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OVERVIEW

This dissertation concerns switching diffusions or hybrid-switching diffusions in two

different contexts. Accordingly, it is divided into two main chapters. The setup and

formulation is slightly different in each context so we choose to present the necessary

background for each context in their respective chapter as opposed to here in the

introduction. In the first chapter we consider the so-called Feynman-Kac formula(s).

These formulas provide stochastic representations for solutions to partial differential

equations and are now standard in virtually any introductory text to stochastic dif-

ferential equations; see for example [13] or [7]. Here we verify these formulas in the

context of switching diffusions for boundary value problems, initial boundary value

problems, and for the initial value problem. This work can also be found in [3]. In the

second chapter we switch gears a bit and consider a problem in stochastic optimal

control. Namely we show, under fairly broad conditions, the existence of a near-

optimal control for a dynamical system driven by wideband noise in the presence of

regime switching. The use of a wideband noise is actually motivated by modeling

and applications as true white noise is often not encountered in reality. Furthermore,

such systems can be accurately approximated using approximations to white noise

and wideband noise turns out to be a suitable candidate for this purpose. To carry

out our program we actually recast the setting using a relaxed control formulation, an

idea that was introduced in [16]; the stochastic version was introduced in [5]. Recast

in this setting, the computational difficulty is greatly reduced. Furthermore, using

weak convergence methods we obtain controls that are nearly optimal for the original

system. The outline and motivation for this program was inspired by the work in [10]

and many of the ideas and related results presented here can also be found in [19].
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Chapter 1

The Feynman Kac Formula

1.1 Introduction

Let (Ω,F , P ) be a probability space, and {Ft} be a filtration on this space satis-

fying the usual condition (i.e., F0 contains all the null sets and the filtration {Ft}

is right continuous). The probability space (Ω,F , P ) together with the filtration

{Ft} is denoted by (Ω,F , {Ft}, P ). Suppose that α(·) is a stochastic process with

right-continuous sample paths (or a pure jump process), finite-state space M =

{1, . . . ,m0}, and x-dependent generator Q(x) so that for a suitable function f(·, ·),

Q(x)f(x, ·)(i) =
∑

j∈M, j 6=i

qij(x)(f(x, j)− f(x, i)), for each i ∈M. (1.1)

Assume throughout the paper that Q(x) satisfies the q-property [22]. That is, Q(x) =

(qij(x)) satisfies:

(i) qij(x) is Borel measurable and uniformly bounded for all i, j ∈M and x ∈ Rn;

(ii) qij(x) ≥ 0 for all x ∈ Rn and j 6= i; and

(iii) qii(x) = −
∑

j 6=i qij(x) for all x ∈ Rn and i ∈M.

Let w(·) be an Rn-valued standard Brownian motion defined on (Ω,F , {Ft}, P ),

b(·, ·) : Rn×M→ Rn, and σ(·, ·) : Rn×M→ Rn×Rn such that the two-component

process (X(·), α(·)), satisfies
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dX(t) = b(X(t), α(t))dt+ σ(X(t), α(t))dw(t),

(X(0), α(0)) = (x, i)
(1.2)

and

P{α(t+ δ) = j|α(t) = i, X(s), α(s), s ≤ t} = qij(X(t))δ + o(δ), i 6= j. (1.3)

The process given by (2.2) and (1.3) is called a switching diffusion or a regime-

switching diffusion.

Now, before carrying out our analysis, we state a theorem regarding existence

and uniqueness of the solution of the aforementioned stochastic differential equation,

which will be important in what follows.

Theorem 1.1.1. (Yin and Zhu [22]) Let x ∈ Rn, M = {1, . . . ,m0}, and Q(x) =

(qij(x)) be an m0×m0 matrix satisfying the q-property. Consider the two component

process Y (t) = (X(t), α(t)) given by (2.2) with initial data (x, i). Suppose that Q(·) :

Rn → Rm0×m0 is bounded and continuous, and that the functions b(·, ·) and σ(·, ·)

satisfy

|b(x, i)|+ |σ(x, i)| ≤ K(1 + |x|), i ∈M, (1.4)

for some constant K > 0, and for each N > 1, there exists a positive constant MN

such that for all i ∈M and all x, y ∈ Rn with |x| ∨ |y| ≤MN ,

|b(x, i)− b(y, i)| ∨ |σ(x, i)− σ(y, i)| ≤MN |x− y|, (1.5)

where a ∨ b = max(a, b) for a, b ∈ R. Then there exists a unique solution to (2.2) in

which the evolution of the discrete component is given by (1.3).
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1.2 Itô’s Formula

Consider (X(t), α(t)) given in (2.2) and let a(x, i) = σ(x, i)σ′(x, i), where σ′(x, i)

denotes the transpose of σ(x, i). Given any function g(·, i) ∈ C2(Rn) with i ∈ M,

define L by

Lg(x, i) :=
1

2
tr(a(x, i)D2g(x, i)) + b′(x, i)Dg(x, i) +Q(x)g(x, ·)(i), (1.6)

whereDg(·, i) = ( ∂g
∂x1
, . . . , ∂g

∂xn
), D2g(·, i) denotes the Hessian of g(·, i), andQ(x)g(x, ·)(i)

is given by (1). The choice for L will become clear momentarily.

It turns out that the evolution of the discrete component can be represented

as a stochastic integral with respect to a Poisson random measure p(dt, dz), whose

intensity is dt×m(dz), where m(·) is the Lebesgue measure on R. We have

dα(t) =

∫
R
h(X(t), α(t−), z)p(dt, dz), (1.7)

where h is an integer valued function; furthermore, this representation is equivalent

to (3). For details, we refer the reader to [15] and [22].

We now state (generalized) Itô’s formula. For each i ∈ M and g(·, i) ∈ C2(Rn),

we have

g(X(t), α(t))− g(X(0), α(0)) =

∫ t

0

Lg(X(s), α(s))ds+M1(t) +M2(t) (1.8)

where

M1(t) =

∫ t

0

〈Dg(X(s), α(s)), σ(X(s), α(s)〉dw(s),

M2(t) =

∫ t

0

∫
R
[g(X(s), α(0) + h(X(s), α(s), z))− g(X(s), α(s))]µ(ds, dz).
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The compensated or centered Poisson measure µ(ds, dz) = p(ds, dz)− ds×m(dz) is

a martingale measure. For t ≥ 0, and g(·, i) ∈ C2
0 (the collection of C2 functions with

compact support) for each i ∈M,

Ex,ig(X(t), α(t))− g(x, i) = Ex,i

∫ t

0

Lg(X(s), α(s))ds, (1.9)

where Ex,i denotes the expectation with initial data (X(0), α(0)) = (x, i). The above

equation is known as Dynkin’s formula. The condition g ∈ C2
0 ensures that

g(X(t), α(t))− g(x, i)−
∫ t

0

Lg(X(s), α(s))ds is a martingale.

Furthermore, one can show that L agrees with its classical interpretation, as the

(infinitesimal) generator of the process (X(t), α(t)) given by

Lg(x, i) = lim
t↓0

Ex,i[g(X(t), α(t))]− g(x, i)

t
. (1.10)

To see this, pick t sufficiently small so that α(t) agrees with the initial data. Then

it follows that

1

t

∫ t

0

Lg(X(s), α(s))ds

=
1

t

∫ t

0

Lg(X(s), i)ds→ Lg(x, i), t→ 0

by continuity. Hence by multiplying by t−1 then letting t tend to zero, one gets

∣∣∣∣1t E
∫ t

0

Lg(X(s), α(s))ds− Lg(x, i)

∣∣∣∣→ 0, as t→ 0,

and consequently (1.10).
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Noting (1.9), when the deterministic time t is replaced by a stopping time τ

satisfying τ <∞ w.p.1 (recalling that g(·, i) ∈ C2
0), then

Ex,ig(X(τ), α(τ))− g(x, i) = Ex,i

∫ τ

0

Lg(X(s), α(s))ds. (1.11)

Note that if τ is the first exit time of the process from a bounded domain satisfying

τ < ∞ w.p.1, then Dynkin’s formula holds for any g(·, i) ∈ C2 and each i ∈ M

without the compact support assumption. To proceed, we obtain the following system

of Kolmogorov backward equations for switching diffusions; see also [21].

