
Wayne State University

Wayne State University Dissertations

1-1-2014

Management Of Plug-In Electric Vehicles And
Renewable Energy Sources In Active Distribution
Networks
Junhui Zhao
Wayne State University,

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations

Part of the Electrical and Computer Engineering Commons

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in
Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Zhao, Junhui, "Management Of Plug-In Electric Vehicles And Renewable Energy Sources In Active Distribution Networks" (2014).
Wayne State University Dissertations. Paper 1037.

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1037&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1037&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1037&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1037&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1037&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations/1037?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1037&utm_medium=PDF&utm_campaign=PDFCoverPages


 

 

MANAGEMENT OF PLUG-IN ELECTRIC VEHICLES AND RENEWABLE ENERGY 

SOURCES IN ACTIVE DISTRIBUTION NETWORKS  
 

by 

JUNHUI ZHAO 

DISSERTATON 

Submitted to the Graduate School 

of Wayne State University, 

Detroit, Michigan 

in partial fulfillment of the requirements 

for the degree of 

DOCTOR OF PHILOSOPHY 

2014 

MAJOR: ELECTRICAL ENGINEERING 

Approved by: 

        _________________________________________ 
         Advisor                                                    Date 

        _________________________________________ 

        _________________________________________ 

        _________________________________________ 

        _________________________________________ 

 



© COPYRIGHT BY 

JUNHUI ZHAO 

2014 

All Rights Reserved 

  



 ii 

DEDICATION 

 

To my family 

  



 iii 

ACKNOWLEDGMENTS  

Above all, I would like to express my great appreciation to my advisor Dr. Caisheng Wang. 

I especially thank him for providing me with lots of guidance not only of academic research but 

of career and personal development. It is his encouragement that inspires me to pursue a faculty 

position after graduation. I appreciate his precious support and help; and it is my honor to be his 

first Ph.D. student. 

I would thank my co-advisor Dr. Feng Lin. His personal integrity and expectations of 

excellence always encourage me to advance higher in the study and research.  

I would also like to express my sincere gratitude to other members of the dissertation 

committee, Dr. Le Yi Wang, Dr. Mark Ming-Cheng Cheng, and Dr. Wen Chen who gave me many 

professional ideas and stimulated my thinking in different ways so that I could improve my 

research study.    

My sincere thanks also go to collaborators, Yang Wang, Lijian Xu, Zhong Chen, 

Zhongyang Zhao, Chang Fu, Saeed Alyami, Daniel Bral, Lezhang Liu, and Xuebin Tan, for their 

valuable discussions and suggestions in my research and study. 

Special thanks go to my father Lijie Zhao and my mother Yanqin Shi, I would have never 

come so far without their unconditional support and love. Thanks to my father-in-law, Youmin 

Chen, and mother-in-law, Songluo Lin for their love and encouragement. Finally, I wish to thank 

my wife, Lan, for sharing the joys and sorrows of life with me. It is her countless encouragement 

and love inspire me go further and further.  

  



 iv 

TABLE OF CONTENTS 

Dedication .................................................................................................................................................................. ii 

Acknowledgments .................................................................................................................................................. iii 

List of Tables ........................................................................................................................................................... vii 

List of Figures ......................................................................................................................................................... viii 

CHAPTER 1 INTRODUCTION AND LITERATURE REVIEW ................................................................... 1 

1.1 MOTIVATION ............................................................................................................................................................ 1 

1.2 LITERATURE REVIEW ............................................................................................................................................. 2 

1.2.1 Active management framework of distribution networks................................................................... 2 

1.2.2 Voltage and energy management methods of active distribution networks .............................. 8 

1.2.3 Protection and fault location of distribution networks ..................................................................... 12 

1.2.4 Emerging technologies ...................................................................................................................................... 14 

1.2.5 Discussions on future development ............................................................................................................. 19 

1.2.6 Summary .................................................................................................................................................................. 23 

1.3 SCOPE OF THE STUDY ........................................................................................................................................... 24 

1.4 ORGANIZATION OF DISSERTATION ..................................................................................................................... 24 

CHAPTER 2 SAFETY CONTROL OF PEVS IN DISTRIBUTION NETWORKS USING                
FINITE STATE MACHINES WITH VARIABLES ................................................................ 26 

2.1 INTRODUCTION TO DISCRETE EVENT SYSTEM ................................................................................................. 26 

2.1.1 Language ................................................................................................................................................................. 26 

2.1.2 Finite state machine ........................................................................................................................................... 27 

2.1.3 Supervisory control of DES .............................................................................................................................. 28 

2.2 PROBLEM FORMULATION .................................................................................................................................... 30 

2.3 FINITE STATE MACHINES WITH VARIABLES .................................................................................................... 33 

2.4 SAFETY CONTROLLER ........................................................................................................................................... 37 

2.5 ONLINE SAFETY CONTROLLER ............................................................................................................................ 48 



 v 

2.6 APPLICATIONS TO THE ACTIVE MANAGEMENT OF PEVS ............................................................................... 53 

2.6.1 Distribution networks ........................................................................................................................................ 53 

2.6.2 Offline safety control of DN ............................................................................................................................. 55 

2.6.3 Offline safety control of DN with energy storage .................................................................................. 61 

2.7 CONCLUSION........................................................................................................................................................... 66 

CHAPTER 3 MAXIMIZING THE PENETRATION OF PLUG-IN ELECTRIC VEHICLES IN 
DISTRIBUTION NETWORK .................................................................................................. 67 

3.1 INTRODUCTION ...................................................................................................................................................... 67 

3.2 VOLTAGE STABILITY INDEX INCORPORATED OPTIMIZATION ALGORITHM ................................................. 69 

3.2.1 Problem formulation .......................................................................................................................................... 69 

3.2.2 Objective and constraints ................................................................................................................................. 70 

3.3 SIMULATION RESULTS AND DISCUSSION ........................................................................................................... 71 

3.4 CONCLUSION........................................................................................................................................................... 78 

CHAPTER 4 DEMONSTRATION OF ACTIVE MANAGEMENT OF PLUG-IN ELECTRIC    
VEHICLES ................................................................................................................................... 79 

4.1 INTRODUCTION ...................................................................................................................................................... 79 

4.2 SOFTWARE AND MANAGEMENT ALGORITHM .................................................................................................. 80 

4.3 HARDWARE PLATFORM ....................................................................................................................................... 85 

4.4 APPLICATION IN ACTIVE DISTRIBUTION NETWORK ....................................................................................... 86 

4.5 CONCLUSION........................................................................................................................................................... 88 

CHAPTER 5 MICROGRID POWER MANAGEMENT DURING AND SUBSEQUENT TO   
ISLANDING PROCESS ............................................................................................................. 90 

5.1 INTRODUCTION ...................................................................................................................................................... 90 

5.2 MICROGRID UNDER STUDY .................................................................................................................................. 92 

5.2.1 IEEE 13-bus test feeder ..................................................................................................................................... 92 

5.2.2 Diesel generation system .................................................................................................................................. 93 

5.2.3 Model of PV panel ................................................................................................................................................ 96 



 vi 

5.2.4 Model of battery.................................................................................................................................................... 97 

5.2.5 Control of power electronic inverters ......................................................................................................... 98 

5.2.6 Model of single phase induction motor ...................................................................................................... 99 

5.3 REACTIVE POWER MANAGEMENT .................................................................................................................. 102 

5.3.1 Voltage sensitivity ............................................................................................................................................. 103 

5.3.2 Reactive power management algorithm ............................................................................................... 104 

5.4 SIMULATION RESULTS AND DISCUSSIONS ...................................................................................................... 107 

5.4.1 Case study 1: without Q compensation ................................................................................................... 109 

5.4.2 Case study 2: with reactive power management algorithm ......................................................... 111 

5.5 CONCLUSION........................................................................................................................................................ 118 

CHAPTER 6 SUMMARY AND FUTURE WORK ...................................................................................... 119 

6.1 CONCLUSION........................................................................................................................................................ 119 

6.2 FUTURE WORK ................................................................................................................................................... 120 

Appendix A ........................................................................................................................................................... 122 

References ............................................................................................................................................................ 124 

Abstract ................................................................................................................................................................. 147 

Autobiographical Statement ............................................................................................................................. 149 

 



 vii 

. 

LIST OF TABLES 

TABLE 2.1 CALCULATION OF IQ AT SIX STATES ............................................................................. 48 

TABLE 2.2 CALCULATION OF Iq AT FOUR STATES FOR SCENARIO 1 ............................................... 56 

TABLE 2.3 CALCULATION OF Iq AT FOUR STATES FOR SCENARIO 2 ............................................... 57 

TABLE 3.1 DATA FOR 33-BUS TEST FEEDER .................................................................................. 72 

TABLE 3.2 TOTAL ALLOWED NUMBER OF PEVS AT FIVE LOAD LEVELS ...................................... 73 

TABLE 5.1 PARAMETERS OF DIESEL GOVERNOR IN GRID-TIED MODE........................................... 94 

TABLE 5.2 PARAMETERS OF DIESEL ENGINE AND GOVERNOR IN STANDALONE MODE ................. 94 

TABLE 5.3 PARAMETERS OF SYNCHRONOUS GENERATOR ............................................................. 95 

TABLE 5.4 PV PANEL PARAMETERS .............................................................................................. 96 

TABLE 5.5 POWER SOURCES AND LOADS COMPOSITION IN THE STUDIED MICROGRID ................ 109 

TABLE 5.6 SENSITIVITY FACTORS BY GENERATING 100 KVAR REACTIVE POWER ON                

EVERY PHASE FROM EIDGS ...................................................................................... 111 

 

  



 viii 

LIST OF FIGURES 

Figure 1.1 Illustration of a centralized control framework. ............................................................ 3 

Figure 1.2 Illustration of a decentralized control framework. ........................................................ 5 

Figure 1.3 Illustration of a hybrid hierarchical control framework. ............................................... 7 

Figure 1.4 Illustration of a hybrid hierarchical control framework [119]. .................................... 23 

Figure 2.1 Feedback loop of supervisory control. ........................................................................ 28 

Figure 2.2 A transition in FSMwV. .............................................................................................. 33 

Figure 2.3 Parallel composition: 𝑙1 ≠ 𝑙2. ...................................................................................... 35 

Figure 2.4 Parallel composition: 𝑙1 = 𝑙2 = l. ............................................................................... 36 

Figure 2.5 An illegal state specification for 𝑝 ≥ 𝑐. ...................................................................... 37 

Figure 2.6 CFSMwV for Example 1. ............................................................................................ 47 

Figure 2.7 Resulting CFSMwV after the iteration converges. ...................................................... 47 

Figure 2.8 Online expansion of the CFSMwV in Figure 2.6, where N = 3. ................................. 51 

Figure 2.9 Online control synthesis in Example 2: with conservative attitude. ........................... 52 

Figure 2.10 Online control synthesis in Example 2: with optimistic attitude. .............................. 52 

Figure 2.11 Online control synthesis in Example 2: with variable lookahead. ............................ 53 

Figure 2.12 A distribution network with N nodes. ....................................................................... 55 

Figure 2.13 Local load FSMwV model at node i for Scenarios 1 and 2. ..................................... 56 

Figure 2.14 Local load FSMwV model at node i for Scenarios 3 and 4. ..................................... 58 

Figure 2.15 Safety regions when βi
− is uncontrollable for (a) State N, (b) State O. ..................... 60 

Figure 2.16 Safety regions when βi
− is enforceable for (a) State N, (b) State O. .......................... 61 

Figure 2.17 FSMwV model for local load at node i. .................................................................... 62 



 ix 

Figure 2.18 Safety regions when βi
−

 is uncontrollable (a) State N, (b) State NB,                          

(c) State O and (d) State OB. .................................................................................... 64 

Figure 2.19  Safety area when βi
− is enforceable event of (a) State N, (b) State NB,                     

(c) State O and (d) State OB. .................................................................................... 65 

Figure 3.1 33-bus test feeder [49]. ................................................................................................ 72 

Figure 3.2  Total allowable PEVs for two scenarios at five load levels. ...................................... 74 

Figure 3.3 Simulation results by uniform injection method under five load levels,                      

(a) voltage value (p.u.) at Bus 1-33, (b) ENVCI at Bus 1-33. .................................... 75 

Figure 3.4 Simulation results by optimized injection method under five load levels,                      

(a) voltage value (p.u.) at Bus 1-33, (b) ENVCI at Bus 1-33. .................................... 76 

Figure 3.5 Number of PEVs at selected buses by the optimized injection method                   

under five load levels. ................................................................................................. 77 

Figure 4.1 Diagram of the active management platform of PEVs ................................................ 80 

Figure 4.2 Software interface of the master station ...................................................................... 81 

Figure 4.3 Management algorithm in the master station .............................................................. 82 

Figure 4.4 Software interface of the master station ...................................................................... 83 

Figure 4.5 Management algorithm in the RTUs ........................................................................... 83 

Figure 4.6 Software interface of RTUs ......................................................................................... 84 

Figure 4.7 Hardware platform of local charging station ............................................................... 85 

Figure 4.8 ADAM-6066................................................................................................................ 86 

Figure 4.9 Management of PEVs in active DNs. .......................................................................... 87 

Figure 5.1 Diagram of the MG. .................................................................................................... 92 

Figure 5.2 Diagram of the diesel generator and controllers. ......................................................... 93 

Figure 5.3 Diesel governor model in grid-tied mode. ................................................................... 94 

Figure 5.4 Diesel engine and governor model in standalone mode. ............................................. 94 

Figure 5.5 Equivalent model for a PV cell. .................................................................................. 96 



 x 

Figure 5.6  Equivalent model for lead acid batteries. ................................................................... 97 

Figure 5.7 Control scheme of the EIDGs...................................................................................... 98 

Figure 5.8 Equivalent circuit of the single phase induction machine dynamic model. .............. 100 

Figure 5.9 Typical torque speed characteristic of a capacitor-start motor [172]. ....................... 102 

Figure 5.10 Voltage recovery at bus 611 during and subsequent to islanding process. .................... 105 

Figure 5.11 Reactive power management algorithm. ................................................................. 107 

Figure 5.12 Simulation system of the studied microgrid in MATLAB/Simulink. ..................... 109 

Figure 5.13 Voltage at buses 611, 652, 675, and 680 without Q compensation......................... 111 

Figure 5.14 Voltage at buses 611, 652, 675, and 680 with distributed Q compensation............ 112 

Figure 5.15 Sharing of power between PV and battery. ............................................................. 113 

Figure 5.16 Simulation results of the DGS, (a) output voltage, (b) speed,                                   

and (c) real power output. ....................................................................................... 115 

Figure 5.17 P&Q of the battery of (a) Phase A, (b) Phase B, and (c) Phase C. .......................... 116 

Figure 5.18 P&Q of the PV of (a) Phase A, (b) Phase B, and (c) Phase C. ................................ 117 

Figure A.1 Single-line model………………………………………………………………...…121 

 



1 

 

CHAPTER 1   INTRODUCTION AND LITERATURE REVIEW 

1.1 Motivation 

Smart Grids have been widely hailed as the future infrastructure of electrical power 

generation for secure, efficient and sustainable energy development. Electric power distribution 

networks (DNs) have been a fundamental element and a large part of the power grid infrastructure. 

They will become even more critical and should be given the priority in developing future smart 

grids. This is because distribution networks are where most end users, distributed generation (DG) 

sources and plug-in electric vehicles (PEVs) are connected. Near 160 million customers in the 

U.S.A. are served via distribution networks [1]. The increasing penetration level of DG and PEVs, 

the implementation of smart distribution technologies such as advanced metering/monitoring 

infrastructure (AMI); and the adoption of smart appliances, have changed DNs from passive to 

active. The next-generation of DNs should be efficient and optimized system-wide, highly 

reliable and robust, and capable of effectively managing highly-penetrated PEVs, DG sources 

and other controllable loads. To meet new challenges, next-generation DNs need active 

distribution management (ADM). 

Various distribution management technologies, such as distribution automation, AMI, 

fault location, automated reconfiguration and VAR control, have been studied and some of them 

have been successfully implemented in today’s distribution networks [1]. Different aspects of 

optimization of DN planning have also been investigated, including optimal deployment of 

capacitor and other VAR compensation devices, section-reclosers, and DG sources [2-5]. 

Moreover, advances in new DG technologies, new power electronic converters (PEC) such as 

solid state transformers capable of regulating real and reactive power flows [6], the expanding 
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use of intelligent appliances and other controllable loads [7], and the application of home and 

office automation networks [8], all make ADM for next-generation DNs possible. 

Therefore, it is vital and urgent to study the active management of DN with DGs and 

PEVs by taking advantage of novel management strategies and emerging technologies.  

1.2 Literature Review 

1.2.1 Active management framework of distribution networks 

In an ADM scheme, the proper coordination of DGs, voltage regulators, shunt capacitors, 

and other devices in a DN is critical to achieve high system security and operation efficiency [9]. 

Generally, the management framework of the ADM can be categorized into three types: 

centralized, decentralized, and hybrid hierarchical management (HHM) frameworks. 

1.2.1.1 Centralized management framework 

In the centralized management framework, the voltage, power flow, and equipment status 

measurements at selected locations in the DN are sent to the distribution network central controller 

(DNCC), as shown in Figure 1.1. Similar to the supervisory control and data acquisition (SCADA) 

of transmission system, the DNCC is able to manage the DN through dispatching active and 

reactive power from DGs and assigning operation commands to other network elements. 



3 

 

Feeder 1

PEDG PEC

PEC ESS

PEDG

ESS

⋯ 
Feeder N

Other Other

Distribution Network 
Central Controller

LC

LC

LC

LC

LC

LC

LC

LC

LC

LC

PEC

PEC

LC Local controller ESS Energy storage system Diesel Generator

Power electronic based DGPEDG Voltage regulator

Power gridPEC Power electronic converters Communication

Undispatchable load Dispatchable loadCircuit breaker

Distribution 
Substation

 
Figure 1.1 Illustration of a centralized control framework. 

 

In addition, the DNCC coordinates available devices in the DN to enhance the operation 

efficiency and keep the voltage and frequency within security range. In [9], a central Distribution 

Management System Controller was proposed to deliver real-time measurements and network data 

into a state estimation algorithm to control active devices in the DN. Reference [10] presented an 

optimal algorithm to coordinate DGs with other devices, such as load ratio control transformer, 

step voltage regulator, shunt capacitor, shunt reactor, and static VAR compensator to adjust 

voltage of each node with necessary communication supports. In [11], to efficiently exchange 

information, a remote terminal unit (RTU) is placed at each DG and each switched capacitor in 

the system; and then by reading and analyzing the information provided by the RTUs, a central 

voltage controller adjusts the settings of the voltage regulators on different feeders to coordinately 

regulate the voltage within the acceptable range. A statistical state estimation method was utilized 

in [12] to estimate the voltage at each node, and correspondingly set the target voltage of relays 

and the DGs’ output to maintain the voltage profile. 
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However, as stated in [16], the centralized control is against the “distributed” nature of DN, 

in which the electrical devices are usually dispersed. Though the centralized control strategy is the 

most straightforward way to achieve the management and optimization of the overall network, it 

certainly has several drawbacks: (1) A failure of the central controller may cause the crash of the 

whole system; (2) the amount of data and communication traffic may quickly exceed the level that 

can be handled; (3) high investment in communication and data processing; (4) onerous testing is 

required for even just a few modifications on the control algorithm; and (4) the shutdown of the 

whole system for maintenance. 

1.2.1.2 Decentralized management framework 

To follow the distributed nature of DN, an opposite way to centralized ADM is to develop 

a decentralized control system. As shown in Figure 1.2, the devices in decentralized methods can 

be autonomous. The control decisions of local controllers could be made according to only the 

local information or coordination with neighboring devices [13, 14]. For example, by using the 

local voltage and frequency information, the real and reactive power of DGs and energy storages 

could be adjusted through 𝑓 𝑃⁄  and 𝑉 𝑄⁄  droop controllers [15-17]. 
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Figure 1.2 Illustration of a decentralized control framework. 

 

By coordinating DGs and conventional voltage regulation devices, the voltage could be 

regulated within the security range in a local/distributed way. In [18], cooperated with line drop 

compensator, on-load tap changers (OLTC) were controlled to avoid local voltage problems in a 

medium voltage feeder with DGs installed. It concluded that the parameters and structure of a 

feeder and DG’s connection point jointly affect the effectiveness of the proposed methods. In [19], 

a large and meshed network is firstly divided into many sub-networks based on the 𝜀 -

decomposition of the sensitivity matrix; and then the devices in the same sub-network coordinate 

together to adjust the local voltage within the limitation. 

In addition, a popular approach for distributed control scheme is agent based management 

(ABM), which has been widely studied for the power flow, protection, restoration and voltage 

regulation in transmission networks [20], and has drawn the attentions of its applications in DN 

management [21]. The definition of an agent in ABM, adapted from [22], is an entity of software 
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and/or hardware embedded in the DN and is able to change the network, be affected by a set of 

tendencies, and interact with other agents. A system containing two or more coordinated agents is 

named as multi-agent system (MAS). The management of various devices in the ABM received 

extensive studies. In [23], the ability of the agents to monitor the local voltage sensitivities was 

enhanced to facilitate the injection of plug-and-play DGs into the DN. Reference [24] focused on 

the operation of microgrid in DN through the ABM. In the three-layer ABM, every DG or 

controllable load determines the best behaviors by themselves. As for the intermittency of DGs, a 

persistent method was used by assuming that the average energy production for the next short 

period will be consistent with the current one. However, as it was stated in [25], in an ABM system, 

agents consider their own benefits more than the global optimization. Therefore, the solution 

provided by MAS may be sub-optimal. 

An interesting paper [26] compared the centralized and decentralized control frameworks 

from the aspects of total allowed injection capacity and losses. It arrives at a conclusion that the 

two methods show similar influence on maximizing the DGs’ penetration capacity without causing 

voltage rise issues. However, the two strategies both cause a significant increase of power losses, 

which is about five times higher than the constant power factor control method. 

1.2.1.3 Hybrid hierarchical management framework 

Hybrid hierarchical management (HHM) is a more practical framework to manage large 

distribution networks. It combines centralized and decentralized control and has a multi-layer 

structure, as shown in Figure 1.3. 
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Figure 1.3 Illustration of a hybrid hierarchical control framework. 

 

The HHM usually consists of several supervisory control layers [27-29]. In the top strategy 

layer, the controller carries out the functions of display, monitoring, operation and management 

by collecting the information of lower layers and market information. Based on the strategic orders, 

controllers in the lower tactical supervisory control layer perform different predefined functions 

to generate optimal settings for the local controllers in the lowest operational control layer. 

Analogous to a global manufacture standard, ISA-95, a general hierarchical control structure of 

microgrid was proposed in [30]. In the proposed scheme, the four layers from the top down are 

tertiary control layer, the secondary control layer, the primary control layer, and the inner control 

layer. The method could be extended to a cluster that has multiple microgrids and finally control 

the overall distribution network. 
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1.2.2 Voltage and energy management methods of active distribution networks 

Within a given management framework, it is still challenging to develop practical strategies 

for power and energy management. On the energy-supply side, how to economically integrate DG 

sources and how to control these sources to regulate system voltage need more research. On the 

customer side, one challenging issue is how to solve the voltage and power issues caused by the 

proliferation of new loads such as PEVs. 

1.2.2.1 Optimization of DGs in distribution networks 

To economically integrate DGs into DNs, the location and sizing of DGs should be 

optimized. In [31], the optimal allocation and sizing of DG and ESS were calculated by a genetic 

algorithm, and the results showed that using DGs and ESS was able to economically improve the 

energy-not-supplied index of the DN. Reference [32] presented analytical approaches for optimal 

placement of DGs based on the network parameters, such as bus admittance matrix, generation 

information and load distribution of the system. In [33], a modified particle swarm optimization 

(PSO) algorithm with both of the technical and economic constraints was proposed to determine 

the optimal location of DGs and ESS in DN. 

