)       2(1)       8(1)       4(1)  
    C(4)     31(2)      32(2)      23(2)      -2(1)      10(1)       5(1)  
    C(5)     33(2)      25(2)      36(2)      -2(1)       8(2)       9(1)  
    C(6)     32(2)      24(2)      24(2)       2(1)       6(1)       7(1)  
    C(7)     40(2)      24(2)      28(2)       6(1)       9(2)      10(1)  
    C(8)     52(2)      16(1)      38(2)       1(1)      14(2)       3(2)  
    C(9)     45(2)      24(2)      29(2)      -8(1)      11(2)       3(2)  
    N(1)     37(2)      17(1)      30(2)       0(1)       9(1)       3(1)  
    C(10)    38(2)      22(2)      26(2)      -3(1)       9(2)      -3(1)  
    C(11)    52(3)      29(2)      26(2)      -6(2)      13(2)      -6(2)  
    C(12)    58(3)      37(2)      24(2)      -2(2)       4(2)      -4(2)  
    C(13)    44(2)      37(2)      34(2)       1(2)       0(2)       2(2)  
    C(14)    38(2)      29(2)      30(2)      -1(1)       8(2)       2(2)  
    N(2)     34(2)      25(1)      24(2)      -2(1)       8(1)       0(1)  
    _______________________________________________________________________  
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Table C.9. Hydrogen coordinates ( x 10^4) and isotropic displacement parameters (A^2 x 10^3) 

for 2.  

   
         ________________________________________________________________  
   
                         x             y             z           U(eq)  
         ________________________________________________________________  
   
          H(3)         7631          6817          5794          32  
          H(5)         8052          2945          6340          37  
          H(11)        4973          2868          5271          42  
          H(12)        3870          4486          4876          48  
          H(13)        3137          5908          5553          46  
          H(14)        3471          5573          6598          38  
          H(7A)        6940(30)      2920(40)      7549(19)      16(10)  
          H(7B)        7240(30)      1970(40)      7136(18)      26(10)  
          H(8A)        5780(30)       490(40)      7283(18)      24(10)  
          H(8B)        5990(30)      1410(40)      7909(18)      20(9)  
          H(9A)        5970(30)      2160(40)      6290(20)      25(11)  
          H(9B)        5080(30)      1430(40)      6399(17)      22(10)  
         ________________________________________________________________  
  
 
 
 

Table C.10. Torsion angles [deg] for 2.  
         ________________________________________________________________  
   
          O(1)#1-Zn(1)-O(1)-C(1)                             -143.4(3)  
          N(2)#1-Zn(1)-O(1)-C(1)                              124.1(3)  
          N(2)-Zn(1)-O(1)-C(1)                                -52.7(3)  
          N(1)#1-Zn(1)-O(1)-C(1)                               85.2(4)  
          N(1)-Zn(1)-O(1)-C(1)                                 23.2(3)  
          Zn(1)-O(1)-C(1)-C(2)                                134.5(3)  
          Zn(1)-O(1)-C(1)-C(6)                                -45.2(5)  
          O(1)-C(1)-C(2)-C(3)                                 176.4(4)  
          C(6)-C(1)-C(2)-C(3)                                  -3.9(5)  
          O(1)-C(1)-C(2)-I(1)                                  -7.0(5)  
          C(6)-C(1)-C(2)-I(1)                                 172.7(3)  
          C(1)-C(2)-C(3)-C(4)                                   2.6(6)  
          I(1)-C(2)-C(3)-C(4)                                -174.0(3)  
          C(2)-C(3)-C(4)-C(5)                                  -0.1(6)  
          C(2)-C(3)-C(4)-I(2)                                 176.8(3)  
          C(3)-C(4)-C(5)-C(6)                                  -0.8(6)  
          I(2)-C(4)-C(5)-C(6)                                -177.6(3)  
          C(4)-C(5)-C(6)-C(1)                                  -0.7(6)  
          C(4)-C(5)-C(6)-C(7)                                 177.1(4)  
          O(1)-C(1)-C(6)-C(5)                                -177.4(4)  
          C(2)-C(1)-C(6)-C(5)                                   2.9(5)  
          O(1)-C(1)-C(6)-C(7)                                   4.8(6)  
          C(2)-C(1)-C(6)-C(7)                                -174.9(3)  
          C(5)-C(6)-C(7)-N(1)                                -117.6(4)  
          C(1)-C(6)-C(7)-N(1)                                  60.3(5)  
          C(10)-C(9)-N(1)-C(8)                                123.7(3)  
          C(10)-C(9)-N(1)-C(7)                               -110.3(4)  
          C(10)-C(9)-N(1)-Zn(1)                                 8.9(4)  
          C(8)#1-C(8)-N(1)-C(9)                               -73.6(4)  
          C(8)#1-C(8)-N(1)-C(7)                               160.3(3)  
          C(8)#1-C(8)-N(1)-Zn(1)                               47.4(4)  
          C(6)-C(7)-N(1)-C(9)                                  54.1(4)  
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          C(6)-C(7)-N(1)-C(8)                                 179.7(3)  
          C(6)-C(7)-N(1)-Zn(1)                                -69.3(3)  
          O(1)-Zn(1)-N(1)-C(9)                                -92.6(3)  
          O(1)#1-Zn(1)-N(1)-C(9)                               40.2(5)  
          N(2)#1-Zn(1)-N(1)-C(9)                              177.2(3)  
          N(2)-Zn(1)-N(1)-C(9)                                 -0.1(3)  
          N(1)#1-Zn(1)-N(1)-C(9)                              103.4(3)  
          O(1)-Zn(1)-N(1)-C(8)                                147.6(3)  
          O(1)#1-Zn(1)-N(1)-C(8)                              -79.6(4)  
          N(2)#1-Zn(1)-N(1)-C(8)                               57.4(3)  
          N(2)-Zn(1)-N(1)-C(8)                               -119.9(3)  
          N(1)#1-Zn(1)-N(1)-C(8)                              -16.4(2)  
          O(1)-Zn(1)-N(1)-C(7)                                 30.2(2)  
          O(1)#1-Zn(1)-N(1)-C(7)                              163.0(3)  
          N(2)#1-Zn(1)-N(1)-C(7)                              -60.0(2)  
          N(2)-Zn(1)-N(1)-C(7)                                122.7(2)  
          N(1)#1-Zn(1)-N(1)-C(7)                             -133.8(3)  
          N(1)-C(9)-C(10)-N(2)                                -18.2(5)  
          N(1)-C(9)-C(10)-C(11)                               163.6(4)  
          N(2)-C(10)-C(11)-C(12)                               -1.0(6)  
          C(9)-C(10)-C(11)-C(12)                              177.1(4)  
          C(10)-C(11)-C(12)-C(13)                               1.8(6)  
          C(11)-C(12)-C(13)-C(14)                              -1.7(7)  
          C(12)-C(13)-C(14)-N(2)                                0.8(6)  
          C(11)-C(10)-N(2)-C(14)                                0.1(5)  
          C(9)-C(10)-N(2)-C(14)                              -178.0(4)  
          C(11)-C(10)-N(2)-Zn(1)                             -163.0(3)  
          C(9)-C(10)-N(2)-Zn(1)                                18.9(4)  
          C(13)-C(14)-N(2)-C(10)                                0.0(6)  
          C(13)-C(14)-N(2)-Zn(1)                              162.6(3)  
          O(1)-Zn(1)-N(2)-C(10)                                79.1(3)  
          O(1)#1-Zn(1)-N(2)-C(10)                            -178.7(3)  
          N(2)#1-Zn(1)-N(2)-C(10)                             -49.8(3)  
          N(1)#1-Zn(1)-N(2)-C(10)                             -88.8(3)  
          N(1)-Zn(1)-N(2)-C(10)                               -10.2(3)  
          O(1)-Zn(1)-N(2)-C(14)                               -83.8(3)  
          O(1)#1-Zn(1)-N(2)-C(14)                              18.4(3)  
          N(2)#1-Zn(1)-N(2)-C(14)                             147.3(3)  
          N(1)#1-Zn(1)-N(2)-C(14)                             108.3(3)  
          N(1)-Zn(1)-N(2)-C(14)                              -173.1(3)  
         ________________________________________________________________  
   

