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Table 3-1 Real-time PCR primers used in this study.  
   
Gene Primers Sequence (5' to 3') 
SDHA Forward CGAACGTCTTCAGGTGCTTT 
  Reverse AAGAACATCGGAACTGCGAC       
INO1 Forward CTGCATCGAGAACATCCTCAG                         
  Reverse GTTCAACATAGGGTAGGTGGC                         
SMIT1 Forward AAGGTGGTGGTTCGAATCTG     
  Reverse CCACAGGATTGTTTTGGGTC     
HMIT Forward CATCTGCAGAATGGTTGCAC     
  Reverse AACTCGCCGAGCTTTAATTG       
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electrotransferred to a polyvinylidene difluoride (PVDF) membrane (Millipore). 

The membrane was incubated with antibodies and visualized using ECL 

substrate (Pierce Protein). ImageJ software was used to quantify the intensities 

of bands. 

 

Measurement of intracellular inositol  

Intracellular inositol was measured as described previously (Ju and Greenberg, 

2003; Ye et al., 2013) with minor modifications. Briefly, cell extracts were 

obtained in lysis buffer containing 50 mM Tris, 125 mM sodium chloride, 1% NP-

40, 2 mM EDTA and were clarified twice by 10 min-centrifugation at 13,000 g at 

4°C to remove cell debris. Cell extracts containing 50 μg  protein were used to 

measure intracellular inositol. Protein was precipitated using ice-cold 7.5% 

perchloric acid. After centrifugation, perchloric acid in the supernatants was 

removed by titration to pH 7.0 with ice-cold 10 M potassium hydroxide. The cell 

extracts were again clarified by centrifugation for 5 min at 2,000 g at 4°C. The 

supernatants were collected, and intracellular inositol was measured by enzyme-

coupled fluorescence assay (Maslanski and Busa, 1990). Inositol content in cell 

extracts of 50 μg  protein was normalized to the indicated controls. 
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Measurement of the de novo synthesis of inositol  

The de novo synthesis of inositol was measured in crude cell extracts as 

described previously (Azab et al., 2007; Barnett et al., 1970; Chen and 

Charalampous, 1966; Shi et al., 2005) with modifications. Crude cell extracts 

containing 50 μg protein obtained in lysis buffer containing 50 mM Tris, 125 mM 

sodium chloride, 1% NP-40 were used to test the activity of inositol de novo 

synthesis. The cell extracts were resolved using Amicon 10 KDa-cutoff 

centrifugal filters and washed with buffer containing 100 mM Tris acetate, pH 7.0, 

20 mM NH4Cl, and 2 mM dithiothreitol.  Endogenous inositol, glucose-6-

phosphate, and other small molecules were removed during this process. The 

protein extracts were resuspended in reaction buffer containing 100 mM Tris 

acetate, pH 7.7, 20 mM NH4Cl, 2 mM dithiothreitol, 0.8 mM NAD+, and 1 mM 

glucose-6-phosphate, and incubated at 37˚C for 1 hour. The reaction was 

stopped by adding 7.5% perchloric acid. After centrifugation, perchloric acid in 

the supernatants was removed by titration to pH 7.0 with ice-cold potassium 

hydroxide. After 5-min centrifugation at 2,000 g, the supernatants were resolved 

using ion exchange colomns filled with AG 1-X8 (200-400 mesh, formate form). 

The eluate containing inositol was collected and dried in an oven  at  70˚C.  The  

dried samples were resuspended in inositol assay buffer, and inositol produced 

from glucose-6-phosphate in this mixture was measured as described above (Ju 

and Greenberg, 2003; Maslanski and Busa, 1990; Ye et al., 2013). 
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RESULTS 

 

Exogenous inositol is not essential for cell proliferation or maintaining inositol 

homeostasis in SK-N-SH cells. 

Inositol is an essential growth factor that is required for survival and proliferation 

of many types of cultured cells (Eagle et al., 1957). Inositol deficiency in these 

cells causes an arrest of cell growth, cytopathogenic defects, and cell death. 