In addition, there are numerous objectives in optimization problems of DG-dispatching in 

DN. A common objective is to mitigate the power congestion and to defer the system upgrade [34, 

35]. Energy losses minimization is another common objective in DN to optimally dispatch DGs 

[32, 36]. Some researchers consider the enhancement of reliability of power supply as another 

objective [37, 38]. Multi-objective optimization has also been extensively explored. In [39], a 

multi-objective mixed integer programming algorithm was proposed to optimize three objectives 

together by economically dispatching DGs in DN. 
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1.2.2.2 Active voltage management through DGs 

Traditionally distribution network operators (DNOs) manage DGs in a unit power factor 

control mode; however, it ignores the fact that some DGs may be capable of providing reactive 

power support as well. With increasing needs for the reactive power support, it is very likely that, 

in the future, DGs will be required to provide such support. The studies to utilize DGs to actively 

compensate reactive power and regulate voltage in DN could be categorized into dynamic control 

[40-44] and steady-state dispatching [23, 45, 46]. 

The study on dynamic Volt/VAR control of DGs focuses on the design of the power 

inverter controllers of electronic-interfaced DGs. In [40] and [41], V/Q droop controllers were 

used to dynamically adjusting the reactive power generation of DGs to regulate the local voltage. 

Reference [42] introduced the control of the back-to-back voltage source converter of a wind 

turbine generator. The authors designed the three-stage controllers, rotor-side converter controller, 

DC-link controller, and grid-side converter controller. In addition, the real and reactive power 

operating limits were integrated into the design of the controllers. Based on these controllers, the 

reactive power is actively controlled for voltage regulation without violating the power limits. The 

authors of [43] proposed an algorithm to control the voltage by automatically adjusting the 

parameters of the controllers according to the system dynamics. With respect to the limit of 

reactive power generation of DGs, the work [44] realized that |𝑄𝑚𝑎𝑥| ≤ 0.45𝑃𝑟𝑎𝑡𝑒𝑑 (where Qmax 

and Prated are the reactive power generation capacity and the rated real power output of DGs 

respectively) was reasonable because it required no significant extra cost of inverters. 

The steady-state analysis mainly commits to formulate the voltage support by DGs as a 

reactive power dispatching problem. In [23], with fast communications among DGs and voltage 

regulators, an agent based method was introduced to facilitate a model-free control procedure to 
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dispatch reactive power generation of DGs in an optimal manner. In [46], the reactive power of 

DG was regarded as a controllable variable and was coordinately dispatched with the OLTC and 

shunt capacitors. The results showed that the location and the capability of reactive power 

generation of DGs and other factors determined the performance of the voltage regulation. 

Overvoltage is a common and important issue for DN with high penetration of DGs. For 

the worst scenario that the installed devices are unable to keep voltage below the upper limit, a 

straight forward method was proposed by reducing DGs’ power production [47, 48]. Based on the 

dynamic Thevenin equivalent, a real-time prediction algorithm was proposed in [49] to calculate 

the active power limit as a reference of the power. However, for a feeder with multiple DGs, how 

to fairly curtail power of DGs that belong to different owners deserves more studies because unfair 

curtailment may cause conflict of interest between DG owners and DNOs. The simplest method is 

to equally curtail the power output of DGs once the voltage issue happens [47]. 

In addition, the study in [50] showed that the allowable penetration level of DGs could be 

increased if DGs were used as voltage regulators. In the above paper, three different power factor 

modes of distributed generators were compared which are unitary, capacitive and inductive power 

factor modes. It concluded that the voltage control mode for the DG helped maximize the allowable 

penetration of distributed synchronous generation in DN. 

1.2.2.3 Active management of plug-in electric vehicles 

To reduce CO2 emissions and oil dependency, transportation electrification is an important 

and viable way. By 2030, the cumulative sales of plug-in electric vehicles (PEVs) could be as high 

as 16 million [51]. The increasing number of PEVs will become a large load to the power grid 

when they are being charged. In [52], the impact of the PEVs on the Belgium DNs with the 

consideration of the traffic and driving patterns was studied. After the simulation studies for 
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different scenarios on a 34-node test feeder, it concluded that the large injection of PEVs can cause 

a significant amount of power losses and voltage deviations. At the same time, the analysis of the 

paper also showed that the voltage issue and energy deficiency could be mitigated if the charging 

of PEVs was actively managed. Therefore, the impacts of PEVs on DN must be measured and 

controlled to maintain the DN’s stability. An active management of PEVs was proposed in [53] 

and [54]. PEVs and other loads in a DN were modeled by a method of finite state machine with 

variables, and then a safety controller was proposed to locally manage the dis-/charging of PEVs 

and other controllable loads on a node. With the coordination of controllers at all nodes, the peak 

power needed is shifted, and the safety of the feeder transformer is guaranteed. 

Besides exerting great stress on DNs, the PEVs’ injection also provides an opportunity to 

assist the ADM [55] via vehicle to grid (V2G). With the ability of V2G, PEVs are capable of 

exchanging energy and control information with DNOs to improve the voltage stability and energy 

security of the grid. In addition, PEVs could be used to balance the intermittent outputs from 

renewable sources via V2G techniques [56]. 

1.2.2.4 Demand side management 

Demand side management (DSM) allows customers to take an active role in the ADM [57, 

58]. By taking advantage of the bidirectional information and communication techniques, the 

customers are encouraged to shift their power consumption toward off-peak periods to reduce the 

maximum and/or total power needed, therefore reinforcing the energy security and reliability and 

maximizing the efficiency. When electricity demands are high, reducing peak usage and 

temporarily employing DGs are a solution that draws more and more attention [59]. 

Load demand modeling is important for the development of the DSM. A state-queueing 

model to study the price response of thermostatically controlled appliances (TCA) was proposed 
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in [60]. The model successfully simulates the dynamic response of the TCA type of load along 

with the price changes. In [61], the residential loads, with customized priority and convenience 

settings, were categorized into controllable and critical groups for the DSM strategy. With the 

proposed model, a load shaping tool was designed to not only manage the total demand under the 

limitation of transformers, but guarantee customers’ comfort to a great extent. 

The DSM has the potential to improve the investment efficiency in DN. It could be helpful 

in increasing the penetration level of DGs in the DN by managing the demand-supply balance [62]. 

The increased DGs help reduce the peak load of both cables and transformers and relieve 

congestion in substations. As a result, the upgrade of network could be deferred. As for how to 

overcome the intermittency of some DGs (i.e. photovoltaic resources, wind power generation) by 

DSM, a model predictive controller was proposed to predict the power consumption in a DN with 

high wind penetration in [63]. Integrated with the weather forecast and dynamic pricing 

information, the proposed algorithm could successfully realize a predictive demand dispatch in a 

real test platform. 

1.2.3 Protection and fault location of distribution networks  

In the DN with a large penetration of DGs, the traditional protection and fault-location 

methods may not work properly since most of them are based on unidirectional power/current flow 

along radial feeders. Therefore, active methodologies have to be developed to guarantee the 

security of DN. 

1.2.3.1 Active distribution network protection 

There are tremendous challenges that protection engineers have to deal with regarding the 

integration of DGs: Fuse and switchgear coordination, feeding faults after utility protection opens, 

interrupting ratings of devices, sympathetic tripping, protection relay desensitizing, recloser 
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coordination, and islanding [64]. For instance, when a DG tries to maintain the voltage stability 

under a fault condition, the reduction of the current seen by relays may induce the relay 

desensitizing [65]. In addition, both the direction and magnitude of the fault current seen by 

protection relays can be changed because of the injection of DGs [66]. To deal with the uncertainty 

of the fault current, an adaptive protection strategy was proposed in [67]. By only collecting the 

local information of the operating status and the faulted section, the trip characteristics of the relays 

are timely updated. And the use of microprocessor-based directional overcurrent relays, whose 

tripping characteristics could be chosen accordingly, brings the adaptive protection into effect [67]. 

Moreover, islanding is a noteworthy emerging challenge as the penetration of DGs 

increases. It is a situation that a DN or a portion of the DN has been isolated from the main power 

grid, but continually supplied by the DGs within it [68]. Such a situation may threaten the safety 

of line workers, cause distorted voltage and frequency, and lead to unwanted out-of-phase 

reclosing of the DGs [69, 70]. To detect the islanding, a remote (centralized) strategy will have to 

rely on communication [71] and advanced monitoring system, such as SCADA [72]. Decentralized 

strategies try to locally detect islanding by either passively measuring varying parameters such as 

voltage, frequency and harmonic distortion [73], by actively introducing perturbation to induce a 

significant change [74], or by hybrid methods to integrate both passive and active strategies [75]. 

1.2.3.2 Active fault location in distribution networks 

There has been increased research effort on fault location for distribution network with 

DGs [1] [76-79]. In [76], a general method was given to locate faults for distribution networks 

with DGs. The method uses synchronized voltage and current measurements at the interconnection 

points of DG units and is able to adapt to variations in the topology of the system. The authors of 

[77] proposed a fault location method based on a binary hybrid algorithm of particle swarm 
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optimization and differential evolution, which targeted for solving “premature convergence” issues. 

It is a two-population evolution scheme with information exchange mechanism and is able to 

adaptively accommodate the changes caused by multiple fault sections in DN with multiple DGs. 

In [78], a multiagent management strategy was proposed to enhance the security of DN. By 

compromising the rule-based expert systems, the proposed intelligent agent could quickly locate 

and isolate the fault with assistance of the power line communication. A distribution fault 

anticipation technique, based on large database records of electrical waveforms of failing apparatus, 

was discussed in [79]. The technique was proposed for failures detection by monitoring sensitive 

signals. It can be extended to include a larger database with equipment parameters and system 

constraints [1]. 

1.2.4 Emerging technologies 

In this section, the emerging technologies that enable the novel management methods and 

strategies aforementioned are reviewed. 

1.2.4.1 Advanced power electronics 

PECs are interfaces of the energy conversion for DGs and are the basic platform for DNOs 

to actively manage the DGs. With proper control strategies, PECs facilitate and regulate the power 

flow in DN, regulate the voltage where DGs are connected, compensate reactive power if needed, 

provide certain protection to the distributed generators, and help DGs rapidly and smoothly share 

load when the system islands [80]. 

In addition, assisted or even redesigned using power electronic techniques, some 

conventional devices are endowed with novel functions and applications. One example is new 

solid-state transformers (SST). By using semiconductor-based devices, they are much more 

flexible in handling high power levels with very fast switching [6, 81]. An SST is able to (1) change 
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the voltage and frequency of the power it produces; (2) has both AC and DC inlet/outlet; (3) 

directly take in power from wind and PV and (4) connect to the grid through proper power 

conversion. Another example is the solid-state fault current limiter (SSCL) [82]. Because the 

increased penetration of DG sources in DN in turn can cause the fault current exceed the ratings 

of existing power devices, the SSCL was proposed to limit the fault current and reduce oscillations 

by using series connected capacitors to act as large turn-off snubbers [83]. In the future, the built-

in processors and communications will enable SST and SSCL to be key parts in the actively 

managed DN [1, 84]. 

Furthermore, the applications of flexible alternating current technologies in DN (DNFACT) 

enhance the controllability of the ADM. The devices of this kind include Distribution Static 

Compensator, Dynamic Voltage Restorer, and Solid State Transfer Switch. Reported in [85], 

DNFACTs were installed close to the load side for improving the system stability and the power 

supply quality. 

Lower cost is always the highest priority in designing and developing PECs. It is critical 

to have cost effective PECs to integrate and manage various kinds of distributed generation sources 

and storage units in DNs. To achieve the goal, the effort has to be made at both the levels of 

hardware (topologies and components) and software (control and management). On the one hand, 

as reviewed in the previous sections, more features/functions such as reactive power support may 

be required from future PECs, which may increase their cost. Hence, the power converter 

manufactures need to come out with new ways to reduce the cost. Modular design that has been 

explored and used in the past [86-88] is a possible way. On the other hand, new control methods 

should be proposed to achieve the same control objectives without adding too much burden on the 

power electronic hardware side. For instance, a real power management strategy for PVs is 
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welcome if it can achieve the same voltage management goal since it will not increase the converter 

power ratings while the reactive power support features may. 

1.2.4.2 Communication and information technology 

Communication and information technology (CIT) provide data and information 

connectivity among active devices in the DN, including DGs, protection devices and loads. It 

enables distant control for DNs on a continuously increasing scale, and is viewed as one of the 

deciding factors for the successful realization of the ADM. In a CIT-based project of Distributed 

Intelligence in Critical Infrastructures for Sustainable Power (CRISP) [89], it has shown the CIT’s 

important functions in protection, control and management, and network reconfiguration. Two 

important techniques to realize CIT in ADM are an advanced metering infrastructure (AMI) and 

phasor measurement units (PMU). 

a) Advanced metering infrastructure: an AMI bridges smart meters, customers, energy 

resources, and various energy management systems. The various uses of metering data 

provided by AMIs were deeply explored in [90]. To provide advanced functionalities, the 

requirements for the AMI are to provide sufficient data to cover the network, to utilize 

powerful engine to store and analyze the data, and to employ accurate links among 

customer, transformers and substations. Based on these key elements, the AMI is able to 

monitor the performance of transformers, cables and circuits. In addition, by discovering 

outage disturbances, the AMI is capable of predicting pending failures in the DN. 

b) Application of Phasor Measurement Units: With respect to the applications of PMUs in 

DNs, two constraints have to be carefully considered: The total vector error of frequency 

between different buses is very small [91]; and specific synchrophasor estimation 

algorithms are needed to tolerate high level harmonic distortions in the DN [92]. A specially 
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designed PMU and a novel algorithm to deal with the aforementioned two constraints are 

proposed in [92]. More importantly, due to the extremely large number of components in 

DNs, a distribution PMU technology should also be economically feasible. In addition, 

PMUs support the state estimation of DN. In [93], a method of designing the measurement 

infrastructure to maintain a desired accuracy of state estimation with trade-offs among the 

number of PMUs and the number of other measurement devices was proposed. The optimal 

placement of PMUs was determined by an optimization algorithm based on the generic 

algorithm [93]. Furthermore, PMUs help achieve a better protection of DN. In [94], PMUs 

were used to measure the phase error between the utility grid and DGs to detect loss of 

mains. 

c) IEC Standards: Two important standards regarding the CIT in power systems are 

International Electrotechnical Commission (IEC) 61400-25 and IEC-61850 [95]. Their 

extensions to support the injection of wind energy in ADM were introduced in [95]. 

Depending on the actual CIT-based network management systems, DGs are smoothly 

integrated via an optimization algorithm for cost minimization and constraints management 

[95]. 

1.2.4.3 Smart appliances 

The study and application of smart appliances (SA) have been extensively explored from 

smart thermostats to a series of home appliances which include but not limited to smart 

refrigerators/freezers, clothes washers/dryers, room air conditioners, and dishwashers [8] [96, 97]. 

By shifting the operation from on-peak hours to off-peak hours, SA is an effective tool for demand 

side management. In addition, by curtailing the operation temporarily in response to requests, the 

SA behaves as spinning reserves which is costly in the grid. Furthermore, the demand and the 
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supply from undispatched renewable energy resources (RES) could be well leveled by the SA 

thereby increasing the penetration of RES. In [96], the benefits of implementing SA were evaluated 

in terms of peak load shifting and spinning reserves. The calculation based on the price information 

from real wholesale markets indicates that the annual benefits by using SA are far more than the 

cost. 

1.2.4.4 Energy storage system 

The applications of ESS in ADM potentially benefit the DN [98], by: 

 deferring system upgrade by peak load shaving; 

 avoiding widespread outages together with demand response; 

 mitigating the intermittency of some renewable energy sources while performing load 

and frequency regulation ; 

 increasing penetration level of DGs in the DN; 

 increasing the effective distribution capacity by using the storage devices that have 

extremely rapidly dis/charge rate; and  

 enhancing system reliability. 

Among various types of ESS, the battery energy storage system (BESS) takes a large part 

in smoothing the intermittency of RES in DN. However, the BESS sometimes is unable to act fast 

enough to follow high-frequency fluctuations. On the other hand, handling a large burst of current, 

such as in the scenarios of motor startup and rapid increase in solar generation, degrades battery 

plates and even shortens the life expectancy of BESS. An alternative way is to combine 

ultracapacitor and BESS in a hybrid energy storage system [99]. This hybrid solution was 

originally used to quickly capture the braking energy in hybrid electrical vehicles [100], and was 
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further introduced to smooth the intermittency of PV generation [101]. By implementing a high-

pass filter, the high-frequency fluctuation and low-frequency continuous parts are separated. The 

battery can supply/absorb continuous energy, and the ultracapacitor is used to smooth the sudden 

change of load demand or energy generation. 

In addition, along with the increasing of PEVs and resident-owned RES in DN, how to 

enhance the reliability in response to contingencies at the consumer-end is a new challenge. A 

solution is to install distributed small energy storage units in the residential community, which is 

referred to community energy storage (CES) [102]. Because the CES units are close to residents, 

they are able to serve as backup power, mitigate flickers, and integrate local PEVs and RES. 

Moreover, the clustered CES units perform as bulk energy storage at the substation to level supply 

and demand, improve the power quality, and even provide ancillary services. 

1.2.5 Discussions on future development 

The advancement of electricity distribution has been evolving very dynamically in various 

aspects including the areas reviewed in the previous sections. In this section, the discussion is 

focused on the future development in the following selected areas: Energy storage, customer 

participation, and the concept of virtual microgrid for active management of distribution network. 

1.2.5.1 Community energy storage using retired electrical vehicle batteries 

A surge of retired electrical vehicle (EV) batteries will soon be seen as more and more EVs 

hit the road. The treatment of old EV batteries is another important aspect for the whole EV 

development cycle. It needs to be investigated right now to provide a chance for repurposing them 

to support distribution grid. Old EV batteries that are not suitable for vehicle applications can still 

have substantial amount (up to 75%) of capacity left [103]. One million of  retired 15 kWh/40kW 

EV batteries with an average of 50% remaining power and energy capability can provide 7,500 
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MWh energy capacity and 20,000 MW power capacity, a huge waste if not utilized in their 

secondary applications, such as energy storage for grid support [103-105]. Sandia National 

Laboratories released a report on the technical and economic feasibility of such approaches several 

years ago [103]. Recently, several EV manufacturers have announced their plans on using old EV 

batteries for stationary energy storage. For instance, General Motors, teamed with ABB, is 

developing 50 kWh of energy storage systems by using retired Chevy Volt batteries for CES 

applications [104]. However, management of used EV batteries is far more difficult than their 

primary EV usage. First, they must be re-characterized for the remaining capacity, internal 

impedance, and voltage/SOC curves. Secondly, different battery modules, in terms of their size, 

chemistry, voltage/current rating, capacity, etc., must be integrated. More research is also needed 

on new PECs and novel characterization and management of energy storage systems consisting of 

heterogeneous, retired EV batteries. 

1.2.5.2 Customer participation 

Customer participation is critical to many ADM technologies such as demand side 

management, smart appliance adoption and all other customer based approaches. Various 

incentives from federal and state governments to utilities have been made available to customers 

to encourage them to participate in a more active way for electricity distribution and management 

[106]. Though customer behaviors are affected by many factors, technologies can make them more 

aware and become more responsible for sustainable energy development and usage. Smart phone 

applications, for example, can provide an effective feedback path for customers, particularly young 

generations, to make information-aware decisions. 

A smart phone application, called Home Emissions Read-Out (HERO), has been created 

by researchers at Wayne State University to provide consumers with real-time information about 
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local air emissions resulting from their energy choices [107, 108]. HERO can help users make 

environmentally-informed decisions about the best time to use their electricity to reduce emissions 

due to electricity generation and usage. The similar idea can be extended to other demand side 

management programs. According to a FERC report [109], the residential class represents the 

“most untapped potential for demand response”. 

Meanwhile, it is also important to guarantee customers fair participation and shared 

responsibility. For example, it is desired to give different renewable sources (owned by different 

owners) the equal opportunity to deliver their powers and to fairly distribute the responsibility 

when the renewable output powers need to be regulated. Similarly, PEV owners want their PEVs 

to be charged and to participate in possible V2G applications in a fairly defined way. This unique 

characteristic of fairness of power management in distribution networks has been realized by 

researchers recently. New methods such as cooperative and consensus control schemes have been 

proposed for fair power generation and sharing in distribution networks [110-112]. 

1.2.5.3 Concept of virtual microgrid 

Though microgrids have been intensively explored and widely reviewed as a promising 

platform to integrate the intermittent renewable sources and electric drive vehicles to the grid [113-

118], the extension of the concept to distribution network management largely remains as an 

unexplored area. Currently, most microgrids are operated as an attachment or extension to the 

existing grid and do not cover the major part of distribution networks. The potential of leveraging 

and expanding microgrid concept and technologies in ADM should be carefully investigated and 

deserves more research effort in future. 

A concept of virtual microgrid (VMG) for ADM has been proposed in [119]. As shown in 

Figure 1.4, in this concept, a distribution network will be virtually or physically partitioned into 



22 

 

VMGs based on the physical feeder topologies, protection zones, or other partition and 

reconfiguration methods. A VMG, a portion of the distribution network, is controlled and managed 

just like any real microgrids. The whole distribution system will then have a hierarchical structure 

of at least two different levels/layers: the distribution grid level, the VMG level, and possibly sub-

VMG levels. At the VMG level, each VMG controller will manage the components and network 

within its own scope and communicate information with and receive orders from the upper level 

controller, i.e. the grid controller. The grid controller will treat each VMG as a single control entity 

to achieve a system-wide power and energy management system for the whole distribution 

network. 

However, there are many challenging issues that need to be addressed before the VMG 

concept can be used for managing real distribution networks. For example, how to form a virtual 

microgrid (or how to partition original distribution networks into VMGs) is one of the critical tasks. 

Moreover, VMG modeling and new management and control scheme based on the VMG concept 

should be interesting research topics in future. 
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Figure 1.4 Illustration of a hybrid hierarchical control framework [119]. 

 

1.2.6 Summary 

A review of the recent development in technologies and methods for the active distribution 

management is provided. Different management frameworks, active voltage and energy 

management methods, and active protection and fault location techniques for ADM were reviewed. 

In addition, some specific new strategies of the active management, such as optimization of DGs 

in DN, demand side management, and agent-based management were also reviewed. Emerging 

distribution technologies, such as advanced power electronics, communication and information 

technology, smart appliances, and energy storage systems have been illustrated. Finally, the future 

trends of energy storage, customer participation, and the concept of virtual microgrid for active 

management of distribution network were discussed. 
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1.3 Scope of the Study 

Among the aforementioned topics in the active management of DNs, the main focus of the 

dissertation is the management of PEVs and renewable energy sources in DNs to avoid power 

shortage and voltage issues. A novel method of Finite State Machine with Variables and 

corresponding safety control are used to model and control PEVs. In addition, the optimal 

management of PEVs to prevent the violation of voltage stability will be investigated on system 

operation level. Furthermore, an algorithm to regulate the voltage in a microgrid by coordinating 

the reactive power generation from multiple distributed generations will be studied. 

1.4 Organization of Dissertation 

The remainder of the dissertation is organized as follows: 

Chapter 2 and 3 discuss the active management of plug-in electric vehicles (PEVs) in a DN. 

In Chapter 2, PEVs are modelled as controllable loads by Finite State Machine with Variables 

(FSMwV) and managed by a safety controller. We proposed a novel discrete-event modeling 

method to model PEVs and other loads in DN. Chapter 3 presents a novel optimization algorithm 

to integrate as many PEVs as possible in DNs without causing voltage issues, including the 

violation of acceptable voltage ranges and voltage stability issues. To further explore the active 

management of PEVs in the DNs, we developed a universal demonstration platform, consisting of 

software package and hardware remote terminal units (RTUs), which is introduced in Chapter 4. 