Theorem 1.2.1. (Kolmogorov Backward Equation) Suppose g(·, i) ∈ C2
0(Rn), for

i ∈M, and define

u(x, t, i) = Ex,i[g(X(t), α(t))]. (1.12)

Then u satisfies


∂u

∂t
= Lu for t > 0, x ∈ Rn, i ∈M

u(x, 0, i) = g(x, i) for x ∈ Rn, i ∈M
(1.13)

A proof of the theorem can be found in [21, Theorem 5.2]; see also Theorem 5.1

in the aforementioned reference.

Remark 1. We illustrate the proof of the theorem using the idea as in [13, p. 140].
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Fix t > 0. Then, using (1.10) and the Markov property, we have

Ex,i[u(X(r), t, α(r))]− u(x, t, i)

r

=
Ex,i[EX(r),α(r)[g(X(t), α(t))]]− Ex,i[g(X(t), α(t))]

r

=
Ex,i[Ex,i[g(X(t+ r), α(t+ r))|Fr]− Ex,i[g(X(t), α(t))]

r

=
Ex,i[g(X(t+ r), α(t+ r))]− Ex,i[g(X(t), α(t))]

r

=
u(x, t+ r, i)− u(x, t, i)

r
→ ∂u

∂t
(x, t, i) as r ↓ 0.

Thus, by the definition of L, (1.13) is satisfied.

We now state the Feynman-Kac Formula, which is a generalization of the Kol-

mogorov Backward equation.

Theorem 1.2.2. (The Feynman-Kac Formula) Suppose g(·, i) ∈ C2
0(Rn), and let

c(·, i) ∈ C(Rn) be bounded; i ∈M. Define

v(x, t, i) = Ex,i

[
exp

(
−
∫ t

0

c(X(s), α(s))ds

)
g(X(t), α(t))

]
. (1.14)

Then v satisfies


∂v

∂t
= Lv − cv for t > 0, x ∈ Rn, i ∈M

v(x, 0, i) = g(x, i) for x ∈ Rn, i ∈M
(1.15)

Proof. To simplify the notation, let

Y (t) = g(X(t), α(t)), Z(t) = exp

(
−
∫ t

0

c(X(s), α(s))ds

)
.
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Now, following the argument in Remark 1, we fix t > 0. We have

Ex,i[v(X(r), t, α(r))]− v(x, t, i)

r

=
Ex,i[EX(r),α(r)[Z(t)Y (t)]]− Ex,i[Z(t)Y (t)]

r

=
Ex,i[Ex,i[exp

(
−
∫ t

0
c(X(s+ r), α(s+ r))ds

)
Y (t+ r)|Fr]]− Ex,i[Z(t)Y (t)]

r

=
Ex,i[Ex,i[exp

(
−
∫ t+r
r

c(X(s), α(s))ds
)
Y (t+ r)|Fr]]− Ex,i[Z(t)Y (t)]

r

=
Ex,i[Z(t+ r) exp

(∫ r
0
c(X(s), α(s))ds

)
Y (t+ r)]− Ex,i[Z(t)Y (t)]

r

=
Ex,i[Z(t+ r)Y (t+ r)]− Ex,i[Z(t)Y (t)]

r

+
Ex,i[Z(t+ r)Y (t+ r)

{
exp

(∫ r
0
c(X(s), α(s))ds

)
− 1
}

]

r

=
v(x, t+ r, i)− v(x, t, i)

r

+
Ex,i[Z(t+ r)Y (t+ r)

{
exp

(∫ r
0
c(X(s), α(s))ds

)
− 1
}

]

r
.

First, clearly,

v(x, t+ r, i)− v(x, t, i)

r
→ ∂v

∂t
(x, t, i), r ↓ 0.

Furthermore, we claim

Ex,i[Z(t+ r)Y (t+ r)
{

exp
(∫ r

0
c(X(s), α(s))ds

)
− 1
}

]

r
→ c(x, i)v(x, t, i).

To verify this claim, first note that

Z(t+ r)Y (t+ r)→ Z(t)Y (t), r ↓ 0,
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by continuity. Now, if we let

f(r) = exp

(∫ r

0

c(X(s), α(s))ds

)
,

for r sufficiently small. Denote the first jump time of α(·) by τ1. With α(0) = i, for

any t ∈ [0, τ1), α(t) = i. It follows that

f(r) = exp

(∫ r

0

c(X(s), i)ds

)
, r ∈ [0, τ1).

Hence f is differentiable at the origin and

d

dt
f(0) = f(0)c(X(0), i) = c(x, i).

This in turn yields that

Z(t+ r)Y (t+ r) · 1

r

(
exp

(∫ r

0

c(X(s), α(s))ds

)
− 1

)
= Z(t+ r)Y (t+ r)

(
f(r)− f(0)

r

)
→ Z(t)Y (t)c(x, i), r ↓ 0.

Furthermore, the assumptions on the functions c(·, i) and g(·, i) ensure that this forms

a bounded sequence, so we may apply the bounded convergence theorem to yield

lim
r↓0

Ex,i

[
Z(t+ r)Y (t+ r)

1

r

(
exp

(∫ r

0

c(X(s), α(s))ds

)
− 1

)]
= Ex,i

[
lim
r↓0

Z(t+ r)Y (t+ r)
1

r

(
exp

(∫ r

0

c(X(s), α(s))ds

)
− 1

)]
= Ex,i[Z(t)Y (t)c(x, i)] = c(x, i)Ex,i[Z(t)Y (t)] = c(x, i)v(x, t, i)

as claimed. This completes the proof.
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So we have seen that the functions given by (1.12) and (1.14) necessarily satisfy

certain initial value problems. The remainder of this section will be dedicated to

giving stochastic representations for solutions to certain partial differential equations

(PDEs) related to the operator L.

1.3 Dirichlet Problem

Let O ⊂ Rn, be a bounded open set and consider the following Dirichlet problem:


Lu(x, i) + c(x, i)u(x, i) = ψ(x, i) in O ×M

u(x, i) = ϕ(x, i) on ∂O ×M,

(1.16)

where ∂O denotes the boundary of O. To proceed, we impose the following conditions:

(A1) Assume the following conditions hold

1. ∂O ∈ C2

2. for some 1 ≤ j ≤ r, and all i ∈M, minx∈Ōajj(x, i) > 0

3. a(·, i) and b(·, i) are uniformly Lipschitz continuous in Ō for each i ∈

M

4. c(x, i) ≤ 0 and c(·, i) is uniformly Hölder continuous in Ō for each

i ∈M

5. ψ(·, i) is uniformly continuous in Ō and ϕ(·, i) is continuous on ∂O,

both for each i ∈M

It follows that under (A1), the system of boundary value problems has a unique

solution; see [2] or [12]. Our goal is to derive a stochastic representation for this

problem, similar to the Feynman-Kac formula. In order to achieve this, we need the

following lemma.
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Lemma 1.3.1. Suppose that τ = inf{t ≥ 0 : Xx(t) /∈ O}. That is, τ is the first exit

time from the open set O of the switching diffusion given in (2.2) and (1.3). Then

τ <∞ w.p.1.

Proof. We use the idea as in [2]. Consider a function V : Rn ×M→ R defined by

V (x, i) = −A exp(λx1), A, λ > 0, i ∈M.

Clearly V (·, i) ∈ C∞(O) and since V is independent of i ∈M,

Q(x)V (x, ·)(i) =
∑
i 6=j

qij(x)(V (x, j)− V (x, i)) = 0,

and thus

LV (x, i) = −A exp (λx1)

[
1

2
a11λ

2 + b1λ

]
.