However, some cells are able to proliferate in inositol-free or inositol-deficient 

culture media due to active inositol biosynthesis (Eagle et al., 1957). To 

determine if inositol is essential for SK-N-SH neuronal cells, we assayed cell 

growth in inositol-deficient media (Medium 199 with 10% dialyzed serum). 

Medium 199 contains only 0.28 μM inositol, which is significantly less than the 

minimal requirement (1 μM) reported for most types of cells (Eagle et al., 1957). 

As seen in Fig. 4-1A, proliferation of cells cultured in the inositol-deficient media 

was similar to that of cells grown in media supplemented with exogenous inositol. 

The ability of SK-N-SH cells to grow in inositol-deficient media indicates that the 

de novo synthesis of inositol provides sufficient inositol for cell proliferation. 

Interestingly, cells cultured in inositol-deficient media exhibited levels of 

intracellular inositol similar to those of cells grown in media supplemented with 

0.5-10 mM inositol (Fig. 4-1B). The homeostatic inositol pool in SK-N-SH cells 

suggests that inositol biosynthesis may be upregulated in inositol-deficient media. 
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Fig. 4-1 

A 
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Fig. 4-1 

Fig. 4-1: Exogenous inositol is not essential for cell proliferation or 

maintaining inositol homeostasis in SK-N-SH cells. (A) SK-N-SH cells 

were inoculated at a concentration of 5,000 cells per well in 96-well plates 

at day 0, and cell numbers were estimated by the proliferation assay 

described under “Materials and methods.” (B) Intracellular inositol levels 

were assayed in cells cultured in inositol-deficient media without (control) 

or with inositol supplement (0.5, 1, 5, 10 mM). The data shown in A and B 

are the average of at least three experiments + S.D. 
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Inositol biosynthesis is essential for cell proliferation. 

To understand if inositol biosynthesis is required for SK-N-SH cells, we 

decreased inositol biosynthesis by stably knocking down expression of the gene 

encoding inositol-3-phosphate synthase, INO1, which encodes the rate-limiting 

enzyme of inositol biosynthesis. Two knockdown lines of SK-N-SH cells were 

obtained, shRNA-INO1-1 and shRNA-INO1-2, which exhibited 60% and 82% 

decreases in INO1 expression, respectively (Fig. 4-2A). As expected, cell 

proliferation was dependent on the level of INO1 expression (Fig. 4-2B). 

Interestingly, neurite outgrowth was remarkably inhibited in cells in which INO1 

expression was decreased (Fig. 4-2C). These findings indicate that de novo 

inositol synthesis is essential for cell proliferation and neurite outgrowth in SK-N-

SH cells. 

 

Exogenous inositol does not regulate transcription of INO1, SMIT1, and HMIT, 

the genes for inositol biosynthesis or uptake. 

In yeast cells, exogenous inositol modulates the biosynthesis and uptake of 

inositol by controlling transcription of the inositol biosynthetic gene INO1 (Henry 

et al., 2014; Hirsch and Henry, 1986; Loewen et al., 2004) and the genes 

encoding inositol transporters (Lai et al., 1995; Lai and McGraw, 1994). To 

ascertain if this is a conserved mechanism regulating inositol metabolism in SK-

N-SH cells, we determined the effects of exogenous inositol on mRNA levels of  
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Fig. 4-2A 
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Fig. 4-2B 
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Fig. 4-2C 
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Fig. 4-2: Inositol biosynthesis is essential for cell proliferation. (A) 

Western blot analysis of Ino1 and inhibitory phosphorylation levels of GSK-3α 

(Ser21) and GSK-3β (Ser9).  Actin was used as the loading control. 

