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GENERAL INTRODUCTION 

 

 Cholera is a severe diarrheal illness, which is caused by the gram negative bacterium, 

Vibrio cholerae. The disease is initiated by ingestion of bacteria from contaminated food or 

water. Disease symptoms are characterized by voluminous watery diarrhea, referred to as “rice-

water stool”, because of its characteristic appearance. Cholera patients can lose up to 1 L of 

water every hour, leading to severe dehydration and hypotensive shock, termed “cholera gravis”, 

within a few hours after initial symptoms. Most cholera-associated deaths occur within the first 

day due to the rapid dehydration. Additional symptoms include vomiting early in disease, 

cramping, clammy skin, and decreased skin turgor. If left untreated, there is a 50% lethality rate. 

However, with effective therapy, this rate can be reduced to less than 0.2% (205). Current 

therapy for cholera disease consists of rehydration through intravenous fluids and oral 

rehydration solution (ORS). ORS contains concentrations of sodium and glucose to maximize 

uptake of sodium into the small intestine (84, 184). Antibiotics can also aid in limiting the 

duration of the disease, but rehydration therapy is needed in combination. Another clinical 

manifestation of the disease is called “cholera sicca”, in which fluid accumulates in the lumen of 

the intestine and leads to circulatory collapse before the first diarrheal symptoms occur (84). 

 In 2012, the World Health Organization (WHO) reported approximately 245,000 

documented cases of cholera, resulting in 3034 deaths (252). However, this number is greatly 

under reported, due to problems with disease identification in developing countries. Additionally, 

countries may underreport due to fear of effects on tourism, travel, and trade. Historically, 

cholera affects approximately 3-5 million people annually, with an estimated 120,000 deaths 

(269). In regions where cholera is endemic, severe cases usually occur in children and adults that 

have not been previously exposed (77). When a cholera epidemic occurs, age does not play a role 
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as the population has not yet been exposed and thus has no developed immunity (37). Cholera is 

endemic in more than 50 countries, mainly in Asia and Africa, but has the capability to cause 

widespread epidemics. A recent example of an epidemic occurred after an earthquake hit Haiti in 

2010. Infrastructure breakdown and lack of sanitation led to a cholera outbreak which spread 

throughout the entire country within a month. As a result of this outbreak, there have been over 

500,000 cases and 7000 deaths (27). The disease has since extended from Haiti to the Dominican 

Republic and Cuba, showing its propensity for epidemic spread (252).  

 Cholera has been described dating back to the 5
th

 Century, first depicted in Sanksrit. The 

disease has been found in the Indian subcontinent for centuries, but has since spread elsewhere. 

There were six pandemics between the years 1817 and 1923. The 7
th

 and current pandemic began 

in 1961, and has involved almost the entire world. The main thought in the 19
th

 century was that 

cholera disease was caused by “bad” air that would carry the disease and infect populations. 

Later in 1854, during the third pandemic which reached London, physician John Snow 

determined that the source of the disease was linked to a town water pump, and ordered that it be 

decommissioned (224). This action led to the cessation of the epidemic in London. With further 

epidemiological studies Snow discovered a water company was delivering sewage contaminated 

water to homes. Independently in 1854, Italian anatomist Filippo Pacini performed autopsies of 

recently deceased cholera patients and analyzed their intestines. He described comma-like 

shaped bacteria within the intestine, and believed that they were contagious and the cause of the 

disease and termed them Vibrios (14). However, his work was ignored by the scientific 

community until Robert Koch rediscovered the organism in 1884, linking the same comma-

shaped bacilli to cholera patients (111). Pacini, several years later was recognized for his 

discovery and the bacterium was named Vibrio cholerae (127).  
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 V. cholerae is a gram-negative bacterium that is classified based on the O antigen of its 

lipopolysaccharide. There are more than 200 serogroup classifications (57, 92, 205). Each of the 

seven pandemics has been attributed to the O1 serogroup of V. cholerae. Beginning in 1992, the 

O139 serogroup emerged with the ability to cause outbreaks, and is sometimes referred to as the 

eighth pandemic (16, 51, 102, 182). The O1 serogroup can be further divided into two biotypes: 

classical and El Tor (200). The classical biotype was responsible for the first six pandemics, 

while El Tor is responsible for the seventh and has currently replaced the classical biotype in the 

environment (57, 205). Classical biotype is known to initiate a more severe disease in humans, 

while El Tor is thought to survive better in the environment (57, 127).  

Each V. cholerae biotype can be further subdivided into two major serotypes: Ogawa and 

Inaba. Ogawa strains produce the A and B antigens, while Inaba produces only the A and C 

antigen. Hikojima, a third serotype, albeit rare and unstable, produces all three antigens (205, 

208). Classical and El Tor biotypes can be distinguished phenotypically using assays for 

hemolysis, hemagglutination, phage lysis or polymyxin B resistance (127). Additionally, 

biotype-specific genes can be genotypic distinguishing characteristics. Of late, new variants of El 

Tor that have some phenotypic similarity to classical biotype have been isolated from 

hospitalized patients (183).  

Much work has been done to create a cholera vaccine, yet cholera vaccination is not yet a 

major part of worldwide control programs. Initially, a killed injectable vaccine was produced and 

required for international travel in the 1880s. Currently there are two oral killed vaccines that 

contain multiple biotypes of V. cholerae O1. One contains recombinant cholera toxin B subunit 

while the other contains V. cholerae O139 in addition to the O1 serogroup (105, 251). The 

vaccines can provide protection for adults for up to three years; however, the duration of 
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protection for children is much lower (38, 92). Live attenuated oral cholera vaccines have been 

used and efficacy results have been mixed (92). It has been suggested that the efficacy of 

vaccines can be substantiated by attenuated motile V. cholerae, which will penetrate the mucus 

layer and increase mucosal immunity (41, 130, 163). However, live attenuated cholera vaccines 

are not recommended by the WHO. Currently, cholera vaccines are being suggested for use 

during outbreaks and in areas at risk of outbreaks (251).  

Studies of aquatic environments have shown that V. cholerae persist as normal 

inhabitants of freshwater, coastal, and brackish waters where they can also be transmitted to 

humans. The bacteria are known to associate with marine organisms, such as shellfish, copepods, 

Chironomid egg masses, and vertebrate fish (87, 109, 198, 204, 213, 234). Disease in developed 

countries usually stems from the consumption of contaminated food, while contaminated water is 

most often the problem in underdeveloped countries (78, 113, 217, 227). In areas where cholera 

is endemic, seasonal outbreaks occur in correlation with increases in surface water temperature, 

as well as phytoplankton blooms (124, 125, 234). Even with the association with marine life, 

cholera disease in nature is generally only seen in a human host (57, 205). The infectious dose of 

V. cholerae is approximately 10
8
-10

11 
CFU for healthy North American volunteers (127). The 

bacteria must be at a concentration high enough to overcome innate immune defenses as well as 

the low pH of the stomach. Bacteria ingested with food that act as acid buffers, or ingested with 

the addition of bicarbonate, have a greatly decreased infectious dose and elevated infection rate 

(110, 206). Bacteria shed from an infected individual are in a hyperinfectious state that decreases 

the infectious dose to as low as 10-100 cells (25, 164, 186, 264), giving explanation for the rapid 

rate of spread during an epidemic. 
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Disease-causing V. cholerae exists in a biphasic life cycle: in the marine environment and 

in the human host. In aquatic environments outside of the human host, V. cholerae persists 

between epidemic seasons as free swimming planktonic cells, attached to biotic or abiotic 

surfaces, or in a viable but non-culturable (VBNC) state (1, 5, 87, 118, 218, 234). V. cholerae, 

when attached to chitonous surfaces such as crustacean shells, produce a chitinase which aids in 

using the surfaces as carbon and nitrogen sources (9, 161, 185). Additionally, V. cholerae can 

persist in the environment in a VBNC state, which makes them undetectable by normal culturing 

techniques (254). The signals for the bacteria to enter this state are not well defined; however, it 

is thought that it is in response to nutrient deprivation. V. cholerae in this state can regain the 

ability to multiply when grown in the presence of eukaryotic cells or in the human intestine (39, 

214). The bacteria can also associate with marine organisms and form biofilms, which play an 

important role in survival in the environment.  

It is thought that V. cholerae survives in the environment mostly in biofilms, and this is 

the form most likely consumed by humans (4). Biofilms are surface-attached micro-communities 

of bacteria that are usually coated in a matrix of polysaccharides or proteins (42). Increased 

biofilm formation by V. cholerae can be seen in a “rugose” colony phenotype due to increased 

secretion of VPS (vibrio polysaccharide), which results in resistance to chlorine (180, 201, 245). 

The role of the rugose colony morphology compared to that of the smooth colony phenotype in 

pathogenesis is not fully understood. However, biofilm-associated V. cholerae displays 

hyperinfectivity compared to the free swimming planktonic form (232, 268). Similarly, bacteria 

from cholera stool can be in planktonic form or biofilm-associated, the latter of which has greatly 

increased infectivity (58). This could be due to decreased acid susceptibility that the bacterium 

has when associated with a biofilm, increasing its odds of survival through the low pH of the 
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stomach (165). Additionally, the infectivity of water samples is greatly increased after removal 

of particles greater than 20uM in size, showing the importance in biofilms and disease (40). The 

existence of biofilms in the marine environment and increased infectivity of biofilm-associated 

V. cholerae illustrates the importance of biofilms in each phase of the bacterium’s life cycle. 

 In the other phase of the life cycle, the human host, the bacteria are ingested and 

eventually colonize the intestine. Once the bacteria pass through the low pH of the stomach, they 

enter the duodenum and colonize the intestinal crypts and villi surfaces (83, 211). Motility and 

chemotaxis genes are expressed in the environment and are thought to be needed for the 

initiation of diseases. Upon entry into the small intestine, the bacteria undergo a change in gene 

expression, where genes involved in regulating motility are down-regulated and genes involved 

in pathogenesis and disease are up-regulated (24, 143). Colonization of the intestine occurs as 

well as progression of the disease. Towards the end of disease, the bacteria initiate the “mucosal 

escape response”, where another inversion of gene expression occurs and the bacteria are shed 

back into the environment in the hyperinfectious state (188). The response additionally requires 

up-regulation of other genes, such as proteases to allow detachment from the epithelium, and 

motility genes for exit from the intestine (188). 

Two traits are required of strains with pandemic potential. These are obtained through the 

acquisitions of the cholera toxin bacteriophage (CTXΦ) and vibrio pathogenicity island (VPI) 

(128, 246). These are horizontally acquired mobile genetic elements that provide the organism 

with genes essential for causing cholera. CTXΦ is a 6.9kb lysogenic filamentous bacteriophage 

that encodes the genes for the cholera toxin (CT), which is directly responsible for the 

voluminous watery diarrhea seen during disease (246). Additionally, CTXΦ carries the genetic 

information encoding the zona occludens toxin (Zot) and accessory enterotoxin (Ace), which 
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also have enterotoxic activity (60, 123, 243). The 40kb VPI contains the genes encoding the 

other major virulence factor, toxin co-regulated pilus (TCP), as well as other accessory virulence 

factors and genes with unknown function (128). Non-toxigenic strains of V. cholerae, i.e. strains 

that do not cause cholera, can be converted into toxigenic strains capable of causing cholera 

(246). This involves the production of extracellular CTXΦ particles by toxigenic strains. These 

particles are then taken up by non-toxigenic strains and integrate into the chromosome and act as 

stably expressed lysogenic phages (246). However, TCP must first be expressed by the non-

toxigenic strains, as this is the receptor for the CTXΦ (246). This transduction event could 

happen in the intestine, effectively creating new toxigenic strains. 

CT, which is responsible for the watery diarrhea, was first discovered and proved to act 

as an enterotoxin in 1959 by S.N. De (45). He showed that cell-free culture supernatants from 

classical biotype, when injected into rabbit ligated ileal loops, could cause fluid accumulation 

similar to what is produced when cultures of V. cholerae were injected. The toxin became further 

defined by the work of Finkelstein and LoSpalluto, in 1969 (63, 64). They purified the toxin and 

determined that it was made of two moieties, one of which could elicit vascular permeability. 

Later it was shown that cholera toxin is an 84 kDa protein consisting of five “light” subunits that 

are responsible for binding of the toxin to its target, and one “heavy” subunit, responsible for the 

action of the toxin (151). The “light” subunits refer to what is now called the B subunits, for 

binding, while the “heavy” subunit is the active A subunit. Together, these subunits make up the 

AB5 holotoxin. Around the same time, the receptor for cholera toxin was identified as 

ganglioside GM1 (106, 107, 131), found mainly organized into lipid rafts on the surface of 

intestinal epithelial cells (179). The active A subunit is translated as a single polypeptide chain, 

but it then post-translationally modified by a V. cholerae protease into two fragments: A1 and 
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A2. The two fragments remain attached by a disulfide bond with the active domain residing in 

the A1 fragment. The A2 fragment functions to insert into the B subunit pentameric ring (75). 

Once the holotoxin is assembled in the periplasm, it is secreted extracellularly via a type 

II secretion system (26). Upon reaching the lumen of the intestine, the toxin binds to the GM1 

ganglioside by way of the five pentamerically arranged B subunits (99, 106, 107, 131). Once 

bound, CT is endocytosed and undergoes retrograde transport. After reaching the endoplasmic 

reticulum, the A subunit dissociates from the B subunits (61, 153). The A subunit translocates to 

the cytosol of the epithelial cell, where the A1 fragment ADP-ribosylates the Gsα subunit of 

adenylate cyclase (76). This leaves adenylate cyclase locked in its GTP-bound active state, thus 

increasing the concentration of cellular cAMP and causing an electrolyte transport imbalance. 

The imbalance consists of decreased sodium uptake with an increase in chloride and bicarbonate 

efflux (62). Decreased sodium uptake is followed by decreased water absorption, while chloride 

and bicarbonate efflux increases water secretion into the lumen of the intestine (62, 178). The 

combined effects of the electrolyte imbalance lead to fluid accumulation in the intestine and the 

severe watery diarrhea seen in cholera patients. 

The second major virulence factor essential for V. cholerae strains to cause cholera 

disease is TCP (98, 128). The toxin co-regulated pilus is a type IV bundle-forming pilus and is 

termed “toxin co-regulated” due to its dependence on the same culture conditions as CT for 

expression (132, 237, 238, 240). TCP is responsible for mediating microcolony formation at the 

epithelial surface by bacterium-bacterium interactions (132), secretion of the colonization factor 

TcpF (140), and providing defense against antimicrobials and bile (141). Genes involved in TCP 

production and assembly are encoded by the 12 gene tcp operon, located on the VPI (57). The 

first gene in the operon, tcpA, encodes the major pilin subunit (132). Once assembled, TCP is 
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composed of 5-6nm filaments made up of many repeating subunits (238). A tcpA mutant strain 

of V. cholerae is unable to colonize the laboratory infant mouse model or healthy human 

volunteers, demonstrating its importance in initiation of disease (98, 240). TCP has been shown 

to mediate attachment and formed pilin matrices that aided in protection in the infant mouse 

model of colonization using field-emission scanning electron microscopy (FESEM) (141). 

Nevertheless, it remains unclear if TCP mediates direct attachment to the epithelium and 

colonization. Most of the tcp operon is involved in the production and assembly of the pilus. 

However, tcpF encodes a soluble factor important for colonization of intestinal epithelial cells 

that is secreted by TCP (140). Additionally, tcpJ encodes a leader peptidase that is important for 

processing of TcpA during secretion (129). 

Other genes located on the VPI are coordinately regulated along with the tcp operon. 

including tagA, aldA, tcpI, and the acfABCD genes (47, 55, 90, 91, 192, 194, 247, 249). The 

roles in colonization and disease are largely unknown in regard to these coordinately regulated 

genes. tagA encodes a metal-dependent mucinase that is involved in cleaving mucin proteins to 

potentially modify the cell substrate for enhanced Vibrio binding (231). The aldehyde 

dehydrogenase encoded by aldA caused no defect in colonization when mutated (192). The 

acfABCD genes make up the accessory colonization factor (ACF) and are required for efficient 

colonization of the infant mouse; however, their exact role in pathogenesis is unclear (194). acfB 

and tcpI encode methyl accepting chemoreceptors that when mutated on their own do not cause 

colonization defects. However, when mutated simultaneously, they cause a defect in 

colonization, suggesting redundancy in their chemotactic properties (30, 54, 91). Additionally, 

the small RNAs encoded by tarA and tarB are located on the VPI upstream of tcpI (21, 202). 

TarA is involved in regulating expression of ptsG, which encodes a glucose transporter, and V. 
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cholerae with mutation in tarA have a colonization defect (202). TarB is involved in negative 

regulation of the secreted colonization factor TcpF prior to V. cholerae penetration of the 

intestinal epithelial layer (21).  

In addition to CT and TCP, other virulence factors are important for colonization and 

disease. In particular, the roles of motility and chemotaxis have been intensely studied for their 

function in pathogenesis. V. cholerae is a highly motile bacterium, establishing this motility 

through the action of a single, polar flagellum. There is much debate in regard to the requirement 

of motility for intestinal colonization, as results differ depending on strains, mutations, and 

animal models used (67-69, 74, 203, 239, 256, 257). Non-motile mutants of classical biotype 

strains did not have impaired colonization in the infant mouse model compared to WT (74). 

Conversely, non-motile mutants in El Tor were shown to be ineffective at colonization of the 

infant mouse (23, 145, 220). The polar flagellum is driven by sodium motive force (133) and 

disruption of the genes involved in sodium uptake for the flagella can lead to increased CT and 

TCP when cultured in unpermissive conditions (94). Current thought is that motility is needed in 

the intestinal environment for penetration of the mucus layer, allowing access of V. cholerae to 

the crypts of the villi (24).  

 In the aquatic environment, V. cholerae is free-swimming with motility genes expressed 

and virulence genes down-regulated (74, 93, 94). V. cholerae contains three chemotaxis operons, 

only one of which is essential for chemotaxis (80, 96). Chemotaxis provides a mechanism for the 

bacterium to move toward resources or away from damaging agents. The requirement of 

chemotaxis in pathogenesis is disputed similarly to the role of motility. Reports have shown that 

chemotaxis is dispensable for colonization, as non-chemotactic mutants colonize the infant 

mouse intestine 70-fold better than WT (145). However, current thought is that non-chemotactic 
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mutants colonize the entire mouse intestine aberrantly, rather than just the proximal intestine 

(24). Further, positive chemotaxis toward the intestinal crypts where V. cholerae colonizes could 

lead to interaction with antimicrobial peptides that kill the bacteria, which a non-chemotactic 

mutant would not encounter as regularly, which could be an explanation for higher colonization 

of the mouse intestine by a non-chemotactic mutant (68, 191). V. cholerae has genes encoding 43 

potential methyl-accepting chemotaxis proteins (MCP), compared to Escherichia coli which 

encodes only 4 MCPs (19, 24). These proteins respond to environmental stimuli and initiate 

direction change of the flagellum. V. cholerae having such a large number of MCPs 

demonstrates the complexity of chemotactic signaling, possibly needed because resources in 

marine environments are sparse. However, MCPs may also be active in the human host. acfB and 

tcpI, located on the VPI and co-regulated with ctxAB  and tcp, encode proteins that share 

homology with MCPs (30, 54, 91). However, their roles in infection are not fully understood. 

Strains that have acquired the CTXΦ and VPI regulate these elements with a complex 

network of transcription factors. Coordinate expression of CT and TCP genes is dependent on 

this network, termed the “ToxR regulon” (194). ToxR was the first regulator identified (194, 

221); however, it is not the transcriptional regulator that directly activates transcription of the tcp 

operon and ctxAB genes. The transcription activator directly responsible for production of the 

major virulence factors, CT and TCP, is ToxT (29, 47, 115, 262). Once produced, ToxT binds to 

virulence promoters and activates transcription of these genes (248). toxT is under control of the 

aforementioned ToxR, as well as another regulator, TcpP (95, 100, 144). An overview of the 

regulatory cascade that results in production of ToxT, and subsequently CT and TCP, is shown 

in Figure 1. 
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ToxR is a 32 kDa integral membrane protein that is constitutively produced and is present 

in all strains of V. cholerae, as well as other Vibrio species (177). It is not linked to the VPI, 

unlike ToxT (175). The winged helix-turn-helix DNA-binding domain of ToxR is 

cytoplasmically localized. ToxR, along with another integral membrane protein, ToxS, acts at the 

promoter of toxT to initiate transcription (174). ToxS is the interaction partner for ToxR, and acts 

to increase dimerization of ToxR, which is needed for full ToxR activity (52, 190). ToxS 

increases ToxR stability in E. coli; however, this is not seen in V. cholerae (10). ToxR also has 

been shown to partially activate ctxAB directly in the presence of bile acids, however full 

activation does not occur without ToxT (116, 175). 

In addition to the major virulence factors, ToxR regulates expression of outer membrane 

porins OmpU and OmpT, allowing the bacteria to change the composition of its cell membrane 

in new environments (43, 150, 176). ToxR increases expression of ompU, which encodes a porin 

that has been shown to protect the bacteria from the cytotoxic effects of bile and may also act as 

an adhesin (196, 197, 226). This increase in transcription of ompU by ToxR is also enhanced in 

the presence of bile (170). Conversely, ToxR decreases expression of ompT, which is the 

dominant porin expressed in nutrient limiting conditions, such as the aquatic environment (150). 

Addition of asparagine, arginine, glutamic acid, and serine (NRES) to minimal media or growth 

in rich media increases expression of ompU while repressing ompT (170). 