         Symmetry transformations used to generate equivalent atoms:  

         #1 -x+1,y,-z+3/2      
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Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom 

used to define plane). 
 
  9.4973 (0.0156) x + 2.9408 (0.0146) y + 13.0276 (0.0271) z = 16.7863 (0.0065)  
 
 *    0.0189 (0.0025)  C1 
 *   -0.0172 (0.0026)  C2 
 *    0.0035 (0.0027)  C3 
 *    0.0082 (0.0028)  C4 
 *   -0.0054 (0.0028)  C5 
 *   -0.0079 (0.0028)  C6 
      0.0671 (0.0051)  O1 
     -1.0474 (0.0063)  Zn1 
     -0.0885 (0.0065)  C7 
 

 Rms deviation of fitted atoms =   0.0117 
 
 
  10.5097 (0.0154) x + 6.4780 (0.0128) y - 1.4924 (0.0346) z = 6.2755 (0.0208)  
 

 Angle to previous plane (with approximate esd) = 44.15 ( 0.14 ) 

 
 *   -0.0007 (0.0026)  C10 
 *    0.0066 (0.0028)  C11 
 *   -0.0092 (0.0030)  C12 
 *    0.0058 (0.0030)  C13 
 *    0.0001 (0.0028)  C14 
 *   -0.0027 (0.0025)  N2 
      0.5465 (0.0054)  Zn1 
     -0.0500 (0.0065)  C9 
 

 Rms deviation of fitted atoms =   0.0053 
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Figure C.1. Unit cell crystal structure for complex 2. 
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APPENDIX D 

Supplementary Material for Chapter 6 

 

 

Figure D.6.2.1 Isotopic distribution for complex 3 (left) and 4 (right). Experimental results are 

represented by the bars, whereas simulated results are designated by the continuous spectra. 
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Figure D.6.2.3.1 
1
H- and 

13
C-NMR spectra for complex 1 recorded in DMSO-d6 at room 

temperature. 
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Figure D.6.2.3.2 Time dependent 
1
H-NMR spectra for complex 1 recorded in DMSO-d6 at room 

temperature. 
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Figure D.6.2.3.3 
1
H-NMR spectra for complexes 2 (top) and 4 (bottom) in DMSO-d6 at room 

temperature. 
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Figure D.6.2.3.4 
1
H- and 

13
C-NMR spectra for complex 5 recorded in DMSO-d6 at room 

temperature. 
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Crystal Structure Data for Complex 3 

 

Table D.6.5.2.1 Atomic coordinates ( x 10^4) and equivalent isotropic displacement parameters 

(A^2 x 10^3) for 3.  U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.  
   