Note that as long as λ >
−b1

2a11

, it follows that LV (x, i) < 0. Hence, by choosing λ

and A = A(λ) sufficiently large, we can make LV (x, i) ≤ −1 for each i ∈M. As the

function V (·, i) and its derivatives w.r.t. x are bounded on Ō, we may apply Dynkin’s

formula to yield:

Ex,iV (X(t ∧ τ), α(t ∧ τ))− V (x, i) = Ex,i

∫ t∧τ

0

LV (X(s), α(s))ds

≤ −Ex,i(t ∧ τ),

where Ex,i denotes the expectation taken with (X(0), α(0)) = (x, i). This yields that

Ex,i(t ∧ τ) ≤ V (x, i)− Ex,iV (X(t ∧ τ), α(t ∧ τ)) ≤ 2 max
x∈Ō,i∈M

|V (x, i)| <∞.
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Taking the limit as t → ∞, and using the monotone convergence theorem yields

Ex,iτ <∞, which in turn leads to τ <∞ w.p.1.

Similar to the Feynman-Kac formula, the following result is true.

Theorem 1.3.1. Suppose that (A1) holds. Then with τ as in the previous Lemma,

the solution of the system of boundary value problems (1.16) is given by

u(x, i) = Ex,i

[
ϕ(X(τ), α(τ)) exp

(∫ τ

0

c(X(s), α(s))ds

)]
− Ex,i

[∫ τ

0

ψ(X(t), α(t)) exp

(∫ t

0

c(X(s), α(s))ds

)
dt

]
.

(1.17)

Proof. We apply Itô’s formula to the switching process

ũ(X(t), t, α(t)) := u(X(t), α(t)) exp

(∫ t

0

c(X(s), α(s))ds

)
.

To simplify notation we let

Z(t) = exp

(∫ t

0

c(X(s), α(s))ds

)
.

We have

Ex,iu(X(t ∧ τ), α(t ∧ τ))Z(t ∧ τ)− u(x, i)

= Ex,i

∫ t∧τ

0

(
∂

∂s
+ L

){
u(X(s), α(s))Z(s)

}
ds

= Ex,i

∫ t∧τ

0

Z(s)
{
u(X(s), α(s))c(X(s), α(s)) + Lu(X(s), α(s))

}
ds

= Ex,i

∫ t∧τ

0

Z(s)ψ(X(s), α(s))ds.

Taking the limit as t→∞ and noting the boundary conditions, (1.17) follows.
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1.4 Initial Boundary Value Problem

Consider next the initial boundary value problem given by


[L+ ∂

∂t
]u(x, t, i) + c(x, t, i)u(x, t, i) = ψ(x, t, i) in O × [0, T )×M

u(x, T, i) = ϕ(x, i) in O ×M

u(x, t, i) = φ(x, t, i) on ∂O × [0, T ]×M

(1.18)

where O is the same as before and

Lf(x, t, i) =
1

2
tr(a(x, t, i)D2f(x, t, i)) + b′(x, t, i)Df(x, t, i) +Q(x)f(x, t, ·)(i) (1.19)

We assume the following conditions:

(A2) Assume the following conditions hold.

1. 〈a(x, t, i)y, y〉 ≥ κ|y|2, for each i ∈M and for y ∈ Rn, (κ > 0),

2. alk(·, ·, i), bl(·, ·, i) are uniformly Lipschitz continuous in Ō× [0, T ], for

each i ∈M,

3. c(·, ·, i) and ψ(·, ·, i) are uniformly Hölder continuous in Ō× [0, T ], for

each i ∈M,

4. ϕ(·, i) is continuous on Ō, φ(·, ·, i) is continuous on ∂O × [0, T ], for

each i ∈M, where ∂O denotes the boundary of O,

5. ϕ(x, i) = φ(x, T, i), for x ∈ ∂O.

Under (A2) it follows that the system of initial-boundary value problems has

a unique solution; see [2] or [12]. In order to get a stochastic representation for

the solution, we also require the drift and diffusion coefficients of u to be Lipschitz
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continuous in the time variable; namely we require

|b(x, t, i)− b(x, s, i)| ∨ |σ(x, t, i)− σ(x, s, i)| ≤ K(|t− s|), i ∈M,

in addition to (2.4) and (1.5).

Now for (x, t, i) ∈ O × [0, T )×M, consider the switching SDE given by

dX(s) = b(X(s), s, α(s))ds+ σ(X(s), s, α(s))dw(s), s ∈ [t, T ], (1.20)

with initial data (X(t), α(t)) = (x, i). If we let σ(x, t, i) be the square root of a(x, t, i),

then the following is true.

Theorem 1.4.1. Suppose that (A2) holds. Then the solution of the system of initial

value problems in (1.18) is given by

u(x, t, i)= Ex,i

[
I{τ<T}φ(X(τ), τ, α(τ)) exp

(∫ τ

t

c(X(r), r, α(r))dr

)]
+ Ex,i

[
I{τ=T}ϕ(X(T ), α(T )) exp

(∫ T

t

c(X(r), r, α(r))dr

)]
− Ex,i

[∫ τ∧T

t

ψ(X(s), s, α(s)) exp

(∫ s

t

c(X(r), r, α(r))dr

)
ds

]
.

(1.21)

Proof. Proceeding similarly to the previous theorem, we apply Itô’s formula to the

process

u(X(s), s, α(s)) exp

(∫ s

t

c(X(r), r, α(r))dr

)
, s ∈ [t, T ].

To simplify notation we let

Zt(s) = exp

(∫ s

t

c(X(r), r, α(r))dr

)
.
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We have

Ex,iu(X(τ ∧ T ), τ ∧ T, α(τ ∧ T ))Zt(τ ∧ T )− u(x, t, i)

= Ex,i

∫ τ∧T

t

(
∂

∂s
+ L

){
u(X(s), s, α(s))Zt(s)

}
ds

= Ex,i

∫ τ∧T

t

Zt(s)
{
u(X(s), s, α(s))c(X(s), s, α(s)) + Lu(X(s), s, α(s))

}
ds

= Ex,i

∫ τ∧T

t

Zt(s)ψ(X(s), s, α(s))ds.

If we note that

u(X(τ ∧ T ), τ ∧ T, α(τ ∧ T ))Zt(τ ∧ T ) =


u(X(τ), τ, α(τ))Zt(τ), τ < T

u(X(T ), T, α(T ))Zt(T ), τ = T

=


φ(X(τ), τ, α(τ))Zt(τ), τ < T

ϕ(X(T ), α(T ))Zt(T ), τ = T,

then by replacing the correct value for

u(X(τ ∧ T ), τ ∧ T, α(τ ∧ T ))Zt(τ ∧ T )

in the above derivation, one gets (1.21).
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1.4.1 Cauchy Problem

If we let O = Rn in the initial value problem (17) of the previous section, we get the

Cauchy problem:


[L+ ∂

∂t
]u(x, t, i) + c(x, t, i)u(x, t, i) = ψ(x, t, i) in Rn × [0, T )×M

u(x, T, i) = ϕ(x, i) in Rn ×M
(1.22)

To proceed we impose the following condition:

(A3) Assume the following conditions hold.

1. The functions alk(·, ·, i), bl(·, ·, i) are bounded in Rn × [0, T ] and uni-

formly Lipschitz continuous in (x, t, i) in compact subsets of Rn ×

[0, T ]×M, for each i ∈M.

2. The functions alk(·, ·, i) are Hölder continuous in x, uniformly with

respect to (x, t, i) in Rn × [0, T ]×M, for each i ∈M.

3. The function c(·, ·, i) is bounded in Rn × [0, T ] and uniformly Hölder

continuous in (x, t, i) in compact subsets of Rn × [0, T ]×M, for each

i ∈M.

4. The function ψ(·, ·, i) is continuous in Rn × [0, T ], for each i ∈ M,

Hölder continuous in x with respect to (x, t, i) ∈ Rn× [0, T ]×M, and

|ψ(x, t, i)| ≤ K(1 + |x|p), in Rn × [0, T ]×M.

5. The function ϕ(·, i) is continuous in Rn, for each i ∈M, and |ϕ(x, i)| ≤

K(1 + |x|p), where K and p are positive constants.
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Under (A3) it follows that the Cauchy problem has a unique solution; see [2] or

[12]. Moreover, the following is true.