Scrambled control and Ino1 knockdown (shRNA_INO1_1 and 

shRNA_INO1_2) SK-N-SH cells were cultured to about 70% confluence, and 

cells were refreshed with media containing 10% serum (+serum) or no serum 

(-serum) for 4 hours. Cells were harvested and lysed for Western blot analysis 

as described under “Materials and methods.” (B) Cell proliferation was 

assayed as described in Fig. 4-1A, and cell numbers were estimated 4 days 

after inoculation. The data shown are the average of four experiments + S.D. 

(C) Control and INO1 knockdown cells (about 1X106) were plated in 100-mm 

dishes and photographed at day 2 using a microscope at 200 X magnification. 
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INO1, Na+/inositol transporter SMIT1, and H+/inositol transporter HMIT in these 

cells. Cells were initially cultured in inositol-deficient media to deplete inositol. 

After supplementation with inositol (0.1, 1, 10 mM) for the indicated times, cells 

were harvested for mRNA analysis. As shown in Fig. 4-3A, mRNA levels of 

human INO1 were not affected by the addition of inositol. Consistent with this 

finding, INO1 protein levels were also not altered by exogenous inositol (Fig. 4-

3B). In addition, the genes encoding inositol transporters were not regulated by 

inositol, as mRNA levels of SMIT1 (Fig. 4-3C) and HMIT (Fig. 4-3D) were not 

significantly changed in response to exogenous inositol. Therefore, in contrast to 

regulation of inositol biosynthesis in yeast cells, the biosynthesis and uptake of 

inositol were not transcriptionally regulated in response to exogenous inositol in 

SK-N-SH cells. 

 

Decreased Ino1 protein levels leads to inactivation of GSK3α. 

Previous studies showed that lithium and VPA inhibit inositol synthesis (Allison 

and Stewart, 1971; Berridge et al., 1989; Ju and Greenberg, 2003; Pollack et al., 

1994; Shaltiel et al., 2004b; Vaden et al., 2001) and GSK-3 activity (Chen et al., 

1999; Chen et al., 2006; De Sarno et al., 2002; Kim et al., 2005; Klein and Melton, 

1996; Lucas and Salinas, 1997). To address the possibility that inositol synthesis 

affects GSK-3 activity, we measured levels of phosphorylation at Ser21 of GSK-

3α and at Ser9 of GSK-3β in SK-N-SH cells as a function of inositol depletion.  
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Fig. 4-3 
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Fig. 4-3 
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  Fig. 4-3: Exogenous inositol does not regulate transcription of the 

genes for inositol biosynthesis or uptake. (A) mRNA levels of INO1 

were measured in SK-N-SH cells incubated in the presence of inositol (0, 

0.1, 1, 10 mM) for the indicated times (1, 5, and 10 hours) after growth in 

inositol-deficient media. Values were normalized to the internal control 

SDHA (succinate dehydrogenase complex, subunit A). INO1 mRNA levels 

normalized to SDHA were represented as fold change relative to cells 

exposed to 0 mM inositol for 1 hour. (B) Western blot analysis of Ino1 

protein levels. SK-N-SH cells were cultured to reach about 70% confluence 

and then were incubated with either serum or inositol for indicated times. 

Cells were harvested and lysed for Western blot analysis as described 

under “Experimental procedures.” Actin was used as the loading control. 

(C) mRNA levels of Na+/inositol transporter SMIT1 and (D) H+/inositol 

transporter HMIT were measured as described above. 
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Phosphorylation of these sites inactivates GSK-3 kinase (Cross et al., 1995; 

Srivastava and Pandey, 1998). As seen in Fig. 4-2A, GSK-3α phosphorylation 

was increased in response to inhibition of inositol synthesis, while GSK3β was 

not significantly altered. GSK-3α phosphorylation was dependent on the level of 

Ino1 knockdown. Thus, an 82% decrease in Ino1 protein in shRNA-INO1-2 cells 

led to a 2.4-fold increase in GSK-3α phosphorylation, while a 60% decrease in 

shRNA-INO1-1 led to a 1.5-fold increase. These results indicated that decreasing 

the de novo synthesis of inositol led to GSK-3α inactivation.  

