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1 Introduction

1.1 Background and Main Issues

This dissertation focuses on stabilities analysis and optimal controls for stochastic dynamic

systems. It encompasses an in-depth study of stability for multi-dimensional jump diffusions,

Markov switching jump diffusions, and regime-switching jump diffusions as well as stability of

the associated numerical solutions. In addition, the dissertation treats nearly optimal mean-

variance problem. We examine the mean-variance control problem under two-time-scale and

hidden Markov chain scenarios. In what follows, we present the background and main issues

of these problems.

Since systems often run for an extended time, stability is of critical importance. As a

result, much effort has been devoted to the stability analysis in the literature; see [6] for

stability of diffusion processes, [12] for Markovian switching diffusions, and [20] for switching

diffusions in which the switching depends on the diffusion parts. In practice, closed-form

solutions are difficult to obtain. Numerical methods are more viable or even the only possible

alternative to solve the problems. Starting with a practical problem, an immediate question

is: If the system of interest is stable, what can be said about the corresponding numerical

approximation?

Because of the importance, there has been much work on numerics of diffusions, jump

diffusions, and their regime-switching counterparts. General survey and classical treatments

can be found in [7, 13] and references therein. In [5], almost sure exponential stability of

Euler-Maruyama (E-M) algorithm as well as that of exponential p-stability were treated for

diffusion systems. In [15], almost sure exponential stability and exponential p-stability for E-
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M algorithms were studied for Markovian switching diffusions. In [2], asymptotical stability

in the large of E-M algorithm was examined for jump diffusion systems. In [3], mean square

stability and asymptotical stability in the large of stochastic theta methods were presented.

In [4], split-step backward Euler method and compensated split-step backward Euler method

were analyzed and strong convergence results were obtained under certain assumptions for

nonlinear jump diffusion systems. In [12], mean square stability was treated for Markovian

switching diffusions. In lieu of the Brownian increments, i.i.d. sequences were used and path-

wise convergence rates for diffusions were dealt with in [14] by consideration of re-embedded

sequences. Given the key roles of jump-diffusions played in networked systems, our work is

devoted to answering stability questions of numerical solutions to jump diffusions. Although

there have been many excellent works on numerical solutions of stochastic differential equa-

tions, the study on numerical methods of almost sure exponential stability and exponential

p-stability for jump diffusions has not been done yet to the best of our knowledge. One intu-

itive thought might be: Perhaps one can repeat the success in the numerical approximation

to diffusions, in which the techniques used were asymptotic expansions (using an asymptotic

series of expansion of moments of Brownian motion). A scrutiny, however, shows that such

an approach is not going to work. The essential reason is that a Gaussian distribution is

completely determined by the first and the second moments, whereas for a Poisson random

variable, the mean and variance are the same. Thus using expansions of the Poisson in-

crements will not produce higher powers in terms of the small step size in contrast to the

case of the Brownian increments. This rules out the possibility of using existing techniques

in the current problem. To illustrate, let us start with an algorithm with step size ε > 0.

The increment of a standard Brownian motion ∆w ∼ N(0, ε) satisfies E(∆w)2n = (2n)!
n!2n εn
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and all odd moments of increment of Brownian motion are 0. Thus it is advantageous to

use series expansions since the higher the moment, the higher order of ε. In contrast, unlike

the increments of Brownian motion, the increments of a Poisson process behave very differ-

ently. In fact, since ∆N ∼Poisson(λε), we have E(∆N)n =
n∑

i=1

(λε)i 1
i!

i∑
j=0

(−1)i−j




i

j


 jn.

A moment of reflection reveals that in the nth moment of ∆N , the leading term is λε for

all n. That is, higher moments do not yield higher order of ε (in terms of order of mag-

nitude estimates), which rules out the possibility of using series expansion methods. Our

question is: Passing from the original systems to that of the numerical solutions, under what

conditions, stability will be preserved. In the traditional approach for numerical methods of

stochastic differential equations, one often has to use Taylor expansions. For Poisson pro-

cesses, since the mean and variance are the same, the Taylor expansions do not really help.

We use techniques from the stochastic approximation toolbox, which enables us to resolve

the problem and obtain convergence and stability. Using our definitions of stability for the

numerical algorithms, stability of numerical algorithms will imply that of SDEs. Not only

are these questions important from a theoretical point of view, but also they provide crucial

practical insight for actual computing. To get the insight and to make comparisons, we first

begin with one-dimensional benchmark models. We then further our study for considering

multi-dimensional cases and systems with switching.

The key model appears in our work in regime switching model. Randomly-varying switch-

ing systems have drawn increasing attention recently owing to their ability to model complex

systems, which can be used in a wide range of applications in consensus controls, distributed

computing, autonomous or semi-autonomous vehicles, multi-agent systems, tele-medicine,
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smart grids, and financial engineering etc. Regime-switching diffusions consist of a number

of diffusions coupled by a switching process, which reflects the feature of the coexistence

of dynamics described by solutions of stochastic differential equations and discrete events

whose values belong to a finite set. The usual formulation in the traditional dynamic system

setup described by differential or difference equations alone becomes not suitable to describe

such features. A class of models naturally replacing the traditional setup is a process with

two components in which one of them delineates the dynamics that may be represented as a

solution of a differential equation and the other portraits the discrete event movements. Re-

cently, there are growing interests on formulating complex systems by use of regime-switching

processes, which largely enriched the applicability of the dynamic models; see [20] and many

references therein. To take into consideration of possible inclusion of Poisson type random

processes, we consider jump diffusion processes with random switching. One of the pioneer-

ing study on stability is conducted by [56]. In recent years, stability of switching stochastic

systems have received much attention; see [12,36,50] and references therein for a systematic

treatment on Markov modulated switching diffusions; see also [51] for stability of switching

diffusions with delays. In addition, switching diffusion with continuous dependence on ini-

tial data were treated in [49]. Concerning jump diffusions, we refer the reader to [33, 37, 44]

for the study on such properties as ergodicity and stability. Switching jump diffusions with

state dependent switching have also been examined in [19, 20, 47] etc., in which stability in

probability, asymptotic stability in probability, and almost surely exponential stability were

dealt with. Our aims are to establish a number of results on different modes of stability that

have not been studied for switching jump diffusions to date to the best of our knowledge.

The other part of our work is mean-variance optimization problem, which can be traced
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back to the Nobel-prize-winning work of Markowitz [60]. The salient feature of the model is

that, in the context of finance, it enables an investor to seek highest return after specifying the

acceptable risk level quantified by the variance of the return. The mean-variance approach has

become the foundation of modern finance theory and has inspired numerous extensions and

applications. Using the stochastic linear-quadratic (LQ) control framework, Zhou and Li [86]

studied the mean-variance problem for a continuous-time model. Note that the problem

becomes fundamentally different from the traditional LQ problem studied in literature. In the

classical time-honored LQ theory, the matrix related to the control (known as control weight)

needs to be positive definite. In the mean variance setup for linear systems, the control

weight is non-positive definite. In [87], the mean-variance problems for switching diffusion

models were treated and a number of results including optimal portfolio selection, efficient

frontier, and mutual fund theory were discovered. Inspired by platoon controls of networked

systems, we consider a mean-variance control problem, in which the network topology or the

environment is modeled as a continuous-time Markov chain. We assume that the Markov

chain has a large state space in order to deal with complex systems. To treat the platoon

problems, we could in principle apply the results in [87]. Nevertheless, the large state space

of the Markov chain renders a straightforward implementation of the mean-variance control

strategy obtained in [87] practically infeasible. The computational complexity becomes a

major concern. Inspired by the idea in the work [80], to exploit the hierarchical structure

of the underlying systems, and to fully utilize the near decomposability [74, 79] by means

of considering fast and slow switching modes, the work [85] treated near-optimal control

problems of LQG with regime switching. Another point is that only positive definite control

weights were allowed in the usual quadratic control criteria. In our current setup, the control



6

weights are indefinite, so the main assumptions in [85] do not hold. This two-time-scale

scenario provides an opportunity to reduce computational complexity for the Markov chain.

The main idea is a decomposition of the large space into sub-clusters and aggregation of

states in each sub-cluster. That is, we partition the state space of the Markov chain into

subspaces (or sub-groups or sub-clusters). Then, in each of the sub-clusters, we aggregate

all the states into one super state. Thus the total number of discrete states is substantially

reduced.

Next, we further extend the mean-variance methods to incorporate hidden Markov chains.

In particular, the underlying system is modeled as a controlled switching diffusion modulated

by a finite-state Markov chain representing the system modes. We consider the case that a

function of the chain with additive noise is observable. In networked systems, such measure-

ment can be obtained with the addition of a sensor. The underlying problem is a stochastic

control problem with partial observation. Given the target expectation of the state variable

at the terminal time, the objective is to minimize the variance at the terminal time. We use

the mean-variance approach to treat the problem and aim at developing feasible numerical

methods for solutions of the associated control problems. To solve the problem, we resort

to the Wonham filter method to estimate the state. The original system is converted into a

completely observable one. In stochastic control literature, a suboptimal filter for linear sys-

tems with hidden Markov switching coefficients was considered in [53] in connection with a

quadratic cost control problem. Given that our problem cannot be solved in closed form, our

main effort is devoted to developing numerical methods. We use ideas in the Markov chain

approximation methods of Kushner and Dupuis [58]. Nevertheless, the methods in [58] can-

not be directly adopted since there are switching processes involved and the problem is only
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partially observable. Different from the numerical methods for controlled regime-switching

diffusions [64] and [71], in addition to the partially observed system, the variance is control

dependent. Therefore, extra care must be taken to address such control dependence.

1.2 Outline of the Dissertation

The remainder of the dissertation is arranged as follows. In Chapter 2, stability issue is dealt

with. We obtain asymptotic stability in distribution for Markov switching jump diffusions.

Then we further examine the even more difficult case for x-dependent switching jump diffu-

sions. In addition, asymptotic stability in the large, exponential p-stability are carried out.

In addition, we obtain stability results for both jump diffusion systems and the associated

numerical approximations, in which the traditional treatment for Euler-Maurayama (E-M)

algorithm breaks down. In Chapter 3 and Chapter 4, we studies stochastic optimization and

controls. The motivation stems from the Nobel prize-winning work of Markowitz. Specifi-

cally, our work is mean-variance type control problems. In Chapter 3, with motivations from

earlier work on singularly perturbed Markovian systems [79,83,84], we use a two-time-scale

formulation to treat the underlying systems and obtain a limit problem. Using the limit prob-

lem as a guide, we construct controls for the original problem, and show that the controls so

constructed are nearly optimal. In Chapter 4, we consider the scenario that instead of having

access to full information of the switching process, we know a noisy observation of switching

process. We still focus on minimizing the variance subject to a fixed terminal expectation.

Using the Wonham filter, we convert the partially observed system to a completely observ-

able one first. Since closed-form solutions are virtually impossible be obtained, a Markov
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chain approximation method is used to devise a computational scheme. Convergence of the

algorithm is obtained.

1.3 Notation Index

Before proceeding further, we compile the following list of notation index to be used in the

entire dissertation.

Rr×d r × d-dimensional Euclidean space, where r and d are positive integers

Rr r dimensional row vector.

|x| Euclidean norm of x ∈ Rn

z′ transpose of z ∈ Rl1×l2

tr(A) trace of A ∈ Rn×n

∇f gradient of f(x) w.r.t. x

Hf Hessian of f(x) w.r.t. x

R+ positive real number.

Λmax(A) the largest eigenvalue of the symmetric matrix A

Λmin(A) the smallest eigenvalue of the symmetric matrix A

w.p.1 with probability 1

M M = {1, 2, . . . , m}

K K is a generic constant whose value can be different in different context.

LX the generator of a diffusion.

11 = (1, . . . , 1)′ ∈ Rm
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2 Stability of Jump Diffusions and Their Numerical

Methods

2.1 Stability of One Dimensional Jump Diffusions and Their Nu-

merical Methods

In this chapter, we consider stability of one dimensional jump diffusions, Markov switching

jump diffusions first, then we consider the multi-dimensional jump diffusions and finally

we consider the regime switching jump diffusions. To proceed with our analysis, we first

give definitions of stability. We make the following definitions by adopting the terminologies

of [20].

Definition 2.1. The equilibrium point x = 0 of dynamic system is said to be

(i) asymptotically stable in the large, if it is stable in probability and P{ lim
t→∞

Xx,α(t) =

0} = 1, for any (x, α) ∈ Rr ×M;

(ii) exponentially p-stable, if for some positive constants K and k, E|Xx,α(t)|p ≤ K|x|pe−kt,

for any (x, α) ∈ Rr ×M;

(iii) almost surely exponential stable, if for any (x, α) ∈ Rr ×M, lim sup
t→∞

1
t
ln(|Xx,α(t)|) < 0

w.p.1.

Remark 2.2. The exponential p-stability can also be stated as

lim sup
t→∞

1

t
ln E|Xx(t)|p < 0 for any initial value x.
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Here we used definition 5.7 in [12, p. 166] and we will use these definitions interchangeably,

whichever is more convenient in what follows.

We first consider the benchmark test model

dX(t) = bX(t)dt + σX(t)dw(t) + γX(t−)dN(t)

X(0) = x,
(2.1)

where b, σ, and γ are real constants, w(t) is a scalar Brownian motion, and N(t) is a scalar

Poisson process independent of the Brownian motion. We denotes the solution of (2.1) as

Xx(t) to emphasize its initial data x dependence. It is easy to see that 0 is the only equilibrium

point of the dynamic system.

Lemma 2.3. For the jump diffusion given by (2.1), the pth moment Lyapunov exponent is

lim sup
t→∞

1

t
ln(E|Xx(t)|p) = bp +

1

2
p(p− 1)σ2 + λ(|1 + γ|p − 1).

Therefore, the equilibrium point of the system is exponentially p-stable if and only if

bp + 1
2
p(p− 1)σ2 + λ(|1 + γ|p − 1) < 0. (2.2)

Proof. It is well known that the explicit solution of (2.1) is given by

X(t) = x exp((b− 1

2
σ2)t + σw(t))(1 + γ)N(t). (2.3)
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Note that

E exp(p(b− 1
2
σ2)t + pσw(t)) = exp(p(b− 1

2
σ2)t +

1

2
p2σ2t)

= exp(pbt +
1

2
σ2p(p− 1)t),

that

E(1 + γ)pN(t) = exp(tλ(|1 + γ|p − 1)),

and that the Brownian motion w(·) is independent of the Poisson process N(·),

lim sup
t→∞

1

t
ln E|Xx(t)|p = lim

t→0

p ln |x|
t

+ pb +
1

2
σ2p(p− 1) + λ(|1 + γ|p − 1)

= bp +
1

2
p(p− 1)σ2 + λ(|1 + γ|p − 1).

(2.4)

The proof is complete.

To numerically solve (2.1), we choose ε > 0 as the step size. Now we define the increment

of Brownian motion as ∆wn and Process process as ∆Nn, which are a bit different from

before to illustrate the depedence of iteration number n. Define

∆wn = w(ε(n + 1))− w(εn),

∆Nn = N(ε(n + 1))−N(εn).
(2.5)

We will also use ∆2wn = (∆wn)2.

xn+1 = xn + εbxn + σxn∆wn + γxn∆Nn

x0 = X(0) = x.
(2.6)

Recall that the sequence {xn : ε > 0, n < ∞} generated by algorithm (2.6) is said to

be tight or bounded in probability, if for any η > 0, there is a Kη > 0 such that for all n,

P (|xn| ≥ Kη) < η.
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Lemma 2.4. Assume that (2.2) holds. Then the sequence {xn : ε > 0, n < ∞} is tight.

Proof. The proof uses a Lyapunov function argument. Note that in (2.2), when p = 2, we

have

ξ̂∗ = 2b + σ2 + λ(|1 + γ|2 − 1) < 0. (2.7)

To obtain the tightness, we first demonstrate E|xn|2 < ∞ as follows. Define a Lyapunov

function V (x) = x2. Note that

EnV (xn+1)− V (xn) = EnVx(xn)[xn+1 − xn] + En|xn+1 − xn|2, (2.8)

Detailed calculation yields that

EnVx(xn)[xn+1 − xn] = 2Enxn(xn+1 − xn)

= 2Enxn

(
εbxn + σxn∆wn + γxn∆Nn

)

= 2bεV (xn) + 2γx2
nλε

= εV (xn)(2b + λ2γ).

(2.9)

and that

En|xn+1 − xn|2 = En(bxnε + σxn∆wn + γxn∆Nn)2

≤ εV (xn)(σ2 + γ2λ) + ε2K(1 + V (xn)).
(2.10)

Combing the above two inequalities, we have

EnV (xn+1)− V (xn)

≤ εV (xn)ξ̂∗ + ε2K(1 + V (xn)).
(2.11)
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Taking expectation on both sides of the above expression, we have

EV (xn+1) ≤ (1 + εξ̂∗)EV (xn) + Kε2 + Kε2EV (xn). (2.12)

Define

bnk = (1 + ξ̂∗ε)n−k.

Detailed calculation yields

EV (xn+1) ≤ bn0EV (x1) + K
n∑

k=1

bnkε
2 + Kε2

n∑

k=1

bnkEV (xk).

Observe that
∑n

k=1 bnkε
2 ≤ K since ξ̂∗ < 0. Then Gronwall’s inequality leads to EV (xn) is

bounded. The tightness of the sequence {xn : ε > 0, n < ∞} then follows.

To proceed, we define the continuous time interpolations as

xε(t) = xn for t ∈ [nε, nε + ε),

and denote

x̃ε(·) = xε(·+ tε) for any tε →∞ as ε → 0,

x̃ε
T (·) = x̃ε(· − T ) = xε(·+ tε − T ) for any 0 < T < ∞.

(2.13)

We infer that

x̃ε
T (T ) = x̃ε(0) = xε(tε). (2.14)

What we are using is a standard technique in stochastic approximation; see [8, Section IV,

pp. 179-180]; see also [9, Section 5]. Note that in view of the definition and notation above,
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we work with a shifted sequence xε(· + tε) that effectively “start” at large and arbitrary

real time. Note that weak convergence along does not imply that x̃ε(·) converges to the

equilibrium point. The tightness in Lemma 2.4 is crucial. To study the stability of numerical

algorithm, we need to consider the limit ε → 0, n → ∞, and εn → ∞. As in the analysis

of stochastic approximation methods [10], this is equivalent to the study of x̃ε(·). For future

use, for arbitrary 0 < T < ∞, we shall work with the pair of processes (x̃ε(·), x̃ε
T (·)).

Note that xε(·) ∈ D([0,∞) : R). By using the weak convergence methods [10, 18], it can

be shown that xε(·) is tight and converges weakly to X(·), which is the solution of (2.1) (Note

that (2.1) has a unique solution because it is linear). Moreover, we can also show that {x̃ε(·)}

is also tight in D([0,∞);R) and all weakly convergent subsequence satisfy (2.1) as well. For

an arbitrary T < ∞, we work with the pair (x̃ε(·), x̃ε
T (·)). It can be shown that {x̃ε(·), x̃ε

T (·)}

is tight in D([0,∞);R×R). Extract a weakly convergent subsequence and denote the limit

by (x̃(·), x̃T (·)). In view of the Skorohod representation [10, p. 230]we may regard that the

convergence is in the sense of w.p.1 for the sake of convenience. The convergence is uniform

on any bounded interval. It can be shown that x̃ε(·) still have the same limit X(·). By the

construction, x̃(0) = x̃T (T ). By virtue of Lemma 2.4, the set of all possible values of {x̃T (0)}

is tight (over all T and convergent subsequences). It follows that x̃(0) = x̃T (T ) and

x̃T (T ) = x̃T (0) exp((b− 1

2
σ2)T + σw(T ))(1 + γ)N(T ). (2.15)

We now present the following lemma based on the above analysis. The detailed proof is

omitted. For a more complex case, the reader is referred to the weak convergence in [17].

Lemma 2.5. We have that xε(·) converges weakly to X(·) the unique solution to (2.1).
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Moreover, {x̃ε(·), x̃ε
T (·)} is tight in D([0,∞);R×R) such that the weak limit of x̃T (T ) whose

dynamic is described by (2.15).

In view of Lemma 2.5, we proceed to define the exponentially p-stable for the approxima-

tion using the interpolated process. Using the auxiliary process x̃T (·) given by (2.15), we can

take the logarithm of its pth moment. This motivates the definition of exponential p-stability

for the numerical schemes. The definition is used not only for the benchmark example, but

also for other cases considered in this paper.

Definition 2.6. Algorithm (2.6) associated with (2.1) is said to be exponentially p-stable if

for any tε →∞ as ε → 0,

lim sup
T→∞

1

T
lim
ε→0

ln E|x̃ε
T (T )|p < 0. (2.16)

Remark 2.7. For the benchmark model (one-dimensional linear scalar jump diffusions),

taking limsup and taking the limit do not make difference. However, we use limsup to be

consistent with the case of multi-dimensional nonlinear systems in the following paragraphs.

Theorem 2.8. Suppose that

pb +
1

2
p(p− 1)σ2 + λ(|1 + γ|p − 1) < 0.

Then, the iterates generated by algorithm (2.6) satisfy

lim sup
T→∞

1

T
lim
ε→0

ln E|x̃ε
T (T )|p = pb +

1

2
p(p− 1)σ2 + λ(|1 + γ|p − 1) < 0. (2.17)
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Thus, the algorithm is exponentially p-stable.

Proof. To begin, we have Lemma 2.5 in force. By using (2.4), (2.15), and the dominated

convergence theorem, we have

lim sup
T→∞

1

T
lim
ε→0

ln E|x̃ε
T (T )|p

= lim
T→∞

1

T
ln E|x̃T (T )|p

= bp +
1

2
p(p− 1)σ2 + λ(|1 + γ|p − 1).

(2.18)

The desired pth moment stability then follows.