The demonstration platform is designed with the capabilities of measurement, monitoring, control, 

automation, and communications.  
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The second part of the dissertation, Chapter 5, studies the reactive power management in 

microgrids, a special platform to integrate distributed generations (DGs) and energy storage in 

distribution networks.  
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CHAPTER 2 SAFETY CONTROL OF PEVS IN DISTRIBUTION 

NETWORKS USING FINITE STATE MACHINES WITH 

VARIABLES  

2.1 Introduction to Discrete Event System 

Discrete Event System (DES) is a system has discrete states, and of which the state 

evolution depends totally on the occurrence of asynchronous discrete events. In the definition, the 

event is an instantaneous action to drive the system moving forward or backward. Examples of 

DES include manufacturing systems, networks, computer databases, digital circuits, traffic 

networks, etc. 

In this section, some basic notions and definitions are introduced, including finite state 

machine and supervisory control theory [120-122]. 

2.1.1 Language  

For an event set Σ, a language is defined as a set of all finite symbol sequences, which is 

also called strings, formed from events in Σ [121]. Letting Σ∗ denotes the set of all finite strings of 

elements in Σ including the empty string 𝜖, obviously a language, L, over Σ is a subset of Σ∗. 

If t is a prefix of s, where 𝑠, 𝑡 ∈ Σ∗, the language of the prefix closure of L, denoted by 𝐿̅ is 

defined by:  

 𝐿̅ ≔ {𝑠 ∈ Σ∗: (∃𝑡 ∈ Σ∗)[𝑠𝑡 ∈ 𝐿]} (2.1) 

L is prefix-closed if 𝐿 = 𝐿̅.  

Generally, it is more convenient to represent and analyze the properties and the 

specification of DES in the formal language setting [123]. Using sequences of events, the language 

describes the behavior of the system in a theoretic-based representation.   
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2.1.2 Finite state machine 

A finite state machine (FSM) is usually selected to represent a language within the 

framework of predefined rules. In our study, the FSM is described by a 5-tuple [121] 

 FSM = (Σ, 𝑄, 𝛿, 𝑞0, 𝑄𝑚)  (2.2)  

where Σ is the (finite) event set, Q the (finite) state set, δ: Σ×Q→Q the transition function and 

𝛿(𝑞1, 𝜎) = 𝑞2 means there is an event 𝜎 that drives the system transition from state 𝑞1 to state 𝑞2; 

𝑞0 is the initial state, and Qm the marked (or final) states. The FSM is said to be deterministic if 

there is only one transition with an event label out of a state; otherwise, it is defined as 

nondeterministic.  

By following the rules that 𝛿(𝑞, 𝜖) = 𝑞 and 𝛿(𝑞, 𝑠𝜎) = 𝛿(𝛿(𝑞, 𝑠), 𝜎), we can recursively 

extend the transition function 𝛿 from 𝑄 × Σ to 𝑄 × Σ∗, where 𝑞 ∈ 𝑄, 𝑠 ∈ Σ∗, and 𝜎 ∈ Σ. Then we 

can define: 

(1) Generated language of FSM by: 

 𝐿(𝐹𝑆𝑀) ≔ {𝑠 ∈ Σ∗: 𝛿(𝑞0, 𝑠) ∈ 𝑄} (2.3) 

which is the set of all strings generated by FSM; and  

(2) Marked language of FSM by: 

 𝐿𝑚(𝐹𝑆𝑀) ≔ {𝑠 ∈ Σ∗: 𝛿(𝑞0, 𝑠) ∈ 𝑄𝑚} (2.4) 

which is the set of all strings that drive the FSM from state 𝑞0 to a marked state 𝑞𝑚 in 

𝑄𝑚.  

Given two FSMs FSM1 = (Σ1, 𝑄1, 𝛿1, 𝑞01, 𝑄𝑚1)  and FSM1 = (Σ2, 𝑄2, 𝛿2, 𝑞02, 𝑄𝑚2) , an 

operation, synchronous composition of FSM1 and FSM2 to form a composite finite state machine 

(CFSM) is defined as: 
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 CFSM = FSM1 ∥ FSM2 

= (Σ1, 𝑄1, 𝛿1, 𝑞01, 𝑄𝑚1) ∥ (Σ2, 𝑄2, 𝛿2, 𝑞02, 𝑄𝑚2) 

= (Σ1 ∪ Σ2, 𝑄1 ∪ 𝑄2, 𝛿1 ∪ 𝛿2, 𝑞01 ∪ 𝑞02, 𝑄𝑚1 ∪ 𝑄𝑚2) 

= (Σ, 𝑄, 𝛿, 𝑞0, 𝑄𝑚) 

 (2.5) 

The synchronous composition is usually employed to combine FSMs in the system to form 

a single FSM without loss of characteristics of system. 

2.1.3 Supervisory control of DES 

The target of DES control is to design controllers and control strategy to ensure the system 

satisfy certain desired qualitative constraints, which sometimes means the system is controlled 

without visiting undesirable states.  

 
Figure 2.1 Feedback loop of supervisory control. 

 

In the control framework proposed by Ramadge and Wonham  [120], the control of DES 

is based on the principle of feedback. Based on observed information, the controller is used to 

generate input to the system so that the control specifications can be met. The feedback loop of 

supervisory control is shown in Figure 2.1. Generator, G represents FSM defined in (2.2) and is 

also known as an object to be controlled. S is called as a supervisory controller. The supervisory 

control theory was introduced to synthesize the controller S and the specifications for the given 



29 

 

generator G. To incorporate the control information into the system, the set Σ is partitioned into 

subsets: (1) the controllable events Σ𝑐 , i.e. those events that can be disabled by an external 

controller; and (2) the uncontrollable events Σ𝑢𝑐 which cannot be prevented from occurring.  

The control pattern set is defined by: 

 Λ:= {𝜆|Σ𝑢𝑐 ⊆ 𝜆 ⊆ Σ} ⊆ 2
Σ  (2.6) 

The control pattern is interpreted that the controller S is an external agent which is able to 

observe the behaviors of the system G and control G through enabling and disabling the 

controllable events. 

Formally, a supervisor S for system G is a function: 

 𝑆: 𝐿(𝐺) → Λ  (2.7) 

where L(G) is the language generated by G, and S(s) is the set of eligible events that can be 

executed after a string 𝑠 ∈ 𝐿(𝐺). Then the language of the controlled system, L(S/G), to denote the 

closed behavior of G under the supervision of S is defined recursively as follows 

 𝜖 ∈ 𝐿(𝑆/𝐺) 

 𝑠 ∈ 𝐿(𝑆 𝐺⁄ ), 𝑠𝜎 ∈ 𝐿(𝐺), 𝑎𝑛𝑑 𝜎 ∈ 𝑆(𝑠), 𝑡ℎ𝑒𝑛 𝑠𝜎 ∈ 𝐿(𝑆 𝐺⁄ )  

 No other strings belong to 𝐿(𝑆 𝐺⁄ ) 

The marked language by 𝑆 𝐺⁄  is defined by 

 𝐿𝑚(𝑆/𝐺) = 𝐿(𝑆/𝐺) ∩ 𝐿𝑚(𝐺)  (2.8) 

where 𝐿(𝑆/𝐺) represents the system behaves in a desired way under the supervision and control 

of S. To show whether G is controllable, the controllability is formulated in [124]: 

 Consider a discrete event system, 𝐹𝑆𝑀 = (𝛴, 𝑄, 𝛿, 𝑞0, 𝑄𝑚). Let 𝐿(𝐺) = 𝐿(𝐺)̅̅ ̅̅ ̅̅  be a prefix-

closed language. Let K and L(G) be languages over an event set 𝛴. The language K is said to be 

controllable w.r.t, L(G) and the set of uncontrollable events𝛴𝑢𝑐 if  
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𝐾̅Σ𝑢𝑐 ∩ 𝐿(𝐺) ⊆ 𝐾̅ .  

The supervisory control theory [120-122, 125] based on finite state machines has been well 

developed as it addresses the fundamental issues in control of DES.  

2.2 Problem Formulation 

Modeling and control of DES have been studied by control engineers and scientists for 

more than 25 years. During this period, many modeling approaches have been proposed, including 

most notably automata or finite state machines [120, 121], Petri nets [126, 127] and their variations 

such as vector DES [128, 129] and event graphs [130], queuing systems [121] and generalized 

semi-Markov processes [130]. Among these models, FSM is the most straightforward for control. 

We now have a good understanding of problems such as controllability, observability, 

coobservability, normality, decentralization, nondeterminism, etc. We believe that an important 

reason we have gone this far in a relatively short time period is that we adapted a simple model of 

FSM. Because of this, we can focus our attention on and see the essence of the control problem. 

However, FSM model has long suffered from the problem of state explosion that renders 

it unsuitable for some practical applications. For example, to model a buffer of n capacity using a 

FSM would require at least n states. On the other hand, by using an integer variable to describe the 

content of the buffer, the number of states required can be drastically reduced. Furthermore, in the 

case that the capacity of the buffer changes, we can simply modify the range of the variable without 

remodeling the system. 

Meanwhile, the traditional supervisory control techniques focus on (passively) maintaining 

system safety and liveness by the means of disabling some controllable events. It has neglected 

the possibility of actively enforcing certain events that is widely practiced in the control of real 
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world DES applications. Event enforcement can be quite useful in both “driving” the system 

toward the given objective (e.g., marked states) and actively maintaining system safety. 

To mitigate the problem of state explosion, we propose to employ both FSM and sets of 

variables in modeling discrete event systems. We call our representation Finite State Machines 

with Variables (FSMwV) (formerly, it was called Finite State Machines with Parameters [131]). 

We show that our FSMwV can represent a broader class of discrete event systems with far smaller 

numbers of discrete states. The definition of our FSMwV is similar to the Extended Finite State 

Machines (EFSM) described in [132]. However, the EFSM mechanism was developed for the 

design verification of circuits but not for the modeling of general discrete event systems. Hence, 

variables in EFSM are mainly for describing the contents of the circuit inputs/outputs rather than 

for describing system resources and possible time/resource constraints that FSMwV is designed 

for. Furthermore, neither concepts of system composition nor control synthesis were developed 

under the EFSM scheme. 

Recently, a method using EFSM to implement the supervisory map as an embedded control 

was developed [133]. The method was extended to decentralized control in [134]. EFSM was also 

used to verify supervisory control properties in [135]. In [136], the authors proposed to transform 

a set of extended automata into a set of ordinary automata with equivalent behavior, but no control 

synthesis methods were discussed. [137] developed the supervisory control for concurrent systems 

with EFSM modeled subsystems. In [138], a symbolic transition system model was used, which 

defines the concept of controllability by applying it to the guards of symbolic transitions, instead 

of to the events. Neither [138] nor [137] investigated the synthesis of optimal (least restrictive) 

controllers. They also did not consider enforceable events. 
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In this chapter, our focus is on control synthesis using FSMwV. We first extend the scope 

of the traditional DES control to include both event disablement and event enforcement. We then 

propose an offline safety control synthesis procedure that takes the advantage of both event 

disablement and enforcement in order to prevent the controlled system from venturing into the 

prohibited state space. To address the practical concern of real world implementations, we further 

present a set of safety control synthesis procedures, based on the limited and/or variable lookahead 

policies [139, 140] that generate the control policies online under the FSMwV modeling 

framework. 

The theoretical results on modeling and control of DES using FSMwV are applied to the 

safety control of PEVs in the electric power distribution network. DES theories have been explored 

for applications in power systems [141-144]. Supervisory control using DES was applied and 

reported in [141] for line restoration. Hybrid automaton and Petri Nets was used to model power 

systems for handling inverse problems such as parameter uncertainty and parameter estimation 

[143]. DES was used in [144] to describe cascading events such as blackouts in power systems. A 

number of potential power system control problems were discussed in [142]. However, most of 

the results obtained so far in the area are still preliminary. The relevance and applications of DES 

to power systems remain not so clear [142]. We model a distribution network by an FSMwV in 

this chapter. We consider both conventional uncontrollable loads and controllable loads (such as 

plug-in hybrid electric vehicles) by using appropriate variables to avoid possible state explosion. 

A supervisor is then designed to ensure the network is fully utilized and never overloaded. 

The rest of the chapter is organized as follows: We present the FSMwV model and its 

system composition mechanism in Section 2.3. Some preliminary work on FSMwV was presented 

in [131].  In Section 2.4, we describe our notion and means of control and present an offline safety 
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control synthesis algorithm. In Section 2.5, we present an online synthesis algorithm (and its 

variations) for safety control policies. In Section 2.6, we apply the results to the safety control of 

PEVs in the power distribution network. We conclude this chapter in Section 2.7. 

2.3 Finite State Machines with Variables 

To introduce variables into an FSM, let p ∈ P be a vector of variables, where P is some 

vector space. P can be either finite or infinite. More often, P is over the set of natural numbers. 

We also introduce guards g ∈ G that are predicates on the variables p. The transition function δ 

can be defined as a function from Σ×Q×G×P to Q×P as illustrated in Figure 2.2. The transition 

shown is to be interpreted as follows: If at state q, the guard g is true and the event σ occurs, then 

the next state is q' and the values of variables will be updated to f (p). We denote such a transition 

by (𝑞, 𝑔 ∧ 𝜎/𝑝 ≔ 𝑓(𝑝), 𝑞′) ∈ 𝛿.  

q 'q

 / :g p f p 
,  ' :  states
:  event
:  guard
:  parameter

q q

g
p



 
Figure 2.2 A transition in FSMwV. 

 

If g is absent in the transition, and then the transition takes place when σ occurs. Such a 

transition is called event transition. If σ is absent, then the transition takes place when g becomes 

true. Such a transition is called dynamic transition. If p:=f (p) is absent, then no variable is updated 

during the transition. In summary, a finite state machine with variables can be viewed as a 7-tuple 

 FSMwV = (Σ, Q, δ, P, G, ( 0q , 0p ), Qm)  (2.9) 

where 
op  is the initial value of variables at the initial state 

oq . 
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Without much difficulty, we can regard finite state machines with variables as a special 

type of Hybrid Machines (HMs) introduced in [145]. In particular, an FSMwV has no continuous 

dynamics (i.e. 𝑝̇ = 0 at any state). The only way to change values of variables is by updating (or 

re-initialization). 

Similar to FSMs and HMs, we can define parallel composition of several FSMwVs running 

in parallel to form a composite finite state machine with variables (CFSMwV) 

 CFSMwV = FSMwV1 || FSMwV2 ||…|| FSMwVn  (2.10) 

To define a CFSMwV, we assume that any variable can only be updated by at most one 

FSMwV. Variables that are not updated by any of the FSMwVs are updated by the unmodeled 

environment. In general, a variable updated by one FSMwV can be used in another FSMwV. That 

is, a guard in one FSMwV may depend on a variable updated by another FSMwV. 

To simplify the following definition of parallel composition, we assume that, without loss 

of generality, all transitions in an FSMwV have been decomposed into event transitions and 

dynamic transitions, as this can always be done. Hence, 

 

 

(2.11) 

where the transition function 𝛿 = 𝛿1 ×⋯× 𝛿𝑛 is defined as illustrated in Figure 2.3 and Figure 

2.4 for n=2. In the figures, li can be either an event (li = σi) or a guard (li = gi). If 𝑙1 ≠ 𝑙2, then the 

situation is illustrated in Figure 2.3. That is, if the transition l1 occurs at state (𝑞1, 𝑞2), then the next 

state is (𝑞1
′ , 𝑞2). Variable 𝑝1 is updated to 𝑓1(𝑝1) while 𝑝2 is not updated. On the other hand, if 

𝑙1 = 𝑙2 = 𝑙, then the situation is illustrated in Figure 2.4. That is, if the transition l occurs at state 
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(𝑞1, 𝑞2), then the next state is (𝑞1
′ , 𝑞2

′ ). Variables 𝑝1  and 𝑝2  are updated to 𝑓1(𝑝1) and 𝑓2(𝑝2) 

respectively. 

1q 1 'q 2q 2 'q

 1 1 1 1/ :l p f p  2 2 2 2/ :l p f p

1 2( , )q q 1 2( ', ')q q

1 2( ', )q q

1 2( , ')q q

 1 1 1 1/ :l p f p  2 2 2 2/ :l p f p

 2 2 2 2/ :l p f p  1 1 1 1/ :l p f p

 
Figure 2.3 Parallel composition: 𝑙1 ≠ 𝑙2. 

 

We note that this definition is an extension to that of FSM [121]. Using this parallel 

composition, we can build large systems from simple components. This procedure can be 

automated. 

To describe the behaviour of an FSMwV, (Σ, Q, δ, P, G, ( 0q , 0p ), Qm), we define a run of 

an FSMwV as a sequence 

 𝑟 = (𝑞0, 𝑝0)
     𝑙1     
→    (𝑞1, 𝑝1)

     𝑙2     
→    (𝑞2, 𝑝2)

     𝑙3     
→    (𝑞3, 𝑝3)⋯  (2.12) 

where li is (the label of) the ith transition and ( , )i ip q  is the state and variable values after the ith 

transition. We denote the set of all possible runs of FSMwV as 

 R(FSMwV) = {r: r is a run of FSMwV}  (2.13) 

1q 1 'q 2q 2 'q

 1 1 1/ :l p f p  2 2 2/ :l p f p

1 2( , )q q 1 2( ', ')q q

   1 1 1 2 2 2/ : ; :l p f p p f p 
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Figure 2.4 Parallel composition: 𝑙1 = 𝑙2 = 𝑙. 
 

A trace of a run is the sequence of event transitions in the run 

 𝑠 = 𝜎1𝜎2𝜎3⋯  (2.14) 

That is, s is obtained from r by deleting the state information and dynamic transitions. 

If an FSMwV is deterministic (which we assume throughout this chapter), then a run is 

uniquely determined by its trace. That is, we can reconstruct a run by looking at its trace and the 

FSMwV.  The set of all traces of an FSMwV is a language denoted by 

 L(FSMwV) ={s: s is a trace of FSMwV}  (2.15) 

This language is called the language generated by FSMwV. The language marked by 

FSMwV is defined as 

 Lm(FSMwV) ={s∈L(FSMwV): the run of s ends in a marked state q∈Qm} 
 (2.16) 

Since CFSMwV and FSMwV have the same structure, runs, traces, and languages for 

CFSMwV are defined similarly. 

We often use a legal specification E  R(CFSMwV) to specify the legal behaviour of the 

system modeled by a CFSMwV: a run r is legal if and only if it belongs to E. We call this type of 

specifications dynamic specifications. On the other hand, if the legal behaviour is specified in 

terms of legal and illegal states, that is, a run r is legal if and only if it does not visit any illegal 

state, then the specification is called a static specification. It is well known in supervisory control 

[146] that a dynamic specification can always be translated into a static specification (perhaps at 

the cost of having more states). Therefore, we will use static specifications in safety controller 

synthesis. 
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2.4 Safety Controller 

In this section, we study how to design a safety controller, that is, a controller that 

guarantees the system will never enter some illegal states. We assume that the system to be 

controlled is modeled by a CFSMwV: 

 CFSMwV = (Σ, 𝑄, 𝛿, 𝑃, 𝐺, (𝑞0, 𝑝0), 𝑄𝑚)  (2.17) 

and the safety requirement is given by a set of illegal states Qb  Q. Note that the specifications in 

terms of illegal states are very general and cover a large class of practical situations. For example, 

we can translate the specification “the variable p shall always be less than a constant c” into an 

illegal state specification as shown in Figure 2.5. 

[ ]p c

illegal

 
Figure 2.5 An illegal state specification for 𝑝 ≥ 𝑐. 

 

The control objective is to make sure that the system never visits any illegal state in Qb. 

We assume that there are two control mechanisms that can be used to achieve the control objective. 

(1) Disablement: Events in Σc  Σ can be disabled by a controller. Events σ ∈ Σc are called 

controllable events. 

(2) Enforcement: Events in  Σf  Σ can be enforced by a controller. Events σ ∈ Σf  are called 

enforceable events. 
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We assume that an uncontrollable event cannot be enforced, that is, (Σ − Σc)∩Σf = , where 

  denotes the empty set. We also assume that the system is deterministic. That is, any transition in 

CFSMwV can only lead to one state. 

The behavior of the uncontrolled system is described by the set of runs generated by 

CFSMwV, R(CFSMwV). The legal behaviour of the system is described by a subset of runs in 

R(CFSMwV) that does not visit illegal states: 

 E = {r ∈ R(CFSMwV): r does not visit any illegal states in Qb}
  (2.18) 

In order to simplify the analysis and synthesis of controllers, we will treat all transitions, 

including event transitions and dynamic transitions, in a unified manner. To this end, we introduce 

an artificial uncontrollable event σu and extend the event set Σ to include σu. To simplify the 

notation, we will still use Σ to denote the expended event set in the rest of the chapter.  With σu, a 

dynamic transition (𝑞, 𝑔/𝑝 ≔ 𝑓(𝑝), 𝑞′) is equivalent to (𝑞, 𝑔 ∧ 𝜎𝑢/𝑝 ≔ 𝑓(𝑝), 𝑞′) for the purpose 

of controller analysis and synthesis and an event transition (𝑞, 𝜎/𝑝 ≔ 𝑓(𝑝), 𝑞′) can be viewed as 

(𝑞, 𝑔 ∧ 𝜎/𝑝 ≔ 𝑓(𝑝), 𝑞′) if we let g = T. 

To investigate the control in a generalized framework, we use generalized control patterns 

[147] as follows: 

 𝛤 = {𝛾 ⊆ ∑:∑ − ∑𝑐 ⊆ 𝛾 ∨ 𝛾 ⊆ ∑𝑓}  (2.19) 

This set of control pattern allows two types of control: (1) Disabling some controllable 

events (that is, those in Σ−, if the first disjunction is satisfied); and (2) Enforcing some enforceable 

events (that is, those in , if the second disjunction is satisfied). This is a generalization from pure 

disablement of standard supervisory control. 
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Proposition 1: The set of control patterns Γ is closed under union, that is, for all control 

patterns 𝛾1, 𝛾2 

 𝛾1 ∈ 𝛤 ∧ 𝛾2 ∈ 𝛤 ⟹ 𝛾1 ∪ 𝛾2 ∈ 𝛤  (2.20) 

Proof: Assume that 𝛾1, 𝛾2 ∈ Γ, that is Σ − Σ𝑐 ⊆ 𝛾1 ∨ 𝛾1 ⊆ Σ𝑓 and Σ − Σ𝑐 ⊆ 𝛾2 ∨ 𝛾2 ⊆ Σ𝑓. 

Consider four possible cases. 

(1) Σ − Σ𝑐 ⊆ 𝛾1 ∧ Σ − Σ𝑐 ⊆ 𝛾2⟹ Σ− Σ𝑐 ⊆ 𝛾1 ∪ 𝛾2⟹ 𝛾1 ∪ 𝛾2 ∈ Γ. 

(2) Σ − Σ𝑐 ⊆ 𝛾1 ∧ 𝛾2 ⊆ Σ𝑓 ⟹ Σ− Σ𝑐 ⊆ 𝛾1 ∪ 𝛾2⟹ 𝛾1 ∪ 𝛾2 ∈ Γ. 

(3) 𝛾1 ⊆ Σ𝑓 ∧ Σ − Σ𝑐 ⊆ 𝛾2⟹ Σ− Σ𝑐 ⊆ 𝛾1 ∪ 𝛾2⟹ 𝛾1 ∪ 𝛾2 ∈ Γ. 

(4) 𝛾1 ⊆ Σ𝑓 ∧ 𝛾2 ⊆ Σ𝑓⟹ 𝛾1 ∪ 𝛾2 ⊆ Σ𝑓⟹ 𝛾1 ∪ 𝛾2 ∈ Γ. 

Therefore,   is closed under union. 