Theorem 1.4.2. Suppose that (A3) holds. Then the solution of the Cauchy problem

in (1.22) is given by

u(x, t, i) = Ex,i

[
ϕ(X(T ), α(T )) exp

(∫ T

t

c(X(s), s, α(s))ds

)]
− Ex,i

[∫ T

t

ψ(X(s), s, α(s)) exp

(∫ s

t

c(X(r), r, α(r))dr

)
ds

]
.

(1.23)

Proof. As before, by Itô’s formula, one has

Ex,iu(X(T ), T, α(T ))Zt(T )− u(x, t, i)

= Ex,i

∫ T

t

(
∂

∂s
+ L

){
u(X(s), s, α(s))Zt(s)

}
ds.

Now, proceeding as in the proof of the initial-boundary value problem, we get (1.23).

Remark 2. Note by taking c = ψ = 0, we see that the Kolmogorov Backward

Equation is a special case of the Cauchy problem by replacing u by:

ũ(x, t, i) := u(x, T − t, i).

So we have shown that even in the presence of regime switching, the generalizations

and extensions of the Feynman-Kac formula remain valid. We close this chapter with

a few examples.
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1.4.2 Examples

Example 1. Let O ⊂ Rn be an open set and consider the following weakly coupled

system:


4u(x, 1) + q11(x)u(x, 1) + q12(x)u(x, 2) = ψ(x, 1) in O

4u(x, 2) + q21(x)u(x, 1) + q22(x)u(x, 2) = ψ(x, 2) in O

u(x, 1) = u(x, 2) = 0 on ∂O.

(1.24)

Where Q(x) =

q11(x) q12(x)

q21(x) q22(x)

 satisfies the q-property. Such systems are studied

in [17]. It follows that this Dirichlet problem has the unique solution

u(x, i) = −Ex,i

[∫ τ

0

ψ(x+B(t), α(t))dt

]
,

where B(t) is a standard, n-dimensional Brownian motion and α(t) is a two-state,

discrete process with generator Q(x).

Example 2. Let

Li =
1

2
tr(a(x, i)D2g(x, i)) + b′(x, i)Dg(x, i); i = 1, 2,

and consider the following stationary system; found in [6].


L1u(x, 1) + q11(x)u(x, 1) + q12(x)u(x, 2) = 0 in O

L2u(x, 2) + q21(x)u(x, 1) + q22(x)u(x, 2) = 0 in O

u(x, i) = ϕ(x, i) on ∂O.
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It follows that the solution of the above problem has the form:

u(x, i) = Ex,iϕ(X(τ), α(τ)) exp

{∫ τ

0

q̃(X(s), α(s))ds

}
,

where q̃(x, i) = qii(x) + qij(x) and α(t) is a two-state process satisfying:

P{α(t+ δ) = j|α(t) = i, X(s), α(s), s ≤ t} = qij(X(t))δ + o(δ).

Hence if the generator Q(x) =

q11(x) q12(x)

q21(x) q22(x)

 satisfies the q-property, then it

follows that q̃(x, i) = 0 for all x, so the solution reduces to the form:

u(x, i) = Ex,iϕ(X(τ), α(τ)),

which agrees with the solution to the Dirichlet problem given by:


Lu(x, i) = 0 in O × {1, 2}

u(x, i) = ϕ(x, i) on ∂O × {1, 2}.
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Chapter 2

Near-Optimal Controls of Systems

with Regime Switching

2.1 Introduction

Let M = {1, . . . ,m0} be the state space of a discrete event process αε(·), that is

a continuous-time Markov chain with ε > 0. Let z(·) be an Rn-valued stationary

process that is independent of αε(·). Let U be our control space and suppose that U is

a compact subset of Rn0 . Let b(·, ·, ·) : Rn×M×U → Rn and let σ(·, ·) : Rn×Rn → Rn.

We consider the following controlled diffusion process with switching

Xε(t) = x+

∫ t

0

b(Xε(s), αε(s), uε(s))ds+
1√
ε

∫ t

0

σ(Xε(s), zε(s))ds,

αε(0) = i,

(2.1)

where uε(·) takes values in U . Our goal is to find the optimal control, uε(·), so that

the cost function (for some T̃ > 0),

J ε(uε) = J ε(x, i, uε) = Ex,i

∫ T̃

0

C(Xε(s), αε(s), uε(s))ds (2.2)

is minimized. Here Ex,i denotes the expectation with respect to the probability law

of (Xε(t), αε(t)) with initial data (Xε(0), αε(0)) = (x, i).
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2.2 Relaxed Controls

We now introduce the relaxed control formulation. Denote the σ-algebra of Borel

subsets of U by B(U). Let M(∞) denote the set of measures, m(·), defined on

the Borel sets of U × [0,∞) that satisfy m(U × [0, t]) = t, for all t ≥ 0. We say

that a random M(∞)-valued measure m(·) is an admissible relaxed control if for

each B ∈ B(U), the function defined by m(B, t) := m(B × [0, t]) is Ft adapted.

Equivalently, one could say that m(·) is a relaxed control if
∫ t

0
f(s, c)m(ds × dc)

is progressively measurable with respect to {Ft} for every bounded and continuous

function f(·, ·).

It can be shown that if m(·) is an admissible relaxed control, then there is a

measure-valued function mt(·) so that mt(c)dt = m(dt×dc) and, for a smooth function

f(·), we have ∫
f(s, c)m(ds× dc) =

∫
ds

∫
U
f(s, c)ms(dc)

To proceed, we topologize M(∞) as follows. Let {fki(·) : i < ∞} be a countable

dense set of continuous functions on U × [0, k], for each k. Let

〈m, f〉 =

∫
f(s, c)m(ds× dc),

d(m1,m2) =
∞∑
k=1

1

2k
dk(m1,m2),

where

dk(m1,m2) =
∞∑
i=1

1

2i
|(m1 −m2, fki)|

1 + |(m1 −m2, fki)|

If a sequence of measures {mk(·)} in M(∞) converges weakly to a measure m(·), we

will denote this by mk(·) ⇒ m(·). This setup is fairly standard and can be found in
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several other sources, for instance [20].

We say that an ordinary admissible control u(·) is a feedback control if there is a

U -valued Borel measurable function u0(·) so that u(t) = u0(x(t)) for almost all ω and

t. For each x, let mf (x, ·) be a probability measure on (U ,B(U)) and suppose that

for each B ∈ B(U), mf (·, B) is Borel measurable as a function of x. If for almost all

ω and t we have that mt(·) = mf (x(t), ·), then m(·) is said to be a relaxed feedback

control.

We now rewrite the system using the relaxed control formulation. We have

Xε(t) = x0 +

∫ t

0

∫
U
b(Xε(s), αε(s), c)mε

s(dc)ds+
1√
ε

∫ t

0

σ(Xε(s), zε(s))ds

αε(0) = i0 ∈M,

(2.3)

where mε(·) is the relaxed control. Our goal is to choose the optimal control mε(·) so

that the cost function

J ε(mε(·)) = J ε(x0, i0, u
ε(·)) = Ex0,i0

∫ T̃

0

∫
U
C(Xε(s), αε(s), c)mε

s(dc)ds (2.4)

is minimized.

Assumptions

To proceed we make the following assumptions.

(A1) αε(·) is a continuous-time Markov chain with state space M and generator

Qε(t) = (qεij(t)) given by

Qε(t) =
Q̃(t)

ε
+ Q̂(t),
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where both Q̃(t) and Q̂(t) are bounded and Borel measurable generators of

continuous Markov chains such that Q̃(t) = diag(Q̃1(t), . . . , Q̃k(t)) where each

Q̃j(t) is weakly irreducible with quasi-stationary distribution

vj(t) = (vj1(t), . . . , vjmj(t)) ∈ R1×mj .

(A2) The functions b(·) and σ(·) satisfy: For each α ∈ M, b(·, α, c) and σ(·, z) are

defined and Borel measurable on [0, T ] × R such that, for each x and y ∈ Rn,

the following Lipschitz condition holds.

|b(y, α, c)− b(x, α, c)| ≤ L|x− y|,

|σ(y, z)− σ(x, z)| ≤ L|x− y|,

for each α, c, and z.