VPA-induced transient decrease in inositol is associated with GSK-3α 

inactivation. 

We have previously shown that the mood stabilizer VPA inhibits inositol 

synthesis in both yeast and human cells (Ju and Greenberg, 2003; Shaltiel et al., 

2004b; Vaden et al., 2001). If inositol depletion was the cause of inhibitory 

phosphorylation of GSK-3α as seen in Fig. 4-2A, VPA may be expected to cause 

a similar effect. To address this possibility, we assayed GSK-3 phosphorylation in 

cells treated with VPA. As seen in Fig. 4-4A, VPA caused a significant decrease 

in inositol levels in the first hour of exposure, after which inositol levels were 

restored. As predicted, GSK-3α phosphorylation was increased in response to 

VPA (Fig. 4-4B), while GSK-3β phosphorylation was not significantly affected. 

Interestingly, GSK-3α phosphorylation continued to increase after inositol levels 

were restored (Figs. 4-4A and 4-4B). It is likely that inositol levels are restored by 
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recycling of inositol from inositol phosphates, and maintaining inositol 

homeostasis is associated with the regulation of GSK-3α phosphorylation. 

 

  Fig. 4-4A 
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Fig. 4-4B 

Fig. 4-4: VPA decreases intracellular inositol and increases the 

inhibitory phosphorylation of GSK-3α. (A) Intracellular inositol levels 

were measured in SK-N-SH cells after exposure to VPA for the indicated 

times. (B) Western blot analysis of the protein levels of GSK-3α (Ser21) and 

GSK-3β (Ser9) and total protein levels of GSK-3α and GSK-3β.  Actin was 

used as the loading control. 
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DISCUSSION 

Despite the importance of inositol, there are very few reported studies of the 

consequences of inositol depletion in human cells. Here, we report that inositol 

synthesis is essential for proliferation and neurite outgrowth of SK-N-SH human 

neuroblastoma cells, and that inhibition of inositol biosynthesis leads to GSK-3α 

inactivation.  

 

The interplay between inositol biosynthesis and GSK-3 activity reported in the 

current study has implications for understanding the therapeutic mechanisms of 

the mood-stabilizers used to treat bipolar disorder. Lithium and VPA are mood-

stabilizers with disparate chemical properties. Interestingly, both drugs have 

been shown to decrease cellular inositol content by blocking inositol biosynthesis, 

and both drugs also inhibit GSK-3 activity. Consistent with these findings, two 

prevailing hypotheses for the therapeutic mechanisms of action of these drugs 

are inositol depletion (Berridge et al., 1989) and GSK-3 inhibition (Klein and 

Melton, 1996). A potential link between inositol depletion and GSK-3 inhibition 

has not been previously tested in human cells. While the inositol depleting drug 

lithium leads to increased phosphorylation of GSK-3β   (Beaulieu et al., 2008; 

Zhang et al., 2003), we showed that VPA causes transient inositol depletion 

leading to increased phosphorylation of GSK-3α.  We further report a direct link 

between inositol synthesis and GSK-3 activity in neuronal cells. Specifically, 

inositol depletion induced by knocking down INO1 expression results in GSK-3α 

inactivation. 
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Interestingly, while GSK-3α phosphorylation was increased in response to 

inositol depletion, GSK-3β was not significantly altered. Previous studies have 

shown that inhibitory phosphorylation and kinase activity of GSK-3 are affected 

by exposure to lithium and VPA (Beaulieu et al., 2008; Chen et al., 1999; Chen et 

al., 2006; De Sarno et al., 2002; Kim et al., 2005; Kim et al., 2013; Klein and 

Melton, 1996; Lucas and Salinas, 1997; Phiel et al., 2003; Ryves and Harwood, 

2001; Zhang et al., 2003). While some studies characterized the inhibitory effects 

of the drugs on both GSK-3α and GSK-3β, most have focused on the effects on 

GSK-3β. This is the first demonstration in SK-N-SH cells that a decrease in 

inositol biosynthesis led to the preferential inactivation of GSK-3α. Further 

studies are needed to elucidate the significance of the differential inhibition of 

GSK-3α and GSK-3β, which do not have identical functions.  

