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Chapter 1 : Introduction 

1.1 The Standard Model 

It is believed that the universe we now know was contained in a very dense single 

particle that exploded 14 billion years ago and expanded out to form all subatomic 

particles known as protons, electrons, and neutrons. After a short time, these particles 

interacted with each other to form atoms, matter, stars, galaxies, and all what we see 

around us while the universe keeps expanding out and cooling down.  

Physicists believe that even subatomic particles have many fundamental particles 

which, in a way or another, interact together to constitute subatomic particles. Therefore, 

they suggested a model or a theory that studies all interaction types including weak, 

electromagnetic, and strong nuclear interactions.  This theory was developed throughout 

the years since 1960 starting with the quark model [1] until 2012 completed with the 

observation of the Higgs bosons; such a model is called the Standard Model. 

The Standard Model is then a mathematical theory representing all particle 

interactions into groups called unitary groups as follows. The electromagnetic and the 

weak force are represented by a SU (2) x U (1) theory called Quantum Electrodynamics 

(QED) [2][3][4].  The strong nuclear force, however, is represented by the gauge group 

SU (3) called Quantum Chromodynamics (QCD) [5][6]. 

1.2 Elementary Particles 

The Standard Model includes elementary or fundamental particles that can be 

described as point-like particles and are the basics of any formation of other particles. 
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They are classified into two different groups according to theirs spins: fermions and 

bosons as shown in Figure 1.1.  

 

Figure 1.1: Fundamental Particles of the Standard Model 

1.2.1 Elementary Fermions 

This blog of particles represents all fermions being arranged in a matrix of 34. The 

former number indicates the number of the generations; the latter is for the charge type of 

elementary fermions in the Standard Model. 

- The first generation includes up (u), down (d) quarks, leptons like the electron (e), 

and its related neutrino (  ). Such a generation contains the lightest fermions. 
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- The second generation includes charm (c), strong (s) quarks, leptons like the 

muon (), and its related neutrino (  ). Fermions of this generation are relatively 

heavier than those of the first generation. 

- The last type includes top (t), bottom (b) quarks, leptons like tauon (), and its 

related neutrino    . Fermions of this generation are the heaviest. 

In addition, fermions are grouped in such a way that all first row quarks have the 

same charge fraction of +
 

 
e with an up isospin. However, others in the second row have a 

charge fraction of – 
 

 
e with a down isospin. All quarks carry quantum numbers that are 

not shown in the table called colors or flavor mainly red, blue, and green. Another 

important property quarks have is that each quark has an antiparticle called anti-quark 

and represented by the corresponding anti-color. For example, an up quark (u) having a 

red color has an antiparticle having the same mass and spin of (u) and can be represented 

by (  ) and carrying anti-red flavor. 

Likewise, leptons in the same row have the same electronic charge, but unlike quarks 

they are colorless and carry an integer charge value of (e
-
); all third row leptons carry a 

net charge of (-1). Leptons in the last row are massless and carry no net charge. Like 

quarks, leptons have their corresponding antiparticles having the same mass but opposite 

net charge. As an example, the antiparticle of the electron is called positron and 

represented by e
+
. Since neutrinos are neutral, their antiparticles can be represented by the 

bar on top of the neutrino particle (   and      ). 

Finally, a plethora of sub particles such as Baryons and Mesons would be produced 

when a quark gets mixed with its antiquark or another quark type. When a quark is mixed 
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with an antiquark, they form what is called a meson which absolutely depends on the 

quarks type, thus a charm meson, a bottom meson, etc… can be formed. In our case, for 

instance, an admixture of (b,  ) produces a B-meson where all of its properties can be 

searched and studied at accelerators and colliders working at the energy field of B-meson 

mass energy and basing on smashing electrons and positrons. 

1.2.2 Bosons 

The second category of elementary particles shown in Figure 1.1 is bosons. Bosons 

interact with other particles including fermions, leptons, and even themselves to exhibit 

all kinds of interactions including the weak, strong, and electromagnetic forces. They are 

also divided into two different sorts: gauge bosons (red) and Higgs bosons (yellow). 

Each gauge boson has an integer spin of 1. Some of them are like photons and gluons 

and are massless; others like Z and W bosons have masses, but they are not as massive as 

the Higgs boson. Not all bosons are neutral and have no antiparticles, but W
+
 represents 

the W-boson particle and W
-
 represents the antiparticle. These bosons are the source of 

the electroweak force. 

A Higgs boson is a massive but spineless boson that is believed to be responsible for 

the mass of other particles excluding photons and gluons because it mediates the 

electroweak force when it interacts with charged particles, and the weak force when 

interacts with uncharged particles. On the contrary, massless bosons like photons mediate 

the electromagnetic force and those like gluons mediate the strong force. 

Interaction types between all fundamental particles of the Standard Model can be 

shown in Figure 1.2. 
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Figure 1.2: Interaction of the Standard Model 

1.3 Weak Interaction and the CKM Matrix 

According to the Standard Model, fermions of the same generation interact with 

themselves, their antiparticles, and with particles and antiparticles from other generations 

as long as charge conservation is preserved. Moreover, all generations of fermions can be 

always produced out of each other, for example decaying from the up to the down quarks 

through absorption of a W
-
, or a W

+
 when decaying from a down to an up quark. The 

diagram below (Fig 1.3) shows the Feynman diagram for a weak decay. 
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Figure 1.3: Weak Decay Mechanism of Fermions in the Standard Model 

As shown in Figure 1.3, a quark decaying weakly does not simply decay into a quark 

of its own generation, but it will, with certain probabilities, couple to all quark 

generations. The Cabibbo-Kobayashi-Maskawa (CKM) matrix [7] describes the 

amplitude mixing. It states that weak eigenstates (d’,s’,b’) are rotated with respect to the 

mass eigenstates (d,s,b). The CKM matrix is a unitary matrix 33 elements, each element 

providing the transition probability of a quark mass eigenstate i to another mass quark 

eigenstate j as shown below: 

  

  
  
  

    
         

         

         

   

 
 
 
  (1.1) 
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The |Vij|
2
 term represents the probability that the quark j decays to another quark i; i 

and j can represent any quark. Unlike a 22 matrix, where each element has to be real up 

to an overall phase, it allows complex matrix elements, which can be represented in terms 

of the Wolfenstein parameters A,           [8], as follows: 

       

 
 
 
 
 
   

  

 
          

    
  

 
   

                

 

 
 
 
 
 
 

 (1.2) 

 

Where i represents the complex value of    . The Vub term is one of those which 

include an irreducible phase        which is responsible for the sole known CP (charge 

parity) violating interaction in nature, and as such it holds great interest. The 

experimentally measured CKM elements magnitudes are [9][10]: 

        

                                               
        

                                           
       

               
                     

                        
         

  (1.3) 

 

In the case of a B-meson decaying to lighter particles, one can see that |Vub|
2
 = 

1.210
-5

. Therefore, CP-violating effects are small and require a great number of events 

to be studied in detail.  

If one desires to observe one event of this kind, given a perfect detector, the number 

of events Nev should obviously be in the order of 10
5
. In practice, events of interest are 

detected with efficiencies ranging from 10
-1

 to 10
-2

. Assuming that these phenomena be 

studied in detail, a 1% precision requires 10
4
 events or more. With a simple calculation, 

one would obtain a total number of events of order: 
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N ~ 10
5
10

2
10

4
 = 10

11
events. 

In particle physics, the number of events, cross section (  , and the luminosity L, 

which is defined as the overlapping of two colliding beams over space and time, are all 

connected as shown in Eq. (1.4): 

 
    

  
    (1.4) 

 

In the case of the Upsilon (4S), the cross section is about 1nb or 110
-33

cm
2
 as shown 

in Figure 1.5 (the picture shows only four out of six cross section resonances that have 

been discovered so far). Using Eq. (1.4), one would integrate over time and eventually 

obtain the total number of events: 

           (1.5) 
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Figure 1.4: Hadronic Cross Section in the ϒ Mass Region as a Function of Energy 

If we want a number of events of 10
11

 in a ten years time period, the integrated 

luminosity can be found to be about (one machine year is only 10
7
 seconds, as the 

machine does not run all the time): 

    
   

  
  

    

          
             (1.6) 

 

As a result, a new luminosity, higher than the 2.1*10
34

cm
-2

s
-1

 obtained at KEKB, is 

expected to be obtained by building a new kind of accelerator working at the Upsilon 

(4S). This new B-factory is called the SuperKEKB and will be discussed in the next 

chapter.  
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Chapter 2  Belle II Experiment and 

Beamstrahlung 

2.1 Introduction 

As mentioned in the previous chapter, the physical properties of particles and the way 

they interact can be searched and studied at accelerators and colliders. 

Some particle accelerators like SuperKEKB are based on a common concept which 

consists of accelerating a charged particle or an antiparticle (electron or positron) using 

electric and magnetic fields. They can be linear or circular, and they range from MeV to 

TeV kinetic energy according to the scientific fields that are designed to be used in. 

On the other hand, colliders as their names suggest, are built to simply collide 

particles together which can be done in two different ways: fixed target colliders where 

an accelerated beam of particles strikes a stationary target, and beam-beam colliders 

where two beams of particles are accelerated in opposite directions in order to collide and 

eventually lead to the production and discovery of new particles.  

2.2 Beam Accelerators 

An accelerator can be thought of as an ensemble of multiple parts performing 

different tasks. Some of the tasks performed in an accelerator consist of generating, 

separating, forming, and accelerating beams of electrons and positrons. When parts are 

linearly arranged, the accelerator is called a LINAC; if they are arranged in an 

approximate circular ring, the accelerator is called a circular or ring accelerator. 

We ask the following questions: how can particles be produced, what are the tools 

needed to separate and accelerate particles, and how can a bunch of particles be grouped 
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together? More than that, one could ask about specific details like what energy do 

particles have, what phenomena affect their stable orbits inside the beam pipe and what 

will happen after the beams collide? 

2.3 The KEKB and SuperKEKB   

One of the two original asymmetric colliders studying B-meson physics was the 

KEKB accelerator in Tsukuba, Japan. SuperKEKB is being built in the same tunnel to 

improve on the research done at KEKB, starting in 1999. The laboratory name is KEK, 

and its layout is shown in Figure 2.1. 

 

Figure 2.1: Aerial Picture of KEKB 

KEK stands for the High Energy Accelerator Research Organization. It conducts 

numerous experiments, including the Belle experiment at KEKB. The Belle collaboration 
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comprises more than 500 physicists and engineers from universities around the globe 

including Wayne State University. 

KEKB consisted of two rings of a circumference of 3016 meters each and located 

underground at a depth of 10 meters. Both KEKB and SuperKEKB operate according to 

a similar scheme, but SuperKEKB has numerous upgrades to produce and maintain 

smaller beams, and cope with larger beam currents. The SuperKEKB schematic is shown 

in Figure 2.2. 

 

Figure 2.2: Diagram of the Future SuperKEKB 

The two beam pipes are housed in the same tunnel, side by side. The two synchrotron 

rings are called High Energy Ring (HER) enclosing the high energy particles (electrons), 
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and Low Energy Ring (LER) enclosing the low energy particles (positrons). There is one 

place at the SuperKEKB where the two pipes intersect and the two beams collide, called 

the Interaction Region (IR), and surrounded by the Belle II detector. KEKB and 

SuperKEKB produce B-mesons at center-of-mass-energy in the Upsilon ϒ (4S) mass 

region, which is an ideal energy for observation of rare events because the B-mesons are 

produced nearly at rest. 