The controller is defined as a mapping from the set of runs R(CFSMwV) to the set of 

control pattern Γ: 

 ψ: R(CFSMwV)→Γ  (2.21) 

The behavior of the controlled system, denoted by R(CFSMwV, ψ), is given as follows: 

(1) ε ∈ R(CFSMwV, ψ),  where ε denotes the empty trace (empty run); 

(2) Then inductively, 

(∀𝑟 = (𝑞0, 𝑝0)
     𝑙1     
→    (𝑞1, 𝑝1)⋯

     𝑙𝑛     
→    (𝑞𝑛, 𝑝𝑛) ∈ 𝑅(𝐶𝐹𝑆𝑀𝑤𝑉,𝜓)) (∀𝑙𝑛+1 = 𝑔 ∧ 𝜎) 

𝑟
     𝑙𝑛+1     
→      (𝑞𝑛+1, 𝑝𝑛+1) ∈ 𝑅(𝐶𝐹𝑆𝑀𝑤𝑉, 𝜓) 

⟺ 𝑟
     𝑙𝑛+1     
→      (𝑞𝑛+1, 𝑝𝑛+1) ∈ 𝑅(𝐶𝐹𝑆𝑀𝑤𝑉) ∧ 𝜎 ∈ 𝜓(𝑟) 

In other words, a transition (𝑞𝑛, 𝑝𝑛)
     𝑙𝑛+1     
→      (𝑞𝑛+1, 𝑝𝑛+1) is possible in the closed-loop 

systems if and only if it is possible in the open-loop system (hence the guard is true) and the event 

is enabled or enforced. Our goal is to synthesize a controller such that R(CFSMwV, ψ) = E if 
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possible. To find a necessary and sufficient condition for the existence of a controller, 

controllability is generalized as follows. 

Definition 1: A set of possible runs K  R(CFSMwV)  is controllable with respect to 

R(CFSMwV) and Γ if 

 (∀𝑟 ∈ 𝐾̅)(∃𝛾 ∈ Γ) (Σ𝑅(𝐶𝐹𝑆𝑀𝑤𝑉)(𝑟) − Σ𝐾(𝑟)) = Σ𝑅(𝐶𝐹𝑆𝑀𝑤𝑉)(𝑟) − 𝛾  (2.22) 

where 𝐾̅  denotes the prefix-closure of K, Σ𝑅(𝐶𝐹𝑆𝑀𝑤𝑉)(𝑟) = {𝜎 ∈ Σ: 𝑟

     𝑔∧𝜎     
→     (𝑞, 𝑝) ∈ 𝑅(𝐶𝐹𝑆𝑀𝑤𝑉)}, and Σ𝐾(𝑟) = {𝜎 ∈ Σ: 𝑟

     𝑔∧𝜎     
→     (𝑞, 𝑝) ∈ 𝐾̅}. 

The following theorem says that controllability is a necessary and sufficient condition for 

the existence of a controller. 

Theorem 1: Given a system CFSMwV and a specification K  R(CFSMwV), a controller 

ψ exists such that R(CFSMwV, ψ) = K if and only if K is closed and controllable. 

Proof: (ONLY IF) Let ψ be a controller such that R(CFSMwV, ψ) = K. Clearly K is closed. 

We show that K is controllable as follows: 

      𝐾 = 𝑅(𝐶𝐹𝑆𝑀𝑤𝑉,𝜓) 

 ⇒ (∀𝑟 ∈ 𝐾)Σ𝐾(𝑟) = Σ𝑅(𝐶𝐹𝑆𝑀𝑤𝑉,𝜓)(𝑟) 

 ⇒ (∀𝑟 ∈ 𝐾)Σ𝐾(𝑟) = Σ𝑅(𝐶𝐹𝑆𝑀𝑤𝑉)(𝑟) ∩ 𝜓(𝑟) 

 ⇒ (∀𝑟 ∈ 𝐾)Σ𝑅(𝐶𝐹𝑆𝑀𝑤𝑉)(𝑟) − Σ𝐾(𝑟) = Σ𝑅(𝐶𝐹𝑆𝑀𝑤𝑉)(𝑟) − Σ𝑅(𝐶𝐹𝑆𝑀𝑤𝑉)(𝑟) ∩ 𝜓(𝑟) 

 ⇒ (∀𝑟 ∈ 𝐾)Σ𝑅(𝐶𝐹𝑆𝑀𝑤𝑉)(𝑟) − Σ𝐾(𝑟) = Σ𝑅(𝐶𝐹𝑆𝑀𝑤𝑉)(𝑟) − 𝜓(𝑟) 

 ⇒ (∀𝑟 ∈ 𝐾)(∃𝛾 = 𝛹(𝑟) ∈ Γ)Σ𝑅(𝐶𝐹𝑆𝑀𝑤𝑉)(𝑟) − Σ𝐾(𝑟) = Σ𝑅(𝐶𝐹𝑆𝑀𝑤𝑉)(𝑟) − 𝛾 

Therefore, K is controllable. 

(IF) Since K is closed and controllable, 

(∀𝑟 ∈ 𝐾)(∃𝛾 ∈ Γ)∑𝑅(𝐶𝐹𝑆𝑀𝑤𝑉)(𝑟) − ∑𝐾(𝑟) = ∑𝑅(𝐶𝐹𝑆𝑀𝑤𝑉)(𝑟) − 𝛾. 
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Let us define the controller ψ: R(CFSMwV)→Γ as follows: For r ∈ K, let ψ(r) be the largest 

 satisfies the above equation. By Proposition 1, the largest  exists. For r ∈ R(CFSMwV)−K, let 

ψ(r)=Σ−Σc. We can prove r ∈ R(CFSMwV, ψ) ⟺ r ∈ K by induction on the length |r| of  r as 

follows: 

Base: Since K is closed, ε ∈ K. By the definition of R(CFSMwV, ψ), ε ∈ R(CFSMwV, ψ). 

Therefore, 

ε ∈ R(CFSMwV, ψ) ⇔ε ∈ K. 

Induction Hypothesis (IH): Assume that for all r such that the length |r| ≤ d, and d is a 

positive integer. 

r ∈ R(CFSMwV, ψ) ⇔ r ∈ K. 

Induction Step: We need to prove that for all 𝑟
     𝑔⋀𝜎     
→      (𝑞, 𝑝) such that |𝑟

     𝑔⋀𝜎     
→      (𝑞, 𝑝)| =

𝑑 + 1, 

𝑟
     𝑔⋀𝜎     
→      (𝑞, 𝑝)∈ 𝑅(𝐶𝐹𝑆𝑀𝑤𝑉,𝜓) ⟺ 𝑟

     𝑔⋀𝜎     
→      (𝑞, 𝑝)∈ 𝐾. 

Indeed, 

       𝑟
     𝑔∧𝜎     
→     (𝑞, 𝑝) ∈ 𝑅(𝐶𝐹𝑆𝑀𝑤𝑉,𝛹) 

 ⟺ 𝑟
     𝑔∧𝜎     
→     (𝑞, 𝑝) ∈ 𝑅(𝐶𝐹𝑆𝑀𝑤𝑉) ∧ 𝜎 ∈ 𝛹(𝑟) ∧ 𝑟 ∈ 𝑅(𝐶𝐹𝑆𝑀𝑤𝑉,𝛹) 

 ⟺ 𝑟
     𝑔∧𝜎     
→     (𝑞, 𝑝) ∈ 𝑅(𝐶𝐹𝑆𝑀𝑤𝑉) ∧ 𝜎 ∈ 𝛹(𝑟) ∧ 𝑟 ∈ 𝐾                                     By IH 

 ⟺ 𝜎 ∈ ∑ (𝑟)𝑅(𝐶𝐹𝑆𝑀𝑤𝑉) ∧ 𝜎 ∈ 𝛹(𝑟) ∧ 𝑟 ∈ 𝐾 

 ⟺ 𝜎 ∈ ∑ (𝑟)𝑅(𝐶𝐹𝑆𝑀𝑤𝑉) ∧ 𝜎 ∉ ∑ (𝑟)𝑅(𝐶𝐹𝑆𝑀𝑤𝑉) −𝛹(𝑟) ∧ 𝑟 ∈ 𝐾 

 ⟺ 𝜎 ∈ ∑ (𝑟)𝑅(𝐶𝐹𝑆𝑀𝑤𝑉) ∧ 𝜎 ∉ ∑ (𝑟)𝑅(𝐶𝐹𝑆𝑀𝑤𝑉) − ∑ (𝑟)𝐾 ∧ 𝑟 ∈ 𝐾 

 ⟺ 𝜎 ∈ ∑ (𝑟)𝑅(𝐶𝐹𝑆𝑀𝑤𝑉) ∧ 𝜎 ∈ ∑ (𝑟)𝐾 ∧ 𝑟 ∈ 𝐾 

 ⟺ 𝑟
     𝑔∧𝜎     
→     (𝑞, 𝑝) ∈ 𝑅(𝐶𝐹𝑆𝑀𝑤𝑉) ∧ 𝑟

     𝑔∧𝜎     
→     (𝑞, 𝑝) ∈ 𝐾 ∧ 𝑟 ∈ 𝐾 
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 ⟺ 𝑟
     𝑔⋀𝜎     
→      (𝑞, 𝑝)∈ 𝐾 

This proves the theorem. 

Q.E.D 

If the specification E is not controllable, we will find the largest subset of E that is 

controllable. In fact, we can show that the supremal controllable subset of E always exists. To this 

end, let us define the set of all controllable subset of E as 

 C(E)={K  E: K is closed and controllable with respect to R(CFSMwV) and Γ} (2.23) 

Then we have the following theorem. 

Theorem 2: If K1, K2 ∈C(E), then 𝐾1 ∪ 𝐾2 ∈ 𝐶(𝐸). Therefore, the supremal controllable 

subset of E, denoted by supC(E), exists. 

Proof: Let K1, K2 ∈ C(E) and  𝐾 = 𝐾1 ∪ 𝐾2. Obviously K is closed. Since both K1 and K2 

are controllable, we have 

(∀𝑟 ∈ 𝐾1)(∃𝛾1 ∈ Γ)∑𝑅(𝐶𝐹𝑆𝑀𝑤𝑉)(𝑟) − ∑𝐾1(𝑟) = ∑𝑅(𝐶𝐹𝑆𝑀𝑤𝑉)(𝑟) − 𝛾1, 

(∀𝑟 ∈ 𝐾2)(∃𝛾2 ∈ Γ)∑𝑅(𝐶𝐹𝑆𝑀𝑤𝑉)(𝑟) − ∑𝐾2(𝑟) = ∑𝑅(𝐶𝐹𝑆𝑀𝑤𝑉)(𝑟) − 𝛾2. 

To prove K is controllable, we need to show 

(∀𝑟 ∈ 𝐾)(∃𝛾 ∈ Γ)∑𝑅(𝐶𝐹𝑆𝑀𝑤𝑉)(𝑟) − ∑𝐾(𝑟) = ∑𝑅(𝐶𝐹𝑆𝑀𝑤𝑉)(𝑟) − 𝛾. 

Since K = K1K2, there are three possible cases. 

(1) r ∈ K1 and r ∈ K2:  In this case, let 𝛾 = 𝛾1 ∪ 𝛾2. By Proposition 1, 𝛾1 ∈ Γ⋀ 𝛾2 ∈ Γ ⟹

𝛾1 ∪ 𝛾2 ∈ Γ. Also ∑ (𝑟)𝐾 = ∑ (𝑟)𝐾1∪𝐾2 = ∑ (𝑟)𝐾1 ∪ ∑ (𝑟)𝐾2 . Therefore, 

            ΣR(CFSMwV)(r) − Σ𝐾(r) 

 = ΣR(CFSMwV)(r) − ΣK1∪K2(r) 
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 = ΣR(CFSMwV)(r) − (ΣK1(r) ∪ ΣK2(r)) 

 = (ΣR(CFSMwV)(r) − ΣK1(r)) ∩ (ΣR(CFSMwV)(r) − ΣK2(r)) 

 = (ΣR(CFSMwV)(r) − 𝛾1) ∩ (ΣR(CFSMwV)(r) − 𝛾2) 

 = ΣR(CFSMwV)(r) − (𝛾1 ∪ 𝛾2) 

 = ΣR(CFSMwV)(r) − 𝛾 

(2) r ∈ K1 and r ∉ K2:  In this case, let 𝛾 = 𝛾1 ∈ Γ. Then, 

     𝛴𝑅(𝐶𝐹𝑆𝑀𝑤𝑉)(𝑟) − 𝛴𝐾(𝑟) 

 = 𝛴𝑅(𝐶𝐹𝑆𝑀𝑤𝑉)(𝑟) − 𝛴𝐾1∪𝐾2(𝑟) 

 = 𝛴𝑅(𝐶𝐹𝑆𝑀𝑤𝑉)(𝑟) − (𝛴𝐾1(𝑟) ∪ 𝛴𝐾2(𝑟)) 

 = 𝛴𝑅(𝐶𝐹𝑆𝑀𝑤𝑉)(𝑟) − 𝛴𝐾1(𝑟) 

 = 𝛴𝑅(𝐶𝐹𝑆𝑀𝑤𝑉)(𝑟) − 𝛾1 

 = 𝛴𝑅(𝐶𝐹𝑆𝑀𝑤𝑉)(𝑟) − 𝛾 

(3) r ∉ K1 and r ∈ K2:  In this case, let 𝛾 = 𝛾2 ∈ Γ. Then, 

     𝛴𝑅(𝐶𝐹𝑆𝑀𝑤𝑉)(𝑟) − 𝛴𝐾(𝑟) 

 = 𝛴𝑅(𝐶𝐹𝑆𝑀𝑤𝑉)(𝑟) − 𝛴𝐾1∪𝐾2(𝑟) 

 = 𝛴𝑅(𝐶𝐹𝑆𝑀𝑤𝑉)(𝑟) − (𝛴𝐾1(𝑟) ∪ 𝛴𝐾2(𝑟)) 

 = 𝛴𝑅(𝐶𝐹𝑆𝑀𝑤𝑉)(𝑟) − 𝛴𝐾2(𝑟) 

 = 𝛴𝑅(𝐶𝐹𝑆𝑀𝑤𝑉)(𝑟) − 𝛾2 

 = 𝛴𝑅(𝐶𝐹𝑆𝑀𝑤𝑉)(𝑟) − 𝛾 

So, in any case, 

(∀𝑟 ∈ 𝐾)(∃𝛾 ∈ Γ)∑𝑅(𝐶𝐹𝑆𝑀𝑤𝑉)(𝑟) − ∑𝐾(𝑟) = ∑𝑅(𝐶𝐹𝑆𝑀𝑤𝑉)(𝑟) − 𝛾. 
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Q.E.D 

By this result, we can find the least restrictive safety controller that ensures the closed-loop 

system will never visit illegal states. Our strategy to synthesize the least restrictive safety controller 

is as follows: Initially, the system can be in any legal state of the system. However, the system 

may move to an illegal state via some transitions. So it is important to study transitions on the 

boundary (from a legal state to an illegal state). If a transition is associated with a controllable 

event (i.e., transition (𝑞, 𝑔 ∧ 𝜎 𝑝⁄ ≔ 𝑓(𝑝), 𝑞′) with 𝜎 ∈ Σ𝑐) , then the transition can be disabled 

and we do not need to worry about it.  On the other hand, if a transition is associated with an 

uncontrollable event, then we must prevent it from occurring by either making sure that its guard 

is not true or pre-empting the transition with an enforceable event if possible. This implies that we 

must strengthen (or tighten) the conditions under which the system can stay in legal states. We call 

these conditions safety conditions. We use Iq to denote the safety condition for state q. The key to 

synthesizing the least restrictive safety controller is to update Iq iteratively so that after the 

procedure converges, the transitions on the boundary are either disabled or pre-empted. To do this 

formally, let us denote the number of iterations by k. Initially, we let safety condition Iq(0)=T for 

all legal states 𝑞 ∉ 𝑄𝑏 and 𝐼𝑞(0) = 𝐹 for all illegal states 𝑞 ∈ 𝑄𝑏 . For a legal state 𝑞 ∉ 𝑄𝑏 , its 

safety condition Iq(k) is updated as: 

 𝐼𝑞(𝑘 + 1) = 𝐼𝑞(𝑘)

∧

(

 
 
 
 ¬( ⋁ (𝑔 ∧ ¬𝐼𝑞′(𝑘)|𝑝≔𝑓(𝑝))

(𝑞,𝑔∧𝜎 𝑝⁄ ≔𝑓(𝑝),𝑞′)∈𝛿⋀𝜎∉Σ𝑐

) 

∨ ( ⋁ (𝑔 ∧ 𝐼𝑞′(𝑘)|𝑝≔𝑓(𝑝))
(𝑞,𝑔∧𝜎 𝑝⁄ ≔𝑓(𝑝),𝑞′)∈𝛿⋀𝜎∈Σ𝑓

)

)

 
 
 
 

 

 

 (2.24) 
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This formula implies that the new safety condition will be true only if the old safety 

condition Iq(k) is true and either there are no uncontrollable transitions leading to illegal states, 

¬(⋁ (𝑔 ∧ ¬𝐼𝑞′(𝑘)|𝑝≔𝑓(𝑝))(𝑞,𝑔∧𝜎 𝑝⁄ ≔𝑓(𝑝),𝑞′)∈𝛿⋀𝜎∉Σ𝑐 ) , or there are some enforceable transitions 

leading to legal states, (⋁ (𝑔 ∧ 𝐼𝑞′(𝑘)|𝑝≔𝑓(𝑝))(𝑞,𝑔∧𝜎 𝑝⁄ ≔𝑓(𝑝),𝑞′)∈𝛿⋀𝜎∈Σ𝑓 ). 

Since Q is finite by definition, whether the above iteration will converge (terminate) or not 

depends on the set P. If P is finite, then the iteration is guaranteed to converge. If P is infinite, then 

the iteration may or may not converge. In the example below, we show that in some cases even if 

P is infinite, the iteration still converges. 

When the iteration converges, we have Iq(k+1) = Iq(k). Denote I*
q= Iq(k+1) = Iq(k). We can 

obtain the controller ψ:R(CFSMwV)→Γ as follows: Let r ∈ R(CFSMwV) be a run ending at (q, 

p). Then 

 *

' : ( )

*

' : ( )( , / : ( ), ')

*

' : ( )

{ : ( , / : ( ), ') ( )} ( )

                                          if ( ( )) 
( )

{ : ( , / : ( ), ') ( )}

          

c

q cp f p

q p f pq g p f p q

f q p f p

q g p f p q g I

g I
r

q g p f p q g I

  

  



  



    



       

  


     

                                otherwise.










 
 (2.25) 

Clearly ψ(r) ∈ Γ and under this control, the closed-loop system will satisfies safety 

condition I*
q for all legal state q∉Qb. We show that ψ: R(CFSMwV)→Γ is indeed the controller 

we want. 

Theorem 3: After the iteration converges, the controller ψ: R(CFSMwV)→Γ designed 

above generates the supremal controllable subset supC(E). In other words, 

 R(CFSMwV, ψ) = supC(E)  (2.26) 



46 

 

Proof: We need to prove (1) R(CFSMwV, ψ) is controllable; (2) R(CFSMwV, ψ)  E; and 

(3) for all other subset K  R(CFSMwV) such that K is controllable and K  E, K  L(CFSMwV, 

). 

(1) R(CFSMwV, ψ) is controllable: 

R(CFSMwV, ψ) is generated by a controller. By Theorem 1, it is controllable. 

(2) R(CFSMwV, ψ)  E: 

During the iteration, all safety conditions are strengthened, that is, 𝐼𝑞
∗⟹ 𝐼𝑞 for all 

legal state 𝑞 ∉ 𝑄𝑏.  Therefore, R(CFSMwV, ψ)  E. 

(3) For all other subset K  R(CFSMwV) such that K is controllable and K  E, 

KL(CFSMwV,): 

During the iteration, a safety condition is strengthened only if not doing so will result 

in violation of specification E. Hence, no other controller can generate a larger subset 

than L(CFSMwV,) without violating E. Since K is controllable, by Theorem 1, it can 

be generated by a controller. Therefore, K is controllable and K  E imply K  

L(CFSMwV,). 

Q.E.D 

Note that we assume that in the controlled system, the transitions enforced by the controller 

will occur before the occurrence of any uncontrollable transition. This assumption is reasonable 

because we do not consider time in the FSMwV model. If time is of importance, then we shall use 

hybrid machine model of [146] rather than FSMwV model. Let us now illustrate the above results 

by an example. 

Example 1: Consider the system described by the CFSMwV in Figure 2.6. The CFSMwV 

has three events α, β, η and one variable pP, where P is the set of natural numbers. The illegal 
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state is Qb = {6} (shaded in the figures). The controllable events are Σc = {β, η}. The enforceable 

event is Σf = {η}. Our goal is to synthesize a safety controller to ensure that the system will never 

enter the illegal state. 

1 32

4 65

p=0

/ : 1p p  

/ : 1p p  

 / : 1p p  

/ : 1p p  

[ 10]p 

/ : 1p p  

[ 5]p / : 1p p  

/ : 1p p  
 

Figure 2.6 CFSMwV for Example 1. 

 

The results of the iteration process to calculate Iq at different states is given in TABLE 2.1 

and shown in Figure 2.7. 

1 32

4 6

p=0

/ : 1p p  

/ : 1p p  

 / : 1p p  

/ : 1p p  

[ 10]p 

/ : 1p p  

[ 5]p / : 1p p  

/ : 1p p  
5

5p  5p T

T F F

 
Figure 2.7 Resulting CFSMwV after the iteration converges. 

 

The control is given as: at state 1 and 2, the controller will disable β if p ≥ 4; at state 3, the 

controller will enforce η if p ≥ 4; and at state 4, the controller always disables β. 
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Note that the controlled system can loop between states 1 and 4 infinitely many times. 

Hence, the value of p can increase unboundedly. This example shows that even if P is infinite (the 

set of natural numbers), the iteration still converges. 

 

TABLE 2.1 CALCULATION OF IQ AT SIX STATES 
 State 

k 
1 2 3 4 5 6 

0 T T T T T F 

1 T T T T 
T  {(TF)} 

= F  
F 

2 T 
T{[(TT)(p≥5F)]} 

= p<5 

T{[(TT)(p≥10F)](TT]} 

= T 
T F F 

3 T 
p<5{[(TT)(p≥5F)]} 

= p<5 

I2*= I2(2) = I2(3), stop! 

T{[(TT)(p≥10F)](Tp<5)} 

= p<10 
T F F 

… … … … … … … 

8 T p < 5 p<5 T F F 

9 T p < 5 
p<5 

I3*= I3(9)= I3 (8), stop! 
T F F 

 

2.5 Online Safety Controller 

As it has been demonstrated in standard supervisory control theory, online synthesis of 

safety controllers has advantages in various applications. If the system to be controlled is large and 

complex, then offline control synthesis may not be feasible, because it tries to compute the control 

actions for all possible states and values of variables. Therefore, for large and complex systems, 

online synthesis is a good alternative because online synthesis only tries to compute the control 

action for the current state and the current values of variables. Furthermore, online synthesis can 

be used even if the system to be controlled is time-varying, while offline synthesis cannot be used 
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for time-varying systems. In this section, we will discuss online synthesis of safety controllers 

using FSMwV model. 

To design a safety controller online, we can use either limited lookahead policies or 

variable lookahead policies [139, 140]. In both cases, a forward looking tree representing all 

possible future behaviour from the current state is constructed. Since the variable values at the 

current state are known (under our assumption of full observation), all guards can be evaluated. If 

a guard is true, the transition will be included in the tree; otherwise, the transition (and its 

continuation) will be discarded in the tree. 

After the tree is constructed, the online control synthesis is similar to that of offline. It is 

actually simpler because of the following two reasons: (1) there are no loops in the tree structure; 

and (2) guards of all transitions have been evaluated as either true or false. Transitions with false 

guards are discarded. As before, dynamic transitions with true guards can be treated as same as 

uncontrollable event transitions by introducing a fictitious new uncontrollable event 𝜎𝑢. 

Since the offline synthesis algorithm has been discussed in the previous section, the key to 

controller synthesis is to construct the forward looking tree. This is the focus of this section. 

