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CHAPTER 1

INTRODUCTION

1.1 The Standard Model

The Standard Model (SM) of particle physics is the relativistic quantum field theory

describing the fundamental particles that make up the Universe and their interactions [1,

2, 3]. The SM consists of the fundamental particles that make up matter. These include

the 6 quarks (u, d, s, c, b, t) and 6 leptons (e, µ, τ and the corresponding lepton neutrinos

νe, νµ, ντ )), which are fermions carrying half-integer spins. In addition there are spin 1 gauge

bosons which act as the force carriers that mediate the two interactions; electroweak (EW)

and quantum chromodynamics (QCD). The photon γ mediates electromagnetism, the W±

and Z0 mediate weak interactions and the gluons g mediate strong interactions. The recent

crowning achievement in particle physics has been the discovery of a spin 0 Higgs boson that

further solidifies the validity of the Standard Model. These fundamental particles make up

all the “visible matter” in the observable universe and the forces arise from their interactions.

Composite fermionic particles made up of 3 quarks are called baryons (e.g. neutron), and

composite bosonic particles made up of a quark and an antiquark are called mesons(e.g. B

meson).

Our description of particle physics is built out of gauge theories and the interactions

are governed by gauge symmetries. Electromagnetic interactions couple to weak interactions

and satisfy a local SU(2)L×U(1) symmetry. The vector gauge bosons mediating these inter-

actions make up the three Wi bosons and the weak hypercharge B-field. QCD is the theory

describing the strong interactions of quarks and is governed by a local SU(3) symmetry. The

eight generators for this symmetry give rise to the gluons that are gauge bosons mediating
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Figure 1.1.1: Particles of the standard model

the strong interactions.

Noether’s Theorem demands that for every symmetry there exists a conserved current

associated with the respective generator of the symmetry group. For example, the conserva-

tion of the current in the U(1) gauge symmetry gives rise to electromagnetic charge, while

the SU(3) symmetry generates the “color” charge. Empirically the gauge bosons mediates

weak interactions are found to have a mass as shown in Table 1.1.1. Mass terms for vector

bosons can not be added to the Lagrangian while satisfying gauge invariance in the same

way that they can be for fermions. So this is instead provided by Spontaneous Symmetry

Breaking (SSB). The idea developed by three independent groups, Brout and Englert; Higgs;

and Guralnik, Hagen and Kibble [4, 5, 6] which is commonly known as the Higgs mecha-

nism provides a way to induce spontaneous breaking of the electroweak SU(2)×U(1) gauge

symmetry. When a local symmetry is spontaneously broken the gauge field becomes massive

and the goldstone boson is “eaten” to turn into the additional physical degree of freedom of

the massive gauge field. It causes the original U(1) gauge boson and three Wi bosons to mix

into the photon and the massive electroweak W± and Z0 bosons. A byproduct of this is the
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recently discovered scalar Higgs boson.

Boson Symbol Mass (GeV) Charge
photon Aµ 0 0
gluon g 0 0
Z Boson Z0 91.188 0
W Boson W± 80.385 ±1
Higgs Boson H ≈ 125 0

Table 1.1.1: Properties of Standard Model Bosons

The leptons and quarks obtain masses through Yukawa interactions with the Higgs field.

These come in three generations possessing the same quantum numbers but with varied

masses. Their properties are listed in Table 1.1.2.

Particle Symbol Mass (MeV) Charge (e)

up quark u 2.3+0.7
−0.5 2/3

down quark d 4.8+0.7
−0.3 −1/3

electron e 0.510999 −1
electron neutrino νe ≈ 0 0

charm quark c 1, 275± 25 2/3
strange quark s 95± 5 −1/3
muon µ 105.658371 −1
muon neutrino νµ < 0.17 0

top quark t (175.5± 0.6± 0.8)× 103 2/3
bottom quark b 4180± 30 −1/3
tau lepton τ (1, 776.82± 0.16) −1
tau neutrino ντ < 15.5 0

Table 1.1.2: Properties of Standard Model Fermions

Despite the standard models remarkable successes in describing phenomena within its

domain and its accuracy in predictions of a variety of experiments, it is nevertheless incom-

plete. There are still several unanswered questions that may require modifications to the



4

SM, in order to be explained. Some of these questions include the nature of dark matter,

the hierarchy problem and matter dominance over antimatter.

1.2 Quantum Chromodynamics

QCD is a local non-Abelian gauge theory describing the strong interaction of quarks.

The gluons are mediators of these interactions and they come in eight color charges that

are generators of the SU(3)c symmetry. The color-charged quark fields are invariant under

transformations

q → eiλ
i

q, (1.1)

with λi being the generators of the gauge group.

The QCD Lagrangian is written as

LQCD = q̄f (iγ
µDµ −mq)qf −

1

4
Ga
µνG

aµν , (1.2)

where the flavor of quark q is denoted by f and repeated indices are summed over as usual.

The color covariant derivative given by

Dµ = ∂µ −
i

2
gsλ

iGi
µ, (1.3)

contains λi, which are the eight generators of SU(3), and Gµ is the gluon field. The gluons

that act as the mediating gauge bosons are massless since QCD is an unbroken symmetry

in the standard model.