         ________________________________________________________________  

   

                         x             y             z           U(eq)  

         ________________________________________________________________  

   

          Hg(1)        5000          5000          5000          16(1)  

          I(1)          464(1)       1348(1)       4018(1)       24(1)  

          I(2)         3227(1)       4852(1)        768(1)       23(1)  

          N(1)         4209(2)       7004(2)       5971(2)       19(1)  

          C(1)         4375(3)       8209(3)       5643(3)       25(1)  

          C(2)         3859(3)       9204(3)       6306(3)       27(1)  

          C(3)         3152(3)       8947(3)       7344(3)       26(1)  

          C(4)         2972(3)       7701(3)       7676(3)       21(1)  

          C(5)         3512(3)       6756(3)       6967(3)       17(1)  

          C(6)         3408(3)       5350(3)       7333(3)       18(1)  

          N(2)         3399(2)       4710(2)       6288(2)       16(1)  

          C(7)         2050(3)       5212(3)       5598(3)       17(1)  

          C(8)         2032(3)       4504(3)       4571(3)       16(1)  

          C(9)         1457(3)       3481(3)       4730(3)       17(1)  

          C(10)        1394(3)       2844(3)       3769(3)       20(1)  

          C(11)        1892(3)       3239(3)       2627(3)       19(1)  

          C(12)        2477(3)       4244(3)       2486(3)       17(1)  

          C(13)        2606(3)       4919(3)       3431(3)       16(1)  

          O(1)         3177(2)       5843(2)       3285(2)       18(1)  

          S(1)         5052(1)        966(1)       8338(1)       24(1)  

          O(2)         4033(2)       1924(2)       7332(2)       23(1)  

          C(14)        5707(4)       1942(3)       9124(3)       32(1)  

          C(15)        6568(4)        320(4)       7583(4)       43(1)  

          S(2)          267(1)       1820(1)       9379(1)       31(1)  

          O(3)         1513(2)        631(2)       9824(2)       40(1)  

          C(16)        -389(4)       1545(3)       8017(3)       33(1)  

          C(17)         879(4)       3147(3)       8646(4)       35(1)  

         ________________________________________________________________  

 

 

 

 

Table D.6.5.2.2  Bond lengths [A] and angles [deg] for 3.  
           _____________________________________________________________  

   

            Hg(1)-N(2)#1                  2.225(2)  

            Hg(1)-N(2)                    2.225(2)  

            Hg(1)-N(1)                    2.505(2)  

            Hg(1)-N(1)#1                  2.505(2)  

            Hg(1)-O(1)#1                  2.5063(19)  

            Hg(1)-O(1)                    2.5063(19)  

            I(1)-C(10)                    2.096(3)  

            I(2)-C(12)                    2.095(3)  

            N(1)-C(5)                     1.334(4)  

            N(1)-C(1)                     1.335(4)  

            C(1)-C(2)                     1.384(4)  

            C(2)-C(3)                     1.378(5)  

            C(3)-C(4)                     1.384(4)  

            C(4)-C(5)                     1.383(4)  

            C(5)-C(6)                     1.519(4)  

            C(6)-N(2)                     1.462(4)  
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            N(2)-C(7)                     1.487(4)  

            C(7)-C(8)                     1.495(4)  

            C(8)-C(9)                     1.390(4)  

            C(8)-C(13)                    1.432(4)  

            C(9)-C(10)                    1.389(4)  

            C(10)-C(11)                   1.390(4)  

            C(11)-C(12)                   1.380(4)  

            C(12)-C(13)                   1.419(4)  

            C(13)-O(1)                    1.291(3)  

            S(1)-O(2)                     1.509(2)  

            S(1)-C(15)                    1.777(4)  

            S(1)-C(14)                    1.779(3)  

            S(2)-O(3)                     1.501(2)  

            S(2)-C(16)                    1.775(4)  

            S(2)-C(17)                    1.781(4)  

   

            N(2)#1-Hg(1)-N(2)           180.000(1)  

            N(2)#1-Hg(1)-N(1)           107.58(8)  

            N(2)-Hg(1)-N(1)              72.42(8)  

            N(2)#1-Hg(1)-N(1)#1          72.42(8)  

            N(2)-Hg(1)-N(1)#1           107.58(8)  

            N(1)-Hg(1)-N(1)#1           180.00(9)  

            N(2)#1-Hg(1)-O(1)#1          87.14(8)  

            N(2)-Hg(1)-O(1)#1            92.86(7)  

            N(1)-Hg(1)-O(1)#1            83.49(7)  

            N(1)#1-Hg(1)-O(1)#1          96.51(7)  

            N(2)#1-Hg(1)-O(1)            92.86(7)  

            N(2)-Hg(1)-O(1)              87.14(8)  

            N(1)-Hg(1)-O(1)              96.51(7)  

            N(1)#1-Hg(1)-O(1)            83.49(7)  

            O(1)#1-Hg(1)-O(1)           180.0  

            C(5)-N(1)-C(1)              118.8(3)  

            C(5)-N(1)-Hg(1)             110.67(17)  

            C(1)-N(1)-Hg(1)             130.5(2)  

            N(1)-C(1)-C(2)              122.3(3)  

            C(3)-C(2)-C(1)              119.1(3)  

            C(2)-C(3)-C(4)              118.4(3)  

            C(5)-C(4)-C(3)              119.3(3)  

            N(1)-C(5)-C(4)              122.0(3)  

            N(1)-C(5)-C(6)              116.6(2)  

            C(4)-C(5)-C(6)              121.3(3)  

            N(2)-C(6)-C(5)              114.2(2)  

            C(6)-N(2)-C(7)              112.4(2)  

            C(6)-N(2)-Hg(1)             110.61(17)  

            C(7)-N(2)-Hg(1)             109.96(16)  

            N(2)-C(7)-C(8)              112.0(2)  

            C(9)-C(8)-C(13)             121.6(3)  

            C(9)-C(8)-C(7)              120.1(3)  

            C(13)-C(8)-C(7)             118.2(2)  

            C(10)-C(9)-C(8)             120.7(3)  

            C(9)-C(10)-C(11)            120.1(3)  

            C(9)-C(10)-I(1)             119.8(2)  

            C(11)-C(10)-I(1)            120.0(2)  

            C(12)-C(11)-C(10)           118.6(3)  

            C(11)-C(12)-C(13)           124.5(3)  

            C(11)-C(12)-I(2)            119.0(2)  

            C(13)-C(12)-I(2)            116.5(2)  

            O(1)-C(13)-C(12)            123.5(3)  

            O(1)-C(13)-C(8)             122.2(3)  

            C(12)-C(13)-C(8)            114.3(2)  

            C(13)-O(1)-Hg(1)            103.89(15)  

            O(2)-S(1)-C(15)             105.92(15)  

            O(2)-S(1)-C(14)             107.61(14)  
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            C(15)-S(1)-C(14)             95.48(18)  

            O(3)-S(2)-C(16)             106.34(16)  

            O(3)-S(2)-C(17)             105.60(16)  

            C(16)-S(2)-C(17)             97.48(17)  

           _____________________________________________________________  

   

      Symmetry transformations used to generate equivalent atoms:  

           #1 -x+1,-y+1,-z+1      
  

 

 

 

    Table D.6.5.2.3 Anisotropic displacement parameters (A^2 x 10^3) for 3.  