During the tree construction, after evaluating guards, transitions of various types are 

replaced as follows: 

(1) 𝑞
     𝑇∧𝜎     
→     𝑞′        replace by       𝑞

     𝜎     
→   𝑞′ 

(2) 𝑞
     𝐹∧𝜎     
→     𝑞′        discarded 

(3) 𝑞
     𝑇     
→   𝑞′            replace by       𝑞

     𝜎𝑢     
→    𝑞′ 

(4) 𝑞
     𝐹     
→   𝑞′            discarded 

For limited lookahead policies, the tree construction ends after N steps. The legality of the 

states at the boundary is determined by the attitude used. If the conservative attitude is used, then 
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all the states at the boundary are considered illegal. This guarantees that the resulting control policy 

is safe. However, conservative attitude may result in a smaller (that is, more restrictive) control 

policy or even an empty control policy, which means that the controller will have an error. On the 

other hand, if the optimistic attitude is used, then all the states at the boundary, except those 

belonging to Qb, are considered legal. This attitude will result in a more flexible control policy. 

However, it may also lead to an unrecoverable error, as it may be too late for an optimistic 

controller to prevent some illegal behavior when it sees illegal states. 

For variable lookahead policies, the tree construction will continue until some termination 

conditions are satisfied. We use the following three termination conditions: 

(1) A branch terminates at state q if q is an illegal state;  

(2) A branch terminates at state q if there is no forcible transition leaving q to a legal 

state but there is an uncontrollable transition leaving q to an illegal state. In this 

case, state q is illegal; 

(3) A branch terminates at state q if all the transitions leaving q are controllable. In 

this case, state q is legal regardless of the legality of the following states. 

If the tree construction for variable lookahead policies terminates, that is, if every branch 

ends with one of the three termination conditions satisfied, then the variable lookahead policy 

obtained is guaranteed to be safe and least restrictive. In other words, it will achieve the same 

performance as the controller synthesized offline. 

Unlike limited lookahead policies, the tree construction for variable lookahead policies 

may not terminate. In such cases, we can combine limited lookahead policies with variable 

lookahead policies. In other words, we construct the tree as in variable lookahead policies until it 
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reaches the N-step boundary. We then use either conservative or optimistic attitude for the 

boundary state as in limited lookahead policies. 

Example 2: Let us now demonstrate the online synthesis of the safety controller for the 

same system as in Example 1. We consider the initial state with p=0. The tree with N=3 is 

constructed as shown in Figure 2.8. The shaded state is illegal. 

If the conservative attitude is used, then all states at the bottom layer are considered illegal. 

By applying the synthesis algorithm, the illegal states are “propagated” upward as shown in Figure 

2.9. The control action at the root (i.e. at the initial state) is to enable β, η and enforce nothing. 

If the optimistic attitude is used, then all states at the bottom layer, except the left most one, 

are considered legal. The synthesis algorithm finds bad states as shown in Figure 2.10. The 

resulting control action at the initial state is the same as for the conservative attitude. 

If variable lookahead policy is used, then some branches will terminate early as shown in 

Figure 2.11. This control synthesis results in the same control action at the initial state. 

0p 

/ 1p 

/ 2p 



/ 3p 

/ 2p / 1p 





 

 
Figure 2.8 Online expansion of the CFSMwV in Figure 2.6, where N = 3. 
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0p 

/ 1p 

/ 2p 



/ 3p 

/ 2p / 1p 





 

 
Figure 2.9 Online control synthesis in Example 2: with conservative attitude. 

 

0p 

/ 1p 

/ 2p 



/ 3p 

/ 2p / 1p 





 

 
Figure 2.10 Online control synthesis in Example 2: with optimistic attitude. 
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0p 

/ 1p 

/ 2p 

/ 3p 





 

 
Figure 2.11 Online control synthesis in Example 2: with variable lookahead. 

 

2.6 Applications to the Active Management of PEVs 

In this section, we apply the results obtained in the previous section to power grids that 

needs to accommodate more and more use of PEVs. This is because transportation electrification 

is viewed as one of the most viable ways to reduce CO2 emissions and the gasoline dependency. 

It is projected that the cumulative sales of electrical vehicles (EVs) and PEVs will reach 16 million 

by 2030 [51]. The increasing number of PEVs will post new challenges to the existing power grid, 

as they will become a large load to the grid [148, 149]. In the rest of the chapter, we will use 

FSMwV to model a small distribution network and use supervisory control to control the charging 

of PEVs. 

2.6.1 Distribution networks 

A distribution network connects the output terminals of a distribution substation to the 

input terminals of customer loads. Let us consider a typical distribution network shown in Figure 

2.12. We assume that there are N nodes (or buses) in the distribution network. We consider radial 

distribution networks in this chapter. Interconnected distributed networks can also be considered, 
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but not discussed in this chapter. For each node i, all the conventional local loads are lumped 

together and denoted as 𝑝𝑖,𝑖. For instance, all the local load at Node 2 is denoted as  𝑝2,2. All the 

power lines including transformers connected to Node i should not be overloaded. For example, 

for the local loads connected to Node 2, 𝑝1,2, 𝑝2,3 and 𝑝2,2all should be within their corresponding 

limits 𝑝1,2,𝑚, 𝑝2,3,𝑚 and 𝑝2,2,𝑚. We call 𝑝1,2 the incoming power to Node 2, at the same time, 𝑝2,3 

and 𝑝2,4 are called the outgoing powers.  At each node, there is a power meter to measure the 

power of each line connected to the node. 

The power loss of the distribution network is neglected. We assume that if the power of a 

power line is 10% over its limit, the circuit breaker (CB) will trip to protect the line and other 

devices. This constraint can be readily changed to any actual protection setting in a distribution 

network. For the purpose of simplification, only PEVs are considered as controllable loads. The 

control target is to avoid the over loading type of tripping while satisfying all the load demands as 

much as possible. Therefore the only safety criterion considered now is the power limit of each 

node in the distribution network. Since the incoming powers and the outgoing powers are the 

summation of the local loads, the illegal condition can also be considered as the overload of every 

local load power line. 

A PEV load is assume to be ni ×m, where ni is the number of PEVs being charged at the 

node i and m is the power consumed by each PEV at the unit of kilowatts (kW). Three scenarios 

were proposed in [150] to charge the PEVs and one of them, m=6kW, is used in this chapter. All 

local loads are calculated as conventional loads plus the PEV load, that is, 𝑝𝑖,𝑖 + 6𝑛𝑖. For instance, 

the local loads at Node 2 is 𝑝2,2 + 6𝑛2. The control must ensure that all local loads connected to 

all nodes do not exceed their limits. For example, for the local loads connected to Node 2, 𝑝2,2 +

6𝑛2 must be within its corresponding limit 𝑝2,2,𝑚. 
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Figure 2.12 A distribution network with N nodes. 

 

2.6.2 Offline safety control of DN  

In this section, four scenarios will be analyzed for the distribution network with and without 

PEVs. Only conventional uncontrollable loads are considered in scenarios 1 and 2. On the other 

hand, the management of new PEV loads is considered and compared in scenarios 3 and 4. The 

method described in Section II is used to calculate safety conditions Iq
 
iteratively. pi,i,m is set as 100 

kW. In scenarios 1 and 2, no PEVs loads are considered in the distribution network, so that we 

could see the influence of the conventional load to the distribution network. The model is shown 

in Figure 2.13. 

The states set Qi,i contains three states representing load level: the marked state N is for 

0≤pi,i<pi,i,m;
 
O is for pi,i,m≤pi,i<1.1pi,i,m; D denotes for the dangerous state and at D the circuit 

breaker will be tripped to protect the power line thereby moving the system to the illegal state J. 
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Figure 2.13 Local load FSMwV model at node i for Scenarios 1 and 2. 

 

Three dynamic transitions are defined correspondingly as: NO when pi,i ≥ pi,i,m; ON when 

pi,i < pi,i,m; OD when pi,i ≥ 1.1pi,i,m. 

Four events in Σi,i are defined as follows: αi
+

 
is for “increase the conventional load”; αi

−

 
is 

for “decrease the conventional load”; the uncontrollable event ηi
− is for “trip the circuit switch” 

and ηi
+

 
is for “restore the power line”. One variables, the conventional loads pi,i will be updated 

with the occurrence of corresponding events as: αi
+ with pi,i:= pi,i+1kW; αi

− with pi,i:= pi,i−1kW; ηi
− 

with ni:=0 and pi,i:=0. 

A. Scenario 1 

In this scenario, only the uncontrollable conventional loads are considered. In other words, 

it is assumed the increase of the conventional loads is uncontrollable and unenforceable, so that 

we could track the change of the loads by the FSMwV model. The results of the iteration process 

to calculate Iq at different states is given in TABLE 2.2. 

From TABLE 2.2, it is shown that all the states status will be updated as illegal since the 

unlimited increase of the conventional loads. This table gives us the intuitively image of the change 

of the states status and the update process of the safety area Iq, even though the unlimited increase 

of the conventional loads is not practical. 

 

TABLE 2.2 CALCULATION OF Iq AT FOUR STATES FOR SCENARIO 1 
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State 

  k   
N O D J 

0 T T T F 

1 T T T 

{(TF)}= F 

F 

2 T 

T{[(TT)(TT) 

(p<100T) 

(p≥110F)]} 

= p<110 

F F 

3 

T 

{[(TT) (TT) 

(p≥100(p<110))]} 

= p<110 

p<110 

{[(T(p+1<110)) 

(T(p-1<110)) 

(p<100T) 

(p≥110F)]} 

= p<109 

F F 

4 p < 109 p<108 F F 

… … … … … 

112 
p < 1 

F 

p<0 

F 
F F 

 

B. Scenario 2 

In this scenario, it is assumed that the actual load pi,i will not exceed the 0.9 pi,i,m=90 kW. 

This assumption is not unrealistic because we usually have some estimate of the maximum possible 

load. It means that the guard pi,i ≤ 90 kW is added to the event αi
+. Then the results of the iteration 

process to calculate Iq at different states is given in TABLE 2.3. 

 

TABLE 2.3 CALCULATION OF Iq AT FOUR STATES FOR SCENARIO 2 

State 

  k   
N O D J 

0 T T T F 

1 T T T F 
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{(TF)} 

= F 

2 T 

T{[(p≤90T) 

(TT) (p<100T) 

(p≥110F)]} 

= p<110 

F F 

3 

T 

{[( p≤90T)(TT) 

(p≥100(p<110))]} 

= p<110 

p<110{[( p≤90 

(p+1<110)) 

(T(p-1<110)) 

(p<100T) 

(p≥110F)]} 

= p<110 

IO*= IO(3)= IO (2), stop! 

F F 

4 
p <110 

IN*= IN(4)= IN (3), stop! 
 F F 

 

It is clear from TABLE 2.3 that the safety area of state O and state N both converge to 110. 

It means that the state O and state N will stay safe because of the existence of the guard of event 

αi
+. Intuitively, the conventional uncontrollable load will not increase once p ≤ 110kW. 

The PEVs loads are considered in the distribution network in scenarios 3 and 4. The model 

of the local load FSMwVi,i is shown in Figure 2.14. 

 

N O D

J
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,/ : 0, : 0i i i in p   i
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, ,

i i i i m i

i i i

p p 

  



  

   , , ,0.9

, ,

i i i i m i

i i i

p p 

  



  

 
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 , , , 6i i i i i mp n p 
 

Figure 2.14 Local load FSMwV model at node i for Scenarios 3 and 4. 
 

The states set Qi,i contains three states representing load level: the marked state N is for 0≤ 

(pi,i+6ni) < pi,i,m;
 
O is for pi,i,m ≤ (pi,i+6ni) < 1.1pi,i,m; D denotes for the dangerous state and at 
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D the circuit breaker will be tripped to protect the power line thereby moving the system to the 

illegal state J. 

Three dynamic transitions are defined correspondingly as: NO when (pi,i+6ni) ≥ pi,i,m; ON 

when (pi,i+6ni) < pi,i,m; OD when (pi,i+6ni) ≥ 1.1pi,i,m. 

Six events in Σi,i are defined as follows: αi
+

 
is for “increase the conventional load”; αi

−

 
is 

for “decrease the conventional load”; βi
+ is for “add one PEV”; βi

−

 
is for “remove one PEV”; ηi

− is 

for “trip the circuit switch” and ηi
+

 
is for “restore the power line”. Two variables, the conventional 

loads pi,i and number of PEVs being charged ni, will be updated with the occurrence of 

corresponding events as: αi
+ with pi,i:= pi,i+1kW; αi

− with pi,i:= pi,i−1kW; βi
+ with ni:=ni+1; βi

− with 

ni:=ni-1; ηi
− with ni:=0 and pi,i:=0. We assume that charging PEV can be controlled (disabled). 

Therefore, the controllable event set is Σc={βi
+}. We assume that the event in Σf ={ηi

+} is 

enforceable. 

As for the event βi
−, we will consider two scenarios, one is uncontrollable and 

unenforceable (cannot unplug a PEV) and the other is enforceable (can unplug a PEV). We will 

discuss these two scenarios separately and compare their effects in the control. 

Two assumptions for the FSMwV model of local loads are made as follows: (1) The 

occurrence of αi
+

 
has a guard pi,i < pi,i,m since the conventional local loads normally cannot exceed 

the limit; and (2) Initial limitation of the state O is set as: (pi,i+6ni) < 1.1pi,i,m. 

C. Scenario 3 

When the event βi
−

 
is considered as uncontrollable and unenforceable, the safety regions 

representing safety conditions Iq
 
of states N and O are shown in Figure 2.15 after 89 iterations. We 

do not show safety conditions IT and ID, because they are simple: IT is always “False” and ID is 

“False” after the first iteration since the transition from state D to state T is uncontrollable. 
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Figure 2.15 Safety regions when βi

− is uncontrollable for (a) State N, (b) State O. 

 

From Figure 2.15, we can see that the safety regions of states N and O are both very small. 

Intuitively, this is because if the controller cannot unplug PEVs, then it must be very conservative 

when it allows PEVs to charge.  The maximal number PEVs can be charged is only 1. This is the 

case even if the conventional loads are very low. This means the capacity of the distribution 

network (and the generation capacity) is not fully utilized. This control is not suitable for the 

increasing use of PEVs. 

D. Scenario 4 

When the event βi
−

 
is considered as enforceable, the safety regions representing safety 

conditions Iq
 
of states N and O are shown in Figure 2.16 after 32 iterations. The ID is also “False” 

after the first iteration. 
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Figure 2.16 Safety regions when βi

− is enforceable for (a) State N, (b) State O. 

 

Figure 2.16 shows that the safety regions of states N and O are much bigger than Scenario 

3. This is because if PEVs can be unplugged by the controller, then the control of charging of 

PEVs becomes more flexible. The control strategy is based on two premises: to guarantee the 

safety of the system (to avoid entering the illegal states) and to give preference to uncontrollable 

conventional loads. This control not only ensures the safety of the distribution network, but also 

takes full advantage of its capacity. It allows as many PEV to be charged as possible. 

2.6.3 Offline safety control of DN with energy storage 

Sometimes energy storage sources are used as backup to handle emergent situations, and 

the offline safety control of DNs with energy storage is also studied. The model of the local load 

FSMwVi,i is shown in Figure 2.17. Some states and events are of the same meaning in 2.6.2 and 
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are repeated here for convenience. The states set 𝑄𝑖,𝑖 contains six states representing load level: 

the marked state N is for 0 ≤ (𝑝𝑖,𝑖 + 6𝑛𝑖) < 𝑝𝑖,𝑖,𝑚;
 
O is for 𝑝𝑖,𝑖,𝑚 ≤ (𝑝𝑖,𝑖 + 6𝑛𝑖) < 1.1𝑝𝑖,𝑖,𝑚; NB 

is used to denote the state that the backup energy storage is used and 𝑝𝑖,𝑖,𝑚 ≤ (𝑝𝑖,𝑖 + 6𝑛𝑖) <

(𝑝𝑖,𝑖,𝑚 + 𝑝𝑏) , where 𝑝𝑏 denotes the capacity of the backup power source; OB is for 

(𝑝𝑖,𝑖,𝑚 + 𝑝𝑏) ≤ (𝑝𝑖,𝑖 + 6𝑛𝑖) < 1.1(𝑝𝑖,𝑖,𝑚 + 𝑝𝑏); D denotes for the dangerous state and at D the 

circuit breaker will be tripped to protect the power line thereby moving the system to the illegal 

state T. Six dynamic transitions are defined correspondingly as: 𝑁 ⟶ 𝑂 when (𝑝𝑖,𝑖 + 6𝑛𝑖) ≥ 𝑝𝑖,𝑖,𝑚; 

𝑂 ⟶ 𝑁  when (𝑝𝑖,𝑖 + 6𝑛𝑖) < 𝑝𝑖,𝑖,𝑚 ; 𝑁𝐵 ⟶ 𝑂𝐵  when (𝑝𝑖,𝑖 + 6𝑛𝑖) ≥ (𝑝𝑖,𝑖,𝑚 + 𝑝𝑏) ; 𝑂𝐵 ⟶ 𝑁𝐵 

when (𝑝𝑖,𝑖 + 6𝑛𝑖) < (𝑝𝑖,𝑖,𝑚 + 𝑝𝑏) ; 𝑂 ⟶ 𝐷  when (𝑝𝑖,𝑖 + 6𝑛𝑖) ≥ 1.1𝑝𝑖,𝑖,𝑚 ; and 𝑂𝐵 ⟶ 𝐷  when 

(𝑝𝑖,𝑖 + 6𝑛𝑖) > 1.1(𝑝𝑖,𝑖,𝑚 + 𝑝𝑏). 

N O
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Figure 2.17 FSMwV model for local load at node i.  

 

Eight events in Σ𝑖,𝑖 are defined as follows: 𝛼𝑖
+

 
is for “increase the conventional load”; 𝛼𝑖

−

 

is for “decrease the conventional load”;
 
𝛽𝑖
+

 
is for “add one PEV”; 𝛽𝑖

−

 
is for “remove one PEV”; 
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𝜆𝑖
+ is for “add the backup power source”; 𝜆𝑖

− is for “remove the backup power source”; 𝜂𝑖
−is for 

“trip the circuit switch” and 𝜂𝑖
+ is for “restore the power line”. Two variables, the conventional 

loads 𝑝𝑖,𝑖  and number of PEVs being charged 𝑛𝑖 , will be updated with the occurrence of 

corresponding events as: 𝛼𝑖
+  with 𝑝𝑖,𝑖: = 𝑝𝑖,𝑖 + 1𝑘𝑤 ; 𝛼𝑖

−  with 𝑝𝑖,𝑖: = 𝑝𝑖,𝑖 − 1𝑘𝑤 ; 𝛽𝑖
+  with 𝑛𝑖: =

𝑛𝑖 + 1; 𝛽𝑖
− with 𝑛𝑖: = 𝑛𝑖 − 1; 𝜂𝑖

− with 𝑛𝑖 ≔ 0 and 𝑝𝑖,𝑖: = 0. We assume that charging PEV can be 

controlled (disabled). Therefore, the controllable event set is Σ𝑐 = {𝛽𝑖
+}. We assume that the 

events in Σ𝑓 = {𝜆𝑖
+, 𝜆𝑖

−, 𝜂𝑖
+} are enforceable. As for the event 𝛽𝑖

−, we will consider two scenarios, 

one is uncontrollable and unenforceable (cannot unplug a PEV) and the other is enforceable (can 

unplug a PEV). We will discuss these two scenarios separately and compare their effects in the 

control. 

Three assumptions for the FSMwV model of local loads are made as follows: (1) The 

occurrence of 𝛼𝑖
+

 
has a guard 𝑝𝑖,𝑖 < 𝑝𝑖,𝑖,𝑚; (2) The occurrence of 𝜆𝑖

− has a guard (𝑝𝑖,𝑖 + 6𝑛𝑖) <

𝑝𝑖,𝑖,𝑚, because we cannot remove the backup energy storage if the system will be overloaded; and 

(3) Initial limitation of the state OB is set as: (𝑝𝑖,𝑖 + 6𝑛𝑖) < 1.1(𝑝𝑖,𝑖,𝑚 + 𝑝𝑏). 

We assign the variables as: 𝑝𝑖,𝑖,𝑚 = 100 𝑘𝑊, 𝑝𝑏 = 30 𝑘𝑊. Since the iterations are rather 

involved and time consuming, we write a computer program to do the calculations. 

When the event 𝛽𝑖
−

 
is considered as uncontrollable and unenforceable, the safety regions 

representing safety conditions Iq
 
of states N, NB, O and OB are shown in Figure 2.18 after 101 

iterations. 𝐼𝑇 is always “False” and 𝐼𝐷 is “False” after the first iteration since the transition from 

state D to state T is uncontrollable. 

From Figure 2.18, we can see that the safety regions of states N, NB, O and OB are all very 

small. Intuitively, this is because if the controller cannot unplug PEVs, then it must be very 

conservative when it allows PEVs to charge.  The maximal number PEVs can be charged is only 
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7. This is the case even if the conventional loads are very low. This means the capacity of the 

distribution network (and the generation capacity) is not fully utilized. This control is not suitable 

for the increasing use of PEVs. 

 
Figure 2.18 Safety regions when 𝛽𝑖

−
 is uncontrollable (a) State N, (b) State NB, (c) State O and 

(d) State OB. 

 

When the event 𝛽𝑖
−

 
is considered as enforceable, the safety regions representing safety 

conditions 𝐼𝑞 
of states N, NB, O and OB are shown in Figure 2.19 after 33 iterations. The 𝐼𝐷 is also 

“False” after the first iteration. 

It is clear from Figure 2.19 that the safety regions of states N, NB, O and OB are much 

bigger than the uncontrollable scenario. Same conclusion with the one in Scenario 4 in the Section 
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2.6.2 can be arrived that this control not only ensures the safety of the distribution network, but 

also takes full advantage of its capacity.  

 
Figure 2.19  Safety area when 𝛽𝑖

−
 is enforceable event of (a) State N, (b) State NB, (c) State O 

and (d) State OB. 

 

From the step by step analysis in Section 2.6.2 and Section 2.6.3, the change of the power 

grid is clearly shown and the management of the PEVs at a node could be achieved by the FSMwV 

and corresponding safety control. Since the model of multi-nodes distribution network could be 

constructed by the composing operation as CFSMwV, the corresponding safety controller can be 

designed by the same method. 
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2.7 Conclusion 

In this chapter, we have presented our work on control synthesis under the modeling 

framework of Finite State Machine with Variables. We have described our extension of the scope 

of the traditional DES (i.e., supervisory) control to include both event disablement and 

enforcement for the control of discrete event systems modeled as FSMwV. We have proposed an 

offline safety control synthesis procedure that takes the advantage of both event disablement and 

enforcement in order to prevent the controlled system from venturing into illegal states. We have 

further presented online safety control synthesis procedures based on the limited/variable 

lookahead policies to address the practical concern of real world implementation. We have also 

applied the theoretical results to control PEVs in power distribution networks with and without 

energy storage. 
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CHAPTER 3 MAXIMIZING THE PENETRATION OF PLUG-IN 

ELECTRIC VEHICLES IN DISTRIBUTION NETWORK 

3.1  Introduction 

Transportation electrification is viewed as one of the most viable ways to reduce CO2 

emissions and oil dependency. The increasing number of PEVs will post new challenges to the 

existing power grid, as they as a whole will become a significant portion of the load to the power 

grid when they are being charged.  