We can define the QCD fine structure constant αs = g2s
4π

. If the coupling constant is a

small parameter, we can expand our theory perturbatively in order to obtain the matrix

element for a transition. Applying this concept to the strong interactions is referred to as
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Perturbative QCD (pQCD). In general every perturbative contribution can be described

by Feynman Diagrams which are sets of topological diagrams for which amplitudes can be

constructed using the Feynman rules derived from the Lagrangian.

Diagrams that are higher order in the coupling involve loops. In these the loop momenta

are virtual, and are internally integrated over the entire range of momentum. This sometimes

leads to divergences in the ultra-violet or infra-red limits. The process that we undertake

in an effort to remove such divergences is called renormalization [7], through which the

divergences are swept away by redefining masses and coupling constants to include both the

“bare” parts from the original Lagrangian, as well “counter-terms” to the divergent pieces.

This causes “running” of the coupling constant, which means a dependence of the coupling

on the renormalization scale at which higher-order terms are absorbed,

Q2∂αs (Q2)

∂Q2
= β (αs) . (1.4)

The β function drives the energy dependance and is a power series in αs with β(αs) =

−α2
s(b0 + b1αs + b2α

2
s + ...), where bi depends on the number of particles involved in the

loops at a given scale. Solving this renormalization group equation (RGE) provides the Q2

dependence of our theory,

αs
(
Q2
)

=
αs(µ

2)

1 + b0 αs(µ2) log Q2

µ2
+O(α2

s)
. (1.5)

In QCD the value of the leading order (1-loop) beta-function coefficient, b0 is

b0 =
11CA − 2nf

12π
, (1.6)

where the first term CA = 3 is due to the SU(3) gluon loop virtual corrections. The

second term is due to quark loops with nf being the number of active quark flavors that are
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considered to be light, having mass less than Q2. In the standard model which contains a

maximum of 6 flavors this means b0 = 7
4π

. If we look at processes involving large momentum

transfers, the value of the coupling constant evaluated at the weak scale is

αs(mZ) = 0.1184(7). (1.7)

This allows us to extrapolate at a different scale, for example,

αs(mD) = 0.3039. (1.8)

The negative overall sign in the expansion of β combined with the fact that b0 > 0 (for

nf ≤ 16) is the origin for the positive nature of the term in (1.5). This means that the

coupling decreases with increasing energy scale, which is known as Asymptotic Freedom [8].

Conversely, as we go towards smaller energies, in the limit that Q2 → Λ (where Λ, the

Landau pole, is a constant of integration when solving (1.5) up to leading order) we can see

that the coupling constant would rapidly diverge. The most striking consequence to this is

that below 1 GeV, the coupling constant is no longer a good parameter for expansion. This

is the around the energy where confinement permits hadrons, bound states of QCD partons,

to be formed and we must look towards other phenomenological methods to describe the

dynamics involving them.

So while a perturbative approach to QCD works in the high energy regime (much greater

than ΛQCD ∼ 200 MeV), in low energy theory we must deal with non-perturbative effects as

well, which can pose some complications. One way of tackling such calculations is to identify

natural factorization scales contained in the specific problem that can split our theory into

multiple energy regions. For example, the heavy quarks contained in some mesons (like

charm or bottom), provide a natural scale with which to calculate the perturbative effects

and separate out “hard” physics and “soft” physics.
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A puzzling feature contained in QCD is that although it allows for violation of CP-

symmetry in strong interactions experiments do not indicate any CP violation in the QCD

sector. This is one of the big open fine tuning issues and is posed as the strong CP problem.

In order to resolve this the Peccei and Quinn postulated an additional global symmetry to

the standard model (called the Peccei-Quinn symmetry)[9]. Spontaneous breaking of this

symmetry leads to the existence of a new pseudoscalar particle called the axion [10, 11].

As we shall see later, particles such as these come in handy to provide candidates for dark

matter.

1.3 Dark Matter

An area of physics beyond the standard model that I shall discuss is the open question

on the nature of dark matter (DM). We believe it accounts for about 26.8% of the observable

universe beyond the visible matter that makes up the stars and galaxies and is particulate in

nature [12, 13]. The evidence for dark matter comes from a variety of cosmological sources like

the rotation curves of galaxies [14], features of the cosmic microwave background fluctuation

spectrum [15], gravitational lensing [16],and large scale cosmological structures [17]. The

dark matter accounts for the majority of mass in our universe and the evidences all point

towards a density for dark matter that is many times that of visible matter.

To take one example, cosmological observations of the galactic rotation velocity distribu-

tion do not conform to gravitational predictions based on the apparent visible mass of the

observed galaxy as shown in Fig 1.3.1. The distribution seen gives cause to believe there is

a large amount of invisible matter in the universe, distributed in halos around galaxies.

The nature of this dark matter is still a mystery as this kind of data only probes its

gravitational interaction. So DM is one of the major drivers for research in current astro-

particle physics. There are no particles in the SM that can account for the amount of mass
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1.2 Light New Physics(Dark Matter)

The evidence for Dark Matter comes from a variety of cosmological sources 1 like the rotation
curves of galaxies, gravitational lensing, features of the cosmic microwave background fluctuation
spectrum and large scale structures. The Dark matter accounts for the majority of mass in our
universe and the evidences all point towards a density for dark matter that is many times that
of visible matter.