Remark 2.9. Note that in obtaining the pth-moment (also in what follows the almost

sure stability) of the numerical algorithms, Lemma 2.4 is crucial. Without the tightness,

the stability and even the convergence cannot be guaranteed. Throughout the paper, for

simplicity, we have assumed that the initial data x0 is independent of the step size ε. If one

wishes to let x0 = xε
0, then a condition of tightness of xε

0 (or xε
0 converges in distribution to

x0 for some finite x0) needs to be used. Such a condition is used extensively in stochastic

approximation literature; see [10, Chapter 8.5]. In [5, p. 594], a motivating example is given, in

which the system has a Lyapunov exponent being negative w.p.1, but the numerical algorithm

blows up in finite time. In addition to instability, the algorithm is not even convergent. The

main problem is that the initial condition is chosen to be inversely proportional to
√

ε. Thus,

xε
0 is not tight, neither does xε

0 converges to x0. Further discussion will be provided in the

example section.
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Lemma 2.10. For the jump diffusion (2.1), the Lyapunov exponent is given by

lim sup
t→∞

1

t
ln |Xx(t)| = b− 1

2
σ2 + λ ln |1 + γ| w.p.1. (2.19)

Thus, the equilibrium point of the system is almost surely exponentially stable if and only if

b− 1

2
σ2 + λ ln |1 + γ| < 0 w.p.1.

Proof. Using the explicit solution for system (2.1), by the law of large numbers for local

martingales [11], we can obtain the result. A detailed proof can also be found in [2].

Next we demonstrate that the numerical algorithm is also almost surely exponential

stability by virtue of the Borel-Cantelli lemma. We shall replace T by a positive integer n in

Definition 2.6.

Definition 2.11. Algorithm (2.6) associated with (2.1) is said to be almost surely exponen-

tially stable if for some K0, K1 > 0, and any tε →∞ as ε → 0,

|x̃ε
n(n)| ≤ K1 exp(−K0n) w.p.1. (2.20)

Theorem 2.12. Under the conditions of Theorem 3.4, the numerical algorithm is almost

surely exponentially stable.

Proof. In view of Theorem 3.4, use the definition of x̃ε
T (·) but replace T with n. Then for
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sufficiently large n and sufficiently small ε, we have that

E|x̃ε
n(n)|p ≤ K exp(−λ̃pn),

where

−λ̃ = b +
1

2
(p− 1)σ2 +

1

p
λ(|1 + γ|p − 1). (2.21)

Then by the Markov inequality, for a positive ∆0,

P (|x̃ε
n(n)| ≥ exp(−∆0n)) ≤ E|x̃ε

n(n)|p
exp(−∆0pn)

≤ K exp(−(λ̃−∆0)pn).

(2.22)

Choose ∆0 small enough so that λ̃−∆0 > 0. (2.22) leads to

P (|x̃ε
n(n)| ≥ exp(−∆0n)) ≤ K exp(−(λ̃−∆0)pn).

Clearly,
∞∑

n=0

exp(−(λ̃−∆0)pn) < ∞.

The Borel-Cantelli lemma then yields that

P (|x̃ε
n(n)| ≥ exp(−∆0n) i.o.) = 0.

Thus, as n →∞,

P (|x̃ε
n(n)| ≤ exp(−∆0n)) = 1. (2.23)
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The desired almost sure stability then follows.

A moment of reflection reveals that we can recapture the Lyapunov exponent (in the

almost sure sense) (2.19) in the continuous-time equation. We wish to choose ∆0 > 0 so that

−λ̃ + ∆0 < 0 and that is close to b− 1
2
σ2 + λ ln |1 + γ|. Note that

lim
p→0

|1 + γ|p − 1

p
= ln |1 + γ|.

So for sufficiently small p > 0, we can choose our ∆0 > 0 so that

−λ̃ + ∆0 = b− 1

2
σ2 + λ ln |1 + γ|+ θ < 0, (2.24)

for some small enough θ > 0. Thus, we arrive at the following corollary.

Corollary 2.13. Assume that the conditions of Theorem 2.12 hold, with the choice of θ

given by (2.24). Then the almost sure Lyapunov exponent is given by

lim sup
n→∞

1

n
lim
ε→0

ln |x̃ε
n(n)| ≤ b− 1

2
σ2 + λ ln |1 + γ|+ θ < 0 w.p.1. (2.25)

Remark 2.14. Note that we can also achieve the almost sure exponential stability in an

alternative way. We listed the key ideas below. First, by the similar techniques involved

in Lemma 2.4, considering Lyapunov function V (x) = x2, we can show EV (xn+1) ≤ (1 +

εξ̂∗)EV (xn)+o(ε). Here the definition of ξ̂∗ can be found in (2.7). Detailed calculation leads

to E|x̃ε(t)|2 = |x0|2(1 + εξ̂∗)
t+tε

ε + t+tε
ε

o(ε). Next, we can choose ε∗ ∈ (0, 1) so small that
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for all 0 < ε < ε∗, −1 < εξ̂∗ < 0. Recalling the definition of continuous-time interpolation

xε(·) and using the notation (2.13), we will see that mean square stable is achieved if ξ̂∗ < 0.

Finally, by virtue of Borel-Cantelli lemma, similar to the procedure in Theorem 2.12, almost

sure exponential stability can be guaranteed.

Remark 2.15. From the results of Theorem 3.4, Theorem 2.12, and Corollary 2.13, we

conclude that for linear systems of the simple form (2.1), if the jump diffusions is stable and

the step size is small enough, the numerical algorithm is also stable. The tightness given

in Lemma 2.4 in fact is crucial. For the benchmark example, in the process of deriving

the desired results, we have obtained the tightness. In more general setup, some sufficient

conditions are needed to ensure the tightness.

2.2 Stability of Markovian Jump Diffusions and Their Numerical

Methods

In this subsection, we focus on system given by

dX(t) = b(α(t))X(t)dt + σ(α(t))X(t)dw(t) + γ(α(t−))X(t−)dN(t)

X(0) = x,
(2.26)

where α(t) is a Markov chain and α(t) ∈M with generator Q . We assume that w(t), N(t),

and α(t) are independent throughout the paper, and we further assume that the Markov

chain α(t) is irreducible. Under this condition, α(t) has a unique stationary distribution

π = (π1, π2, . . . , πm) ∈ R1×m. We proceed with the study on almost sure exponential stability.
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Lemma 2.16. For the jump diffusion (2.26), the Lyapunov exponent is given by

lim sup
t→∞

1

t
ln |Xx(t)| =

m∑
i=1

πi

(
b(i)− σ2(i)

2
+ λ ln |1 + γ(i)|

)
w.p.1.

Therefore, the equilibrium point of the system is almost surely exponentially stable if and

only if
m∑

i=1

πi

(
b(i)− σ2(i)

2
+ λ ln |1 + γ(i)|

)
< 0 w.p.1.

Proof. First, we have

X(t) = x exp

(ˆ t

0

[b(α(s))− 1

2
σ2(α(s))]ds +

ˆ t

0

σ(α(s))dw(s) +

ˆ t

0

ln |1 + γ(α(s))|dN(s)

)
.

(2.27)

Therefore,

lim
t→∞

ln |X(t)|
t

= lim
t→∞

( ln |x|
t

+

ˆ t

0

[b(α(s))− 1

2
σ2(α(s))]ds

t
+

ˆ t

0

σ(α(s))dw(s)

t

+

ˆ t

0

ln |1 + γ(α(s))|dÑ(s)

t
+ λ

ˆ t

0

ln |1 + γ(α(s))|ds

t

)
.

(2.28)

Note that the quadratic variation for the term involving the Brownian motion is given by

〈ˆ t

0

σ(α(s))dw(s),

ˆ t

0

σ(α(s))dw(s)

〉
=

ˆ t

0

σ2(α(s))ds ≤ max
i∈M

σ2(i)t.
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By the law of large numbers for local martingales [11], we have

1

t

ˆ t

0

σ(α(s))dw(s) → 0 w.p.1 as t →∞.

Similarly, we get

〈ˆ t

0

ln |1 + γ(α(s))|dÑ(s),

ˆ t

0

ln |1 + γ(α(s))|dÑ(s)

〉
≤ λ max

i∈M
(ln |1 + γ(i)|)2t

and thus

1

t

ˆ t

0

ln |1 + γ(α(s))|dÑ(s) → 0 w.p.1 as t →∞.

Then by the ergodicity of the Markov chain, we have

lim
t→∞

1

t
ln |Xx(t)| =

m∑
i=1

πi

(
b(i)− σ2(i)

2
+ λ ln |1 + γ(i)|

)
w.p.1.

Next, we study the exponential p-stability.

Lemma 2.17. For the jump diffusion (2.26), the pth moment Lyapunov exponent is

lim sup
t→∞

1

t
ln(E|Xx(t)|p) =

m∑
i=1

πi

(
pb(i) +

1

2
p(p− 1)σ2(i) + λ(|1 + γ(i)|p − 1)

)
.

Therefore, the equilibrium point of the system is exponentially p-stable if and only if

m∑
i=1

πi

(
b(i)p +

1

2
p(p− 1)σ2(i) + λ(|1 + γ(i)|p − 1)

)
< 0.
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Proof. Note that

E|X(t)|p = |x|pE exp
[
p

ˆ t

0

[b(α(s))− 1

2
σ2(α(s))]ds

+

ˆ t

0

pσ(α(s))dw(s) + p

ˆ t

0

ln |1 + γ(α(s))|dN(s)
]
.

(2.29)

To get the desired result, first note that

lim
t→∞

1

t
ln E exp

(
p

ˆ t

0

σ(α(s))dw(s)

)

= lim
t→∞

1

t
ln E exp

(
1

2
p2

ˆ t

0

σ2(α(s))ds

)

= lim
t→∞

1

t
ln E exp

(
1

2
p2

m∑
i=1

σ2(i)

ˆ t

0

(I{α(s)=i} − πi)ds

)

+ lim
t→∞

1

t
ln exp

(
1

2
p2

ˆ t

0

m∑
i=1

σ2(i)πids

)

=
p2

2

m∑
i=1

πiσ
2(i).

(2.30)

Similarly, we have

lim
t→∞

1

t
ln Eep

´ t
0 ln |1+γ(α(s))|dN(s)

= lim
t→∞

1

t
ln Eeλ

´ t
0 (|1+γ(α(s))|p−1)ds

= λ
m∑

i=1

πi[|1 + γ(i)|p − 1].

Also, we have

lim
t→∞

1

t
ln E exp

(
p

ˆ t

0

[b(α(s))− 1

2
σ2(α(s))]ds

)
= p

m∑
i=1

πi

(
b(i)− 1

2
σ2(i)

)
.
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Combing the above estimates,

lim sup
t→∞

1

t
ln E|Xx(t)|p =

m∑
i=1

πi

(
pb(i)− p

2
σ2(i) + λ[|1 + γ(i)|p − 1] +

p2

2
σ2(i)

)

=
m∑

i=1

πi

(
b(i)p +

p(p− 1)

2
σ2(i) + λ[|1 + γ(i)|p − 1]

)
.

Remark 2.18. When Markov switching is involved, to numerically solve the equation, we

use the similar algorithm in which the αn can be constructed by using a one-step transition

matrix exp(εQ) or alternatively, as observed in [14], instead of the discrete-time Markov

chain, we can use the so-called ε-skeleton αn = α(εn), where α(·) is the original continuous-

time Markov chain. The stability analysis for numerical algorithms can be carried out similar

to that of Theorem 2.12 and Theorem 3.4 with proper utilization of the irreducibility of the

Markov chain.

Theorem 2.19. Suppose that

m∑
i=1

πi

(
pb(i) +

1

2
p(p− 1)σ2(i) + λ[|1 + γ(i)|p − 1]

)
< 0.

Then numerical algorithm is exponentially p-stable and

lim sup
T→∞

1

T
lim
ε→0

ln E|x̃ε
T (T )|p =

m∑
i=1

πi

(
pb(i) +

1

2
p(p− 1)σ2(i) + λ[|1 + γ(i)|p − 1]

)
. (2.31)

Theorem 2.20. Suppose that the numerical algorithm is exponentially p-stable, using n in

lieu of T , as n → ∞, (2.23) holds. As a result, for small enough θ ∈ (0, 1), the numerical



25

algorithm is almost surely exponentially stable and with the property that

lim sup
n→∞

1

n
lim
ε→0

ln |x̃ε
n(n)| ≤

m∑
i=1

πi

(
b(i)− σ2(i)

2
+ λ ln |1 + γ(i)|

)
+ θ < 0 w.p.1. (2.32)

2.3 Stability of Multi-Dimensional Jump Diffusions and Their Nu-

merical Methods

In this section, we consider the nonlinear r-dimensional jump diffusion systems

dX(t) = b(X(t))dt + σ(X(t))dw(t) + g(X(t−), γ)dN(t)

X(0) = x,
(2.33)

where b(·) : Rr 7→ Rr, σ(·) : Rr 7→ Rr×d, g(·, ·) : Rr × Rr 7→ Rr, and w(·) is a d-dimensional

Brownian motion in which each wj(t) is a scalar Brownian motion. N(·) is a one dimensional

Poisson process as in (2.1). Our interest lies in the case that the systems can be linearized.

We further assume that the jump diffusion equation has a unique strong solution for each

initial condition.

(A1) There exist b ∈ Rr×r, σl ∈ Rr×r, and G(γ) ∈ Rr×r for l = 1, 2, . . . , d such that as

x → 0,

b(x) = bx + o(|x|)
σ(x) = (σ1x, σ2x, . . . , σdx) + o(|x|)
g(x, γ) = G(γ)x + o(|x|),

(2.34)

where γ ∈ Γ and Γ is a subset of Rr − {0} that is the range space of the impulses

jumps.
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To proceed, we first derive sufficient conditions for exponential p-stability and almost

sure exponential stability, then we study the numerical part accordingly.

Denoting

ρ(A) =





Λmax(A), p ≥ 2

Λmin(A), p < 2.

We present a sufficient condition to guarantee system (2.33) being exponentially p-stable.

Theorem 2.21. Assume (A1) and

ξ∗ = Λmax(
b + b′

2
) +

1

2
Λmax(

d∑
j=1

σ′jσj) +
p− 2

2
ρ2(

∑d
j=1(σj + σ′j)

2
) +

λ

p
[|I + G(γ)|p − 1] < 0.

(2.35)

Then system (2.33) is exponentially p-stable.

Proof. By the Dynkin formula, we have the following expression

E|X(t)|p − |x|p

= E

ˆ t

0

{p|X(s)|p−2X ′(s)[bX(s) + o(|X(s)|)] + λ[|X(s) + g(X(s))|p − |X(s)|p]

+
1

2
tr

[
(

d∑
j=1

σjX(s)X ′(s)σ′j + o(|X(s)|2))

·(p|X(s)|p−2I + p(p− 2)|X(s)|p−4X(s)X ′(s)
)
]}ds

≤ E

ˆ t

0

p|X(s)|p(X ′(s)bX(s)

|X(s)|2 +
λ

p
[|I + G(γ)|p − 1] +

1

2

∑d
j=1 X ′(s)σ′jσjX(s)

|X(s)|2

+
1

2
(p− 2)

∑d
j=1(X

′(s)σ′jX(s))2

|X(s)|4 + o(1)
)
ds

≤
ˆ t

0

pE|X(s)|p(Λmax(
b + b′

2
) +

1

2
Λmax(

d∑
j=1

σ′jσj) +
p− 2

2
ρ2(

∑d
j=1(σj + σ′j)

2
)

+
λ

p
[|I + G(γ)|p − 1]

)
ds

≤ pξ∗
ˆ t

0

E|X(s)|pds.

(2.36)
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The Gronwall inequality leads to

E|X(t)|p ≤ |x|pepξ∗t.

Therefore, system (2.33) is exponentially p-stable if ξ∗ < 0.

Theorem 2.22. Assume (A1). If

ξ = Λmax(
b + b′

2
) +

1

2
Λmax(

d∑
j=1

σ′jσj)− Λ2
max(

∑d
j=1(σj + σ′j)

2
) + λ ln |I + G(γ)| < 0, (2.37)

then system (2.33) is almost surely exponentially stable.

Proof. We consider the Lyapunov function V (x) = ln |x|. By the generalized Itô formula,

we get

ln |X(t)| − ln |x| =

ˆ t

0

X ′(s)
|X(s)|2 [bX(s) + o(|X(s)|)]ds + M1(t)

+λ

ˆ t

0

[ln |X(s−) + g(X(s−))| − ln |X(s−)|]ds + M2(t)

+
1

2

ˆ t

0

tr[(
I

|X(s)|2 − 2
X(s)X ′(s)
|X(s)|4 )(

d∑
j=1

(σjX(s)X ′(s)σ′j) + o(|X(s)|2))]ds,

(2.38)

in which

M1(t) =

ˆ t

0

X ′(s)
|X(s)|2σ(X(s))dw(s),

M2(t) =

ˆ t

0

[ln |X(s−) + g(X(s−))| − ln |X(s−)|]dÑ(s).
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Note that the quadratic variation of M1(t) is given by

〈M1,M1〉(t) ≤
ˆ t

0

|X ′(s)σ(X(s))|2
|X(s)|4 ds

≤
ˆ t

0

∑d
j=1 X ′(s)σ′jσjX(s) + o(|X(s)|2)

|X(s)|2 ds ≤ Λmax(
d∑

j=1

σ′jσj)t.

The law of large numbers for local martingales [11] yields that M1(t)
t

→ 0 w.p.1. as t → ∞.

For the term M2(t), the corresponding quadratic variation is as follows

〈M2,M2〉(t) = λ

ˆ t

0

[ln |X(s−) + g(X(s−))| − ln |X(s−)|]2ds

≤ λ

ˆ t

0

(ln
|X(s−) + g(X(s−))|

|X(s−)| )2ds ≤ λ

ˆ t

0

|g(X(s−))|2
|X(s−)|2 ds

≤ λ

ˆ t

0

|G(γ)X(s−)|2 + o(|X(s−)|2)
|X(s−)|2 ds ≤ λG2(γ)t.

Similarly, the law of large numbers for local martingales implies that M2(t)
t

→ 0 w.p.1 as

t →∞.

Now let us work on the rest of the terms. We have that w.p.1.,

lim sup
t→∞

1

t

ˆ t

0

X ′(s)
|X(s)|2 [bX(s) + o(|X(s)|)]ds

= lim sup
t→∞

1

t

ˆ t

0

[
X ′(s)bX(s)

|X(s)|2 +
X ′(s)o(|X(s)|)

|X(s)|2 ]ds

≤ lim sup
t→∞

1

t

ˆ t

0

(Λmax(
b + b′

2
) + o(1))ds

≤ lim sup
t→∞

1

t
Λmax(

b + b′

2
)t

= Λmax(
b + b′

2
),
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lim sup
t→∞

λ

t

ˆ t

0

[ln |X(s−) + g(X(s−))| − ln |X(s−)|]ds

= lim sup
t→∞

λ

t

ˆ t

0

ln
|X(s−) + g(X(s−))|

|X(s−)| ds

≤ lim sup
t→∞

λ

t
ln |I + G(γ)|t = λ ln |I + G(γ)|,

and

lim sup
t→∞

1

t

ˆ t

0

tr[(
I

|X(s)|2 − 2
X(s)X ′(s)
|X(s)|4 )(

d∑
j=1

σjX(s)X ′(s)σ′j + o(|X(s)|2))]ds

= lim sup
t→∞

1

t

ˆ t

0

[
d∑

j=1

(
X ′(s)σ′jσjX(s)

|X(s)|2 − 2
(X ′(s)σ′jX(s))2

|X(s)|4 ) + o(1)]ds

≤ lim sup
t→∞

[
1

t

ˆ t

0

d∑
j=1

X ′(s)σ′jσjX(s)

|X(s)|2 ds− 2

t

ˆ t

0

d∑
j=1

(X ′(s)σ′jX(s))2

|X(s)|4 ds]

≤ Λmax(
d∑

j=1

σ′jσj)− 2Λ2
min(

∑d
j=1(σj + σ′j)

2
).

Therefore, we have

lim sup
t→∞

1

t
ln |X(t)| ≤ Λmax(

b + b′

2
) +

1

2
Λmax(

d∑
j=1

σ′jσj)− Λ2
max(

∑d
j=1(σj + σ′j)

2
)

+λ ln |I + G(γ)| = ξ < 0 w.p.1.

We use the following algorithm to approximate the solution of (2.33)

xn+1 = xn + b(xn)ε + σ(xn)∆wn + g(xn)∆Nn

x0 = X(0) = x.
(2.39)

To proceed, we demonstrate that the sequence {xn : ε > 0, n < ∞} is tight under suitable

conditions.

Lemma 2.23. For algorithm (2.39), assume (2.35) holds. Then the sequence {xn : ε >



30

0, n < ∞} is tight.

The proof of the lemma is similar to that of Lemma 2.4; thus the detailed calculations

are omitted.

Theorem 2.24. Assume (A1) and Lemma 2.23 hold, and suppose

ξ∗ = Λmax(
b + b′

2
) +

1

2
Λmax(

d∑
j=1

σ′jσj) +
p− 2

2
ρ2(

∑d
j=1(σj + σ′j)

2
) +

λ

p
[|I + G(γ)|p − 1] < 0.

Then algorithm (2.39) is exponentially p-stable, and has property that

lim sup
T→∞

1

T
lim
ε→0

ln E|x̃ε
T (T )|p ≤ pξ∗ < 0.

Proof. We obtain

lim sup
T→∞

1

T
lim
ε→0

ln E|x̃ε
T (T )|p

= lim sup
T→∞

1

T
ln E|x̃T (T )|p

≤ lim
T→∞

p ln E|x̃T (0)|
T

+ pξ∗ = pξ∗ < 0.

(2.40)

Theorem 2.25. Assume (A1) and Lemma 2.23 hold, and suppose

ξ = Λmax(
b + b′

2
) +

1

2
Λmax(

d∑
j=1

σ′jσj)− Λ2
max(

∑d
j=1(σj + σ′j)

2
) + λ ln |I + G(γ)| < 0.