2.3.1 SuperKEKB Upgrades  

SuperKEKB is the updated version of KEKB which means not all parts get the 

upgrades but only those critical for luminosity improvement. 

In regard to the beam pipes, their inner surfaces will be coated with a thin layer of 

Titanium Nitride which helps in degassing the pipe and reducing all residual gas inside 

the pipes. Additionally, large antechambers are added to the arcs to help absorb X-rays 

from synchrotron radiation (SR), and to have larger area gas capture elements (Figure 

2.3).  

 

Figure 2.3: New Beam Pipe 

The magnetic quadrupoles at the interaction region (IR) as well as the dipole lattice in 

the rings will also be upgraded, the former for stronger final focusing, the latter to reduce 
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the accelerator emittance parameters (defined below). This, together with higher currents, 

will boost the luminosity by a factor of 40 higher than that of KEKB. 

One of the Interaction Region upgrades will be the Beam Pipe. Firstly, its diameter 

will be reduced from 20 mm at the entrance of the beams down to 9mm where the beams 

cross each other. It will be made out of tantalum to absorb as much as possible of 

synchrotron radiation and to protect the silicon detector against it. The metallic inner 

surfaces of the beam pipes before the interaction region will be also coated with a thin 

layer of gold for the same reason. The IR Beam Pipe schematic is shown in Figure 2.4. 

 

Figure 2.4: New Beam Pipe at the Interaction Region 

The KEKB and SuperKEKB machine parameters are summarized in Table 1. It 

should be noted that the electric currents of the LER and that of the HER are almost twice 

the KEKB currents. The time separation between two consecutive bunches and the 

collision frequency at SuperKEKB can be found to be about 4ns and 250MHz, 

respectively. 

 KEKB SuperKEKB 

 LER HER LER HER 

Energy (GeV) 3.5 8.0 4.0 7.007 

Beam Current(A) 1.637 1.188 3.6 2.62 

Number of Bunches 1584 2503 

  
      940 940 48 63 
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      5.9 5.9 0.27 0.3 

  
     147 170 10 10 

 
 
      1200 1200 32 25 

  
      6 7 6 5 

Populations 6.410
10

 4.710
10

 9.010
10 

6.510
10

 

εx( rad-nm) 18 24 3.2 4.6 

εy( rad-nm) 0.15  0.0085  0.0132  

Circumference (m) 3016 

Luminosity (cm
-2

s
-1

) 2.110
34 

810
35

 

 

Table 1: Machine Parameters of SuperKEKB and KEKB 

2.3.2 LINAC of the SuperKEKB 

 The LINAC is the first step in the accelerator chain of the SuperKEKB system. It is 

shown in Figure 2.5.  

This accelerator is 483m long and contains two electron guns shooting electrons into 

two different tubes where electron beams get longitudinally accelerated by RF cavities, 

where oscillating electric fields are used to accelerate the beams passing through them 

(Figure 2.6). RF cavities are also used in the rings to replenish the energy lost through 

radiation. 

Electrons in one pipe continue to the end of the LINAC; others in the second pipe 

strike a tungsten target producing positrons with a wide momentum spread. This 

generates a positron beam which is broadly distributed in angle and momentum space. 

Positrons get collimated and accelerated in the remaining part of the LINAC through RF 

cavities. 
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Figure 2.5: LINAC of the KEKB 

 

Figure 2.6: Operational Principle of RF Cavities 
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The beam emittance measures how well collimated a beam is. In accelerator 

coordinates, x is transverse in the plane of the accelerator (horizontal), y is perpendicular 

(vertical), and z is along the beam direction of motion. The transverse emittance 

components           can be expressed in terms of the rms transverse beam widths 

          defined as follows [11]: 

           (2.1) 

 

           (2.2) 

 

   
                          (2.3) 

 

    
                            (2.4) 

 

                       (2.5) 

 

                        (2.6) 

 

Where x’ and y’ are the derivatives 
  

  
 and 

  

  
  respectively;         represents the 

beam’s distribution function. 

The lower the beam emittance is the finer the beam size. This leads to more 

overlapping between the colliding beams, and eventually increases the luminosity 

(defined in Ch. 1, and formally defined below). 

At the end of the LINAC (Switchyard), there is a series of dipole magnets called 

septum shown in Figure 2.7. These magnets provide a strong pulsed magnetic field that 
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kicks the electrons in one direction into their ring and positrons in the opposite direction 

into the damping ring before they get injected into their own ring for colliding. 

The damping ring structure is very similar to a storage ring but smaller if compared to 

it. It is wrapped with a series of quadrupoles, dipoles, and RF cavities helping in 

collimating and accelerating the positrons. Moreover, special magnets, with alternating 

up and down dipoles, called wigglers, speed the rate of energy loss. After that, the 

positron beam becomes ready to be injected into the corresponding storage rings 

synchronously with the electrons but in opposite directions. 

 

Figure 2.7: Beam Kicker Schematic 

2.4 Storage Rings 

A storage ring as its name suggests is a ring where particles can be stored and 

maintained at the same energy for a long time (few minutes to few hours). Such a ring is 

not perfectly circular but rather an octagon with eight curved corners. At each bend, a set 

of dipoles acts as a prism to bend the beam toward the next straight section (Figure 2.8).  



19 
 

 
 

 

Figure 2.8: SuperKEKB Dipole Magnet 

The transfer matrix M describing the transverse motion of a charged particle inside 

dipoles in terms of its length l can be written as [2]: 

     
  
  

  (2.7) 

 

Where M changes the state of the charge particle say from   
    to another state  

  

  
   

as follow: 

  
  

  
      

 

  
   (2.8) 

 

On the storage ring and along with dipoles, there are magnetic quadrupoles on the 

lattice serving as focusing and defocusing lenses to focus and defocus the beam in order 

to keep it within the Beam Pipe volume as shown in Figure 2.9.  
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Figure 2.9: Left: Quadrupole Magnet Oriented at 45deg, Right: Magnetic Field Lines 

Quadrupoles only focus in one transverse dimension and defocus in the other. One of 

the great pillars of accelerator technology is the fact that a triplet of alternated focusing 

and defocusing quadrupoles, with well chosen strength, has the overall effect of focusing 

(weakly) in both transverse dimensions. As such, quadrupoles act as magnetic lenses on a 

diverging beam, keeping it focused and inside the Beam Pipe. 

The focusing scheme is shown in Figure 2.10. 

 

Figure 2.10: Quadrupole Focusing Principles 
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These magnets also affect the state of particles inside the storage ring by their own 

transfer matrices: 

              

  

 
 

 
     

(2.9) 

 

               

  
 

 
   

(2.10) 

 

In addition to dipoles and quadrupoles, another type of magnets can be added to the 

lattice to correct chromatic effects, the Sextupole (Figure 2.11).  

 

Figure 2.11: LEFT A Sextupole Design, Right: Magnetic Lines of a Sextupole 

As a result, the lattice of all magnets can have a total transfer matrix equal to the 

multiplication of all matrices acting on the initial to obtain the final state of the particle as 

shown in Eq. 2.9. 

Questions about the beam size, collision type, and beam diagnostics can be simply 

answered or understood by using a very effective tool called the large angle 
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beamstrahlung that will be discussed later in this chapter. However, the first question 

finds its answer at an accelerator whose name was already mentioned: the SuperKEKB.  

2.5 Luminosity 

The luminosity can be expressed in terms of the beams densities as: 

                                            (2.11) 

 

Where f is the collision frequency,        represents the both beams density,     and 

  clearly represent the velocities of the beams.  

The luminosity formula can be quite cumbersome, but in the special case of two equal 

beams in a head-on collision the integral can be easily solved to give: 

   
     

       
 (2.12) 

 

Where N1 and N2 are the beams populations, and f is the collision frequency. The best 

way to increase luminosity is to decrease the transverse beams dimensions  x or  y. 

Figure 2.12 shows the beam transverse size improvement that is expected when going 

from KEKB to SuperKEKB. 

 

Figure 2.12: Electrons-Positrons Beams at KEKB (Left) and SuperKEKB (Right) 
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Compared to KEKB, at the new SuperKEKB the beams are focused much more 

tightly. At the same time, the new beams, only 60 nm high, may jitter due to ground 

motion, and have emittance growth from magnetic fringe field or magnetic drift. 

The main point of our project is to provide a monitor that detects and diagnoses such 

effects, so that they can be corrected by small corrector magnets. Also, this device should 

be useful during accelerator experimental periods, called Machine Studies, when machine 

parameters are artificially changed in an effort to learn more about the Twiss matrix of 

the machine. Great importance is given to be able to observe the machine parameters at 

the IP directly. 

2.6 The Belle II detector 

For sake of completeness, a brief overview of the particle detector surrounding the IP 

is given. The Belle II detector is a general purpose particle detector. It contains many 

layers specialized in detecting particles decay vertices, momenta, velocities, and energy. 

Starting from inside, there is a silicon vertex detector, a drift chamber, Cherenkov Ring 

Imaging, electromagnetic calorimeter,  and the muon chamber (which doubles also as 

Hadronic calorimeter) as shown in Figure 2.13. 
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Figure 2.13: The Belle Detector 

The silicon vertex layer represents the first layer of this detector and has high 

resolution detection. The next layer is the tracking chamber or the central drift chamber 

which captures and tracks various charged particles to determine their momentum and (in 

conjunction with the silicon vertex detector) eventually reconstruct decays’ vertices.  

This inner layer is encapsulated by the so-called ring imaging Cherenkov detector, 

and it is part of the particle identification systems. This detector measures a charged 

particle’s velocity, and this information, together with the particle momentum, leads to 

identification of the particle’s mass. When a charged particle enters the medium 

(radiator) at a speed greater than the phase velocity of light, it radiates (mainly in the 

UV), and the photons are measured by a photon detector.  
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The Cherenkov ring imaging layer of Belle II is surrounded by a layer that is 

designed to measure energy of penetrating particles and is called calorimeter, which 

measures the particle’s energies. The calorimeter can also detect neutral particles.  

The outermost layer of the Belle II detector is called the Barrel Muon Chamber that is 

designed for detecting muons as they escape the previous layers without interaction.  

Although Belle and Belle II are alike in design, they differ in angular coverage (due 

to the different energy asymmetry of the two colliders, and the closer final focus 

quadrupoles), and the detectors, in particular significantly better vertex and mass 

resolution. 

2.7 Large Angle Beamstrahlung 

 When the two relativistic beams cross one another they emit radiation as each beam 

bends the other due to their electromagnetic fields. This radiation is called beamstrahlung 

and can be used to monitor the beam interaction. It is somewhat similar to that of a 

synchrotron radiation emitted by charged particles suffering bending in a very long and 

strong quadrupole magnet.  The only difference is that instead of a strong long magnet, a 

strong short magnet    
  

   
      is acting on the particle, thus short magnet 

radiation.  

Short magnet radiation [12] has a much broader angular distribution than normal 

synchrotron radiation, which is mainly at angles of order 
 

 
 with respect to the particle 

direction of motion. In the case of the device presented below, detection is done at angles 

close to 10 mrad, where most of the machine background radiation is absent.   is the 
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Lorentz factor and can be estimated by    
 

  
 to be 8000  (LER) and 14000 (HER); E is 

the energy of the charged particle, and E0 is the rest energy of an electron (0.511 MeV). 