Active research work has been carried out in this emerging area [52-54, 151]. The impact 

of PEVs on Belgium’s distribution networks (DNs) was studied with the consideration of the 

traffic and driving patterns in [52]. The simulation results for different scenarios on a 34-node test 

feeder showed that a significant amount of power losses and voltage deviations can be induced by 

wide adoption of PEVs. It concluded that, even in a small country like Belgium, the impacts of 

PEVs on DNs must be evaluated and controlled to maintain the DN’s stability. In [151], PEVs 

were managed by deterministic and coordinated methods, respectively. The comparison results in 

the previous paper showed that the uncoordinated charging of PEVs could cause significant losses 

while coordinated charging had nearly no impact on DNs. From the aspect of available power in a 

DN, an active management of PEVs was proposed in [53, 54] and in Chapter 2. PEVs and other 

loads in a DN were modeled by a method of finite state machine with variables (FSMwV), and 

then a safety controller was proposed to locally manage the dis-/charging of PEVs and other 

controllable loads on a node. With the coordination of controllers at all nodes, the peak power 

needed is shifted, and the safety of the feeder transformer is guaranteed.  

In addition, voltage problems in DNs are very important since they are directly related to 

stability, reliability and power quality of the power grid. Poor voltage profile can cause increased 
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system losses, possible damage to circuit devices and home appliances, and unsatisfactory 

customers. A number of papers discussed voltage stability indices (VSI) of a power system based 

on global information, such as the P-V and Q-V curves of the system [152], Jacobian matrix 

singularity indices [153, 154], and L-index [155]. On the other hand, VSIs can also be calculated 

by local information of power lines [156, 157] and nodes [158, 159]. However, the indices [152]-

[159] that developed for transmission network may not be suitable for distribution network. For 

example, the method in [155] requires the calculation of bus admittance matrix which sometimes 

cannot be obtained because of the singularity.  

A two-bus equivalent network was developed to analyze the voltage stability of DN in 

[160]. In this method, the singularity of Jacobian matrix was used to derive the VSI. To predict the 

voltage collapse triggered by contingencies and events, a new technique was developed to rank all 

contingencies [161]. This method overcomes the drawback of Jacobian-based methods which may 

be invalidated by the occurrence of the singularity of the matrix. In [162], the active and reactive 

powers on buses in DN were calculated without knowing the voltages at sending and receiving 

ends; and the VSI was formulated based on the proposed equations. Reactive power dispatch [163] 

and optimal network reconfiguration [164] were both studied to increase the loadability and 

minimize the losses of DN with the consideration of the safe voltage assessment. A system 

equivalent model using the concept of transfer impedance was proposed in [165], in which a VSI 

named equivalent node voltage collapse index (ENVCI) was developed to estimate system voltage 

stability. This method relieves the required computing burden and is able to real-time follow the 

variation of loads and generators. The ENVCI will be used in this study as the constraint of voltage 

stability in the optimization algorithm.  
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In this chapter, a method is proposed to maximize the injection of PEVs in DNs without 

violating power limitations and causing voltage problems. Section 3.2 formulates the problem and 

gives a brief overview of the objective and constraints of the optimization algorithm and the 

ENVCI. Section 3.3 presents and discusses the simulation results of the proposed method on a 33-

bus test feeder. At the end, Section 3.4 concludes this chapter. 

3.2  Voltage Stability Index Incorporated Optimization Algorithm  

3.2.1 Problem formulation 

  The large injection of EVs in the distribution network will absorb lots of power from the 

power grid, cause the voltage decline and power losses, and threaten the safety of power supply to 

residents. One issue has not drawn much attention is the voltage stability in the DN. The voltage 

instability is the phenomenon that an uncontrolled voltage decline occurs on one or more buses, 

and then inducing the voltage collapse of the whole power system [166]. 

  To avoid the voltage instability, the injection of PEVs in the DN should be controlled. It 

is easy to individually consider the voltage stability at certain buses by calculating the VSI through 

methods proposed in [160, 165] and then limiting the injection of PEVs to maintain the voltage 

stability. However, in order to maximize the injection of PEVs, the loads at different buses should 

be jointly considered since different buses normally have different PEV accommodation 

capabilities. For example, a bus closer to the feeder transformer is normally able to support a larger 

number of PEVs. On the other hand, the remote buses can support less because of the voltage drop 

and the power losses during the long distance delivery of power. Therefore, the problem of 

maximizing the injection of the PEVs in DNs requires the determination of the best combination 

of conventional loads and new PEV loads at considered buses so that DN has the best loadability 

and safe voltage profile. Furthermore, the optimization problem is complex and should consider 
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the practical limits of the power grid as constraints. The constraints include, but not limited to, the 

power balance, power supply limits, voltage stability, and thermal line limits. All of the above 

questions will be discussed and solved in the proposed optimization injection (OI) method. 

3.2.2 Objective and constraints 

In this study, the objective is to maximize the total injection of PEVs in a DN by 

minimizing fmin as following 

 𝑓𝑚𝑖𝑛 =
1

𝑁1+𝑁2+⋯+𝑁𝑀
  (3.1) 

where Nk is the number of PEVs at node k, k=0, 1, 2 ⋯, M.  

The optimization problem is subject to the following constraints: 

1) Power balance equations: The sum of the real and reactive power from utility grid must 

be balanced by the local demand, PEVs consumption and the power loss in the lines 

 
∑𝑃𝑙𝑜𝑎𝑑 + ∑𝑃𝑃𝐸𝑉𝑠 + ∑𝑃𝑙𝑜𝑠𝑠 = 𝑃𝑡𝑟𝑎𝑛𝑠

∑𝑄𝑙𝑜𝑎𝑑 +∑𝑄𝑙𝑜𝑠𝑠 = 𝑄𝑡𝑟𝑎𝑛𝑠 
  (3.2) 

where Pload, 𝑃𝑃𝐸𝑉𝑠, Ploss, and Ptrans are the real power consumed by conventional load, and PEVs, 

the power loss, and the real power supplied by the feeder transformer, respectively; Qload, Qloss, 

and Qtrans are the reactive power of load and loss, and the reactive power supplied by the feeder 

transformer. PEVs are assumed to consume only real power, i.e. at unity power factor. 

2) Power supply limits: The feeder transformer has its supply limit 

 
𝑃𝑡𝑟𝑎𝑛𝑠 ≤ 𝑃𝑡𝑟𝑎𝑛𝑠

𝑚𝑎𝑥

𝑄𝑡𝑟𝑎𝑛𝑠 ≤ 𝑄𝑡𝑟𝑎𝑛𝑠
𝑚𝑎𝑥   (3.3) 

where 𝑃𝑡𝑟𝑎𝑛𝑠
𝑚𝑎𝑥   and 𝑄𝑡𝑟𝑎𝑛𝑠

𝑚𝑎𝑥  are the upper limits of active and reactive power can be supplied by the 

feeder transformer. 

3) Voltage stability index limits: The voltage stability index at each node has to be larger 

than the predefined ENVCI limitation: 
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 𝐸𝑁𝑉𝐶𝐼𝑘 ≥ 𝐸𝑁𝑉𝐶𝐼𝑘
𝑚𝑖𝑛  (3.4) 

where ENVCIk is the calculated value at node k; 𝐸𝑁𝑉𝐶𝐼𝑘
𝑚𝑖𝑛 is the minimum allowed value of 

voltage stability index at node k. The calculation of ENVCI at each node will be shown in the 

Appendix A. 

4) Voltage security limits: In addition to the voltage stability index limits, the voltage at 

each node should be within the security range:  

 𝑉𝑘
𝑙𝑜𝑤𝑒𝑟 ≤ 𝑉𝑘 ≤ 𝑉𝑘

𝑢𝑝𝑝𝑒𝑟
 (3.5) 

where [𝑉𝑘
𝑙𝑜𝑤𝑒𝑟 , 𝑉𝑘

𝑢𝑝𝑝𝑒𝑟] is the voltage security range and is defined as [0.85 p. u. , 1.06 p. u. ] in 

this study.  

5) Thermal line limits: The thermal line limits constrain the apparent power flow along 

each line: 

 𝑆𝑙,𝑡 < 𝑆𝑙
𝑚𝑎𝑥 , ∀𝑙, 𝑡  (3.6) 

where 𝑆𝑙,𝑡 denotes the apparent power flow at line l and time t, and 𝑆𝑙
𝑚𝑎𝑥 is the apparent power 

limit for line l. 

3.3 Simulation Results and Discussion 

The proposed method is validated on the 33-bus test feeder [49] system, which is shown in 

Figure 3.1. The data of the test feeder is listed in TABLE 3.1. Simulations have been carried out 

based on Matlab/Optimization Toolbox [167], and MATPOWER [168].  
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Figure 3.1 33-bus test feeder [49]. 

 

Four charging stations are connected to buses 17, 21, 24 and 32 in the 33-bus test system. 

The four buses are relatively far to the feeder transformer, and therefore are prone to voltage 

problems. Buses 17 and 32, which are far away from the feeder transformer, are prone to voltage 

issues caused by the variation of loads. Buses 21 and 24, which are much closer, are also invested 

for comparison and coordination with buses 17 and 32.  

 

TABLE 3.1 DATA FOR 33-BUS TEST FEEDER 
Line 

number 

Sending 

Bus 

Receiving 

Bus 

Resistance 

(Ω) 

Reactance 

(Ω) 

Load at Receiving End Bus 

Real Power  

(kW) 

Reactive Power 

(kVAr) 

1 0 1 0.0922 0.0477 100.0 60.0 

2 1 2 0.4930 0.2511 90.0 40.0 

3 2 3 0.3660 0.1864 120.0 80.0 

4 3 4 0.3811 0.1941 60.0 30.0 

5 4 5 0.8190 0.7070 60.0 20.0 

6 5 6 0.1872 0.6188 200.0 100.0 

7 6 7 1.7114 1.2531 200.0 100.0 

8 7 8 1.0300 0.7400 60.0 20.0 

9 8 9 1.0400 0.7400 60.0 20.0 

10 9 10 0.1966 0.0650 45.0 30.0 

11 10 11 0.3744 0.1238 60.0 35.0 

12 11 12 1.4680 1.1550 60.0 35.0 

13 12 13 0.5416 0.7129 120.0 80.0 

14 13 14 0.5910 0.5260 60.0 10.0 

15 14 15 0.7463 0.5450 60.0 20.0 

16 15 16 1.2890 1.7210 60.0 20.0 
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17 16 17 0.7320 0.5740 90.0 40.0 

18 1 18 0.1640 0.1565 90.0 40.0 

19 18 19 1.5042 1.3554 90.0 40.0 

20 19 20 0.4095 0.4787 90.0 40.0 

21 20 21 0.7089 0.9373 90.0 40.0 

22 2 22 0.4512 0.3083 90.0 50.0 

23 22 23 0.8980 0.7091 420.0 200.0 

24 23 24 0.8960 0.7011 420.0 200.0 

25 5 25 0.2030 0.1034 60.0 25.0 

26 25 26 0.2842 0.1447 60.0 25.0 

27 26 27 1.0590 0.9337 60.0 20.0 

28 27 28 0.8042 0.7006 120.0 70.0 

29 28 29 0.5075 0.2585 200.0 600.0 

30 29 30 0.9744 0.9630 150.0 70.0 

31 30 31 0.3105 0.3619 210.0 100.0 

32 31 32 0.3410 0.5302 60.0 40.0 

 

Two scenarios are considered and simulated. In the first scenario, the total PEV loads at 

the four selected buses are optimized by the proposed OI method without violating the constraints 

especially the minimum voltage stability index, 𝐸𝑁𝑉𝐶𝐼𝑘
𝑚𝑖𝑛. In the second scenario, the PEVs are 

uniformly incrementally injected at the selected buses, and the total added PEVs are viewed as the 

maximum injection once the ENVCI of any bus reaches 𝐸𝑁𝑉𝐶𝐼𝑘
𝑚𝑖𝑛. In addition, five load levels 

are simulated, i.e., base load, base load × 1.25, base load × 1.50, base load × 1.75, and base load × 

2.0, in which the base load represents the active and reactive load at each bus shown in TABLE 3.1. 

The power to charge a PEV, Pcharge=20kW is used in this chapter. The 𝐸𝑁𝑉𝐶𝐼𝑘
𝑚𝑖𝑛 is set as 0.65. 

 

TABLE 3.2 TOTAL ALLOWED NUMBER OF PEVS AT FIVE LOAD LEVELS 

        Load     

        level 

  Total 

  # of PEV                        

Base load 
Base load 

×1.25 

Base load 

×1.50 

Base load 

×1.75 

Base load 

×2.0 

Optimized 

Injection 
871 832 793 751 667 

Uniform 

Injection 
228 188 148 104 60 

 

The total allowed PEVs for two scenarios at five load levels are compared in TABLE 3.2 

and Figure 3.2.  It is clearly shown that the total number of allowable PEVs drops down as the 
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increase of the load level for both scenarios. However, the allowable PEVs calculated by the OI 

method are far more than the number by the uncontrolled uniform injection (UI) method. The 

reason is that, in the UI method, the bus farthest away from the feeder transformer, which also has 

the lowest margin of the voltage stability, is easy to be affected by the large injection of PEVs and 

can only support the smallest number of PEVs. Therefore, the ability of charging PEVs is 

determined by the shortest board of the cask, which badly limits the loadability of the studied DN. 

However, the proposed OI method could coordinate charge PEVs according to the ability of 

different buses, thereby optimizing the total allowed injection of PEVs in the DN without going 

against the constraints. This statement is once again proved by the comparison of Figure 3.3 and 

Figure 3.4.  

 

Figure 3.2  Total allowable PEVs for two scenarios at five load levels. 

 

Figure 3.3 shows the voltage value (p.u.) and ENVCI at Bus 1-32 under five load levels by 

the UI method. It illustrates that the voltage and ENVCI reach the minimum value only at Bus 17, 

which is the most remote one from the feeder transformer and is the weakest bus. At the same time, 
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the ENVCIs at Buses 21, 24 and 32 are still far away from the dangerous edge of voltage instability, 

which means that the power resources in the studied DN are not fully utilized to charge the PEVs. 

 

 

(a) 

 

(b) 

Figure 3.3 Simulation results by uniform injection method under five load levels, (a) voltage 

value (p.u.) at Bus 1-33, (b) ENVCI at Bus 1-33. 
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On the other hand, the voltage value (p.u.) and ENVCI at Bus 1-32 under five load levels 

by the proposed OI method, shown in Figure 3.4, shows the better utilization of DN to maximize 

the injection of PEVs.  Because of the maximal injection of PEVs, the ENVCIs at selected buses 

all close to the 𝐸𝑁𝑉𝐶𝐼𝑘
𝑚𝑖𝑛, which also corresponds to the voltage values in Figure 3.4(a).    

 

(a) 

 

(b) 

Figure 3.4 Simulation results by optimized injection method under five load levels, (a) voltage 

value (p.u.) at Bus 1-33, (b) ENVCI at Bus 1-33. 
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Figure 3.5 illustrates the number of PEVs at selected buses by optimized injection method 

under five load levels.  It shows that the OI method lets stronger buses, Bus 21 and 24, support 

more PEVs than the weaker buses (Bus 17 and 32), to achieve the optimization target. With the 

good control of the charging of PEVs, the number charged in the DN could be optimized without 

causing safety issues. 

  

Figure 3.5 Number of PEVs at selected buses by the optimized injection method under five load 

levels. 

 

According to the simulation studies of two scenarios on the 33-bus test feeder with five 

load levels, the following observations can be obtained: 

 The total number of allowed PEVs drops down as the increase of the load level for 

both scenarios. It means the increase of PEVs is conflict with the gradually increasing 

conventional loads because the available power resources are finite. Therefore, it is 

essential to optimally utilize the available resources.  

 The proposed OI method makes full use of the stronger buses to charge as many as 

PEVs in DN. Therefore the allowed PEVs calculated by the OI method are far more 
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than the numbers by the conventional UI method without causing the voltage 

instability.  

 The OI method could automatically identify the capabilities of different buses to 

support added loads without causing voltage instability. It is a good reference for DNO 

to control the distribution of PEVs on different buses according to their capabilities 

and present capacity.  

3.4  Conclusion 

In this chapter, a voltage stability incorporated optimization method is proposed to 

maximize the injection of PEVs in DNs without violating power limits and causing voltage 

stability issues. The ENVCI is a powerful index used in this work to judge the voltage stability of 

DN. The simulation results on the 33-Bus test feeder show that the proposed optimization injection 

method can better utilize the power resources of DN to maximize the injection of PEVs. The 

allowed number of PEVs is much more than the allowed number by the conventional uniform 

increase method. This method can provide a clear reference to DNO to manage the charging of the 

PEVs in DNs. 
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CHAPTER 4 DEMONSTRATION OF ACTIVE MANAGEMENT 

OF PLUG-IN ELECTRIC VEHICLES 

4.1 Introduction 

We have discussed the safety control of PEVs by using FSMwV in Chapter 2 and the 

maximization of plug-in electric vehicles (PEVs) in DNs without violating voltage stability in 

Chapter 3 respectively. In the studies, the PEVs are charges by taking advantage of the resources 

in utilities as well as to keep the system secure. Both of the studies focus on the management 

strategy and algorithm development while considering the physical constraints in the DNs. To 

further explore the active management of PEVs in the DNs, we developed a universal 

demonstration platform, including the software package and the hardware remote terminal units 

(RTUs), as shown in Figure 4.1. The software package is based on the supervisory control theory, 

in which the master station (MS) collects data from local RTUs and makes decisions according to 

the real-time information and the predefined management algorithm. The objective of designing 

the management software is to charge as many PEVs as possible without violating the power and 

voltage limits. In addition, the software is flexible to integrate priority rules to regulate the charging 

sequence, such as first-come first-served. The RTUs are designed with the capabilities of 

measurement, monitoring, control, and communication. The communication between the MS and 

the RTUs is based on the IEC60870-5-104 communication protocol [169] which could work on 

Ethernet Passive Optical Network (EPON) communication system or 3G wireless communication 

system.  

In this chapter, the demonstration of active management of PEVs is introduced. Section 

4.2 discusses the design of the software and the management algorithm. Section 4.3 presents the 
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hardware platform to achieve the management via the RTUs. The application of the demonstration 

in active distribution network is discussed in Section 4.4. Section 4.5 concludes the chapter. 

Master

RTU #1

RTU #2

RTU #3

RTU #4

RTU #N

 
Figure 4.1 Diagram of the active management platform of PEVs 

 

4.2 Software and Management Algorithm  

To actively manage PEVs, the software has the functions of measurement, communication, 

monitoring, control, and decision making based on embedded algorithms. The user-friendly 

software interface is composed of three main parts: the setting interface, the interface of the MS 

and the interface of the RTUs. As shown in Figure 4.2, via the interface of parameter settings, it is 

able to set the IP address of the MS, make the function selection, and change settings of 

communication between the MS and the RTUs. It is the first step to setup the foundation of the 

MS and the RTUs.  
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Figure 4.2 Software interface of the master station 

 

The management algorithm of the MS is shown in Figure 4.3, and the software interface is 

presented in Figure 4.4. For every iteration, the MS first collects data from the RTUs, including 

voltage, power of uncontrollable loads, and the charging requests from PEVs. Based on the system 

information, the nominal power (𝑃𝑁1, 𝑃𝑁2, ⋯ , 𝑃𝑁𝑛) of (𝑅𝑇𝑈1, 𝑅𝑇𝑈2,⋯ , 𝑅𝑇𝑈𝑛) are determined 

and the total nominal power should not exceed the maximum available power, 𝑃𝑚𝑎𝑥, which could 

be the power limit of feeder transformers. The maximum number of allowed PEVs for RTUn is 

also updated correspondingly by 

 
𝑃𝐸𝑉𝑀𝑛 = 𝑓𝑙𝑜𝑜𝑟 (

𝑃𝑁𝑛 − 𝑃𝑢𝑛
𝑃𝑐

) (4.1)  

where 𝑃𝐸𝑉𝑀𝑛 is the allowed maximum number of PEVs for charging at RTUn; 𝑃𝑢𝑛 is the power 

of uncontrollable loads at RTUn; 𝑃𝑐  is the power consumed by charging a PEV. Then the 
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constraints (𝑃𝑁1, 𝑃𝑁2, ⋯ , 𝑃𝑁𝑛)  and (𝑃𝐸𝑉𝑀1, 𝑃𝐸𝑉𝑀2, ⋯ , 𝑃𝐸𝑉𝑀𝑛)  are sent to 

(𝑅𝑇𝑈1, 𝑅𝑇𝑈2,⋯ , 𝑅𝑇𝑈𝑛) for them to make local decisions. 

Get data from RTUs

Adjust nominal power, (PN1, PN2, …, PNn) 
for RTUs based on pre-defined settings, 

and make sure
PN1+PN2+…+PNn≤Pmax 

Evaluate maximum allowed PEVs for RTUN

PEVMn = floor ((PNn-Pun)/PC)

Send
(PN1, PN2, …, PNn) and

(PEVM1, PEVM2, …, PEVMn)
                  to (RTU1, RTU2, …, RTUn)

Next system state

 
Figure 4.3 Management algorithm in the master station 

 

The software interface of the MS is shown in Figure 4.4. The MS is able to communicate 

and control multiple RTUs, and we have two RTUs in the demonstartion. The simple and 

straightforward interface shows the imformation of the RTUs, including the assigned nominal 

power, current uncontrollable load level, allowed maximum PEVs and the actual requests from 

PEVs. The MS is able to get the information from the RTUs and send commands to the RTUs 

either automatically or manually.  
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Figure 4.4 Software interface of the master station 

 

Get 
(PN1, PN2, …, PNn) and

(PEVM1, PEVM2, …, PEVMn)
from master station

Next system state

PEVMn ≥ PEVn? 

Yes No

Charge all connected 
PEVs

Charge selected PEVs
based on priority settings

Collect data of uncontrollable loads and send the data 
to master station

 
Figure 4.5 Management algorithm in the RTUs 

 

The management algorithm of RTUs is shown in Figure 4.5. Once the RTUs get the 

information of the nominal power and the maximum allowed number of PEVs from the MS, the 
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charging strategy is chosen based on whether the 𝑃𝐸𝑉𝑀𝑛  is equal to or larger than the actual 

charging requests, 𝑃𝐸𝑉𝑛. If it is yes, the 𝑅𝑇𝑈𝑛 will satisfy all of the charging requests from PEVs. 

Otherwise, selected PEVs will be charged based on priority settings. In the priority algorithm, the 

charging requests are ordered based on predefined rules, such as the rule of first-come first-served 

or the higher priority is given to the customers who would like to pay more for their urgent charging 

demands. The priority algorithm is flexible to be a single rule or be jointly defined by multiple 

rules.  

Allowed 

PEVs

Display of

PEVs

Uncontrollable

load level 

IP address

for connection

Maximum 

load level

 

Figure 4.6 Software interface of RTUs 

 

The software interface of RTUs is shown in Figure 4.6. The IP address is for the 

communication and control unit in the local charging station. The current load means the total 

power of the uncontrollabel loads. The 𝑃𝐸𝑉𝑀𝑛  is shown in the PEV dialog box. In the 

demonstartion, there are six chargers in the charging station to be managed by every RTU. The 
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interface clearly shows how many requests in the station, where the requests are from, and what 

the charging status of each PEV is. 

4.3 Hardware Platform 

To execute the decisions, the hardware platform of RTUs is designed with the capabilities 

of measurement, monitoring, control, and communications, as shown in Figure 4.7.  

Charging 

indicator

Communication 

and control unitRequest 

from PEVs
 

Figure 4.7 Hardware platform of local charging station 

 

The charging station is composed of binary switches to simulate the requests from PEVs, 

light bulbs to indicate the charging status of PEVs, and a communication and control unit, ADAM-

6066, to communicate with RTU and control the chargers to charge PEVs or not. When the PEVs 

send requests for charging to 𝑅𝑇𝑈𝑛 , the RTU judges whether the total PEVs have exceeded  

𝑃𝐸𝑉𝑀𝑛 . If yes, the RTU will adjust the charging order based on the priority algorithm. The 

communication and control is performed by the ADAM-6066 module through Ethernet as shown 
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in Figure 4.8. The module can function as a product for measurement, control, monitoring and 

automation, and is flexible to be incorporated in the system without changing the entire 

architecture of the system. We have developed two sets of the charging stations, and the application 

of the demonstration in active PEVs management is presented in the next section. 