    The anisotropic displacement factor exponent takes the form:  

    -2 pi^2 [ h^2 a*^2 U11 + ... + 2 h k a* b* U12 ]  
    _______________________________________________________________________  

   

              U11        U22        U33        U23        U13        U12  

    _______________________________________________________________________  

   

    Hg(1)    16(1)      21(1)      15(1)      -8(1)       1(1)      -8(1)  

    I(1)     23(1)      22(1)      34(1)     -12(1)       3(1)     -12(1)  

    I(2)     30(1)      27(1)      15(1)      -7(1)       1(1)     -13(1)  

    N(1)     25(1)      20(1)      15(1)      -5(1)       0(1)      -9(1)  

    C(1)     33(2)      23(2)      22(2)      -3(1)      -1(1)     -13(1)  

    C(2)     36(2)      16(1)      29(2)      -5(1)      -7(1)      -9(1)  

    C(3)     25(2)      20(2)      32(2)     -12(1)      -7(1)      -2(1)  

    C(4)     22(2)      23(2)      19(2)      -8(1)      -2(1)      -5(1)  

    C(5)     18(1)      17(1)      16(1)      -7(1)      -3(1)      -3(1)  

    C(6)     23(2)      18(1)      15(1)      -7(1)       2(1)      -9(1)  

    N(2)     20(1)      13(1)      15(1)      -3(1)       0(1)      -5(1)  

    C(7)     18(1)      20(1)      14(1)      -9(1)       1(1)      -6(1)  

    C(8)     14(1)      17(1)      17(1)      -6(1)      -1(1)      -2(1)  

    C(9)     14(1)      19(1)      19(2)      -6(1)       0(1)      -5(1)  

    C(10)    16(1)      18(1)      27(2)      -7(1)      -2(1)      -5(1)  

    C(11)    18(2)      19(1)      20(2)      -8(1)      -3(1)      -3(1)  

    C(12)    17(1)      20(1)      12(1)      -4(1)      -2(1)      -4(1)  

    C(13)    14(1)      15(1)      16(1)      -2(1)      -5(1)      -2(1)  

    O(1)     22(1)      18(1)      17(1)      -2(1)      -3(1)      -8(1)  

    S(1)     29(1)      16(1)      24(1)      -2(1)      -4(1)      -7(1)  

    O(2)     23(1)      16(1)      27(1)      -2(1)      -3(1)      -5(1)  

    C(14)    40(2)      26(2)      29(2)     -11(1)     -11(2)      -6(2)  

    C(15)    30(2)      52(2)      41(2)     -26(2)     -11(2)       7(2)  

    S(2)     27(1)      31(1)      28(1)      -1(1)      -1(1)      -4(1)  

    O(3)     34(1)      36(1)      36(2)       6(1)     -15(1)      -1(1)  

    C(16)    31(2)      28(2)      37(2)      -2(2)     -11(2)      -7(1)  

    C(17)    31(2)      31(2)      41(2)      -5(2)      -3(2)      -9(2)  

    _______________________________________________________________________  
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Table D.6.5.2.4 Hydrogen coordinates ( x 10^4) and isotropic displacement parameters (A^2 x 

10^3) for 3.  
   

         ________________________________________________________________  

   

                         x             y             z           U(eq)  

         ________________________________________________________________  

   

          H(1)         4864          8389          4930          30  

          H(2)         3991         10053          6050          32  

          H(3)         2795          9610          7820          31  

          H(4)         2483          7497          8383          26  

          H(6A)        4186          4779          7918          21  

          H(6B)        2564          5395          7777          21  

          H(2A)        3599          3793          6601          19  

          H(7A)        1821          6188          5249          20  

          H(7B)        1346          5082          6181          20  

          H(9)         1102          3214          5504          21  

          H(11)        1831          2826          1958          23  

          H(14A)       6020          2573          8516          39  

          H(14B)       6471          1348          9696          39  

          H(14C)       4989          2444          9591          39  

          H(15A)       6422          -257          7055          51  

          H(15B)       7308          -205          8207          51  

          H(15C)       6809          1066          7072          51  

          H(16A)        308          1445          7403          40  

          H(16B)      -1193          2312          7674          40  

          H(16C)       -644           726          8224          40  

          H(17A)       1262          3468          9279          42  

          H(17B)        126          3887          8172          42  

          H(17C)       1586          2816          8085          42  

         ________________________________________________________________  

  

 

 

 

 

 

    Table D.6.5.2.5 Torsion angles [deg] for 3.  
         ________________________________________________________________  

   

          N(2)#1-Hg(1)-N(1)-C(5)                             -164.42(18)  

          N(2)-Hg(1)-N(1)-C(5)                                 15.58(18)  

          N(1)#1-Hg(1)-N(1)-C(5)                              -32(100)  

          O(1)#1-Hg(1)-N(1)-C(5)                              -79.51(19)  

          O(1)-Hg(1)-N(1)-C(5)                                100.49(19)  

          N(2)#1-Hg(1)-N(1)-C(1)                               15.9(3)  