 

The inactivation of GSK-3α in SK-N-SH cells was dependent on the degree of 

Ino1 knockdown (Fig. 4-2). Interestingly, the degree of inactivation of GSK-3α 

also correlates with exposure times to VPA (Fig. 4-4B). While inhibition of inositol 

synthesis potently increases GSK-3α phosphorylation, inositol homeostasis is 

highly maintained, as intracellular inositol levels were restored upon prolonged 

exposure to VPA (Fig. 4-4A). It is likely that turnover of phosphatidylinositol 

and/or recycling of inositol phosphates are increased to compensate for 

decreased inositol biosynthesis. However, the mechanism whereby inhibition of 

inositol synthesis causes inactivation of GSK-3α activity (by increasing 
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phosphorylation of this kinase) remains unclear. Perturbation of inositol 

homeostasis resulting from disrupted inositol synthesis may modulate PI3K/AKT 

signaling. We speculate that inhibition of inositol synthesis activates the 

synthesis of PI3,4,5P3. The synthesis of PI3,4,5P3 is required for recruiting AKT, 

and the subsequent activation of AKT on the plasma membrane potently inhibits 

GSK-3 by phosphorylation (Cantley, 2002; Czech, 2003; Di Paolo and De Camilli, 

2006).  

 

Surprisingly, exogenous inositol did not regulate inositol biosynthesis or uptake 

by controlling expression of the inositol biosynthetic gene INO1 or the genes 

encoding inositol transporters SMIT1 and HMIT. In contrast, the transcription of 

INO1 and the inositol transporter genes in yeast cells is highly regulated in 

response to exogenous inositol, and inositol synthesis and uptake are modulated 

by this regulation (Henry et al., 2014; Hirsch and Henry, 1986; Lai et al., 1995; 

Lai and McGraw, 1994; Loewen et al., 2004). This indicates that neuronal cells 

have evolved different mechanisms to regulate inositol metabolism. For example, 

inositol uptake in mammals is regulated by glucose, pH, osmolality, and growth 

factors (Di Daniel et al., 2009; Fu et al., 2012; Miyakawa et al., 1999; Novak et al., 

1999; Olgemoller et al., 1993; Spizz and Pike, 1992; Uldry et al., 2004). While the 

genes encoding inositol transporters are not transcriptionally regulated in 

response to exogenous inositol in SK-N-SH cells, the activity of inositol uptake 

may be controlled by different mechanisms. Inositol synthesis in yeast is also 

regulated by the synthesis of inositol pyrophosphates (Ye et al., 2013) and the 
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glycolysis intermediate dihydroxyacetone phosphate (DHAP) (Migaud and Frost, 

1996; Shi et al., 2005), and requires GSK-3 (Azab et al., 2007). One or more of 

these mechanisms identified in yeast may also control inositol biosynthesis in 

mammalian cells.  

 

In summary, we showed that de novo inositol synthesis catalyzed by Ino1 is 

required for proliferation of SK-N-SH cells during inositol-deficient conditions and 

for GSK-3α activation. These findings have implications for understanding the 

therapeutic mechanisms of the mood-stabilizers used for treatment of bipolar 

disorder.  
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CHAPTER 5 

 

FUTURE DIRECTIONS 

 

The importance of regulation of the synthesis of phospholipids is underscored by 

crucial roles of phospholipids in cellular functions, most notably in membrane 

biogenesis and cell signaling. The synthesis of phospholipids is highly regulated 

in response to cell growth, division, aging, or stress conditions. This regulation 

potently controls phospholipid composition in cellular membranes and generates 

specific lipids to relay signals. For example, cardiolipin (CL), the signature 

phospholipid of mitochondria, comprises about 10-15% of total mitochondrial 

phospholipids (Jakovcic et al., 1971; van Meer et al., 2008b), the levels of which 

are correlated with mitochondrial respiration (Claypool et al., 2008b; Gohil et al., 