Another pair of integral membrane proteins, TcpP and TcpH, works in conjunction with 

ToxR to activate transcription of toxT (95). Similar to ToxR, TcpP shares homology with 

members of the PhoB/OmpR family of transcriptional regulators and contains an amino-terminal, 

cytoplasmically localized winged helix-turn-helix DNA-binding domain (156). TcpP, through its 

periplasmic domain, interacts with TcpH. In cells that lack TcpH, TcpP is rapidly degraded (10). 
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Additionally, even when TcpH is present, if conditions are unfavorable for virulence, TcpP will 

be degraded (158) . The protease responsible for the degradation of TcpP is the metalloprotease 

YaeL, which is also present in conditions not optimal for virulence (158). The intestinal bile salt, 

taurocholate, induces dimerization of TcpP through residues in the periplasmic domain, 

increasing its activation potential (261). TcpP/H binds the promoter of toxT between -51 and -32, 

while ToxR/S binds between -100 and -69 as shown by DNase I footprinting of the region (144). 

There is enhanced interaction between ToxR/S and TcpP/H under oxygen limiting conditions 

that resemble the environment of the small intestine (56). TcpP overexpression can overcome the 

need for ToxR for full activation of toxT (95, 144). Current thought is that when ToxR is present 

it recruits and guides TcpP to the toxT promoter. When ToxR is not present, TcpP relies on 

DNA-binding specificity to locate the toxT promoter (81). 

ToxR is constitutively produced, while TcpP/H is under control of various transcription 

factors. In particular, tcpPH is activated by AphA and AphB (139, 222). AphA shares homology 

with the PadR repressor, which is known for its role in controlling gene expression that is 

required for the detoxification of phenolic acids (8). AphB, which is encoded by a gene that is 

not linked to aphA, shares homology with LysR regulators (139). DNase I footprinting has 

shown that AphA binds upstream of tcpPH between -101 and -71, while AphB binds at a 

position between -78 and -43 (137). These two transcription regulators directly interact with each 

other at the promoter for optimal activation (136). AphB changes conformation in response to 

potential host stimuli such as changes in pH and anaerobiosis and allows it to better bind the 

tcpPH promoter (135, 236). AphA and AphB are not the only transcription factors that act at the 

promoter of tcpPH. cAMP receptor protein (CRP), which normally plays a role in regulating 

carbon metabolism, binds to and represses the promoter of tcpPH (137, 221, 223). Footprinting 
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with purified CRP shows protection of a region that is overlapped completely by the binding 

sites of AphA and AphB (137). Another protein, PepA, responds to variations in pH and 

temperature, both environmental cues V. cholerae encounters while being passaged to the 

intestine. At non-permissive pH, PepA acts to repress transcription at the tcpPH promoter. The 

mechanism for this repression is still unclear, but PepA is thought to bind directly to the 

promoter (11). 

Other signaling systems enable V. cholerae to identify and respond to environmental 

stimuli and transition to the human host. These include quorum sensing and the secondary 

messenger 3’, 5’-cyclic diguanylate (c-di-GMP). Quorum sensing is a system that allows cell-to-

cell communication between bacteria through the constitutive production of small peptides called 

autoinducers (AIs), leading to changes in gene expression depending on population density 

(172). The secondary messenger system also is involved in changes in gene expression in V. 

cholerae. Intracellular levels of c-di-GMP dictate gene expression of virulence genes as well as 

genes involved in biofilm formation (242). There is significant overlap between these two 

systems and the gene expression they influence.  

V. cholerae has three quorum sensing systems, all of which lead to control of HapR, 

which then represses transcription of aphA (138, 173). One system involves the use of 

autoinducer CAI-1 and the sensor kinase CqsS, while the other system employs the autoinducer 

AI-2 and the sensor kinase LuxQ and its periplasmic partner LuxP (33). V. cholerae 

constitutively produces the autoinducers and when the population is at low cell density, quorum 

sensing is essentially turned off due to the lack of a significant concentration of proximal 

autoinducer. In this scenario, CqsS and LuxQ act as kinases and transfer phosphates to LuxU, 

which then transfers the phosphate group to LuxO. Phosphorylated LuxO initiates transcription 
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of four small RNAs termed qrr1-4, which stands for Quorum Regulatory RNA (65, 66). These 

RNAs, together with Hfq, bind to the 5’UTR of HapR mRNA and initiate is degradation (147, 

148). HapR does not get produced and thus does not repress aphA, which allows activation of the 

virulence cascade. At high cell density, the autoinducers bind their respective sensor kinases, 

which alternatively act as phosphatases, removing phosphates from LuxU and LuxO. Now 

inactivated, LuxO no longer activates transcription of the qrr1-4 and HapR is produced. HapR 

represses aphA, and the virulence cascade is disrupted (138). A third quorum sensing system in 

V. cholerae uses the VarS/VarA system to independently activate LuxO. Three small RNAs 

CsrB, CsrC, and CsrD are activated by the VarS/VarA two-component signaling system and 

deactivate CsrA. Inactivation of CsrA relieves inhibition of LuxO, and converges with the other 

systems to regulate expression of Qrr1-4 (147). 

 The correlation between genes involved in quorum sensing and their relation to virulence 

is unmistakable. However, in some epidemic El Tor strains, there is a frameshift mutation in 

hapR, rendering it non-functional (268), and raising the question of biological significance in the 

host. In addition to the virulence activator AphA, HapR controls production of other genes 

involved in pathogenesis. HapR increases expression of HapA, the hemagglutin/protease of El 

Tor biotype strains that is involved in mucosal escape (ref). Additionally, HapR also represses 

the formation of biofilms by repressing the VPS (vibrio polysaccharide) operon. In addition to 

virulence gene activation, biofilms are activated at low cell density due to the lack of the 

repressor HapR (88). 

Further regulation of gene expression is provided by signaling pathways involving the 

secondary messenger, c-di-GMP. Secondary messengers play a large role in altering gene 

expression in response to external stimuli. The secondary messenger, c-di-GMP, has been 
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associated with controlling properties of the cell surface (44). Two-component systems recognize 

a signal as the first messenger and control production of enzymes that modulate intracellular 

levels of c-di-GMP, the second messenger. Levels of the second messenger are able to modulate 

the transcriptome. Synthesis of c-di-GMP is controlled by diguanylate cyclases, while 

degradation is controlled by phosphodiesterases. Diguanylate cyclases contain the conserved 

motif GGDEF and are important for synthesis of c-di-GMP, while phosphodiesterases contain 

the EAL motif and are important for its degradation (7, 193, 210). Analysis of the V. cholerae 

genome has revealed many genes encoding proteins that contain one or both of these motifs 

needed for regulation of c-di-GMP levels (73). Increased levels of c-di-GMP correspond to 

increases in the vibrio polysaccharide (vps) genes required for biofilm formation, extracellular 

protein secretion system (EPS), and mannose sensitive hemagglutinin (MSHA) type IV pilus 

biogenesis genes. Conversely, high levels of c-di-GMP decrease the level of transcript of fla 

genes that are required for flagellar biosynthesis (15, 241). The VieSAB system is an important 

three-component system that is involved in down-regulation of biofilm (157). VieA is a 

phosphodieterase that decreases the amount of intracellular c-di-GMP (233). The VieSAB 

system is also important in CT production, relating secondary messengers with virulence (145, 

146). For maximal CT production, a functional VieA must be present to keep low levels of c-di-

GMP (242). 

The 276 amino acid major virulence regulator, ToxT, is the primary transactivator of 

ctxAB and tcp transcription (29, 47, 115, 262). ToxT is a 32 kDa member of the AraC/XylS 

family of transcription regulators (101). The amino-terminal domain (NTD) of ToxT spans 

amino acids 1-160. A small linker region between amino acids 160-169 separates the NTD from 

the carboxy-terminal domain (CTD), which spans amino acids 170-276 (152). Within the CTD 
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resides the region that shares homology with other AraC/XylS family members. This region is 

approximately 100 amino acids and contains two helix-turn-helix DNA binding motifs (72, 155). 

The NTD of ToxT does not share significant sequence homology with any other AraC/XylS 

family members. However, the solved ToxT crystal structure revealed some structural similarity 

with AraC, despite the absence of significant sequence similarity (152).  

 ToxT activates virulence genes by binding to 13 base pair degenerate sequences called 

toxboxes (248). In addition to the major virulence factors, CT and TCP, ToxT activates 

transcription of other genes involved in pathogenesis, including acfA, acfD, tagA, aldA, tcpI, and 

the small regulatory RNAs tarA and tarB (21, 202, 247-249). Toxboxes exist in different 

orientations among ToxT-dependent genes. The promoters of tcpA, ctxAB, and tarA contain two 

toxboxes arranged as a direct repeat (202, 248). In contrast, two toxboxes are arranged as an 

inverted repeat at the promoters of acfA, acfD, tagA, and tcpI (202, 247-249). Finally, there is 

only a single toxbox at the promoter of aldA (249). In each of these promoters, the ToxT binding 

sites lie upstream from the -35 and -10 RNA polymerase (RNAP) binding sites. These types of 

promoters are termed class I promoters and suggest that ToxT interacts directly with the RNAP α 

subunits in order to induce transcription (22). 

ToxT activates transcription from the promoter of tcpA. As a result, the operon 

containing all of the tcp genes is activated (115, 262). Additionally, the polycistronic RNA 

transcript containing all of these genes reads through toxT (262). Thus, once ToxT is produced 

via the activity of TcpP/H and ToxR/S, ToxT activates its own production by initiating 

transcription through tcpA. During infection, virulence must eventually be shut off for mucosal 

escape (188) and this would be impossible with ToxT continually activating its own production. 

Abuaita and Withey discovered that ToxT is cleaved by at least one ATP-dependent protease as 
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a mechanism to turn off virulence. This cleavage results in the production of an intermediate 

degradation product of ToxT. The production of the ToxT protease occurs when V. cholerae is 

grown under virulence repressing growth conditions. The protease/s that cleaves ToxT was also 

found to be present in E. coli. The cleavage site for the ToxT protease is located between amino 

acids 100-110 of ToxT, in a region that was unstructured in the solved toxT crystal structure (3). 

The hypothesis that ToxT acts as a homodimer to activate transcription has been 

thoroughly investigated due to the existence of multiple toxboxes present in the promoters of 

most of the ToxT-dependent promoters. However, the discussion about the multimerization of 

ToxT is incomplete. The AraC/XylS family includes members that act as dimers, including 

AraC, RhaS, and RegA, while other members act as monomers, such as MarA, SoxS, and Rob 

(53, 97, 154, 250). Studies using LexA dimerization assays, as well as bacterial two-hybrid 

systems, have suggested that the NTD of ToxT is involved in dimerization (34, 35, 152, 195, 

216). Dimerization has also been shown to be required for full virulence gene activation by 

ToxT. The NTD alone, when induced in trans has the ability to act as a dominant negative, 

reducing the overall activity of ToxT and further suggesting the requirement for dimerization 

(195). Amino acids throughout the NTD have been identified as essential for the dimerization 

process (34, 35). Additionally, a small molecule inhibitor of virulence gene activation, virstatin, 

was discovered and found to decrease dimerization of ToxT as its mechanism of repression (117, 

216). Conversely, using DNA footprinting, ToxT has been shown to bind to the tcpA promoter as 

a monomer . Altering the spacing between toxboxes, eliminating the capability of ToxT bind as a 

homodimer, revealed that ToxT was still able to protect DNA in the experiments (247, 248). 

However, ToxT was unable to activate transcription from constructs having significantly altered 

spacing between toxboxes, illustrating the importance of proximity between binding sites for full 
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activation. Also, the promoter of aldA contains only one toxbox, suggesting that ToxT is not 

required to act as a dimer (249). Additionally, ToxT can bind and inhibit expression of genes 

required for biosynthesis of the anti-colonization factor, MshA. ToxT is able to bind and repress 

independently of the N-terminal dimerization domains proposed (112). Further work to 

determine the mechanism of dimerization for ToxT binding and virulence gene activation is still 

needed.  

The ability of ToxT to activate transcription from certain promoters is altered by the 

presence of the global repressor of transcription, H-NS. The histone-like protein H-NS is found 

in many gram-negative organisms and plays a role in modulating activity of genes located on 

acquired mobile genetic elements (228). In V. cholerae, H-NS has been shown to repress 

activation of ctxAB, toxT, and tcpA (189, 263). In an hns deletion strain, expression of ctxAB no 

longer requires ToxR or ToxT, suggesting that the activators displace H-NS and allow 

transcription (189). This work was furthered by showing that H-NS binds to the ctxAB promoter 

and ToxT competes for binding (229). 

Laboratory culture conditions that result in the production of virulence factors differs 

between the biotypes. For the El Tor biotype, a biphasic culture condition called AKI induces 

production of CT. AKI conditions consist of growth in AKI medium (1.5% peptone, 0.3% yeast 

extract, 0.5% NaCl, 0.3% sodium bicarbonate) statically at 37º C for a few hours. Then, a 

fraction of the phase one culture is shifted to shaking for another two hours (120-122). For 

classical biotype, CT and TCP are produced when grown in Luria-broth (LB) pH 6.5 at 30ºC 

while shaking, known as virulence inducing or ToxR-inducing growth conditions due to role 

ToxR plays in these conditions (176). These in vitro virulence inducing conditions result in the 

production of ToxT, and therefore the production of genes essential in pathogenesis. ToxT, and 
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consequently TCP and CT, are not produced under virulence repressing conditions: LB pH 8.5, 

37º C, and shaking (176).  

The in vitro virulence inducing conditions mentioned before have enabled the 

determination of physical and chemical signals that modulate production of virulence factors. 

However, the in vivo signals that V. cholerae encounters as it transitions from the environment to 

colonizing the human intestine differ from some of the in vitro growth conditions. For instance, 

the upper small intestine has a higher pH with a temperature of 37ºC. This is unlike the in vitro 

virulence inducing conditions of pH 6.5 and 30ºC. Therefore, the bacteria must encounter 

different signals in the host that result in the production of virulence factors. 

AphA, AphB, ToxR, TcpP, as well as other virulence proteins are able to respond to 

signals found throughout the host to modulate their activity (56, 116, 135, 138, 261). 

Additionally, ToxT can modulate its activity in response to signals found in the host. Signals 

within the intestine include temperature, pH, the molecular constituents of the intestine, as well 

as components of the consumed food. Host signals that negatively regulate ToxT activity include 

bile, unsaturated fatty acids, and the natural compound capsaicin (31, 32, 86, 212). Alternatively, 

bicarbonate positively effects ToxT activity and is also abundant in the small intestine where V. 

cholerae colonizes (2). The current model for the modulation of ToxT activity within the upper 

small intestine is shown in Figure 2.  

ToxT-dependent transcription of virulence genes can be significantly reduced with the 

addition of bile or with alterations in temperature (212). Bile, secreted from the gall bladder into 

the lumen of the intestine to emulsify fats, is a heterogenous mixture of saturated and unsaturated 

fatty acids, bilirubin, cholesterol, inorganic salts, and phospholipids. Fractionation of bile 

components revealed that unsaturated fatty acids (UFA) were directly responsible for the 



21 

 

 

reduction in ToxT activity (31). Additionally, the ToxT crystal structure revealed a buried 16-

carbon fatty acid, cis-palmitoleate, bound between the NTD and CTD (152). Further analysis 

proved a variety of different chain lengths of unsaturated fatty acids also reduced ToxT-

dependent activation of CT (34). Other negative effectors include natural compounds from foods. 

In particular the red chili component, capsaicin, has been shown to decrease CT expression (32). 

It was originally thought to affect ToxT activity, but has also recently been shown to increase the 

transcription of hns, resulting in decreased CT expression (32, 255). All the negative effectors 

mentioned have been shown to decrease ToxT NTD dimerization in bacterial two-hybrid assays, 

similar to the effect of virstatin (34). 

On the other hand, ToxT is positively modulated by bicarbonate. Bicarbonate (HCO3
-
), is 

secreted by intestinal epithelial cells to buffer stomach acid in the small intestine and protect the 

epithelial border (104). Bicarbonate has been shown to increase tcp expression and CT 

production in a ToxT-dependent manner. Bicarbonate does not increase the levels of ToxT itself 

but enhances its ability to activate virulence gene transcription. The carbonic anhydrase inhibitor, 

ethoxzolamide (EZA), has been shown to decrease the ability of bicarbonate to activate ToxT, 

showing the importance of the conversion of CO2 to HCO3
- 

(2). The mechanism for action of 

bicarbonate on ToxT is currently unresolved.  

Understanding the signals that V. cholerae senses during the transition from the 

environment to the human host are essential for the development of new therapies. Substantial 

work has been done to elucidate the mechanisms for negative modulation of ToxT activity within 

the intestine. The work in this dissertation is aimed at identifying the mechanisms for 

bicarbonate-mediated positive modulation of ToxT activity, leading to activation of V. cholerae 

virulence.   
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Figure 1. Virulence regulatory cascade in V. cholerae that results in production of CT and TCP. 

Light gray arrows represent genes located of the VPI or CTXΦ that are controlled by the 

cascade. Thick black arrows upstream of genes refer to ToxT binding sites. Rectangles signify 

transcriptional activators in the cascade, while circles are transcription repressors. YaeL is a 

protease that cleaves TcpP. Arrows extending from transcription regulators signify positive 

regulation, and lines with flat end represent inhibition. Plus signs symbolize positive effectors of 

the adjacent transcription regulator. Minus signs are negative effectors. 
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Figure 2. Model for induction of virulence gene expression by ToxT effector modulation in the 

upper small intestine. On the right, motile bacteria in the lumen of the intestine encounter high 

concentrations of bile/unsaturated fatty acids (UFA) which inactivate ToxT and virulence genes 

are not expressed. Bicarbonate exists in the lumen but the concentration of bile/UFA is larger. As 

the bacterium swims into the mucus layer, bile/UFA concentration decreases as it cannot enter 

the layer. The concentration of bicarbonate increases as the bacterium gets closer to the 

epithelium. Bicarbonate activates ToxT. Toxin co-regulated pilus (TCP) is expressed first by V. 

cholerae mediating microcolony formation. Closer to the epithelium cholera toxin (CT) is 

produced causing the characteristic watery diarrhea. 
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CHAPTER ONE 

Bicarbonate increases binding affinity of Vibrio cholerae ToxT to virulence gene promoters 

 

ABSTRACT 

The major Vibrio cholerae virulence gene transcription activator, ToxT, is responsible for 

production of the diarrhea-inducing cholera toxin (CT), and the major colonization factor, toxin 

co-regulated pilus (TCP). In addition to the two primary virulence factors mentioned, ToxT is 

responsible for activation of accessory virulence genes such as aldA, tagA, acfA, acfD, tcpI, and 

tarAB. ToxT activity is negatively modulated by bile and unsaturated fatty acids found in the 

upper small intestine. Conversely, previous work identified another intestinal signal, bicarbonate, 

which enhances the ability of ToxT to activate production of CT and TCP. The work presented 

here further elucidates the mechanism for enhancement of ToxT activity by bicarbonate. 

Bicarbonate was found to increase activation of ToxT-dependent accessory virulence promoters 

in addition to those that produce CT and TCP. Bicarbonate is taken up into the V. cholerae cell, 

where it positively affects ToxT activity by increasing DNA binding affinity for the virulence 

gene promoters that ToxT activates, regardless of toxbox configuration. The increase in ToxT 

binding affinity in the presence of bicarbonate explains the elevated level of virulence gene 

transcription.  

 

INTRODUCTION 

Vibrio cholerae has two distinct phases in its life cycle. In the planktonic state in the 

aquatic environment, V. cholerae represses expression of pathogenesis genes, while increasing 

transcription of genes involved in environmental survival, such as those required for motility (24, 



25 

 

 

143). Upon entry into a human host, via consumption of contaminated water or food, the bacteria 

encounter signals resulting in an inversion of their transcriptome profile. In this new, virulent 

state, expression of genes involved in motility and environmental survival is repressed, while 

expression of genes involved in host survival and pathogenesis is activated, resulting in the 

diarrheal disease cholera (24, 143). Virulence is controlled by a cascade of positive transcription 

regulators known as the ToxR regulon (194). Many of the signals required to initiate change in 

the transcriptional profile have been identified in recent years (24, 143, 159). 

The main signals that induce transcription of V. cholerae pathogenesis genes in the host 

act on different steps in the virulence regulatory cascade. At the uppermost level of the cascade, 

AphA and AphB activate transcription of tcpPH (136, 137, 139). AphB activity is enhanced by 

both low pH and anaerobic conditions (11, 135), such as would be found as V. cholerae 

transitions through the stomach and into the upper small intestine. The next level of the cascade 

includes the aforementioned TcpP, along with the constitutively produced ToxR, both of which 

are integral membrane proteins that work in tandem to activate toxT transcription (144). TcpP 

activity has recently been shown to be enhanced by taurocholate (261), a bile salt, and interaction 

between TcpP and ToxR is enhanced under oxygen-limiting conditions (56). The final level of 

the cascade consists of ToxT, which directly activates production of the major virulence factors 

cholera toxin (CT) and toxin co-regulated pilus (TCP) (29, 47, 115, 262). ToxT also directly 

controls transcription of other accessory virulence genes including aldA, tagA, acfA, acfD, tcpI, 

tarA, and tarB (21, 202, 247-249). ToxT activity is reduced in the presence of the unsaturated 

fatty acid components of bile (31, 212) and enhanced in the presence of bicarbonate (2), both of 

which are present in the upper small intestine where V. cholerae preferentially colonizes. 