          N(2)-Hg(1)-N(1)-C(1)                               -164.1(3)  

          N(1)#1-Hg(1)-N(1)-C(1)                              148(100)  

          O(1)#1-Hg(1)-N(1)-C(1)                              100.8(3)  

          O(1)-Hg(1)-N(1)-C(1)                                -79.2(3)  

          C(5)-N(1)-C(1)-C(2)                                   0.6(5)  

          Hg(1)-N(1)-C(1)-C(2)                               -179.8(2)  

          N(1)-C(1)-C(2)-C(3)                                   0.2(5)  

          C(1)-C(2)-C(3)-C(4)                                  -0.7(5)  

          C(2)-C(3)-C(4)-C(5)                                   0.4(4)  

          C(1)-N(1)-C(5)-C(4)                                  -0.8(4)  

          Hg(1)-N(1)-C(5)-C(4)                                179.5(2)  

          C(1)-N(1)-C(5)-C(6)                                -177.3(3)  

          Hg(1)-N(1)-C(5)-C(6)                                  3.0(3)  

          C(3)-C(4)-C(5)-N(1)                                   0.3(4)  

          C(3)-C(4)-C(5)-C(6)                                 176.7(3)  
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          N(1)-C(5)-C(6)-N(2)                                 -31.5(4)  

          C(4)-C(5)-C(6)-N(2)                                 152.0(3)  

          C(5)-C(6)-N(2)-C(7)                                 -78.2(3)  

          C(5)-C(6)-N(2)-Hg(1)                                 45.2(3)  

          N(2)#1-Hg(1)-N(2)-C(6)                             -166(100)  

          N(1)-Hg(1)-N(2)-C(6)                                -30.91(16)  

          N(1)#1-Hg(1)-N(2)-C(6)                              149.09(16)  

          O(1)#1-Hg(1)-N(2)-C(6)                               51.34(17)  

          O(1)-Hg(1)-N(2)-C(6)                               -128.66(17)  

          N(2)#1-Hg(1)-N(2)-C(7)                              -42(100)  

          N(1)-Hg(1)-N(2)-C(7)                                 93.83(18)  

          N(1)#1-Hg(1)-N(2)-C(7)                              -86.17(18)  

          O(1)#1-Hg(1)-N(2)-C(7)                              176.08(17)  

          O(1)-Hg(1)-N(2)-C(7)                                 -3.92(17)  

          C(6)-N(2)-C(7)-C(8)                                -177.2(2)  

          Hg(1)-N(2)-C(7)-C(8)                                 59.1(3)  

          N(2)-C(7)-C(8)-C(9)                                 100.7(3)  

          N(2)-C(7)-C(8)-C(13)                                -80.0(3)  

          C(13)-C(8)-C(9)-C(10)                                -1.4(4)  

          C(7)-C(8)-C(9)-C(10)                                177.9(2)  

          C(8)-C(9)-C(10)-C(11)                                -0.9(4)  

          C(8)-C(9)-C(10)-I(1)                               -178.0(2)  

          C(9)-C(10)-C(11)-C(12)                                1.7(4)  

          I(1)-C(10)-C(11)-C(12)                              178.9(2)  

          C(10)-C(11)-C(12)-C(13)                              -0.3(4)  

          C(10)-C(11)-C(12)-I(2)                             -179.8(2)  

          C(11)-C(12)-C(13)-O(1)                              178.9(3)  

          I(2)-C(12)-C(13)-O(1)                                -1.6(3)  

          C(11)-C(12)-C(13)-C(8)                               -1.8(4)  

          I(2)-C(12)-C(13)-C(8)                               177.68(18)  

          C(9)-C(8)-C(13)-O(1)                               -178.0(2)  

          C(7)-C(8)-C(13)-O(1)                                  2.6(4)  

          C(9)-C(8)-C(13)-C(12)                                 2.7(4)  

          C(7)-C(8)-C(13)-C(12)                              -176.7(2)  

          C(12)-C(13)-O(1)-Hg(1)                             -124.2(2)  

          C(8)-C(13)-O(1)-Hg(1)                                56.6(3)  

          N(2)#1-Hg(1)-O(1)-C(13)                             128.95(18)  

          N(2)-Hg(1)-O(1)-C(13)                               -51.05(18)  

          N(1)-Hg(1)-O(1)-C(13)                              -122.99(17)  

          N(1)#1-Hg(1)-O(1)-C(13)                              57.01(17)  

          O(1)#1-Hg(1)-O(1)-C(13)                              69(100)  

         ________________________________________________________________  

   

         Symmetry transformations used to generate equivalent atoms:  

         #1 -x+1,-y+1,-z+1      
  

 

 Table D.6.5.2.6 Hydrogen bonds for 3 [A and deg.].  
 ____________________________________________________________________________  

   

 Hydrogen bonds with  H..A < r(A) + 2.000 Angstroms  and  <DHA > 110 deg. 

 

 D-H           d(D-H)   d(H..A)   <DHA    d(D..A)   A 

 

 N2-H2A         0.930    1.911   176.84    2.840    O2  

  

 

 

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom 

used to define plane) 
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  8.1882 (0.0081) x + 0.3929 (0.0136) y + 5.7482 (0.0118) z = 7.1494 (0.0147)  

 

 *    0.0044 (0.0019)  N1 

 *   -0.0010 (0.0022)  C1 

 *   -0.0031 (0.0022)  C2 

 *    0.0040 (0.0021)  C3 

 *   -0.0008 (0.0021)  C4 

 *   -0.0034 (0.0020)  C5 

      0.0668 (0.0048)  C6 

      0.0153 (0.0048)  Hg1 

     -0.5669 (0.0052)  N2 

 

 Rms deviation of fitted atoms =   0.0031 

 
 

  7.3811 (0.0080) x - 3.9666 (0.0109) y + 2.0290 (0.0119) z = 0.6539 (0.0078)  