Our techniques consist of designing and building the beamstrahlung detector in such a 

way that it helps in analyzing polarized radiation having wavelengths within the visible 

range (350nm to 650nm). The beamstrahlung detector parameters are determined and 

shown in Table 2. 

 LER HER 

Polar Angle (mrad) 9.9    10.4 7.8    8.2 

Azimuthal Range (rad)  
 

 
           

 

 
       

Spectral Wavelength (nm) 350     650 

 

Table 2: Beamstrahlung Detector Parameters 

The radiated energy emitted by a particle can be expressed in terms of the angular 

distribution and polarization parameters          as follows [12]: 

 
  

  
  

   

    
         

                  (2.13) 

 

Where      
         

      the sum of both polarizations; m is the electron’s 

mass and e its elementary charge; B (z) is the magnetic field of the beam causing the 

deflection; c is the speed of light. Further, 

              
  

  
      

      
          (2.14) 

 

                 
  

  
   

              (2.15) 

 

              (2.16) 

 

These two functions along with an appropriate small angle approximation helped in 

simplifying the radiated energy formula and in writing simulation software to calculate 
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the total power for each polarization. All of that was already accomplished by Ryan 

Gillard in his dissertation. 

The computed powers and all beamstrahlung parameters can be summarized in Table 

3. 

 LER HER 

Total Power (W) 1224 2033 

Illumination (eV) 510
10 

7.810
10 

Collinear Ux/Uy 2.89 2.93 

Large Angle Ux/Uy 5.21 5.37 

Total Photons/Mirror 1.3710
10 

2.0010
10 

 

Table 3: Beamstrahlung Parameters. 

Illumination refers to the visible energy intercepted by our detector. 

It is evident that the idea behind designing and building such a detector is to correct all 

beam misalignments by reconstructing the photon fluxes and is covered in the next two 

chapter. The way to reduce other background is by observing beamstrahlung through a 

double collimation telescope. The two collimators, discussed in Chapter 3, are the 

extraction window and the Wollaston prism. 

Beamstrahlung can be used as a tool of beam diagnostics [13]. The detector helps in 

collecting measurements of the power radiated in each linear transverse polarization in a 

way that provides a signature of the beams properties and can be compared against the 

calculated energy for each polarization as shown in Figure 2.14.  
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Figure 2.14: Normalized beamstrahlung Powers vs. the Collisions Types 

The top-left part of the figure shows the typical case of a head on collision where the 

two beams (solid and dashed lines) are on top of each other (perfect) collision. Below it, 

the normalized powers, in x and y for each beam, are plotted as two arrows. The next one 

is when one beam is in a vertical offset and the beams basically miss each other 

diminishing luminosity. The signature is that the radiation emitted by both beams 

becomes y-polarized, by the same amount. Other mismatches, depicted in Figure 2.14, 

also produce unique polarization patterns. 

From the number of the observed photons the user would obtain the integrated power 

received by all PMTs, then compare measurements to the theoretical ones that were 

computed numerically and corrections or adjustments to the beams will be made 

accordingly. Furthermore, the spectral analysis helps in subtracting all unexpected 

backgrounds by comparing data at different wavelengths. 

The next chapters show the complete design of a detector that aims at answering all 

these beam overlap questions. 



29 
 

 
 

Chapter 3 : Designing the Beamstrahlung 

Detector 
 

3.1 An overview on the large beamstrahlung detector:  

As mentioned in the previous chapter, the beamstrahlung detector (LABM or Large 

Angle Beamstrahlung Monitor) is used at Belle II in SuperKEKB to detect radiation due 

to the interaction of crossing beams. The detector is based on extracting light from the 

main beam pipe, where the beams intersect, and to get this radiation into the optics box as 

shown in Figure 3.1. It is, basically, a narrow telescope, its acceptance limited by a 

double collimator, to view only a small region inside the Beam Pipe at any given time. 

 

Figure 3.1: Schematic of the Beamstrahlung Detector That Will Be Used at BELLE II 

The main components of the LABM are a Beam Pipe insert, produced by KEK. This 

object extracts light from the Beam Pipe (in vacuum) to the outside world. The next 
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component is the Primary Elbow, which is a remotely controlled mirror used to point the 

LABM to different regions inside the Beam Pipe. The next part, the Optical Channel, 

delivers the light to a low-radiation area and to the Optics Box. The Optics Box analyzes 

the light polarization and spectrum; all these parts were built at Wayne State. The 

electronics and Data Acquisition are the responsibility of Sinaloa and Puebla, and of 

University of Tabuk. 

From the primary elbows, light is reflected through an Optical Path shown in Figure 

3.1, consisting of aluminum tubes with other, larger “manual” elbows. Manual elbows 

connect two tubes of 2in and 4in or two 4in tubes. From manual elbows, radiations 

continue their paths all the way down through a concrete floor to a room where the optics 

box resides. 

Finally, both beams of light get into the optics box through two windows to meet a 

Wollaston prism, which is a polarizer, splitting the light into linearly polarized 

components. Each polarized beam is guided onto a ruled diffraction grating. Once 

polarized light hits the grating, it gets diffracted and decomposed into its basic 

wavelengths that can be detected by an array of four photomultipliers carried by a 

conveyor belt. 

The main role of the conveyor belt is to swap photomultipliers of the same array or of 

a different one (detailed in conveyor belt section) for calibration purposes. The optics box 

also contains four drivers and their 12Volts power supply for primary elbows stepper 

motors in addition to one 24Volt driver for the conveyor belt stepper motor. On the back 

of the optics box there is a circuit board with 16 channels to feed all PMTs with high 
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voltage and to get signal from PMTs through electric wires. From outside, the circuit 

board has 16 sockets allowing the user to connect them to 16 digital counters as well as 

sockets for the motors drivers. 

3.2 Beam pipe and its components 

The Beam Pipe is an 8cm (3.15in) titanium pipe, in which beams circulate in high 

vacuum. To get the wavelengths of interest outside, two Beryllium mirrors of 22.8mm
2
 

each are placed away from each other by 6.2cm inside the beam pipe at 45 with respect 

to the Beam Pipe axis.  

The two Beryllium mirrors are small in size to limit RF heating and noise (about 30 

Watts at nominal conditions, the mirrors are water cooled). One ramification is that 

diffraction effects are not negligible, but also they act as the first collimator in a double 

collimator scheme (the Wollaston prism is the other collimator). On the beam pipe and 

across from mirrors, there are two windows of 8mm
 
diameter made of fused silica, 

through which the reflected radiation escapes the beam pipe. Each window is mounted on 

a flange which connects mechanically to the LABM (Figure 3.2). 
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Figure 3.2: LABM Light Extraction Element in the Beam Pipe. 

3.3 Before Primary Elbow  

Since primary elbows support connections between one inch tube and another of 

different size mainly 1.5in, they have to have two different aluminum tube adapters. The 

tube adapters are made out of two identical aluminum pieces of ½in thickness and 

2.52.5in
2
 each and can be easily mounted on the elbow.  One of the plates has a circular 

aperture with a threading diameter of 1.9393in, and it can be placed on the front of the 

elbow via screws as shown in Figure 3.3. 

 

Figure 3.3: The Front Adaptor Tube That Connects Primary Elbow to the Beam Pipe 

adapter. 

The other one however has a circular aperture of 1.1811in, and can be placed on the 

top of the elbow via screws. It is made in a special way so that it assures the connection 

between primary elbow and the aluminum pipe through four set screws on the one side. 

On the e other side, the aluminum tube was machined as a solid piece having a plate 

shape allowing the tube to be connected to the main beam pipe as shown in Figure 3.4. 
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Figure 3.4: Primary Elbow Top Adaptor (left), Aluminum Tube (middle) 

The finished adapter connecting the primary elbow the beam pipe is picture in Figure 

3.5. 

 

Figure 3.5: The Primary Elbow to Beam Pipe Connector 

This adapter tube has a small round window of 0.5in diameter with a holder allowing 

some other tools, such as an LED strip or an optical fiber transmitting light to inside the 

adapter, to be inserted in for preliminary test as shown in Figure 3.6. 



34 
 

 
 

 

Figure 3.6: L-R Diffuser and LED Strip at the Center of Adapter Tube 

The diffuser receives light from outside through an optical fiber and diffuses it in all 

directions helping in testing elements alignment and PMTs. The LED strip has two LEDs 

of different colors manly red and green. The latter not purely chromatic, but they have 

some bandwidths spread including the intended one that the optics box was originally 

made for. This tiny tool has the same role as the diffuser but with more intense light with 

some specific wavelengths, and will serve to visually align the Optical Channel. 

3.4 Primary Elbow: Purpose, Components Design, and Production 

The first elbow in the Optical Channel is the Primary Elbow. It is the first element to 

be directly connected to the view port on the beam pipe. As stated earlier, this device 

points the LABM in different directions. It is located in a high radiation zone that cannot 

be accessed; therefore, the mirror inside the elbow has to be remotely controlled. Also, 

having two identical view ports, one at the top and one at the bottom of the Beam Pipe, 

requires two primary elbows on either side, four in total. 
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A technical difficulty in building this device was that the mirror control system that 

was usually made out of plastic. Angular orientation is driven by two screws pushing and 

pulling at opposite points along a diameter of the mirror. The motion of the screws 

changes the distance between the two points of contact, which is accommodated by the 

plastic stretching. Because plastic cannot be used in this environment, square brass rods 

were used, which can move along the axels. 

A primary elbow comes out to be a 2.52.5in
2
 black anodized and finished aluminum 

box of 8in long and ¼in thick to protect all components inside it. It is designed in a 

compact way so that it contains small sized components like: an elliptical flat mirror, a 

45
0
 mounting adaptor, a mirror mount and its studs, two square brass rods, two stepper 

motors and their mount, a circular window on one of its sides, and finally a back cap as 

depicted in Figure 3.7. 
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Figure 3.7: Primary Elbow Design and Its Constituents. 

3.4.1 The Primary Mirror 

It is located inside the primary elbow and it is the mirror where the second reflection 

takes place after the beryllium mirror inside the Beam Pipe. It is the eye that allows 

looking at different radiations areas inside the beam pipe. It is an elliptical flat mirror 

with 0.875in and 1.237 in minor axis and major axis, respectively. The mirror is oriented 

at 45 degrees and is coated with a UV-enhanced aluminum layer on its first surface to 
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avoid light attenuation in the medium of the mirror. The mirror is mounted on a post 

through a small aluminum disk of 1in in diameter and ¼ in thickness having a tapped 

hole at its center and is being glued to it such that the center of the disk is aligned with 

that of the reflecting face as depicted in Figure 3.8. 

 

Figure 3.8: An Elliptical Primary Mirror and Its Mounting Disk 

The picture also shows that the aluminum disk can be glued to the mirror at an offset 

about its thickness from the center of the back elliptical face. The technique of 

determining where to glue the disk consisted of laying down the mirror on its back and 

tracing it on a piece of paper. Cutting all unnecessary parts helps in folding it 

symmetrically in both directions. After determining the center of the ellipsoid, the later 

was translated by exactly the thickness of the aluminum disk (¼in) where the center of 

the disk should be. 

3.4.2 The 45
0
 Mounting Adapter: 

The primary mirror can be held at 45 degrees from a ½in diameter post by using an 

easy-to-use aluminum adapter of 1” offset to hold any component as shown on the right 
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of Figure 3.9. A socket head cap screw for the ¼in counter bore allows the mounted 

component to be rotated and fixed in position in the 45° plane if necessary.  