Then algorithm (2.39) is almost surely exponentially stable and for small enough θ,

lim sup
n→∞

1

n
lim
ε→0

ln |x̃ε
n(n)| ≤ ξ + θ < 0 w.p.1.
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The proof is similar to that of Theorem 2.12 with the use of (2.37) and (2.35). The details

are omitted for brevity.

Remark 2.26. In view of Theorem 2.24 and Theorem 2.25, for nonlinear systems, as long as

they can be linearized with appropriate conditions together with the tightness of the iterates,

stability of stochastic jump diffusions will lead to stability of the corresponding numerical

algorithms.

2.4 Stability of Nonlinear Regime Switching Jump Diffusions

Now we consider the dynamic system given by

dX(t) = b(X(t), α(t))dt + σ(X(t), α(t))dw(t) + dJ(t),

J(t) =

ˆ t

0

ˆ

Γ

g(X(s−), α(s−), γ)N(ds, dγ),

X(0) = x, α(0) = α,

(2.41)

where the switching process α(·) obeys the transition rule

P{α(t + ∆t) = j|α(t) = i,X(s), α(s), s ≤ t} = qij(X(t))∆t + o(∆t), for i 6= j, (2.42)

w(t) is a d-dimensional standard Brownian motion, and N(·, ·) is a Poisson measure such

that the jump process N(·, ·) is independent of the Brownian motion w(·). Equation (2.41)

can be written as integral form:

X(t) = x+

ˆ t

0

b(X(s), α(s))ds+

ˆ t

0

σ(X(s), α(s))dw(s)+

ˆ t

0

ˆ

Γ

g(X(s−), α(s−), γ)N(ds, dγ).
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Here we have used a setup similar to [19]. When we wish to emphasize the initial data

dependence in the sequel, we write the process as (Xx,α(t), αx,α(t)). Note that although the

two-component process (X(t), α(t)) is Markov, α(t) generally is not a Markov chain due

to the dependence of the state x in the generator. The transition rule indicates that α(t)

depends on the jump diffusion component. Thus the setup we consider is more general than

that of considered in the literature, whereas in the past work it was often assumed that α(t)

itself is a Markov chain and w(t) and α(t) are independent.

For future use, we define a compensated or centered Poisson measure as

Ñ(t, B) = N(t, B)− λtπ(B) for B ⊂ Γ,

where 0 < λ < ∞ is known as the jump rate and π(·) is the jump distribution (a probability

measure). With this centered Poisson measure, we can rewrite J(t) as

J(t) =

ˆ t

0

ˆ

Γ

g(X(s−), α(s−), γ)Ñ(ds, dγ) + λ

ˆ t

0

ˆ

Γ

g(X(s−), α(s−), γ)π(dγ)ds,

which is the sum of a martingale and an absolute continuous process provided certain con-

ditions are satisfied for the function g(·).

Note that the evolution of the discrete component α(·) can be represented by a stochastic

integral with respect to a Poisson measure (e.g., [31]). Define a function h : Rr×M×R 7→ R

by

h(x, i, z) =
m∑

j=1

(j − i)I{z∈∆ij(x)}. (2.43)

That is, with the partition {∆ij(x) : i, j ∈ M} used and for each i ∈ M, if z ∈ ∆ij(x),
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h(x, i, z) = j − i; otherwise h(x, i, z) = 0. Then we may write the switching process as a

stochastic integral

dα(t) =

ˆ

R
h(X(t), α(t−), z)N1(dt, dz), (2.44)

where N1(dt, dz) is a Poisson random measure with intensity dt × m̃(dz), and m̃(·) is the

Lebesgue measure on R. The Poisson random measure N1(·, ·) is independent of the Brownian

motion w(·) and the Poisson measure N(·, ·). For subsequent use, we define another centered

Poisson measure as

µ(dt, dz) = N1(dt, dz)− dt× m̃(dz).

The generator G associated with the process (X(t), α(t)) is defined as follows: For each

i ∈M, and for any twice continuously differentiable function f(·, i),

Gf(x, ·)(i) = Lf(x, ·)(i) + λ

ˆ

Γ

[f(x + g(x, i, γ), i)− f(x, i)]π(dγ),

where L is the operator for a switching diffusion process given by

Lf(x, ·)(i) =
1

2

r∑

k,l=1

akl(x, i)
∂2f(x, i)

∂xk∂xl

+
r∑

k=1

bk(x, i)
∂f(x, i)

∂xk

+ Q(x)f(x, ·)(i)

=
1

2
tr(a(x, i)Hf(x, i)) + b′(x, i)∇f(x, i) + Q(x)f(x, ·)(i), i ∈M,

(2.45)

where x ∈ Rr, a(x, i) = σ(x, i)σ′(x, i). In what follows, we often write Lf(x, ·)(i) as Lf(x, i)

and Gf(x, ·)(i) as Gf(x, i) for convenience whenever there is no confusion.

To proceed, we need the following assumptions.

(A1) The functions b(·, i), σ(·, i), and g(·, i, γ) satisfy b(0, i) = 0, σ(0, i) = 0, and g(0, i, γ) =

0 for each i ∈M; σ(x, i) vanishes only at x = 0 for each i ∈M.



34

(A2) There exists a positive constant K0 such that for each i ∈M, x, y ∈ Rr and γ ∈ Γ,

|b(x, i)− b(y, i)|+ |σ(x, i)− σ(y, i)| ≤ K0|x− y|,
|g(x, i, γ)− g(y, i, γ)| ≤ K0|x− y|.

(A3) There exists g∗(i) satisfying

|g(x, i, γ)| ≤ g∗(i)|x| for each x ∈ Rr, i ∈M, and each γ ∈ Γ.

We elaborate on the conditions briefly. Condition (A1) indicates that 0 is an equilibrium

point; (A2) is a Lipschitz condition on the functions. It together with the equilibrium point 0

implies that the functions grow at most linearly. Several of our results to follow are concerned

with equilibrium point of the switching jump diffusions. To proceed, As a preparation, we

first recall a lemma, which indicates that the equilibrium (0, α) is inaccessible in that starting

with any x 6= 0, the system will not reach the origin with probability one. The proof of this

lemma can be found in [19, Lemma 2.10].

Lemma 2.27. P{Xx,α(t) 6= 0, t ≥ 0} = 1, for any x 6= 0 and α ∈M.

To proceed, we first recall two lemmas. The detailed proof can be found in [19].

Lemma 2.28. Let D ⊂ Rr is a neighborhood of 0. Suppose that for each i ∈M, there exists

a nonnegative Lyapunov function V (·, i) : D 7→ R such that

(i) V (·, i) is continuous in D and vanishes only at x = 0;

(ii) V (·, i) is twice continuously differentiable in D−{0} and satisfies GV (x, i) ≤ 0 for all

x ∈ D − {0}.
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Then the equilibrium point x = 0 is stable in probability.

Define

τρ,ς := inf{t ≥ 0 : |X(t)| = ρ or |X(t)| = ς}, (2.46)

for any 0 < ρ < ς and any (x, α) ∈ Rr ×M with ρ < |x| < ς.

Lemma 2.29. Assume that the conditions of Lemma 2.28 hold, and that for any sufficiently

small 0 < % < ς and any (x, α) ∈ Rr ×M with % < |x| < ς, P{τ%,ς < ∞} = 1. Then the

equilibrium point x = 0 is asymptotically stable in probability.

Theorem 2.30. Assume that the conditions of Lemma 2.29 hold, and that Vς := inf
|x|≥ς
i∈M

V (x, i) →

∞ as ς →∞. Then the equilibrium point x = 0 is asymptotically stable in the large.

Proof. For any ε > 0, i ∈M, and (x, α) ∈ Rr×M, there exists a ς > |x| large enough such

that inf
|X|≥ς
i∈M

V (X, i) ≥ 2V (x, α)/ε.

Let τς be the stopping time τς := inf{t ≥ 0 : |X(t)| ≥ ς} and tς = τς ∧ t. Then it follows

from Dynkin’s formula that

EV (X(tς), α(tς))− V (x, α) = E

ˆ tς

0

GV (X(u), α(u))du ≤ 0.

Consequently, EV (X(tς), α(tς)) ≤ V (x, α). Then we have

E[V (X(τ ς), α(τ ς))I{τς<t}] ≤ V (x, α).

Hence, 2V (x,α)
ε

P (τς < t) ≤ V (x, α). So P (τς < t) ≤ ε/2. Let t →∞, P (τς < ∞) ≤ ε/2. Then
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it follows from Lemma 2.52 that, for any % > 0 with % < |x| < ς we have

1 = P (τ%,ς < ∞) ≤ P (τ% < ∞) + P (τς < ∞),

in which τ% is the stopping time τ% := inf{t ≥ 0 : |X(t)| ≤ %}, where τ%,ς was defined in

(2.87). Consequently, P (τ% < ∞) ≥ 1− ε/2. This implies that P{inf
t≥0
|X(t)| ≤ %} ≥ 1− ε/2.

Since % > 0 can be arbitrarily small, P{inf
t≥0
|X(t)| = 0} ≥ 1− ε/2.

Now we can follow the same techniques in [20, Lemma 7.6] and obtain P{ lim
t→∞

X(t) =

0} ≥ 1 − ε/2. That is, the equilibrium point x = 0 is asymptotically stable in the large as

desired.

For application, it is important to be able to handle linearized systems. Similar to (2.34),

we pose the following condition.

(A4) For each i ∈ M, there exist b(i), σl(i) ∈ Rr×r for l = 1, 2, . . . , d, and a generator of a

continuous-time Markov chain Q̂ = (q̂ij) with the corresponding Markov chain denoted

by α̂(t) such that as x → 0,

b(x, i) = b(i)x + o(|x|),
σ(x, i) = (σ1(i)x, σ2(i)x, ..., σd(i)x) + o(|x|),
Q(x) = Q̂ + o(1).

Moreover, Q̂ is irreducible.

Assumption (A4) indicates that near the origin, the coefficients are locally linear. By

choosing a Lyapunov function properly, we have the same sufficient condition for asymptoti-

cally stable in the large as that of asymptotically stable in probability. The result is provided
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below, and the proof is omitted. The method involved is similar to [19, Theorem 3.5].

Corollary 2.31. Under assumptions (A1)-(A4), the equilibrium point x = 0 of the system

given by (2.41) and (2.42) is asymptotically stable in the large if

∑
i∈M

µi

(
Λmax(

b(i) + b′(i)
2

) +
1

2
Λmax

(
d∑

l=1

σl(i)σ
′
l(i)

)
+ λg∗(i)

)
< 0.

In which µ = (µ1, µ2, · · · , µm) ∈ R1×m is the stationary distribution of α̂(t) and Λmax(A)

denotes the largest eigenvalue of the symmetric part of A.

We first recall a lemma in bleow, which indicates that the process (X(t), α(t)) has no finite

explosion time, also known as regular. The proof of this lemma can be found in [19, Lemma

2.8].

Lemma 2.32. Under assumptions (A1)-(A3), the switching jump diffusion (X(t), α(t)) is

regular.

Lemma 2.33. Let D ⊂ Rr be a neighborhood of 0. Assume that the conditions of Lemma 2.32

hold and assume that for each i ∈M, there exists a nonnegative Lyapunov function V (·, i):

D 7→ R such that V (·, i) is twice continuously differentiable in D − {0}, and satisfies the

following conditions:

k1|x|p ≤ V (x, i) ≤ k2|x|p, x ∈ D, (2.47)

GV (x, i) ≤ −kV (x, i) for all x ∈ D − {0}, (2.48)

for some positive constants k1, k2 and k. Then the equilibrium point x = 0 is exponential

p-stable.
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Remark 2.34. Under certain conditions, we can also obtain the result of almost surely

exponential stability by similar argument in [6, Theorem 5.8.1].

Theorem 2.35. Under assumptions (A1)-(A3), exponential p-stability implies almost surely

exponential stability.

The proof details can be found in [90].

One of the important properties of a diffusion processes is the continuous and smooth

dependence on the initial data. This property is preserved for the switching diffusion pro-

cesses with state-dependent switching; however much work is needed. We will show that this

property is also preserved for the switching jump diffusion processes. The results are stated

for multi-dimensional cases, whereas the proofs are carried out for a one-dimensional process

for the sake of convenience. Let (X(t), α(t)) denote the switching jump process with initial

condition (x, α) and (X̃(t), α̃(t)) be the process starting from (x̃, α), let ∆ 6= 0 be small and

denote x̃ = x + ∆ in the sequel.

Lemma 2.36. Under conditions (A1)-(A3), we have for 0 ≤ t ≤ T and any positive constant

ι, E|X(t)|ι ≤ |x|ιeκt ≤ C, for x 6= 0, α ∈M, where κ = κ(ι,K0,m, g∗(i)) and C = C(κ, T ).

Proof. For each i ∈M and x 6= 0, define V (x, i) = |x|ι for any ι ∈ R+ − {0}. Then for any

∆ > 0 and |x| > ∆,

G|x|ι = ι|x|ι−2x′b(x, i) + λ

ˆ

Γ

(|x + g(x, i, γ)|ι − |x|ι)π(dγ)

+
1

2
tr[σ(x, i)σ′(x, i)ι|x|ι−4(|x|2I + (ι− 2)xx′)].

Since 0 is an equilibrium point, Cauchy-Schwartz inequality implies |x′b(x, i)| ≤ |x||b(x, i)| ≤
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K0|x|2,
tr(σσ′) = |σ|2 ≤ K0|x|2,
tr(σσ′xx′) = x′σσ′x ≤ |x|2|σ|2 ≤ K0|x|4.

Therefore, we have

|G|x|ι| ≤ K0ι|x|ι +
1

2
K0ι|x|ι−2(|x|2 + (ι− 2)|x|2)

+λ|x|ι(|1 + g∗(i)|ι − 1) ≤ κ|x|ι.

Define the stopping time τ∆ := inf{t ≥ 0, |X(t)| ≤ ∆}. Then by the generalized Itô lemma,

we obtain

E|X(τ∆ ∧ t)|ι = |x|ι + E

ˆ τ∆∧t

0

G|X(u)|ιdu

≤ |x|ι + κE

ˆ τ∆∧t

0

|X(u)|ιdu

≤ |x|ι + κE

ˆ t

0

|X(u ∧ τ∆)|ιdu.

By Gronwall’s inequality, it follows that

E|X(τ∆ ∧ t)|ι ≤ |x|ιeκt.

Letting ∆ → 0, by virtue of non-zero property of X(t) shown in Lemma 2.27, we have

E|X(t)|ι ≤ |x|ιeκt.

For 0 ≤ t ≤ T , we further have

E|X(t)|ι ≤ |x|ιeκt ≤ |x|ιeκT = C.
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.

Theorem 2.37. Under the conditions of Lemma 2.36, define

φ∆(t) =
1

∆

ˆ t

0

[b(X̃(s), α̃(s))− b(X̃(s), α(s))]ds

+
1

∆

ˆ t

0

[σ(X̃(s), α̃(s))− σ(X̃(s), α(s))]dw(s)

+
1

∆

ˆ t

0

ˆ

Γ

[g(X̃(s−), α̃(s−), γ)− g(X̃(s−), α(s−), γ)]N(ds, dγ).

(2.49)

Then we have lim
∆→0

E sup
0≤t≤T

|φ∆(t)|2 = 0.

Proof. It can be verified that

E sup
0≤t≤T

|φ∆(t)|2 =
K

∆2
E

ˆ T

0

|b(X̃(s), α̃(s))− b(X̃(s), α(s))|2ds

+
K

∆2
E sup

0≤t≤T
|
ˆ t

0

[σ(X̃(s), α̃(s))− σ(X̃(s), α(s))]dw(s)|2

+
K

∆2
E

ˆ T

0

ˆ

Γ

|g(X̃(s−), α̃(s−), γ)− g(X̃(s−), α(s−), γ)|2dsπ(dγ)

+
K

∆2
E sup

0≤t≤T
|
ˆ t

0

ˆ

Γ

[g(X̃(s−), α̃(s−), γ)− g(X̃(s−), α(s−), γ)]Ñ(ds, dγ)|2.
(2.50)

Let us first consider the next to the last line of (2.50). By choosing η = ∆γ0 with γ0 > 2 and
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partition the interval [0, T ] by η we obtain

E

ˆ T

0

ˆ

Γ

|g(X̃(s−), α̃(s−), γ)− g(X̃(s−), α(s−), γ)|2dsπ(dγ)

= E

bT
η
c−1∑

k=0

ˆ kη+η

kη

ˆ

Γ

|g(X̃(s−), α̃(s−), γ)− g(X̃(s−), α(s−), γ)|2dsπ(dγ)

= KE

bT
η
c−1∑

k=0

[

ˆ kη+η

kη

ˆ

Γ

|g(X̃(s−), α̃(s−), γ)− g(X̃(kη), α̃(s−), γ)|2dsπ(dγ)

+

ˆ kη+η

kη

ˆ

Γ

|g(X̃(kη), α̃(s−), γ)− g(X̃(kη), α(s−), γ)|2dsπ(dγ)

+

ˆ kη+η

kη

ˆ

Γ

|g(X̃(kη), α(s−), γ)− g(X̃(s−), α(s−), γ)|2dsπ(dγ)].

(2.51)

For the third line of (2.51), we have the following bound by virtue of (A2) and [32, Theorem

3.7.1],

E

ˆ kη+η

kη

ˆ

Γ

|g(X̃(s−), α̃(s−), γ)− g(X̃(kη), α̃(s−), γ)|2dsπ(dγ)

≤ K

ˆ kη+η

kη

E
∣∣∣X̃(s−)− X̃(kη)

∣∣∣
2

ds

≤ K

ˆ kη+η

kη

(s− kη)ds ≤ Kη2.

(2.52)

We can derive the upper bound for the last line of (2.51) similarly,

E

ˆ kη+η

kη

ˆ

Γ

|g(X̃(kη), α(s−), γ)− g(X̃(s−), α(s−), γ)|2dsπ(dγ) ≤ O(η2).

To treat the term on the next to the last line of (2.51), note that

E

ˆ kη+η

kη

ˆ

Γ

|g(X̃(kη), α̃(s−), γ)− g(X̃(kη), α(s−), γ)|2dsπ(dγ)

≤ KE

ˆ kη+η

kη

ˆ

Γ

|g(X̃(kη), α̃(s−), γ)− g(X̃(kη), α̃(kη), γ)|2dsπ(dγ)

+KE

ˆ kη+η

kη

ˆ

Γ

|g(X̃(kη), α̃(kη), γ)− g(X̃(kη), α(s−), γ)|2dsπ(dγ).

(2.53)
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For the term on the second line of (2.53) and k = 0, 1, · · · , bT
η
c − 1,

E

ˆ kη+η

kη

ˆ

Γ

|g(X̃(kη), α̃(s−), γ)− g(X̃(kη), α̃(kη), γ)|2dsπ(dγ)

= E

ˆ kη+η

kη

ˆ

Γ

|g(X̃(kη), α̃(s−), γ)− g(X̃(kη), α̃(kη), γ)|2I{α̃(s−) 6=α̃(kη)}dsπ(dγ)

= E
∑
i∈M

∑

j 6=i

ˆ kη+η

kη

ˆ

Γ

|g(X̃(kη), j, γ)− g(X̃(kη), i, γ)|2I{α̃(s−)=α̃(s)=j}I{α̃(kη)=i}dsπ(dγ)

≤ KE
∑
i∈M

∑

j 6=i

ˆ kη+η

kη

[1 + |X̃(kη)|2]I{α̃(kη)=i} × E[I{α̃(s)=j}|X̃(kη), α̃(kη) = i]ds

≤ KE
∑
i∈M

ˆ kη+η

kη

[1 + |X̃(kη)|2]I{α̃(kη)=i} × [
∑

j 6=i

qij(X̃(kη))(s− kη) + o(s− kη)]ds

≤ K

ˆ kη+η

kη

O(η)ds ≤ Kη2.

(2.54)

In the above, we employed the fact that the time of jump of X(t) does not coincide with

that of switching part α(t) in [47, Proposition 2.2,]. Also, Lemma 2.36 and boundedness of

Q(x) are involved. Now let us deal with the last line of (2.53) by using the basic coupling

techniques [24, p. 11]. Consider the measure

Λ((x, j), (x̃, i)) = |x− x̃|+ d(j, i), where d(j, i) =





0 if j = i,

1 if j 6= i.

Let (α(t), α̃(t)) be a random process with a finite state space M×M such that

P [(α(t + h), α̃(t + h)) = (j, i)|(α(t), α̃(t)) = (k, l), (X(t), X̃(t)) = (x, x̃)]

=





q̃(k,l)(j,i)(x, x̃)h + o(h), if (k, l) 6= (j, i),

1 + q̃(k,l)(k,l)(x, x̃)h + o(h), if (k, l) = (j, i),

where h → 0, and the matrix (q̃(k,l)(j,i)(x, x̃)) is the basic coupling of matrices Q(x) = (qkl(x))
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and Q(x̃) = (qkl(x̃)) satisfying

Q̃(x, x̃)f̃(k, l) =
∑

(j,i)∈M×M
q̃(k,l)(j,i)(x, x̃)(f̃(j, i)− f̃(k, l))

=
∑

j

(qkj(x)− qlj(x̃))+(f̃(j, l)− f̃(k, l))

+
∑

j

(qlj(x̃)− qkj(x))+(f̃(k, j)− f̃(k, l))

+
∑

j

(qkj(x) ∧ qlj(x̃))(f̃(j, j)− f̃(k, l))

(2.55)

for any function f̃(·, ·) defined on M×M. Then we have

E[I{α(s)=j}|α(kη) = i1, α̃(kη) = i,X(kη) = x, X̃(kη) = x̃]

=
∑

l∈M
E[I{α(s)=j}I{α̃(s)=l}|α(kη) = i1, α̃(kη) = i,X(kη) = x, X̃(kη) = x̃]

=
∑

l∈M
q̃(i1,i)(j,l)(x, x̃)(s− kη) + o(s− kη) = O(η).