26 

 

 

ToxT is a 276 amino acid member of the AraC/XylS family of transcriptional regulators. 

The ToxT C-terminal domain contains two helix-turn-helix motifs responsible for DNA binding 

(101). ToxT activates virulence genes by binding to a 13bp degenerate DNA sequence called a 

toxbox (248). All ToxT-dependent virulence genes have two toxboxes upstream of their 

transcriptional start site in either direct or inverted repeat configurations, with the exception of 

aldA, which has only a single toxbox (248). ToxT can bind toxboxes as a monomer (12, 247, 

248), but is presumed to dimerize to fully activate at least some virulence genes (34, 35, 152, 

195, 216).  

Activation of the ToxT-dependent virulence genes can be altered in the presence of the 

positive and negative ToxT effectors. After egress from the stomach into the intestine, the 

bacteria encounter high concentrations of both bile and bicarbonate. As mentioned above, the 

unsaturated fatty acid components of bile are negative effectors of ToxT activity (31, 34, 152, 

195). The N-terminus of ToxT is involved in the response to these effectors, presumably by 

decreasing ToxT dimerization (34). Bicarbonate is present in the upper small intestine to buffer 

stomach acid and to also protect the epithelial layer (104). Bicarbonate enhances the ability of 

ToxT to  increase CT and TCP production (2). How bicarbonate enhances ToxT activity is not 

well understood. 

Here, we report that bicarbonate increases transcription activation of other ToxT-

dependent genes in addition to the genes encoding the two major virulence factors. We show that 

bicarbonate enters the bacterium, where it could interact with ToxT in the cytoplasm. 

Furthermore, we have determined that the mechanism for bicarbonate-mediated enhancement of 

ToxT activity is due to increased binding affinity of ToxT for the promoters it activates. This 

increase in binding occurs at promoters of each ToxT-dependent gene, regardless of toxbox 
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configuration. This work establishes a direct mechanistic link between a signal from the host and 

increased transcription of pathogenesis genes that occurs in the host.  

 

MATERIALS AND METHODS 

Bacterial strains and plasmids. Strains and plasmids used in this work are listed in 

Table 1. All strains were maintained at -70°C in LB containing 20% glycerol. Wild-type V. 

cholerae classical biotype strain O395 and an isogenic ∆toxT (29) with corresponding plasmids 

were used for β-galactosidase assays. The tcpA::lacZ and ctxAB::lacZ promoter fusions were 

constructed using pTL61t (48, 248) and contained 138bp and 76bp upstream of the 

transcriptional start site, respectively. The pTL61t fusions aldA::lacZ and tagA::lacZ, contained 

158bp and 92bp, respectively, upstream of their transcriptional start sites (249). Fusions 

acfA::lacZ and acfD::lacZ were constructed in (247) and pTL61t contained 104bp and 99bp 

upstream of the transcriptional start site, respectively. The tcpI::lacZ fusion contained 76bp 

(unpublished work). Strains and plasmids used in this study are listed in Table 1. The antibiotic 

concentration for strains with the pTL61t plasmid was 100ug/mL ampicillin and without plasmid 

were 100ug/mL streptomycin. 

β-galactosidase assay. Bicarbonate virulence inducing conditions were as previously 

described (2). Briefly, V. cholerae classical biotype strain O395 was grown overnight in LB at 

37°C and subcultured 1:100 into AKI medium in the presence or absence of freshly prepared 

0.3% sodium bicarbonate (36mM) for 4 hours. Cultures were grown statically for 4 hours at 

37°C and analyzed.  The β-galactosidase assay was performed as previously described (171). 

H
14

CO3 uptake assay.  V. cholerae classical biotype strain O395 was grown overnight in 

LB at 37°C and subcultured 1:100 into AKI medium in the absence of bicarbonate for 3 hours. 
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At 3 hours, 1μCi NaH
14

CO3 (54mCi/mmol) (Perkin-Elmer) was added for each milliliter of V. 

cholerae subculture. Immediately, 1mL of culture was centrifuged and supernatant was 

discarded. The cell pellet was washed 3 times with 1mL of AKI medium and re-centrifuged. Cell 

pellets were resuspended in 100uL AKI medium and added to 5mL Scintillation cocktail (Fisher 

Scientific). The same procedure was followed in 15 minute intervals for two hours. After uptake, 

cpm was measured for each time point using an LS6000IC liquid scintillation counting system 

(Beckman). 

Protein Purification. Maltose binding protein (MBP)-ToxT and MBP-AraC purification 

was performed as previously described (48). Briefly, fusion proteins were purified from 

Escherichia coli strain BL21(DE3) with plasmid pMAL-c2e containing MBP-ToxT or MBP-

AraC. E. coli cells were subcultured until the optical density at 600nm reached 0.5. Then, the 

fusion protein was induced with the addition of  0.25mM isopropyl-β-D-thiogalactopyranoside 

(IPTG). Cells were lysed by French press and lysate was run over an amylose column (New 

England Biolabs). Fractions containing MBP-ToxT were dialyzed against buffer containing 50 

mM Na2HPO4 (pH 8.0), 10 mM Tris-HCl (pH 8.0), and 100 mM NaCl and then dialyzed again 

against the same solution with 20% glycerol. The protein concentration was determined using a 

Qubit 2.0 Fluorometer (Invitrogen). 

 Electrophoretic mobility shift assays (EMSA). EMSA was performed as previously 

described (48). DNA probes were produced by PCR of pTL61T containing appropriate promoter 

sequence with one unlabeled primer and one primer end labeled with γ-
32

P(Perkin-Elmer) by T4 

polynucleotide kinase (New England BioLabs). The binding reactions were prepared to a final 

volume of 30 L containing: 10 g/mL salmon sperm DNA, 10 mM Tris-acetate (pH 7.4), 1 mM 

Potassium EDTA (pH 7.0), 100 mM KCl, 1 mM dithiothreitol (DTT), 0.3 mg/mL bovine serum 
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albumin (BSA) and 10% glycerol. Binding reactions contained various concentrations of purified 

MBP-ToxT and all reactions had a constant concentration of labeled DNA probe. For assays 

using MBP-AraC, binding reactions had a final concentration of 50 mM KCl, 5% glycerol, and 

50 mM L-arabinose. Sodium bicarbonate, sodium biselenite, and sodium acetate were added to a 

final concentration of 36 mM in binding reactions containing the respective molecules. The 

binding reactions were incubated at 30°C for 30 minutes and immediately loaded into 6% 

polyacrylamide gel and run at 4°C. Gels were dried and analyzed by autoradiography. 

 Binding curve analysis.  Autoradiographs were analyzed using ImageJ software (NIH). 

Percent of labeled DNA bound by protein was determined for each lane. Graphpad Prism 5 

software was used for curve fitting to the equation 

%Bound=Bmax*[Protein]^h/(Kd^h+ [Protein]^h) with Bmax constraint set to 100. The Kd for each 

condition was calculated and significance was determined. Nonspecific binding was omitted due 

to the excess of nonspecific salmon sperm DNA added to binding reactions. 

 

RESULTS 

Bicarbonate increases activation of ToxT-dependent promoters. Bicarbonate has 

previously been shown to increase production of the major ToxT-dependent virulence factors, 

TCP and CT (2); however, the effect of bicarbonate on other ToxT-activated promoters had not 

been assessed. Earlier work had demonstrated that activation of genes aldA, tagA, acfA, acfD, 

and tcpI are dependent on production of ToxT (247-249). We assessed transcriptional activity of 

these ToxT-dependent promoters using plasmid-borne β-galactosidase promoter fusions in the 

classical biotype V. cholerae strain O395 and an isogenic toxT deletion (29). The location and 

orientation of the ToxT binding sites, or toxboxes, within each ToxT-dependent promoter is 

shown (Fig. 3A,B). Fusion construct activity from ctxAB::lacZ, aldA::lacZ, tagA::lacZ, 
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acfA::lacZ, acfD::lacZ, and tcpI::lacZ was measured in the presence and absence of 36 mM 

sodium bicarbonate to determine if bicarbonate enhanced the ability of ToxT to activate 

transcription of these genes as it does with the major virulence genes tcpA and ctxAB. Culture 

conditions used to assess activity were adopted from previous work with bicarbonate (2). Our 

results confirm that bicarbonate activates each of these ToxT-dependent promoters in wild-type 

O395, while having no effect on a toxT strain (Fig. 3C). Therefore, bicarbonate has a global 

effect by enhancing ToxT activity at all ToxT-dependent promoters. 

Radiolabeled bicarbonate is taken up over time by V. cholerae. Previous work (2) and 

our findings (Fig. 3C) strongly suggested that the positive effect of bicarbonate on ToxT activity 

was the result of a direct interaction, but this had not been confirmed. ToxT protein levels are 

roughly equivalent in the presence or absence of bicarbonate (2), and therefore ToxT is thought 

to be in a less active state in the absence of bicarbonate. The simplest mechanism for bicarbonate 

activation of ToxT would be a direct interaction between bicarbonate and ToxT within the 

cytoplasm of the bacterial cell. To determine whether such a direct interaction between 

bicarbonate and ToxT is possible, we performed a NaHC
14

O3 uptake assay to measure 

bicarbonate import into the V. cholerae cell. First, classical biotype V. cholerae was subcultured 

statically in AKI medium for two hours in the absence of bicarbonate. Then, C
14

-labeled 

bicarbonate was added to the culture. Aliquots were centrifuged at 15 minute intervals. Cell 

pellets were washed with AKI medium three times and 
14

C-radiolabel in the cell pellet was 

quantified using a scintillation counter.  

 Results of the bicarbonate uptake assay displayed a linear increase of radiolabel within 

the cell pellet of the culture (Fig. 4). Linear regression of the dataset revealed an equation of the 

best-fit line of y=27.46x+525, with an R
2
-value of 0.984. The results from the time course uptake 
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show that bicarbonate is entering the bacteria at a linear rate. This finding suggests that 

bicarbonate can interact directly with ToxT in the bacterial cytosol.  

Bicarbonate increases ToxT equilibrium binding affinity to PtcpA. The simplest 

mechanism for a direct interaction between bicarbonate and ToxT that results in increased 

transcription activation by ToxT would be increased occupancy of toxboxes by ToxT, leading to 

enhanced interactions between ToxT and RNA polymerase. In the murine pathogen Citrobacter 

rodentium, an interaction between bicarbonate and another AraC/XylS protein family member, 

RegA, leads to stabilization of RegA binding to the grlA promoter (235, 259). To determine 

whether bicarbonate directly affects ToxT binding to its specific DNA sites, we characterized the 

binding pattern of ToxT to virulence gene promoters using EMSA. The assays were designed to 

establish an estimation of the equilibrium dissociation constant, Kd, thus quantifying the 

interaction of ToxT with the promoter of ToxT-dependent virulence genes in the absence and 

presence of bicarbonate. In regard to this work, Kd represents the concentration of ToxT needed 

to bind 50% of the promoter DNA at equilibrium in the EMSA. Mathematically speaking, there 

is an inverse relationship between Kd and binding affinity; thus meaning the lower the Kd, the 

higher the binding affinity of ToxT to the DNA. 

To determine the Kd of the interaction between ToxT and PtcpA, we titrated purified MBP-

ToxT, in the presence or absence of 36 mM bicarbonate, with a constant concentration of 
32

P 

labeled PtcpA PCR product below the empirically estimated Kd. MBP-ToxT was used because the 

independently folded MBP helps to solubilize ToxT and prevent aggregation. The binding 

reactions for each of the MBP-ToxT concentrations were run on a 6% polyacrylamide gel and 

subjected to autoradiography. The percentage of bound DNA at each concentration of MBP-

ToxT was calculated using densitometry with ImageJ software. Curve fitting was performed with 
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Graphpad software using the equation, %Bound=Bmax*[Protein]^h/(Kd^h+ [Protein]^h). Bmax is 

the amount of bound DNA where the curve plateaus, which we set to a constraint of 100%.This 

constraint represents all free DNA being bound by ToxT. When the Hill slope, h, is greater than 

one, the curve adopts a sigmoidal shape representing multiple binding sites and cooperativity, in 

this case between MBP-ToxT and PtcpA. These data are shown in Figure 5A. Binding reactions 

that correspond to lanes 1-7 were allowed to equilibrate in the absence of bicarbonate, while 

binding reactions in lanes 8-14 included bicarbonate. The percentage of bound DNA was 

calculated and curves were fit for both sets of reactions (Fig. 5B). With the addition of 

bicarbonate, the concentration of MBP-ToxT to bind 50% of PtcpA was 145.3 nM, significantly 

lower than the 287.9 nM Kd without bicarbonate. The lower Kd in the presence of bicarbonate 

indicates a higher binding affinity for the tcpA promoter. Importantly, the Hill slope of the 

binding curves is greater than one and the curves take on a sigmoidal shape. This indicates that 

there are multiple binding sites for ToxT binding and that there is a degree of cooperativity in 

binding both sites. The increase in binding affinity in the presence of bicarbonate in an in vitro 

EMSA indicates a proximal relationship between the bicarbonate ion and ToxT, and likely a 

direct interaction. 

The addition of bicarbonate to the binding reaction increases the pH from 7.4 to 8.6. To 

confirm that the increase in binding affinity is due to the bicarbonate ion itself and not an 

increase in pH, we performed an EMSA in which binding reactions at pH 7.4 (Fig. 5C, lanes 1-7) 

and 8.6 (Fig. 5C, lanes 8-14) were compared in the absence of bicarbonate. Densitometric 

analysis and nonlinear regression provided the binding curves and Kd values for the EMSA (Fig. 

3D). The binding curves at the two pH values overlapped and the Kd values for each curve were 

not statistically different. The Kd of these two conditions was lower than in Figure 3A because 
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the concentration of active ToxT protein varies among batches and decreases over time. 

However, the overall response to the different binding conditions remains similar in different 

purified protein batches. 

Both ToxT and RegA, transcriptional regulators of the AraC/XylS family, exhibit 

increased binding in the presence of bicarbonate (235, 259). We next analyzed whether another 

family member, AraC, showed signs of stabilized promoter architecture in the presence of 

bicarbonate to assess whether this was a common feature shared among the entire AraC family. 

Our results indicate that the addition of bicarbonate inhibited binding of AraC to the araBAD 

promoter (Fig. 5E,F). Therefore, not all AraC/XylS family members are positively modulated by 

bicarbonate.  

Other small effector molecules do not increase ToxT binding to PtcpA. The results 

described above suggest that addition of bicarbonate to binding reactions increases the binding 

affinity of ToxT to PtcpA. However, it is possible that this phenomenon is not limited to 

bicarbonate specifically and could also be mediated by other small molecules similar to 

bicarbonate. We next tested the binding response of ToxT to molecules with similar structure or 

molecular weight to bicarbonate. Sodium biselenite has a similar structure to bicarbonate with a 

different central atom. ToxT had a greatly reduced binding affinity in the presence of biselenite 

(Fig. 6A,B). We also tested sodium acetate, which has similar molecular weight to sodium 

bicarbonate. ToxT also showed decreased binding to PtcpA with the addition of this small 

molecule (Fig. 6C,D). The increase in binding affinity of ToxT to PtcpA appears to be 

bicarbonate-specific as other small molecules do not enhance ToxT binding or activity (data not 

shown). 



34 

 

 

Bicarbonate increases binding to ToxT-dependent promoters regardless of 

promoter orientation.  EMSA equilibrium binding experiments indicated that bicarbonate 

increases ToxT binding affinity for PtcpA. However, there is significant diversity in the 

configuration and spacing of toxboxes at different ToxT-activated promoters (248). ToxT 

directly controls transcription of several other virulence genes besides tcpA, including ctxAB, 

aldA, tagA, acfA, acfD, and tcpI (247-249). The tcpA promoter contains two toxboxes in a direct 

repeat configuration. PctxAB, like PtcpA, is also configured as two direct repeat toxboxes (Fig. 1A). 

However, the orientation of the toxboxes is in the opposite direction relative to the promoter at 

PctxAB and the spacing between toxboxes differs between PtcpA and PctxAB (48, 248, 263). In 

contrast to PtcpA and PctxAB, PtagA, PacfA, PacfD, and PtcpI each contain a pair of toxboxes in an 

inverted repeat configuration and with variations in spacing between toxboxes (Fig. 3B). Finally, 

PaldA contains a single toxbox (Fig. 3A). As described earlier, addition of bicarbonate to V. 

cholerae cultures increases activity from all of these promoters (Fig. 3C).  

To determine whether bicarbonate affects binding affinity of ToxT for each of these 

unique promoters, we performed EMSAs and calculated Kd as previously described for PtcpA. 

First, we tested the ability of bicarbonate to increase the binding affinity of ToxT to PctxAB, which 

controls production of CT and has two direct repeat toxboxes. Figure 5A shows the 

autoradiograph of ToxT binding to PctxAB in the absence and presence of bicarbonate. 

Densitometry and linear regression revealed that the Kd is reduced from 328.7 nM MBP-ToxT to 

231.4 nM with bicarbonate, indicating an increase in binding affinity. Next, we investigated if 

bicarbonate increased ToxT binding at the inverted repeat promoter of tagA. We used PtagA as an 

example of inverted repeat toxbox configurations that also occur in the promoters of acfA, acfD, 

and tcpI. As with the direct repeat promoters, bicarbonate increased the binding affinity of ToxT 
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to PtagA (Fig. 7C, D). Finally, we performed EMSAs to determine if bicarbonate increased 

binding to the single toxbox promoter of aldA. The EMSA with binding reactions of MBP-ToxT 

and PaldA in the absence and presence of bicarbonate is shown in Fig. 7E. The binding curve was 

developed and revealed that bicarbonate decreased the Kd for ToxT binding to PaldA from 173.7 

nM to 113.9 nM. The increase in binding affinity to each of the promoters with bicarbonate 

agreed with the results of the analysis of each promoter in the β-galactosidase assays. Together, 

these data demonstrate that bicarbonate increases binding at each promoter regardless of toxbox 

orientation, including a single toxbox promoter, and reveals that the mechanism by which 

bicarbonate enhances ToxT activity is most likely a change in protein conformation, resulting in 

increased DNA binding affinity. 

 

DISCUSSION 

 The regulatory network that controls production of the major virulence factors 

responsible for disease symptoms of cholera culminates with the production of ToxT. ToxT is 

the transcription regulator directly responsible for activation of tcpA and ctxAB transcription (29, 

47, 115, 262). Previous studies have shown that bicarbonate, a signal located in the upper small 

intestine where V. cholerae colonizes, enhances the ability of ToxT to activate these major 

virulence genes (2). In addition to these genes, we have shown that bicarbonate increases 

transcription of other ToxT-dependent virulence genes, aldA, tagA, acfA, acfD, and tcpI.  

 ToxT activity is modulated by different effector molecules. It is negatively regulated by 

bile and its unsaturated fatty acid components (31, 212), as well as the small molecule virstatin 

(117, 216). Bile is located at high concentration in the lumen of the upper small intestine and the 

interaction between the unsaturated fatty acids of bile and ToxT are thought to decrease ToxT’s 
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ability to dimerize effectively and bind to DNA (34, 152, 195). Our findings have shown that 

bicarbonate, which is also present at high concentration in the upper small intestine, has a 

mechanism converse to bile. Our results indicate that bicarbonate-mediated activation of 

virulence gene transcription occurs as a result of an increase in ToxT binding affinity to 

virulence gene promoters. The increase in binding affinity in response to bicarbonate can be seen 

at each ToxT-dependent promoter, regardless of toxbox configuration and positioning. 

The binding curves generated from EMSAs performed on different ToxT-dependent 

promoters were sigmoidal. Sigmoidal binding curves generally relate to cooperative binding to 

multiple binding sites of a protein, similar to O2 binding by hemoglobin (82). Cooperativity 

occurs when one bound molecule increases the binding affinity of subsequent molecules. 

Positive cooperativity can also be seen in terms of transcription factors binding to promoters with 

multiple binding sites. One example of positive cooperativity of transcription factors is seen with 

the TtgR operator of Pseudomonas putida strain DOT-T1E (142). TtgR, which can form dimers 

in solution, exhibits biphasic cooperative binding at this promoter (142). ToxT is thought to have 

optimal activity when acting as a dimer (34, 35, 152, 195, 216). In contrast, it has also been 

shown that ToxT can bind DNA as a monomer (12, 247, 248). The sigmoidal ToxT binding 

curve at two toxbox promoters (Fig. 5B, 7B, 7D) suggests that a single ToxT monomer binds the 

DNA first, coinciding with previous findings. Additionally, positive cooperativity derived from 

the sigmoidal binding curve implies that the binding of the first monomer increases the binding 

affinity of the second monomer. This can be explained by an increase in the incidence of 

dimerization between ToxT monomers after one has already bound the promoter, increasing the 

binding affinity of the second ToxT monomer. Interestingly, the ToxT binding curve of the 

single toxbox promoter of aldA also exhibited a sigmoidal shape. Previous studies have shown 
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that this promoter contained a single toxbox; however, cooperative ToxT binding at this 

promoter suggests that another ToxT binding site may be present in the vicinity of the promoter.  