 

Figure 3.9: 45deg Aluminum Adapter (left) With the Mirror (right) 

3.4.3 Mirror Mount and Its Studs: 

The mounting adapter can be mounted on a 1in mounting surface having four 

identical and tapped holes of a black anodized aluminum miniature straight mirror mount 

shown in Figure 3.10.  

 

Figure 3.10: Mirror Mount Schematics 

The mount includes two fine resolution angular adjustment screws offering the 

mounting surface two degrees of freedom at a rate of 0.015in per turn. It also has on its 
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four sides four tapped holes to allow the mount to be installed inside the elbow. To get 

the mounting surface back to its original position, the mount is also provided with a stiff 

spring joining the installed part and the mounting surface. Moreover, the mount can be 

installed and maintained centered with the elbow by using two long screws that go 

through two studs as shown in Figure 3.11. 

 

Figure 3.11: Mirror’s Mount Connection to the Primary Elbow 

3.4.4 Square Brass Rods: 

Because the mount was designed for manual control, some new designs must be 

invented to make a mechanical connection between stepper motors and screws. The axel 

of the stepper motor and the diameter of the screw have different sizes, 0.157in and ½in, 

respectively. Therefore, to make the screws compatible or controllable by the stepper 

motor, a square piece of brass as big as that of the axel size was glued on the screw at its 

center. Then the square brass rod encloses the motor axel and the square piece of brass 

that is being glued to the screw. 

When the motor rotates, the brass rod rotates with it turning the screw backward or 

forward and, thus, the square piece smoothly slides inward or outward from the brass rod 
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with no friction as shown in Figure 3.12. Note that intersection length between the cubic 

piece and the brass rod is ¼in which is enough for adjusting the mirror. Typically, each 

turn pushes inward or outward the mounting surface by 0.015in. Thus, the intersection 

distance requires 
     

     
    turns which is of course more than enough to center the 

mirror.  

 

Figure 3.12: Square Brass Rods Schematics. 

3.4.5 Stepper Motors and Their Mount: 

As detailed in the previous paragraph, there are two stepper motors inside each 

primary elbow, one per screw.  The stepper motors used in primary elbows are all 

identical, with size 0.80.8in
2
 and axel diameter of 0.157in (Figure 3.13). Each stepper 

motor is powered by a 2A, 12V driver. The low power is sufficient since the torque 

needed to rotate a screw is not large. 
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Figure 3.13: 12V-2A Electric Motor Design. 

The motors need a mount to hold them diagonally inside the elbow as shown in 

Figure 3.13. The mount of 22in
2
 and ½ in thickness has two square windows of 

0.80.8in
2
. Each window is provided with a tiny screw that can be tightened in to hold 

the stepper motor in the specified place. On the outside of the mount, there are two pin 

holes designed so that two pins can be easily inserted in and taken out to attach and 

detach the mount to and from the elbow, respectively. The reason for using pins and not 

screws is so that the motors do not get jammed before they operate. Notice that the 

motors are to be held diagonally because the mount’s screws are diagonally positioned on 

the mount as shown in Figure 3.14. 

 

Figure 3.14: Mounting the Motors on Their Mount inside Primary Elbow. 
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3.4.6 Circular Window: 

This window was designed to allow inspection of the brass rods system during 

assembly.  It also allows the user to manually control the mirror for a preliminary testing 

by rotating the mount screws as shown in Figure 3.15. 

 

  Figure 3.15: A Primary Elbow and Its Circular Window to Viewing the Brass Rods 

3.4.7 Back Plate: 

It is an aluminum plate of ¼in thickness and 2.52.5in and is used to cover and 

protect the elbow from the back. It has a ½in hole allowing the cables of the stepper 

motors to get outside the elbow (Figure 3.16). 
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Figure 3.16: Back Plate That Covers a Primary Elbow and Allows Motors Wiring 

3.4.8 Primary Elbows Production and Hardware: 

A finished primary elbow is depicted in the following picture (Figure 3.17).  

 

Figure 3.17: Primary Elbow 

Each of the stepper motors inside a primary elbow can be driven by a 12V driver 

shown in Figure 3.18. Because drivers receive signals from a computer through a serial 

port via a RS-232 cable, up to sixteen drivers can be daisy-chained at the same time 

through one serial port reducing the number of wires significantly.  
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Figure 3.18: A 12V Driver Used to Control a Stepper Motor 

The driver can be accessed and controlled from a Windows terminal where the 

terminal should be set to its regular setup: 9400 baud rate, 8 bits, no parity and 

handshaking, and 1 stop bit. Each driver has a hexadecimal coding spindle switch 

allowing the user to select the desired address. Testing the codes and controlling stepper 

motors will be explained in the next chapter. 

3.5 Piping 

These are all pipes and tubes connecting different elbows from the main beam pipe all 

the way to the optics box; there are two different types of them, 2in and 4in pipes.  All 

2in pipes connect to the Primary Elbow.  The 2in pipes are used just in region where the 

beam pipe is. As light travels farther inside the pipes, the alignment is more uncertain and 

4in pipes are used (Figure 3.1).  The light path through all pipes and tubes from the view 

ports to the optics box is about 8.5(11) meters long for the upper (lower) window. The 

4in pipes will have baffles of the same size to block all internal reflections. 

3.6 Manual Elbows Design, Production, Sandblasting and Anodizing 

The manual elbow was designed in a similar way that a primary elbow was, but with 

several differences. The mirrors in manual elbows are aligned manually and once, during 

installation. Also, they are made out of 0.125in thick aluminum plates that can be joined 

together via screws or welded together.  

Manual elbows are also designed so that at the front, between the tube adapter and the 

body, there is a slit allowing a 1mm diaphragm to fit in. The diaphragm is a thin piece of 

aluminum that has a small hole at its center and can be inserted allowing the collimation 
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of light. Diaphragms of different holes sizes can be used not only to collimate light, but 

also to adjust manual mirrors and guide light at the center of the tubes. The first manual 

elbow in each Optical Channel adapts to the 2in pipe coming from the Primary Elbow 

(Figure 3.19), while all other elbows connect to 4in pipes. 

 

Figure 3.19: Back, Front cover, and Two Different Adapter Tubes That Can be 

Mounted on The Front of a Manual Elbow. 

Manual elbows have bigger mirrors (1.875in minor axis and with mirror mounts of 

1.5x1.5in
2
) that are made in the same way the primary mirrors were. The 1.51.5in

2 

mounts can be found in many places in the detector including the Optics Box. Such 

elements must be mounted on straight mounts as portrayed in Figure 3.20. Only two 
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screws are used to hold the mount to the elbow’s body to make dismounting the mirror 

easier especially during first time system assembly.  

 

Figure 3.20: An Elliptical Flat Mirror on a Mount inside a Manual Elbow Reflecting 

Light 

Because square pipes of 44in
2
 dimensions are not commercially available, these 

boxes were machined and made by welding aluminum pieces together. As a result, the 

aluminum becomes dirty and needs to be sandblasted. Thus, all manual elbows were 

cleaned and their surfaces were made rough through sandblasting so that they can be 

easily anodized as shown in Figure 3.21. 
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Figure 3.21: A Sandblasted Manual Elbow (Left), A Black Anodized Finished Elbow 

(Right) 

3.7 Optics Box 

The optics box is the core of the LABM, an enclosure of (182444) in
3
 made out of 

0.125in black anodized aluminum plates. It is located at the end of the Optical Channel. It 

is designed to include and protect all other optical elements including Wollaston prisms, 

reflecting mirrors, ruled diffraction gratings, prisms-lenses arrays, a conveyor belt, arrays 

of photomultipliers tubes (PMTs) and their mu-shields, and two electronic circuit boards, 

as shown in (Figure 3.1). Two optics boxes, one for each beam, were produced. Each 

Optics Box observes both upper and lower viewports, and is composed of two Optical 

Benches (Figure 3.22).  

 

Figure 3.22: The Optics Box and Its Constituents, Side View. 
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The front view of the Optics Box, showing the two entry windows for the radiation 

are shown in Figure 3.23. 

 

Figure 3.23: Front View of Optical Box 

3.7.1 Wollaston Prisms 

The first optical element, located at the very entrance of the Optics Box, is a 

Wollaston prism. Wollaston prisms provide polarization information about any incoming 

not polarized beam as depicted in Figure 3.24. A Wollaston consists of two identical 

prisms glued to one another base to base. The prisms used in this detector are ¾x¾x½in
3
. 

They are encased in a manual precision rotator that can be locked into position after 

alignment. 
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Figure 3.24: Wollaston Prism Splitting One Beam into Two Orthogonally Polarized 

Beams. 

The Wollaston prism is also called the beam polarizer or splitter because it splits all 

incoming non-polarized light into two orthogonally polarized beams, one along the x and 

another along the y. The polarization parallel to the mid-plane is also called the 

extraordinary one; the other one is called the ordinary polarization. Both prisms are 

mounted on the inside of the front of the Box (Figure 3.25). 

 

Figure 3.25: In This Optics Box Side View Wollaston Are Symmetrically Installed  

on the Front 
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3.7.2 Ruled Diffraction Gratings 

Ruled diffraction gratings are used to decompose a polychromatic beam of light into 

its component wavelengths.  These gratings are used because they, unlike all other types 

of gratings, have the highest intensity in the first order peak. Because the first peak angle 

depends on wavelength, optimal efficiency is obtained while spreading the light in angle 

according the grating formula: 

                       (3.1)  

 

Where m is the order of diffraction,   is the diffracted wavelength, d is the grating 

constant which can be calculated out of the number of groves of the grating,       
 are 

the incident and the diffracted angles, respectively.  

A ruled diffraction grating can be depicted in Figure 3.26 and the investigation of 

gratings efficiencies were done and reported in Chapter 4. 

 

Figure 3.26: Ruled Diffraction Grating Schematic and Angle Definition. 

To choose a diffraction grating that meets all diffraction specifications, the number of 

grooves per millimeter and blaze angle which determine the specific wavelength at 

maximum efficiencies (400nm to 800nm) according to the formula given in equation 
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(3.1) must be carefully chosen. The efficiency of such a grating can be determined at the 

nominal frequencies form the efficiencies plots shown in Figure 3.27. 

 

Figure 3.27: Efficiency Curves for Ruled Gratings at Various Wavelengths 

It is clear that from the above a ruled grating with 600grooves/millimeter would be 

the best option due to its maximal efficiency (78%). 

In regard to the size of the grating, 22in
2
 was chosen. The beam size (0.8x0.8mm

2
) 

could be contained in a smaller grating, but it is desirable to contain also diffraction 

fringes. All ruled gratings are mounted on a straight 1.51.5in
2
 manual mount that is 

fixed on the Optical Bench via screws as shown in Figure 3.28. The mount position can 

be adjusted, facilitating alignment. 
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Figure 3.28: Left: 600 Grooves/mm Ruled Diffraction Grating Design, Right: Photo of 

Gratings/Mount Assembly. 

3.7.3 Optical Benches 

Each Optics Box contains two Optical Benches, one per viewport. Each Optical 

Bench is divided into two symmetric parts, each analyzing one polarization component. 

Each part contains one ruled diffraction gratings, two identical reflecting mirrors, and one 

set of four different prism-lens light collectors. The Benches are separated by a distance 

of 3.9375in allowing the stepper motor of the conveyor belt to rest in between them. 