(2.56)

Therefore, for k = 1, · · · , bT
η
c − 1, we have

E

ˆ kη+η

kη

ˆ

Γ

|g(X̃(kη), α̃(kη), γ)− g(X̃(kη), α(s−), γ)|2dsπ(dγ)

= E
∑
i∈M

∑

j 6=i

ˆ kη+η

kη

ˆ

Γ

|g(X̃(kη), i, γ)− g(X̃(kη), j, γ)|2I{α(s)=α(s−)=j}I{α̃(kη)=i}dsπ(dγ)

≤ KE
∑

i,i1∈M

∑

j 6=i

ˆ kη+η

kη

[1 + |X̃(kη)|2]I{α̃(kη)=i,α(kη)=i1}

×E[I{α(s)=j}|α(kη) = i1, α̃(kη) = i,X(kη) = x, X̃(kη) = x̃]ds = O(η2).

(2.57)
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For k = 0, recall that α(0) = α̃(0) = α, X(0) = x and X̃(0) = x̃, we have

E

ˆ η

0

ˆ

Γ

|g(X̃(0), α̃(0), γ)− g(X̃(0), α(s), γ)|2dsπ(dγ)

= E

ˆ η

0

ˆ

Γ

∑

j 6=α

|g(x̃, α, γ)− g(x̃, j, γ)|2I{α(s)=j}dsπ(dγ)

≤ K
∑

j 6=α

ˆ η

0

[1 + x̃2]E[I{α(s)=j}|α(0) = α, X̃(0) = x̃]ds

≤ K

ˆ η

0

∑

j 6=α

[qαj(x̃)s + o(s)]ds ≤ Kη2.

(2.58)

Thus, for k = 0, 1, · · · , bT
η
c − 1,

E

ˆ kη+η

kη

ˆ

Γ

|g(X̃(kη), α̃(kη), γ)− g(X̃(kη), α(s−), γ)|2dsπ(dγ) ≤ Kη2. (2.59)

Now we can obtain

E

ˆ T

0

ˆ

Γ

|g(X̃(s−), α̃(s−), γ)− g(X̃(s−), α(s−), γ)|2dsπ(dγ) ≤
bT

η
c−1∑

k=0

Kη2 ≤ Kη.

Likewise, we also obtain the bound for the martingale part

E sup
0≤t≤T

|
ˆ t

0

ˆ

Γ

[g(X̃(s−), α̃(s−), γ)− g(X̃(s−), α(s−), γ)]Ñ(ds, dγ)|2 ≤ Kη.

For the drift and diffusion parts involved, the argument in [49, Lemma 4.3] leads to

E

ˆ T

0

|(b(X̃(s), α̃(s))− b(X̃(s), α(s))|2ds ≤ Kη,

E sup
0≤t≤T

|
ˆ t

0

[σ(X̃(s), α̃(s))− σ(X̃(s), α(s))]dw(s)|2 ≤ Kη.
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Therefore, we obtain

E sup
0≤t≤T

|φ∆(t)|2 ≤ K
η

∆2
= K∆γ0−2 → 0 as ∆ → 0. (2.60)

This concludes the proof.

Lemma 2.38. Under the conditions of Theorem 2.37, E[ sup
0≤t≤T

|X̃ x̃,α(t)−Xx,α(t)|2] ≤ C|x̃−

x|2, where the constant C satisfies C = C(K0, T ).

Proof. Let T > 0 be fixed and recall that ∆ = x̃ − x, then we have X̃ x̃,α(t) − Xx,α(t) =

∆ + A(t) + B(t), where

A(t) =

ˆ t

0

[b(X̃(s), α̃(s))− b(X̃(s), α(s))]ds

+

ˆ t

0

[σ(X̃(s), α̃(s))− σ(X̃(s), α(s))]dw(s)

+

ˆ t

0

ˆ

Γ

[g(X̃(s−), α̃(s−), γ)− g(X̃(s−), α(s−), γ)]N(ds, dγ)

= ∆φ∆(t),

(2.61)

B(t) =

ˆ t

0

[b(X̃(s), α(s))− b(X(s), α(s))]ds

+

ˆ t

0

[σ(X̃(s), α(s))− σ(X(s), α(s))]dw(s)

+

ˆ t

0

ˆ

Γ

[g(X̃(s−), α(s−), γ)− g(X(s−), α(s−), γ)]N(ds, dγ).

(2.62)

Hence

sup
t∈[0,T ]

|X̃ x̃,α(t)−Xx,α(t)|2 ≤ 3∆2 + 3 sup
t∈[0,T ]

|A(t)|2 + 3 sup
t∈[0,T ]

|B(t)|2.
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It follows from (2.60) that

E[ sup
t∈[0,T ]

|A(t)|2] ≤ ∆2E[ sup
t∈[0,T ]

|φ∆(t)|2] ≤ K∆r0 = o(∆2).

By the Hölder inequality and the Lipschitz continuity, we have

E[ sup
t∈[0,T ]

|
ˆ t

0

[b(X̃(s), α(s))− b(X(s), α(s))]ds|2] ≤ K

ˆ T

0

E|X̃(s)−X(s)|2ds

and

E[ sup
t∈[0,T ]

|
ˆ t

0

ˆ

Γ

[g(X̃(s−), α(s−), γ)− g(X(s−), α(s−), γ)]dsπ(dγ)|2]

≤ K

ˆ T

0

E|X̃(s−)−X(s−)|2ds.

Then the basic properties of stochastic integrals (w.r.t. w(·) and Ñ(·)) together with the

Lipschitz continuity lead to

E[ sup
t∈[0,T ]

|
ˆ t

0

[σ(X̃(s), α(s))− σ(X(s), α(s))]dw(s)|2] ≤ K

ˆ T

0

E|X̃(s)−X(s)|2ds

and

E[ sup
t∈[0,T ]

|
ˆ t

0

ˆ

Γ

[g(X̃(s−), α(s−), γ)− g(X(s−), α(s−), γ)]Ñ(ds, dγ)|2]

≤ K

ˆ T

0

E|X̃(s−)−X(s−)|2ds.

So,

E[ sup
t∈[0,T ]

|X̃ x̃,α(t)−Xx,α(t)|2] ≤ 3∆2 + K

ˆ T

0

E[ sup
u∈[0,T ]

|X̃(u)−X(u)|2]du + o(∆2).

(2.63)



47

Now, by Gronwall’s inequality

E[ sup
t∈[0,T ]

|X̃ x̃,α(t)−Xx,α(t)|2] ≤ 3∆2 exp(KT ) + o(∆2) ≤ K|x̃− x|2.

Thus, we have completed the proof.

Let us introduce some notations to proceed. Recall that a vector β = (β1, β2, · · · , βr) with

nonnegative integer component is referred to as a multi-index. Put |β| = β1 + β2 + · · ·+ βr,

we define Dβ
x as

Dβ
x =

∂β

∂xβ
=

∂|β|

∂xβ1

1 · · · ∂βr
xr

.

Recall that ∆ = x̃− x and define

Z∆(t) =
X̃ x̃,α(t)−Xx,α(t)

∆
. (2.64)

Then we have the following expression:

Z∆(t) = 1 + φ∆(t) +
1

∆

ˆ t

0

[b(X̃(s), α(s))− b(X(s), α(s))]ds

+
1

∆

ˆ t

0

[σ(X̃(s), α(s))− σ(X(s), α(s))]dw(s)

+
1

∆

ˆ t

0

ˆ

Γ

[g(X̃(s−), α(s−), γ)− g(X(s−), α(s−), γ)]N(ds, dγ),

(2.65)

where φ∆(t) is defined in (2.49).

Lemma 2.39. Under the conditions of Theorem 2.38, assume that for each i ∈ M, b(·, i),

σ(·, i) and g(, i, γ) have continuously partial derivatives with respect to the variable x up to
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the second order and that

|Dβ
xb(x, i)|+ |Dβ

xσ(x, i)|+ |Dβ
xg(x, i, γ)| ≤ K(1 + |x|ρ),

where K and ρ are positive constants and β is a multi-index with |β| ≤ 2. Then Xx,α(t) is

twice continuously differentiable in mean square with respect to x.

Proof. Given the definition of Z∆(t) above and Theorem 2.37, we just need to consider the

last three terms of (2.65). First, note that

1

∆

ˆ t

0

ˆ

Γ

[g(X̃(s−), α(s−), γ)− g(X(s−), α(s−), γ)]dsπ(dγ)

=
1

∆

ˆ

Γ

ˆ t

0

ˆ 1

0

d

dν
g(X(s−) + ν(X̃(s−)−X(s−)), α(s−), γ)dνdsπ(dγ)

=

ˆ

Γ

ˆ t

0

[

ˆ 1

0

gx(X(s−) + ν(X̃(s−)−X(s−)), α(s−), γ)dν]Z∆(s−)dsπ(dγ),

(2.66)

where gx(·) denotes the partial derivative of g(·, i, γ) with respect to x. It follows from

Lemma 2.38 that for any s ∈ [0, T ], X̃(s−) − X(s−) → 0 in probability as ∆ → 0. This

implies that

ˆ 1

0

gx(X(s−) + ν(X̃(s−)−X(s−)), α(s−), γ)dν → gx(X(s−), α(s−), γ) (2.67)

in probability as ∆ → 0. Therefore, we have

1

∆

ˆ t

0

ˆ

Γ

[g(X̃(s−), α(s−), γ)− g(X(s−), α(s−), γ)]dsπ(dγ)

→
ˆ t

0

ˆ

Γ

gx(X(s−), α(s−), γ)Z∆(s−)dsπ(dγ).

(2.68)
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Similarly, we have

1

∆

ˆ t

0

[b(X̃(s), α(s))− b(X(s), α(s))]ds →
ˆ t

0

bx(X(s), α(s))Z∆(s)ds (2.69)

in probability as ∆ → 0 and

1

∆

ˆ t

0

[σ(X̃(s), α(s))− σ(X(s), α(s))]dw(s) →
ˆ t

0

σx(X(s), α(s))Z∆(s)dw(s) (2.70)

in probability as ∆ → 0. bx(·) and σx(·) denote the partial derivative of b(·, i) and σ(·, i) with

respect to x, respectively. Recall the definition of Z∆(t) in equation (2.64), Theorem 2.37,

(2.67)-(2.70), and [26, Theorem 5.5.2] yield

E|Z∆(t)− ς(t)|2 → 0 as ∆ → 0. (2.71)

where

ς(t) = 1 +

ˆ t

0

bx(X(s), α(s))ς(s)ds +

ˆ t

0

σx(X(s), α(s))ς(s)dw(s)

+

ˆ t

0

ˆ

Γ

gx(X(s−), α(s−), γ)ς(s−)N(ds, dγ)

(2.72)

and ς(t) = ςx,α(t) is mean square continuous with respect to x. Therefore, ∂
∂x

Xx,α(t) exists

in the mean square sense and ς(t) = ∂
∂x

Xx,α(t). Likewise, we can show ∂2

∂x2 X
x,α(t) exists in

the mean square sense and is mean square continuous with respect to x.

Lemma 2.40. Under the assumptions of Lemma 2.39, we have sup
t∈[0,T ]

E|ς(t)|2 ≤ K =

K(x, x̃, T,K0) < ∞.

Proof. For any t ∈ [0, T ], E|ς(t)|2 ≤ 2E|ς(t) − Z∆(t)|2 + 2E|Z∆(t)|2. By (2.71), it suffices
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to consider the last term above. In fact,

E|Z∆(t)|2 ≤ K + 5E|φ∆(t)|2 + 5E| 1
∆

ˆ t

0

[b(X̃(u), α(u))− b(X(u), α(u))]du|2

+5E| 1
∆

ˆ t

0

[σ(X̃(u), α(u))− σ(X(u), α(u))]dw(u)|2

+5E| 1
∆

ˆ t

0

ˆ

Γ

[g(X̃(u−), α(u−), γ)− g(X(u−), α(u−), γ)]N(du, dγ)|2,

so

E|Z∆(t)|2 ≤ K + 5t
1

|∆|2E

ˆ t

0

|b(X̃(u), α(u))− b(X(u), α(u))|2du

+5
1

|∆|2E

ˆ t

0

|σ(X̃(u), α(u))− σ(X(u), α(u))|2du

+5t
1

|∆|2E

ˆ t

0

ˆ

Γ

|g(X̃(u−), α(u−), γ)− g(X(u−), α(u−), γ)|2duπ(dγ)+

+5
1

|∆|2E

ˆ t

0

ˆ

Γ

|g(X̃(u−), α(u−), γ)− g(X(u−), α(u−), γ)|2duπ(dγ)

≤ K + 5K0(T + 1)
1

|∆|2E

ˆ t

0

|X̃(u)−X(u)|2du

+5K0(T + 1)
1

|∆|2E

ˆ t

0

|X̃(u−)−X(u−)|2du ≤ K = K(x, x̃, T,K0).

(2.73)

Hence the proof is completed.

Lemma 2.41. Assume the conditions of Lemma 2.40 hold. Then the function E|Xx,α(t)|p

is twice continuously differentiable with respect to the variable x, except possibly at x = 0.

Proof. In what follows, let u(t, x, α) = E[φ(X(t), α(t))] = E|Xx,α(t)|p, then

u(t, x̃, α)− u(t, x, α)

∆
=

1

∆
E[|X̃(t)|p − |X(t)|p]

=
1

∆
E

ˆ 1

0

d

dv
|X(t) + v(X̃(t)−X(t))|pdv

= E[Z∆(t)

ˆ 1

0

|X(t) + v(X̃(t)−X(t))|pxdv],
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where | · |px denotes the partial derivative of φ(·, i) = | · |p with respect to x. Consider

| 1
∆

E[|X̃(t)|p − |X(t)|p]− E[|X(t)|pxς(t)]|

≤ |E
ˆ 1

0

[|X(t) + v(X̃(t)−X(t))|pxdvZ∆(t)]− E|X(t)|pxς(t)|

≤ E

ˆ 1

0

|
[
|X(t) + v(X̃(t)−X(t))|pxdv − |X(t)|px

]
Z∆(t)|+ E||X(t)|px[Z∆(t)− ς(t)]|.

(2.74)

For the second part of last line of (2.74), by Cauchy-Schwartz inequality, we obtain

E
∣∣|X(t)|px[Z∆(t)− ς(t)]

∣∣ ≤ E
1
2 |X(t)|2p

x E
1
2 [Z∆(t)− ς(t)]2

≤ KE
1
2 [Z∆(t)− ς(t)]2 → 0 as ∆ → 0.

Here we used Lemma 2.36 and (2.71). Similarly, we can show the first term of last line of

(2.74) goes to 0 as ∆ → 0. Thus E|Xx,α(t)|p is differentiable with respect to the variable x.

Likewise, we can also see it is twice continuously differentiable with respect to the variable

x. As a nice application of the smooth dependence on the initial data, we obtain a Lyapunov

converse theorem, namely, necessary conditions for exponential p stability.

Theorem 2.42. Assume that the conditions of Lemma 2.41 hold and that the equilibrium

point 0 is exponentially p-stable. Then for each i ∈ M, there exists a function V (·, i) ∈

C2(Rr : R+) such that

k1|x|p ≤ V (x, i) ≤ k2|x|p x ∈ D,

GV (x, i) ≤ −k3|x|p for all x ∈ D − {0},∣∣∣∣
∂V

∂xj

(x, i)

∣∣∣∣ ≤ k4|x|p−1,
∣∣∣∣

∂2V

∂xj∂xl

(x, i)

∣∣∣∣ ≤ k|x|p−2.
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for all 1 ≤ j, l ≤ r, x ∈ D − {0}, and for some positive constants k, k1, k2, k3 and k4, where

D is a neighborhood of 0.

Proof. For each i ∈M, consider the function

V (x, i) =

ˆ T

0

E|Xx,i(u)|pdu.

It follows from Lemma 2.41, V (x, i) is twice continuously differentiable with respect to x

except possibly at 0. The equilibrium point 0 is exponential p-stable, therefore there is a

κ > 0 such that

V (x, i) =

ˆ T

0

E|Xx,i(u)|pdu ≤
ˆ T

0

K|x|pe−κudu ≤ k2|x|p.

For the function |x|p, we have |G|x|p| ≤ K|x|p for some positive real number K. An applica-

tion of generalized Itô’s formula leads to

E|Xx,i(T )|p − |x|p = E

ˆ T

0

G|Xx,i(u)|pdu ≥ −KE

ˆ T

0

|Xx,i(u)|pdu = −KV (x, i).

Again recall that equilibrium point x = 0 is exponential p-stable, we can choose T such that

E|Xx,i(T )|p ≤ 1
2
|x|p, and therefore, we have V (x, i) ≥ |x|p

2K
= k1|x|p. Notice that

GV (x, i) =

ˆ T

0

GE|Xx,i(u)|pdu.

Let u(t, x, i) = E|Xx,i(t)|p, by the similar argument in step 1 and step 2 of [20, Theorem
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7.10], we obtain

GV (x, i) =

ˆ T

0

GE|Xx,i(u)|pdu = u(T, x, i)− u(0, x, i)

= E|Xx,i(T )|p − E|Xx,i(0)|p = E|Xx,i(T )|p − |x|p

≤ −1

2
|x|p = −k3|x|p.

Note that

∂E|Xx,i(t)|p
∂xj

= pE|Xx,i(t)|p−1sgn(Xx,i(t))
∂Xx,i(t)

∂xj

,

so ∣∣∣∣
∂E|Xx,i(t)|p

∂xj

∣∣∣∣ = pE

(
|Xx,i(t)|p−1

∣∣∣∣
∂Xx,i(t)

∂xj

∣∣∣∣
)

≤ pE
1
2 |Xx,i(t)|2p−2E

1
2

∣∣∣∣
∂Xx,i(t)

∂xj

∣∣∣∣
2

≤ K(|x|2p−2e−κt)
1
2 = K|x|p−1e−κt/2.

For the last line above, we used the Lemma 2.36 and Lemma 2.40. Consequently, we have

∣∣∣∣
∂V (x, i)

∂xj

∣∣∣∣ =

∣∣∣∣
ˆ T

0

∂

∂xj

E|Xx,i(u)|pdu

∣∣∣∣ ≤
ˆ T

0

K|x|p−1e−κu/2du ≤ k4|x|p−1.

We can have estimate of the second derivative of V (x, i) by similar argument, the theorem

is thus proved.

For practical systems, frequently, we do not have information regarding the equilibria

of the systems. Nevertheless, the systems still possesses certain kind of stability properties.

Thus it is necessary to extend our definition to consider the so-called the asymptotic stability

in distribution. To proceed, let us first give two definitions.

Definition 2.43. The dynamic system is asymptotically stable in distribution if, there exists

such a probability measure ν(·×·) on Rr×M that the transition probability p(t, x, α, dy×{i})
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of (X(t), α(t)) converges weakly to ν(dy × {i}) as t →∞ for every (x, α) ∈ Rr ×M.

Definition 2.44. The definitions of (P1) and (P2) are as follows.

• The switching jump diffusion process given by (2.41) and (2.42) is said to have property

(P1) if, for any (x, α) ∈ Rr ×M and any ε > 0, there exists a constant R > 0 such

that

P{|Xx,α(t)| ≥ R} < ε, for any t ≥ 0.

• The switching jump diffusion process given by (2.41) and (2.42) is said to have property

(P2) if, for any ε > 0 and any compact subset Ĉ of Rr, there exists a T = T (ε, Ĉ) > 0

such that

P (|Xx0,i0(t)−Xy0,i0(t)| ≤ ε) → 1 as t →∞,

whenever (x0, y0, i0) ∈ Ĉ× Ĉ×M.

In this section, we first establish asymptotic stability in distribution of the process

(X(t), α(t)) in which α(t) is a Markov chain that is independent of the Brownian motion,

which is referred as Markov switching jump diffusions. Then we further extend the results

to state-dependent switching process.

Proposition 2.45. Suppose that (A2) is satisfied, that b(·, i), σ(·, i), and g(·, i, γ) grow at

most linearly for each i ∈ M and γ ∈ Γ, that conditions (P1) and (P2) hold, and that the

generator of the Markov chain Q is irreducible. Then the switching jump diffusion process

(X(t), α(t)) is stable in distribution.

Proof. We note that [50, Theorem 3.1] in fact works not only for Markov switching diffusion
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processes but also for more general Markov processes. In our current setup, (X(t), α(t)) is a

Markov process. So we can use essentially the same steps as in the aforementioned reference

to show the process is stable in distribution. The verbatim argument is omitted.

Our next task is to find sufficient conditions that ensure conditions (P1) and (P2) are in

force. The result is stated in the next theorem.

Theorem 2.46. Assume that for each i ∈ M, there exists function V (·, i) ∈ C2(Rr : R+)

satisfying the following two conditions: There exists a positive real number β such that

GV (x, i) ≤ −βV (x, i), (2.75)

VR := inf
|x|≥R
i∈M

V (x, i) →∞ as R →∞. (2.76)

Then (P1) and (P2) hold.

Proof. Let us first verify (P1). Define the stopping time

τR := inf{t ≥ 0 : |X(t)| ≥ R}.

Consider V (x, i)eβt and let tR = τR ∧ t. By virtue of Dynkin’s formula, we have

Ex,α[V (X(tR), α(tR))eβtR ]− V (x, α) = Ex,α

ˆ tR

0

eβsGV (X(s), α(s))ds

+βEx,α

ˆ tR

0

eβsV (X(s), α(s))ds,

where Ex,α denotes the expectation with X(0) = x and α(0) = α.
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Hence, by virtue of (2.81), Ex,αV (X(tR), α(tR)) ≤ V (x, α)e−βtR . We further have

VRP{τR ≤ t} ≤ Ex,α[V (X(τR), α(τR))I{τR≤t}] ≤ V (x, α)e−βτR .

Note that τR ≤ t if and only if sup
0≤u≤t

|X(u)| ≥ R. Therefore, it follows that

P{ sup
0≤u≤t

|Xx,α(u)| ≥ R} ≤ V (x, α)e−βτR

VR

≤ V (x, α)

VR

.