To take one example, cosmological observations of the galactic rotation velocity distribution
do not conform to gravitational predictions based on the apparent visible mass of the observed
galaxy 2. The distribution seen gives cause to believe there is a large amount of invisible matter
in the universe, distributed in halos around galaxies. However, the nature of this Dark Matter
is still a mystery as this kind of data only probes its gravitational interaction. Therefore it has
become a very interesting topic of research as there are no particles in the SM that can account
for the amount of mass deduced, and studying its non-gravitational interactions is a primary
experimental focus at colliders, underground detectors and so on.

Figure 2: Rotation Velocity Distribution of Galaxies

One of the most popular models for Dark Matter is of a weakly interacting particle with a
mass set around the electroweak scale. This is motivated by a thermal mechanism for populating
the universe with Dark Matter with a relic abundance ΩDMh2 ∼ 0.12 as measured by the WMAP
collaboration 3. This in turn requires a specific annihilation cross section that can be provided
by a weakly interacting particle with a weak scale mass which threfore leads to the prevailing
WIMP paradigm for cold dark matter.

However, there is motivation for studying models of light dark matter with masses in the
keV range 4. The light mass implies a superweak interaction between the dark matter and SM
sector. I would like to discuss two such bosonic super-WIMP candidates for DM in section 2.

The first case is a psuedoscalar candidate for Dark Matter such as the axion or axion-like
particle. The second case is a light but massive vector dark matter candidate. These also
appear in models of ’Secluded’ WIMP Dark Matter 5, where they act as metastable mediators
that couple the Standard Model to the secluded WIMP sector and have mass less than that
of the WIMP. For both these candidates I shall try to impose constraints on the dark matter
coupling with the Standard Model by examining leptonic B meson decays.

Figure 1.3.1: Rotation Velocity Distribution of Galaxies

deduced, and studying its non-gravitational interactions is a primary experimental focus in

colliders, underground detectors and astrophysics. There are significant theoretical efforts

to model possible scenarios of DM, and many experiments [18, 19] have been proposed, built

and completed with significant results constraining the cross-sections and masses of DM

candidates through direct detection.

One of the most popular models for dark matter is of a weakly interacting particle with a

mass set around the electroweak scale. This is motivated by a thermal mechanism for popu-

lating the universe with dark matter with a relic abundance. Experimental measurements of

the abundance ΩDMh
2 ∼ 0.12 by WMAP collaboration [20] can be used to place constraints

on the masses and interaction strengths of those DM particles. It implies a relation

ΩDMh
2 ∼ 〈σannvrel〉−1 ∝ M2

g4
,

with M and g being the mass and the interaction strength associated with DM annihilation.

This in turn requires a specific annihilation cross section that can be provided by a weakly

interacting particle with a mass set around the electroweak scale, which therefore leads

to the prevailing WIMP paradigm for cold dark matter. However, there is motivation for
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studying models of light dark matter with masses in the keV range. The light mass implies

a superweak interaction between the dark matter and SM sector which will be discussed in

Chapter 5.

1.4 Weak Decays and Flavor Physics

Electroweak decays of bound-state hadrons are of particularly useful to test the standard

model and to search for any new physics since some of these decay channels are quite rare.

New physics could appear at high energies and we can expect that it would show itself in

rare processes and would be associated with low decay widths. It is therefore crucial to get a

firm grip on on the standard model calculations in these processes and their SM backgrounds

in order to pin down any new physics hiding there and thereby obtain precision tests for our

current theories. For example some experimentally clean processes such as leptonic decay of

heavy mesons are suppressed in the standard model, and we shall focus on some of these in

the following chapters.

Recently, B-physics has been a very lucrative sector for the study of heavy meson dy-

namics. With the B-factories (such as Belle at KEK, BaBar at SLAC, CDF at Fermilab and

LHCb at CERN) there is a large amount of experimental data available to help test predic-

tions of the standard model. While current data shows little deviation in physics predicted

by the SM it is important to analyze any discrepancies in rare B decays leaving room for the

discovery of new physics. These decays provide a lot of useful information as they contain

parameters involved in both: electroweak currents and interactions (such as CKM matrix

elements and meson decay constants), as well as strong interaction dynamics required in the

formation of mesons in terms of their constituent bound quarks. We discuss two such classes

of meson decays in the following work.

Firstly we consider leptonic decays of charged mesons such as the B± (which has a mass
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Figure 1.4.1: Helicity suppression

of about 5280 MeV). Experimentally upper limits are found for the branching ratio of the

electron and muon channels whereas the tau channel is observed

Br(B± → e±ν̄e) < 9.8× 10−7, (1.9)

Br(B± → µ±ν̄µ) < 1.0× 10−6, (1.10)

Br(B± → τ±ν̄τ ) = (1.64± 0.34)× 104. (1.11)

This stems from a particular feature of leptonic decays of pseudoscalar mesons. The

decay width for these processes are helicity suppressed by a factor of (m`/mP )2. This is

because the initial meson is spinless and a helicity flip on an external lepton line is required

to conserve angular momentum. In the standard model, weak interactions involve only left

handed currents and the lepton and neutrino (or two leptons) that are emitted in opposite

directions tend to have the same spin configuration. This violates angular momentum in the

massless limit and is therefore suppressed by the mass of the lepton. The suppression can in

fact be lifted with the addition of a unit of angular momentum in the form of a third particle

in the final state that carries spin or a p-wave.