(A3) The process zε(t) = z(t/ε), where z(·) is a stationary process, independent

of α(·), with mean Ez(s) = 0. It is a strong mixing process with mixing

measure φ(·) so that the process is bounded, right continuous, and satisfies∫∞
0
φ1/2(s)ds <∞.

(A4) There is a positive integer p0 so that for each c and α ∈M we have

|C(x, α, c)| ≤ κ(1 + |x|p0),

where κ is an arbitrary positive constant.

We also assume that M is nearly completely decomposable, an idea introduced

in [1]. This means that our state space M can be decomposed into subspaces

M =M1 ∪M2 ∪ · · · ∪Ml
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with the elements of Mi labeled as

Mi = {si1, . . . , simi), i = 1, . . . , l,

where the probability of leaving a particular subspace,Mj, is small once it has been

entered. However, as the name suggests, the subspaces are not completely isolated

but communicate via the slow part of the generator Q̂(t). In addition, we may reduce

much of the computational complexity by treating all of the states in each subspace

as a single state. Precisely, we define a new process given by

ᾱε(t) = j if αε(t) ∈Mj. (2.5)

Note that ᾱε(·) takes values in M̄ = {1, . . . , l}.

Remark. Let us make the following observations.

• Note that ᾱε(·) is not a Markov process. However, as it was proved in Chapter

5 of [20], ᾱε(·) converges weakly to a Markov chain ᾱ(·) such that the generator

of ᾱ(·) is given by

Q̄ = diag(ν1(t), . . . , νl(t))Q̂(t)diag(1lm1 , . . . , 1lml). (2.6)

• One of the difficulties that we are facing is that system (2.1) in general is non-

Markovian. This is because that zε(t) is generally non-Markovian. Nevertheless,

zε(·) is a so-called wideband noise process that approximates the white noise.

Recall that a wideband noise process is one whose band width goes to ∞ and

hence an approximation of the white noise. We will use the methods of aver-

aging to obtain a limit the system. In fact, we examine the pair of processes
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(Xε(·), ᾱε(·)) and show the limit is a Markovian. This limit system will lead to

a controlled martingale problem.

• Using the near-optimal control of the limit system, we construct controls for

the original systems. Then we show that the control so constructed is nearly

optimal.

2.3 Limit Systems

Let D([0,∞) : S) denote the set of cadlag functions from [0,∞) to S. A cadlag func-

tion is one that is right-continuous and has left hand limits. A detailed presentation

of their weak convergence properties can be found in [4]. We now present the main

result of this section.

Theorem 2.3.1. Suppose that assumptions (A1)-(A3) hold. Then {Xε(m̂ε(·), ·),

ᾱε(·), m̂(·)} is tight in D([0,∞) : Rn×M)×M(∞) where D([0,∞) : Rn×M) denotes

the set of cad-lag functions from [0,∞) to Rn×M. Suppose that (Xε(m̂ε(·), ·), ᾱε(·), m̂ε(·))

converges weakly to (X(m̂(·), ·), ᾱ(·), m̂(·)). Then there exists an Rn-valued standard

Brownian motion w(·) such that w(·) and ᾱ(·) are mutually independent, m̂(·) is

admissible with respect to (w(·), ᾱ(·)), and

X(t) = x0 +

∫ t

0

∫
U
b̄(X(s), ᾱ(s), c)ms(dc) +

∫ t

0

σ̄(X(s))dw, (2.7)

where σ̄(x) is the square root of R(x) with R(x) defined by

R(x) = Eσ(x, z(0))σ′(x, z(0)) +

∫ ∞
0

Eσ(x, z(t))σ′(x, z(0))dt

+

∫ ∞
0

Eσ(x, z(0))σ′(x, z(t))dt,

(2.8)
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and

b̄(x, i, u) =

mi∑
j=1

vij(t)b(x, sij, u) +

∫ ∞
0

E[Dσ(x, z(s))σ(x, z(0))]ds. (2.9)

Remark. Note that corresponding to (2.7) or corresponding to the limit switching

diffusion, there is a generator given by

Gf(x, i) = Lf(x, i) + Q̄(t)f(x, ·)(i), for i ∈ M̄,

where L and Q are given by

Lf(x, i) =
1

2
tr[σ(x)σ′(x)D2f(x, i)] +

∫
U
b̄′(x, i, c)Df(x, i)mt(dc), , i ∈ M̄,

Q̄(t)f(x, ·)(i) =
∑
j∈M̄

qij(t)f(x, j) =
∑

j 6=i,j∈M̄

qij(t)[f(x, j)− f(x, i)], i ∈ M̄,

and where Q̄(t) = (q̄ij(t)) given by (2.6).

To prove Theorem 2.3.1, we carry out a series of tasks. To begin, define

Φf (t) = f(X(t), ᾱ(t))− f(X(0)), ᾱ(0))−
∫ t

0

Gf(X(s), ᾱ(s))ds, (2.10)

for and f(·, i) that is twice continuously differentiable with compact support for each

i ∈ M̄. Following the classical approach, we hope to show that Φf (·) is a martingale

for each i ∈ M̄, and for each f(·, i) ∈ C2
0 , where C2

0 denotes the set of C2 functions

with compact support. This will in turn show that (X(·), ᾱ(·)) is a solution to the

martingale problem with operator G. Since we do not assume the process is bounded,

we first approach the problem from the angle of truncation. Then, once we have veri-

fied the claims for the truncated process, we show that these claims also remain valid

when the truncated process is replaced with the untruncated process. To proceed, let



26

K > 0 be an arbitrary constant and define a truncation function

hK(x) =


1, if |x| ≤ K,

0, if |x| ≥ K + 1,

such that hK(x) is sufficiently smooth for K ≤ |x| ≤ K + 1. We define the truncated

version of Xε(·) by

Xε
K(t) = x0 +

∫ t

0

∫
U
bK(Xε

K(s), αε(s), c)m̂ε
s(dc)ds

+
1√
ε

∫ t

0

σK(Xε
K(s), zε(s))ds,

(2.11)

where bK = bhK and σK = σhK are the truncated versions of b and σ. Now, instead

of the original martingale problem, we aim to show that

Φf,K(t) = f(X(t), ᾱ(t))− f(X(0), ᾱ(0))−
∫ t

0

GKf(X(s), ᾱ(s))ds, (2.12)

is a martingale, where GK is essentially G but b and σ have been replaced with their

truncated counterparts. To proceed, we need the following lemmas.

Lemma 2.3.1. Under the conditions of Theorem 2.3.1, {m̂ε(·)} is tight in M(∞)

and {ᾱε(·)} is tight in D([0,∞) :M).

Proof. First note that since U × [0,∞) is a Polish space (separable, complete, and

metrizable), we have that {m̂ε(·)} is tight in M(∞). Furthermore, from our assump-

tions, it follows that {ᾱε(·)} is tight in D([0,∞) :M) from [20].

Now, to proceed, we need a different notion of convergence, that is weaker than
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strong convergence; see [8]. We say that f is the p-limit of {fk} and write

p− lim
k→∞

fk = f,

if and only if

sup
k
|fk| <∞

and

lim
k→∞

E(|fk(t)− f(t)|) = 0 for all t

Now, let F εt be the minimal sigma algebra so that {αε(s),mε(·), zε(s) : s ≤ t} is F εt -

measurable and let Eε
t denote the conditional expectation with respect to F εt . Given

an operator Aε, we say that a function f(·) is in the domain of Aε, and Aεf = g, if

p− lim
∆→0

∣∣∣∣Eε
tf(t+ ∆)− f(t)

∆
− g(t)

∣∣∣∣ = 0.

Two consequences of this definition are that given f(·) is in the domain of Aε, we

have that

f(t)−
∫ t

0

Aεf(s)ds

is a martingale, and

Eε
tf(t+ s)− f(t) =

∫ t+s

t

Eε
tAεf(r)dr w.p.1,

see [20] or [9] for more details. We now state a theorem, from [11], which will be used

soon to verify the tightness of certain sequences.