2004; Jiang et al., 2000). Interestingly, the externalization of CL to the outer 

mitochondrial membrane is a signal for mitophagy in neuronal cells (Chu et al., 

2013). Phospholipids are not only structurally important components of cellular 

membranes, but they also act as signals for organelle homeostasis. The 

importance of phospholipids is further underscored by their roles in human 

disorders. For example, mutations in the tafazzin gene, which encodes the 

transacylase for CL remodeling, lead to the life-threatening disorder Barth 

syndrome (Barth et al., 1983; Barth et al., 2004; Barth et al., 1999). Therefore, 

understanding the regulation of synthesis of phospholipids will shed light on our 
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fundamental knowledge of cell biology as well as human health. Chapters 2 and 

3 in this dissertation describe novel mechanisms underlying the regulation of 

phospholipid synthesis, and Chapter 4 describes the consequence of inhibition of 

the synthesis of inositol, a percursor of inositol lipids. New questions wait to be 

addressed. I challenge future students to push the limit of our knowledge of lipid 

biology by addressing the following questions. 

 

1. How is inositol pyrophosphate kinase Kcs1 regulated to control 

inositol biosynthesis? 

 

In Chapter 2, I showed that the control of INO1 expression in response to inositol 

is associated with Kcs1 protein levels (Fig. 2-7). However, KCS1 mRNA levels 

are not altered in response to inositol (Fig. 2-7C), suggesting that Kcs1 protein is 

controlled at the level of translation, post-translational modification, and/or 

stability of Kcs1 protein. The underlying mechanisms by which Kcs1 protein 

levels respond to exogenous inositol are unclear, and it remains to be 

determined if the levels of inositol pyrophosphates are altered in response to 

exogenous inositol. 

I have also shown that the DNA-interacting bZIP domain of the Kcs1 protein is 

required for INO1 expression and inositol synthesis (Fig. 2-5), suggesting that 

Kcs1 may directly interact with the chromatin region of INO1. Recently, IP6K1, 

the mammalian homolog of Kcs1, has been shown to interact with chromatin and 
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regulate histone methylation (Burton et al., 2013). While regulation of histone 

modifications influences gene transcription, it is not clear if Kcs1-mediated 

regulation of INO1 expression involves the interaction of Kcs1 with the chromatin 

region of the INO1 promoter, and/or methylation of the region.  

Further investigations may elucidate a molecular mechanism underlying how 

inositol pyrophosphates regulate inositol synthesis by modulating INO1 

expression.  

 

2. Is the mechanism whereby inositol pyrophosphates regulate inositol 

biosynthesis conserved in mammals? 

 

Chapter 2 describes a mechanism whereby inositol synthesis is regulated by 

inositol pyrophosphates in the yeast Saccharomyces cerevisiae. Specifically, 

Kcs1, which catalyzes synthesis of inositol pyrophosphates, modulates INO1 

expression. While this finding demonstrates a new level of complexity of 

regulation of inositol synthesis, it is unclear if this regulation is conserved from 

yeast to mammals.  

Mammalian Ino1 has four putative mRNA isoforms (α, β, γ, and δ) derived from 

alternative splicing, of which the α isoform is the full-length Ino1 mRNA (Seelan 

et al., 2009). These isoforms exhibit tissue specificity (Guan et al., 2003; Seelan 

et al., 2009). However, regulation of expression of INO1 isoforms has not been 

rigorously studied in mammals. My preliminary studies (not discussed in Chapter 



 133 

2) indicate that total Ino1 protein was increased, and the γ isoform was 

expressed in IP6K1 knockout mouse embryonic fibroblasts (MEF). Consistent 

with the increase in Ino1 protein, INO1 mRNA levels were also increased in 

these cells. Therefore, regulation of INO1 expression in inositol pyrophosphate-

deficient mammalian cells is different from that in yeast cells. We further 

determined the activity of inositol synthesis in crude cell extracts of wild type and 