We shall utilize this aspect in our calculations when a third particle such as a photon

or a dark matter candidate are coupled to these decays. Theoretically the phase space

distribution for such two body decays is a delta function, but experimentally it is smeared

out and we get a spread. We can then constrain parameters in the region coinciding with

the disparate three body spectrum.
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Figure 1.4.2: One-loop diagrams contributing to Bs → µ+µ−

Next we also look at the di-muonic decay of the neutral B0
s meson. This is an example

of a decay that contains flavor changing neutral currents (FCNC), where the quark changes

into a quark of different flavor but the same charge (b→ (s, d), c→ u). It is very rare so its

rate could be severely affected by new physics. FCNC’s don’t exist in the standard model at

tree-level and they only occur through loop diagrams such as the box and penguin diagrams

shown in Fig 1.4.2. Therefore they are difficult to produce in the SM and could provide a

powerful way to discover new physics. We focus on calculating backgrounds to this decay in

the standard model with the addition of soft photons and missing energy.

Additionally, we look at the exclusive weak decay of the W radiatively into a Pseudoscalar

(P), such as a Pion, and a photon. Electroweak and strong interaction dynamics can be

probed in the standard model using these decays and we discuss this in Chapter 4. From a

particular perspective this decay is essentially similar to a mirror image of a charged meson

decay (without a final state lepton current).

1.5 Model Independent Approach

In our calculations, we avoid using particular theoretical models in order to describe

and verify the dynamics at the various energy scales. Our philosophy is to adopt a more

general phenomenological approach to tackle each situation by using effective Lagrangians
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and currents which are consistent with the fundamental symmetries that would describe the

physics at the relevant scales. We do this by employing effective field theories (EFT). The

purpose of this method is to represent the dynamical content of a theory in the low energy

limit and factor out the effects of heavy particles into a few constants. We can usually find

natural scales associated with the problem through relevant masses or interaction energies,

and we can use these to construct some small parameter with which to set up a perturbative

expansion. For instance if there are particles involved with vastly separated masses like light

pions and heavy quarks, we can invoke two scales, one light and one heavy. The light scale

is where QCD becomes strongly coupled, ΛQCD, so that perturbation theory breaks down

and nonpertubative strong interaction effects dominate. Hadron masses such as light meson

mass are expressed as dimensionless multiples of ΛQCD which experimentally is ∼ 200 MeV.

Additionally we have a heavy scale such as the heavy quark mass mQ. So we can expand the

theory in orders of
ΛQCD
mQ

where small parameters are involved, such as a light quark mass

or specific projections of momenta (“collinear” or “transverse”) which are smaller than or of

the order of ΛQCD.

When we study the physics of a process at some energy scale E we take into account

all the particles that can be produced at that energy, but there are fields which are too

heavy to be directly produced. These are only involved through virtual effects and we don’t

include them in the Lagrangian when describing the effective low energy theory. Their

virtual effects are incorporated into various couplings between light fields and this process

of removing heavy fields is known as ”integrating out the fields”. We find a simple example

of this in electroweak current interactions that we encounter in phenomena such as the weak

decays described in this dissertation.

Mesonic weak decays are executed through the weak decays of their constituent quarks.

A four fermion electroweak interaction is mediated by the exchange of a massive W boson

at tree level in the full Weinberg-Salam theory. The W boson couples to vector and axial
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Figure 1.5.1: Fermi theory for four-quark weak interaction

vector quark currents of the form

(q1q̄2)V−A = q1γµ(1− γ5)q̄2. (1.12)

Including the weak couplings, the amplitude for the tree level diagram shown in the left

of Fig. 1.5.1 is

A(bc→ `ν) =

(
g√
2

)2

Vcb [c̄γµPLb]
−i
(
gµν − PµP ν

M2
W

)
P 2 −M2

W

[ν̄γνPL`], (1.13)

where PL = 1
2
(1− γ5).

At energies less than the electroweak scale O(MZ,W ≈ 80− 90GeV ) we can simplify the

physics into an effective four-fermion point interaction because the gauge boson is heavy.