 

 

 Angle to previous plane (with approximate esd) = 27.92 ( 0.14 ) 

 
 *   -0.0132 (0.0019)  C8 

 *    0.0002 (0.0019)  C9 

 *    0.0113 (0.0019)  C10 

 *   -0.0090 (0.0019)  C11 

 *   -0.0041 (0.0019)  C12 

 *    0.0147 (0.0018)  C13 

     -0.0727 (0.0043)  C7 

      0.0402 (0.0037)  O1 

      2.0679 (0.0040)  Hg1 

 

 Rms deviation of fitted atoms =   0.0101 
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Crystal Structure Data for Complex 5 

 

 

Table D.6.5.2.7 Atomic coordinates ( x 10^4) and equivalent isotropic displacement parameters 

(A^2 x 10^3) for 5. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.  
         ________________________________________________________________  

   

                         x             y             z           U(eq)  

         ________________________________________________________________  

   

          I(1)         4318(1)       2107(1)       7919(1)       24(1)  

          I(2)        -3230(1)       -769(1)       5830(1)       23(1)  

          Sn(1)       -1840(1)      -4119(1)       7998(1)       13(1)  

          N(1)         -218(3)      -3743(2)       6749(2)       15(1)  

          C(1)         -959(4)      -3690(3)       5620(2)       17(1)  

          C(2)           71(4)      -3212(3)       4931(3)       22(1)  

          C(3)         1878(4)      -2766(3)       5415(3)       24(1)  

          C(4)         2633(4)      -2807(3)       6582(3)       21(1)  

          C(5)         1536(4)      -3313(3)       7233(3)       17(1)  

          C(6)         2253(4)      -3458(3)       8487(3)       19(1)  

          N(2)          912(3)      -3276(2)       9185(2)       16(1)  

          C(7)         1039(4)      -1819(3)       9815(2)       19(1)  

          C(8)          852(4)       -929(3)       8937(2)       16(1)  

          C(9)         2282(4)         36(3)       8924(2)       19(1)  

          C(10)        2130(4)        756(3)       8035(2)       18(1)  

          C(11)         542(4)        537(3)       7168(3)       19(1)  

          C(12)        -905(4)       -414(3)       7188(2)       16(1)  

          C(13)        -784(4)      -1179(3)       8062(2)       15(1)  

          O(1)        -2151(3)      -2133(2)       8055(2)       16(1)  

          Cl(4)       -1029(1)      -6343(1)       7942(1)       19(1)  

          Cl(5)       -4489(1)      -5014(1)       6495(1)       23(1)  

          Cl(6)       -3034(1)      -4176(1)       9641(1)       20(1)  

         ________________________________________________________________  

  

 

 

 

 

  Table D.6.5.2.8 Bond lengths [A] and angles [deg] for 5.  
           _____________________________________________________________  

   

            I(1)-C(10)                    2.092(3)  

            I(2)-C(12)                    2.079(3)  

            Sn(1)-O(1)                    2.0564(18)  

            Sn(1)-N(1)                    2.215(2)  

            Sn(1)-N(2)                    2.243(2)  

            Sn(1)-Cl(5)                   2.3479(7)  

            Sn(1)-Cl(6)                   2.3561(7)  

            Sn(1)-Cl(4)                   2.4227(7)  

            N(1)-C(5)                     1.340(4)  

            N(1)-C(1)                     1.351(4)  

            C(1)-C(2)                     1.379(4)  

            C(2)-C(3)                     1.377(5)  

            C(3)-C(4)                     1.390(4)  

            C(4)-C(5)                     1.391(4)  

            C(5)-C(6)                     1.513(4)  

            C(6)-N(2)                     1.489(4)  

            N(2)-C(7)                     1.505(4)  

            C(7)-C(8)                     1.503(4)  

            C(8)-C(9)                     1.389(4)  

            C(8)-C(13)                    1.413(4)  
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            C(9)-C(10)                    1.389(4)  

            C(10)-C(11)                   1.384(4)  

            C(11)-C(12)                   1.393(4)  

            C(12)-C(13)                   1.407(4)  

            C(13)-O(1)                    1.339(3)  

   

            O(1)-Sn(1)-N(1)              83.87(8)  

            O(1)-Sn(1)-N(2)              87.27(8)  

            N(1)-Sn(1)-N(2)              76.41(9)  

            O(1)-Sn(1)-Cl(5)             93.22(6)  

            N(1)-Sn(1)-Cl(5)             94.14(7)  

            N(2)-Sn(1)-Cl(5)            170.44(6)  

            O(1)-Sn(1)-Cl(6)             91.50(6)  

            N(1)-Sn(1)-Cl(6)            167.24(6)  

            N(2)-Sn(1)-Cl(6)             91.54(6)  

            Cl(5)-Sn(1)-Cl(6)            97.99(3)  

            O(1)-Sn(1)-Cl(4)            171.76(6)  

            N(1)-Sn(1)-Cl(4)             90.00(6)  

            N(2)-Sn(1)-Cl(4)             85.94(6)  

            Cl(5)-Sn(1)-Cl(4)            92.70(3)  

            Cl(6)-Sn(1)-Cl(4)            93.34(2)  

            C(5)-N(1)-C(1)              120.6(2)  

            C(5)-N(1)-Sn(1)             115.79(18)  

            C(1)-N(1)-Sn(1)             122.4(2)  

            N(1)-C(1)-C(2)              121.1(3)  

            C(3)-C(2)-C(1)              119.0(3)  

            C(2)-C(3)-C(4)              119.8(3)  

            C(3)-C(4)-C(5)              118.8(3)  

            N(1)-C(5)-C(4)              120.7(3)  

            N(1)-C(5)-C(6)              116.8(2)  

            C(4)-C(5)-C(6)              122.5(3)  