 Potential mechanisms for the increased ToxT DNA binding affinity in response to 

bicarbonate include a change in conformation of ToxT or increased frequency of ToxT 

dimerization. Indirect mechanisms that increase ToxT binding can be ruled out as the increase in 

binding was seen in binding experiments using purified components. Work on an AraC/XylS 

family member of C. rodentium, RegA, revealed that bicarbonate increases RegA binding to 

promoter regions (235, 259). RegA can act as a monomer or dimer, similar to ToxT, and it was 

shown that bicarbonate did not increase the incidence of RegA dimerization (258). As a primary 

assessment of ToxT dimerization in the presence of bicarbonate we analyzed the ability of 

bicarbonate to increase ToxT binding to the single toxbox of PaldA, in which dimerization should 

not be evident. However, as stated before, our findings revealed the possibility of more than one 

toxbox in or near the promoter of aldA. Consequently, further investigation into the precise 

mechanism of increased ToxT binding affinity in the presence of bicarbonate is needed.  

In order for bicarbonate to interact with ToxT, it must first enter the bacterium. We report 

here that bicarbonate does get taken up by the cell. However, further investigation into the 

mechanism of uptake is needed. Previous work has shown that addition of the carbonic 

anhydrase inhibitor, ethoxzolamide (EZA), decreases activation of PtcpA in the presence of 

bicarbonate (2). V. cholerae contains genes encoding each of the three classes of bacterial 

carbonic anhydrase. A triple carbonic anhydrase deletion did not reveal a decrease in H
14

CO3 

uptake compared to WT O395 (data not shown). This suggests that the mechanism for uptake is 

not completely reliant on carbonic anhydrase-dependent conversion of HCO3
-
 to CO2.  
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Signals that V. cholerae encounters during passage to the intestine result in the 

production of ToxT (159), but due to the presence of a high concentration of bile and unsaturated 

fatty acids in the lumen of the intestine, ToxT is initially in an inactive form (31, 34, 195, 212). 

Bicarbonate is also present in the lumen where bile is present and could potentially be activating 

some ToxT protein. The bacteria in the lumen still express flagella and undergo positive 

chemotaxis towards mucin proteins (6, 24). As the bacteria swim closer to the intestinal 

epithelium, the concentration of bile decreases as the large molecules that comprise bile cannot 

enter the mucus layer. The concentration of bicarbonate increases as the bacteria get closer to the 

epithelium due to direct secretion of bicarbonate from these cells (104), but more importantly, 

the ratio of bicarbonate to UFAs increases. ToxT protein becomes active as it reaches the high 

bicarbonate/low UFA breakpoint and active ToxT increases transcription of genes involved in 

virulence, such as CT and TCP (2). In addition to these major virulence factors, bicarbonate 

activates accessory virulence factors important in disease progression. Our findings here reveal 

that the mechanism for bicarbonate-mediated enhancement of ToxT activity is due to an increase 

in ToxT binding affinity to virulence gene promoters. This provides a direct relationship between 

an intestinal signal and increased expression of genes required for pathogenesis. 
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Strain or Plasmid Description Source

Strains

JW 467 Escherichia coli BL21(DE3) Lab Collection

JW 1560 JW 467 + pJW 407 (MBP-ToxT) Lab Collection

JW 9 Vibrio cholerae classical strain O395 Lab Collection

JW 150 O395 ∆toxt Lab Collection

JW 18 pJW 54 + JW 9 19

JW 441 pJW 211 + JW 9 31

JW 87 pJW 82 + JW 9 17

JW 97 pJW 89 + JW 9 17

JW 86 pJW 81 + JW 9 18

JW 89 pJW 84 + JW 9 18

JW 99 pJW 91 + JW 9 Lab Collection

JW 515 pJW 54 + JW 150 Lab Collection

JW 1809 pJW 211 + JW 150 31

JW 167 pJW 82 + JW 150 Lab Collection

JW 168 pJW 89 + JW 150 Lab Collection

JW 165 pJW 81 + JW 150 Lab Collection

JW 166 pJW 84 + JW 150 Lab Collection

JW 169 pJW 91 + JW 150 Lab Collection

Plasmids

pJW 407 pMAL-c2e-ToxT 31

pJW 54 pTL61t containing 138bp upstream of tcpA 19

pJW 211 pTL61t containing 76bp upstream of ctxAB 31

pJW 82 pTL61t containing 158bp upstream of aldA 17

pJW 89 pTL61t containing 92bp upstream of tagA 17

pJW 81 pTL61t containing 104bp upstream of acfA 18

pJW 84 pTL61t containing 99bp upstream of acfD 18

pJW 91 pTL61t containing 76bp upstream of tcpI Lab Collection

Table 1. Strains used in this study
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FIGURE 3. Transcriptional effects of exogenous bicarbonate on ToxT-dependent virulence gene 

promoters. (A) Orientation and positioning of direct repeat toxbox virulence gene promoters 

PtcpA and PctxAB, and single toxbox promoter, PaldA. (B) Orientation and positioning of inverted 

repeat toxbox virulence gene promoters, PtagA, PacfA, PacfD, and PtcpI. Toxbox represents known 

ToxT binding sites. (C) β-galactosidase activity produced from plasmid-borne virulence gene 

promoter fusion constructs in classical strain O395 and isogenic ∆toxT strain. Cultures were 

grown in AKI media in the absence or presence of 36 mM NaHCO3. Statistical significance 

determined using Student’s t-test (*, P < 0.00025). Error bars represent +/- standard deviation.  
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FIGURE 4. Radiolabeled bicarbonate is taken up by V. cholerae. Classical strain O395 cells 

were grown in AKI media in the absence of bicarbonate for 2 hours. NaH
14

CO3 was added at 

time 0 and uptake was analyzed every 15 minutes by liquid scintillation counting.  NaH
14

CO3 

uptake was measured as CPM, reflecting the amount of radioactive 
14

C found within V. cholerae 

culture. Error bars represent +/- standard deviation of three separate experiments. 
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FIGURE 5. Bicarbonate increases binding affinity of MBP-ToxT to PtcpA. MBP-ToxT binding to PtcpA 

was analyzed using EMSA. Autoradiographs of EMSAs presented are representative of three or more 

independent experiments. (A) Binding reactions between MBP-ToxT and PtcpA in lanes 1-7 were 

conducted in the absence of NaHCO3. Lanes 8-14 were incubated in the presence of 36 mM NaHCO3. 

Lanes 1 and 8 contained PtcpA DNA in the absence of MBP-ToxT. Subsequent lanes contained a titration 

of MBP-ToxT with concentrations labeled in the figure. (B) Binding curve for the autoradiograph shown 

in (A). Densitometry of autoradiograph was performed with ImageJ software. Circles represent percent 

PtcpA bound by MBP-ToxT in the absence of bicarbonate. Solid line corresponds to the binding curve for 

MBP-ToxT to PtcpA determined by the equation %Bound=Bmax*[Protein]^h/(Kd^h+ [Protein]^h) with Bmax 

constraint set to 100 using Graphpad Prism 5 software. Squares and dashed line represent percent bound 

and binding curve, respectively, in the presence of bicarbonate. Kd for each condition is inset and 

significant difference between the best-fit values of each data set is denoted by * (P < 0.00025). (C) 

Autoradiograph of EMSA showing titration of MBP-ToxT bound to PtcpA at pH 7.4 (Lanes 1-7) and pH 

8.6 (Lanes 8-14). (D) Binding curves of each pH condition with Kd. (E) Autoradiograph of EMSA 

showing titration of MBP-AraC bound to PBAD in the absence of  NaHCO3 (Lanes 1-7) and presence of 36 

mM NaHCO3 (Lanes 8-14). (F) Binding curves of MBP-AraC in the absence and presence of 36 mM 

NaHCO3.  
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FIGURE 6. Small molecules, biselenite and acetate, do not enhance MBP-ToxT binding to PtcpA. 

Autoradiograph of EMSA showing binding reactions of MBP-ToxT to PtcpA with different small 

molecules similar to NaHCO3. (A) Binding reactions in the absence and presence of 36 mM 

NaHSeO3 with corresponding binding curves (B). (C) Binding reactions in the absence and 

presence of 36 mM NaC2H3O2 along with corresponding binding curves (D). 
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FIGURE 7. Bicarbonate increases ToxT binding affinity to promoters having all known toxbox 

configurations. Each autoradiograph is a representative or three or more independent 

experiments. Binding reactions in lanes 1-7 in all autoradiographs were conducted in the absence 

of NaHCO3. Binding reactions in lanes 8-14 in all autoradiographs were conducted in the 

presence of 36 mM NaHCO3. All binding curves were generated using Graphpad Prism 5 

software using the equation %Bound=Bmax*[Protein]^h/(Kd^h+ [Protein]^h) with Bmax constraint 

set to 100. (A) Autoradiograph of EMSA showing MBP-ToxT binding to PctxAB, in which two 

toxboxes are oriented as direct repeats. Representative binding curves shown in (B). (C) 

Autoradiograph of EMSA showing MBP-ToxT binding to PtagA, in which two toxboxes are 

oriented as inverted repeat. (D) Binding curves corresponding to MBP-ToxT binding to PtagA. (E) 

Autoradiograph of EMSA showing MBP-ToxT binding to single toxbox promoter, PaldA. (F) 

Binding curves of PaldA EMSA. 
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CHAPTER TWO 

A small unstructured region in Vibrio cholerae ToxT mediates the response to positive and 

negative effectors and ToxT proteolysis 

 

*The work presented in this chapter was completed in part by Sarah C. Plecha. She performed β-

galactosidase assays involving the negative effectors, bile and linoleic acid 

 

ABSTRACT 

Vibrio cholerae is the causative agent of the severe diarrheal disease cholera. Production 

of the virulence factors that are required for human disease is controlled by a complex network 

of transcriptional and post-transcriptional regulators. ToxT is the transcription regulator that 

directly controls the production of the two major virulence factors: toxin co-regulated pilus 

(TCP) and cholera toxin (CT). The solved crystal structure of ToxT revealed an unstructured 

region in the N-terminal domain between residues 100 and 110. This region and the surrounding 

amino acids have been previously implicated in ToxT proteolysis, resistance to inhibition of 

virulence induction by negative effectors, and ToxT dimerization. To better characterize this 

region, site-directed mutagenesis was performed to assess the effects on ToxT proteolysis and 

bile sensitivity. This analysis identified specific mutations within this unstructured region that 

prevent ToxT proteolysis and other mutations that limit the inhibition of virulence gene 

activation by bile and unsaturated fatty acids. In addition, we found that mutations that affect the 

sensitivity of ToxT to bile also affect the sensitivity of ToxT to its positive effector, bicarbonate. 

These results suggest that a small unstructured region in the ToxT N-terminal domain is involved 

in multiple aspects of virulence gene regulation and response to human host signals.   
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INTRODUCTION 

Vibrio cholerae is the etiological agent of the severe diarrheal disease, cholera. Cholera 

disease is characterized by extreme water loss and dehydration due to diarrhea, and if left 

untreated can result in death. The bacteria are usually ingested through contaminated food or 

water and colonize the upper small intestine (108). When the V. cholerae bacterium is in the 

optimal environment within the intestine, it begins producing the major virulence factors 

responsible for causing disease: cholera toxin (CT) and toxin co-regulated pilus (TCP) (176, 237, 

238). CT is an ADP-ribosylating toxin composed of five binding B subunits and one enzymatic 

A subunit (49). After binding the GM1 ganglioside via the B subunits, the A subunit is 

translocated into the intestinal epithelial cell, where it modifies Gsα1 leading to aberrant secretion 

of chloride, water, and other electrolytes (205). TCP is a type IV bundle-forming pilus 

responsible for bacteria-bacteria interactions that result in microcolony formation during 

intestinal colonization (132, 238, 240). 

TCP and CT are produced via a virulence regulatory cascade known as the ToxR regulon. 

Expression of CT and TCP is directly activated by the major virulence transcription regulator, 

ToxT (47, 115). ToxT binds “toxbox” motifs in the promoters of ctxAB and tcpA, as well as in 

the promoters of other accessory virulence factors, such as acfA, acfD, tagA, aldA ,and tcpI, and 

small regulatory RNAs tarA and tarB, resulting in expression of these genes under appropriate 

conditions (21, 115, 202, 247-249, 262, 263). ToxT is a 276 amino acid protein that is part of the 

AraC/XylS family of transcription regulators (101). ToxT consists of two domains, the N-

terminal domain (1-160) (NTD) and the C-terminal domain (170-276) (CTD), separated by a 

short linker (161-169) (152). The CTD comprises the DNA-binding domain, consisting of two 

helix-turn-helix motifs, which shares homology with AraC (155). The NTD shares no significant 
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sequence similarity with any other protein, but shares secondary structural similarity with AraC 

(152) despite having only 14% identity at the amino acid level. 

  Transcription of toxT is initially activated by both TcpP/H and ToxR/S (47, 95, 100, 144). 

After ToxT protein is present, it can produce more of itself independently of TcpP/H and ToxR/S 

by binding to the promoter of tcpA and activating transcription of a long, polycistronic mRNA 

containing toxT (100, 262). Proteolysis of ToxT is required to break this auto-regulatory loop and 

completely shut off virulence gene expression prior to escape from the host (3).  A region of the 

ToxT NTD between amino acids 100-109 was found to be required for proteolysis of ToxT (3). 

This region was not resolved in the ToxT crystal structure, indicating the absence of a fixed 

structure, at least in ToxT crystals (152). 

Activation of ToxT-dependent promoters is further regulated by effector molecules that 

act on ToxT. ToxT activity is inhibited by bile and, to a greater extent, the unsaturated fatty acid 

(UFA) components of bile, including oleic, linoleic, and arachidonic acid (31, 212). The ToxT 

crystal structure contained a buried 16-carbon fatty acid, palmitoleic acid that was shown to 

decrease binding of ToxT to the tcpA promoter when added exogenously (152). Another 

inhibitor of ToxT, virstatin, decreases ToxT activation of ctxAB and tcpA by inhibiting ToxT 

dimerization (117, 216). On the other hand, ToxT activity is enhanced by bicarbonate, which is 

abundant within the upper small intestine where V. cholerae colonizes (2). Given their high 

concentrations in the upper small intestine, bile and bicarbonate are likely to be in vivo effectors 

used by V. cholerae to determine the optimal location for colonization. 

In the solved ToxT crystal structure, a region between amino acids 100-109 was not 

visible, indicating that it lacked a consistent structure, at least in the contact of the crystal. This 

unstructured region was shown to contain the site critical for proteolysis (3), and, together with 
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the surrounding amino acids, has also been implicated in responding to bile, unsaturated fatty 

acids (UFAs), and virstatin (34, 35, 117). Due to its importance for ToxT proteolysis and sensing 

of ToxT inhibitory substances, we performed site-directed mutagenesis on this unstructured 

region and the surrounding amino acids to identify specific amino acid changes that alter ToxT 

function. Mutational analysis of amino acids 100-110 confirmed that this region is important for 

control of ToxT proteolysis. We have further identified specific mutations that prevent the ToxT 

effectors bile, UFAs, virstatin, and bicarbonate from affecting ToxT activity. Our results suggest 

that the unstructured region in the ToxT NTD plays a central role in control of V. cholerae 

virulence by impacting ToxT activity at multiple levels. 

 

MATERIALS AND METHODS 

Bacterial Strains and Growth Conditions. Escherichia coli JM101 was used for 

cloning. All strains were maintained at -70°C in LB containing 20% glycerol. For determination 

of response to negative effectors, overnight cultures of classical O395 V. cholerae were diluted 

1:40 into LB pH 6.5 in the presence or absence of 0.05% sodium choleate (Sigma-Aldrich) as a 

substitute for crude bile, 32μM linoleic acid (Acros Organics), or 50μM virstatin (Santa Cruz 

Biotechnology). Cultures were grown shaking for 3 hours at 30°C and analyzed. Bicarbonate 

virulence inducing conditions were as previously described (2). Briefly, classical O395 strains 

were grown overnight in LB and subcultured 1:100 into AKI medium (1.5% peptone, 0.3% yeast 

extract, 0.5% NaCl) in the presence or absence of freshly prepared 0.3% sodium bicarbonate 

(36mM). Cultures were grown statically for 4 hours at 37°C and analyzed. Induction of protein 

expression from pMAL-c2e derivatives in all of these conditions was done using a final 

concentration of 25μM isopropyl-β-D-thiogalactopyranoside (IPTG). Proteolysis conditions were 
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conducted as previously described (3). Overnight cultures were subcultured 1:40 into LB pH 8.5 

and grown at 37°C for 4 hours. pBAD33 derivatives were induced using a final concentration of 

0.2% arabinose. To assess proteolysis with additional effectors, pBAD33-ToxT was induced 

with or without the addition of the following final concentrations of effectors: linoleic acid 

(32μM, 160μM, 320μM), palmitic acid (380μM)(Sigma), virstatin (100μM, 500μM), sodium 

bicarbonate (36mM). To evaluate ToxT degradation after shifting to repressing conditions, 

bacteria were cultured in virulence inducing conditions (LB pH 6.5/30°C, shaking) for three 

hours with the addition of 0.2% arabinose. Then, cells were harvested by centrifugation and 

resuspended in virulence repressing conditions (LB pH 8.5/37°C, shaking). Linoleic acid was 

added to appropriate cultures after shift to a concentration of 320 μM. 

Plasmid and strain construction. Construction of site-directed ToxT mutants was done 

using splicing by overlap extension PCR (103). For cloning C-terminal His-tagged toxT into 

pBAD33, outside primers BP22 and BP195 (3) were paired with inside primers containing 

desired mutations using V. cholerae O395 toxT as a template. PCR products were inserted into 

pBAD33 using restriction enzymes XbaI and PstI. For cloning MBP-ToxT, outside primers 

BP171 and BP172 (3) were paired with inside primers and PCR products were inserted into the 

pMAL-c2e vector using restriction enzymes KpnI and PstI. A list of primers used in this study is 

available in the supplementary material (Table 2). pBAD33 and pMAL-c2e derivatives were 

electroporated into a previously constructed V. cholerae classical biotype strain O395 ∆toxt 

mutant with a chromosomal tcpA::lacZ fusion (2). 

Western blot analysis of ToxT. Western blot analysis was performed as previously 

described (2). Briefly, subcultures were normalized by optical density at 600nm, harvested by 

centrifugation and resuspended in 10ul water and 10ul 2x protein buffer (123 mM Tris-HCl, 4% 
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sodium dodecyl sulfate, 1.4 M 2-mercaptoethanol, 20% glycerol, 0.2% bromophenol blue). 

Samples were boiled for 5 min and subjected to 12% sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE). The gel was blotted on nitrocellulose and probed with 1:5000 

dilution of mouse monoclonal anti-His tag antibody (Millipore). Secondary goat anti-mouse IgG 

conjugated to alkaline phosphatase (AP) was used at a dilution of 1:5000 (Southern Biotech). 

After blots were washed, they were developed using immuno-BCIP (5-bromo-4-chloro-3-

indolylphosphate)-nitroblue tetrazolium liquid substrate (MP Biomedicals). Densitometry of 

western blots was performed using ImageJ software (NIH). Percent ToxT degradation was 

quantified by comparing degradation band to total ToxT. 

β-galactosidase assays. Cells were grown under the appropriate conditions and β-

galactosidase activity was measured and expressed in Miller units as previously described (2, 3, 

12, 171). 

Protein purification and electrophoretic mobility shift assays (EMSA). Protein 

purification and EMSAs were performed as previously described (48). Maltose-binding protein 

(MBP) fusions were purified from E. coli BL21(DE3) with plasmid pMAL-c2e containing either 

MBP-ToxT WT or MBP-ToxT N106F. DNA probes for EMSA were produced by PCR of 

plasmid pTL61t containing PtcpA. Binding reactions were performed in 30uL total volume 

containing 10 μg/mL salmon sperm DNA, 10 mM Tris-acetate (pH 7.4), 1 mM Potassium EDTA 

(pH 7.0), 100 mM KCl, 1 mM dithiothreitol (DTT), 0.3 mg/mL bovine serum albumin (BSA) 

and 10% glycerol, along with titrations of MBP-ToxT WT or N106F. Binding reactions were 

performed in the presence or absence of 36 mM sodium bicarbonate or 32 μM linoleic acid for 

30 minutes at 37°C, and run through a 6% polaycrylamide gel at 4°C. Binding reactions for 

comparison to linoleic acid reactions contained 3.33% DMSO. 
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Binding curve analysis. Autoradiographs were analyzed using ImageJ software (NIH) as 

previously described (data in submission). Briefly, the percent of labeled DNA bound by MBP-

ToxT WT or N106F was determined for each lane and Graphpad Prism 5 software was used for 

curve fitting to the equation %Bound=Bmax*[Protein]
h
/(Kd

h
 + [Protein]

h
) with Bmax constraint 

set to 100. The Kd for each condition was calculated and significance of Kd between conditions 

was determined.  

 

RESULTS 

Identification of residues essential for ToxT proteolysis. The crystal structure of ToxT 

revealed a small, unstructured region in the NTD of the protein (152). This region, as well as the 

surrounding amino acids, has been implicated in ToxT proteolysis, resistance to negative 

effectors of ToxT activity, and dimerization (3, 34, 35, 117, 195, 216). To further characterize 

this region in regard to these roles, we performed site-directed alanine mutagenesis of ToxT 

amino acids 100-110, shown in Fig. 8. Mutations were made in toxT, incorporated into vector 

pBAD33, and electroporated into a ΔtoxT derivative of classical biotype V. cholerae strain O395. 