Since P � MW we can apply this approximation to simplify the W boson propagator and

expand in their ratio of these quantities so that

−i
(
gµν − PµP ν

M2
W

)
P 2 −M2

W

∼ −i
M2

W

+O
(
P 2

M2
W

)
. (1.14)

Therefore the low energy limit of electroweak theory leads to the Fermi theory of weak

interactions [21], which is described by the local effective hamiltonian

Heff = i
GF√

2
Vcb (c̄b)V−A (ν̄`)V−A, (1.15)
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where the Fermi constant is defined by

GF√
2

=
g2

8M2
W

. (1.16)

This gives us the basic idea of an operator product expansion (OPE), where one represents

the low energy effects from a heavy sector of the theory by employing an effective Lagrangian

that is expanded as a series of local operators having the symmetries of the theory and

weighted by effective coupling constants called Wilson coefficients. In the above example

the Wilson coefficients is 1 since there are no scale dependent couplings and the W boson is

integrated out and is no longer a dynamical degree of freedom. In general we can write,

Leff =
∑
i

Ci(µ)Oi. (1.17)

The Lagrangian always has mass dimension 4, so if an operator has a dimension d the

coefficient must have mass dimension of Ci ∼M4−d where the mass scale is associated with

the heavy sector of the theory. We can see then that operators of high dimension will be

suppressed by powers of the heavy mass. The Wilson coefficients Ci, can be calculated by

matching the effective theory with the full theory at any required order in the the perturbative

expansion. Of course, one of the common and most important uses of effective field theory is

to parametrize the way that new physics at high energies can affect low energy observables.

This dissertation is organized as follows. We shall discuss a few problems involving weak

decays that we have worked on where we employ this model independent approach. To

set the framework for many of the calculations that we undertake we shall discuss some

of the Effective field theory techniques that we employ in Chapter 2. We shall then begin

in Chapter 3 with a standard model calculation involving the soft photon contribution to

leptonic B decays and ways in which to deal with possible contamination to the popular

rare decay channel Bs → µ+µ−. We shall utilize heavy quark and chiral symmetries that are
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relevant to the scales in the problem and work with them in heavy meson chiral perturbation

theory. Chapter 4 will continue with another weak decay in the standard model involving an

analysis of Exclusive W decays in pQCD and EFT. We shall see that the kinematics involved

in these decays shall point towards soft collinear effective theory as the useful framework for

calculation. We then move onto some new physics in Chapter 5 by studying the application

of leptonic meson decays in constraining parameters relating to a couple of general candidates

of light dark matter in a model independent way.



16

CHAPTER 2

EFFECTIVE FIELD THEORIES

2.1 Heavy Quark Effective Theory

We saw that the QCD Lagrangian from Eq. (1.2) describes the strong interactions of

light quarks and gluons and this dynamically generates a non-perturbative scale ΛQCD. In

the weak decays that we look at we wish to describe mesons that are color singlet states

of a quark antiquark pair bound by non-pertubative gluon dynamics. Heavy mesons Qq̄ in

particular contain a heavy quark with a mass mQ � ΛQCD and a light quark mq � ΛQCD.

Since Λ−1
QCD provides a typical scale for the size of this system it is a good approximation to

take the mQ →∞ limit of QCD where it exhibits spin-flavor heavy quark symmetry [22].

The momentum transfer between the heavy and light quarks arising from the dynamics

is of the order of ΛQCD and so the large mass of the heavy quark implies that its velocity is

pretty much unchanged by these strong interaction effects. Therefore the heavy quark just

acts as a static color source which the light degrees of freedom interact with, in the same

spirit as any two body system with an approximate fixed infinite mass such as a proton

in a hydrogen atom. The flavor of the heavy quark within the heavy meson then becomes

irrelevant as they would interact the same way irrespective of their particular mass which

goes to infinity in the approximation. This gives the heavy quark flavor symmetry since the

dynamics is invariant under the exchange of heavy quark flavors. In the mQ →∞ limit the

heavy quark only interacts with the gluon chromoelectrically and is spin independent. The

dynamics are unaffected by arbitrary transformations on the spin of the heavy quark and so

we also gain heavy quark spin symmetry. Any breaking of the flavor symmetry (in the form

of finite mass effects for heavy quarks of different masses) or of the spin symmetry (in the
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form of chromomagnetic interactions of the heavy quark) would appear as O(1/mQ) terms

and will be NLO corrections to the theory. In the ground state the heavy quark and the

light degrees of freedom composing the meson form a multiplet with spin 0 or 1. For the b

quark case, these correspond to the B and B∗ mesons respectively, and they are essentially

degenerate in mass in the heavy quark limit.

To construct physical states using the above mentioned symmetries, we can formulate a

covariant representation of fields where the entire multiplet of degenerate states is treated as

a single object. We can use a matrix representation to define the field Ha(x) that transforms

linearly under heavy quark symmetries.

Ha =
1+ 6v

2
(P ∗aµγ

µ − Paγ5), (2.1)

where a is a light quark flavor index. The field is a linear combination of the pseudoscalar field

Pa(x) and the vector field P ∗aµ(x), (with a polarization vector εµ associated). It annihilates

the meson doublet corresponding to the spin 0− and spin 1− states. Due to the static

approximation, the heavy quark can be labelled by a four-veloctiy v that does not change

with time. Ha and its conjugate field defined as H̄a = γ0(Ha)
†γ0, both transform as bispinors

under Lorentz transformations and it is possible to write down interactions that are invariant

under the heavy quark symmetries using these fields.