Reflecting Mirrors are used to reflect light inside the optics box from the Wollaston 

prisms toward the gratings and to change the reflection plane from that of the prism to 

that of the gratings. 

Gratings have to be coplanar with photomultipliers carried by the conveyor belt. As 

the ruled gratings were chosen to have high efficiency in the frequency domain, also 

mirrors have to be chosen the same way. Mirror efficiency measurements are reported in 

Chapter 4. All mirrors have the same size of 1.875in and 2.652in minor and major axis, 

respectively, and the same coating (UV enhanced aluminum) as the Optical Channel 
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mirrors. For fine adjustment purposes, they are mounted on 1.51.5in
2
 manually movable 

mount which is mounted on a post of ½in diameter being fixed on the optics bench 

through screws as shown in Figure 3.29. 

 

Figure 3.29: Elliptical Mirror Mount. 

Positions as well as orientations of mirror are critical and were chosen so that a 

polarized beam after two reflections on the mirrors hits the diffraction grating and gets 

decomposed. The positions shown on the schematic are not random, but rather were 

picked by a computer program estimating all possible positions on a lattice and shown in 

Figure 3.30.  
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Figure 3.30: Half Optical Bench Schematics. 

3.7.4 Light Collectors Motivation, Design, and Failure 

The idea behind inventing light collectors was to accumulate all diffracted 

bandwidths of light coming from the gratings and have them focused at one point located 

at the front of photomultipliers so that they can receive all diffracted wavelengths within 

the same packet. A light collector is a 5in long dark object that has a truncated shape at 

5deg angle from inside where four reflecting surfaces are placed as depicted in Figure 

3.31. 
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Figure 3.31: A Light Collector from Side (Left) and Front (Right) Views 

The aperture in the front is a square window of 8.43cm
2
 through which a bandwidth 

of light can get inside the light collector. The back window however is a small square 

window of 0.16cm
2
 allowing light, after being collimated, to get out through it after 

multiple reflections inside the light collector. Thus, in front of each grating there was an 

array of four light collectors to focus light of different frequency ranges. 

Table 4 shows the optimal frequency range received by each light collector. 

Light Collector Top #1 #2 #3 #4 

Frequency range (nm) 650 – 585 597- 498 510 - 410 419 – 350 

Light Collector Bottom #5 #6 #7 #8 

Frequency range (nm) 350 - 422 410 - 513 499 - 600 588 – 650 

Table 4: Eight Light Collectors and Their Corresponding Bandwidths 

Light collectors tested poorly; as a result, they were replaced. 

3.7.5 Prisms-Lenses system: 

Since light collector failed, an optical correction piece was designed using prisms and 

lenses glued together. It is obvious that a prism with a proper angle can be used to align 

the rays parallel to its base. Then a lens focuses the rays into a small spot on the PMT. 

Thus, the problem was with what prism’s angle(s) and what focal distance should be 

considered. Regarding the focal distance, the chosen focal length is 15cm since the PMT 

is 12.5 cm away (incomplete focusing is obtained, but the PMT longevity will improve 

when light is somewhat spread out on the photocathode) as shown in Figure 3.32. 
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Figure 3.32: Light Path through a Prism-Lens Optical System 

The diagram shows the incidence angle ( ) of a beam at the air-prism interface, the 

refracted angle ( ) inside the prism of an angle (), ( ) is the refracted angle given by the 

ruled diffraction grating with respect to the horizontal, and finally the emerging beam 

being focused at the converging lens focal point located at 15cm away as mentioned 

earlier. 

The above schematic facilitates using Snell’s law to determine the prism’s angle as 

follows with n1 is the index of refraction of air and n2 is that of the prism. 

                   (3.2) 

 

But        
 

  
; Equation (3.2) becomes: 

                     (3.3) 

 

Since   is known and from the geometry of the problem,  can be expressed in terms 

of   and  as follows: 

 
 

 
                (3.4) 
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        (3.5) 

 

Substituting   back in Equation (3.3):  

                        (3.6) 

 

                                         (3.7) 

 

                     (3.8) 

 

                                         (3.8) 

 

               
            

                    (3.10) 

 

           
           

                 
             

         (3.11) 

 

        
        

   
    

               
 (3.12) 

 

Where n1 = 1 and n2 =1.55. Finally and after all substitutions and solving for the 

prism’s angle alpha: 

          
      

                      
  (3.13) 

 

Because each ruled grating is intended to diffract each polarized light into four 

different wavelengths (Red-Green-Blue-UV), four different incidences would be obtained 

and four different prisms are required and used along with the same converging lens since 

all PMTs are located in the same plane.  
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Solving the formula obtained in (3.13) for different diffraction angles and for both 

polarizations at different wavelengths, results of typical prisms angles can be tabulated in 

Table 5. 

Wavelength 

 (nm) 

Parallel/Perpendicular Polarization 

  (deg)  (deg) 

350 10.3 72.4 

405 6 79.3 

431 4 82.7 

500 -0.8 88.6 

532 -3.3 84 

635 -10.5 72.1 

650 -11.6 70.6 

Table 5: Various Prisms Angles vs. Different Angles of Incidence 

To replace the useless light collectors, two sets of four different prism-lens optical 

elements of angles 72, 75, 82, and 90 degrees can be determined from the above table 

satisfying the requirements and receiving all four bandwidths mentioned in previous the 

section.  

The maximal polarized efficiencies of the prism-lens can be theoretically calculated 

using Fresnel equations [14] at different interfaces the new element separating indices of 

same magnetic permeability  of: 

    
          

                    
 (3.14) 

 

     
          

                    
 (3.15) 

 

Where    and    represent the incidence and the refracted angle at an interface 

between two media of respective index of refraction n1 and n2. It should be noted that 
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only the refracted relative amplitudes           are recalled because only the polarized 

transmitted efficiencies would be points of interest. 

The transmission coefficients at an interface in both cases can be written as: 

     
         

         
    

  (3.16) 

 

    
         

         
    

  (3.17) 

 

The transmission coefficients become after using the new variables   and m defined 

below: 

   
  

  
        

       

       
 

          
  

 

   
  (3.18) 

 

          
  

 

      
 (3.19) 

 

Referring to Figure 3.32 and from the final expressions of both transmission 

coefficients, calculations can be performed four times (4 prisms) at four different 

interfaces: Air-Glass (A-G), Glass-Glue (G-GL), Glue-Glass (GL-G), and finally Glass-

Air (G-A). The index of refraction of glue is 1.56. 

Solving equation (3.2) for the incidence angle at the first interface of each prism 

assuming that the refracted ray normally strikes all other interfaces, Table 6 shows all 

necessary calculations: 
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  Interface Transmit- 

tance(%) Prism 

Angle 
   

      
                  

                      

86 6.207 

1.55 

1.003 

1.006 

 

1 

0.994 

 

1 

0.645 

 

1 91.0 90.8 

84 9.324 1.008 1 1 1 91.1 90.8 

75 23.651 1.054 1 1 1 91.9 89.8 

72 28.619 1.083 1 1 1 92.4 89.2 

Table 6: Total Transmitted Coefficient of All Prisms-Lenses 

Only the total transmittance is shown in the table since it can be easily shown to be 

equal to the multiplication of all transmittance coefficients at all interfaces. 

As explained previously, these prisms allow light to internally strike the lens 

normally so that all rays converge towards the focal point of the likely lens and 

eventually to the corresponding PMT as shown in Figure 3.33.  

The dashed lines of different colors represent the ideal incident diffracted rays off the 

ruled diffraction gratings on both sides of the optical bench. Notice the symmetric 

structure of both sides’ components which compatible with that of the PMT’s on the 

conveyor belt as detailed in the next section. 
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Figure 3.33: Array of 8 Prisms-Lenses Collection Mounted in Their Frames and Facing 

PMTs 

3.7.6 Conveyor belt and its stepper motor 

The purpose of the conveyor belt is to allow online swapping of the PMTs, to obtain 

precise relative efficiency measurements. The stepper motor is a 24V-2A stepper motor. 

The conveyor belt has 5in width. This conveyor belt dimensions were chosen that way 

because it needs to carry sixteen photomultipliers, each observing a viewport, as depicted 

in Figure 3.34. 
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Figure 3.34: Front and Side Views of Conveyor Belt Carrying 16 PMTs 

The eight photomultipliers on top in Figure 3.33 observe the top Optical Bench, four 

each for the x and y-polarization (A for x-polarization and C for y of the top view port). 

Likewise, the set of eight at the bottom is for the other Optical Bench (B for x-

polarization and D for y of the second view port). The conveyor belt, when rotated by the 

stepper motor which is remotely controlled via computer, moves all PMTs around giving 

all possible measurements of x and y polarizations of the same beam and/or different 

beams, yielding a matrix of measurements that can be used to measure relative 

efficiencies. All PMTs can be calibrated and characterized inside the Box. 

This conveyor belt is controlled by a PC through a serial port. The controller has a 

memory that saves programs in it, and it can be accessed from a Windows terminal. To 

view the programs saved into the memory or to run a control program, a protocol must be 

followed as it was tested (explained in Chapter IV). 

3.7.7 Photomultipliers Definition and Applications 

A PMT is a glass tube. On the face receiving the light, it has a very thin (few atoms) 

cesium compound layer coated inside it; as it gets illuminated by an incident photon, it 

emits one electron via photoelectric effect, with probability of 20% or lower (3e-), 
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towards the facing anode or dynode as shown in Figure 3.35. The inside of the PMT is 

held at vacuum. 

 

Figure 3.35: Photomultiplier and Photoelectric Effect Principle 

The first dynode, struck by an electron with kinetic energy of order 100 eV, will emit 

on average about 3 electrons. The phenomenon continues from one dynode to the next, 

which results in a significant electric current on the last anode in the order of 

milliamperes (mA). Since the electron trajectories inside the PMT are sensitive to 

magnetic fields, the photomultiplier should be covered with a high permeability material. 

This is called -shielding. Because the current or signal obtained by a PMT is still 

difficult to detect, it could be amplified before discrimination and counting. 

3.7.8 Electronics and Back plate 

This piece of hardware has two roles: one to cover the box from the back, and two to 

support the electronic board that is consisted of amplifiers, discriminators, high voltage 

sockets, and output terminals for counting.  The electronics is being developed in 

Mexico. Here only the back panel, which brings HV cables in and signal cables out, is 

discussed and shown in Figure 3.36.  
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Figure 3.36: Design of the Back Panel. 

The back-panel also feeds through the stepper motor cable. This produced back panel 

shown in Figure 3.37 will be embedding all electronics from Mexico and replacing the 

old electronics.  

 

Figure 3.37: High Voltage Sockets (Left) and Rails (Right) on the Back Plate 

3.8 The Old Electronics Setup 

The old electronics setup consists of a high voltage power supply to power up 8 

PMTs at a time, 8-channel amplifiers of gain 10 each, discriminators where signal 
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selections take place, and digital readouts to visualize the number of photon counts. The 

crate and its component are shown in Figure 3.38.  

 

Figure 3.38: Electronic setup 

This setup played a big role in this research because it was used many times in 

performing all tests including PMTs’ calibrations and characterizations. PMTs 

Characterization means determination of the dark noise or the background signal of each 

photomultiplier when there is no light inside the box. 

Fortunately, the box was built to be dark enough and the background signal was 

measured by each PMT. However, calibration means determination of the PMT spectral 

response, plateau and operational voltage well as the threshold voltage of each PMT. 