Theorem 2.3.2. (Kushner [11]) Suppose that Y ε(·) has sample paths in D([0,∞) :
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Rn) and suppose that

lim
N→∞

lim sup
ε→0

P ( sup
t∈[0,T ]

|Y ε(t)| ≥ N) = 0, for each T <∞.

Given f ε(·) in the domain of Aε, if for each T < ∞, {Aεf ε(t) : ε > 0, t ≤ T} is

uniformly integrable and for each λ > 0,

lim
ε→0

P (sup
t≤T
|f ε(t)− f(Y ε(t))| ≥ λ) = 0,

then {Y ε(·)} is tight in D([0,∞) : Rn).

We now return to our problem.

Lemma 2.3.2. Under the conditions of Theorem 2.3.1, {(Xε
K(·), ᾱε(·))} is tight in

D([0,∞) : Rn × M̄).

Proof. We verify this result using an Aldous-like tightness criterion. For i ∈ M̄ and

η(·, i) ∈ C2
0 define

η̂(x, α) =
∑
i∈M̄

η(x, i)I{α∈Mi}, for α ∈M; (2.13)

note that η̂(x, α) is identically zero if α does not belong to the class Mi.

Consider the operator Gε given by:

Gεη̂(x, α) = Lεη̂(x, α) +
∑
β∈M

qεαβ(t)η̂(x, β), for α ∈M, (2.14)

where

Lεη̂(x, α) = Dη̂(x, α)′
[∫
U
b(x, α, c)mε

t(dc) +
1√
ε
σ(x, z)

]
.
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Furthermore, let LεK denote the truncated version of Lε where b and σ are replaced

with bK and σK respectively. Note that, from our definition of η̂, it follows that

η̂(Xε
K(t), αε(t)) :=

∑
i∈M̄

η(Xε
K(t), i)I{ᾱε(t)=i}

= η(Xε
K(t), ᾱε(t)).

We have

LεK η̂(Xε
K(t), αε(t)) = Dη̂(Xε

K(t), αε(t))′[

∫
U
bK(Xε

K(t), αε(t), c)mε
t(dc)

+
1√
ε
σK(Xε

K(t), zε(t))].

(2.15)

Now, for T > 0 with t ≤ T , define the first perturbation of η̂ by

η̂ε1(t) = η̂ε1(Xε
K(t), αε(t)) =

1√
ε

∫ T

t

Eε
t [Dη̂(Xε

K(s), αε(s))′σK(Xε
K(s), zε(s))]ds

Using a change of variables we obtain

η̂ε1(t) =
√
ε

∫ T/ε

t/ε

Eε
t

[
Dη̂(Xε

K(s), αε(s))′σK(Xε
K(s), z(s))

]
ds.

Furthermore, using the mixing condition on z(·), the independence of αε(·) and z(·),

and the fact that Xε
K(·) is bounded, it follows that

η̂ε1(Xε
K(t), αε(t)) = O(

√
ε). (2.16)

Therefore,

sup
t≤T
|η̂ε1(t)| p→ 0, as ε→ 0.
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Now, using some algebraic manipulation, it follows that

LεK η̂
ε
1(t) = − 1√

ε
Dη̂(Xε

K(t), αε(t))′σK(Xε
K(t), zε(t))

+
1√
ε

∫ T

t

[Dη̂(Xε
K(t), αε(t))′Eε

tσK(Xε
K(t), zε(s))]

′
x Ẋ

ε
K(t)ds

(2.17)

So, if we define η̂ε(t) = η̂(Xε
K(t), αε(t)) + η̂ε1(t), we get

LεK η̂
ε(t) = LεK η̂(Xε

K(t), αε(t)) + LεK η̂
ε
1(t)

= Dη̂(Xε
K(t), αε(t))′

∫
U
bK(Xε

K(t), αε(t), c)mε
t(dc)

+

∫ T/ε

t/ε

Eε
t

[
Dη̂(Xε

K(t), αε(t))′σK(Xε
K(t), z(s))

]′
x
σK(Xε

K(t), zε(t))ds

+
√
ε

∫ T/ε

t/ε

Eε
t [Dη̂(Xε

K(t), αε(t))′σK(Xε
K(t), z(s))]′x

×
∫
U
bK(Xε

K(t), αε(t), c)mε
t(dc).

(2.18)

We now aim to analyze and bound each of the terms in the previous equation. First,

as η̂ is smooth with compact support and bK is bounded, it follows that

|Dη̂(Xε
K(t), αε(t))| ·

∣∣∣∣∫
U
bK(Xε

K(t), αε(t), c)mε
t(dc)

∣∣∣∣
is uniformly bounded. By the mixing condition on z(·), it follows that

∣∣∣∣∣
∫ T/ε

t/ε

Eε
t [Dη̂(Xε

K(t), αε(t))σK(Xε
K(t), z(s))]′x σK(Xε

K(t), zε(t))ds

∣∣∣∣∣
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is also uniformly bounded. Furthermore, in a similar fashion, we have

√
ε

∣∣∣∣∣
∫ T/ε

t/ε

Eε
t [Dη̂(Xε

K(t), αε(t))σK(Xε
K(t), z(s))]′x

∫
U
bK(Xε

K(t), αε(t), c)mε
t(dc)

∣∣∣∣∣
= O(

√
ε)

Due to (A2) and the definition of η̂(·), we get that

Qε(t)[η̂(Xε
K(t), ·)(αε(t)) + η̂ε1(Xε

K(t), ·)(αε(t))]

= Q̂(t)[η̂(Xε
K(t), ·)(αε(t)) + η̂ε1(Xε

K(t), ·)(αε(t))]

(2.19)

as a result of the fact that

Q̃(t)1 = 0,

where 1 = diag(1lm1 , . . . , 1lml), and 1l` is an `-dimensional vector with all entries being

1. Thus,

p− lim Q̂(t)η̂ε1(Xε
K(t), ·)(αε(t))→ 0,

as ε → 0. Combining all our estimates for (2.18), we see that {GεK η̂ε(t)} is a uni-

formly integrable family. In addition, the process {Xε
K(·)} clearly satisfies the first

condition of Theorem 2.3.3 due to their truncations. Finally, using (2.16), we see

that all the conditions of Theorem 2.3.2 are satisfied, and, therefore, it follows that

{(Xε
K(·), αε(t))} is tight.

We have now shown that {Xε
K(·)}, {ᾱε(·)}, and {m̂ε(·)} are tight inD([0,∞) : Rn),

D([0,∞) : M̄), and M(∞), respectively. Our next order of business is to analyze the

limit we observe under the weak convergence. Citing a result found in [8], if we can
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show that η̂(·, ·) ∈ D(GεK), it will follow that

η̂(Xε
K(t), αε(t))−

∫ t

0

GεK η̂(Xε
K(s), αε(s))ds

is a martingale. This will also imply that

Eε
t η̂(Xε

K(t+ s), αε(t+ s))− η̂(Xε
K(t), αε(t)) =

∫ t+s

t

Eε
tGεK η̂(Xε

K(r), αε(r))dr w.p.1

Let

θε(x, α, zε(t)) :=

∫ T/ε

t/ε

[Eε
t η̂
ε(x, α)σK(x, z(s))]′x σK(x, zε(t))ds,

and with η̂ε1(·) as before, we define the second perturbation

η̂ε2(Xε
K(t), αε(t)) :=

∫ T

t

[Eε
tθ
ε(Xε

K(t), αε(t), zε(s))− Eθε(Xε
K(t), αε(t), zε(s))] ds.

(2.20)

By substituting the definition of θε into the second permutation, we see that

η̂ε2(Xε
K(t), αε(t)) = ε

∫ T/ε

t/ε

∫ T/ε

r

[Eε
t [Dη̂(Xε

K(t), αε(t))′σK(Xε
K(t), z(s))]′xσK(Xε

K(t), z(r))

− E[Eε
tDη̂(Xε

K(t), αε(t))′σK(Xε
K(t), z(s))]′xσK(Xε

K(t), z(r))]dsdr.