We can then rewrite the QCD Lagrangian to manifestly display heavy quark spin-flavor

symmetries as mQ → ∞ and replace it with an effective theory. This is known as heavy

quark effective theory (HQET) and it describes the dynamics of mesons with a single heavy

quark [23, 24]. If we consider an off-shell heavy quark interacting with external fields, its

momentum can be separated into the static and dynamic parts

pQ = mQv + k, (2.2)
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where k is the residual momentum that parametrizes the amount by which it is off-shell and

is therefore of the order of ΛQCD. Then the Dirac quark propagator simplifies to

i
( 6pQ +mQ)

p2
Q −m2

Q

→ i
(1+ 6v)

2v · k +O
(
kµ

mQ

)
. (2.3)

We can extract this dominant part of the heavy quark momentum from the original QCD

quark fields by factoring them into a large and small component

q(x) = e−imQv·x[Qv(x) +Qv(x)] (2.4)

where Qv(x) = eimQv·x
(1+ 6v)

2
q(x), (2.5)

and Qv(x) = eimQv·x
(1− 6v)

2
q(x). (2.6)

The large component field Qv(x) produces effects at the leading order, while the small

component field Qv(x) can be integrated out when deriving the effective Lagrangian since

it produces effects of the order of 1/mQ. In contrast to the QCD Lagrangian, only in-

verse powers of mQ would appear in the effective Lagrangian. The fields satisfy projection

constraints

6vQv = Qv, 6vQv = −Qv. (2.7)

Subtituting Eq. (2.4) into the QCD Lagrangian shows us that Qv is massless and Qv
has a mass of 2mq. The non-local effective Lagrangian can be derived by integrating out the

heavy field Qv as shown in [25]. This is done by solving for its equation of motion to get

(iv ·D+ 2mQ)Q = i 6DQv and reinserting it into the Lagrangian. The HQET Lagrangian is

LHQET = Q̄v(iv ·D)Qv − Q̄v
D2

2mQ

Qv − gQ̄
σµνG

µν

4mQ

Qv +O
(

1

m2
Q

)
, (2.8)
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where the first term gives the tree-level leading order Lagrangian in the (1/mQ) expansion.

2.2 Chiral Perturbation Theory

Now that we have dealt with heavy quarks, we can move on to the light quarks u, d

and s whose masses are very small compared to ΛQCD. Here we consider an approximation

to QCD where the light quark masses vanish and we can do perturbation theory around

mq in this limit [26]. Chirality is defined by using the left and right projection operators

PL/R = 1
2
(1∓ γ5) and the QCD Lagrangian can be expanded in terms of these as

Lq = q̄ (i 6D −mq) q = q̄Li 6DqL + q̄Ri 6DqR − q̄LmqqR − q̄RmqqL. (2.9)

We see that in the mq → 0 limit (where only the first two terms remain) the Lagrangian

exhibits invariance under an SU(3)L × SU(3)R chiral symmetry. Under this symmetry the

right handed and left handed quark fields transform differently as

qL → LqL, qR → RqR, (2.10)

where L and R are the respective unitary transformations of the groups. This is called the

chiral limit in which we can do chiral perturbation theory (χPT). If mq 6= 0 then there is a

mass term

q̄L L
†mq RqR − q̄RR†mq L qL 6= 0. (2.11)

Since the quarks in fact have small masses in the SM the symmetry is spontaneously broken
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by the vacuum expectation value of quark bilinears

〈q̄jRqkL〉 = λ0 δ
kj (2.12)

where j and k are flavor indices. If we make transformations in SU(3)L × SU(3)R transfor-

mations, those with L = R leave the vacuum expectation value unchanged. So the symmetry

is spontaneously broken to its diagonal subgroup SU(3)V .

The Goldstone Bosons that arise from the broken generators form an octet and correspond

to the light pseudoscalar particles π, K, K̄, η which represent the low-energy long-wavelength

excitations of q̄RqL. These mesons acquire masses due to the explicit symmetry breaking.

We can describe the Goldstone Boson fields by a 3× 3 special unitary matrix Σ

Σ = ξ2 = exp

(
2iM

f

)
, (2.13)

where f ≈ 130 MeV, and which transforms under SU(3)L × SU(3)R as

Σ→ LΣR†. (2.14)

Σ is the exponential of a Hermitian and traceless matrix which can be written out explicitly

in terms of the eight Goldstone Boson fields

M =


π0√

2
+ η√

6
π+ K+

π− − π0√
2

+ η√
6

K0

K− K̄0 −
√

2
3
η

 . (2.15)

To the lowest order in momentum, strong interactions of the Goldstone bosons are described
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most generally by the invariant effective Lagrangian

Leff =
f 2

8
Tr
[
∂µΣ∂µΣ†

]
. (2.16)

Higher order terms are suppressed by powers of p/Λχ where p is a typical momentum and

Λχ is the chiral symmetry breaking scale ∼ 1 GeV.