Spectral response means studying how each photomultiplier acts at different frequencies 

of light. 
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3.9 Anodized Aluminum Box 

Finally, all produced components and elements can be mounted inside the big optics 

box and would be enclosed and ready for use after testing as it will be explained in the 

next chapter. The real and final detector then looks like the one depicted in the below 

picture (Figure 3.39).  

 

Figure 3.39: Anodized Assembled Optics Box Containing All Optical Components 
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Chapter 4 : Tests and results 

4.1 Introduction 

All drawings were approved, parts were produced, and components including mirrors 

of different sizes, ruled diffraction gratings, and Wollaston prisms were bought from 

different sources. This Chapter details the measurement of efficiencies of the various 

optical components, to be used for determination of the overall detector efficiency and 

spectral response. 

4.2 Optics Box Composites Testing 

All component were tested using a unique setup consisted of three different laser 

diodes (red of 632nm, green of 532nm, and purple of 405nm), two polarizers in series, a 

beam splitter, and two photometers as shown in Figure 4.1. The 50/50 beam splitter 

allows monitoring of the laser intensity, which fluctuated sometimes. 

 

Figure 4.1: Setup Used to Test Optical Components Using Three Different Sources of 

Light 
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The two-polarizer arrangement can be understood by looking at the plots of Figure 

4.2, which was obtained with a single polarizer. The red and purple laser appear to be 

made of mostly one main oscillator, whereas the green laser exhibits more, unequal 

oscillators resulting in a complex polarization pattern, but no laser is as unpolarized as 

needed for the uncertainties needed in these measurements, which should be better than 

1%. 
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Figure 4.2: Reflected and Transmitted Powers of Two Daughter Beams at Different 

Frequencies as a Function of one Polarizer’s Angle. 

The first polarizer eliminates the structures in Figure 4.2, effectively allowing 

transmitted light that appears to originate from a single oscillator. The second polarizer, 

then, produces a sinusoidal intensity as a function of the two-polarizer’s relative angle,  

 I( )  = I0Cos
2
( )  (4.1) 

 

Where I0 and I are respectively the intensities of light before and after second 

polarizer. 

4.3 Wollaston Prisms 

Characterization of Wollaston prisms means measuring polarizations efficiencies, and 

angles of emergence. This can be done by replacing the beam splitter of the previous 

stage by a Wollaston prism and by placing two photometers such that they measure the 

powers of the beams as shown in Figure 4.3.  

Figure 4.3: Wollaston Prism’s Characterization Setup 

With this setup, four identical Wollaston prisms were tested and deviation angles of 

each prism were investigated by measuring the vertical distances of both polarized 
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beams. Then, deviation angles were computed through the tangent inverse function of the 

vertical position of the corresponding polarizations (x and y) to the horizontal separation 

distance (d =110cm) between prism and sensors as shown in Table 7. The angles 

iand i in the table represent the parallel and perpendicular deviation of both 

polarizations. 

Ang(deg) Wollaston 

Meas.  

Values 

W1 W2 W3 W4

           
Purple 10.08 11.41 10.05 11.39 10.08 11.41 10.08 11.44 

Green 9.57 10.78 9.57 10.76 9.57 10.76 9.55 10.73 

Red 9.39 10.46 9.39 10.46 9.39 10.51 9.39 10.46 

Theor.  

Values 
           

Purple 10.12 11.24 10.12 11.24 10.12 11.24 10.12 11.24 

Green 9.57 10.58 9.57 10.58 9.57 10.58 9.57 10.58 

Red 9.36 10.33 9.36 10.33 90.36 10.33 9.36 10.32 

Percent Difference (%) 

Purple 0.381 1.55 0.630 1.328 0.381 1.551 0.381 1.774 

Green 0.004 1.89 0.004 1.653 0.004 1.654 0.260 1.416 

Red 0.415 1.269 0.415 1.269 .415 1.757 0.415 1.269 

Average of Percent difference (%) 

Avg Blue 0.97 0.98 0.97 1.08 

Avg Green 0.95 0.83 0.83 0.84 

Avg Red 0.84 0.84 1.09 0.84 

Table 7: Measured Angle Spread of Four Wollaston Prisms at Different Wavelengths 

The table also shows that all four prisms are actually identical to less than 0.1%.  

From the below plots (Figure 4.4), it can be seen that the prism generates some 

chromatic dispersion. For example, in the upper beam red rays will be located in the 

bottom, green rays in the middle, and purple rays in the top of the beam. In the lower 

(extraordinary) beam the reverse is true. This difference is propagated through the optical 
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chain, leading to angular spreads (after the grating) slightly different from the theoretical 

values due to the grating alone.  

 

Figure 4.4: Beam Angular Deviation by Wollaston Prism vs. Wavelength 

To measure the efficiency of a Wollaston or any optical element, the power of the 

incoming beam needs to be measured. Such an optical element’s efficiency can be tested 

against each polarization and then the average efficiency can be estimated by averaging 

both results.  

With the described setup, the power of the incoming beam (upfront of the element 

under test which is the Wollaston in this case) was measured using a photometer as 
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shown in the upper part of Figure 4.5. Another photometer was used to measure the 

transmitted power out of it as shown in bottom part. 

 

Figure 4.5: Schematic of Measuring Incoming (Upper) and Output Beams (Bottom) 

The diagram only shows how the efficiency of such a prism can be determined under 

parallel polarization. The same technique was used to measure the other efficiency by 

rotating both polarizers 90deg from their original orientations to make sure a perfectly 

perpendicular polarization was obtained. In this case the P-daughter beam (not shown) 

will be reversed and received by the photometer being displaced down. Both efficiencies 

were recorded to provide the plots shown in Figure 4.6.  
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Figure 4.6: Wollaston Average Efficiency as a Function of Wavelength. 

The above plots are for one Wollaston prism that was tested at different frequencies 

and different polarization angles. They also show that the average efficiency of a prism is 

obviously frequency dependent. Additionally, It was noted that that the average 

efficiency difference of a Wollaston between polarizations is about 1% which can be 

considered unaffected by the polarization type as Table 8 shows. 

Wave- 

length 

(nm) 

Parallel Polarization Perpendicular Polarization Average 

Eff(%) Input 

(uW) 

Output 

(uW) 

Eff 

(%) 

Input 

(uW) 

Output 

(uW) 

Ef 

f(%) 

405 1770 1260 71.19 1750 1235 70.57 70.88 

532 1590 1345 84.59 1570 1315 83.76 84.17 

633 441 382 86.62 481 413 85.86 86.24 

Table 8: A Wollaston Efficiency Behavior vs. Polarization and Frequency 

Also, when this prism was replaced by another one, similar results were obtained and 

the average efficiency versus wavelength was computed and tabulated in Table 9. 
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Wollaston Red (%) Green (%) Violet (%) 

W1 85.07 82.79 71.14 

W2 84.55 81.88 70.72 

%difference 0.61 1.09 0.59 

Table 9: Two Wollaston Average Efficiencies vs. Frequency 

Where W1 and W2 denote the two Wollaston prisms that were randomly chosen and 

tested. From the table, we show that two Wollaston are very similar to a percent 

difference of about 1% as the table shows. Hence, all prisms are identical and have the 

same efficiency at the corresponding frequency. 

4.4 Elliptical Flat Mirrors 

The efficiencies tests of gratings and mirrors were done using the same setup once 

against the ordinary beam and another against the extraordinary one. As usual, the second 

polarizer must be rotated so that identical power outputs were obtained at 45deg.  

This method was performed twice to test the mirror against both polarizations. In this 

experiment two photometers were used: one facing the transmitted light another 

measuring the reflected light through the mirror; the other way around was also 

performed. The mirror was also mounted on a rotary station allowing a large domain of 

incidence varying from 5 to 85 at an increment of 5 degrees as shown in Figure 4.7. 
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Figure 4.7: Elliptical Mirror’s Efficiency vs. Incidence Angle 

Illuminated by a green source, the average efficiency of such a mirror can be 

estimated to be about 94% for all angles less than or equal to 55 degrees which is 

accountable since the two reflecting mirrors inside the optics were to be oriented with 

respect to the incident beam at 30 and 50, respectively. Others inside the elbows are at 

45deg. Above 55, the mirror’s reflectance changes significantly as angle increases: 

reflectance decreases under extraordinary and increases under ordinary polarization as 

shown above. 

Knowing that the nominal orientation of mirrors would be about 45, the mirror’s 

polarized efficiency can be plotted at 45 against wavelength and then compared to the 

theoretical values calculated at the same angle. Both data can be plotted and shown in 

Figure 4.8.  
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Figure 4.8: Polarized Efficiency of an Elliptical Mirror as a Function of Wavelength. 

As expected, from the plots one would infer that such a mirror has a frequency 

dependent efficiency that is also changing from a polarization to another. The average 

efficiency of the mirror can also be plotted against various laser colors and shown in 

Figure 4.9. 
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Figure 4.9: Elliptical Mirror Average Efficiency 

After determining the efficiency of one elliptical mirror, three other mirrors ware 

placed in the setup one at a time; measurements were taken under two different 

polarizations and average efficiency of each was calculated at different frequency and 

tabulated in Table 10. 

Mirrors  

(45 deg) 

Eff. Red 

(%) 

Eff. Green 

(%) 

Eff. Violet 

(%) 

a1 93.12 94.99 92.82 

a2 93.12 94.96 92.82 

b1 93.12 94.97 92.82 

b2 93.13 94.97 92.82 

 

Table 10: Efficiencies of Multiple Elliptical Mirrors Using Three Different Sources 

Where a1, a2, b1, b2 are just labels being placed on the mirrors to distinguish them. It 

can be concluded that all mirrors are in fact identical up to less than 0.1% difference. 
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Since all mirrors inside manual elbows are made similar to those inside the optics box but 

oriented at 45, they should have an average efficiency of 93% each. 

With the efficiency of each elliptical mirror being well determined, the total power 

reflected through five elliptical mirrors (four inside manual elbows and one inside 

primary elbow) and received by the Wollaston can be defined as: 

 Pw = (εAvg)
n 

P0 (4.2) 

 

Pw, εAvg, and P0 denote the power received by a Wollaston prism, the average 

efficiency of an elliptical mirror, and the initial power after the beryllium mirror inside 

the beam pipe. The n
th

   exponent in the equation is due to the fact that light suffers n 

outside reflections inside elbows and losing power. The integer n varies from a view port 

to another depending on the number of elbows (n = 5 and n =7 for top and bottom view 

ports, respectively). 

When light gets to the Wollaston prism, its power gets split into two with different 

efficiencies εw+, εw//. After the Wollaston, the two daughter beams continue and meet two 

elliptical mirrors on their ways to the grating causing the presence of another exponent of 

two in the power expressions defined in equations 4.3 and 4.4, accordingly.  

            
                 

            
 
    (4.3) 

 

   +      + 
 
  +        + 

 
   +       

 
    (4.4) 
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PG//, PG+, εm//, and εm+, represent the parallel and the perpendicular powers received by 

the ruled diffraction gratings as well as the mirror efficiencies found at different 

polarizations.  

4.1 Ruled Diffraction Gratings 

In a similar way, the ruled diffraction grating’s efficiency can be determined at 

different frequency and plotted as shown in Figure 4.10. 

 

Figure 4.10: Grating Efficiency Curves for Both Polarizations. 