Then upon using (2.82), P{|Xx,α(t)| ≥ R} → 0 as R → ∞, for all t ≥ 0. To guarantee

(P2) hold, similar technique is involved here. But now we need to consider the difference

between two solutions of equation (2.41) starting from different initial values in compact set

Ĉ. Namely, (x, α) and (y, α).

Xx,α(t)−Xy,α(t)

= x− y +

ˆ t

0

[b(Xx,α(s), α(s))− b(Xy,α(s), α(s))]ds

+

ˆ t

0

[σ(Xx,α(s), α(s))− σ(Xy,α(s), α(s))]dw(s)

+

ˆ t

0

ˆ

Γ

[g(Xx,α(s−), α(s−), γ)− g(Xy,α(s−), α(s−), γ)]N(ds, dγ).

Let Zx,y,α(t) = Xx,α(t)−Xy,α(t), so Z(0) = z = x− y. Then

dZx,y,α(t) = [b(Xx,α(t), α(t))− b(Xy,α(t), α(t))]dt

+[σ(Xx,α(t), α(t))− σ(Xy,α(t), α(t))]dw(t)

+

ˆ

Γ

[g(Xx,α(t−), α(t−), γ)− g(Xy,α(t−), α(t−), γ)]N(dt, dγ).

Define a stopping time τε := inf{t ≥ 0, |Xx,α(t)−Xy,α(t)| ≥ ε} and let tε = τε ∧ t. Then
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we have

Ez,αV (Z(tε), α(tε))− V (z, α) = Ez,α

ˆ tε

0

GV (Z(s), α(s))ds

≤ −β

ˆ tε

0

Ez,αV (Z(s), α(s))ds.

Given s ≤ τε ∧ t, we have s ∧ τε = s. As a result,

Ez,αV (Z(t ∧ τε), α(t ∧ τε))− V (z, α) ≤ −β

ˆ t

0

Ez,αV (Z(s ∧ τε), α(s ∧ τε))ds.

By applying Gronwall’s inequality, we obtain

Ez,αV (Z(τε ∧ t), α(τε ∧ t)) ≤ V (z, α)e−βt.

Hence,

VεP (τε ≤ t) ≤ Ez,α[V (Z(τε), α(τε))I{τε≤t}] ≤ V (z, α)e−βt,

in which Vε = inf{V (z, i), z ∈ Rr\Bε, i ∈ M} and Bε = {z ∈ Ĉ, |z| < ε}, so Vε > 0. Note

that τε ≤ t if and only if sup
0≤u≤t

|Z(u)| ≥ ε. Therefore, it follows that P{ sup
0≤u≤t

|Z(u)| ≥ ε} ≤
V (z,α)e−βt

Vε
, so P (|Z(t)| ≥ ε) → 0 as t → ∞. That is, P (|Xx,α(t) − Xy,α(t)| ≤ ε) → 1 as

t →∞. Thus, the proof is concluded.

Now, let us consider the case when the generator of the discrete component α(t) is x

dependent. In this case, the switching part is no longer a Markov chain. Because of the inter-

plays between α(t) and X(t), we need more complex notations. We use the same notations

and technique as that of [23]. Switching diffusions were treated in [23], whereas we deal with
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switching jump diffusions. Define

X̃(t) =
[
X ′(t)I{α(t)=1}, X

′(t)I{α(t)=2}, · · · , X ′(t)I{α(t)=m}
]′

,

S =
⋃

i∈M
0r(i−1) × Rr × 0r(m−i),

(2.77)

Here and in the sequel 0k1×k2 is a Rk1×k2 zero matrix , 0k denotes the k-dimensional zero

column vector. It is seen that S ⊆ Rmr and X̃(t) is an S-valued process. For i ∈M, x ∈ Rr,

define

x̃i = 0r(i−1) × x× 0r(m−i) ∈ S.

Ξ =
⋃

i,j∈M
i<j

0r(i−1) × Rr × 0r(j−i−1) × Rr × 0r(m−j).
(2.78)

Then Ξ ⊆ Rmr and X̃x0,i0(t)− X̃y0,j0(t) is a Ξ ∪ S-valued process. For x, y ∈ Rr, i, j ∈M,

x̃i − ỹj =





[0′r(i−1), x
′ − y′, 0′r(m−i)]

′ ∈ S for i = j,

[0′r(i−1), x
′, 0′r(j−i−1),−y′, 0′r(m−j)]

′ ∈ Ξ for i < j,

[0′r(j−1),−y′, 0′r(i−j−1), x
′, 0′r(m−i)]

′ ∈ Ξ for i > j.

Similar to the conditions we mentioned in the previous part, under the condition (P1) and

(P2’), we can obtain stability in distribution similar to the approach in [23]. Now let us give

condition (P2’).

Definition 2.47. The switching jump diffusion given by (2.41) and (2.42) is said to satisfy

condition (P2’) if, for any ε > 0 and any compact subset Ĉ of Rr, there exists a T = T (ε, Ĉ) >

0 such that

E|X̃x0,i0(t)− X̃y0,j0(t)| < ε for all t ≥ T,

whenever (x0, i0, y0, j0) ∈ Ĉ×M× Ĉ×M.
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We can obtain (P2) from (P2’). To continue, we focus on obtaining sufficient conditions

for conditions (P1) and (P2’). From [23, Theorem 3.8] we can see these two properties imply

asymptotic stability in distribution. So it is necessary to establish sufficient criteria for the

two properties. To proceed, we need to introduce the following notations.

The generator G̃ associated with the process x̃i−ỹj is defined as follows: For each i, j ∈M,

and for any twice continuously differentiable function f ,

G̃f(x̃i − ỹj) = L̃f(x̃i − ỹj) + λ

ˆ

Γ

[f(x̃i + g̃(x, i, γ)− ỹj − g̃(y, j, γ))− f(x̃i − ỹj)]π(dγ),

where L̃ is the operator for a switching diffusion process given by

L̃f(x̃i − ỹj) =
1

2
tr(ã(x̃i, ỹj)Hf(x̃i − ỹj)) + (b̃(x, i)− b̃(y, j))′∇f(x̃i − ỹj)

+
m∑

k=1

qik(x)f(x̃k − ỹj) +
m∑

k=1

qjk(x)f(x̃i − ỹk) +
m∑

k=1
k 6=i

m∑
l=1
l6=j

m̃(∆ik(x) ∩∆jl(y))

×[f(x̃k − ỹl)− f(x̃i − ỹl)− f(x̃k − ỹj) + f(x̃i − ỹj)],

(2.79)

in which

b̃(x, i) =
[
0′r(i−1), b

′(x, i), 0′r(m−i)

]′
,

σ̃(x, i) =
[
0′r(i−1)×d, σ

′(x, i), 0′r(m−i)×d

]′
,

g̃(x, i, γ) =
[
0′r(i−1), g

′(x, i, γ), 0′r(m−i)

]′
,

ã(x̃i, ỹj) = (σ̃(x, i)− σ̃(y, j))× (σ̃(x, i)− σ̃(y, j))′,

where 0l1×l2 is an l1 × l2 matrix with all entries being 0, b(x, i) and g(x, i, γ) ∈ Rr, and

σ(x, i) ∈ Rr×d. Recall that ∆ik(x) are the intervals having length qik(x); m̃ is the Lebesgue

measure on R such that dt × m̃(dz) is the density of Poisson measure with which we can

represent the discrete component α(t) by a stochastic integral.
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Theorem 2.48. Assume the conditions of Theorem 2.46 hold and assume that for each

i, j ∈ M, there exists a Lyapunov function V (z) = z′z ∈ C2(Rmr : R+) satisfying the

following condition: There exists a positive real number β̃ such that

G̃V (x̃i − ỹj) ≤ −β̃V (x̃i − ỹj), (2.80)

then (P1) and (P2’) hold.

Proof. We need only verify (P2’). Let Ĉ be any compact subset of Rr, and fix any x0, y0 ∈ Ĉ,

i0, j0 ∈M. Define

ζN = inf{t ≥ 0, |X̃x0,i0(t)− X̃y0,j0(t)| > N},
ζ̃R = inf{t ≥ 0, |X̃x0,i0(t)|2 + |X̃y0,j0(t)|2 > R}.

Let ζ = ζN ∧ ζ̃R.

By virtue of the generalized Itô formula, we have

E|X̃x0,i0(t ∧ ζ)− X̃y0,j0(t ∧ ζ)|2 = |x̃i0
0 − ỹj0

0 |2 +

ˆ t∧ζ

0

EG̃|X̃x0,i0(u)− X̃y0,j0(u)|2du.

Given the fact that for u ≤ t ∧ ζ, we have u ∧ ζ = u. As a result,

E|X̃x0,i0(t ∧ ζ)− X̃y0,j0(t ∧ ζ)|2 = |x̃i0
0 − ỹj0

0 |2 +

ˆ t

0

EG̃|X̃x0,i0(u ∧ ζ)− X̃y0,j0(u ∧ ζ)|2du.
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Then

dE

dt
|X̃x0,i0(t ∧ ζ)− X̃y0,j0(t ∧ ζ)|2 = EG̃|X̃x0,i0(t ∧ ζ)− X̃y0,j0(t ∧ ζ)|2

≤ −β̃E|X̃x0,i0(t ∧ ζ)− X̃y0,j0(t ∧ ζ)|2.

Solving the differential inequality above leads to

E|X̃x0,i0(t ∧ ζ)− X̃y0,j0(t ∧ ζ)|2 ≤ e−β̃t|x̃i0
0 − ỹj0

0 |2.

Let N →∞, R →∞, we obtain

E|X̃x0,i0(t)− X̃y0,j0(t)|2 ≤ e−β̃t|x̃i0
0 − ỹj0

0 |2.

Condition (P2’) is thus verified.

Theorem 2.49. Assume that for each i ∈ M, there exists function V (·, i) ∈ C2(Rr : R+)

satisfying the following two conditions: There exists a positive real number β such that

GV (x, i) ≤ −βV (x, i), (2.81)

VR := inf
|x|≥R
i∈M

V (x, i) →∞ as R →∞. (2.82)

Then the Markovian switching jump diffusion is asymptotic stability in distribution.

The above theorem takes care of the case of Markovian switching jump diffusion. For x

depending on switching jump diffusion, one of the difficulties is the interplays between x(t)
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and α(t). We redefine X̃(t) and the set S as

X̃(t) =
[
X ′(t)I{α(t)=1}, X

′(t)I{α(t)=2}, · · · , X ′(t)I{α(t)=m}
]′

,

S =
⋃

i∈M
0r(i−1) × Rr × 0r(m−i),

(2.83)

Here and in the sequel 0k1×k2 is a Rk1×k2 zero matrix, 0k denotes the k-dimensional zero

column vector. It is seen that S ⊆ Rmr and X̃(t) is an S-valued process. For i ∈M, x ∈ Rr,

define

x̃i = 0r(i−1) × x× 0r(m−i) ∈ S.

Ξ =
⋃

i,j∈M
i<j

0r(i−1) × Rr × 0r(j−i−1) × Rr × 0r(m−j).
(2.84)

Then Ξ ⊆ Rmr and X̃x0,i0(t)− X̃y0,j0(t) is a Ξ ∪ S-valued process. For x, y ∈ Rr, i, j ∈M,

x̃i − ỹj =





[0′r(i−1), x
′ − y′, 0′r(m−i)]

′ ∈ S for i = j,

[0′r(i−1), x
′, 0′r(j−i−1),−y′, 0′r(m−j)]

′ ∈ Ξ for i < j,

[0′r(j−1),−y′, 0′r(i−j−1), x
′, 0′r(m−i)]

′ ∈ Ξ for i > j.

The generator G̃ associated with the process x̃i− ỹj is defined as follows: For each i, j ∈M,

and for any twice continuously differentiable function f ,

G̃f(x̃i − ỹj) = L̃f(x̃i − ỹj) + λ

ˆ

Γ

[f(x̃i + g̃(x, i, γ)− ỹj − g̃(y, j, γ))− f(x̃i − ỹj)]π(dγ),
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where L̃ is the operator for a switching diffusion process given by

L̃f(x̃i − ỹj) =
1

2
tr(ã(x̃i, ỹj)Hf(x̃i − ỹj)) + (̃b(x, i)− b̃(y, j))′∇f(x̃i − ỹj)

+
m∑

k=1

qik(x)f(x̃k − ỹj) +
m∑

k=1

qjk(x)f(x̃i − ỹk) +
m∑

k=1
k 6=i

m∑
l=1
l6=j

m̃(∆ik(x) ∩∆jl(y))

×[f(x̃k − ỹl)− f(x̃i − ỹl)− f(x̃k − ỹj) + f(x̃i − ỹj)],

(2.85)

in which

b̃(x, i) =
[
0′r(i−1), b

′(x, i), 0′r(m−i)

]′
,

σ̃(x, i) =
[
0′r(i−1)×d, σ

′(x, i), 0′r(m−i)×d

]′
,

g̃(x, i, γ) =
[
0′r(i−1), g

′(x, i, γ), 0′r(m−i)

]′
,

ã(x̃i, ỹj) = (σ̃(x, i)− σ̃(y, j))× (σ̃(x, i)− σ̃(y, j))′,

where ∆ik(x) are the intervals having length qik(x); m̃ is the Lebesgue measure on R such

that dt× m̃(dz) is the density of Poisson measure with which we can represent the discrete

component α(t) by a stochastic integral. Then we have the following theorem:

Theorem 2.50. Assume that the conditions of Theorem 2.49 hold and and assume that for

each i, j ∈ M, there exists a Lyapunov function V (z) = z′z ∈ C2(Rmr : R+) satisfying the

following condition: There exists a positive real number β̃ such that

G̃V (x̃i − ỹj) ≤ −β̃V (x̃i − ỹj), (2.86)

then Then regime switching jump diffusion is asymptotic stable in distribution.

Together with our results in asymptotic stable in the large, exponential p-stable as below,

the stability study for regime switching jump diffusion is complete now.
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Lemma 2.51. Let D ⊂ Rr is a neighborhood of 0. Suppose that for each i ∈M, there exists

a nonnegative Lyapunov function V (·, i) : D 7→ R such that

(i) V (·, i) is continuous in D and vanishes only at x = 0;

(ii) V (·, i) is twice continuously differentiable in D−{0} and satisfies GV (x, i) ≤ 0 for all

x ∈ D − {0}.

Then the equilibrium point x = 0 is stable in probability.

Define

τρ,ς := inf{t ≥ 0 : |X(t)| = ρ or |X(t)| = ς}, (2.87)

for any 0 < ρ < ς and any (x, α) ∈ Rr ×M with ρ < |x| < ς.

Lemma 2.52. Assume that the conditions of Lemma 2.51 hold, and that for any sufficiently

small 0 < ρ < ς and any (x, α) ∈ Rr ×M with ρ < |x| < ς, P{τρ,ς < ∞} = 1. Then the

equilibrium point x = 0 is asymptotically stable in probability.

Theorem 2.53. Assume that the conditions of Lemma 2.52 hold, and that Vς := inf
|x|≥ς
i∈M

V (x, i) →

∞ as ς →∞. Then the equilibrium point x = 0 is asymptotically stable in the large.
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3 Nearly Optimal Controls of Mean Variance Prob-

lems

3.1 Formulation

The origin of the mean-variance optimization problem can be traced back to the Nobel-prize-

winning work of Markowitz [60]. The mean-variance approach has become the foundation of

modern finance theory and has inspired numerous extensions and applications. In our work,

we consider the mean variance optimization problem of switching process. Our objective is

to find an admissible control u(·) among all the admissible controls given that the expected

terminal value (wealth or things we want to focus) of the whole system is Ex(T ) = z for

some given z ∈ R so that the risk measured by the variance at the terminal of the flow is

minimized. Specifically, we have the following performance measure

min
{
J(x, α, u(·)) = E[x(T )− z]2

}

subject to Ex(T ) = z.
(3.1)

Note that in this case, the objective function does not involve control u. Therefore, it is a

LQG problem with indefinite control weights. By stating that mean variance control prob-

lem of switching process we are interested on solving the classical mean variance problem in

which switching process is embedded in certain ways. suppose that switching process α(t)

is continuous-time Markov chain with state space M = {1, 2, . . . , m} The new feature con-

sidered here is that the state space of the discrete event process α(·) is large. Obtaining

the optimal strategy in such a large-scale system involves high computational complexity,
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optimal control a difficult task. To reduce the computational complexity, we note that in the

Markov chain, some groups of states vary rapidly whereas others change slowly. Based on

this feature, we decompose the state space M into subspaces M = ∪l
i=1Mi such that within

each Mi, the transitions happen frequently and among different clusters the transitions are

relatively infrequent. To reflect the different transition rates, we let α(t) = αε(t) where ε > 0

is a small parameter so that the generator of the Markov chain is given by

Qε =
Q̃

ε
+ Q̂. (3.2)

Suppose that xε
i (·) are real-valued functions with i = 0, . . . , d1 such that

dxε
0(t) = r(t, α(t))xε

0(t)dt

xε
0(0) = x0, α(0) = α

(3.3)

for α(t) ∈ {1, 2, . . . , m}. The flows of the other d1 nodes follow geometric Brownian motion:

dxε
i (t) = xε

i (t)ri(t, α(t))dt + xε
i (t)σ̃i(t, α(t))dw(t)

xε
i (0) = xi, α(0) = α for i = 1, 2, . . . , d1, α ∈M,

(3.4)

where σ̃i(t, α(t)) = (σ̃i1(t, α(t)), σ̃i2(t, α(t)), . . . , σ̃id(t, α(t))) ∈ R1×d. In the finance applica-

tion, xε
0(·) represents an investor’s bank account value, whereas xε

i (·) for each i = 1, . . . , d1

is his wealth devoted to the ith stock or risky asset. The motivation of our work is from

network system where we use xε
i (·) to represent the flows of the ith node. We can represent

the total flows of the entire system as xε(t) and we need to decide the proportion ni(t) of
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flow xε
i (t) to put on node i, i.e.,

xε(t) =

d1∑
i=0

ni(t)x
ε
i (t).

By assuming that the interaction among these d1 + 1 nodes occurs continuously, we have

dxε(t) =

d1∑
i=0

ni(t)dxε
i (t)

= [r(t, α(t))xε(t) + B(t, α(t))u(t)]dt + u′(t)σ̃(t, α(t))dw(t)

xε(0) = x =

d1∑
i=1

ni(0)xi, α(0) = α, for 0 ≤ t ≤ T,

(3.5)

where

B(t, α(t)) = (r1(t, α(t))− r(t, α(t)), r2(t, α(t))− r(t, α(t)), . . . ,

rd1(t, α(t))− r(t, α(t))),

σ̃(t, α(t)) = (σ̃1(t, α(t)), . . . , σ̃d1(t, α(t)))′ ∈ Rd1×d,

u(t) = (u1(t), . . . , ud1(t))
′ ∈ Rd1×1,

and ui(t) = ni(t)x
ε
i (t) is the total amount of flow for node i at time t for i = 1, 2, . . . , d1.

throughout this paper that all the functions r(t, i), B(t, i), and σ(t, i) are measurable and

uniformly bounded in t. We also assume the non-degeneracy condition is satisfied, i.e., there

is a δ > 0 such that a(t, i) = σ̃(t, i)σ̃′(t, i) ≥ δI for any t ∈ [0, T ] and i ∈ M. We denote

by L2
F(0, T ;Rl0) the set of all Rl0-valued, measurable stochastic processes f(t) adapted to

{Ft}t≥0 such that E
´ T

0
|f(t)|2dt < +∞.

Let U be the set of controls which is a compact set in Rd1×1. The u(·) is said to be admis-

sible if u(·) ∈ L2
F(0, T ;Rd1) and the equation (3.5) has a unique solution xε(·) corresponding

to u(·). In this case, we call (xε(·), u(·)) an admissible (total flow, flow distribution) pair. To
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find the minimum of J(x, α, u(·), λ), it suffices to choose u(·) so that E(xε(T )+λ−z)2 is mini-

mized. We regard this part as J(x, α, u(·)) in what follows. Let vε(x, α) = infu(·) Jε(x, α, u(·))

be the value function to show the dependence on the parameter ε.

ρ(t, i) = B(t, i)[σ(t, i)σ′(t, i)]−1B′(t, i), i ∈ {1, 2, . . . , m}. (3.6)

Consider the following two systems of ODEs for i = 1, 2, . . . , m:

Ṗ ε(t, i) = P ε(t, i)[ρ(t, i)− 2r(t, i)]−
m∑

j=1

qε
ijP

ε(t, j)

P ε(T, i) = 1.

(3.7)

and

Ḣε(t, i) = Hε(t, i)r(t, i)− 1

P ε(t, i)

m∑
j=1

qε
ijP

ε(t, j)Hε(t, j)

+
Hε(t, i)

P ε(t, i)

m∑
j=1

qε
ijP

ε(t, j),

Hε(T, i) = 1.

(3.8)

The existence and uniqueness of solutions to the above two systems of equations are

evident as both are linear with uniformly bounded coefficients. Applying the generalized

Itô’s formula to

vε(t, xε(t), i) = P ε(t, i)(xε(t) + (λ− z)Hε(t, i))2,
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by employing the completing square techniques, we obtain

dP ε(t, i)[xε(t) + (λ− z)Hε(t, i)]2

= 2P ε(t, i)[xε(t) + (λ− z)Hε(t, i)]dxε(t) + P ε(t, i)(dxε(t))2

+
m∑

j=1

qε
ijP

ε(t, j)[xε(t) + (λ− z)Hε(t, j)]2dt

+Ṗ ε(t, i)[xε(t) + (λ− z)Hε(t, i)]2dt + 2P ε(t, i)[xε(t) + (λ− z)Hε(t, i)](λ− z)Ḣε(t, i)dt.