Furthermore, we have

p− lim η̂ε1(Xε
K(t), αε(t)) = 0,

p− lim η̂ε2(Xε
K(t), αε(t)) = 0,

(2.21)

by letting ε→ 0.

Now we define

η̂ε(x, α) = η̂(x, α) + η̂ε1(x, α) + η̂ε2(x, α). (2.22)
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Applying LεK to η̂ε2(·, ·) yields

LεK η̂
ε
2(Xε

K(t), αε(t))

= −θε(Xε
K(t), αε(t), zε(t))

+

∫ T/ε

t/ε

E[Dη̂(Xε
K(t), αε(t))′σK(Xε

K(t), z(s))]′xσK(Xε
K(t), z(r))dsdr

+ε

∫ T/ε

t/ε

∫ T/ε

r

[
Eε
t [Dη̂(Xε

K(t), αε(t))′σK(Xε
K(t), z(s))]′xσK(Xε

K(t), z(r))

−E[Dη̂(Xε
K(t), αε(t))′σK(Xε

K(t), z(s))]xσK(Xε
K(t), z(r))

]′
x
Ẋε
K(t)dsdr.

(2.23)

Combining everything we have used so far, we see that

GεK η̂ε(Xε
K(t), αε(t))

= LεK [η̂(Xε
K(t), αε(t)) + η̂ε1(Xε

K(t), αε(t)) + η̂ε2(Xε
K(t), αε(t))]

+
∑
j∈M

qεij(t) [η̂(Xε
K(t), αε(t)) + η̂ε1(Xε

K(t), αε(t)) + η̂ε2(Xε
K(t), αε(t))]

= Dη̂(Xε
K(t), αε(t))′

∫
U
bK(Xε

K(t), αε(t), c)mε
t(dc)

+

∫ T/ε

t/ε

E[Dη̂(Xε
K(t), αε(t))′σK(Xε

K(t), z(s))]′xσK(Xε
K(t), zε(t))ds

+
∑
j∈M

qεij(t) [η̂(Xε
K(t), αε(t)) + η̂ε1(Xε

K(t), αε(t)) + η̂ε2(Xε
K(t), αε(t))]

+ eε(t),

(2.24)

where eε(·) is an error term satisfying

p− lim eε(t)→ 0, as ε→ 0.
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As before in (2.19), we see that

Qε(t) [η̂(Xε
K(t), ·)(αε(t)) + η̂ε1(Xε

K(t), ·)(αε(t)) + η̂ε2(Xε
K(t), ·)(αε(t))]

= Q̂(t) [η̂(Xε
K(t), ·)(αε(t)) + η̂ε1(Xε

K(t), ·)(αε(t)) + η̂ε2(Xε
K(t), ·)(αε(t))] .

In addition, equations (2.21) yields

p− lim Q̂(t) [η̂ε1(Xε
K(t), ·)(αε(t)) + η̂ε2(Xε

K(t), ·)(αε(t))] = 0.

Thus, the only term that requires our attention is Q̂(t)η̂(Xε
K(t), ·)(αε(t)).

As {Xε
K(·), ᾱε(·), m̂ε(·)} is tight, we may select a weakly convergent subsequence

that we still denote by {Xε
K(·), ᾱε(·), m̂ε(·)}, for notational simplicity. Using the

Skorohod representation we may assume, with a slight abuse of notation, that

(Xε
K(·), ᾱε(·), m̂ε(·)) converges to (XK(·), ᾱ(·), m̂(·)) with probability 1. Finally, we

use an idea from [11] to complete the proof. For arbitrary t > 0, s > 0, bounded and

continuous f(·), and positive integer N0, we show that

Ef(XK(t), ᾱ(t) : tl < t, l ≤ N0)
[
η(XK(t+ s), ᾱ(t+ s))− η(XK(t), ᾱ(t))

−
∫ t+s

t

GKη(XK(r), ᾱ(r))dr
]

= 0.

This implies that

η(XK(t), ᾱ(t))−
∫ t+s

t

GKη(XK(r), ᾱ(r))dr

is a martingale, completing the proof.
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First, we have

∫ t+s

t

Q̂(r)η̂(Xε
K(r), αε(r))dr

=

∫ t+s

t

∑
i∈M̄

∑
j∈Mi

Q̂(r)η̂(Xε
K(t), sij)I{αε(r)=sij}dr

=

∫ t+s

t

∑
i∈M̄

∑
j∈Mi

Q̂(r)η̂(Xε
K(t), sij)v

i
j(r)I{ᾱε(r)=i}dr

+

∫ t+s

t

∑
i∈M̄

∑
j∈Mi

Q̂(r)η̂(Xε
K(t), sij)[I{αε(r)=sij} − vij(r)I{ᾱε(r)=i}]dr.

(2.25)

Now, by Theorem 5.52 in [22], for each i ∈ M̄ and j = 1, 2, . . . ,mi,

E

(∫ t+s

t

[I{αε(r)=sij} − vij(r)I{ᾱε(r)=i}]dr
)2

→ 0 as ε→ 0.

This clearly implies that we may omit the last line of (2.25) in our analysis. We have

lim
ε→0

Ef(Xε
K(t), ᾱε(t) : tl < t, l ≤ N0)

[∫ t+s

t

Q̂(r)η̂(Xε
K(r), αε(r))dr

]

= lim
ε→0

f(Xε
K(t), ᾱε(t) : tl < t, l ≤ N0)

[∫ t+s

t

[v(t)Q̂(r)1]η(Xε
K(r), ᾱ(r))dr

]

= Ef(XK(t), ᾱ(t) : tl < t, l ≤ N0)

[∫ t+s

t

Q̄(r)η(XK(r), ᾱ(r))dr

]
.

(2.26)
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Furthermore, from the weak convergence and the Skorohod representation, we have

Ef(Xε
K(t), ᾱε(t) : tl < t, l ≤ N0)

×
[∫ t+s

t

Dη̂(Xε
K(t), αε(t))′

∫
U
bK(Xε

K(t), αε(t), c)mε
r(dc)dr

]
= Ef(f(Xε

K(t), ᾱε(t) : tl < t, l ≤ N0)

×
[∑
i∈M̄

∑
j∈Mi

∫ t+s

t

Dη̂(Xε
K(t), αε(t))′

∫
U
bK(Xε

K(t), sij, c)m
ε
r(dc)v

i
j(r)I{ᾱε(r)=i}]dr

+
∑
i∈M̄

∑
j∈Mi

∫ t+s

t

Dη̂(Xε
K(t), αε(t))′

∫
U
bK(Xε

K(t), sij, c)m
ε
r(dc)

× [I{ᾱε(r)=i} − viJ(t)I{ᾱε(r)=i}]dr
]

→ Ef(XK(t), ᾱ(t), tl < t, l ≤ N0)

×
[∫ t+s

t

Dη(XK(t), ᾱ(t))′
∫
U
bK(XK(t), ᾱ(t), c)mε

r(dc)dr

]
.

(2.27)

We have now shown that the following lemma is true.

Lemma 2.3.3. Under the conditions of Theorem 2.3.1, the pair (Xε
K(·), ᾱε(·)) con-

verges weakly to (XK(·), ᾱ(·)), and this process is the solution to the martingale prob-

lem with operator GK.

Finally, we must show that our original (untruncated) process (X(·), ᾱ(·)) is the

solution of the martingale problem with operator G.

Lemma 2.3.4. Under the conditions of Theorem 2.3.1, the pair (Xε(·), ᾱε(·)) con-

verges weakly to (X(·), ᾱ(·)), and this process is the solution to the martingale problem

with operator G.

Proof. First, we have seen that Φf,K(·) are martingales with respect to the sigma-

algebra Ft = σ{XK(s), ᾱ(s), m̂(B × [0, s]) : for Borel sets B with s ≤ t}. Therefore,



37

there exists a standard Brownian motion wK(·) that is adapted to Ft such that

dXK(t) =

∫
U
bK(XK(t), ᾱ(t), c)m̂t(dc) + σ̄(XK(t))dwK(t) (2.28)

If we let K → ∞, we see that (X(·), ᾱ(·)) satisfies equation (2.22) but with un-

truncated functions. Furthermore, because (Xε(·), ᾱε(·), m̂ε(·)) converges weakly to

(X(·), ᾱ(·), m̂(·)), the result contained in Theorem 2.3.1 now follows.