            N(2)-C(6)-C(5)              110.9(2)  

            C(6)-N(2)-C(7)              113.7(2)  

            C(6)-N(2)-Sn(1)             109.63(17)  

            C(7)-N(2)-Sn(1)             110.29(17)  

            C(8)-C(7)-N(2)              110.0(2)  

            C(9)-C(8)-C(13)             120.8(2)  

            C(9)-C(8)-C(7)              121.2(3)  

            C(13)-C(8)-C(7)             117.8(2)  

            C(8)-C(9)-C(10)             120.3(3)  

            C(11)-C(10)-C(9)            120.2(3)  

            C(11)-C(10)-I(1)            118.6(2)  

            C(9)-C(10)-I(1)             121.1(2)  

            C(10)-C(11)-C(12)           119.7(3)  

            C(11)-C(12)-C(13)           121.4(3)  

            C(11)-C(12)-I(2)            118.4(2)  

            C(13)-C(12)-I(2)            120.0(2)  

            O(1)-C(13)-C(12)            121.5(2)  

            O(1)-C(13)-C(8)             121.0(2)  

            C(12)-C(13)-C(8)            117.5(2)  

            C(13)-O(1)-Sn(1)            120.51(17)  

           _____________________________________________________________  

   

Symmetry transformations used to generate equivalent atoms. 
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Table D.6.5.2.9 Anisotropic displacement parameters (A^2 x 10^3) for 5.   

The anisotropic displacement factor exponent takes the form:  

   -2 pi^2 [ h^2 a*^2 U11 + ... + 2 h k a* b* U12 ]  
    _______________________________________________________________________  

   

              U11        U22        U33        U23        U13        U12  

    _______________________________________________________________________  

   

    I(1)     25(1)      22(1)      23(1)       5(1)       7(1)      -7(1)  

    I(2)     18(1)      23(1)      27(1)      13(1)      -2(1)       3(1)  

    Sn(1)    13(1)      13(1)      14(1)       6(1)       3(1)       0(1)  

    N(1)     19(1)      12(1)      18(1)       6(1)       6(1)       4(1)  

    C(1)     23(2)      14(1)      17(1)       6(1)       5(1)       5(1)  

    C(2)     34(2)      16(1)      19(1)       7(1)       9(1)       8(1)  

    C(3)     30(2)      20(1)      29(2)      11(1)      18(1)       5(1)  

    C(4)     20(2)      17(1)      29(2)       8(1)      11(1)       4(1)  

    C(5)     17(1)      13(1)      22(1)       7(1)       7(1)       4(1)  

    C(6)     13(1)      23(1)      23(1)      11(1)       3(1)       3(1)  

    N(2)     16(1)      17(1)      16(1)       7(1)       3(1)       2(1)  

    C(7)     21(2)      16(1)      17(1)       6(1)       0(1)      -1(1)  

    C(8)     17(1)      13(1)      16(1)       5(1)       2(1)       1(1)  

    C(9)     18(1)      17(1)      18(1)       3(1)       0(1)      -1(1)  

    C(10)    18(1)      13(1)      20(1)       5(1)       5(1)      -1(1)  

    C(11)    25(2)      12(1)      21(1)       8(1)       6(1)       3(1)  

    C(12)    16(1)      14(1)      18(1)       6(1)       2(1)       4(1)  

    C(13)    15(1)      13(1)      17(1)       4(1)       4(1)       1(1)  

    O(1)     14(1)      13(1)      23(1)       8(1)       5(1)       1(1)  

    Cl(4)    23(1)      15(1)      20(1)       9(1)       6(1)       5(1)  

    Cl(5)    19(1)      23(1)      22(1)       8(1)      -2(1)      -2(1)  

    Cl(6)    21(1)      22(1)      19(1)       8(1)       8(1)       2(1)  

    _______________________________________________________________________  

 

 

 

 

Table D.6.5.2.10 Hydrogen coordinates ( x 10^4) and isotropic displacement parameters (A^2 x 

10^3) for 5.  
         ________________________________________________________________  

   

                         x             y             z           U(eq)  

         ________________________________________________________________  

   

          H(1)         -116         -4653          6539          18  

          H(1A)       -2209         -3985          5296          21  

          H(2)         -458         -3192          4134          26  

          H(3)         2605         -2431          4953          28  

          H(4)         3876         -2495          6928          25  

          H(6A)        2562         -4374          8466          23  

          H(6B)        3353         -2767          8878          23  

          H(7A)          86         -1763         10235          22  

          H(7B)        2205         -1495         10412          22  

          H(9)         3367           205          9526          23  

          H(11)         439          1032          6562          22  

         ________________________________________________________________  
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 Table D.6.5.2.11 Torsion angles [deg] for 5.  
         ________________________________________________________________  

   

          O(1)-Sn(1)-N(1)-C(5)                                 92.88(19)  

          N(2)-Sn(1)-N(1)-C(5)                                  4.21(18)  

          Cl(5)-Sn(1)-N(1)-C(5)                              -174.32(18)  

          Cl(6)-Sn(1)-N(1)-C(5)                                23.7(4)  

          Cl(4)-Sn(1)-N(1)-C(5)                               -81.61(18)  

          O(1)-Sn(1)-N(1)-C(1)                                -74.7(2)  

          N(2)-Sn(1)-N(1)-C(1)                               -163.4(2)  

          Cl(5)-Sn(1)-N(1)-C(1)                                18.1(2)  

          Cl(6)-Sn(1)-N(1)-C(1)                              -143.9(2)  

          Cl(4)-Sn(1)-N(1)-C(1)                               110.8(2)  

          C(5)-N(1)-C(1)-C(2)                                   1.1(4)  

          Sn(1)-N(1)-C(1)-C(2)                                168.1(2)  

          N(1)-C(1)-C(2)-C(3)                                  -1.0(4)  