(3.9)

Therefore, by plugging in the dynamic equation satisfied by P (t, i) and H(t, i), we have the

following expression:

dP ε(t, i)[xε(t) + (λ− z)Hε(t, i)]2

= P ε(t, i){u′(t)σ(t, i)σ′(t, i)u(t) + 2u′(t)B′(t, i)[xε(t) + (λ− z)Hε(t, i)]

+2r(t, i)xε(t)[xε(t) + (λ− z)Hε(t, i)]}dt−
m∑

j=1

qε
ijP

ε(t, j)[xε(t) + (λ− z)Hε(t, i)]2dt

+2P ε(t, i)[xε(t) + (λ− z)Hε(t, i)](λ− z){Hε(t, i)r(t, i)− 1

P ε(t, i)

m∑
j=1

qε
ijP

ε(t, j)Hε(t, j)

+
Hε(t, i)

P ε(t, i)

m∑
j=1

qε
ijP

ε(t, j)}dt +
m∑

j=1

qε
ijP

ε(t, j)[xε(t) + (λ− z)Hε(t, j)]2dt

+[ρ(t, i)− 2r(t, i)]P ε(t, i)[xε(t) + (λ− z)Hε(t, i)]2dt + (· · · )dw(t)

= P ε(t, i){(u(t) + (σ(t, i)σ′(t, i))−1B′(t, i)[xε(t) + (λ− z)Hε(t, i)])′[σ(t, i)σ′(t, i)]

×(u(t) + (σ(t, i)σ′(t, i))−1B′(t, i)[xε(t) + (λ− z)Hε(t, i)])}dt

+(λ− z)2

m∑
j=1

qε
ijP

ε(t, j)[Hε(t, j)−Hε(t, i)]2dt + (· · · )dw(t).

(3.10)
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Integrating both sides of the above equation from 0 to T and taking expectation, we obtain

E[xε(T ) + λ− z]2

= P ε(0, α)[x + (λ− z)Hε(0, α)]2

+E

ˆ T

0

(λ− z)2

m∑
j=1

qε
ijP

ε(t, j)[Hε(t, j)−Hε(t, i)]2dt

+E

ˆ T

0

P ε(t, i)(u(t)− uε,∗(t))′(σ(t, i)σ′(t, i))(u(t)− uε,∗(t))dt.

(3.11)

Thus, the optimal control u∗ has the form

uε,∗(t, αε(t), xε(t)) = −(σ(t, αε(t))σ′(t, αε(t)))−1B′(t, αε(t))[xε(t) + (λ− z)Hε(t, αε(t))].

(3.12)

3.2 Key Results and Proofs

Note that when |M| = m is large, although we can get the optimal solution of the mean-

variance control problem. For a large-scale system, solving this problem is still compu-

tationally intensive and practically unattractive. As a viable alternative, we focus on an

decomposition-aggregation approach. Assume that Q̃ is of the block-diagonal form Q̃ =

diag(Q̃1, . . . , Q̃l) in which Q̃k ∈ Rmk×mk are irreducible for k = 1, 2, . . . , l and
∑l

k=1 mk = m,

and Q̃k denotes the kth block matrix in Q̃. Let Mk = {sk1, sk2, . . . , skmk
} denote the states

corresponding to Q̃k and letM = M1∪M2 . . .∪Ml = {s11, s12, . . . , s1m1 , . . . , sl1, sl2, . . . , slml
}.

The slow and fast components are coupled through weak and strong interactions in the sense

that the underlying Markov chain fluctuates rapidly within a single group Mk and jumps

less frequently among groups Mk and Mj for k 6= j.

By aggregating the states in Mk as one state k, we can obtain an aggregated process
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αε(·). That is, αε(t) = k when αε(t) ∈ Mk. By virtue of [83, Theorem7.4], αε(·) converges

weakly to α(·) whose generator is given by

Q = diag(µ1, µ2, . . . , µl)Q̂diag(1m1 , 1m2 , . . . , 1ml
), (3.13)

where µk is the stationary distribution of Q̃k, k = 1, 2, . . . , l, and 1n = (1, 1, . . . , 1) ∈ Rn.

Define an operator Lε by

Lεf(x, t, ι) =
∂f(x, t, ι)

∂t
+ [r(t, ι)x + B(t, ι)u(t)]

∂f(x, t, ι)

∂x

+
1

2
[u′(t)σ(t, ι)σ′(t, ι)u(t)]

∂2f(x, t, ι)

∂x2
+ Qεf(x, t, ι), ι ∈M,

(3.14)

where

Qεf(x, t, ·)(ι) =
∑

` 6=ι

qε
ι`(f(x, t, `)− f(x, t, ι)), (3.15)

and for each ι ∈M, f(·, ·, ι) ∈ C2,1 (that is, f(·) has continuous derivatives up to the second

order with respect to x and continuous derivative with respect to t up to the first order).

Define

Lf(x, t, k) =
∂f(x, t, k)

∂t
+ [r(t, k)x + B(t, k)u(t)]

∂f(x, t, k)

∂x

+
1

2
[u′(t)σ(t, k)σ′(t, k)u(t)]

∂2f(x, t, k)

∂x2
+ Qf(x, t, k), k ∈M,

(3.16)
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where Q is defined in (3.13) and

r(t, k) =

mk∑
j=1

µk
j r(t, skj),

B(t, k) =

mk∑
j=1

µk
j B(t, skj),

σ2(t, k) =

mk∑
j=1

µk
j σ

2(t, skj).

The following theorems are concerned with the weak convergence of a pair of processes.

Theorem 3.1. Suppose that the martingale problem with operator L defined in (3.16) has a

unique solution for each initial condition. Then the pair of processes (xε(·), αε(·)) converges

weakly to (x(·), α(·)), which is the solution of the martingale problem with operator L.

Proof. The proof is divided into the following steps. First, we prove the tightness of xε(·).

Once the tightness is verified, we proceed to obtain the convergence by using a martingale

problem formulation. We first show that a priori bound holds.

Lemma 3.2. Let xε(t) denote flow of system corresponding to αε(t). Then

sup
0≤t≤T

E|xε(t)|2 = O(1).

Proof. Recall that

dxε(t) = [r(t, αε(t))xε(t)− ρ(t, αε(t))xε(t)− ρ(t, αε(t))(λ− z)H(t, αε(t))]dt

+
d∑

i=1

√√√√
(

d1∑
n=1

uε,∗
n (t, xε(t), αε(t))σni(t, αε(t))

)2

dwi(t)

xε(0) = x.
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So,

E|xε(t)|2 ≤ K|x|2 + E

∣∣∣∣
ˆ t

0

(r(ν, αε(ν)) + ρ(ν, αε(ν)))xε(ν))dν

∣∣∣∣
2

+KE

ˆ t

0

(
d1∑

n=1

uε,∗
n (ν, xε(ν), αε(ν))σni(ν, α

ε(ν))

)2

dν

≤ K + KE

ˆ t

0

|xε(ν)|2dν.

Here, recall that σ(t, αε(t)) = (σni(t, α
ε(t))) ∈ Rd1×d and note that uε,∗

n is the nth component

of the d1 dimensional variable. Using properties of stochastic integrals, Hölder inequality,

and boundedness of r(·), B(·), σ(·), by Gronwall’s inequality, we obtain the second moment

bound of xε(t) as desired.

Lemma 3.3. {xε(·)} is tight in D([0, T ] : R).

Proof. Denote F ε
t as the σ-algebra generated by {w(s), αε(s) : s ≤ t} and Eε

t as the

conditional expectation w.r.t. F ε
t . For any T < ∞, any 0 ≤ t ≤ T , any s > 0, and any δ > 0

with 0 < s ≤ δ, by properties of stochastic integral and boundedness of coefficients,

Eε
t |xε(t + s)− xε(t)|2 ≤ KEε

t

ˆ t+s

t

|(r(ν, αε(ν)) + ρ(ν, αε(ν)))xε(ν)|2dν

+KEε
t

ˆ t+s

t

(

d1∑
n=1

uε,∗
n (ν, xε(ν), αε(ν))σni(ν, α

ε(ν)))2dν

≤ Ks + KEε
t

ˆ t+s

t

|xε(ν)|2dν.

Thus we have

lim
δ→0

lim sup
ε→0

sup
0≤s≤δ

{
E[Eε

t |xε(t + s)− xε(t)|2]
}

= 0.

Then the tightness criterion [76, Theorem 3] yields that process xε(·) is tight. Now we

describe the limit process. Since (xε(·), αε(·)) is tight, we can extract a weakly convergent
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subsequence. For notional simplicity, we still denote the subsequence by (xε(·), αε(·)) with

limit (x(·), α(·)). By Skorohod representation with no change of notation, we may assume

(xε(·), αε(·)) converges to (x(·), α(·)) w.p.1. We next show that the limit (x(·), α(·)) is a

solution of the martingale problem with operator L defined by (3.16).

Lemma 3.4. The process x(·) is the solution of the martingale problem with the operator L.

Proof. To obtain the desirable result, we need to show

f(x(t), t, α(t))− f(x, 0, α)−
ˆ t

0

Lf(x(ν), ν, α(ν))dν is a martingale,

This can be done by showing that for any integer n > 0, any bounded and measurable

function hp(·, ·) with p ≤ n, and any t, s, tp > 0 with tp ≤ t < t + s ≤ T ,

E
n∏

p=1

hp(x
ε(tp), α

ε(tp))[f(x(t + s), t + s, α(t + s))− f(x(t), t, α(t))

−
ˆ t+s

t

Lf(x(ν), ν, α(ν))dν] = 0.

We further deduce that

lim
ε→0

E

n∏
p=1

hp(x
ε(tp), α

ε(tp))(f(xε(t + s), t + s, αε(t + s))− f(xε(t), t, αε(t))

= E
n∏

p=1

hp(x(tp), α(tp))(f(x(t + s), t + s, α(t + s))− f(x(t), t, α(t)).

(3.17)

Moreover,

lim
ε→0

E
n∏

p=1

hp(x
ε(tp), α

ε(tp))
[ ˆ t+s

t

∂f(xε(ν), ν, αε(ν))

∂ν
dν

]

= E
n∏

p=1

hp(x(tp), α(tp))
[ ˆ t+s

t

∂f(x(ν), ν, α(ν))

∂ν
dν

] (3.18)
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by the weak convergence of (xε(·), αε(·)) and the Skorohod representation.

For any f(·) chosen above, define

f̂(xε(t), t, αε(t)) =
l∑

i=1

f(xε(t), t, i)I{αε(t)∈Mi}

since (xε(t), αε(t)) is a Markov process, we have

f̂(xε(t), t, αε(t))− f̂(x, 0, α)− ´ t

0
Lεf̂(xε(ν), ν, αε(ν))dν

is a martingale. Consequently,

E
n∏

p=1

hp(x
ε(tp), α

ε(tp))(f̂(xε(t + s), t + s, αε(t + s))− f̂(xε(t), t, αε(t))

−
ˆ t+s

t

Lεf̂(xε(ν), ν, αε(ν))dν) = 0.

Note that f̂(xε(t), t, αε(t)) = f(xε(t), t, αε(t)).

Next we need to show that

lim
ε→0

E
n∏

p=1

hp(x
ε(tp), α

ε(tp))

ˆ t+s

t

Lεf̂(xε(ν), ν, αε(ν))dν

= E

n∏
p=1

hp(x(tp), α(tp))

ˆ t+s

t

Lf(x(ν), ν, α(ν))dν.
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Note that we can rewrite E
∏n

p=1 hp(x
ε(tp), α

ε(tp))
´ t+s

t
Lεf̂(xε(ν), ν, αε(ν))dν as

E

n∏
p=1

hp(x
ε(tp), α

ε(tp))[

ˆ t+s

t

l∑

k=1

mk∑
j=1

Qεf̂(xε(ν), ν, ·)(skj)I{αε(ν)=skj}dν

+

ˆ t+s

t

l∑

k=1

mk∑
j=1

∂f̂(xε(ν), ν, skj)

∂x
I{αε(ν)=skj}[r(ν, skj)x

ε(ν) + B(ν, skj)u(ν)]dν

+

ˆ t+s

t

1

2

l∑

k=1

mk∑
j=1

[u′(ν)σ(ν, skj)σ
′(ν, skj)u(ν)]

∂2f̂(xε(ν), ν, skj)

∂x2
I{αε(ν)=skj}]dν.

Since Q̃k1mk
= 0, we have

Qεf̂(xε(t), t, ·)(skj) = Q̂f̂(xε(t), t, ·)(skj).

We decompose

E
n∏

p=1

hp(x
ε(tp), α

ε(tp))

ˆ t+s

t

Lεf̂(xε(ν), ν, αε(ν))dν

as Hε
1(t + s, t) + Hε

2(t + s, t). In which

Hε
1(t + s, t) = E

n∏
p=1

hp(x
ε(tp), α

ε(tp))

×
[

l∑

k=1

mk∑
j=1

ˆ t+s

t

µk
j

∂f̂(xε(ν), ν, skj)

∂x
I{αε(ν)=k}[r(ν, skj)x

ε(ν) + B(ν, skj)u(ν)]dν

+
1

2

l∑

k=1

mk∑
j=1

ˆ t+s

t

µk
j [u

′(ν)σ(ν, skj)σ
′(ν, skj)u(ν)]

∂2f̂(xε(ν), ν, skj)

∂x2
I{αε(ν)=k}dν

+
l∑

k=1

mk∑
j=1

ˆ t+s

t

µk
j Q̂f̂(xε(ν), ν, ·)(skj)I{αε(ν)=k}dν

]
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and Hε
2(t + s, t) can be represented as

Hε
2(t + s, t)

= E
n∏

p=1

hp(x
ε(tp), α

ε(tp))
( l∑

k=1

mk∑
j=1

ˆ t+s

t

(I{αε(ν)=skj} − µk
j I{αε(ν)=k})

∂f̂(xε(ν), ν, skj)

∂x
×

[r(ν, skj)x
ε(ν) + B(ν, skj)u(ν)]dν +

l∑

k=1

mk∑
j=1

ˆ t+s

t

(I{αε(ν)=skj} − µk
j I{αε(ν)=k})Q̂×

f̂(xε(ν), ν, ·)(skj)dν +
1

2

l∑

k=1

mk∑
j=1

ˆ t+s

t

(I{αε(ν)=skj} − µk
j I{αε(ν)=k})×

[u′(ν)σ(ν, skj)σ
′(ν, skj)u(ν)]

∂2f̂(xε(ν), ν, skj)

∂x2
dν

)
.

By virtue of Lemma 3.6, [83, Theorem7.14], Cauchy-Schwartz inequality, boundedness of

hp(·), r(·) and B(·), for each k = 1, 2, . . . , l; j = 1, 2, . . . , mk, as ε → 0

E|
n∏

p=1

hp(x
ε(tp), α

ε(tp))

ˆ t+s

t

(I{αε(ν)=skj} − µk
j I{αε(ν)=k})

∂f̂(xε(ν), ν, skj)

∂x

×[r(ν, skj)x
ε(ν) + B(ν, skj)u(ν)]dν|2 → 0.

Similarly as ε → 0,

E|
n∏

p=1

hp(x
ε(tp), α

ε(tp))

ˆ t+s

t

(I{αε(ν)=skj} − µk
j I{αε(ν)=k})

×[u′(ν)σ(ν, skj)σ
′(ν, skj)u(ν)]

∂2f̂(xε(ν), ν, skj)

∂x2
dν|2 → 0,

and

E|
n∏

p=1

hp(x
ε(tp), α

ε(tp))

ˆ t+s

t

(I{αε(ν)=skj} − µk
j I{αε(ν)=k})Q̂f̂(xε(ν), ν, ·)(skj)dν|2 → 0.
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Therefore, Hε
2(t + s, t) converges to 0 in probability. On the other hand, we obtain

E
n∏

p=1

hp(x
ε(tp), α

ε(tp))
l∑

k=1

mk∑
j=1

ˆ t+s

t

µk
j

∂f̂(xε(ν), ν, skj)

∂x
[r(ν, skj)x

ε(ν) + B(ν, skj)u(ν)]

×I{αε(ν)=k}dν

→
l∑

k=1

mk∑
j=1

E

n∏
p=1

hp(x(tp), α(tp))

ˆ t+s

t

µk
j

∂f(x(ν), ν, α(ν))

∂x
[r(ν, skj)x(ν) + B(ν, skj)u(ν)]

×I{α(ν)=k}dν

=
l∑

k=1

E
n∏

p=1

hp(x(tp), α(tp))

ˆ t+s

t

∂f(x(ν), ν, α(ν))

∂x
[r(ν, α(ν))x(ν) + B(ν, α(ν))u(ν))]

×I{α(ν)=k}dν

= E

n∏
p=1

hp(x(tp), α(tp))

ˆ t+s

t

∂f(x(ν), ν, α(ν))

∂x
[r(ν, α(ν))x(ν) + B(ν, α(ν))u(ν)]dν.

(3.19)

Similarly,

E
n∏

p=1

hp(x
ε(tp), α

ε(tp))
l∑

k=1

mk∑
j=1

ˆ t+s

t

µk
j [u

′(ν)σ2(ν, skj)u(ν)]
∂2f̂(xε(ν), ν, skj)

∂x2
I{αε(ν)=k}dν

→ E
n∏

p=1

hp(x(tp), α(tp))

ˆ t+s

t

∂2f(x(ν), ν, α(ν))

∂x2
[u′(ν)σ2(ν, α(ν))u(ν)]dν.

(3.20)

Note that

l∑

k=1

mk∑
j=1

ˆ t+s

t

µk
j I{αε(ν)=k}Q̂f̂(xε(ν), ν, ·)(skj)dν =

ˆ t+s

t

Qf(xε(ν), ν, ·)(αε(ν))dν.

So as ε → 0,

E
n∏

p=1

hp(x
ε(tp), α

ε(tp))

ˆ t+s

t

Qf(xε(ν), ν, ·)(αε(ν))dν

→ E
n∏

p=1

hp(x(tp), α(tp))

ˆ t+s

t

Qf(x(ν), ν, ·)(α(ν))dν.

(3.21)
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Combining the results from (3.19) to (3.21), we have

lim
ε→0

E
n∏

p=1

hp(x
ε(tp), α

ε(tp))

ˆ t+s

t

Lεf̂(xε(ν), ν, αε(ν))dν

= E
n∏

p=1

hp(x(tp), α(tp))

ˆ t+s

t

Lf(x(ν), ν, α(ν))dν

(3.22)

Finally, we complete the proof by combining all the previous results.

Theorem 3.5. For k = 1, 2, . . . , l and j = 1, 2, . . . , mk, P ε(t, skj) → P (t, k) and Hε(t, skj) →

H(t, k) uniformly on [0, T ] as ε → 0, where P (t, k) and H(t, k) are the unique solutions of

the following differential equations for k = 1, 2, . . . , l,

Ṗ (t, k) = (ρ(t, k)− 2r(t, k))P (t, k)− Q̄P (t, ·)(k)

P (T, k) = 1.
(3.23)

and

Ḣ(t, k) = r(t, k)H(t, k)− 1

P (t, k)
Q̄P (t, ·)H(t, ·)(k) +

H(t, k)

P (t, k)
Q̄P (t, ·)(k)

H(T, k) = 1.

(3.24)

Proof. We prove the convergence of P ε (the proof of Hε is similar). it is easy to see that

P ε(t, skj) is equicontinuous and uniformly bounded, it follows from Arzela-Ascoli theorem

that, for each sequence of ε → 0, a further subsequence exists (we still use the index ε for the

sake of simplicity) such that P ε(t, skj) converges uniformly on [0, T ] to a continuous function,

say, P 0(t, skj). First, we show P 0(t, skj) is independent of j. Given that

P ε(t, skj) = 1−
ˆ T

t

[P ε(s, skj)(ρ(s, skj)− 2r(s, skj))−QεP ε(s, ·)(skj)]ds.
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Multiplying both sides of above equation by ε yields that

0 = lim
ε→0

ˆ T

t

Q̃kP ε(s, ·)(skj)ds =

ˆ T

t

Q̃kP 0(s, ·)(skj)ds.

Thus, in view of the continuity of P 0(t, ·)(skj), we obtain

Q̃kP 0(t, ·)(skj) = 0 for t ∈ [0, T ]. (3.25)

Given the fact that Q̃k is irreducible, we have P 0(t, skj) = P 0(t, k) which is independent

of j. Now let us multiply P ε(t, skj) by µk
j and then add the index j. Recall the definition of

F (t, k), we have the following equation

mk∑
j=1

µk
j P

ε(t, skj) = 1−
mk∑
j=1

µk
j

ˆ T

t

[P ε(s, skj)(ρ(s, skj)− 2r(s, skj))−QεP ε(s, ·)(skj)]ds.

Letting ε → 0 and noting that uniform convergence of P ε(t, skj) → P 0(t, k) and µk is the

stationary distribution corresponding to Q̃k, we have

(

mk∑
j=1

µk
j Q̂1mk

)P 0(t, ·)(k) = QP 0(t, ·)(k).

Therefore, we obtain

P 0(t, k) = 1−
ˆ T

t

(
P 0(s, k)(ρ(s, k)− 2r(s, k)−QP 0(s, ·)(k)

)
ds

Then the uniqueness of solution of the Riccati equation implies P 0(s, k) = P (s, k). Therefore,
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P ε(t, skj) → P (t, k) and the proof is thus concluded. We thus have vε(t, skj, x) → v(t, k, x)

as ε → 0, in which v(t, k, x) = P (t, k)(x + (λ − z)H(t, k))2, where v(t, k, x) corresponds to

the value function of a limit problem. Let U denote the control set for the limit problem:

U = {U = (U1, U2, . . . , U l) : Uk = (uk1, uk2, . . . , ukmk), ukj ∈ Rd1}. Define

f(t, x, k, U) =

mk∑
j=1

µk
j r(t, skj)x +

mk∑
j=1

µk
j B(t, skj)u

kj(t) and

g(t, k, U) = (g1(t, k, U), . . . , gd(t, k, U)) with gi(t, k, U) =

√√√√
mk∑
j=1

µk
j (

d1∑
n=1

ukj
n σni(t, αε(t)))2.