Proposition 2.3.1. Assume that (Xε(·), ᾱε(·),mε(·)) converges weakly to

(X(·), ᾱ(·),m(·)) where m(·) is admissible with respect to w(·). Then, as ε→ 0,

J ε(x, i,mε(·))→ J(x, i,m(·))

= Ex,i

∫ T̃

0

∫
U
C̄(X(t), ᾱ(t), c)mt(dc)dt,

(2.29)

where

C̄(x, i, c) =

mi∑
j=1

vij(t)C(x, sij, c).

Proof. First, by applying assumption (A4) and the Cauchy-Schwarz inequality we

obtain

E

∣∣∣∣∣
∫ T̃

0

∫
U
C(Xε(t), sij, c)

[
I{αε(t)=sij} − vij(t)I{ᾱε(t)=i}

]
mε
t(dc)dt

∣∣∣∣∣
2

.

≤
[∫ T

0

κ2(1 + E|Xε(t)|2p0)dt

]
E

[∫ T̃

0

[
I{αε(t)=sij} − vij(t)I{ᾱε(t)=i}

]2
dt

]

≤
[∫ T

0

κ2(1 + E|Xε(t)|2p0)dt

]
E

[∫ T̃

0

[
I{αε(t)=sij} − vij(t)I{ᾱε(t)=i}

]
dt

]2

= O(ε)→ 0 as ε→ 0,

(2.30)

by Theorem 5.25 in [20]. Because (Xε(·), ᾱε(·)) converges weakly to (X(·), ᾱ(·)),
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using the Skorohod representation we may assume, abusing notation slightly, that

(Xε(·), ᾱε(·)) converges to (X(·), ᾱ(·)) w.p.1. Furthermore, we have

lim
ε→0

J ε(x, ι,mε)

= lim
ε→0

Ex,ι

∫ T̃

0

∫
U
C(Xε(t), αε(t), c)mε

t(dc)dt

= lim
ε→0

l∑
i=1

mi∑
j=1

Ex,ι

∫ T̃

0

∫
U
C(Xε(t), sij, c)I{αε(t)=sij}m

ε
t(dc)dt

= lim
ε→0

l∑
i=1

mi∑
j=1

Ex,ι

∫ T̃

0

∫
U
C(Xε(t), sij, c)

[
I{αε(t)=sij} − vij(t)I{ᾱε(t)=i}

]
mε
t(dc)dt

+ lim
ε→0

l∑
i=1

mi∑
j=1

Ex,ι

∫ T̃

0

∫
U
C(Xε(t), sij, c)v

i
j(t)I{ᾱε(t)=i}m

ε
t(dc)dt

=
l∑

i=1

mi∑
j=1

Ex,ι

∫ T̃

0

∫
U
C(X(t), sij, c)v

i
j(t)I{ᾱ(t)=i}mt(dc)dt

=
l∑

i=1

mi∑
j=1

Ex,ι

∫ T̃

0

∫
U
C̄(X(t), i, c)I{ᾱ(t)=i}mt(dc)dt

= Ex,ι

∫ T̃

0

∫
U
C̄(X(t), ᾱ(t), c)mt(dc)dt.

(2.31)

Thus giving the desired result. This completes the proof.

2.4 Nearly Optimal Control

Starting with the limit system, we can construct optimal of near-optimal controls.

Then we use such controls in the original problem. We aim to show that such con-

structed controls are nearly optimal. The main tool for this purpose is the so-called

chattering lemma, which we state now; a proof can be found in [11].

Lemma 2.4.1. Assume that (A2) holds and that (2.3) has a weak solution for every
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initial condition for the admissible pair (m(·), w(·)). Given T > 0 and ∆ > 0, there

exists a finite set U∆ = {a∆
1 , a

∆
2 , . . . , a

∆
k∆
} ⊂ U , a δ > 0, and a U∆-valued ordinary

admissible stochastic control u∆(·) such that u∆ is constant on each interval [iδ, iδ+δ)

and for all m we have

Pm
x,i(sup

t≤T
|x(t, u∆)− x(t,m)| > ∆) ≤ ∆,

|J(x, i,m)− J(x, i, u∆)| ≤ ∆.

(2.32)

If the solution to (2.3) is unique for each admissible control m(·), then the above

equation holds for all m(·) simultaneously.

Lemma 2.4.2. Suppose that m(·) is an admissible relaxed control with respect to the

Brownian motion w(·).

• Then there is a nonanticipative solution to (2.3) with X(0) = x0 and

E sup
t≤T
|X(t)|2 ≤ K0(1 + |x0|2),

where K0 depends only on T and the Lipschitz constant of b(·) and σ(·).

• Let mn(·) converge weakly to m(·), where each mn(·) is an admissible con-

trol with respect to the Brownian motion w(·). Suppose x(mn(·), ·) satisfies

(2.3). Then (Xn(mn(·), ·),mn(·)) converges weakly to (X(m(·), ·),m(·)) where

(X(m(·), ·),m(·)) satisfies (2.3). Furthermore, m(·) is admissible with respect

to the Brownian motion w(·).

Proof. Proofs of both items appear in several sources; see, for example, [11] and

[5].
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Lemma 2.4.3. In the class of admissible controls for (2.3), there is an optimal con-

trol.

Proof. Let mδ(·) be a sequence of relaxed controls that converge weakly to some

m(·) and satisfy J(mδ) → infR J(m), as δ → 0. Then, by Lemma 2.3.6, if x(mδ, ·)

is a trajectory satisfying (2.7), it follows that (Xδ(mδ(·), ·),mδ(·)) converges weakly

to (X(m(·), ·),m(·)), where (X(m(·), ·),m(·)) satisfies (2.7) and such that m(·) is

admissible with respect to w(·). Hence, m(·) is the desired admissible control.

Finally, we show that those controls obtained in the limit are near-optimal.

Theorem 2.4.1. Assume the conditions of Theorem 2.3.1 are satisfied. Suppose that

uδ(·) is a δ-optimal control of (2.3). Then this control is nearly optimal satisfying

lim
ε→0

sup[J ε(uδ)− inf
Rε
J ε(m)] ≤ δ. (2.33)

where Rε denotes the class of admissible controls corresponding to (2.1) and (2.2).

Proof. First, by Proposition 2.3.1, we have that

J ε(uδ)→ J(uδ) as ε→ 0.

Furthermore, as uδ is a δ-optimal control, we have

J(uδ) ≥ inf
R
J(m),

where R denotes the class of admissible controls for (2.2). Combining this with the
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fact that m̂ε(·) is a ∆ε-optimal control, we obtain

inf
m∈Rε

J ε(m) + ∆ε ≥ J ε(m̂ε)

→ J(m̂)

≥ inf
m∈R

J(m)

≥ J(uδ)− δ

= J ε(uδ) + %ε + δ,

(2.34)

where %ε is an error term such that %ε → 0 as ε→ 0. Therefore,

J ε(uδ)− inf
m∈Rε

J ε(m) ≤ ∆ε − %ε + δ, (2.35)

from which (2.19) follows after taking lim sup as ε→ 0 of both sides. This completes

the proof.
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We consider diffusions in two different contexts. First, we consider the so-called

Feynman-Kac formula(s) for switching diffusions. These formulas provide stochastic

representations for solutions of certain weakly coupled elliptical systems of partial

differential equations. The formulas are for the boundary value problem, the ini-

tial value problem, and the initial boundary value problem. Second, we show the

existence of near-optimal controls for a system driven by wideband noise in the pres-

ence of regime-switching. Using a relaxed control formulation, together with weak

convergence methods, we show that given a stochastic optimal control problem, one

may find a control that is near-optimal. The use of wideband noise is inspired by

applications.
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