IP6K1 knockout cells. Surprisingly, inositol synthesis was significantly decreased 

in IP6K1 knockout cells. Therefore, the finding that inositol pyrophosphate 

deficiency leads to decreased inositol synthesis is conserved from yeast to 

mammals, although the regulation of INO1 expression is disparate. It is unclear 

how inositol synthesis is decreased in IP6K1 knockout cells in spite of increased 

INO1 expression. I am currently addressing two questions regarding this 

regulatory mechanism. First, how does IP6K1 regulate INO1 transcription? 

Second, how is Ino1 activity regulated in IP6K1 knockout cells?  

Elucidating how inositol synthesis is controlled by inositol pyrophosphates may 

uncover a novel mechanism underlying the regulation of INO1 expression in 

mammals. 
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3. What is the mechanistic link between inositol biosynthesis and GSK-

3 activity? 

 

 In Chapter 4, I described a novel interplay between inositol synthesis and GSK-

3α phosphorylation in SK-N-SH neuronal cells. Specifically, inhibition of inositol 

biosynthesis by shRNA-mediated knockdown of INO1 expression or by VPA 

treatment leads to increased inhibitory phosphorylation of GSK-3α. However, the 

mechanism whereby inhibition of inositol synthesis causes increased 

phosphorylation of GSK-3α remains unclear. My current hypothesis is that 

decreasing inositol synthesis activates PI3K/AKT signaling, which regulates 

phosphorylation of GSK-3. PI3K kinase coverts PI4,5P2 to PI3,4,5P3, which is 

required for recruiting AKT to the plasma membrane. Activation of AKT on the 

plasma membrane potently inhibits GSK-3 by phosphorylation (Cantley, 2002; 

Czech, 2003; Di Paolo and De Camilli, 2006). We speculate that inositol 

depletion may modulate the synthesis of PI3,4,5P3 by affecting the enzymatic 

activity or protein levels of PI3K kinase. The mechanism whereby inositol 

depletion causes GSK-3 inhibition has implications for understanding the 

therapeutic mechanisms of the mood-stabilizers used for treatment of bipolar 

disorder. 
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4. What are the functions of CL remodeling? 

 

In Chapter 3, we have shown that deletion of the CL-specific phospholipase Cld1 

rescues growth and lifespan defects in the tafazzin mutant, and that Cld1 

regulation in response to mitochondrial respiration modulates energy dynamics. 

The finding that deletion of Cld1 alleviates the deleterious effects of the loss of 

tafazzin suggests that CL-specific phospholipases may be potential targets for 

treating BTHS patients. However, CL-specific phospholipases have not been 

identified in mammals. We have received funding from the Barth Syndrome 

Foundation for a project entitled “Identification of human CL phospholipases that 

are deleterious to tafazzin-deficient cells,” which proposes to identify potential 

phospholipases that deacylate CL. Characterization of human CL 

phospholipases may identify potential therapeutic targets for treating BTHS 

patients. 

While our studies showed that regulation of the phospholipase Cld1 responds to 

mitochondrial respiration and modulates energy dynamics, this raises the 

question of what is the function of CL remodeling, and the corollary question of 

why is CLD1 expression increased in response to respiration. Because 

superoxides generated from mitochondrial respiration can impair CL functions by 

peroxidation of CL (Paradies et al., 2000; Paradies et al., 2001; Paradies et al., 

1998), we speculate that one possible function of deacylation of CL is to remove 
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peroxidized CL. In this model, CL remodeling acts as a mechanism whereby 

damaged fatty acyl chains are replaced. To test this possibility, the specificity of 

Cld1 enzymatic activity for peroxidized CL can be assayed in vitro. Although the 

cld1Δ mutant grows normally under respiratory conditions (Fig. 4-2), it is not clear 

if cld1Δ is sensitive to ROS-inducing reagents, such as H2O2. Elucidating the 

potential role of Cld1 in deacylating peroxidized CL may identify an exciting 

physiological function of CL remodeling.    