Since all diffraction grating are located inside the optics box where they receive either 

S-polarization or P-polarization, the average efficiency of such a grating was not needed 

to be determined. In a similar way, multiple gratings were tested and results were 

tabulated in Table 11. G1 and G2 denote for grating#1 and grating#2 respectively. 
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Perpendicular 
Eff. Red 

(%) 

Eff. Green 

(%) 

Eff. Violet 

(%) 

G1 47.78 60.65 69.65 

G2 47.73 60.58 69.58 

Parallel  
Eff. Red 

(%) 

Eff. Green 

(%) 

Eff. Violet 

(%) 

G1 57.70 65.05 70.16 

G2 57.62 65.00 70.00 

Table 11: Two Identical 600grooves/mm Gratings Efficiencies 

As the table shows, the two gratings are very similar to a less than 0.1% and their 

efficiencies significantly change as the wavelength changes. From Fig. 4.10, it is evident 

that there are some unresolved issues in the grating efficiency which will be investigated 

in the next month. 

The diffracted powers after the gratings can be then estimated by using the following 

formulas: 

                   
            

 
    (4.5) 

 

   +       +     + 
 
   +       

 
    (4.6) 

 

The new parameters introduced in these equations are εGf+, εGf+ which represent the 

efficiencies after the gratings at different frequencies and different polarizations. The 

reminders, Pf+ and Pf//, represent the polarized power emitted through each individual 

wavelength on each side of the optical bench. 

4.2 Light Collectors 

Light collectors were designed to collect light, spread out by the grating, into 

individual PMTs. They were designed and produced, but they failed testing and were 

replaced.  
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The measured light efficiency as a function of the light angle with respect to the 

collector axis is shown in Figure 4.11. Because collectors are at an angle of up to 10 

degrees with respect to the incident light, this solution was discarded. 

 

Figure 4.11: Efficiency of a Light Collector vs. Incidence Angle 

The simplest explanation for the low efficiency is depicted in Figure 4.12. At larger 

angles, repeated reflections make the light angle larger and larger, until it exceeds 90 

degrees and is reflected back instead of being transmitted.  
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Figure 4.12: Light Paths inside a Light Collector at an Angle of 15 degree 

It is clear from the diagram that the green incident beam after many reflections inside 

the light collector never escapes but rather reflected back (red lines). As a result, the light 

collectors were replaced by optical pieces consisting of a prism glued to a converging 

lens, as explained in Chapter III. 

4.3 Prisms-Lenses Arrays 

 Since a new component was invented and made at Wayne State University, careful 

measurements needed to be collected and studied in order to validate and deny the use of 

such elements. This was done by using the same procedures as before and always under 

two orthogonal polarizations but at different angles of incidences that meet those in Table 

6. Measurements were taken, reported and plotted in Figure 4.13.  
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Figure 4.13: Prisms Efficiencies at Different Wavelengths 

The charts show that the polarized efficiency of each prism is almost uniform 

indicating that they are frequency independent at least at the corresponding incident 

angles mentioned before. Before comparing the measured transmission coefficients 

against the theoretical ones, all polarized efficiencies of prisms were tested at the 

corresponding solid angle of the diffracted light given by the grating as Table 12 shows.  

 Parallel Polarization Perpendicular Polarization 

Prism 
Eff at Max. 

 Incidence 

Eff at Min. 

Incidence 

Eff at Max.  

Incidence 

Eff at Min. 

 Incidence 

86 89.8 89.8 90.9 90.0 

84 90.1 89.6 89.0 90.1 

75 88.9 88.5 89.0 88.8 

72 89.1 89.7 92.5 92.8 

Table 12: Polarized Prisms Efficiencies within the Expected Light Cone 

It is clear that efficiency does not change within the maximal and the minimal angle 

of the light cone striking the corresponding prism that is presumably oriented in properly 

in the array (see Fig. 4.25). Therefore, the average polarized transmission coefficient 

compared to that obtained in Table 6 of each prism is tabulated in Table 13. 

Prism 

Angle 

Experimental 

Coefficients (%) 

Theoretical 

Transmittance (%) 

Percentage 

Difference (%) 

            Par. Perp. 

86 90.45 89.8 91.0 90.8 0.6 1.1 

84 89.85 89.55 91.1 90.8 1.4 1.4 

75 88.9 88.7 91.9 89.8 3.2 1.2 

72 92.65 89.4 92.4 89.2 0.3 0.2 

Table 13: Experimental Coefficients vs. Theoretical 

All data in the table confirm what is initially obtained in Fig. 4.13 and, therefore, the 

theoretical values can be accounted. 
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Referring to Fig. 3.33 especially after the prisms-lenses arrays, the expression of the 

power received by each PMT differs from one to another and can be calculated out of 

equations (4.5) and (4.6) as follows: 
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 (4.8) 

 

Where the left matrices in both equations represent the PMT of parallel and 

perpendicular arrays respectively.  The t terms in both matrices on the right side of the 

above equations denote the parallel and the perpendicular transmission coefficients of 

such prisms-lenses. Also note the mirror pattern of the prisms in this configuration.  

The major loss of power then occurs at the arrays of prisms-lenses for a significant 

reason. The ruled gratings diffract the polarized beams illuminating the whole domain 

(350nm to 650nm) including the prisms-lenses as well as the gaps between them. 

Consequently, some of the wavelengths will be missed and cannot be detected by the 

PTMs arrays located after the prisms-lenses arrays (see Figure 4.25). 

4.4 PMTS Testing and Calibrations 

PMTs have efficiencies varying by as much as 20%, because the photocathode layer 

is several atoms thick, and manufacturing variations exist. The counting rate of a PMT as 
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a function of voltage shows a “plateau”, or flat region, between regions of steep rises. It 

is customary to operate the PMT at the plateau mid-point. The first round of tests 

involved the determination of the plateaus of our PMTs. The electronic setup consisting 

of a crate containing amplifiers, signal discriminators, and visual scalars was shown in 

Figure 3.38. 

It can be obviously noted that all signal cables taken from the PMTs were wrapped 

with tin foil to reduce undesirable noise. Additionally, a large dark Faraday cage (black 

wooden box being wrapped with tin foil) was built to contain all PMTs and a light 

diffuser, which could be illuminated by ambient light, a laser or Mercury lamp from the 

outside, or not illuminated for dark noise measurements as shown in the Figure 4.14. The 

distance between the light diffuser and the PMTs was about ten feet, and the PMT array 

was about 5x5 in
2
, so that all PMTs were illuminated by the same light intensity to high 

accuracy. 

 

Figure 4.14: Wood Prototype Detector Built in 2010 



86 
 

 
 

There are three variables in this test: the voltage supplied to the PMTs, the signal 

amplification, and the discrimination of threshold. The latter two are related as a doubling 

of the amplification and doubling of the threshold produces the same counting rate.  

Data were taken over a period of ten seconds, and the amplification gain was held 

fixed at 10. After recording dark noise for each PMT, a small pin hole was made to allow 

ambient light to get through and strike a frosted piece of glass facing the PMTs. The 

uniformity of the light diffused by the frosted glass was tested by moving the PMT array 

by amounts exceeding the size of the array. Then, the high voltage power supply was 

changed at decrement of -50V from -1100V to -1450V. Counts were recorded and plotted 

at different threshold voltages from 20mV to 40mV with an increment of 5mV after each 

recording as shown in Figure 4.1. 
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Figure 4.15: PMTs Counts at Different High Voltages and Different Thresholds 

From the graphs, 30mV is the best threshold selection because it corresponds to the 

smallest inclination (slope = 95.46) of the best fit line. Additionally, it is evident that -

1350 V is in the flat part of the curve for all PMTs. It was decided that all PMTs would 

operate at -1350 V, which is also a safe voltage as the PMTs are rated -1500 V only. The 

choice of one threshold and one voltage also simplifies the electronics and HV 

distribution system. 
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The relative efficiency of each PMT can be derived immediately from Figure 4.15, 

where a 20% relative efficiency variation is visible. However, it was found that the 

relative efficiencies of PMTs depend on the counting rate. This is normal, the PMTs are 

connected to a voltage divider in the PMT socket with overall resistance of tens of M  

The overall RC of the circuit is significant and also varies significantly. Because PMTs 

and sockets will be mixed during shipment and assembly in Japan, it was decided that 

relative efficiency calibration would happen only at KEK with assembled detectors. 

The spectral sensitivity of each photomultiplier tube was determined. This was done 

by selecting 30mV, -1350V high voltage, and using different filters (340   26nm, 482   

35nm, and 562   40nm) to allow these specific wavelengths to get through the hole and 

eventually seen by PMTs.  

The wavelength dependent plateaus are shown in Figure 4.16. It can be concluded 

that all PMTs have the same spectral response. It was decided that spectral differences 

between PMTs would be neglected as a source of error. This experiment confirmed tests 

of a similar apparatus at CESR. 
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Figure 4.16: Spectral Responses of Four Different PMTs vs. High Voltage 

4.5 Conveyor belt tests and controls: 

As mentioned in chapter III, the conveyor belt was designed to swap 

photomultipliers, and it can be driven by a controller that listens to a PC’s serial port. The 

conveyor belt carries 16PMTs, eight on either side. Therefore, the driver can be 

programmed with a maximum of 14 programs. Twelve programs were required to place a 

PMT at places of all other sixteen’s with almost 120 measurements in total as presented 

in Table 18. These programs played a big role in calibrating and characterizing all PMTs 

due to the substantial amount of data that can be obtained. 
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Program 1UP 

( 1) VS=100 

( 2) VR=6000 

( 3) DIS=-8000 

( 4) MA 

( 5) END 

21 

Measures 

12 PMTs 

Program 3UP 

( 1) VS=100 

( 2) VR=6000 

( 3) DIS=-24000 

( 4) MA 

( 5) END 

41 

Measures 

8 PMTs 

Program AD/CB 

( 1) VS=100 

( 2) VR=6000 

( 3) DIS=-100000 

( 4) MA 

( 5) END 

19 

Measures 

16 PMTs 

Program 1DWN 

( 1) VS=100 

( 2) VR=6000 

( 3) DIS=8000 

( 4) MA 

( 5) END 

12 

Measures 

12 PMTs 

Program 3DWN 

( 1) VS=100 

( 2) VR=6000 

( 3) DIS=24000 

( 4) MA 

( 5) END 

14 

Measures 

8 PMTs 

Program AB/DC 

( 1) VS=100 

( 2) VR=6000 

( 3) DIS=-60000 

( 4) MA 

( 5) END 

113 

Measures 

8 PMTs 

Program 2UP 

( 1) VS=100 

( 2) VR=6000 

( 3) DIS=-16000 

( 4) MA 

( 5) END 

31 

Measures 

10 PMTs 

Program AC/DB 

( 1) VS=100 

( 2) VR=6000 

( 3) DIS=40000 

( 4) MA 

( 5) END 

15 

Measures 

8 PMTs 

Program CD/BA 

( 1) VS=100 

( 2) VR=6000 

( 3) DIS=60000 

( 4) MA 

( 5) END 

59 

Measures 

8 PMTs 

Program 2DWN 

( 1) VS=100 

( 2) VR=6000 

( 3) DIS=16000 

( 4) MA 

( 5) END 

13 

Measures 

10 PMTs 

Program CA/BD 

( 1) VS=100 

( 2) VR=6000 

( 3) DIS=-40000 

( 4) MA 

( 5) END 

51 

Measures 

8 PMTs 

Program ZERO 

( 1) VS=100 

( 2) VR=6000 

( 3) DIS=0 

( 4) MA 

( 5) END 

Any0 

Measures 

16 PMTs 

Table 14: Twelve Necessary Programs to Interchange PMTs Locations 

In the first column, program 1UP is written to shift all PMTs on one side of the box one place 

up and the other ones on the other side one place down. In other words, 1UP moves the second 

PMT of the same array to the place of the first (21) allowing the user to take 12 measurements 

from both sides at once. However, 1DWN does exactly the opposite of 1UP and shift PMT 

number two down and replace it by PMT number one. 