To assess ToxT proteolysis, we grew V. cholerae expressing plasmid-borne WT or mutated 

ToxT proteins, carrying a polyhistidine tag at the C-terminus (ToxT-6His) for detection, under 

repressing conditions (LB pH 8.5, 37°C, shaking) for 4 hrs. Cells were harvested and subjected 

to western blot analysis using a monoclonal anti-His tag antibody. The previously described 

degradation intermediate of ToxT (24) was present in cell extracts from strains carrying each of 

the mutations in the unstructured region between amino acids 100-109, except for the G100A 

and M103A mutant strains (Figure 9A). Densitometry was performed using ImageJ software 

(Figure 9B) and revealed that the L107A and S109A mutants also had decreased levels of 
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degradation compared to WT. Mutations I104A and R105A resulted in increased degradation of 

ToxT, possibly due to decreased ToxT stability. The identification of mutations in this region 

affecting ToxT proteolysis both confirms previous work demonstrating the importance of amino 

acids 100-109 (3) and pinpoints amino acids 100 and 103 as crucial for ToxT proteolysis. 

 To further evaluate the absence of the intermediate degradation product seen in the 

G100A and M103A mutant strains, we performed culture condition shift experiments. Shift 

experiment methods from (3) were amended slightly for use with mutant ToxT strains. Briefly, 

V. cholerae strain O395 containing plasmid-borne, histidine tagged WT ToxT or mutant ToxT 

was grown in virulence inducing conditions (LB pH 6.5/30º C, shaking) for three hours with the 

addition of arabinose to induce ToxT protein production. Cells were centrifuged and resuspended 

in virulence repressing/proteolysis positive media (LB pH 8.5) and grown shaking at 37º C. 

Cultures were normalized by OD600 at T=0 and equivalent culture volume was taken at every 

time point to monitor the degradation of full length ToxT. The degradation of full length WT 

ToxT and ToxT M103A was analyzed by western blot analysis with anti-His tag antibody (Fig. 

10A). Densitometry of the western blot was performed using ImageJ software (Figure 10B). WT 

ToxT was almost completely degraded 30 minutes after being shifted to virulence repressing 

conditions. ToxT M103A was also degraded; however 30% of the starting ToxT remained after 

45 minutes. Degradation of ToxT G100A was also evaluated after a shift to repressing conditions 

and was degraded similarly to WT ToxT (data not shown). A likely explanation for the lack of 

intermediate degradation product seen with the G100A mutant (Figure 9A) is enhanced 

proteolytic degradation of the proteolysis intermediate. Together, these findings reveal amino 

acid 103 as an important recognition site by the protease and that the loss of the intermediate 
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degradation product under virulence repressing conditions is not only due to a decrease in 

stability of the intermediate.  

Identification of ToxT residues involved in responding to natural negative effectors, 

bile and linoleic acid. The unstructured region of ToxT contained residues that, after 

mutagenesis, produced forms of ToxT that altered normal proteolysis of the protein. Previously 

published evidence has also shown that residues in this region are required for the normal 

response of ToxT to negative effectors, such as bile and UFAs (34, 195). Bile and UFAs 

decrease the ability of ToxT to activate transcription of virulence genes (31, 212). Two ToxT 

mutations, M103A and N106A, have previously been described as insensitive to bile and UFAs 

(34). We tested strains carrying these ToxT mutations, as well as strains carrying other alanine 

substitutions in the unstructured region, to determine whether their response to these negative 

ToxT effectors was altered. Overexpression of ToxT eliminates the effect of bile and linoleic 

acid on ToxT activity. Therefore, we chose to use the IPTG-inducible expression vector pMAL-

c2e in place of arabinose-inducible pBAD33 to easily decrease the overall production of ToxT, 

and to facilitate protein purification for downstream applications. Previous work that used MBP-

ToxT fusions showed no significant difference in activity as compared to untagged ToxT (212). 

As a further control for any effect the MBP tag may have had on ToxT activity, we also 

performed experiments with untagged ToxT mutants of interest and found that they respond to 

effector molecules similarly to MBP fusions using the pMAL-c2e vector (data not shown). The 

MBP-ToxT mutants were induced from pMAL-c2e in a ΔtoxT derivative of classical biotype V. 

cholerae strain O395 containing a chromosomal tcpA::lacZ transcriptional fusion. Induction of 

tcpA transcription in the presence and absence of negative effectors was measured by β-

galactosidase reporter assay and used as a metric for ToxT activity. The fold change upon 
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addition of effector molecules was calculated for each individual experiment. The mean fold 

change for each mutant was determined and will be referred to as ToxT’s response to effectors. 

Significance of the fold change of each ToxT mutant compared to the fold change of WT ToxT 

in response to negative effectors was determined using a Student’s t-test. 

Fig. 11A shows the activity and response of the ToxT mutants to 0.05% sodium choleate, 

a crude derivative of bile. 0.05% sodium choleate was the lowest concentration that still 

decreased ToxT activity in titration experiments (data not shown). Alanine mutations to amino 

acids 100-104, 107, and 108 caused reductions in overall activity of ToxT in the presence and 

absence of bile as compared to WT MBP-ToxT. These results agree with previous reports that 

mutations at these residues reduce activation of acfA::phoA (35). The L107A mutation 

completely eliminated tcpA::lacZ expression. Prior reports have suggested that this mutation 

inhibits ToxT dimerization and therefore inhibits ToxT activity (34, 35). Additionally, ToxT 

R105A had higher overall activity compared to WT as has been previously reported (35). The 

fold decrease in activation of tcpA::lacZ upon addition of bile was calculated for each mutant 

(Fig. 11A). This analysis revealed ToxT mutations (G100A, D101A, I104A, Y108A, and 

E110A) that caused a greater sensitivity to the negative effect of bile. The M103A mutation did 

not affect the sensitivity of ToxT to bile as compared to WT, which was unexpected as this 

mutant reportedly had decreased sensitivity to bile when measuring CT and TCP production 

(34). However, a mutation at amino acid 106, which had been previously shown to decrease 

sensitivity to bile when measuring CT and TCP production (34) also decreased sensitivity to bile 

in our work. 

 The ability of these ToxT mutants to activate tcpA::lacZ in the presence or absence of 32 

μM linoleic acid was also assessed (Fig. 11B). As was observed in the bile experiments, 
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mutation to residues 100-104, 107, and 108 caused decreased overall transcriptional activity with 

and without added effector. Also, mutants D101A, M103A, I104A, and Y108A had increased 

sensitivity to linoleic acid, as we had observed with bile. Previous work suggested that the 

M103A ToxT mutant has diminished sensitivity to another UFA, palmitoleic acid (34). 

However, we observed increased sensitivity of M103A to the negative effector linoleic acid.  

Mutant N106A, which was previously reported to cause a reduced response to palmitoleic acid in 

terms of  CT and TCP production (34), also exhibited decreased activation of tcpA::lacZ in the 

presence of linoleic acid, verifying the importance of this residue for the response to negative 

effectors.  

Identification of ToxT residues involved in responding to a positive effector, 

bicarbonate. We have previously shown that bicarbonate induces virulence gene expression by 

enhancing ToxT activity (2). It is possible that the response of ToxT to this positive effector 

could be mediated by the same region of the protein that mediates the response to negative 

effectors. To determine whether the unstructured region is involved in the response of ToxT to 

bicarbonate, as well as to bile/UFAs as shown above, we analyzed these ToxT mutants in the 

absence or presence of the positive effector. 

V. cholerae was grown in the presence and absence of 36mM bicarbonate while 

expressing WT or mutant MBP-ToxT from a plasmid. β-galactosidase assays were used to 

determine the activation levels of chromosomal tcpA::lacZ (Figure 12). ToxT alanine 

substitutions at amino acids 100-104, 107, and 108 caused decreased overall ToxT activity, as 

we observed in the bile/UFA experiments described above. Additionally, mutation to S109 and 

E110 caused a slight decrease in overall activity compared to WT. The L107A mutant was 

completely inactive and bicarbonate had no activating effect on this variant of ToxT. Bicarbonate 
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increased the activity of WT MBP-ToxT 2.6-fold in these experiments (Fig. 12). ToxT mutants 

G100A, D101A, M103A, I104A, and Y108A all had increased response to the activating effect 

of bicarbonate. Similarly, ToxT mutants G100A, D101A, I104A, and Y108A had increased 

sensitivity to bile or linoleic acid. The R105A, N106A, and E110A ToxT mutants had a 

significantly reduced fold increase in tcpA::lacZ expression upon addition of bicarbonate. The 

N106A mutant is notable because it also showed decreased sensitivity to the negative effectors, 

bile and linoleic acid. These results suggest that the same ToxT residues within the unstructured 

100-109 region may be involved in the response to both positive and negative effectors. 

Alternate substitutions in the ToxT unstructured region affect response to positive 

and negative effectors. The results described above show that alanine mutagenesis within the 

unstructured region of ToxT alters the protein’s sensitivity to bile, unsaturated fatty acids, and 

bicarbonate. Because amino acids in the unstructured region showed reduced sensitivity to both 

bile/UFA and bicarbonate when mutated to alanine, we generated alternate substitutions of 

amino acids 105 and 106 to further investigate the role of these residues in ToxT function. We 

also made mutations to amino acid 107 because the L107A mutant was completely inactive and a 

previous report showed that mutation L107F had decreased response to bile (195). Finally, we 

made an alanine substitution of amino acid L114, which has been shown to cause insensitivity to 

the inhibitory effects of bile, UFAs, and virstatin and is located in close proximity to the 100-109 

unstructured region (34, 117). ToxT mutants R105K, R105Q, R105F, N106S, N106F, L107F, 

L107S, L114A, and a double  mutant R105A/N106A were tested using the β-galactosidase assay 

described above in bile/linoleic acid inhibiting conditions (Figs. 13A,B), as well as bicarbonate 

inducing conditions (Fig.14). Fold change with addition of effectors was calculated for each 

mutant and compared to the fold change response of WT ToxT. 
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Alternate substitutions at amino acid R105 generally exhibited higher than normal ToxT 

activity in the absence of effector molecules, similar to what was observed after mutation to 

alanine. ToxT R105Q had increased response to the negative effector bile, while ToxT R105F 

exhibited a decreased response to bile (Fig. 13A). On the other hand, ToxT R105K exhibited 

increased sensitivity to linoleic acid (Fig. 13B). The increased sensitivity to negative effectors of 

the R105K and R105Q mutants may be due to a conformational change in the protein that 

increases accessibility of the negative effector binding sites. ToxT L107F, which has previously 

been reported as having decreased response to bile and UFAs (195), had increased response to 

both negative effectors compared to WT. ToxT L107S was similar to L107A in having 

inactivity. ToxT N106S had a response to bile similar to WT, while the double mutant 

R105A/N106A had decreased sensitivity to bile, presumably due to the N106A mutation (Fig. 

13A). The N106S mutation caused an increase in response to linoleic acid, but the double 

R105A/N106A mutant displayed reduced sensitivity to linoleic acid (Fig. 13B). L114A was 

insensitive to bile and UFAs as previously described (34). Another mutation, N106F, revealed 

complete insensitivity to the negative effectors, bile and linoleic acid. This is a novel mutation 

that exhibits greatly decreased response to negative effectors.  

In addition to showing reduced responsiveness to the negative effectors, ToxT mutants 

N106F, R105A/N106A, and L114A exhibited decreased sensitivity to the positive effector, 

bicarbonate (Fig. 14). All mutations to amino acid 105 resulted in decreased response of ToxT to 

bicarbonate. Of all the mutations in this region, the N106F mutation caused the greatest decrease 

in response to bicarbonate, followed by L114A and the double mutant R105A/N106A. 

ToxT N106F has decreased sensitivity to virstatin. In addition to bile and UFAs, 

mutations to amino acid residue L114 have been found to cause resistance to the effects of a 
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synthetic inhibitory molecule, virstatin (34, 117, 216). We have shown above that the ToxT 

L114A mutant also has decreased sensitivity to bicarbonate (Fig. 14). The N106F mutant that we 

discovered to play a role in resistance to bile, UFAs, and bicarbonate behaves similarly to L114A 

under the same conditions. In order to determine if the N106F mutant is also insensitive to 

virstatin, we grew the bacteria containing either WT or the N106F mutant ToxT under virulence-

inducing conditions in the presence and absence of 50 μM virstatin. In the presence of virstatin 

there is a 9.7-fold reduction in tcpA::lacZ when expression of WT MBP-ToxT is induced (Fig. 

15). The effect of virstatin on ToxT activity was decreased in the resistant L114A mutant, 

consistent with previous work (34, 117, 216). The effect of virstatin was also greatly decreased 

in the N106F mutant, as mentioned above. 

Change in binding affinity of ToxT N106F is reduced in presence of linoleic acid or 

bicarbonate. Previous work has suggested that palmitoleic acid decreases the ability of ToxT to 

bind to PtcpA (152). Additionally, we have shown that bicarbonate increases the binding affinity 

of ToxT to virulence gene promoters regardless of toxbox orientation (Chapter One). To assess 

the ability of linoleic acid and bicarbonate to alter the binding affinity of ToxT N106F to PtcpA, 

we subjected WT MBP-ToxT and the N106F derivative to electrophoretic mobility shift assays 

(EMSA). Experiments were designed to determine the equilibrium binding affinity of ToxT for 

the major virulence gene promoter, PtcpA, in the absence and presence of effector. DNA was 

added to binding reactions at a concentration below the estimated Kd along with a titration of 

MBP-ToxT.  

A representative autoradiograph containing the titration of WT MBP-ToxT binding in the 

absence (Lanes 1-6) and presence of 32 μM linoleic acid (Lanes 7-12) if shown in Fig. 16. 

Binding reactions in the absence of linoleic acid contained a volume control of DMSO. The 
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binding curves for each condition were generated using Graphpad Prism 5 software and the 

equation %Bound=Bmax*[MBP-ToxT]h/(Kdh + [MBP-ToxT]h). From this equation, the 

equilibrium binding affinity, Kd, was determined and significance was calculated (Fig. 16A). The 

Kd of WT ToxT for PtpA was increased with linoleic acid, corresponding to a decrease in binding 

affinity. The MBP-ToxT N106F mutant was also assessed for changes in Kd in the presence of 

linoleic acid. The EMSA and resulting binding curve for reactions containing linoleic acid 

revealed no significant change in Kd when compared to the DMSO control (Fig. 16B).  

Similarly, we examined the binding affinity of WT MBP-ToxT and N106F MBP-ToxT 

for PtcpA in the absence and presence of 36 mM bicarbonate (Fig. 17). Binding reactions with no 

added bicarbonate are shown in lanes 1-7, while binding reactions with bicarbonate are shown in 

lanes 8-14. The binding curves were generated and revealed that bicarbonate decreased the Kd 

for WT MBP-ToxT (Fig. 17A), while there was no statistical difference in binding affinity of 

ToxT N106F to PtcpA when bicarbonate was added (Fig. 17B). The lack of change in binding 

affinity of ToxT N106F with the addition of these ToxT effector molecules correlates with the 

transcriptional reporter assays described above (Fig. 13B,14), providing a direct link between 

changes in DNA binding and transcriptional activation. 

Addition of unsaturated fatty acids prevents ToxT proteolysis. The work described 

above strongly suggests that the short unstructured region of ToxT between amino acids 100-110 

is involved both in the response to positive and negative effectors and in ToxT proteolysis. Since 

such a small segment of ToxT was implicated in these different functions, we next investigated 

the possibility that addition of effector molecules could inhibit proteolysis by altering this region 

of ToxT and/or potentially blocking access to it by protease(s). We induced production of WT 

ToxT using the pBAD33 vector under virulence repressing conditions (LB pH 8.5/37° C, 



60 

 

 

shaking) that normally result in proteolysis of ToxT and allow for detection of proteolytic 

intermediates (24). We added various concentrations of effector molecules known to modulate 

ToxT activity positively or negatively and compared levels of ToxT proteolysis. We found that 

proteolysis of ToxT was eliminated in a dose-dependent manner by the UFA, linoleic acid 

(Figure 18). In contrast, a saturated fatty acid, palmitic acid, which does not inhibit ToxT activity 

(31), also does not inhibit ToxT proteolysis. Addition of effectors virstatin and bicarbonate did 

not significantly affect proteolysis.  

Elimination of proteolysis by linoleic acid could be due to a conformational change in 

ToxT upon binding of the effector, a steric interruption due to the large size of the effector, or 

inhibition of the protease responsible for degradation of ToxT. An additional possibility is that 

linoleic acid increases the degradation rate of the ToxT intermediate, which would resemble a 

defect in proteolysis. To assess this possibility, we used the assay discussed above (Fig. 10A), in 

which ToxT is induced under virulence inducing conditions and shifted to virulence repressing 

conditions. The ToxT protease is produced or activated under virulence repressing conditions, 

and when the cultures are shifted, the ToxT protein present from virulence inducing conditions is 

degraded over time. Again, WT ToxT was almost completely degraded at 30 minutes in the 

absence of linoleic acid (Fig. 19A). However, when linoleic acid was present after the shift, full 

length ToxT persists to a higher extent over time as shown by densitometry (Fig. 19B). A portion 

of full length ToxT was degraded when linoleic acid was present, but that could be attributed to 

the on/off rate of linoleic acid allowing access by the protease.  

To determine whether linoleic acid is sterically interfering with proteolysis in the 

unstructured region due to binding at this site, we analyzed proteolysis of effector-insensitive 

ToxT mutants (R105A, N106A, and N106F) in the absence and presence of linoleic acid (Fig. 
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20A). Proteolysis of WT ToxT was almost fully inhibited by the addition of 320 μM linoleic 

acid, as shown earlier in Fig. 11. ToxT R105A exhibited a lower degree of protection from 

proteolysis in the presence of linoleic acid, confirmed by densitometry (Fig. 20B). These data 

suggest that linoleic acid is not inhibiting activity of the protease itself, because there would be 

similar detection of the degradation intermediate of ToxT R105A as with WT ToxT with linoleic 

acid present if the protease were inactivated. The effector-insensitive mutants N106A and N106F 

showed complete inhibition of proteolysis similar to WT ToxT. Therefore, it is unlikely that 

linoleic acid is binding to these amino acids and sterically interfering with the protease. This is 

not surprising due to the previous finding that a palmitoleic acid molecule was found in the 

interface between the NTD and CTD in the crystal structure of ToxT (152). As a result of our 

findings, we hypothesize that the change in conformation of ToxT upon binding UFA, 

introduced in (152), precludes access of the ToxT protease to the unstructured region and thus 

inhibits degradation. 

 

DISCUSSION 

ToxT is the major transcription activator that induces CT and TCP production and thus is 

responsible for initiating cholera disease. It has previously been shown that amino acids in the 

region of 100-110 of ToxT are important for the response to negative effector molecules and 

dimerization (34, 35, 117, 195, 216). Also, this region was required for ToxT proteolysis (3). 

Interestingly, this region was not visible in the solved ToxT structure due to the absence of a 

fixed structure in ToxT crystals (152). We mutated each individual amino acid from positions 

100-110 of ToxT and discovered that ToxT variants G100A and M103A abrogated normal 

proteolysis of ToxT, M103A being more important for protection from degradation.
 
We also 
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discovered amino acids important for the response of ToxT to bile, linoleic acid, and 

bicarbonate. N106A, R105A/N106A, N106F, and L114A showed decreased response to bile, 

linoleic acid, and bicarbonate. N106F also showed reduced response to the negative effector 

virstatin, as did L114A, as previously reported (28). Most mutations to amino acid 105 had no 

effect on reducing the response to bile and linoleic acid, but caused reduced sensitivity to 

bicarbonate. Additionally, effector-insensitive ToxT N106F demonstrated no change in binding 

affinity to PtcpA in response to UFA and bicarbonate.  

ToxT proteolysis occurs as a mechanism to break the auto-regulatory loop that is initiated 

after ToxT protein production has begun. We showed that ToxT G100A and M103A had 

reduced ToxT proteolysis; however, upon further analysis discovered that G100A likely caused 

enhanced degradation of the proteolytic intermediate rather than reducing degradation of full 

length ToxT. Possible mechanisms for resistance of the M103A mutant to proteolysis are 

alteration of the cleavage site, inaccessibility of the protease to the cleavage site due to a 

structural change, or an increase in protein stability. Previous work indicated that the protease 

cleavage site is located between amino acids 100 and 109, so any of these mechanisms could be 

consistent with the known data (3). The M103A mutation, which renders ToxT resistant to 

proteolysis, was previously reported to activate 300% more than WT ToxT in ctxA::lacZ assays 

but 44% of WT in acfA::phoA fusion assays (35). In our study, M103A caused decreased 

activation of tcpA::lacZ. Due to the observed decrease in transcriptional activation by this 

mutant, it is probable that the M103A mutation either alters a protease cleavage site or makes the 

site inaccessible to a protease, rather than increasing protein stability. Similarly, the addition of 

linoleic acid inhibited proteolysis, presumably due to a conformational change upon binding, 

resulting in an inactive state of ToxT. The inactive state of ToxT with bound linoleic acid may 
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resemble the inactive conformation of ToxT M103A, preventing access to the unstructured 

region by the protease. However, mutations to amino acids 101, 102, 104, and 108 that also 

displayed decreased overall ToxT activity did not alter proteolysis of ToxT. Therefore, it is likely 

that M103 is part of a protease recognition site.  