 
Figure 4.8 ADAM-6066 

 

4.4 Application in Active Distribution Network 

The research reported in [170] considered the management of PEVs in traditional DN. As 

the smart grid technologies advance, it is necessary to study PEV’s management in future active 

distribution networks (ADN). We are facing great challenges in how to utilize the ADN 

technologies (e.g., smart meters, advanced communication technologies) to provide service to 

more PEVs and how to reduce cost while developing a new paradigm of DN with more reliable 

and flexible control strategies. 

The development of advanced metering infrastructure (AMI) including smart meters has 

laid the cyber-physical base for information acquisition and communication in future ADN. 
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Remote Terminal Unit (RTU), distribution Transformer Terminal Unit and Distribution Terminal 

Unit (DTU) are typical devices used in smart distribution networks, based on the IEC60870-5-104 

communication protocol [16]. Figure 4.9 shows a simple example distribution grid with AMI 

infrastructure. As shown in the figure, zone H is a residential area and zone O is an office and 

business district. The circuit breakers CBD, CBO and CBH are for the protection of the transformer, 

zone O and zone H, respectively. The protection settings of these circuit breakers are fixed since 

the design of the distribution grid. During the operation, they cannot be adjusted or adjusted 

frequently according to the change of the corresponding loads in a traditional way. 

O

CB0

CBH

Cascaded

RTU

RTU

CBD

DTU

H

 
Figure 4.9 Management of PEVs in active DNs. 

 

Since the PEVs are moving around, they can cause load shifts among different zones in the 

network. For example, most of them may be parked in zone O at daytime and move to zone H at 

night.  

For the movement of PEVs, most of them are parked in the zone O in daytime and in the 

zone H at night, which cause two issues: 

(1) At the design stage. For a new distribution grid design, the settings and ratings of CBH 

and CBO should be set to handle possible charging peak demands of PEVs. Based on 

the traditional peak demand design, the capacity of transformer and the setting of CBD 

will be almost double what the actual need for PEVs. As a result, the system investment 
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will increase. 

(2) At the operation stage. For an existing distribution grid, with high penetration of PEVs, 

a portion of the distribution grid may get overloaded for a period of time in a time due 

to PEV load shift. This will cause some PEVs not be charged or fully charged as needed. 

For the system shown in Figure 4.9, both zones may see a need for upgrade if the total 

PEV charging demand is over the limit of each them. However, the reality is that the 

chance for the two zones to have peak PEV charging demands at the same time is 

almost zero. 

The smart grid communication technologies make it possible for us to rethink the 

aforementioned problems. One way is to develop a supervisory control strategy to adaptively re-

set the protection settings at different zones to accommodate the load changes. For example, for 

the system of Figure 4.9, at day time, the load demand in the zone H may decrease while the load 

demand will increase in zone O. We can then lower the protection settings of CBH increase that of 

CBO. In the evening we can do in the opposite way to accommodate more PEVs at zone H. 

Therefore, the resources in the utilities are fully utilized to charge PEVs and support ever-

increasing loads. 

4.5 Conclusion 

To further explore the active management of PEVs in the DNs, we developed a universal 

demonstration platform. The platform is composed of software for a MS and RTUs and hardware 

set of charging stations. The management algorithm for the MS and the RTUs are flexible to 

integrate priority algorithm of charging to meet the demands from PEV owners. Based on the 

ADAM-6066 modules, the RTUs are able to communicate with the MS and the charging stations 
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and carry out the demands to charge PEVs accordingly. The demonstration is suitable for the 

application in active distribution networks to manage PEVs. 
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CHAPTER 5 MICROGRID POWER MANAGEMENT DURING 

AND SUBSEQUENT TO ISLANDING PROCESS  

5.1 Introduction 

A microgrid (MG) can operate in the grid-tied mode under normal operating conditions 

and switches to the islanded mode when severe grid disturbances occur. The transition from the 

grid-tied mode to the standalone mode is referred to as the islanding process of MG.  

For fault-induced islanding, the voltage of MG can drop to as low as 0.2 p.u.; and it usually 

takes more than 30 cycles for the voltage to recover to its nominal value [171]. This voltage 

recovery process may take much longer if the MG is heavily penetrated with dynamic loads, e.g., 

single phase induction motors (SPIMs). The main problem lies in the stall of these motors under 

low voltage condition (<0.87 p.u.), during which they absorb two to three times the rated current, 

making voltage issues in MG [172]. It has been claimed that penetration of SPIMs in a distribution 

system could reach as high as 75% due to government incentives and energy efficiency 

requirements [173]. It is risky to keep voltage low for a long period of time since the load will be 

shed by under-voltage load shedding protection schemes. Solutions need to be developed to ensure 

the MG voltage profile during and subsequent to the islanding process. 

It is a possible solution of using the reactive power generated from distributed energy 

resources (DERs) for MG voltage regulation. Such ideas have been demonstrated in [173-175]. 

Presently, although many DERs are capable of producing and controlling reactive power, the 

industry practice and standards still require them to operate under unity power factor. Examples 

of such include inverters for photovoltaic (PV) systems and wind turbine power converters. In a 

recent amendment of IEEE Standard 1547, the distributed generators (DGs) are allowed to provide 

reactive support to regulate local voltage [176]. The problem then becomes how to control reactive 
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power generation and how to properly share it among electronic-interfaced distributed generators 

(EIDGs). 

The idea of droop control is a classical solution that solves the reactive power sharing 

problem among DGs. By drooping voltage references of DG controllers against the real or reactive 

power outputs, the sharing of real and reactive power among DGs is enabled [177, 178]. However, 

the droop control is based on local voltage measurements only and is incapable of regulating the 

voltage at buses that have no DG installed or nearby. 

A voltage sensitivity based method was proposed to regulate the voltage at a specific bus 

[179]. By adjusting the reactive power output of a wind generator, based on its active power 

generation, the voltage at a targeted bus is constrained to a certain limit. This method may work 

well when the MG is operating at steady-state with only one DG, but it does not consider the MG 

under transients or with multiple DGs. 

In this chapter, the voltage sensitivity based method is extended to multiple DGs and to 

MG transient conditions (MG islanding). When islanding occurs, the proposed algorithm helps 

restore voltages at weak buses that are heavily penetrated with dynamic loads like SPIMs. The 

proposed reactive power compensation algorithm works in two stages according to the status of 

the system. During the islanding process, when system voltage falls/stays below a pre-defined 

threshold, EIDGs are dispatched to generate maximum possible reactive power to help shorten the 

voltage recovery process. When system voltage reaches the pre-defined threshold, a voltage 

sensitivity aided linear programming problem is formulated and solved recursively to determine 

the optimal sharing of reactive power among EIDGs. To validate the proposed method, a modified 

IEEE standard 13-bus system is simulated in Matlab/Simulink to work as a MG test-bed. 

Description of the testbed and the proposed algorithms are detailed in the following sections.  
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5.2 Microgrid Under Study 

5.2.1 IEEE 13-bus test feeder 

To investigate the voltage issues in a MG covering a reasonable size area, the 4.16 kV 

IEEE standard 13-bus test feeder [180] is studied. As shown in Figure 5.1, some modifications are 

made to this standard test feeder to make it a MG. A static switch is added between the utility grid 

and bus 650. Three distributed generators are modeled, including a 3.125MVA diesel generator at 

bus 650, a 600kW PV system at bus 680, and a 1.2MWh 600kW battery at bus 675. In the grid-

tied mode, all DGs are under P&Q control, following the voltage and frequency (V & f) of the 

utility grid. In the islanded mode, MG enters the master/slave control mode with the diesel 

generator selected as the “master” and the rest selected as the “slaves” [181]. 
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Figure 5.1 Diagram of the MG. 

 

The battery and PV are connected at the remote buses through transformers. Since the 

voltage and frequency are defined by utility grid or diesel generator, they are controlled in current 

mode to follow the references of real and reactive powers. In this study, the reactive power of 

battery and PV are controlled to help the system to maintain the voltage within safe range. 



93 

 

5.2.2 Diesel generation system  

The diesel generation system (DGS) in this MG consists of a turbine, two governors, an 

excitation system, and a synchronous generator (SM), which is shown in Figure 5.2. It is 

connected with the grid through a step-up transformer. 

Governor in 
islanding mode

Governor in 
grid-tied mode

Excitation

Synchronous 
generator

Transformer

 
Figure 5.2 Diagram of the diesel generator and controllers. 

 

In the grid-tied mode, the governor controls the SM to follow the reference of electric 

power without change the voltage and frequency of the grid which is shown in Figure 5.3 [182]. 

In the governor, a PI controller, 𝐾𝑝 + 𝐾𝑖/𝑆, is used to regulate electric power error. Then the 

output of the PID controller is sent to the servo motor. Ka and Ta are gain and time constant of 

the servo motor respectively. S means the derivative calculation. Together with the speed change 

rate, they are sent to model of turbine to get the reference of the mechanic power of the 

synchronous generator, 𝑃𝑚𝑒𝑐
𝑟𝑒𝑓

. The parameters are given in TABLE 5.1. 
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Figure 5.3 Diesel governor model in grid-tied mode. 

 

TABLE 5.1 PARAMETERS OF DIESEL GOVERNOR IN GRID-TIED MODE 

Ka 3.33 

Ta 0.07 

Kp 1.163 

Ki 0.105 

Rp 0.05 

 

The diesel engine and governor to guarantee the speed to follow the reference in the 

standalone mode are presented in Figure 5.4. In the governor, a lead-lag controller is selected to 

adjust speed error [183]. K is the controller gain and T1, T2 and T3 are the time constants of the 

lead-lag controller. T4, T5 and T6 are the time constants of the actuator. TD is the time delay of the 

engine, and its output products speed to get the 𝑃𝑚𝑒𝑐
𝑟𝑒𝑓

.  The parameters are given in TABLE 5.2. 
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Figure 5.4 Diesel engine and governor model in standalone mode. 

 

TABLE 5.2 PARAMETERS OF DIESEL ENGINE AND GOVERNOR IN STANDALONE MODE 

K 80 

T1 0.01 



95 

 

T2 0.02 

T3 0.01 

T4 0.25 

T5 0.009 

T6 0.0384 

TD 0.024 

 

Among excitation systems in IEEE Standard [184], an AC1A excitation system is 

selected to control the field voltage of the synchronous generator. To guarantee the safety of 

power supply, the power rating of the synchronous generator is chosen about 1.8 times of the 

total loads. The parameters of the synchronous generator are given in TABLE 5.3. 

 

TABLE 5.3 PARAMETERS OF SYNCHRONOUS GENERATOR 

Generator Type Salient pole type 

Nominal Power 3.125 MVA 

Nominal L-L Voltage  2400 V 

Nominal Frequency 60 Hz 

Number of Poles 4 

Stator Resistance (Rs) 0.0036 p.u. 

Leak Reactance (Rl) 0.052 p.u. 

Direct Axis Reactance (Xd) 1.56 p.u. 

Transient Direct Axis Reactance (𝑋𝑑
′ ) 0.296 p.u. 

Subtransient Direct Axis Reactance (𝑋𝑑
′′) 0.177 p.u. 

Quadrature Axis Reactance (𝑋𝑞 ) 1.06 p.u. 

Subquadrature Axis Reactance (𝑋𝑞
′′) 0.177 p.u. 

Inertia Coefficient 0.57 s 

 

Since the MG is operated in both grid-tied and standalone modes, two control schemes 

are designed and implemented. Under the grid-tied mode, the diesel generator works in P&Q 



96 

 

control mode; when MG is islanded, the diesel generator switches from P&Q to V&F control 

mode to actively regulate the V & f of the MG. 

5.2.3 Model of PV panel 

To reduce the cost and take advantage of the green energy resources, a 600 kW PV 

generation system is included in the studied microgrid. The PV panel is built up with 

series/parallel connected total 3600 PV solar cells, and the parameters of which are listed in 

TABLE 5.2. The PV cell is modeled by the one diode equivalent circuit in Figure 5.5 [185].   

ID

Io

VoIL

Rs

 
Figure 5.5 Equivalent model for a PV cell. 

 

The output voltage Vo and the load current Io has the relationship as: 

 
𝐼𝑜 = 𝐼𝐿 − 𝐼𝐷 = 𝐼𝐿 − 𝐼0 [𝑒

(
𝑉𝑜+𝐼𝑅𝑆
𝛼

) − 1] 
(5.1)  

where IL is light current (A), I0 is the saturation current, IO is the output current, VO is the output 

voltage, RS is the series current and α is the thermal voltage timing completion factor. The PV is 

connected to a DC/DC converter with MPPT control, the output of which is further connected to 

a DC/AC inverter with dq0 based PQ control.  

 

TABLE 5.4 PV PANEL PARAMETERS 

Module unit 153 cells, 173W @1kW/m2, 250C 

Module number 300×12=3600 

Power rating 3600×173=622.8 kW 
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5.2.4 Model of battery 

In case of emergent power demand, a 500 kW, 1000 kWh battery is included in the 

microgrid. Its equivalent model is presented in Figure 5.6 [186]. 

Cb Rp

R2

C1

R1

Vb

 
Figure 5.6  Equivalent model for lead acid batteries. 

 

In the equivalent model, Cb is the battery capacitance, Rp is the self-discharge resistance, 

R2 is the internal resistance, R1 is the overvoltage resistance and C1 is the overvoltage capacitance. 

The SOC of the battery is calculated as: 

 𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶(𝑡0) −
∫ 𝑖𝑑𝜏
𝑡
𝑡0

𝑄
   (5.2) 

where Q is the battery capacity (Ah), and i is the output current (A), t0 is the initial time. 

The battery is also connected to the microgrid via a DC/AC converter with the PQ 

controller. It has the same control scheme with the PV panel through controlling the real power 

and reactive respectively which will be introduced in the following section. 
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5.2.5 Control of power electronic inverters 
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Figure 5.7 Control scheme of the EIDGs 

 

The current injection control scheme is utilized in this study to control the real and 

reactive power of PV and battery [187]. However, the design of the conventional controller does 

not consider the possible voltage unbalance in the low voltage DN. The three-phase injected real 

and reactive powers should be controlled separately based on their voltage magnitudes. In 

addition, after the transformation of three-phase currents from abc to dq0 coordinate, it may not 

correctly reflect the dynamics of the system by overlooking the zero current, I0. In unbalanced 

power grid, the zero current also influences the dynamic performance of the controller and should 

be controlled. The diagram of the PQ controller is shown in Figure 5.7.  

As shown in Figure 5.7, the “Injection current calculation” block calculates the 3-phase 

current reference based on the measured 3-phase voltage phasors at the inverter output. Both the 
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3-phase reference and the measured currents are transformed from the abc frame into the dq0 

frame using Clarke Transformation. The calculation of the magnitudes and angles of the three-

phase reference current is shown in (5.3)-(5.5). The difference between the reference and the 

measured currents are fed into PI current controllers. Then the control signals are transformed 

into the abc frame using Inverse Clarke Transformation with the angle reference, 𝜃𝑉 of the power 

grid. Through SPWM generator, the three phase control signals are transformed into PWM 

signals to yield required real and reactive power.  

 

{

𝐼𝑎,𝑟𝑒𝑓 = √3𝐼𝑎,𝑟𝑚𝑠sin (𝜃)

𝐼𝑏,𝑟𝑒𝑓 = √3𝐼𝑏,𝑟𝑚𝑠sin (𝜃 − 2𝜋/3)

𝐼𝑐,𝑟𝑒𝑓 = √3𝐼𝑐,𝑟𝑚𝑠sin (𝜃 + 2𝜋/3)

 (5.3)  

 

{
 
 
 
 

 
 
 
 

𝐼𝑎,𝑟𝑚𝑠 =
√𝑃𝑟𝑒𝑓

2 + 𝑄𝑟𝑒𝑓
2

3
÷ 𝑉𝑎,𝑟𝑚𝑠

𝐼𝑏,𝑟𝑚𝑠 =
√𝑃𝑟𝑒𝑓

2 + 𝑄𝑟𝑒𝑓
2

3
÷ 𝑉𝑏,𝑟𝑚𝑠

𝐼𝑐,𝑟𝑚𝑠 =
√𝑃𝑟𝑒𝑓

2 + 𝑄𝑟𝑒𝑓
2

3
÷ 𝑉𝑐,𝑟𝑚𝑠

 (5.4)  

 
𝜃 = 𝜔 − 𝑎𝑡𝑎𝑛

𝑄𝑟𝑒𝑓

𝑃𝑟𝑒𝑓
 (5.5)  

5.2.6 Model of single phase induction motor 

A capacitor-start motor is chosen for the study, which is modeled with two windings: 

main winding and auxiliary winding as shown in Figure 5.8. The equations to model the dynamic 

characteristics are listed as follows [172]. 
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Figure 5.8 Equivalent circuit of the single phase induction machine dynamic model. 

 

Voltage equations in dq reference frame are: 

 

{
 
 
 
 

 
 
 
 𝑉𝑞𝑠 = 𝑅𝑞𝑠𝐼𝑞𝑠 +

𝑑𝜆𝑞𝑠

𝑑𝑡

𝑉𝑑𝑠 = 𝑅𝑑𝑠𝐼𝑑𝑠 +
𝑑𝜆𝑑𝑠
𝑑𝑡

+ 𝑉𝑐

0 = 𝑅𝑞𝑟𝐼𝑞𝑟 +
𝑑𝜆𝑞𝑟

𝑑𝑡
− 𝑁𝑞𝑑𝜔𝑟𝜆𝑑𝑟

0 = 𝑅𝑑𝑟𝐼𝑑𝑟 +
𝑑𝜆𝑑𝑟
𝑑𝑡

+ 𝑁𝑑𝑞𝜔𝑟𝜆𝑞𝑟

 (5.6)  

where Vds and Vqs are stator voltage on d and q axis respectively; Vdr and Vqr are rotor voltage on 

d and q axis respectively; Rds and Rqs are the stator resistors on d and q axis respectively; Rdr and 

Rqr are the rotor resistors on d and q axis respectively; Ids and Iqs are stator currents on d and q axis 

respectively; Idr and Iqr are rotor currents on d and q axis respectively; λds and λqs are stator d and q 

axis fluxes; λdr and λqr are rotor d and q axis fluxes; Vc is the voltage of the starting capacitor; Nqd 

is the ratio of number of main winding's effective turns over the number of auxiliary winding's 

effective turns, and Ndq is its reciprocal; ωr is the electrical angular velocity.  

Flux equations and inductance equations are: 
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{
 

 
𝜆𝑞𝑠 = 𝐿𝑞𝑠𝐼𝑞𝑠 + 𝐿𝑚𝑞𝐼𝑞𝑟
𝜆𝑑𝑠 = 𝐿𝑑𝑠𝐼𝑑𝑠 + 𝐿𝑚𝑑𝐼𝑑𝑟
𝜆𝑞𝑟 = 𝐿𝑞𝑟𝐼𝑞𝑟 + 𝐿𝑚𝑞𝐼𝑞𝑠
𝜆𝑑𝑟 = 𝐿𝑑𝑟𝐼𝑑𝑟 + 𝐿𝑚𝑑𝐼𝑑𝑠

 (5.7)  

 

{
 

 
𝐿𝑞𝑠 = 𝐿𝑙𝑞𝑠 + 𝐿𝑚𝑞
𝐿𝑑𝑠 = 𝐿𝑙𝑑𝑠 + 𝐿𝑚𝑑
𝐿𝑞𝑟 = 𝐿𝑙𝑞𝑟 + 𝐿𝑚𝑞
𝐿𝑑𝑟 = 𝐿𝑙𝑑𝑟 + 𝐿𝑚𝑑

 (5.8)  

here Lds and Lqs are the stator inductances on d and q axis respectively; Ldr and Lqr are the rotor 

inductances on d and q axis respectively; Lmd and Lmq are main winding magnetizing inductance 

on main and auxiliary winding respectively; Llds and Llqs are stator leakage inductance on d and q 

axis respectively; Lldr and Llqr are rotor leakage inductance on d and q axis respectively. 

Mechanical equations are: 

 
𝑇𝑒 =

𝑃

2
(𝑁𝑑𝑞𝜆𝑞𝑟𝐼𝑑𝑟 − 𝑁𝑞𝑑𝜆𝑑𝑟𝐼𝑞𝑟) (5.9)  

 
𝐽 (
𝑃

2
)
𝑑𝜔𝑟
𝑑𝑡

= 𝑇𝑒 − 𝑇𝐿 (5.10)  

where P is the number of poles; J is the inertia coefficient; Te is the electromagnetic torque; Tl is 

the load torque.  

Since the existence of the starting capacitor, the auxiliary winding current on d axis during 

startup is represented by: 

 
𝐶
𝑑𝑉𝐶
𝑑𝑡

= −𝐼𝑑𝑠 (5.11)  

According to the typical torque speed characteristic of a capacitor-start motor shown in 

Figure 5.9, the torque of the by the SPIM could be very high when the motor starts because of 

the assistance of starting capacitor. When the speed rises to 0.75 p.u., a preset threshold, the 

starting capacitor will be isolated from the circuit by opening a centrifugal switch. Only main 

winding is left to support the running of the motor, and the torque drops around 1 p.u. to 2.5 p.u.. 
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The stall of these motors under low voltage condition (<0.87 p.u.), during which two to three 

times the rated current are absorbed, makes voltage issues in the MG. It has been claimed that 

penetration of SPIMs in a distribution system could reach as high as 75% due to government 

incentives and energy efficiency requirements [173]. The motors are only equipped with thermal 

protections, which means the voltage issues during stalling can last 30 seconds to 2 minutes until 

thermal protection kicks in to isolate the motors from the grid. It is risky to keep voltage low for 

such a long period of time, and solutions need to be developed to ensure the MG voltage profile 

during and subsequent to the islanding process. 
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Figure 5.9 Typical torque speed characteristic of a capacitor-start motor [172]. 