We can include the effects of quark masses on the strong interactions of the Goldstone

Bosons by adding terms that transform the same way as the light quark mass terms from

Eq. (2.9)

∑
a

q̄am̂abqb, (2.17)

where a and b are light quark flavors (u,d,s) and the diagonal light mass matrix is given by

m̂ab =


mu 0 0

0 md 0

0 0 ms

 . (2.18)

We can take into account this symmetry breaking at first order in masses of the quarks by

adding to the effective lagrangian to give

Lχ =
f 2

8
DµΣabD

µΣ†ba + λ0 Tr
[
m̂Σ + Σ†m̂

]
+O

(
(∂Σ)3

)
+O

(
m̂2
)
. (2.19)

The second term in the Lagrangian gives rise to the masses of π, K and η and are therefore
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referred to as pseudo-Goldstone Bosons. For example

m2
π± =

4λ0

f 2
(mu +md),

m2
K± =

4λ0

f 2
(mu +ms),

m2
K0 =

4λ0

f 2
(md +ms). (2.20)

In order to describe the interactions of these Goldstone fields with matter fields such as

heavy mesons, baryons or light vector mesons, chiral Lagrangians are typically written with

a coset field ξ(x) as defined in Eq. (2.13). The transformation law for matter fields involves

only U(x) which is a member of the unbroken SU(3)V subgroup. So it is useful to define ξ

which has a transformation law involving U , L and R as discussed in [27]

ξ(x)→ Lξ(x)U †(x) = U(x)ξ(x)R†. (2.21)

To construct invariant Lagrangian terms, it is useful to form covariant derivatives or gauge

fields with combinations of ξ, and whose transformation laws involve only U . This is provided

by

Vµ =
1

2

(
ξ†∂µξ + ξ∂µξ

†) , (2.22)

and Aµ =
i

2

(
ξ†∂µξ − ξ∂µξ†

)
. (2.23)

Vµ has the quantum numbers of a vector field and Aµ has the quantum numbers of an

axial-vector field. Their transformation properties follow

Vµ → UVµU † + U∂µU
†, (2.24)

Aµ → UVµU †. (2.25)
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So we can use ξ to introduce electromagnetic interactions through a covariant derivative such

as

Dµξ = ∂µξ + ieBµ[Q, ξ], (2.26)

where Q = diag
[

2
3
,−1

3
,−1

3

]
gives the charge.

2.3 Heavy Meson Chiral Perturbation Theory

We can now study to the implications of combining chiral and heavy quark symmetries

to obtain heavy meson chiral perturbation theory (HχPT) in order to describe interactions

of heavy mesons and pions, kaons etc [28].

As mentioned previously the doublet field Ha that is composed of the degenerate psue-

doscalar and vector meson pair P and P ∗ transforms as an anti triplet under chiral trans-

formations so that Ha → HbU
†
ba. Knowing now the transformation properties of both the

heavy and light fields, we can construct a Lorentz invariant H-field chiral Lagrangian that

satisfies SU(3)L × SU(3)R and heavy quark symmetry as an expansion in 1/M where M is

the H-field mass [29]. Just as in HQET scaling the heavy meson fields by exp(−iM v · x)

removes the mass term. This is equivalent to measuring energies relative to M rather than

mQ. At the leading order, the Lagrangian is

L(0) = −iT r
[
H̄avµ(∂µδba + iVµba)Hb

]
+ gTr

[
H̄aHbγµγ

5Aµba
]

+
f 2

8
DµΣabD

µΣ†ba. (2.27)

Heavy quark spin symmetry disallows the occurrence of gamma matrices between the H̄

and H fields in the trace (“heavy quark side”) and it can only occur on the right of H (“light

quark side) in the trace in any combination. The kinetic terms in the Lagrangian give the
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propagators

i

2v · k ,
−i (gµν − vµvν)

2v · k , (2.28)

for the P and P ∗ mesons respectively.

The first term in the Lagrangian of Eq.(2.27) that involves Vµ contains an even number

of psuedo-Goldstone fields, but the terms involving Aµ contain an odd number of pseudo-

Goldstone fields. These are proportional to g and will give us single light-meson couplings

with the heavy mesons in the form of P ∗P ∗M and P ∗PM interactions when expanded out

Lint =
2ig

f
P ∗µ†a Pb∂µMba −

2ig

f
P ∗µ†a P ∗νb ∂αMbaεµβναv

β + h.c. (2.29)

At leading order in 1/M the coupling constants are equal as a consequence of heavy quark

symmetry and PPM does not exist due to parity considerations.

We can consider NLO contributions in the 1/M expansion by including effects that break

chiral symmetry or heavy quark symmetry as corrections to the effective Lagrangian. The

heavy quark spin symmetry violation appears as magnetic moment operators and can be

taken into account by adding

δL(1) =
λ2

M
Tr[H̄aσ

µνHaσµν ]

+
g1

M
Tr
[
Hbγµγ

5AµbaH̄a

]
(2.30)

+
g2

M
Tr
[
γµγ

5AµbaHbH̄a

]
.