ToxT L107A and S109A also exhibited reduced degradation compared to WT. There was 

still a proteolytic intermediate present; however the substitution from leucine to alanine is very 

conservative and may not have changed the side chain enough to eliminate proteolysis 

completely. When tested, the L107F mutation caused no change in ToxT proteolysis, so residue 

L107 most likely is not directly involved in proteolysis (data not shown). Two other mutations in 

the unstructured region, I104A and R105A, increased ToxT degradation product formation. This 

could be due to a decrease in ToxT stability, an increase in access by the protease, or enhanced 

intermediate stability. We performed further analysis of these mutants using our culture shift 

assay to measure the loss of full length ToxT over time under repressing conditions. ToxT I104A 

exhibited a lower level of full length degradation than WT ToxT, implying that it has increased 

full length stability (data not shown). Therefore, the increased ToxT I104A degradation 

intermediate seen in Fig. 9A is most likely due to enhanced stability of the degradation 

intermediate itself. ToxT R105A had increased degradation compared to WT ToxT in the culture 

shift assay and we therefore conclude it is indeed degraded to a higher level than WT (data not 

shown). ToxT R105A has overall enhanced activity compared to WT (35). This form of ToxT, 

despite its higher activity, may have been evolutionarily selected against due to its increased 

proteolytic degradation. 

The protease responsible for ToxT cleavage remains undiscovered, but locating a 

candidate cleavage site could aid in protease identification. Our work shows the involvement of 
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multiple amino acids, mainly M103, in proteolytic cleavage of ToxT and the current thought is 

that multiple ATP-dependent proteases may be involved (3). The discovery of multiple amino 

acid involvement in the proteolytic degradation of ToxT supports the possibility of cleavage by 

multiple proteases. ATP-dependent proteases such as Clp, Lon, and HsIV recognize stretches of 

hydrophobic amino acids that are normally buried within the protein structure (209). Mutation of 

methionine to alanine at amino acid 103 could change the degree of hydrophobicity of this 

region of the protein, resulting in altered proteolytic cleavage.  

Our findings revealed that the addition of linoleic acid blocked proteolysis of ToxT. 

However, UFA-insensitive ToxT N106F did not reverse the effect of linoleic acid on ToxT 

proteolysis. Therefore, we conclude that amino acid N106 is not part of a binding site for UFAs, 

agreeing with results from (152).  The protective effect of linoleic acid on proteolysis is likely 

due to a ToxT conformational change upon binding of the effector molecule, effectively blocking 

access to the unstructured region by the protease. Interestingly, degradation of ToxT was 

unchanged when bicarbonate was present in proteolysis culture conditions. These findings, 

together with results from our transcription reporter assays, led to the development of a model 

for modulation of ToxT activity under different culture conditions (Fig. 21). In this model, we 

propose that when ToxT is produced under the virulence inducing conditions it is in fluctuation 

between an active and inactive conformation in the absence of effector molecules. This 

fluctuation leads to mid-level virulence promoter activity. In the presence of negative effector 

molecules, ToxT becomes locked into an inactive conformation, resulting in low virulence gene 

promoter activity. In this conformation, it is proposed that the NTD and CTD are pulled together 

by the effector molecule (152), and we add that this conformation impedes access to the 

unstructured region by the ToxT protease. Alternatively, in the presence of the positive effector 
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molecule bicarbonate, ToxT is locked into an active conformation, causing the highest virulence 

gene promoter activity. We propose that the active conformation of ToxT has an exposed 

unstructured region leading to a high degree of proteolysis.  

It has been proposed that the unstructured region of ToxT could be functionally related to 

the N-terminal arm of related family members, AraC and RegA (152). The N-terminal arms of 

these proteins are involved in effector control of transcription activity (225, 258). In particular, 

when the N-terminal arm of RegA is mutated, it leads to a constitutively active form of RegA, 

comparable to RegA in the presence of bicarbonate (258). It was proposed that the N-terminal 

arm normally blocks DNA binding by RegA, and mutation to the arm or the addition of 

bicarbonate relieves the inhibition and allows DNA binding (258). ToxT does not contain such 

an N-terminal arm. However, effector-insensitive ToxT mutants, N106F and L114A, exhibit a 

similar phenomenon, wherein virulence gene promoter activity is increased in the absence of 

effector compared to WT ToxT (Figs. 13,14). These mutants, regardless of effector presence, 

resemble the high-level activity of ToxT in the presence of bicarbonate. Therefore, we believe 

the unstructured region of ToxT may play a similar role as the N-terminal arm of RegA, where it 

normally functions to impair DNA binding in the absence of bicarbonate.  

The negative effectors of ToxT activity, bile, UFAs, and virstatin, have been implicated 

in reducing dimerization of ToxT monomers, leading to reduced overall activity (34, 216). The 

inactive conformation that we propose could be due to decreased interaction between ToxT 

monomers through the unstructured region, which has been previously proposed (152). 

Bicarbonate has not been implicated in dimerization, although increasing interaction between 

ToxT monomers has been suggested as a possible mechanism for bicarbonate-dependent 

enhancement of ToxT activity (2).  
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The unstructured region of ToxT is a likely candidate for effector molecule binding due 

to its importance in the response to negative and positive effectors, solvent accessibility (152) for 

on/off binding, and its disorder in the crystal structure. Unstructured regions in crystal structures 

are often disordered due to the lack of a stabilizing molecule (50), which could also be the case 

with ToxT. It is unlikely that UFAs bind the unstructured region of ToxT, as mutations in the 

region do not reverse the proteolytic blockade by linoleic acid. Conversely, we hypothesize that 

the positive effector bicarbonate could bind in this region. First, it is possible that bicarbonate 

could bind to ToxT in the unstructured region, as a bulky phenylalanine substitution at N106 

results in an active conformation of ToxT, similar to bicarbonate. Furthermore, the X-ray 

structure of E. coli aminopeptidase A (PepA) revealed a bicarbonate anion bound to an arginine 

side chain (230). Our work here shows the importance of an arginine (R105) in the ToxT 

response to bicarbonate, raising the possibility that bicarbonate may be binding to this residue.  

We have introduced a model wherein ToxT becomes activated by bicarbonate as the 

concentration of bicarbonate increases when V. cholerae enters the mucus layer of the small 

intestine (2). This model illustrates that ToxT is in an inactive form in the lumen of the intestine 

due to a lower local concentration of bicarbonate. The model was adapted in (260), where 

bile/UFAs in the lumen of the intestine inactivate ToxT, and are replaced by bicarbonate as the 

bacterium moves closer to the mucus/epithelial layer. Using this model of ToxT-dependent 

virulence in the host, it is plausible that the inactive state of ToxT with UFA bound can be 

converted to the active state in the presence of enough bicarbonate, even though the effectors 

may not be bind in the same region.  

The discovery that UFAs block ToxT proteolysis may support a mechanism for inhibiting 

premature degradation of ToxT. After ToxT is produced and V. cholerae is in the lumen of the 
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intestine, ToxT must remain intact but inactive so that CT and TCP are not produced prematurely 

in infection. UFAs in bile provide a mechanism for ToxT inactivity in the lumen and also protect 

ToxT from proteolysis. As the bacteria encounter higher concentrations of bicarbonate and lower 

concentrations of UFA closer to the epithelial surface, bicarbonate binds and converts ToxT to 

its active conformation. If bicarbonate also blocked proteolysis, V. cholerae could not undergo 

the mucosal escape response and be released from the intestine, as there would be no mechanism 

for breaking the ToxT positive auto-regulatory loop that causes continued production of TCP and 

CT.  

In summary, we determined that the response of ToxT to both negative and positive 

effectors present in the intestine is mediated by an unstructured region in the NTD. Amino acids 

in this region were of high importance for proteolysis of ToxT and led to the finding that the 

negative effector linoleic acid blocks degradation of ToxT. This unstructured region plays a role 

in the response of ToxT to environmental signals and has implications for the temporal and 

spatial regulation of virulence factor production in the host. 
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Primer Name Description Sequence 5' to 3' Direction

BP22 Outside Primer (Forward) for ToxT insertion in pBAD33 (XbaI ) GCTCTAGATTTAGGATACATTTTTATGATTGGGAAAAAATCTTTTCAAAC

BP195 Outside Primer (Reverse) for ToxT insertion in pBAD33 (PstI ) GATCCTGCAGTTAATGATGATGATGATGATGTTTTTCTGCAACTCCTGTC

BP171 Outside Primer (Forward) for ToxT insertion in pMAL-c2e (KpnI ) GACAAGGTACCGATGATTGGGAAAAAATCTTTTCAAAC

BP172 Outside Primer (Reverse) for ToxT insertion in pMAL-c2e (PstI ) GATCCTGCAGTTATTTTTCTGCAACTCCTGTCAAC

JT96 G100A Inside Primer (Reverse) Pair with BP22 or BP171 CCTTATCATGAGATCAGCAAGAATGTAAGATTTTAG

JT97 G100A Inside Primer (Forward) Pair with BP195 or BP172 CTAAAATCTTACATTCTTGCTGATCTCATGATAAGG

JT98 D101A Inside Primer (Reverse) Pair with BP22 or BP171 CTATATAAATTCCTTATCATGAGAGCACCAAGAATGTAAG

JT99 D101A Inside Primer (Forward) Pair with BP195 or BP172 CTTACATTCTTGGTGCTCTCATGATAAGGAATTTATATAG

JT100 L102A Inside Primer (Reverse) Pair with BP22 or BP171 CTATATAAATTCCTTATCATGGCATCACCAAGAATGTAAG

JT101 L102A Inside Primer (Forward) Pair with BP195 or BP172 CTTACATTCTTGGTGATGCCATGATAAGGAATTTATATAG

JT102 M103A Inside Primer (Reverse) Pair with BP22 or BP171 CACTATATAAATTCCTTATCGCGAGATCACCAAGAATG

JT103 M103A Inside Primer (Forward) Pair with BP195 or BP172 CATTCTTGGTGATCTCGCGATAAGGAATTTATATAGTG

JT104 I104A Inside Primer (Reverse) Pair with BP22 or BP171 CACTATATAAATTCCTTGCCATGAGATCACCAAGAATG

JT105 I104A Inside Primer (Forward) Pair with BP195 or BP172 CATTCTTGGTGATCTCATGGCAAGGAATTTATATAGTG

JT106 R105A Inside Primer (Reverse) Pair with BP22 or BP171 CTTTATTTTCACTATATAAATTCGCTATCATGAGATCACC

JT107 R105A Inside Primer (Forward) Pair with BP195 or BP172 GGTGATCTCATGATAGCGAATTTATATAGTGAAAATAAAG

JT71 N106A Inside Primer (Reverse) Pair with BP22 or BP171 CTTTATTTTCACTATATAAAGCCCTTATCATGAGATCACC

JT72 N106A Inside Primer (Forward) Pair with BP195 or BP172 GGTGATCTCATGATAAGGGCTTTATATAGTGAAAATAAAG

JT73 L107A Inside Primer (Reverse) Pair with BP22 or BP171 GATCTTTATTTTCACTATATGCATTCCTTATCATGAGATC

JT74 L107A Inside Primer (Forward) Pair with BP195 or BP172 GATCTCATGATAAGGAATGCATATAGTGAAAATAAAGATC

JT108 Y108A Inside Primer (Reverse) Pair with BP22 or BP171 GTAATAGATCTTTATTTTCACTAGCTAAATTCCTTATCATGAG

JT109 Y108A Inside Primer (Forward) Pair with BP195 or BP172 CTCATGATAAGGAATTTAGCTAGTGAAAATAAAGATCTATTAC

JT110 S109A Inside Primer (Reverse) Pair with BP22 or BP171 CAAAGTAATAGATCTTTATTTTCAGCATATAAATTCCTTATC

JT111 S109A Inside Primer (Forward) Pair with BP195 or BP172 GATAAGGAATTTATATGCTGAAAATAAAGATCTATTACTTTG

JT112 E110A Inside Primer (Reverse) Pair with BP171 CCAAAGTAATAGATCTTTATTTGCACTATATAAATTCCTTATC

JT113 E110A Inside Primer (Forward) Pair with BP172 GATAAGGAATTTATATAGTGCAAATAAAGATCTATTACTTTGG

JT75 L114A Inside Primer (Reverse) Pair with BP171 CATTATGTTCACAATTCCAAAGTAATGCATCTTTATTTTCAC

JT76 L114A Inside Primer (Forward) Pair with BP172 GTGAAAATAAAGATGCATTACTTTGGAATTGTGAACATAATG

JT144 R105K Inside Primer (Reverse) Pair with BP171 CTTTATTTTCACTATATAAATTCTTTATCATGAGATCACC

JT145 R105K Inside Primer (Forward) Pair with BP172 GGTGATCTCATGATAAAGAATTTATATAGTGAAAATAAAG

JT146 R105Q Inside Primer (Reverse) Pair with BP171 CTTTATTTTCACTATATAAATTCTGTATCATGAGATCACCAAG

JT147 R105Q Inside Primer (Forward) Pair with BP172 CTTGGTGATCTCATGATACAGAATTTATATAGTGAAAATAAAG

JT148 L107F Inside Primer (Reverse) Pair with BP171 GATCTTTATTTTCACTATAAAAATTCCTTATCATGAGATC

JT149 L107F Inside Primer (Forward) Pair with BP172 GATCTCATGATAAGGAATTTTTATAGTGAAAATAAAGATC

JT150 L107S Inside Primer (Reverse) Pair with BP171 GATCTTTATTTTCACTATAAGAATTCCTTATCATGAGATC

JT151 L107S Inside Primer (Forward) Pair with BP172 GATCTCATGATAAGGAATTCTTATAGTGAAAATAAAGATC

JT156 N106F Inside Primer (Reverse) Pair with BP171 GATCTTTATTTTCACTATATAAAAACCTTATCATGAGATC

JT157 N106F Inside Primer (Forward) Pair with BP172 GATCTCATGATAAGGTTTTTATATAGTGAAAATAAAGATC

JT180 N106S Inside Primer (Reverse) Pair with BP171 CTTTATTTTCACTATATAAAGACCTTATCATGAG

JT181 N106S Inside Primer (Forward) Pair with BP172 CTCATGATAAGGTCTTTATATAGTGAAAATAAAG

JT182 R105A, N106A Inside Primer (Reverse) Pair with BP171 CTTTATTTTCACTATATAAAGCCGCTATCATGAGATCACCAAG

JT183 R105A, N106A Inside Primer (Forward) Pair with BP172 CTTGGTGATCTCATGATAGCGGCTTTATATAGTGAAAATAAAG

JT184 R105F Inside Primer (Reverse) Pair with BP171 CTTTATTTTCACTATATAAATTAAATATCATGAGATCACCAAG

JT185 R105F Inside Primer (Forward) Pair with BP172 CTTGGTGATCTCATGATATTTAATTTATATAGTGAAAATAAAG

Table 2. Primers used in this study
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FIGURE 8. Linear representation of ToxT domain orientation and mutagenesis sites. Amino 

acids located in the unstructured region (UR) of ToxT between amino acids 100-110 were 

mutated to alanine for initial analysis of region. N-terminal domain (NTD) located between 100-

160; Linker (L) located between 160-169; C-terminal domain (CTD) between 170-276. Helix-

turn-helix domains 1 and 2 (HTH1,HTH2) located within the CTD.  
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FIGURE 9. Effect of mutations to unstructured region of ToxT on proteolysis. (A) V. cholerae 

was grown under virulence-repressing conditions (LB pH 8.5, 37°C, shaking) for 4 hours 

producing a degradation product of ToxT (gray arrow). Full length ToxT-6His expressed from 

pBAD33 migrates to ~32 kDa (black arrow). ToxT mutants G100A and M103A lacked 

degradation product (lanes 4 and 7). I104A and R105A mutants had increased degradation of 

ToxT (lanes 8 and 9). Blots were probed with mouse monoclonal anti-His tag antibody. Samples 

were normalized by OD600 and gap between gels indicates two separate gels. Experiments were 

performed a minimum of three times and representative data are shown. (B) Quantification of 

band intensity was performed using ImageJ software. Graph represents percent ToxT 

intermediate compared to total ToxT protein. Statistical significance of percent ToxT mutant 

degradation compared to WT percent degradation was determined by Student’s t-test (*,P<0.05; 

**,P<0.01). Error bars represent +/-standard error of the mean (SEM).  
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FIGURE 10. Full length WT and M103A ToxT degradation after shift to virulence repressing 

conditions. (A) V. cholerae was grown under virulence inducing conditions (LB pH 6.5, 30° C, 

shaking) for 3 hours while inducing WT ToxT or ToxT M103A from pBAD33. Samples were 

resuspended in virulence repressing growth conditions (LB pH 8.5, 37° C, shaking). Samples 

were normalized by OD600 and equivalent culture volumes were taken at each time point to 

monitor degradation of full length ToxT. Full length ToxT migrates to ~32 kDa (black arrow). 

WT ToxT degradation over time is shown in lanes 2-5; ToxT M103A degradation over time is 

shown in lanes 6-9. (B) Quantification of band intensity was performed using ImageJ software. 

Graph represents percent ToxT remaining compared to T=0 after shift to virulence repressing 

conditions. WT ToxT was almost completely degraded 30 minutes after shift to virulence 

repressing growth conditions, while ToxT M103A persisted to a greater extent. 
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FIGURE 11. Effect of MBP-ToxT alanine mutagenesis on response to negative effectors, bile 

and linoleic acid. V. cholerae O395 ΔtoxT mutant with plasmid-borne WT or MBP-ToxT 

mutants were grown under virulence-inducing conditions (LB pH 6.5, 30°C, shaking) with or 

without the addition of negative effectors for 3 hours. (Top) Light gray bars, V. cholerae grown 

(A) without bile or (B) with dimethyl sulfoxide (DMSO) alone; dark gray bars, grown with (A) 

0.05% bile or (B) 32μM linoleic acid dissolved in DMSO. β-galactosidase produced from 

chromosomal tcpA::lacZ in classical strain O395 ΔtoxT. Statistical significance of ToxT mutant 

activation of tcpA::lacZ in each condition compared to WT ToxT activation of tcpA::lacZ in the 

same condition was calculated using Student’s t-test. Statistical significance of activation by 

ToxT mutants without effector denoted by *, with effector by 
+
 (*, 

+
,P<0.05). (Bottom) Mean 

fold-decrease in activation of tcpA::lacZ upon addition of (A) 0.05% Bile or (B) 32 μM linoleic 

acid for each ToxT mutant. Statistical significance of fold change MBP-ToxT mutant compared 

to WT MBP-Toxt was determined by Student’s t-test (*,P<0.05; **,P<0.01). Horizontal dashed 

line represents fold-change with addition of effector of WT ToxT. ToxT mutants above line have 

increased sensitivity to effector, while below line represents decreased sensitivity to effector. 

WT, wild type. Error bars represent +/- standard error of the mean (SEM). 
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FIGURE 12. Effect of alanine mutagenesis of unstructured region on ToxT response to positive 

effector, bicarbonate. V. cholerae O395 ΔtoxT mutant with plasmid-borne WT or mutant MBP-

ToxT were grown under bicarbonate virulence inducing conditions (AKI medium, 37°C, static) 

for 4 hours. (Top) White bars, grown without bicarbonate; dark gray bars, grown with 36mM 

bicarbonate (0.3%). β-galactosidase produced from chromosomal tcpA::lacZ in classical strain 

O395 ΔtoxT. Statistical significance of ToxT mutant activation of tcpA::lacZ in each condition 

compared to WT ToxT activation of tcpA::lacZ in the same condition was calculated using 

Student’s t-test. Statistical significance of activation by ToxT mutants without effector denoted 

by *, with effector by 
+
 (*, 

+
,P<0.05). (Bottom) Mean fold-increase in activation of tcpA::lacZ 

upon addition of bicarbonate shown for each ToxT mutant. Statistical significance of fold change 

MBP-ToxT mutant compared to WT MBP-Toxt was determined by Student’s t-test (*,P<0.05; 

**,P<0.01). Horizontal dashed line represents fold-change with addition of effector of WT ToxT. 

ToxT mutants above line have increased sensitivity to effector, while below line represents 

decreased sensitivity to effector. WT, wild type. Error bars represent +/- standard error of the 

mean (SEM).  
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FIGURE 13. Alternate substitutions of unstructured region of ToxT affect response to negative 

effectors. V. cholerae O395 ΔtoxT mutant with plasmid-borne WT or mutant MBP-ToxT were 

grown in the absence and presence of negative effectors. (Top) (A) β-galactosidase produced in 

absence and presence of 0.05% bile. (B) β-galactosidase produced in dimethyl sulfoxide 

(DMSO) or 32μM linoleic acid dissolved in DMSO. β-galactosidase produced from 

chromosomal tcpA::lacZ in classical strain O395 ΔtoxT. Statistical significance of ToxT mutant 

activation of tcpA::lacZ in each condition compared to WT ToxT activation of tcpA::lacZ in the 

same condition was calculated using Student’s t-test. Statistical significance of activation by 

ToxT mutants without effector denoted by *, with effector by 
+
 (*, 

+
,P<0.05). (Bottom) Mean 

fold-decrease in activation of tcpA::lacZ upon addition of effector shown for each ToxT mutant. 