Recall that σ(t, αε(t)) = (σni(t, α
ε(t))) ∈ Rd1×d and note that ukj

n is the nth component of

the d1-dimensional variable. The corresponding dynamic system of the state is

dx(t) = f(t, x(t), α(t), U(t))dt +
d∑

i=1

gi(t, α(t), U(t))dwi(t). (3.26)

where α(·) ∈ {1, 2, . . . , l} is a Markov chain generated by Q with α(0) = α. Calculation

similar to (3.9) and (3.10) shows that the optimal control for this limit problem is

U∗(t) = (U1∗(t, x), U2∗(t, x), . . . , U l∗(t, x)), with Uk∗(t, x) = (uk1∗(t, x), uk2∗(t, x), . . . , ukmk∗(t, x)),

ukj∗(t, x) = −(σ(t, skj)σ
′(t, skj))

−1B′(t, skj)[x + (λ− z)H(t, k)].

In the following, we denote nth component of the optimal control for this limit system

as ukj∗
n (t, x) Using such controls, we construct

uε(t, αε(t), x) =
l∑

k=1

mk∑
j=1

I{αε(t)=skj}u
kj∗(t, x) (3.27)
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for the original problem. This control can also be written as if αε(t) ∈ Mk, u
ε(t, αε(t), x) =

−(σ(t, αε(t))σ′(t, αε(t)))−1B′(t, αε(t))[x + (λ − z)H(t, αε(t))]. To proceed, we present the

following lemmas first.

Lemma 3.6. For a positive T and any k = 1, 2, . . . , l, j = 1, 2, . . . , mk,

sup
0≤t≤T

E

∣∣∣∣
ˆ t

0

[I{αε(s)=skj} − µk
j I{αε(s)=k}]x

ε(s)r(s, skj)ds

∣∣∣∣
2

→ 0 as ε → 0. (3.28)

The proof is omitted for brevity.

Lemma 3.7. For any k = 1, 2, . . . , l, j = 1, 2, . . . , mk,

E(I{αε(s)=k} − I{α(s)=k})
2 → 0 as ε → 0. (3.29)

Proof. Similar to [83, Theorem 7.30], we can show that (I{αε(·)=1}, . . . , I{αε(·)=l}) converges

weakly to (I{ᾱ(·)=1}, . . . , I{ᾱ(·)=l}) in (D[0, T ] : Rl) as ε → 0. By means of Cramér-Word’s

device, for each i ∈M, I{αε(·)=i} converges weakly to I{ᾱ(·)=i}. Then by virtue of the Skorohod

representation (with a slight abuse of notation), we may assume I{αε(·)=i} → I{ᾱ(·)=i} w.p.1.

without change of notation. Now by dominance convergence theorem, we can conclude the

proof.

Theorem 3.8. The control uε(t) defined in (3.27) is nearly optimal in that

lim
ε→0

|Jε(α, x, uε(·))− vε(α, x)| = 0.
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Proof. Recall the definition of ρ(t, skj) in (3.6) and note that the constructed control is

given as uε(t, x, αε(t)) = −(σ(t, αε(t))σ′(t, αε(t)))−1B′(t, αε(t))[x + (λ− z)H(t, αε(t))]. Then

xε(t) follows

dxε(t) =
l∑

k=1

mk∑
j=1

[r(t, skj)x
ε(t)− ρ(t, skj)x

ε(t)− ρ(t, skj)(λ− z)H(t, k)]I{αε(t)=skj}dt

+
d∑

i=1

√√√√
l∑

k=1

mk∑
j=1

(

d1∑
n=1

uε
n(t, xε(t), αε(t))σni(t, αε(t)))2I{αε(t)=skj}dwi(t).

xε(0) = x̂.

The cost function Jε(α, x, uε(·)) = E[xε(T ) + λ− z]2. Let x∗(t) be the optimal trajectory of

the limit problem. Recall the definition of f(·) and g(·) in the Theorem 3.5. Then

dx∗(t) = f(t, x∗(t), α(t), U∗(t))dt +
d∑

i=1

gi(t, α(t), U∗(t))dwi(t), x∗(0) = x̂.

Similar to the methods in [83, Theorem 9.8], for all α ∈Mk, and k = 1, 2, . . . , l,

lim
ε→0

vε(x, α) = v(x, k).

Here v(x, k) is the value function of the limit problem. For any α ∈Mk, k = 1, 2, . . . , l,

0 ≤ |Jε(x, uε(·), α)− vε(x, α)| = |Jε(x, uε(·), α)− v(x, k) + v(x, k)− vε(x, α)|.

To establish the assertion, it suffices to show that

|Jε(x, uε(·), α)− v(x, k)| → 0,
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|Jε(x, uε(·), α)− v(x, α)| = |E[xε(T ) + λ− z]2 − E[x∗(T ) + λ− z]2|
= |E(xε(T ))2 + 2(λ− z)Exε(T )− E(x∗(T ))2 − 2(λ− z)Ex∗(T )|
≤ CE

1
2 [xε(T )− x∗(T )]2

(3.30)

for some constant C. Here, Hölder inequality and finite second moment of xε(T ) and x∗(T )

are used. Note that we can write E(xε(T )− x∗(T ))2 as follows:

E(xε(T )− x∗(T ))2

≤ K

l∑

k=1

mk∑
j=1

E(

ˆ T

0

[r(s, skj)x
ε(s)(I{αε(s)=skj} − µk

j I{αε(s)=k})]ds)2

+K
l∑

k=1

mk∑
j=1

E(

ˆ T

0

[µk
j r(s, skj)(x

ε(s)− x∗(s))I{αε(s)=k}]ds)2

+K
l∑

k=1

mk∑
j=1

E(

ˆ T

0

[µk
j r(s, skj)x

∗(s)(I{αε(s)=k} − I{α(s)=k})]ds)2

−K
l∑

k=1

mk∑
j=1

E(

ˆ T

0

ρ(s, skj)x
ε(s)(I{αε(s)=skj} − µk

j I{αε(s)=k})ds)2

+K
l∑

k=1

mk∑
j=1

E(

ˆ T

0

[µk
j ρ(s, skj)(x

ε(s)− x∗(s))I{αε(s)=k}]ds)2

+K
l∑

k=1

mk∑
j=1

E(

ˆ T

0

µk
j ρ(s, skj)x

∗(s)(I{αε(s)=k} − I{α(s)=k})ds)2

−K
l∑

k=1

mk∑
j=1

E(

ˆ T

0

[ρ(s, skj)(λ− z)H(s, k)(I{αε(s)=k} − µk
j I{αε(s)=k})]ds)2

+K
l∑

k=1

mk∑
j=1

E(

ˆ T

0

[ρ(s, skj)(λ− z)H(s, k)µk
j (I{αε(s)=k} − I{α(s)=k})]ds)2 + D,

(3.31)

where

D = KE

[ ˆ T

0

d∑
i=1

[
√√√√

l∑

k=1

mk∑
j=1

(

d1∑
n=1

uε
n(s, xε(s), αε(s))σni(s, αε(s)))2I{αε(s)=skj}

−
√√√√

l∑

k=1

mk∑
j=1

µk
j (

d1∑
n=1

ukj∗
n (s, x∗(s), α(s))σni(s, αε(s)))2I{α(s)=k}

]
dwi(s)

]2

.
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First, we use Lemma 3.6, Lemma 3.7, and Hölder inequality repeatedly to handel the drift

part. For the diffusion part, realizing that

D ≤ KE

ˆ T

0

d∑
i=1

[√√√√
l∑

k=1

mk∑
j=1

(

d1∑
n=1

uε
n(s, xε(s), αε(s))σni(s, αε(s)))2[I{αε(s)=skj} − µk

j I{αε(s)=k}]

+

√√√√
l∑

k=1

mk∑
j=1

µk
j (

d1∑
n=1

ukj∗
n (s, x∗(s), α(s))σni(s, αε(s)))2[I{αε(s)=k} − I{α(s)=k}]

+ (xε(s)− x∗(s))

]2

ds.

Here, we plugged in the control constructed in (3.27) for the last term above and uti-

lized the non-degeneracy assumption mentioned in the previous section. Then we can use

property of stochastic integral, dominance convergence theorem, similar techniques involved

in dealing with the drift part and the finite second moment of xε(·) and x∗(·) to proceed

with the diffusion part. Finally, after detailed calculation, we have E(xε(T ) − x∗(T ))2 ≤

o(ε) + K
´ T

0
E(xε(s) − x∗(s))2ds. Now with the help of Gronwall’s inequality, we obtain

E(xε(T )− x∗(T ))2 → 0 as ε → 0. The proof is thus concluded.
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4 Mean-Variance Type Controls Involving a Hidden

Markov Chain

4.1 Formulation

In this section, we consider the mean variance control problem but under the assumption

that the switching process is given as a hidden Markov chain. Our objective is again to find

an Ft admissible control u(·) in a compact set U under the constraint that the expected

terminal flow is Ex(T ) = κ for some given κ ∈ R, so that the risk measured by the variance

of terminal flow at time T is minimized. Specifically, we have the following goal

min J(s, x, p, u(·)) := E[x(T )− κ]2

subject to Ex(T ) = κ.
(4.1)

where x(t) is the total flows for the whole networked system and we have the same dynamics

of x(t) as previous chapter. Also,

x(t) =
d+1∑

l=1

Nl(t)xl(t), t ≥ s.

where Nl(t) is the proportion that we need to put to that of the lth node at time t. However,

different transition rates are considered in the previous chapter. In this chapter, instead of

having full information of the Markov chain, we can only observe it in white noise. That is,
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we observe y(t), whose dynamics is given by

dy(t) = g(α(t))dt + σ0dw2(t),

y(s) = 0,
(4.2)

where σ0 > 0 and w2(·) is a standard scalar Brownian motion, where w2(·), w(·), and α(·)

are independent. Moreover, the initial data p(s) = p = (p1, p2, . . . , pm) in which pi = pi(s) =

P (α(s) = i) is given for 1 ≤ i ≤ m.

4.2 Key Results and Proofs

Note that one of the striking feature of our model is that we have no access to the value

of Markov chain at a given time t, which makes the problem more difficult than [87]. Let

p(t) = (p1(t), . . . , pm(t)) ∈ R1×m with pi(t) = P (α(t) = i|Fy(t)) for i = 1, 2, . . . , m, with

Fy(t) = σ{y(s̃) : s ≤ s̃ ≤ t}. It was shown in Wonham [65] that this conditional probability

satisfies the following system of stochastic differential equations

dpi(t) =
m∑

j=1

qjipj(t)dt +
1

σ0

pi(t)(g(i)− α(t))dŵ2(t),

pi(s) = pi,

(4.3)

where α(t) =
∑m

i=1 g(i)pi(t) and ŵ2(t) is the innovation process. It is easy to see that ŵ2(·) is

independent of w(·). With the help of Wonham filter, given the independence conditions, we

can find the best estimator for r(t, α(t)), B(t, α(t)), and σ̃(t, α(t)) in the sense of least mean

square prediction error and thus transform the partial observable system into completely
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observable system given as below:

dx(t) = [ ̂r(t, α(t))x(t) + ̂B(t, α(t))u(t)]dt + u′(t) ̂σ̃(t, α(t))dw(t),

where

̂r(t, α(t))
def
=

m∑
i=1

r(t, i)pi(t) ∈ R1,

̂B(t, α(t))
def
= (

m∑
i=1

(b2(t, i)− r(t, i))pi(t), . . . ,
m∑

i=1

(bd1+1(t, i)− r(t, i))pi(t)) ∈ R1×d1 ,

̂σ̃(t, α(t))
def
= (

m∑
i=1

σ̃lj(t, i)p
i(t))d1×d.

(4.4)

In this way, by putting the two components p(t) and x(t) together, we get

(x(t), p(t)) = (x(t), p1(t), ..., pm(t)),

a completely observable system whose dynamics are as follows

dx(t) = [
m∑

i=1

r(t, i)pi(t)x(t) +

d1+1∑

l=2

m∑
i=1

(bl(t, i)− r(t, i))pi(t)ul(t)]dt

+

d1+1∑

l=2

d∑
j=1

m∑
i=1

ul(t)σ̃lj(t, i)p
i(t)dwj

1(t)

= b(x(t), p(t), u(t))dt + σ(x(t), p(t), u(t))dw(t)

dpi(t) =
m∑

j=1

qjipj(t)dt +
1

σ0

pi(t)(g(i)− α(t))dŵ2(t), for i = {1, . . . , m}

x(s) = x, pi(s) = pi.

(4.5)

Let W (s, x, p, u) be the objective function and let Eu
s,x,p denote the expectation of func-
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tionals on [s, T ] conditioned on x(s) = x, p(s) = p and the admissible control u = u(·).

W (s, x, p, u) = Eu
s,x,p(x(T ) + λ− k)2 − λ2 (4.6)

and V (s, x, p) be the value function

V (s, x, p) = infu∈U W (s, x, p, u). (4.7)

To proceed, for an arbitrary r ∈ U and φ(·, ·, ·) ∈ C1,2,2(R), we first define the differential

operator Lr by

Lrφ(s, x, p) =
∂φ

∂s
+

∂φ

∂x
b(x, p, r) +

1

2

∂2φ

∂x2
[σ(x, p, r)σ′(x, p, r)]

+
m∑

i=1

∂φ

∂pi

m∑
j=1

qjipj +
1

2

m∑
i=1

∂2φ

∂(pi)2

1

σ2
0

[pi(g(i)− α)]2.
(4.8)

The value function is the solution of the following system of HJB equation

infr∈U LrV (s, x, p) = 0, (4.9)

with boundary condition V (T, x, p) = (x(T ) + λ− κ)2 − λ2.

Note that there is little hope that we can find closed form solution for this problem. In

our work, we work on finding the numerical solution for this question. Let vi(t) = log pi(t),

by choosing the constant step size h2 > 0 for time variable we can discrete the dynamic of
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vi(t) as follows:

vh2,i
n+1 = vh2,i

n + h2[
m∑

j=1

qji p
h2,j
n

ph2,i
n

− 1

2σ2
0

(g(i)− ᾱh2
n )2] +

√
h2

1

σ0

(g(i)− ᾱh2
n )εn,

vh2,i
0 = log(pi),

ph2,i
n+1 = exp(vh2,i

n+1),

ph2,i
0 = pi,

(4.10)

where ᾱh2
n =

∑m
i=1 g(i)ph2,i

n and {εn} is a sequence of i.i.d. random variables satisfying Eεn =

0, Eε2
n = 1, and E|εn|2+γ < ∞ for some γ > 0 with

εn =
ŵ2((n + 1)h2)− ŵ2(nh2)√

h2

.

Note that ph2,i
n appeared as the denominator in (4.10) and we have focused on the case that

ph2,i
n stays away from 0. A modification can be made to take into consideration the case of

ph2,i
n = 0. In that case, we can choose a fixed yet arbitrarily large positive real number M

and use the idea of penalization to construct the approximation as below:

vh2,i
n+1 = vh2,i

n + h2{[
m∑

j=1

qji p
h2,j
n

ph2,i
n

− 1

2σ2
0

(g(i)− ᾱh2
n )2]I{ph2,i

n ≥e−M} −MI{ph2,i
n <e−M}}

+
√

h2
1

σ0

(g(i)− ᾱh2
n )εn,

vh2,i
0 = log(pi),

ph2,i
n+1 = exp(vh2,i

n+1),

ph2,i
0 = pi.

(4.11)

In what follows, we construct a discrete-time finite state Markov chain to approximate the
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controlled diffusion process, x(t). Our construction of Markov chain takes care of time and

state variables as follows. Recall that h2 > 0 is the step size for time variable and let Nh2 =

(T − s)/h2 be an integer. Let h1 > 0 be a discretization parameter for state variables and

define Sh1 = {x : x = kh1, k = 0,±1,±2, . . .}. We use uh1,h2
n to denote the control action for

the chain at discrete time n. Let uh1,h2 = (uh1,h2

0 , uh1,h2

1 , . . .) denote the sequence of U -valued

random variables that are the control actions at time 0, 1, . . . and ph2 = (ph2
0 , ph2

1 , . . .) are

the corresponding posterior probability in which ph2
n = (ph2,1

n , ph2,2
n , . . . , ph2,m

n ). We define the

difference ∆ξh1,h2
n = ξh1,h2

n+1 −ξh1,h2
n and let Eh1,h2,r

x,p,n , V h1,h2,r
x,p,n denote the conditional expectation

and variance given {ξh1,h2

k , uh1,h2

k , ph2
k , k ≤ n, ξh1,h2

n = x, ph2
n = p, uh1,h2

n = r}. By stating that

{ξh1,h2
n , n < ∞} is a controlled discrete-time Markov chain on a discrete time state space Sh1

with transition probabilities ph1,h2((x, y)|r, p), we mean that the transition probabilities are

functions of a control variable r and posterior probability p. The sequence {ξh1,h2
n , n < ∞}

is said to be locally consistent with (4.5), if it satisfies

Eh1,h2,r
x,p,n ∆ξh1,h2

n = b(x, p, r)h2 + o(h2),

V h1,h2,r
x,p,n ∆ξh1,h2

n = σ(x, p, r)σ′(x, p, r)h2 + o(h2),

supn |∆ξh1,h2
n | → 0, as h1, h2 → 0.

(4.12)

Let Uh1,h2 denote the collection of ordinary controls, which is determined by a sequence of

such measurable functions F h1,h2
n (·) that uh1,h2

n = F h1,h2
n (ξh1,h2

k , ph2
k , k ≤ n, uh1,h2

k , k < n). We

say that uh1,h2 is admissible for the chain if uh1,h2
n are U valued random variables and the
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Markov property continues to hold under the use of the sequence {uh1,h2
n }, namely,

P{ξh1,h2

n+1 = y|ξh1,h2

k , uh1,h2

k , ph2
k , k ≤ n}

= P{ξh1,h2

n+1 = y|ξh1,h2
n , uh1,h2

n , ph2
n } = ph1,h2((ξh1,h2

n , y)|uh1,h2
n , ph2

n ).

Using the Markov chain given above, we can approximate the objective function defined in

(4.6) by

W h1,h2(s, x, p, uh1,h2) = Euh1,h2

s,x,p (ξh1,h2

Nh2
+ λ− k)2 − λ2. (4.13)

Here, Euh1,h2

s,x,p denotes the expectation given that ξh1,h2

0 = x, ph2
0 = p and that an admissible

control sequence uh1,h2 = {uh1,h2
n , n < ∞} is used. Now we need that the approximating

Markov chain constructed above satisfies local consistency, which is one of the necessary

conditions for weak convergence. To find a reasonable Markov chain that is locally consistent,

we first suppose that control space has a unique admissible control uh1,h2 ∈ Uh1,h2 , so that

we can drop inf in (4.9). We discrete (4.8) by the following finite difference method using

step-size h1 > 0 for state variables and h2 > 0 for time variable as mentioned above:

V (t, x, p) → V h1,h2(t, x, p). (4.14)

For the derivative with respect to time variable, we use

Vt(t, x, p) → V h1,h2(t + h2, x, p)− V h1,h2(t, x, p)

h2

. (4.15)
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For the first derivative with respect to x, we use one-side difference method

Vx(t, x, p) →





V h1,h2(t + h2, x + h1, p)− V h1,h2(t + h2, x, p)

h1

for b(x, p, r) ≥ 0

V h1,h2(t + h2, x, p)− V h1,h2(t + h2, x− h1, p)

h1

for b(x, p, r) < 0.

(4.16)

For the second derivative with respect to x, we have standard difference method

Vxx(t, x, p) → V h1,h2(t + h2, x + h1, p) + V h1,h2(t + h2, x− h1, p)− 2V h1,h2(t + h2, x, p)

h2
1

.

(4.17)

For the first and second derivatives with respect to the posterior probability pi, we also have

similar expressions as above. Let V h1,h2(t, x, p) denote the solution to the finite difference

equation with x and pi be an integral multiplier of h1 and h2. Plugging all the necessary

expressions into (4.9), combining the like terms and multiplying all terms by h2 yield the

following expression:

V h1,h2(nh2, x, p)

= V h1,h2(nh2 + h2, x, p)[1− |b(x, p, r)|h2

h1

− h2σ(x, p, r)σ′(x, p, r)

h2
1

]

+V h1,h2(nh2 + h2, x + h1, p)
σ(x, p, r)σ′(x, p, r)h2 + 2h1h2b

+(x, p, r)

2h2
1

+V h1,h2(nh2 + h2, x− h1, p)
σ(x, p, r)σ′(x, p, r)h2 + 2h1h2b

−(x, p, r)

2h2
1

+
m∑

i=1

V h1,h2(nh2 + h2, x, pi + h1)

1
σ2
0
[pi(g(i)− α)]2h2 + 2h1(

∑m
j=1 qjipj)+h2

2h2
1

+
m∑

i=1

V h1,h2(nh2 + h2, x, pi − h1)

1
σ2
0
[pi(g(i)− α)]2h2 + 2h1(

∑m
j=1 qjipj)−h2

2h2
1

+
m∑

i=1

V h1,h2(nh2 + h2, x, pi)[−
1
σ2
0
[pi(g(i)− α)]2h2

h2
1

− h2|
∑m

j=1 qjipj|
h1

],

(4.18)

where b+(x, p, r), (
∑m

j=1 qjipj)+ and b−(x, p, r), (
∑m

j=1 qjipj)− are positive and negative parts
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of b(x, p, r) and
∑m

j=1 qjipj, respectively and nh2 < T . Note the sum of the coefficients of

the first three lines in the above equation is unity. By choosing proper h1 and h2, we can

reasonably assume that the coefficient

1− |b(x, p, r)|h2

h1

− h2σ(x, p, r)σ′(x, p, r)

h2
1

of term V h1,h2(nh2 + h2, x, p) is in [0, 1]. Therefore, we can regard the coefficients as the

transition functions of a Markov chain and define the transition probabilities in the following

way,

ph1,h2((nh2, nh2 + h2))|x, p, r) = 1− |b(x, p, r)|h2

h1

− h2σ(x, p, r)σ′(x, p, r)

h2
1

ph1,h2((nh2, x), (nh2 + h2, x + h1)|p, r) =
σ(x, p, r)σ′(x, p, r)h2 + 2h1h2b

+(x, p, r)

2h2
1

ph1,h2((nh2, x), (nh2 + h2, x− h1)|p, r) =
σ(x, p, r)σ′(x, p, r)h2 + 2h1h2b

−(x, p, r)

2h2
1

.