A couple of acronyms need to be explained: in the first line of each program where VS 

(starting velocity) is set to 100 is simply to rotate the stepper motor starting with a frequency of 

100Hz. In the second line, however, VR = 6000 stands for operating speed which is in this case 

6KHz. This can be changed as well to speed up or down the motor, but it was found the moderate 

speed that all PMTs can be moved by without having their cables entangled should be set at 

6000Hz. 
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DIS in the third line stands for the absolute distance or the number of steps that the conveyor 

belt would move or rotate from with respect to the original position assumed to be at zero. For 

example, say in the previous run the driver was told to move DIS = 2000 and now the driver is 

told to move DIS = 5000. What happens is that the driver will rotate the motor by only 3000 = 

(5000 – 2000) steps. 

The last two commands are MA and END, which directly follow the main code in the 

program, stand for master absolute operation and end of program, respectively.  Other commands 

are as important as the discussed ones because they allow the user to change or edit a line without 

erasing or rewriting the whole program.  For instance, the “edit” command followed by the 

program’s name allows editing the program. When editing is done, the user can save the program 

by typing “S” followed by “Y/N” (yes or no). Finally, the “run” command followed by the 

program’s name executes whatever code in the called program is written. 

It is essential to mention that the 24V stepper motor comes with a driver that comes with an 

instruction manual. Fortunately, the pieces of codes and commands that can be commonly used to 

control the motor in case of the beamstrahlung detector are pretty straightforward.  The 

commands that were tested are shown in Table 14. 

In addition to the programs listed in the above table, a thirteenth program was  added and 

intended to be used and edited whenever needed using the protocols mentioned above. With this 

extra program every single position can be mapped by just editing the program and adding to it 

the appropriate code. 

4.6 Primary Elbow Control 

The 12 volts stepper motors used in primary elbows are not complicated like those 

used for the conveyor belts. They are very compact and can be controlled through a serial 

port from a windows terminal. These small motors are very sensitive and therefore a 
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special technique of testing needed especially because these devices are controlling the 

primary mirrors that are directly looking inside the main beam pipe. 

Thus, to test a stepper motor, a very long path light had to be taken into 

considerations; a distance of 100 feet was sufficient. A laser source was shining the 

mirror inside through the center of one of the two inch tubes connected to primary elbow. 

Then, a graphing piece of paper was placed at 100feet across from the elbow so that the 

laser source was hitting the center of the grid.  Finally, different protocol commands were 

sent to stepper motors in order to determine the algorithm to which the primary mirror is 

correlated. 

It was found that as a motor rotates clockwise or counterclockwise 360degrees, it 

pushes inward or outward the mounting surface by 0.015in. It was also noticed that to tilt 

the mirror a degree in either direction, a 1000-step command needs to be sent to the 

corresponding motor. A command like “/1A1000R”, for example, rotates the motor 

addressed “1” by 1000steps. The “R” letter though stands for “run” and is used to execute 

the code, and it should be used in after each code. 

The code above can be used to drive the motor in the clockwise direction. To drive it 

in the opposite direction which can be done unlike the 24V ones, polarity needs to be 

changed and then the same code can be executed. As an example, “/1F0R” sets the 

polarity of the motor addressed “1” default and “/1F1R” to flip polarity. 

4.7 Wiring 

After all motors tests, it is still good to recall that all small motors can be daisy 

chained together since they receive their signals from the same serial port. Of course, all 
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motors have to have addresses different from each other otherwise they receive the same 

command. 

Unlike small motors, the 24V motors cannot be connected to the same serial port 

because both drivers are set to the same address. Otherwise, a digital multiplexer or a 

selector should be used to send the control commands to the corresponding motors.  

4.8 Electronics Cards 

There are two electronic cards one for each box and are intended to be replacing all 

outside old electronics including the huge crate, eight channels discriminators, and 

amplifiers. These cards were not tested at Wayne State University, but they were tested at 

Mexican institutions that made these boards and are part of the Belle II collaboration. 

4.9 Aligning Manual Elbows and Mirrors Adjustments 

In the Optical Channel of a top (bottom) view port there are four (six) manual elbows 

and one motorized elbow used to guide light from the beam pipe down to the Optics Box 

resulting in an overall number of five (seven) reflections. There are two ways to connect 

an elbow, shown in Figure 4.17. 
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Figure 4.17: Two Ways of Connecting Pipes and Elbows in an Optical Channel. 

The difference is that in the second method (Fig. 4.17, right), the laser beam 

illuminates the controlling back panel. During final testing, it was found that it is simple 

and efficient to center the laser visually, with the mirror removed (Figure 4.18).  

 

Figure 4.18: Laser Alignment Intermediate Step. 

Then the mirror is reinstalled and oriented so that the laser beam strikes the next 

mirror in the center (Figure 4.19). This simple protocol allows fast, easy and accurate 

alignment of the Channel, a must for a device which will be disassembled several times 

in the course of its lifetime. This protocol is not possible if the laser beam cannot be 

visually located. 
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Figure 4.19: Next Step in Alignment Procedure. 

4.10 Wollaston Prism alignment 

When light reaches the Wollaston Prism, it gets split into two linear polarizations as 

explained before. The Wollaston prism splits light in its reference frame according to its 

orientation angle, which is a potential source of error. 

Aligning the prism can be done by using a plumb line. Knowing that the center of the 

Wollaston prism is about 3.25” from the optical bench, a plumb line can be placed at the 

same distance while the Optics Box is level. Now the Wollaston prism can be rotated or 

adjusted so that the two beams of light hit the plumb line at two different spot in the 

vertical plane as shown Figure 4.20. 
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Figure 4.20: Two Views of a Plumb Line Used to Align a Wollaston 

The whole path was also tested against other different light sources including red and 

green and spots of light were obtained on the Wollaston prism as shown in Figure 4.21. 

 

Figure 4.21: Left: Purple Laser Spots on a Plumb Line inside the Optics Box. Right: 

Green Laser Spots on a Plumb Line inside the Optics Box. 

Getting the prism aligned is the first priority. The resulting split laser beams are then 

used to align everything else inside the Optics Box. 
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4.11 Polarization Tests 

These tests are done for the purpose of determining the transmission efficiency of the 

prism. In Fig. 4.2, it was noted that the raw polarization of the green laser is complex. 

Using the technique of combining sources (explained in the next section) imposes both 

outputs to be differently polarized which caused the unlikely polarized beams to get split 

into one ordinary and another extraordinary as they reach the Wollaston and shown in 

Figure 4.22. 

 

Figure 4.22: Green-Red Different Polarized Incoming Beams Striking a Wollaston 

From the picture, it can be inferred that the red beam was ordinary or horizontally 

polarized, and the green beam was vertically or extraordinary polarized; otherwise, one 

would observe two green-red spot with a small separation in between on each side (see 

next section). 
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4.12 Mirrors and Grating Alignments 

In previous parts, a monochromatic laser source of purple light was used to make all 

necessary alignments. In this part and because gratings diffract light according to its wave 

lengths, a combination of three different laser sources of light (red, green, and purple) 

was used. Another reason for choosing such a combination is to obtain something similar 

or close to “white-like” light so that after diffraction on the grating the different spots of 

different colors should hit the intended places of the prisms-lenses arrays. 

The technique of combining colors not only allowed in aligning elements, but also in 

the investigation of placing all mirrors and gratings inside the box according to numbers 

obtained by computer programs.  The question is how could lasers get combined and how 

precise is this? 

The “white-like” laser can be then obtained by combining three different laser sources 

with the aid of two beam splitters.  First, one of the lasers, say the green, must be aligned 

using the techniques explained in an early section in this chapter so that light gets to the 

Wollaston prism. Then, two identical beam splitters, placed close to one another, 

intercept the green light without preventing light from reaching the Wollaston prism. 

Using a polarized source in this case cannot work because it will be dead as soon as it hits 

the second beam splitter. 

Note that in the case of non polarized sources, one would obtain two reflected parts of 

green through both prisms with 90 each with the respect to the transmitted part. Now, a 

red laser source can be added so that its rays strike the first splitter. Finally, a purple 

source can be added such that it shines up the second splitter. Necessary alignments and 
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fine adjustments are required to make all emerging lights on top of each other and thus a 

“white-like” source was generated as shown in Figure 4.23. 

 

Figure 4.23: Combination of Three Different Sources Schematic 

The phenomenon of obtaining a white source may seem to be straightforward, but in 

fact it is experimentally complicated. Complications start when you try to get three dots 

of different profiles on top of each, but it is still achievable. Once it is obtained, light gets 

to the Wollaston prism which splits it into two beams. The Wollaston now separates out 

the lights from each other by a small amount according to their wavelengths according to 

Table 7 and as shown in Figure 4.24. 
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Figure 4.24: White-Like Laser’s Separation through the Wollaston 

It should be noted from the picture that a Wollaston prism splits light differently 

according to their wavelength where one would observe three different dots (purple, 

green, and red). Moreover, from the picture one can see that there is a partition between 

the two parts of the box where the 0
th

 order peaks hit from both sides to prevent light 

from crossing from one side to another as shown in the picture.  
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This technique of separating colors not only helped in proving theoretical results, but 

also in aligning all reflecting mirrors and gratings that are inside the optics box. 

Tweaking a couple of screws and making sure that only 1
st
 order peaks of each diffracted 

light are hitting the appropriate positions as shown in Figure 4.25 are met. 

 

Figure 4.25: Simulated Optimized Positions and Angles Orientations of Multiple 

Elements of Optics Box. 

Alternatively, a very intense strong white light source was used outside the box and 

located at the same line of sight with the Wollaston prism. Two square spots of light were 

observed on the gratings and rainbows were obtained on the prisms-lenses arrays of both 

sides.  With this being done, the PMTs were removed and a screen (plain paper) was 

placed behind the arrays and located where the optimized location of the center of each 

PMT is. This was done to double check alignment and whether the arrays are collecting 

lights at the expected locations or not.  
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Chapter 5 : Conclusion 

Designing and building such a detector is as important as discovering new physics. 

The flux of the newly discovered particles can be then studied out of the cross section 

that is in turn related to luminosity. Therefore, to increase the particles production rate the 

luminosity needs to be increased as well. This consists of beams diagnostics followed by 

a correct beam focusing in order to achieve a perfect collision. The beams diagnostics can 

be achieved by using the beamstrahlung technique. This detector collects data from the 

spectral decompositions of many different view ports, allowing us to compare them 

against each other and to match what is obtained to what was calculated or computed. 

What was achieved in this research was that two large angle beamstrahlung boxes 

were produced and completely tested for validation. They are now ready to be shipped 

and installed for a real data collection at the SuperKEKB which will run for the first time 

in 2015. 
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 The large-angle-beamstrahlung is a very effective technique that can be used to 

monitor two crossing beams. Monitoring the beams helps in analyzing and studying the 

beams profiles allowing beams adjustments and eventually leading to a perfect beams 

collision. The perfect beam collision results in a higher luminosity; as a result, a high 

particles production rate and new physics can be discovered.  
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