Statistical significance of fold change MBP-ToxT mutant compared to WT MBP-Toxt was 

determined by Student’s t-test (*,P<0.05; **P,<0.01). Horizontal dashed line represents fold-

change with addition of effector of WT ToxT. ToxT mutants above line have increased 

sensitivity to effector, while below line represents decreased sensitivity to effector. WT, wild 

type. Error bars represent +/- standard error of the mean (SEM).  
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FIGURE 14. Alternate substitutions of ToxT unstructured region affect response to bicarbonate. V. 

cholerae O395 ΔtoxT mutant with plasmid-borne WT or mutant MBP-ToxT were grown in the absence 

or presence of 36 mM bicarbonate (0.3%). (Top) β-galactosidase from chromosomal tcpA::lacZ in 

classical strain O395 ΔtoxT produced in absence or presence of bicarbonate. Statistical significance of 

ToxT mutant activation of tcpA::lacZ in each condition compared to WT ToxT activation of tcpA::lacZ in 

the same condition was calculated using Student’s t-test. Statistical significance of activation by ToxT 

mutants without effector denoted by *, with effector by 
+
 (*, 

+
,P<0.05). (Bottom) Mean fold-increase in 

activation of tcpA::lacZ upon addition of bicarbonate shown for each ToxT mutant. Statistical 

significance of fold change MBP-ToxT mutant compared to WT MBP-ToxT was determined by 

Student’s t-test (*,P<0.05; **P,<0.01). Horizontal dashed line represents fold-change with addition of 

effector of WT ToxT. ToxT mutants above line have increased sensitivity to effector, while below line 

represents decreased sensitivity to effector. WT, wild type. Error bars represent +/- standard error of the 

mean (SEM).  
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FIGURE 15. MBP-ToxT mutant N106F is insensitive to the negative effector virstatin. (Top) V. 

cholerae O395 ΔtoxT mutant with plasmid-borne WT or mutant MBP-ToxT in dimethyl 

sulfoxide (DMSO) alone or 50μM virstatin dissolved in DMSO. β-galactosidase produced from 

chromosomal tcpA::lacZ in classical strain O395 ΔtoxT. Statistical significance of ToxT mutant 

activation of tcpA::lacZ in each condition compared to WT ToxT activation of tcpA::lacZ in the 

same condition was calculated using Student’s t-test. Statistical significance of activation by 

ToxT mutants without effector denoted by *, with effector by 
+
 (*, 

+
,P<0.05). (Bottom) Mean 

fold-decrease in activation of tcpA::lacZ upon addition of virstatin shown for each ToxT mutant. 

Statistical significance of fold change MBP-ToxT mutant compared to WT MBP-Toxt was 

determined by Student’s t-test (*, P<0.05; **,P<0.01). Horizontal dashed line represents fold-

change with addition of effector to WT ToxT. ToxT mutants above line have increased 

sensitivity to effector, while below line represents decreased sensitivity to effector.  WT, wild 

type. Error bars represent +/- standard error of the mean (SEM). 
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FIGURE 16. MBP-ToxT N106F has no change in binding affinity to PtcpA after addition of 

linoleic acid. MBP-ToxT WT and N106F binding to PtcpA was analyzed using EMSA. 

Autoradiographs of EMSAs presented are representative of three or more independent 

experiments. (Left) Binding reactions between (A) MBP-ToxT WT or (B) MBP-ToxT N106F 

and PtcpA in lanes 1-7 took place with the addition of DMSO. Lanes 8-14 were incubated in the 

presence of 32 μM linoleic acid. Lanes 1 and 8 contained PtcpA DNA in the absence of MBP-

ToxT. Subsequent lanes contained a titration of MBP-ToxT with concentrations labeled in the 

figure. (Right) Binding curve for the autoradiograph shown to the left. Densitometry of 

autoradiograph was performed with ImageJ software. Circles represent percent PtcpA bound by 

MBP-ToxT in the absence of linoleic acid. Solid line corresponds to the binding curve for MBP-

ToxT to PtcpA determined by the equation %Bound=Bmax*[Protein]h/(Kdh + [Protein]h) with Bmax 

constraint set to 100 using Graphpad Prism 5 software. Squares and dashed line represent percent 

bound and binding curve, respectively, in the presence of linoleic acid. Kd for each condition is 

inset and significant difference between the best-fit values of each data set is denoted by * (P < 

0.00025). 
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FIGURE 17. MBP-ToxT N106F has no change in binding affinity to PtcpA after addition of 

bicarbonate. MBP-ToxT WT and N106F binding to PtcpA was analyzed using EMSA. 

Autoradiographs of EMSAs presented are representative of three or more independent 

experiments. (Left) Binding reactions between (A) MBP-ToxT WT or (B) MBP-ToxT N106F 

and PtcpA in lanes 1-7 took place in the absence of NaHCO3. Lanes 8-14 were incubated in the 

presence of 36 mM NaHCO3. Lanes 1 and 8 contained PtcpA DNA in the absence of MBP-ToxT. 

Subsequent lanes contained a titration of MBP-ToxT with concentrations labeled in the figure. 

(Right) Binding curve for the autoradiograph shown to the left. Densitometry of autoradiograph 

was performed with ImageJ software. Circles represent percent PtcpA bound by MBP-ToxT in the 

absence of bicarbonate. Solid line corresponds to the binding curve for MBP-ToxT to PtcpA 

determined by the equation %Bound=Bmax*[Protein]h/(Kdh + [Protein]h) with Bmax constraint set 

to 100 using Graphpad Prism 5 software. Squares and dashed line represent percent bound and 

binding curve, respectively, in the presence of bicarbonate. Kd for each condition is inset and 

significant difference between the best-fit values of each data set is denoted by * (P < 0.00025).  
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FIGURE 18. Linoleic acid inhibits ToxT proteolysis. (A) WT ToxT was produced from pBAD-

toxT (2) under virulence repressing conditions (LB pH 8.5, 37° C, shaking) for 4 hours 

producing the proteolytic intermediate (gray arrow). Full length WT ToxT (black arrow) is 

produced under each condition. Control DMSO does not affect proteolysis (lane 3). The addition 

of increasing linoleic acid blocks formation of the ToxT degradation product (lanes 5 and 6). 

Palmitic acid, virstatin and bicarbonate did not affect ToxT proteolysis (lanes 7-10). Blots were 

probed with mouse monoclonal anti-His tag antibody.  
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FIGURE 19. Full length WT ToxT degradation inhibited with addition of linoleic acid after shift 

to virulence repressing conditions. (A) V. cholerae was grown under virulence inducing 

conditions (LB pH 6.5, 30°C, shaking) for 3 hours while inducing WT ToxT from pBAD33. 

Samples were resuspended in virulence repressing growth conditions (LB pH 8.5, 37° C, 

shaking) with the addition of DMSO or 320 μM linoleic acid. Equivalent culture volumes were 

taken at each time point to monitor degradation of full length ToxT. Full length ToxT migrates to 

~32 kDa (black arrow). WT ToxT degradation in the absence of linoleic acid over time is shown 

in lanes 2-5; WT ToxT degradation with the addition of linoleic acid over time is shown in lanes 

6-9. (B) Quantification of band intensity was performed using ImageJ software. Graph represents 

percent ToxT remaining compared to T=0 after shift to virulence repressing conditions. WT 

ToxT was almost completely degraded 30 minutes after shift to virulence repressing growth 

conditions, while ToxT in the presence of linoleic acid persisted to a greater extent. 
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FIGURE 20. Linoleic acid inhibits proteolysis of effector-insensitive ToxT mutants. (A) 

Degradation of WT ToxT and mutants R105A, N106A, N106F is shown in DMSO (-) and in the 

presence of 320 μM linoleic acid (+). Linoleic acid inhibits proteolysis with each of the 

mutations (lanes 4,6,8,10). R105A still showed a small band of degradation in the presence of 

linoleic acid (lane 6). Samples were normalized by OD600 and experiments were performed a 

minimum of three times and representative data are shown. (B) Quantification of the band 

intensity was performed by densitometry using ImageJ software. Graph represents percent ToxT 

intermediate compared to total ToxT protein. 
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FIGURE 21. Model for effector control of ToxT activity (A) High-level transcriptional 

activation by ToxT with addition of positive effector, bicarbonate. ToxT undergoes 

conformational change with addition of bicarbonate that allows increased DNA binding affinity 

to toxbox and leaves unstructured region (UR) accessible by protease. Active conformation 

resembles that of ToxT mutants N106F and L114A. (B) Low-level transcriptional activation by 

ToxT with addition of unsaturated fatty acids (UFA). Upon binding UFA, ToxT takes on an 

inactive conformation resulting in low toxbox binding affinity and decreased proteolysis, due to 

unexposed unstructured region. (C) Mid-level transcriptional activation by ToxT in the absence 

of effector molecules. ToxT is in a fluctuation between inactive and active conformations, 

leading to potential ToxT proteolysis. Media conditions: AKI without added bicarbonate, 

virulence inducing growth conditions (LB pH 6.5, 30° C, shaking) without negative effectors,  or 

ToxT induced in trans in virulence repressing growth conditions (LB pH 8.5, 37° C, shaking).  
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CHAPTER THREE 

Bicarbonate increases expression of multiple categories of genes associated with Vibrio cholerae 

virulence and host survival 

 

ABSTRACT 

RNA deep sequencing (RNA-Seq) has become a technique that allows accurate 

assessment of the transcriptome of bacteria under different conditions. Whole cell gene 

expression in microbes can change rapidly in response to environmental signals. Vibrio cholerae, 

the enteric pathogen responsible for causing the severe diarrheal illness cholera, persists in 

aquatic environments and transitions to colonization of a human host after consumption of 

contaminated water or food. The ability of the bacteria to recognize and sense this change in 

environment enhances its chances of survival. Many studies of V. cholerae have shown various 

subsets of genes that are expressed in the human host and animal models. However, the signals 

for activation of many of these genes remain unclear. In this study, we performed RNA-Seq to 

monitor the changes in the V. cholerae transcriptome in response to external bicarbonate, a signal 

present in the human upper small intestine where the bacterium colonizes. Bicarbonate has 

previously been shown to increase virulence gene expression in a ToxT-dependent manner. Here 

we show that V. cholerae utilizes bicarbonate as a signal to up-regulate genes involved in host 

survival and pathogenesis, while down-regulating some genes that are not essential for 

colonization of the intestine.  
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INTRODUCTION 

Enteric pathogens use signals within the human gut to initiate changes in gene expression 

profiles to adapt to the new environment and increases chances of survival (85). Upon entering 

the stomach from the external environment, the bacteria encounter a shift in temperature to 37°C, 

as well as extremely low pH and high chloride concentrations due to gastric acid. Once the 

bacteria have exited the stomach into the duodenum of the small intestine, there is an increase in 

pH as stomach acid is neutralized. This region of the intestine is anaerobic and the change in O2 

can initiate changes in transcription within a bacterium (20). The gut microbiota and innate 

immune defenses can also trigger changes within the pathogen. Additional potential signals exist 

in this region of the intestine where many bacteria colonize, including bile in the lumen, the 

mucus layer itself, and bicarbonate secreted by epithelial cells into the mucus layer (104). The 

ability to rapidly change gene expression in response to these various signals allows the pathogen 

to produce factors that increase its chance of survival in the new environment (162).   

Vibrio cholerae, the enteric pathogen that causes the severe, watery diarrheal illness 

cholera, is one such bacterium that uses signals from the host to initiate gene transcription 

changes. V. cholerae is largely found in the aquatic environment in coastal regions. Bacteria are 

ingested by humans from contaminated water or food and must transition from a gene expression 

profile essential for survival in the environment to one suited for the host intestinal environment 

(24, 143). The infection caused by the consumption of bacteria leads to severe dehydration due 

to extreme fluid loss from diarrhea. The disease affects up to 5 million people annually and poses 

a constant threat as outbreaks continue to affect areas that have been free of cholera (27, 46, 219, 

252).  
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The O1 and O139 serogroups of V. cholerae are known to have epidemic potential, while 

non-O1 strains are considered non-toxigenic and, although they can cause diarrhea, cannot cause 

cholera disease (16, 51, 102). The O1 serogroup is divided into two biotypes: classical and El 

Tor (200). The classical biotype is currently rare in the environment, leaving El Tor the 

predominant biotype in nature (57, 205).  The O139 strains that have caused epidemics are 

derived from El Tor strains (59). Interestingly, variants of El Tor that phenotypically resemble 

classical strains have been isolated from cholera patients in recent years (183, 187, 207).  

Strains that have epidemic potential have acquired two distinctive elements: the cholera 

toxin phage (CTXΦ) and the Vibrio pathogenicity island (VPI) (128, 246). The CTXΦ encodes 

three enterotoxins, most importantly cholera toxin (CT), which is essential for causing the 

characteristic watery diarrhea of cholera (60, 123, 243, 246). CT toxin is a canonical AB5 toxin 

and is encoded by ctxAB (49). The VPI carries the genes that encode the other essential virulence 

factor for causing cholera: the toxin co-regulated pilus (TCP) (128). The major pilin subunit of 

TCP, as well as other genes necessary for pilus assembly, is encoded on the 12 gene tcp operon 

(57). In addition to the genes for TCP, the VPI carries genes encoding other accessory virulence 

factors that are co-regulated with CT and TCP and are important for colonization and disease, 

including acfA-D, tagA, aldA, tcpI, and tarAB (21, 47, 55, 90, 91, 192, 194, 202, 247, 249).  

The major virulence factors, CT and TCP, are under control of a transcriptional 

regulatory cascade (194). The AraC/XylS family transcription regulator, ToxT, is directly 

responsible for activation of CT and TCP, as well as the accessory virulence genes mentioned 

above (29, 47, 101, 115, 247-249, 262). Transcription of toxT is activated by the coordinated 

efforts of the integral membrane transcription regulators ToxR/ToxS and TcpP/TcpH (95, 100, 
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144). ToxR is constitutively produced while AphA and AphB positively control production of 

tcpPH (139, 222).  

Upon entering the human host from the marine environment, V. cholerae must alter gene 

expression to increase survival in the host. Approximately 10
8
-10

11 
bacteria must be consumed in 

order for the disease to initiate, primarily to overcome the low pH of the stomach (127). Acid 

tolerance genes are up-regulated in response to the low pH in the stomach (165, 166, 168) and 

eventually the bacteria will transit to the small intestine, where they colonize. V. cholerae also 

initiates changes in gene expression in response to intestinal signals such as anerobiosis, and 

temperature changes. Furthermore, each level of the virulence cascade can be influenced by 

signals from the gut environment. AphB increases activity in response to low pH and 

anaerobiosis (135, 236), which can be seen in transition from the stomach to the duodenum. 

Repression of aphA by HapR is absent under low cell density, potentially increasing tcpPH 

transcription in the host (138). Transcription of tcpPH is repressed by the aminopeptidase PepA 

under non-permissive pH (11). TcpP activity is increased in response to a bile salt, taurocholate 

(261), and ToxR activates production of CT as well as the protective outer membrane protein 

OmpU in response to bile (116, 170).  

Additionally, the activity of ToxT, the major transactivator of CT and TCP, is altered 

based on signals from the intestinal environment. ToxT activates transcription of ToxT-

dependent genes by binding to 13bp degenerate sequences in the promoters, called toxboxes 

(248). Activity of ToxT can be inhibited by the addition of bile or the unsaturated fatty acid 

components of bile, found in the lumen of the upper small intestine (31, 86, 212). Additionally, 

the red chili component capsaicin represses activity of ToxT (32). Conversely, ToxT activity is 

enhanced by bicarbonate (2), which is secreted from intestinal epithelial cells. We have shown 
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that transcription of each known ToxT-dependent gene increases with the addition of bicarbonate 

(Chapter 2). 

Much work has been done to elucidate the genes that are differentially expressed in the 

host. However, there is little overall gene expression profiling in response to individual host 

signals. In this study, we performed RNA-Seq to assess the overall changes in the V. cholerae 

transcriptome in response to bicarbonate. Bicarbonate is present at high concentration in close 

proximity to intestinal epithelial cells and in the mucus layer of the intestine. This is the location 

where V. cholerae colonizes and bicarbonate could provide the essential signal for virulence 

gene activation, as well as genes critical for protection and survival. 

 

MATERIALS AND METHODS 

Strains and Growth Conditions. All strains used in this study were maintained at -70° 

C in LB containing 20% glycerol. V. cholerae El Tor strain N16961 was used for this study. For 

in vitro RNA preparations, the V. cholerae El Tor strain N16961 was grown overnight in LB and 

subcultured 1:1000 into AKI medium (1.5% peptone, 0.3% yeast extract, 0.5% NaCl) in the 

presence or absence of freshly prepared 0.3% sodium bicarbonate (36 mM). Cultures were 

grown statically for 4 hours at 37° C and analyzed. Media for growth of V. cholerae N16961 was 

supplemented with 100 µg/mL streptomycin. In strains containing variants of the pTL61T 

plasmid, 100 µg/mL ampicillin was added.  

RNA preparation and RNA-Sequencing. V. cholerae El Tor strain N16961 was grown 

in the presence and absence of 36 mM sodium bicarbonate for 4 hours statically at 37° C in AKI 

medium. RNA from three biological samples in each condition was extracted using the RNeasy 

Bacteria Protect Mini Kit (Qiagen) and manufacturer’s protocols were followed. DNA 
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contamination was removed using an on-column RNase-free DNase kit (Qiagen). RNA quality 

assessment was performed by the Wayne State University Applied Genomics Technology Center 

(AGTC). 2-3 µg total RNA was used by Expression Analysis for RNA-Sequencing. 50 bp paired 

end libraries were prepared for sequencing.  

RNA-Seq Data Analysis. Data analysis was performed by Expression Analysis. 

Differential gene expression with the addition of sodium bicarbonate was analyzed. A t-test was 

performed on each gene, comparing the mean of the log normalized expression of the two 

groups. Upper quartile normalization was used.  p-value and the log2 fold-change were reported. 

Annotations of protein-encoding genes are from PATRIC (PAThoSystems Resource Integration 

Center), on V. cholerae serogroup O1 biovar E1 Tor strain N16961.  

Quantitative Real-Time PCR (qRT-PCR). RNA extraction was performed similar to 

RNA-Seq. To test for DNA contamination after extraction, logarithmic PCR was performed. The 

absence of bands confirmed the samples were free of DNA. RNA was normalized to 100 ng/µL. 

To measure the relative mRNA levels of tcpA, almE, and cadA using the following primers: 

forward tcpA (5’-ACGCAAATGCTGCTACACAG-3’) reverse tcpA (5’-

CCCCTACGCTTGTAACCAAA-3’), forward almE (5’-GAGCTATTTGGGCGGTATGA-3’) 

reverse almE (5’-GACGTAACGGTTCCACATCC-3’), forward cadA (5’-

CCGTGAAGTGATTGCAGAGA-3’) reverse cadA (5’-CCGCACTTGCCTTCATAAAT-3’) 

qRT-PCR was performed using one-step SYBR green Mastermix (Invitrogen) and the program: 

cDNA synthesis for 10min. at 55° C, denaturing step for 5min. at 95° C, followed by 35 cycles 

of 95° C for 10 s, then 55° C for 30 s. The level of each mRNA was normalized to the level of 

rpoB using primers forward rpoB (ACCTGAAGGTCCAAACATCG) and reverse rpoB 
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(CAAAACCGCCTTCTTCTGTC). Relative levels of transcript with the addition of bicarbonate 

were calculated using 2
-ΔΔCT

. Standard deviation between experiments was calculated.    

 

RESULTS AND DISCUSSION 

Differential gene expression in V. cholerae cells in response to external HCO3
-
. To identify 

genes whose expression is up or down regulated in response to the presence of bicarbonate in 

culture media, we performed RNA-Seq. RNA-Seq was used as it can establish a more accurate 

assessment of the transcriptome than other methods such as microarrays (244). The strain of V. 

cholerae used for this study was the El Tor biotype strain N16961. We used this strain due to the 

importance of the El Tor biotype in the current pandemic as well as its overwhelming prevalence 

of the in the environment compared to the classical biotype (57, 205). V. cholerae was grown 

under bicarbonate virulence-inducing conditions in the presence and absence of 36mM 

bicarbonate for 4 hours (2). Total RNA was extracted from the cultures and RNA-Seq was 

performed by Expression Analysis. A two-group comparison of three biological replicates from 

each condition was performed and statistically significant differential gene expression was 

determined. A volcano plot showing the distribution of gene expression in response to 

bicarbonate is shown in Fig. 22. The x-axis of the volcano plot represents the cutoffs for up or 

down regulated genes in the presence of bicarbonate, which were established using the log2 fold 

change of toxT, which was 1.78. toxT mRNA has previously been shown to be unaffected by the 

addition of bicarbonate to the culture medium (2). Therefore, we chose a log2fold change of 2 for 

a gene to be considered differentially regulated by bicarbonate. The upper and lower cutoffs are 

shown by vertical dashed lines (Fig. 22). The y-axis represents the statistical significance of 

genes regulated by bicarbonate. Each circle represents an individual gene and if they are above 
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the horizontal dashed line they are considered significant. Over 200 genes were differentially 

regulated with the addition of bicarbonate: 94 genes up-regulated, 111 genes down-regulated.  

 ToxT-dependent transcription of virulence genes in response to bicarbonate. 

Previous work in our lab has shown that the activity of the transcription regulator, ToxT, is 

enhanced in the presence of bicarbonate. Increased activity of ToxT leads to increased 

expression of downstream gene products including the major virulence factors, CT and TCP, as 

well as the accessory virulence factors TagA, AldA, TcpI, AcfA, and AcfD (2) (Chapter 2). As a 

comparison control, we examined the differential expression of these pathogenesis genes. An 

overview of the VPI, showing genes that are up-regulated in response to bicarbonate is shown in 

Fig. 23. The RNA-Seq confirmed that transcription of the entire tcp operon was up-regulated, as 

well as the genes encoding CT, ctxAB (Table 3). Furthermore, expression of the other known 

ToxT-dependent genes was up-regulated. aldA transcription had the largest log2fold change of 

any of the genes in the study. 