(4.19)

Theoretically, we can find approximation of V (s, x, p) in (4.7) by using (4.13) and

V h1,h2(s, x, p) = inf
uh1,h2∈Uh1,h2

W h1,h2(s, x, p, uh1,h2). (4.20)

Practically, with the transition probabilities defined above, we can compute V h1,h2(s, x, p)
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by the following iteration method

V h1,h2(nh2, x, p)

= ph1,h2((nh2, x)(nh2 + h2, x + h1)|p, r)V h1,h2(nh2 + h2, x + h1, p)

+ph1,h2((nh2, x), (nh2 + h2, x− h1)|p, r)V h1,h2(nh2 + h2, x− h1, p)

+ph1,h2((nh2, nh2 + h2)|x, p, r)V h1,h2(nh2 + h2, x, p)

+
m∑

i=1

V h1,h2(nh2 + h2, x, pi + h1)

1
σ2
0
[pi(g(i)− α)]2h2 + 2h1(

∑m
j=1 qjipj)+h2

2h2
1

+
m∑

i=1

V h1,h2(nh2 + h2, x, pi − h1)

1
σ2
0
[pi(g(i)− α)]2h2 + 2h1(

∑m
j=1 qjipj)−h2

2h2
1

+
m∑

i=1

V h1,h2(nh2 + h2, x, pi)[−
1
σ2
0
[pi(g(i)− α)]2h2

h2
1

− h2|
∑m

j=1 qjipj|
h1

].

(4.21)

Note that we used local transitions here, we can avoid the problem of “numerical noise” or

“numerical viscosity” in this way, which appears in non-local transitions case, and is even

more serious in higher dimension scenario, see [57] for more details. We can show that the

Markov chain {ξh1,h2
n , n < ∞} with transition probabilities ph1,h2(·) defined in (4.19) is locally
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consistent with (4.5) by verifying the following equations:

Eh1,h2,r
x,p,n ∆ξh1,h2

n

= h1

(
σ(x, p, r)σ′(x, p, r)h2 + 2h1h2b

+(x, p, r)

2h2
1

)

−h1

(
σ(x, p, r)σ′(x, p, r)h2 + 2h1h2b

−(x, p, r)

2h2
1

)

= b(x, p, r)h2,

V h1,h2,r
x,p,n ∆ξh1,h2

n

= h2
1

(
σ(x, p, r)σ′(x, p, r)h2 + 2h1h2b

+(x, p, r)

2h2
1

)

+h2
1

(
σ(x, p, r)σ′(x, p, r)h2 + 2h1h2b

−(x, p, r)

2h2
1

)

= σ(x, p, r)σ′(x, p, r)h2 + O(h1h2).

(4.22)

It turns out that in convergence analysis, the classical control is inadequate so we need

to enlarge our control class to include relaxed control m(·) and utilize the idea of martingale

measure M(·) to proceed. Under certain conditions, we can actually rewrite our original

system as

x(t) = x +

ˆ t

s

ˆ

U
b(x(z), p(z), c)mz(dc)dz +

ˆ t

s

ˆ

U
σ(x(z), p(z), c)M(dc, dz)

pi(t) =

ˆ t

s

m∑
j=1

qjipj(z)dz +

ˆ t

s

1

σ0

[pi(z)(g(i)− α(z))]dŵ2(z), for i = {1, . . . , m},
(4.23)

where

σ(x(z), p(z), c) = (σ1(x(z), p(z), c), . . . , σd(x(z), p(z), c)) ∈ R1×d.

Equation (4.23) represents our control system.

In order to approximate the continuous time process (x(t), p(t),M(t),m(t)), we use
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continuous-time interpolation. We define the piecewise constant interpolations by

ξh1,h2(t) = ξh1,h2
n , ph2(t) = ph2

n , ᾱh1,h2(t) =
m∑

i=1

g(i)ph2
n , uh1,h2(t) = uh1,h2

n ,

zh2(t) = n,wh1,h2

l (t) =

zh2 (t)−1∑

k=0

∆wh1,h2

l,k , εh1,h2(t) = εh1,h2
n , for t ∈ [nh2, (n + 1)h2).

(4.24)

The following lemma demonstrate the fact that we can approximate (x(t), p(t),M(t),m(t))

by a quadruple satisfying

ξh1,h2(t) = x +

ˆ t

s

ˆ

U
b(ξh1,h2(z), ph2(z), c)mh1,h2

z (dc)dz

+

ˆ t

s

ˆ

U
σ(ξh1,h2(z), ph2(z), c)Mh1,h2(dc, dz) + εh1,h2(t)

= x +

ˆ t

s

∑

l

b(ξh1,h2(z), ph2(z), cl)mz(C
h1,h2

l )dz

+

ˆ t

s

∑

l

σ(ξh1,h2(z), ph2(z), cl)(mz(C
h1,h2

l ))
1
2 dwh1,h2

l (z) + εh1,h2(t),

(4.25)

where mh1,h2(·) is a piecewise constant and takes finitely many values and Mh1,h2(·) is rep-

resented in terms of a finite number of Wiener process. The idea is similar to the method

used in [56, Theorem 8.1], we omit the detail here for brevity. With the notation of relaxed

control given above, we can rewrite the value function as

W h1,h2(s, x, p, mh1,h2) = Emh1,h2

s,x,p (ξh1,h2(T ) + λ− k)2 − λ2. (4.26)

V h1,h2(s, x, p) = inf
mh1,h2∈Γh1,h2

W h1,h2(s, x, p, mh1,h2). (4.27)

Theorem 4.1. Under certain assumptions and letting the approximating chain {ξh1,h2
n , n <

∞} be constructed with transition probability and ph2
n defined properly. Let {uh1,h2

n , n < ∞}
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be a sequence of admissible controls, ξh1,h2(·) and ph2(·) be the continuous time interpolation

defined in (4.24), mh1,h2(·) be the relaxed control representation of uh1,h2(·) (continuous time

interpolation of uh1,h2
n ). Then {ξh1,h2(·), ph2(·),mh1,h2(·),Mh1,h2(·)} is tight. Denoting the limit

of a weakly convergent subsequence by {x(·), p(·),m(·),M(·)} such that (4.23) is satisfied.

Proof. Note that mh1,h2(·) is tight due to the compactness of the relaxed control. Since

(ξh1,h2(·), ph2(·)) ∈ Rm+1, the tightness of ph2(·) can be obtained as in [68, Theorem 8.15].

Therefore, we just need to take care that of ξh1,h2(·) now. For the tightness of ξh1,h2(·), by

assumption (A1), for s ≤ t ≤ T ,

Emh1,h2

s,x,p |ξh1,h2(t)− x|2 = Emh1,h2

s,x,p |
ˆ t

s

ˆ

U
b(ξh1,h2(z), ph2(z), c)mh1,h2

z (dc)dz

+

ˆ t

s

ˆ

U
σ(ξh1,h2(z), ph2(z), c)Mh1,h2(dc, dz) + εh1,h2(t)|2

≤ Kt2 + Kt + εh1,h2(t),

(4.28)

where lim suph1,h2→0 E|εh1,h2(t)| → 0 for any s ≤ t ≤ T . Similarly, we can guarantee

Emh1,h2

s,x,p |ξh1,h2(t + δ) − ξh1,h2(t)|2 = O(δ) + εh1,h2(δ). Therefore, the tightness of ξh1,h2(·)

follows. By the compactness of set U , we can see that Mh1,h2(·) is also tight. In view

of the tightness, we can extract a weakly convergent subsequence, and denote its limit

by {x(·), p(·),m(·),M(·)}. Next we show that the limit is the solution of SDE driven by

(p(·),m(·),M(·)).

For δ > 0 and any process ν(·) define the process νδ(·) by νδ(t) = ν(nδ) for t ∈ [nδ, nδ+δ).
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Then by the tightness of ξh1,h2(·) and ph2(·), (4.25) can be rewritten as

ξh1,h2(t) = x +

ˆ t

s

ˆ

U
b(ξh1,h2(z), ph2(z), c)mh1,h2

z (dc)dz

+

ˆ t

s

ˆ

U
σ(ξh1,h2,δ(z), ph2,δ(z), c)Mh1,h2(dc, dz) + εh1,h2,δ(t),

(4.29)

where limδ→0 lim suph1,h2→0 E|εh1,h2,δ(t)| → 0. We further assume that the probability space

is chosen as required by Skorohod representation. Therefore, we can assume the sequence

{ξh1,h2(·), ph2(·),mh1,h2(·),Mh1,h2(·)} converges to (x(·), p(·),m(·),M(·)) w.p.1 with a little

bit abuse of notation. Taking limit as h1 → 0 and h2 → 0, the convergence of

{ξh1,h2(·), ph2(·),mh1,h2(·),Mh1,h2(·)}

to its limit w.p.1 implies that

E|
ˆ t

s

ˆ

U
b(ξh1,h2(z), ph2(z), c)mh1,h2

z (dc)dz −
ˆ t

s

ˆ

U
b(x(z), p(z), c)mh1,h2

z (dc)dz| → 0

uniformly in t. Also, recall that mh1,h2(·) → m(·) in the “compact weak” topology if and

only if
ˆ t

s

ˆ

U
φ(c, z)mh1,h2(dc, dz) →

ˆ t

s

ˆ

U
φ(c, z)m(dc, dz)

for any continuous and bounded function φ(·) with compact support. Thus, weak convergence

and Skorohod representation imply that

ˆ t

s

ˆ

U
b(x(z), p(z), c)mh1,h2

z (dc)dz →
ˆ t

s

ˆ

U
b(x(z), p(z), c)mz(dc)dz as h1, h2 → 0, (4.30)
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uniformly in t on any bounded interval w.p.1.

Recall that Mh1,h2(·) is a martingale measure with quadratic variation process mh1,h2(·)

and that ξh1,h2,δ(·) and ph2,δ(·) are piecewise constant functions, following from the probability

one convergence, we have

ˆ t

s

ˆ

U
σ(ξh1,h2,δ(z), ph2,δ(z), c)Mh1,h2(dc, dz) →

ˆ t

s

ˆ

U
σ(xδ(z), pδ(z), c)Mh1,h2(dc, dz).

(4.31)

Recall that Mh1,h2(·) → M(·) in the “compact weak” topology if and only if

ˆ t

s

ˆ

U
f(c, z)Mh1,h2(dc, dz) →

ˆ t

s

ˆ

U
f(c, z)M(dc, dz) as h1, h2 → 0

for each bounded and continuous function f(·), we have

ˆ t

s

ˆ

U
σ(xδ(z), pδ(z), c)Mh1,h2(dc, dz) →

ˆ t

s

ˆ

U
σ(xδ(z), pδ(z), c)M(dc, dz),

uniformly in t on any bounded interval w.p.1; see [58, pp. 352]. Combining the above results,

we have

x(t) = x +

ˆ t

s

ˆ

U
b(x(z), p(z), c)m(dc, dz) +

ˆ t

s

ˆ

U
σ(xδ(z), pδ(z), c)M(dc, dz) + εδ(t),

(4.32)

where limδ→0 E|εδ(t)| = 0. Taking limit of the above equation as δ → 0 yields (4.23).

Theorem 4.2. Under assumptions (A1)-(A4), V h1,h2(s, x, p) and V (s, x, p) are value func-
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tions defined in (4.27) and (4.7) respectively, we have

V h1,h2(s, x, p) → V (s, x, p), as h1 → 0, h2 → 0. (4.33)

Proof. For each h1, h2, let m̂h1,h2 be an optimal relaxed control for {xh1,h2(·), ph2(·)}. i.e.,

V h1,h2(s, x, p) = W h1,h2(s, x, p, m̂h1,h2) = inf
mh1,h2∈Γh1,h2

W h1,h2(s, x, p, mh1,h2)

Choose a subsequence {h̃1, h̃2} of {h1, h2} such that

lim inf
h1,h2→0

V h1,h2(s, x, p) = lim
h̃1,h̃2→0

V h̃1,h̃2(s, x, p) = lim
h̃1,h̃2→0

W h̃1,h̃2(s, x, p, m̂h̃1,h̃2).

Note that we can assume that {ξh̃1,h̃2(·), ph̃2(·), m̂h̃1,h̃2(·), M̂ h̃1,h̃2(·)} converges weakly to

{x(·), p(·),m(·),M(·)}. Otherwise, take a subsequence of {h̃1, h̃2} to assume its weak limit.

Theorem 4.1, Skorohod representation and dominance convergence theorem imply that as

h̃1, h̃2 → 0,

Em̂h̃1,h̃2

s,x,p (ξh̃1,h̃2(T ) + λ− k)2 − λ2 → Em
s,x,p(x(T ) + λ− k)2 − λ2.

So

W h̃1,h̃2(s, x, p, m̂h̃1,h̃2) → W (s, x, p,m) ≥ V (s, x, p).

It follows that

lim inf
h1,h2→0

V h1,h2(s, x, p) ≥ V (s, x, p)
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Next, we need to show lim suph1,h2→0 V h1,h2(s, x, p) ≤ V (s, x, p) to complete the proof. Given

any ρ > 0, there is a δ > 0 so that we are able to approximate (x(t), p(t),m(t),M(t)) by a

quadruple (xδ(t), pδ(t),mδ(t),M δ(t)) satisfying

xδ(t) = x +

ˆ t

s

ˆ

U
b(xδ(z), pδ(z), c)mδ

z(dc)dz +

ˆ t

s

ˆ

U
σ(xδ(z), pδ(z), c)M δ(dc, dz),

where mδ(·) is piecewise constant and takes finitely many values, M δ(·) is represented in

terms of a finite number of d-dimensional Wiener processes and the controls are concentrated

on the points c1, c2, . . . , cN for all t. Let ûρ(·) be the optimal control and m̂ρ(·) be its relaxed

control representation, and let (x̂ρ(·), p̂ρ(·)) be the associated solution process. Since m̂ρ(·)

is optimal in the chosen class of controls, we must have

W (s, x, p, m̂ρ) ≤ V (s, x, p) + ρ
3
. (4.34)

Note that for each given integer ι, there is a measurable function F ρ
ι (·) such that

ûρ(t) = F ρ
ι (wl(s), p(s), s ≤ ιδ, l ≤ N)

on [ιδ, ιδ + δ). We next approximate F ρ
ι (·) by a function that depends only on the sample

of (wl(·), p(·), l ≤ N) at a finite number of time points. Let θ < δ such that δ/θ is an

integer. Because the σ− algebra determined by {wl(νθ), p(νθ), νθ ≤ ιδ, l ≤ N} increases to

the σ-algebra determined by {wl(s), p(s), s ≤ ιδ, l ≤ N}, the martingale convergence theorem
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implies that for each δ, ι, there are measurable function F ρ,θ
ι (·), such that as θ → 0,

F ρ,θ
ι (wl(νθ), p(νθ), νθ ≤ ιδ, l ≤ N) = uρ,θ

ι → ûρ(ιδ) w.p.1.

Here, we select F ρ,θ
ι (·) such that there are N disjoint hyper-rectangles that cover the range

of its arguments and that F ρ,θ
ι (·) is constant on each hyper-rectangle. Let mρ,θ(·) denote

the relaxed control representation of the ordinary control uρ,θ(·) which takes value uρ,θ
ι on

[ιδ, ιδ + δ), and let (xρ,θ(·), pρ,θ(·)) denote the associated solution. Then for small enough θ,

we have

W (s, x, p, mρ,θ) ≤ W (s, x, p, m̂ρ) + ρ
3
. (4.35)

Next, we adapt F ρ,θ
ι (·) such that it can be applied to {ξh1,h2

n } and let ūh1,h2
n denote the

ordinary admissible control to be used for the approximation chain {ξh1,h2
n }.

For n such that nh2 < δ, we can use any control. For ι = 1, 2, . . . and n such that nh2 ∈

[ιδ, ιδ + δ), we use the control defined by ūh1,h2
n = F ρ,θ

ι (wh1,h2

l (νθ), ph2(νθ), νθ ≤ ιδ, l ≤ N).

Recall that m̄h1,h2(·) denote the relaxed control representation of the continuous interpolation

of ūh1,h2
n , then

(ξh1,h2(·), m̄h1,h2(·), wh1,h2

l (·), F ρ,θ
ι (wh1,h2

l (νθ), ph2(νθ), νθ ≤ ιδ, l ≤ N, ι = 0, 1, 2, . . .))

→ (xρ,θ(·),mρ,θ(·), wl(·), F ρ,θ
ι (wl(νθ), p(νθ), νθ ≤ ιδ, l ≤ N, ι = 0, 1, 2, . . .)).

Thus

W (s, x, p, m̄h1,h2) ≤ W (s, x, p, mρ,θ) +
ρ

3
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Note that

V h1,h2(s, x, p) ≤ W (s, x, p, m̄h1,h2).

Combing the above inequalities, we can see lim suph1,h2→0 V h1,h2(s, x, p) ≤ V (s, x, p) for the

chosen subsequence. By the tightness of (ξh1,h2(·), ph2(·), m̄h1,h2(·)) and arbitrary of ρ, we get

lim sup
h1,h2→0

V h1,h2(s, x, p) ≤ V (s, x, p)

and conclude the proof.
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5 Concluding Remarks and Future Directions

In this dissertation, we have concentrated on stability and controls for stochastic dynamic

systems. In Chapter 2, we first studied the benchmark linear scalar jump diffusions. Then

exponential p stability and almost surely exponential stability for both SDEs and that of

its numerical solutions are examined. The generalization to linear Markov switching jump

diffusions and multi-dimensional jump diffusions are also discussed. For regime switching

jump diffusions, under simple conditions, we derived sufficient conditions for asymptotic

stability in the large and asymptotic stability in distribution. We also provided necessary and

sufficient conditions for exponential stability. The connection between exponential stability

and almost surely exponential stability was studied. Smooth dependence on the initial data

was demonstrated as well.

One of future research efforts can be directed to the study of positive recurrence and

egrodicity of regime-switching jump diffusions, which was called weak stability in [45] for

diffusion processes. Another effort can be directed to studying stability of numerical al-

gorithms for regime-switching jump diffusions for x dependent regime switching. For sim-

plicity, throughout the the numerical analysis part, the Poisson process is assumed to be

one-dimensional. For many applications, such a consideration is sufficient. An extension is to

treat multi-dimensional counterparts. Another more delicate issue of much theoretical value

is that the jump diffusions involve a more general Lévy process. This deserves a careful study

and in-depth investigation.

In Chapter 3, we are interested on a mean variance control problem of Markov switching

diffusions with large states. To reduce the computational complexity, we first used a two-
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time-scale formulation to relate the underlying problem with that of a limit problem then we

demonstrated the near-optimal controls using two-time scale formulation and weak conver-

gence techniques. In lieu of handling large dimensional systems, we need only solve a reduced

set of limit equations that have much smaller dimensions. In Chapter 4, we keep working on

the mean variance control problem under a quite different formulation in which we have a

switching diffusion system with a hidden Markov chain. Using Markov chain approximation

techniques combined with the Wonham filtering, a numerical scheme was developed. Our

on-going effort will be directed to use the approach developed in this work to treat several

networked systems that involve platoon controls with wireless communications and actuarial

science.
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ABSTRACT

STABILITY AND CONTROLS FOR STOCHASTIC DYNAMIC SYSTEMS

by

ZHIXIN YANG

August 2014

Advisor: Dr. George Yin

Major: Mathematics (Applied)

Degree: Doctor of Philosophy

This dissertation focuses on stability analysis and optimal controls for stochastic dy-

namic systems. It encompasses two parts. The first part of our work gives an in-depth study

of stability of linear jump diffusions, linear Markovian jump diffusions, multi-dimensional

jump diffusions, and regime-switching jump diffusions together with the associated numeri-

cal methods. The second part of our work treats controls for stochastic dynamic systems. We

concentrate on mean variance types of control under different formulations. We obtain the

nearly optimal mean-variance controls under both two-time-scale and hidden Markov chain

formulations and convergence analysis for each case is carried out.

In Chapter 2, stability analysis of benchmark linear scalar jump diffusions is studied first.

We present the conditions for exponential p stability and almost surely exponentially stabil-

ity for SDEs and for numerical solutions. Note that due to the use of Poisson processes, using

asymptotic expansions as in the literature for treating diffusion processes does not work. Dif-

ferent from the existing treatments of Euler-Maurayama methods for solutions of stochastic

differential equations, techniques from stochastic approximation is employed in our work.
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Then similar analysis is carried out for Markov jump diffusions and multi-dimensional jump

diffusions. In addition, we carry out a thorough study on asymptotic stability in the large

and exponential p-stability for regime-switching jump diffusions. Connection between almost

surely exponential stability and exponential p-stability is exploited. Necessary conditions for

exponential p-stability are derived and criteria for asymptotic stability in distribution are

provided. In Chapter 3 We work on the well-known mean-variance problem with new a twist

in which a switching process is embedded. We first use a two-time-scale formulation to treat

the underlying system with the use of a small parameter. As the small parameter goes to

0, we obtain a limit problem. Using the limit problem as a guide, we construct controls for

the original problem, and show that the control so constructed is nearly optimal. In chapter

4, we revisit the mean variance control problem in which the switching process is a hidden

Markov chain. Instead of having full knowledge of switching process, we assume only the

noisy observation of the switching process corrupted by white noise is available. We focus on

minimizing the variance subject to a fixed terminal expectation. Using the Wonham filter, we

convert the partially observable system to a completely observable one first. Because closed-

form solutions are virtually impossible to obtain, our main effort is devoted to designing a

numerical algorithm. Convergence of the algorithm is obtained.
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