While Cld1 regulation may remediate the deleterious effects of respiration by 

replacing peroxidized CL, the role of CL remodeling is largely not understood. A 

powerful tool to elucidate function is that of identifying genetic interaction with the 

gene in question.  Synthetic genetic array (SGA) analysis is a yeast-based high-

throughput assay to identify genetic interactions, which yields unbiased functional 

information pertaining to a query strain. I am currently in the process of carrying 

out an SGA analysis using the cld1Δ mutant as the query strain crossed with the 

entire genome deletion set.  While the remodeling of CL is disrupted in both 

cld1Δ and taz1Δ mutants, CL levels are not affected in cld1Δ. Therefore, this 

SGA analysis using cld1Δ as the query strain will hopefully identify genetic 

interactions that are due to the loss of CL remodeling but not to decreased CL. A 

complete list of genes that genetically interact with CLD1 will be available from 

this study. I encourage future students to investigate the function of CL 

remodeling based on these genetic findings.  

While we are approaching the end of this dissertation, we have certainly not 

finished our discussion of what makes studying the regulation of the synthesis of 
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inositol and cardiolipin so exciting. No doubt my labmates will enjoy the science 

in our wonderful lab with unbeatable spirit. If you ever wonder where science will 

take you, my answer is to enjoy the journey, because science is full of beauty 

along the way.  
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        Phospholipids are the most abundant lipids in cell membranes. The 

synthesis of phospholipids is crucial for cellular membrane biogenesis and nearly 

all aspects of cellular processes. Understanding the regulation of synthesis of 

phospholipids is beneficial to our fundamental knowledge of cell biology as well 

as human health. 

        Regulation of the synthesis of phospholipids is intensively studied in the 

yeast S. cerevisiae. Most notably, the synthesis of phospholipids is coordinated 

with the synthesis of inositol, a precursor of inositol-containing lipids, by 

controlling expression of the genes encoding phospholipid biosynthetic enzymes. 

In addition to this well-characterized regulatory circuit controlled by the trans-

acting factors Ino2, Ino4, and Opi1, this dissertation shows that inositol 
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pyrophosphates are novel regulators of the synthesis of inositol and 

phosphatidylinositol that control INO1 expression. 

        Despite the importance of inositol, there are very few reported studies of the 

cellular consequences of perturbation of inositol synthesis in human cells. 

Studies of SK-N-SH neuronal cells in this dissertation demonstrate that inositol 

biosynthesis is essential for cell proliferation and neurite outgrowth, and inhibition 

of inositol biosynthesis leads to inactivated GSK-3α,  which  has  many  regulatory  

functions in neural systems. This novel finding bridges two prevailing hypotheses 

of inositol depletion and GSK-3 inhibition and suggests a unifying hypothesis for 

the therapeutic mechanisms of action of mood-stabilizing drugs. 

        Although the synthesis of most phospholipids (phosphatidylcholine, 

phosphatidylethanolamine, phosphatidylserine and phosphatidylinositol) is 

responsive to inositol, the synthesis of cardiolipin (CL) is an exception. 

Characterization of the regulation of CL synthesis has unveiled the critical role of 

CL remodeling via the regulation of the CL-specific phospholipase Cld1. 

Transcriptional regulation of Cld1-mediated deacylation of CL influences energy 

metabolism by modulating the relative contribution of glycolysis and respiration to 

ATP production. Interestingly, CLD1 expression is responsible for defective 

growth and respiration in tafazzin-deficient cells. We demonstrate that these 

underlying defects of tafazzin deficiency are caused by the decreased CL/MLCL 

ratio, not by a deficiency in unsaturated CL. These findings have significant 

implications for the life-threatening disorder Barth syndrome.   
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