The tagA-orf2-orf3-mop-tagD (VC0820-VC0824) region (Fig. 23) has been shown to be 

involved in many aspects of virulence and colonization (265). tagD contains a domain with 

homology to thiol peroxidase of Escherichia coli, which plays a role in alleviating membrane 

damage by reactive oxygen species (28, 114). Mutations to the protein encoded by mop have 

been shown to cause pleiotropic effects including decreased colonization of the infant mouse, 

decreased CT, and increased biofilm and motility (266, 267). This region of the VPI was very 

highly up-regulated in response to bicarbonate (Table 3). tagA has a promoter that has been 

shown to be ToxT-dependent (249). However, as previously shown, this region can be divided 

into several potential operons (265). A polycistronic transcript beginning at tagA can read 

through all the way to tagD. Also, tagD can be transcribed monocistronically. Additionally, a 
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transcript encoding orf3-mop-tagD or orf3-mop can be produced, with a potential ToxT-

dependent promoter upstream of orf3 (265). Every gene in this region was up-regulated in 

response to bicarbonate. We have shown that transcription beginning at tagA can be enhanced 

with the addition of bicarbonate (Chapter 2), but have not attempted to determine if the other 

promoters in the region are involved as well. 

 Another ToxT-dependent region located on the VPI and important for colonization and 

disease is the acf region (Fig. 23). All of the accessory colonization factors (ACF) were up-

regulated by bicarbonate, as well as tagE, which is located in the middle of the operon. tagE 

encodes a gene with unknown function and its importance in pathogenesis is under investigation 

(134). Another gene located in the region, VC0842, was also up-regulated; however the role of 

this gene in pathogenesis is unclear. acfA and acfD are both ToxT-dependent genes and we have 

shown them to be up-regulated in response to bicarbonate (247). The increase in expression of 

acfB and acfC is most-likely due to being transcribed along with the tcp operon. 

 Virulence and survival genes up-regulated by external bicarbonate. The results of the 

RNA-Seq recapitulated results from our previous studies, showing increased transcription from 

every ToxT-dependent promoter in response to bicarbonate (Chapter 2). Additionally, there were 

categories of other genes that were up-regulated in the presence of bicarbonate. The 

overwhelming category of genes up-regulated by bicarbonate encompassed genes involved in 

pathogenesis, colonization, and survival. Most of these genes were represented by the ToxT-

dependent genes; however, many other genes were up-regulated that have been implicated in 

colonization and survival in the host (Table 4). 

 One locus that was very highly up-regulated by bicarbonate in the RNA-Seq, almEFG  

(VC1579-1577), has been shown to be involved in the modification of lipid A. In its transition to 
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colonization of the human intestine, V. cholerae encounters cationic antimicrobial peptides 

(CAMPs) located in crypts of the intestinal villi. CAMPs are positively charged peptides that 

bind to the negatively charged outer membrane of gram-negative bacteria, leading to 

permeabilization of the membrane and death to the bacterium (215). The lipid A modification 

locus of V. cholerae, containing the genes almE, almF, and almG, acts to modify the bacterial 

cell membrane to lower the net negative charge, reducing the action of CAMPs. This locus is 

transcribed as a polycistron and contributes to the resistance of the El Tor biotype to polymyxin 

B (89). V. cholerae may use bicarbonate as an environmental signal to modify its cell membrane 

charge before reaching the highest concentration of CAMPs closer to the epithelium, leading to 

increased survival in the presence of innate immunity.  

To confirm that this locus was up-regulated in response to bicarbonate, we performed 

quantitative real-time PCR (qRT-PCR). First, we cultured the bacteria and extracted RNA with 

the same methods used for the RNA-Seq. qPCR was performed using primers for tcpA, almE, 

and cadA, with the gene rpoB as the housekeeping gene control. tcpA was used as a positive 

control for activation by bicarbonate, while cadA was a down-regulated gene isolated in our 

RNA-Seq screen that will be discussed later. The qRT-PCR results showed that transcription of 

almE was more highly up-regulated in response to bicarbonate than tcpA, confirming the results 

of the RNA-Seq (Fig. 24). The down-regulated gene in response to bicarbonate, cadA, was also 

decreased in the qRT-PCR results.  

 Another subset of genes that were up-regulated by bicarbonate is involved in polyamine 

transport. Polyamines are organic, cationic molecules that are ubiquitous in nature. Polyamines 

mediate cell functions in both prokaryotes and eukaryotes (119). In the lumen of the intestine, 

they exist at concentrations in the mid-high micromolar range and are in millimolar 
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concentrations in the epithelial cells of the intestine (13, 71). The polyamines putrescine, 

spermidine, and spermine have all been shown to inhibit auto-agglutination of TCP, a process 

required for efficient colonization (79). The RNA-Seq results revealed three genes involved in 

polyamine uptake that were up-regulated by bicarbonate: potB (VC1427), potC (VC1426), and 

potE (VCA1062). potB and potC are in an operon that is involved in spermidine import in both E. 

coli and V. cholerae (160). Mutations of the substrate binding protein, potD, in this operon cause 

an increase in biofilm formation (160). The two potD homologs in V. cholerae were not up-

regulated with bicarbonate, while potB and potC had increased transcription. Further work will 

be needed to identify the role that bicarbonate plays in regulation of this operon and pathogenesis 

in the host. potE shares homology with putrescine transporters and has not been studied in V. 

cholerae. 

 Another transporter, fadL-2, was up-regulated in response to bicarbonate. fadL-2 encodes 

a long-chain fatty acid transporter, which plays a role in pathogenesis and remodeling the 

membrane of V. cholerae (199). In particular, fadL-2 transports fatty acids into the cell where 

they are then processed into precursors for phospholipid synthesis (149). This particular gene has 

been shown to be important in the transition from the human host back into the environment 

(126). Bicarbonate could be acting as a signal to initiate changes in the bacterial membrane that 

is needed upon exposure to a new environment. 

 The outer membrane porin encoded by VC1565, which shares homology with tolC from 

E. coli, was also up-regulated by bicarbonate. ΔtolC strains of V. cholerae show reduced 

resistance to bile and antimicrobials, as well as reduced secretion of the RTX toxin. ΔtolC strains 

are also deficient for intestinal colonization (18). Additionally, genes involved in purine and 

pyrimidine biosynthesis were up-regulated in response to bicarbonate. Mutations of these genes 
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have been shown to cause defects in colonization of the infant mouse and are important for 

fitness in the intestine (126, 169).  

 Other genes that were up-regulated by bicarbonate but have unknown effects on host 

survival include ompV, carS, carR, and a methyl-accepting chemotaxis protein encoded by 

VC0514. ompV (VC1318) encodes an outer membrane protein that is involved in osmoregulation 

(253) and also has increased transcription in response to antimicrobial peptides (36). ompV 

resides upstream of carS (VC1319) and carR (VC1320). All four genes from VC1317-1320 were 

up-regulated by bicarbonate. carS/carR are a calcium sensing two-component system that is 

involved in responding to the changing Ca
2+

 concentrations in the aquatic environment as well as 

in the host. The CarRS system negatively regulates expression of vps (Vibrio polysaccharide) 

genes and biofilm formation (17). Both genes in this system are down-regulated by external 

Ca
2+

, which is at different concentrations in the environment, and we report here that they are up-

regulated by the intestinal signal bicarbonate. We currently do not know if there is a link 

between this two-component system and the other adjacent genes that were up-regulated: ompV 

and VC1317. However, V. cholerae using bicarbonate as a signal to up-regulate genes involved 

in the repression of biofilm formation is novel. 

Genes down-regulated by external bicarbonate. We have shown that genes involved in 

pathogenesis and survival in the host are up-regulated by bicarbonate. Therefore, we 

hypothesized that bicarbonate down-regulates genes that are detrimental to survival in the host or 

were up-regulated before the bacterium reached the colonization site in the intestine. 

Interestingly, the RNA-Seq showed 6 chemotaxis genes that were down-regulated as well as 3 

genes involved in fatty acid degradation (Table 5). Virulence and motility are known to be 

inversely regulated. Bicarbonate is a signal for virulence in the host and may potentially be a 
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signal for down-regulation of chemotaxis genes. Fatty acid degradation is a mechanism for 

energy production by β-oxidation (70). Bicarbonate may be a signal to reduce the amount of fatty 

acid degradation because the need for energy is lower once the bacterium reaches the region of 

colonization in the intestine. 

After V. cholerae is ingested, it eventually will reach the stomach where there is an 

extremely low pH due to gastric acid. It is believed that the low pH of the stomach is the reason 

for the high infectious dose of V. cholerae. This was shown by the addition of buffers that would 

neutralize stomach acid to inocula in human volunteers, which greatly reduced the infectious 

dose (110, 206). cadA and cadB are genes that are induced by V. cholerae in response to high 

lysine and low pH, and were also induced in the infant and adult mouse intestines (167). These 

genes are involved in the acid tolerance response (ATR) and help with pH homeostasis. Our 

RNA-Seq showed that both of these genes were greatly reduced in response to bicarbonate 

(Table 5). This down-regulation was confirmed by the qRT-PCR experiments described earlier 

(Fig. 24). We hypothesize that bicarbonate reduces transcription of this locus as the pH in the 

intestine where bicarbonate is located is not as extreme as the stomach. The effect on 

transcription of cadBA could be due to the slight pH change with the addition of bicarbonate. 

However this remains unclear.  

One other gene down-regulated by bicarbonate is clpB-1. clpB-1 encodes an ATP-

dependent protease that is involved in the stress response to degrade protein aggregates. V. 

cholerae encodes two homologs, clpB-1 and clpB-2. ToxT, the direct activator of CT and TCP, is 

degraded by an ATP-dependent protease that is active or induced in vitro at pH 8.5 and 37° C 

(3). clpB-1 fills the description of the ToxT protease (181). Bicarbonate, which enhances ToxT 
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activity, may act to down-regulate this protease to further the activation capability of ToxT in the 

host.  

 The overwhelming majority of genes differentially regulated by the addition of 

bicarbonate are related to pathogenesis. The main up-regulated genes were ToxT-dependent as 

bicarbonate enhances the activity of ToxT. However, other genes with potential roles in 

virulence and survival in the host, as well as some genes with defined roles, were up-regulated as 

well. The genes that were down-regulated in response to bicarbonate were mostly involved in 

stress response and starvation. This could be due to the slight growth advantage that V. cholerae 

exhibits when grown in bicarbonate. However, the addition of bicarbonate could act as a signal 

to down-regulate genes that are expressed in the gut before the bacterium reaches the intestine. 

The results of this study show that V. cholerae uses bicarbonate as a signal to alter gene 

expression. The up-regulation of genes known to be involved in host survival and virulence add 

to the importance of bicarbonate as a host signal for temporal and spatial expression of genes 

crucial for V. cholerae pathogenesis. 
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Figure 22. Distribution genes differentially expressed with the addition of external bicarbonate. 

The x-axis represents the log2fold change of transcript level of genes from V. cholerae cultured 

in the presence of bicarbonate compared to the levels in cultures in the absence of bicarbonate. 

Vertical dashed lines signify the upper and lower cut-off for genes to be up- or down- regulated 

in the presence of bicarbonate. Statistical significance is represented by the y-axis. Red dots are 

statistically significant and the horizontal dashed line is the cut-off statistical significance. 94 

genes are up-regulated by bicarbonate while 111 are down-regulated.  
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Figure 23. Genetic map of the Vibrio pathogenicity island (VPI). Gray arrows signify genes 

located on the VPI. Arrows facing right are in the 5’-3’ direction and arrows facing right are 

genes encoded on the 3’-5’ strand. Black arrows represent ToxT binding sites (Toxboxes). Gene 

IDs are labeled above the arrows and the gene symbols are labeled within the arrow. 
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Figure 24. Quantitative real-time PCR (qRT-PCR) confirming results of the RNA-Seq. tcpA and 

almE are up regulated in response to bicarbonate, while cadA is down-regulated. Fold change 

gene expression is expressed on the y-axis and was determined using the 2
-ΔΔCT

 equation.  
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CONCLUSIONS 

 Vibrio cholerae causes the diarrheal disease cholera as a result of the production of many 

virulence factors but, in particular, cholera toxin (CT) and the toxin co-regulated pilus (TCP). 

The production of these virulence factors is directly controlled by the transcription regulator 

ToxT. Production of ToxT is dependent on a complex regulatory cascade including the 

transcription regulators ToxR and TcpP. Activity of many of the transcription regulators in the 

cascade can be post-transcriptionally controlled by environmental signals. Recent work has 

shown that ToxT can also be both negatively and positively controlled by intestinal signals 

including bile and components of bile, as well as bicarbonate. These effectors are normal 

constituents of the human intestine and potentially help to guide transcription of virulence 

factors, so the bacteria are able to occupy the most favorable niche for infection. Much work has 

been done to characterize the mechanisms by which bile and the unsaturated fatty acid (UFA) 

components of bile affect ToxT activity. The results of the work described in these studies have 

elucidated some of the mechanisms of bicarbonate-mediated enhancement of ToxT activity. 

Bicarbonate enters the bacterial cell where it can interact with ToxT to increase 

transcription of virulence genes. Further work is required to identify the mechanism of transport 

of bicarbonate into the cell. Determining this mechanism could elucidate a potential therapeutic 

target to limit disease in the host. Evidence is accumulating that bicarbonate is an important 

signal that V. cholerae uses to initiate disease in the host and blocking the pathway of 

bicarbonate transport could provide a species-specific therapy. 

 Bicarbonate has been shown to increase production of CT and TCP in a ToxT-dependent 

manner. The work described in this dissertation has shown that the effect of bicarbonate occurs 

at every ToxT-dependent promoter, each of which directs transcription of virulence genes 
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important for colonization and full virulence of V. cholerae. Bicarbonate enhances the activity of 

ToxT by increasing its binding affinity for the promoters of the genes it activates. The binding 

site for bicarbonate within ToxT remains unclear; however, we have found mutations that affect 

the response of ToxT to both bicarbonate and its negative counterpart, UFAs. The ToxT N106F 

mutant showed increased transcriptional activity compared to WT ToxT, and this increase in 

activity was unable to be negatively modulated by the UFA linoleic acid. Additionally, 

transcription by ToxT N106F was unable to be increased further by the addition of bicarbonate. 

Therefore, we conclude that the conformation of ToxT N106F resembles the conformation of a 

maximally active ToxT having bound bicarbonate. The bulky amino acid side chain of 

phenylalanine at the 106 position is similar in size to bicarbonate and may mimic the 

conformation of ToxT in its bound state with bicarbonate.  

 Proteolysis of ToxT is another post-transcriptional mechanism that controls the ability of 

ToxT to activate virulence genes. Once ToxT is produced through the concerted efforts of ToxR 

and TcpP, it autoregulates through a long transcript beginning at the tcpA promoter. ToxT 

proteolysis provides the mechanism to shut down this autoregulatory loop. We have identified 

residues that are essential for recognition by the ToxT protease. Through mutation of the 

unstructured region in the N-terminal domain of ToxT, we have developed a model for ToxT 

activity and proteolysis. In this model. the addition of UFAs blocks proteolysis, while the 

addition of the positive effector bicarbonate results in normal proteolysis. We hypothesize in this 

model that two conformations of ToxT exist in nature, an active conformation and an inactive 

conformation. With no effector molecules, ToxT fluctuates between the two conformations, 

resulting in a low to moderate level of transcriptional activity. The positive effector bicarbonate, 

when present, locks ToxT in an active conformation and results in maximal transcriptional 
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activity. In this active conformation, the protease is able to cleave ToxT due to an exposed 

unstructured region. The negative effectors, UFAs, lock ToxT in an inactive conformation with a 

buried unstructured region, resulting in significantly reduced proteolysis. The two conformations 

of ToxT and the ability of the protease to cleave them based on availability of access to the 

unstructured region could play a role the recognition of environmental signals by V. cholerae.  

 Furthermore, we have shown that bicarbonate is not only a signal for increased 

transcription of ToxT-dependent genes. The addition of bicarbonate to culture media increases 

transcription of genes that are associated with host colonization and survival within the host 

intestine. The mechanism of transcription activation of ToxT-independent genes, and/or possible 

ToxT involvement at some level in indirectly regulating expression of these genes, requires 

further work. Chromatin immunoprecipitation combined with deep sequencing has ostensibly 

identified all DNA binding sites for ToxT on the V. cholerae chromosomes. However, with our 

finding that bicarbonate increases the binding affinity of ToxT, it is possible that other toxboxes 

that require a higher binding affinity may exist. Additionally, bicarbonate acts as a signal to 

down-regulate genes that are not essential in colonization of the human intestine and could 

possibly be a detriment to survival of the bacterium. The finding that bicarbonate could be acting 

through other signaling pathways outside of the regulatory cascade in V. cholerae is novel and 

furthers the correlation and importance of this molecule with the pathogenesis of the bacterium.  

 

FUTURE DIRECTIONS 

 The work presented in the dissertation advances the understanding of the impact that 

bicarbonate has on virulence gene transcription in V. cholerae. Much of the work was performed 

to elucidate the mechanism of bicarbonate-mediated enhancement of ToxT’s ability to initiate 
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transcription of virulence genes. We have determined that bicarbonate enhances ToxT activity 

within the bacterial cytoplasm, as well as in close proximity with ToxT in in vitro assays. 

However, we were unable to show an actual binding event of bicarbonate to ToxT and the 

subsequent conformational change that we hypothesized based on our work in this dissertation. 

Further work is needed to show that there is an actual interaction between ToxT and bicarbonate. 

This can be achieved using nuclear magnetic resonance (NMR). The result of an interaction with 

bicarbonate should result in two different spectra in these experiments. Determination of an 

interaction between bicarbonate and ToxT could lead to potential drug development to 

antagonize the effect of bicarbonate binding and limit cholera disease progression. 

 Additionally, we have proposed that ToxT is able to exist in two different conformations: 

active and inactive. This was deduced from monitoring ToxT proteolysis with the addition of 

effectors. Additional work needs to be done to confirm the different conformations of ToxT and 

determine if there is a difference between the conformation of bound linoleic acid compared to 

bound virstatin. This could be achieved by crystallizing Toxt with each of the effector molecules.  

 Finally, in this dissertation we showed that bicarbonate enters the cell cytoplasm where it 

could potentially interact with ToxT. However, we are unclear as to the mechanism of import of 

bicarbonate. Import could be carried out through the action of bicarbonate transporters. 

Additionally, carbonic anhydrases could convert bicarbonate to carbon dioxide which could enter 

the cell. Identifying the mechanism of transport into the cell could be beneficial for the 

development of therapeutics that is specific for aiding to limit cholera disease by blocking 

bicarbonate import.  
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 Vibrio cholerae is the etiologic agent of the severe diarrheal disease cholera. The aquatic 

bacterium is ingested by humans through contaminated water or food. Disease initiation depends 

on the production of the major virulence factors: cholera toxin (CT) and the toxin co-regulated 

pilus (TCP). The bacterium responds to signals in the human host that activate a virulence 

regulatory cascade termed the “ToxR Regulon”. The ToxR regulon consists of various 

transcription regulators whose activity culminates in the production of the major virulence 

regulator, ToxT. ToxT directly activates transcription of CT and TCP, as well as many other 

gene products involved in disease. ToxT is a 276 amino acid AraC/XylS family member that 

binds to 13 base pair degenerate sequences, called toxboxes, to initiate transcription. Post-

transcriptional modulation of ToxT activity occurs via negative and positive effector molecules 

present in the human upper small intestine where V. cholerae colonizes. Negative effectors of 

ToxT activity include bile and the unsaturated fatty acid (UFA) components of bile. Conversely, 

the positive effector, bicarbonate, enhances ToxT activity. These positive and negative effectors 

provide in vivo signals to the bacterium to initiate transcription of virulence genes in the 
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appropriate location. This dissertation is focused on identifying the molecular mechanism of 

positive modulation of ToxT activity by bicarbonate. Additionally, the role of bicarbonate in 

controlling transcription of ToxT-independent genes associated with colonization and host 

survival is explored.  

 Chapter one elucidates the mechanism for bicarbonate-mediated enhancement of ToxT 

activity. The ToxT-dependent promoters contain toxboxes that exist in various orientations, 

including direct and inverted repeat configurations. Additionally, the promoter of the ToxT-

dependent gene aldA, contains only a single toxbox. We have shown that bicarbonate enters the 

V. cholerae cell where it can interact with ToxT in the cytoplasm. Furthermore, we have shown 

that bicarbonate can enhance the activity of ToxT regardless of toxbox orientation. This is 

achieved through an increase in ToxT binding affinity for the promoters it activates.  

 Chapter two characterizes an unstructured region in the N-terminal domain of ToxT that 

controls the response of ToxT to effectors, as well as mediating proteolysis. Through 

mutagenesis of this region we have discovered a ToxT mutant that has a decreased response to 

both the negative and positive effectors of ToxT activity. The highly active ToxT N106F mutant 

can no longer be activated by bicarbonate. Similarly, activity of the mutant is unresponsive to 

negative modulation of activity by bile and UFAs. In addition to its importance in responding to 

effector molecules, this region of ToxT is essential for normal proteolysis. Many mutations in 

this region alter proteolysis, with the ToxT M103A mutant completely abolishing proteolysis.  

 Chapter three discusses alterations in the transcriptome of V. cholerae with the addition 

of external bicarbonate. RNA-Seq was performed to assess these changes. Bicarbonate mediated 

the up-regulation of all the known ToxT-dependent genes, as well as other genes important for 

host survival and colonization. Conversely, bicarbonate caused down-regulation of genes that are 
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unnecessary or detrimental for host colonization and survival. The findings in this chapter signify 

the importance of the host molecule bicarbonate to initiate essential changes in the V. cholerae 

transcriptome. 
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