          C(1)-C(2)-C(3)-C(4)                                   0.2(4)  

          C(2)-C(3)-C(4)-C(5)                                   0.5(4)  

          C(1)-N(1)-C(5)-C(4)                                  -0.3(4)  

          Sn(1)-N(1)-C(5)-C(4)                               -168.1(2)  

          C(1)-N(1)-C(5)-C(6)                                -177.9(2)  

          Sn(1)-N(1)-C(5)-C(6)                                 14.3(3)  

          C(3)-C(4)-C(5)-N(1)                                  -0.5(4)  

          C(3)-C(4)-C(5)-C(6)                                 177.0(3)  

          N(1)-C(5)-C(6)-N(2)                                 -33.2(3)  

          C(4)-C(5)-C(6)-N(2)                                 149.2(3)  

          C(5)-C(6)-N(2)-C(7)                                 -89.6(3)  

          C(5)-C(6)-N(2)-Sn(1)                                 34.4(3)  

          O(1)-Sn(1)-N(2)-C(6)                               -105.54(17)  

          N(1)-Sn(1)-N(2)-C(6)                                -21.19(17)  

          Cl(5)-Sn(1)-N(2)-C(6)                               -12.3(5)  

          Cl(6)-Sn(1)-N(2)-C(6)                               163.03(16)  

          Cl(4)-Sn(1)-N(2)-C(6)                                69.79(16)  

          O(1)-Sn(1)-N(2)-C(7)                                 20.37(17)  

          N(1)-Sn(1)-N(2)-C(7)                                104.72(17)  

          Cl(5)-Sn(1)-N(2)-C(7)                               113.6(4)  

          Cl(6)-Sn(1)-N(2)-C(7)                               -71.06(16)  

          Cl(4)-Sn(1)-N(2)-C(7)                              -164.30(16)  

          C(6)-N(2)-C(7)-C(8)                                  57.1(3)  

          Sn(1)-N(2)-C(7)-C(8)                                -66.5(2)  

          N(2)-C(7)-C(8)-C(9)                                -111.5(3)  

          N(2)-C(7)-C(8)-C(13)                                 63.6(3)  

          C(13)-C(8)-C(9)-C(10)                                -1.1(4)  

          C(7)-C(8)-C(9)-C(10)                                173.8(3)  

          C(8)-C(9)-C(10)-C(11)                                 1.3(4)  

          C(8)-C(9)-C(10)-I(1)                               -175.3(2)  

          C(9)-C(10)-C(11)-C(12)                               -0.3(4)  

          I(1)-C(10)-C(11)-C(12)                              176.5(2)  

          C(10)-C(11)-C(12)-C(13)                              -1.0(4)  

          C(10)-C(11)-C(12)-I(2)                             -177.5(2)  

          C(11)-C(12)-C(13)-O(1)                             -177.3(2)  

          I(2)-C(12)-C(13)-O(1)                                -0.9(4)  

          C(11)-C(12)-C(13)-C(8)                                1.2(4)  

          I(2)-C(12)-C(13)-C(8)                               177.65(19)  

          C(9)-C(8)-C(13)-O(1)                                178.4(2)  

          C(7)-C(8)-C(13)-O(1)                                  3.3(4)  

          C(9)-C(8)-C(13)-C(12)                                -0.2(4)  

          C(7)-C(8)-C(13)-C(12)                              -175.2(2)  

          C(12)-C(13)-O(1)-Sn(1)                              122.5(2)  

          C(8)-C(13)-O(1)-Sn(1)                               -56.0(3)  

          N(1)-Sn(1)-O(1)-C(13)                               -39.33(19)  

          N(2)-Sn(1)-O(1)-C(13)                                37.28(19)  

          Cl(5)-Sn(1)-O(1)-C(13)                             -133.16(19)  
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          Cl(6)-Sn(1)-O(1)-C(13)                              128.75(19)  

          Cl(4)-Sn(1)-O(1)-C(13)                                2.8(5)  

         ________________________________________________________________  

   

         Symmetry transformations used to generate equivalent atoms:  

           

  

 

 

Table D.6.5.2.12  Hydrogen bonds for 5 [A and deg.].  
 ____________________________________________________________________________  

   

 Hydrogen bonds with  H..A < r(A) + 2.000 Angstroms  and  <DHA > 110 deg. 

 

 D-H           d(D-H)   d(H..A)   <DHA    d(D..A)   A 

 

 N1-H1          0.930    2.746   117.64    3.283    Cl4  
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ABSTRACT 

PROBING PROTEASOME INHIBITON BY METAL COMPLEXES AS A NEW 

MECHANISM FOR ANTICANCER THERAPY 

by 

DAJENA TOMCO 

December 2014 

Advisor: Dr. Cláudio N. Verani 

Major: Chemistry (Inorganic) 

Degree: Doctor of Philosophy 

The scope of this thesis is focused towards the development of metal-containing 

coordination compounds as potential therapeutic agents. Efforts of this research involve 

the design, synthesis, and purification of these complexes, as well as their evaluation by 

spectroscopic, spectrometric, and electrochemical characterization. The antineoplastic 

properties of these metal-containing pro-drugs are tested against the inhibition activity of 

the 26S proteasome. Selected metal ions ranging from transition to main group elements 

have been incorporated in various ligand systems containing phenolate and pyridyl donor 

sets. The mechanistic behavior of these complexes in solution has been thoroughly 

investigated along with their in vitro anticancer properties against the growth of prostate 

cancer PC-3 cells. It has been demonstrated that apoptosis induction of the PC-3 cells is 

due to the inhibition activity of the 26S proteasome upon treatment of various 

concentrations of these metal-based pro-drugs. The antiproliferative effects of these 

complexes are highly dependent on the charge, redox activity of the metal ions, as well as 

the nature of the chelating ligands.   
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