 

5.3 Reactive Power Management 

In this section, a reactive power management algorithm (RPMA) is presented for voltage 

regulation. 
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5.3.1 Voltage sensitivity 

The voltage sensitivity matrix relates the changes in magnitudes and angles of bus 

voltages to the changes in the real and reactive power injections at buses. The voltage sensitivity 

matrix can be calculated by inverting the Jacobian matrix at a specific operating point. The power 

flow equations are listed in (5.12) [188]: 

 

{
 
 

 
 𝑃𝑖 =∑|𝑉𝑖||𝑉𝑘|(𝐺𝑖𝑘𝑐𝑜𝑠(𝜃𝑖 − 𝜃𝑘) + 𝐵𝑖𝑘sin (𝜃𝑖 − 𝜃𝑘))

𝑛

𝑘=1

𝑄𝑖 =∑|𝑉𝑖||𝑉𝑘|(𝐺𝑖𝑘𝑠𝑖𝑛(𝜃𝑖 − 𝜃𝑘) − 𝐵𝑖𝑘cos (𝜃𝑖 − 𝜃𝑘))

𝑛

𝑘=1

 (5.12)  

where 𝑃𝑖 and 𝑄𝑖are real and reactive power net injection at bus i; 𝑌𝑖𝑘 = −(𝐺𝑖𝑘 + 𝑗𝐵𝑖𝑘) is inverse 

of the impedance of line connecting bus i and k; 𝑉𝑖∠𝜃𝑖 and 𝑉𝑘∠𝜃𝑘 are the voltage phasors at bus i 

and bus k respectively. The Jacobian matrix is obtained by linearizing the power flow equations: 

 

[
∆𝑃
∆𝑄
] = [

𝜕𝑃

𝜕𝜃

𝜕𝑃

𝜕𝑉
𝜕𝑄

𝜕𝜃

𝜕𝑄

𝜕𝑉

] [
∆𝜃
∆𝑉
] (5.13)  

If the Jacobian matrix is well-conditioned, the voltage sensitivity matrix is derived as 

below: 

 
[
∆𝜃
∆𝑉
] = [

𝐴 𝐵
𝐶 𝐷

] [
∆𝑃
∆𝑄
] (5.14)  

where 𝐴 =
𝜕𝑃

𝜕𝜃

−1
+
𝜕𝑃

𝜕𝜃

−1 𝜕𝑃

𝜕𝑉
(
𝜕𝑄

𝜕𝑉
−
𝜕𝑄

𝜕𝜃

𝜕𝑃

𝜕𝜃

−1 𝜕𝑃

𝜕𝑉
)
−1

𝜕𝑄

𝜕𝜃

𝜕𝑃

𝜕𝜃

−1
, 𝐵 = −

𝜕𝑃

𝜕𝜃

−1 𝜕𝑃

𝜕𝑉
(
𝜕𝑄

𝜕𝑉
−
𝜕𝑄

𝜕𝜃

𝜕𝑃

𝜕𝜃

−1 𝜕𝑃

𝜕𝑉
)
−1

, 

𝐶 = −(
𝜕𝑄

𝜕𝑉
−
𝜕𝑄

𝜕𝜃

𝜕𝑃

𝜕𝜃

−1 𝜕𝑃

𝜕𝑉
)
−1

𝜕𝑄

𝜕𝜃

𝜕𝑃

𝜕𝜃

−1
, and 𝐷 = (

𝜕𝑄

𝜕𝑉
−
𝜕𝑄

𝜕𝜃

𝜕𝑃

𝜕𝜃

−1 𝜕𝑃

𝜕𝑉
)
−1

. Denote the voltage of the 

target bus to be regulated as Vj and the real and reactive power of the buses with EIDGs as Pl and 

Ql. Dlj is the sensitivity factor denotes the deviation of voltage at bus j caused by the deviation of 
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reactive power of the lth EIDG. Assuming the real power injections at buses remain constant 

during the entire islanding process, the voltage deviation at target jth bus could be calculated as: 

 ∆𝑉𝑗 =∑𝐷𝑙𝑗∆𝑄𝑙
𝑙

 (5.15)  

From (5.15), it is noted that the voltage deviation at bus j is determined/impacted not only 

by EIDGs at the same bus (j=l), but also by EIDGs from other buses (j≠l). Therefore, for a weak 

(heavily loaded) bus with no EIDG, it is possible to regulate its voltage by adjusting reactive 

power outputs of remote DGs. Hence, the following RPMA is proposed to calculate the amount 

of reactive power that needs to be generated by DGs to regulate voltage at remote weak buses. 

5.3.2 Reactive power management algorithm 

Figure 5.10 shows the evolution of voltage at bus 611 during and subsequent to a fault-

induced islanding. The voltage evolution can be divided into some stages by t1, t2 and t3 in Figure 

5.10. In the beginning, the MG is operating at steady-state and the bus voltage is within the 

security range. At t1, a three-phase to ground fault on the utility grid occurs, and the voltage at 

bus 611 drops to 0.47 p.u.. MG is islanded from the utility grid after t2, and immediately voltage 

starts rising afterwards. During the time interval of t2-t3, the bus voltage recovers to 0.90 p.u.. 

After t3, voltage reaches to a steady-state value but is still out of the security range. 
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Figure 5.10 Voltage recovery at bus 611 during and subsequent to islanding process. 

 

Based on the evolution of voltage, a two-stage RPMA is proposed. During the interval t2-

t3, the maximum reactive power (MRP) of EIDGs is generated. It is because V<0.90 p.u. is far 

from normal steady-state operating condition, and the sensitivity based control may be ineffective. 

After t3, a sensitivity-based distributed Q compensation (SBDQC) method could be applied to 

support the voltage by providing reactive powers from EIDGs. 

In SBDQC, based on the bus voltages and the voltage sensitivity factors, a linear 

programming problem is formulated to solve the reactive power sharing among the EIDGs. The 

objective function is to minimize the total reactive power from the EIDGs. 

 𝑓 = 𝑚𝑖𝑛 (𝑄1,𝑟𝑒𝑓
′ + 𝑄2,𝑟𝑒𝑓

′ +⋯+𝑄𝑙,𝑟𝑒𝑓
′ ) (5.16) 

where l is the total number of the EIDGs in the MG, 𝑄𝑙,𝑟𝑒𝑓
′  is the reactive power reference for the 

controller of the lth EIDG. 

The constraints are: 

1) The voltage at bus j should stay within its security range: 
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 𝑉𝑗
𝑙𝑜𝑤𝑒𝑟 ≤ (𝑉𝑗 + ∆𝑉𝑗) ≤ 𝑉𝑗

𝑢𝑝𝑝𝑒𝑟
 (5.17) 

where j is the number of the target bus, which consists of EIDG buses and weak buses (which are 

prone to have voltage issues); Vj is the voltage of bus j; 𝑉𝑗
𝑙𝑜𝑤𝑒𝑟 ≤ 𝑉𝑗 ≤ 𝑉𝑗

𝑢𝑝𝑝𝑒𝑟
 is the voltage 

security range and is defined as  0.94 p. u. ≤ 𝑉𝑗 ≤ 1.06 p. u. in this study [189]; ∆𝑉𝑗 is the voltage 

deviation at bus j and is calculated by (5.15). 

2) The reactive power generated by EIDGl cannot exceed its maximum capability, 

𝑄𝑙,𝑚𝑎𝑥. 

 0 < 𝑄𝑙,𝑟𝑒𝑓
′ = (𝑄𝑙,𝑟𝑒𝑓 + ∆𝑄𝑙) ≤ 𝑄𝑙,𝑚𝑎𝑥 (5.18) 

A flowchart for the proposed control algorithm is depicted in Figure 5.11. Once the 

islanding occurs, the algorithm determines whether to use MRP or SBDQC based on the 

condition whether Vj<0.90 p.u.. Then the calculated results (𝑄1,𝑟𝑒𝑓
′ , ⋯ , 𝑄𝑙,𝑟𝑒𝑓

′ ) are sent to the 

controllers of (𝐸𝐼𝐷𝐺1, ⋯ , 𝐸𝐼𝐷𝐺𝑙) as the references of the power inverters. 
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Figure 5.11 Reactive power management algorithm. 

 

5.4 Simulation Results and Discussions 

The proposed method has been validated on a MG test-bed described in Section 5.2. 

Dynamic simulations have been carried out using Simulink/SimPowerSystems [190]. The 

dynamic simulation system is shown in Figure 5.12. 

In the simulation, it is assumed the MG starts at a steady-state operating condition where 

the voltage at the point of common coupling (PCC) is 1.05 p.u.. Two case studies are presented 

in this section. In the first case study, in order to find the weakest buses in this MG, both the PV 

and battery systems are operating at unity power factor with no reactive power output. In the 
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second case, the proposed RPMA is implemented. There are some assumptions and conditions 

defined for the simulations: 

1) Weather conditions: It is assumed to be in a hot summer with 35 oC ambient 

temperature and 1000 W/m2 solar irradiance. The PV could generate at its nominal real 

power under this weather condition. The battery is also controlled to provide its nominal 

real power. In this condition, the capabilities of reactive power generation of PV and battery 

system are both limited to 398kVar. 

2) Buses selection: From the preliminary simulation results, it has been observed that 

buses 611 and 652 are the weakest buses in this MG in terms of voltage security, which 

coincides with the original feeder information [180] and the previous study reported in 

[173]. Therefore, only the voltage at the weak buses, 611 and 652, and the EIDG buses, 

675 and 680, are presented and discussed. 

3) Composition of loads and power sources: In the MG, the power ratings of the loads 

and the line parameters are modified by using the method in [16]. The penetration of SPIMs 

in the studied MG is designed to be 1098.1kVA, which takes 40.53% of the total loads. The 

rated powers of PV and battery converters are 720kVA, which means they are capable of 

providing 398kVar reactive power when the nominal real power output is generated. In  

addition, the conventional loads are kept unbalanced like in the original feeder that loads 

on Phase B is a little lighter than Phase A and Phase C, but the total loads are designed to 

be nearly balanced in three phases. The rated power of resources and loads in the MG are 

listed in TABLE 5.5. 
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Figure 5.12 Simulation system of the studied microgrid in MATLAB/Simulink. 

 

TABLE 5.5 POWER SOURCES AND LOADS COMPOSITION IN THE STUDIED MICROGRID 

Loads 

Types kW or kVar 𝑆𝑙𝑜𝑎𝑑 (kVA) (𝑆𝑙𝑜𝑎𝑑/𝑆𝑙𝑜𝑎𝑑
𝑡𝑜𝑡𝑎𝑙)% 

Motor 

loads 

P=909.6 
1098.1 40.53% 

Q=615.2 

Other loads 
P=1396.8 

1608.6 59.47% 
Q=797.9 

𝑆𝑙𝑜𝑎𝑑
𝑡𝑜𝑡𝑎𝑙 

P=2106.4 
2536.5 N/A 

Q=1413.1 

Power 

Sources 

Types kW or kVar 𝑆𝑠𝑜𝑢𝑟𝑐𝑒 (kVA) (𝑆𝑠𝑜𝑢𝑟𝑐𝑒/𝑆𝑠𝑜𝑢𝑟𝑐𝑒
𝑡𝑜𝑡𝑎𝑙 )% 

PV 
P=600 

720 15.8% 
Q=398 

Battery 
P=600 

720 15.8% 
Q=398 

Diesel 

Generator 
N/A 3125 68.4% 

𝑆𝑠𝑜𝑢𝑟𝑐𝑒
𝑡𝑜𝑡𝑎𝑙  N/A 4565 N/A 

 

5.4.1 Case study 1: without Q compensation 

The voltage magnitudes at buses 611, 652, 675, and 680 are shown in Figure 5.13. At 

t=8s, a three phase to ground fault occurs at the utility grid and is not cleared until the MG detects 

Utility Grid

Diesel Generation System

Battery Storage System

PV Generation 
System
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the fault and islands itself from the utility grid after 7 cycles. The voltage at the PCC drops to as 

low as 0.5 p.u., triggering a large-scale stalling of the SPIMs. The stalling of SPIMs further slows 

down the voltage recovery process. The voltage recovery time is found to be around 0.8s in this 

study. Due to the insufficiency in reactive power, after reaching the steady state, the voltages at 

buses 611 and 652 only recover to 0.90 p.u.. Even for buses 675 and 680, on which EIDGs are 

installed, their voltages are well below the lower limit. Ten seconds after the islanding, the SPIMs 

are cut off from the MG by the equipped thermal protection devices. Since the PV and battery 

are still generating the nominal real power, the voltage of Phase B on the buses 675 and 680 rises 

up to the upper limit. 
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Figure 5.13 Voltage at buses 611, 652, 675, and 680 without Q compensation. 

 

5.4.2 Case study 2: with reactive power management algorithm 

Voltage sensitivity factors are basics of the proposed RPMA and are firstly calculated. 

Based on calculations, the sensitivity factors are close for the three load conditions: without 

SPIMs, with SPIMs, and with stalled SPIMs. The sensitivity factors used in this study are 

calculated by averaging the sensitivity coefficients obtained under these three loading conditions. 

Since the system is three phase unbalanced, these factors are different for each phase. For 

simplicity, only the sensitivity factors associated with the EIDG buses and the weak buses (675, 

680, 611, and 652) are listed in TABLE 5.6. 

 

TABLE 5.6 SENSITIVITY FACTORS BY GENERATING 100 KVAR REACTIVE POWER ON EVERY PHASE 

FROM EIDGS 

 

V675 V680 V611 V652 

A B C A B C C A 

Q675 0.0268 0.0233 0.0227 0.0238 0.0218 0.0208 0.0208 0.0238 

Q680 0.0252 0.0224 0.0205 0.0295 0.0274 0.0248 0.0205 0.0246 
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Figure 5.14 Voltage at buses 611, 652, 675, and 680 with distributed Q compensation. 
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Figure 5.15 Sharing of power between PV and battery. 

 

The RPMA is utilized to maintain the voltage security by sharing the reactive power 

between the PV and the battery. The voltages shown in Figure 5.14 restore fast during the 

islanding process and behave well within the security range subsequent to the islanding process. 

In Figure 5.15, immediately after the islanding, the voltages are compensated by MRP from the 



114 

 

PV and the battery. The time for voltage recovery is shortened to only around 0.4s. In addition, 

after the voltages recover to 0.90 p.u., the algorithm calculates the best composition of the 

reactive power from the PV and the battery to maintain the voltages. As shown in Figure 5.15, 

the SBDQC determines the battery is controlled to generate maximum Q, but the PV does not. 

In addition, the algorithm automatically reduces the reactive powers from the PV and the battery 

to avoid the voltages on Phase B of buses 675 and 680 violating the upper limit when the stalling 

SPIMs are isolated.  

In Figure 5.16, the simulation results of the diesel generation system (DGS) are presented. 

Prior to t=8.0s, the DGS is controlled in P&Q control mode to generate the preset 0.3 p.u. real 

power, which corresponds around 45% of the total real power. Seven cycles after the fault occurs, 

the DGS is changed to V&f control mode to provide the references of voltage and frequency. In 

Figure 5.16(a), after the islanding, it takes around 0.4s for the voltage to restore to the nominal 

value. In addition, the speed is controlled to be the synchronous speed which guarantees the 

system frequency is not distorted as shown in Figure 5.16(b). In Figure 5.16(c), the power 

generated by the DGS rises to 0.45 p.u. to track the extra demands of the stalling SPIMs. After 

the SPIMs are all isolated from the grid, Pmec decreases to 0.1 p.u. to maintain the power balance 

of the MG. 
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Figure 5.16 Simulation results of the DGS, (a) output voltage, (b) speed, and (c) real power 

output. 
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Figure 5.17 P&Q of the battery of (a) Phase A, (b) Phase B, and (c) Phase C. 
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Figure 5.18 P&Q of the PV of (a) Phase A, (b) Phase B, and (c) Phase C. 

 

In addition, to verify the effectiveness of the PQ controller designed to control the three-

phase power, P and Q generations of the battery and PV for all three phases are shown in Figure 

5.17 and Figure 5.18. It is clearly shown that the real and reactive powers are both averagely 
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shared by three phases no matter how the three-phase voltages are unbalance at buses 675 and 

680. 

From the comparison, it can be seen that the RPMA accelerates the voltage recovery 

process during and subsequent to the islanding process. In addition, by optimally dispatching the 

reactive power generation from EIDGs, it guarantees all the voltages in the MG behave well 

within the voltage security limits. 

5.5 Conclusion 

The voltage security issues in a MG with high penetration of single-phase induction 

machines under the condition of fault-induced islanding were studied. The stalled SPIMs 

consume large amount of reactive power and could significantly delay the process of voltage 

recovery. To accelerate the voltage recovery process while avoiding voltage violations, a voltage-

sensitivity-based reactive power management algorithm was proposed in this chapter. The 

effectiveness of the proposed algorithm has been validated by the simulation results conducted 

on a modified version of the IEEE standard 13-bus test feeder with three DGs.     
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CHAPTER 6 SUMMARY AND FUTURE WORK 

6.1 Conclusion 

In Chapter 2, we presented the safety control of PEVs in distribution networks by using 

finite state machine with variables (FSMwV). First, basic DES theories based on finite state 

machine and supervisory control are introduced. Then a novel control synthesis under the 

modeling framework of FSMwV was proposed. An offline safety control synthesis procedure that 

takes the advantage of both event disablement and enforcement in order to prevent the controlled 

system from venturing into illegal states and an online safety control synthesis procedure based on 

the limited/variable lookahead policies to address the practical concern of real world 

implementation have been developed. In the end, the theoretical result has been implemented to 

control PEVs in distribution networks. 

In Chapter 3, a voltage stability incorporated optimization method was proposed to 

maximize the injection of PEVs in DNs without violating power limits and causing voltage 

stability issues. We first presented an optimization injection method to maximize the injection of 

PEVs without causing the voltage stability issue in the DN. The simulation results on the IEEE 

33-Bus test feeder show that the proposed optimization injection method can better utilize the 

power resources of DN to maximize the injection of PEVs. This method provides a clear reference 

to DNO to manage the charging of the PEVs in DNs. 

In Chapter 4, we introduced a universal demonstration platform to further explore the 

active management of PEVs in the DNs. The platform is composed of software for the master 

station (MS) and the remote terminal units (RTUs) and the hardware demonstration set of charging 

stations. The management algorithm for the MS and the RTUs are flexible to integrate priority 
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algorithm of charging to meet the demands from PEV owners. Based on the ADAM-6066 modules, 

the RTUs are able to communicate with MS and charging stations and carry out the demands to 

charge PEVs or not. The demonstrated method is suitable for applications in active distribution 

networks to manage PEVs and can be extendable to the management of renewable energy sources. 

In Chapter 5, we studied the voltage security issues in a MG with high penetration of single-

phase induction machines under the condition of fault-induced islanding. The stalled SPIMs 

consume large amount of reactive power and could significantly delay the process of voltage 

recovery. To accelerate the voltage recovery process while avoiding voltage violations, a voltage-

sensitivity-based reactive power management algorithm was proposed in this chapter. The 

effectiveness of the proposed algorithm has been validated by the simulation results conducted on 

a modified version of the IEEE standard 13-bus test feeder with three DGs. 

6.2 Future Work 

First we will not only continue our work in modeling the power systems through discrete 

event systems, but also extend it to model power systems as a hybrid machine. The continuous 

variables in power systems, such as voltages, currents and powers and the discrete events, such as 

the participation of the capacitors and DGs will be jointly modelled and controlled. The hybrid 

method will be adapted to model standalone devices, e.g., wind generation system and solve the 

power quality issues in DNs.   

In addition, we will improve the demonstration platform. To save the cost, an embedded 

controller with monitor, such as digital signal processor (DSP) will be used to replace the 

computers for remote terminal units (RTUs). On the other hand, the platform will be extended to 

manage and control renewable energy sources and energy storage. Therefore, the flexibility, 
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extendibility and capabilities of the platform are enhanced and will be more competent to 

demonstrate the active management of DNs.  

From the viewpoint of distribution network, the coordination of energy storage and the 

DGs will bring more challenges and opportunities. We will continue our previous work on 

distribution networks to propose active management strategies to improve system reliability and 

stability. A microgrid-based distribution network (MDN) changes its original function in a large 

power grid. A MDN is no longer only a PQ node, and could play a more important role. For 

example, a MDN could enhance the margin of voltage stability, provide reactive power support to 

the grid, and guarantee the security of critical loads during blackout. We will explore these 

promising research areas. 
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APPENDIX A 

Based on the single-line equivalent system model for a node k in a DN in Figure A.1, the 

equivalent node voltage collapse index (ENVCI) is used to investigate the impact of the injection 

of PEVs to DN [165].  

Pk+jQk

Eeq

Vk Zk Ik

 
Zeq

k

 
Figure A.1 Single-line model. 

 

The outgoing power at node k has to satisfy the following simple power flow equations:  

 
𝑃𝑘 + 𝑗𝑄𝑘 = 𝑉𝑘 ∙ (

𝐸𝑒𝑞 − 𝑉𝑘

𝑍𝑒𝑞
)

∗

 (A.1)  

If the voltage phasors at the two nodes of the equivalent single line model are expressed in 

the rectangular coordinates, i.e., 𝐸𝑒𝑞 = |𝐸𝑒𝑞|∠𝜃𝑒𝑞 = 𝑒𝑒𝑞,𝑥 + 𝑗𝑒𝑒𝑞,𝑦, 𝑉𝑘 = |𝑉𝑘|∠𝜃𝑘 = 𝑣𝑘,𝑥 + 𝑗𝑣𝑘,𝑦, 

and  𝑍𝑒𝑞 = 𝑅𝑒𝑞 + 𝑗𝑋𝑒𝑞 , then (A.1) can be separated into a real part and an imaginary part as 

follows: 

 𝑃𝑘𝑅𝑒𝑞 + 𝑄𝑘𝑋𝑒𝑞 = 𝑣𝑘,𝑥(𝑒𝑒𝑞,𝑥 − 𝑣𝑘,𝑥) + 𝑣𝑘,𝑦(𝑒𝑒𝑞,𝑦 − 𝑣𝑘,𝑦)

𝑃𝑘𝑋𝑒𝑞 − 𝑄𝑘𝑅𝑒𝑞 = 𝑒𝑒𝑞,𝑦𝑣𝑘,𝑥 − 𝑒𝑒𝑞,𝑥𝑣𝑘,𝑦
 (A.2)  

The solvability of (A.2) can be judged by singularity of its Jacobian matrix, i.e., 

 𝐽 = [
𝑒𝑒𝑞,𝑥 − 2𝑣𝑘,𝑥 𝑒𝑒𝑞,𝑦 − 2𝑣𝑘,𝑦

𝑒𝑒𝑞,𝑦 −𝑒𝑒𝑞,𝑥
]  (A.3) 

 𝑑𝑒𝑡(𝐽) = 2(𝑒𝑒𝑞,𝑥𝑣𝑘,𝑥 + 𝑒𝑒𝑞,𝑦𝑣𝑘,𝑦) − (𝑒𝑒𝑞,𝑥
2 + 𝑒𝑒𝑞,𝑦

2 ) = 0 (A.4) 

ENVCI can be represented as:  
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 𝐸𝑁𝑉𝐶𝐼 = 2(𝑒𝑒𝑞,𝑥𝑣𝑘,𝑥 + 𝑒𝑒𝑞,𝑦𝑣𝑘,𝑦) − (𝑒𝑒𝑞,𝑥
2 + 𝑒𝑒𝑞,𝑦

2 ) (A.5) 

The expression of ENVCI can be also re-written in polar coordinates as 

 𝐸𝑁𝑉𝐶𝐼 = 2|𝐸𝑒𝑞||𝑉𝑘| cos(𝜃) − |𝐸𝑒𝑞|
2
  (A.6) 

where θ is the angle deference of θeq and θk. 

Whenever the ENVCIn of at least one node in the system is very low, it indicates that the 

system approaches its voltage collapse point. Under a given operating condition, obviously, the 

node with the lowest value of ENVCIn is the weakest node that may cause system instable under 

that condition. This method relieves the required computing burden and is able to real-time follow 

the variation of loads and generators. 
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ABSTRACT 

MANAGEMENT OF PLUG-IN ELECTRIC VEHICLES AND RENEWABLE ENERGY 

SOURCES IN ACTIVE DISTRIBUTION NETWORKS 

by 

JUNHUI ZHAO 

August 2014 

Advisor: Dr. Caisheng Wang 

Co-Advisor: Dr. Feng Lin 

Major: Electrical Engineering 

Degree: Doctor of Philosophy 

Near 160 million customers in the U.S.A. are served via distribution networks (DNs). The 

increasing penetration level of renewable energy sources (RES) and plug-in electric vehicles 

(PEVs), the implementation of smart distribution technologies such as advanced 

metering/monitoring infrastructure, and the adoption of smart appliances, have changed 

distribution networks from passive to active. The next-generation of DNs should be efficient and 

optimized system-wide, highly reliable and robust, and capable of effectively managing highly-

penetrated PEVs, RES and other controllable loads. To meet new challenges, the next-generation 

DNs need active distribution management (ADM).  

In this thesis, we study the management of PEVs and RES in active DNs. First, we propose 

a novel discrete-event modeling method to model PEVs and other loads in distribution networks. 

In addition, a new optimization algorithm to integrate as many PEVs as possible in DNs without 

causing voltage issues, including the violation of voltage security ranges and voltage stability 

issues, is studied. To further explore the active management of PEVs in the DNs, we develop a 

universal demonstration platform, consisting of software packages and hardware remote terminal 
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units. The demonstration platform is designed with the capabilities of measurement, monitoring, 

control, automation, and communications. 

Furthermore, we have studied the reactive power management in microgrids, a special 

platform to integrate distributed generations and energy storage in DNs. To solve possible voltage 

security issues in a microgrid with high penetration of single-phase induction machines under the 

condition of fault-induced islanding, a voltage-sensitivity-based reactive power management 

algorithm is proposed.  
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