The only effect of the first term in Eq.(2.30) is to give rise to a mass splitting between the

P and P ∗ mesons

∆ = MP ∗ −MP = −2
λ2

M
. (2.31)
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The P and P ∗ propagators then get shifted to give

i

2(v · k + 3
4
∆)

,
−i (gµν − vµvν)
2(v · k − 1

4
∆)

. (2.32)

The last two terms in Eq. (2.30) lead to corrections to the constant g for P ∗P ∗ and PP ∗

interactions

g → gP ∗P ∗ = g +
1

M
(g1 + g2)

g → gPP ∗ = g +
1

M
(g1 − g2). (2.33)

Chiral symmetry is explicitly broken by the light quark mass matrix m̂q and these effects at

lowest order can be taken care of by adding

δL(2) = λ1Tr[H̄aHbm̂
ξ
ab] + λ

′
1Tr[H̄aHam̂

ξ
bb] (2.34)

where mξ =
(
ξ†m̂ξ + ξm̂ξ†

)
. The first term gives rise to mass differences in the heavy mesons

due to SU(3)V breaking and the second term is an overall shift in meson masses due to light

quark masses. Additionally we can introduce electromagnetic interactions using a contact

term such that

Lβ = −βe
4
Tr
[
Hbσ

µνFµνQ
ξ
baH̄a

]
− e

4mQ

Q′QTr
[
H̄aσ

µνHaFµν
]
, (2.35)

where Qξ = 1
2

(
ξ†Qξ + ξQξ†

)
[30]. Interaction of a photon with the light degrees of freedom

inside the heavy meson is described by the first term while the second term which is the

electromagnetic interaction with the heavy quark is suppressed by 1/mQ. It could contribute

to cancellation effects with one-loop corrections to transition amplitudes.
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πa πa
= i

p2−m2

P ∗
b P ∗

a = i
2(v·k+ 3

4∆)

P ∗
a P ∗

a = −i(gµν−vµvν)
2(v·k− 1

4∆)

Pb

πba

P ∗
a

= 2MP

fπ
g(q · ǫ∗b)(πiλi)ba

P ∗
b

πba

P ∗
a

= −2MP

fπ
g(πiλi)baǫµναβǫ

∗µ
a ǫνbq

αvβ

Figure 2.3.1: Feynman rules obtained in HMχPT

Bringing all these aspects together, we can simply derive the Feynman rules for the

various interactions as shown in the Feynman diagrams of Fig. 2.3.1.
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CHAPTER 3

LEPTONIC B MESON DECAY AND SOFT PHOTONS

3.1 Faking Bs → µ+µ−

The rare leptonic decay of the B0
s into a dimuon pair, B0

s → µ+µ−, is an example of a

flavor-changing neutral current process. Studies of such decay processes not only play an

important role in determining electroweak and strong interaction parameters of the standard

model of particle physics, but also serve as sensitive probes of possible physics beyond the

standard model [31]. While recent evidence for observation of B0
s → µ+µ− from LHC-b

collaboration [32] , as well as an earlier result from CDF [33] preclude any spectacular new

physics (NP) effect, there is still room for NP to influence this decay. It is then important

to have a firm evaluation of B(B0
s → µ+µ−) in the SM [34, 35] and a firm understanding

that experimentally-observed branching ratio

BLHCb(B0
s → µ+µ−) = (3.2+1.5

−1.2)× 10−9

BCDF (B0
s → µ+µ−) = (1.8+1.1

−0.9)× 10−8 (3.1)

actually corresponds to the B0
s → µ+µ− transition.

As explained in Chapter 1, the B0
s → µ+µ− decay is helicity suppressed in the SM by

m2
µ/m

2
Bs

due to the left handed nature of weak interactions [36]. This effect arises from the

necessary spin flip on the outgoing back-to-back lepton pair in order to conserve angular

momentum since the initial state meson is spinless.

This suppression is absent in B0
s decays where the muon pair is produced with one or

more additional particles in the final state that can carry away a unit of angular momentum,
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such as B0
s → µ+µ−γ or B0

s → µ+µ−νµν̄µ. This means that, in general, those processes

could have sizable total branching ratios, comparable to that of B0
s → µ+µ−, despite being

suppressed by other small parameters (such as αEM for B0
s → µ+µ−γ) [37]. If, in addition,

the final state photon or νν̄ is undetected, while the invariant mass of µ+µ− pair is close to

mB0
s
, then the experimentally-measured branching ratio would correspond to

Bexp(B0
s → µ+µ−) = B(B0

s → µ+µ−)

[
1 +

∑
X

B(B0
s → µ+µ−X)|m(µ+µ−)≈mBs )

B(B0
s → µ+µ−)

]
, (3.2)

where X is an undetected particle or a group of particles. The contribution of B0
s → µ+µ−X

would depend on how well X could be detected in a particular experiment, as well as on

whether B0
s → µ+µ−X has any kind of resonance enhancement that is not well modeled

by background models chosen by a particular experiment in a given window of m(µ+µ−),

as well as the size of that window. For example, for X = γ, most current searches use

di-lepton energy cuts that would correspond to an allowable soft photon of up to 60 MeV.

For B → `ν` transition and X = γ similar effects were discussed in [38, 39, 40], and for X

being light particles – in [41]. In the following we shall concentrate on the amplitudes that

are non-vanishing in the mµ → 0 limit.

3.2 B0
s → µ+µ−γ transition

Due to higher backgrounds in hadron collider experiments soft photons emitted in B0
s →

`+`−γ could be hard to detect, so this background could be quite important. This decays

were previously analyzed in [37], where a form-factor model-dependent calculation was per-

formed [42] . The analysis presented in [37] was mainly geared towards kinematical regimes

where the photon is sufficiently hard to be detected; in fact, low-energy cut-offs were in-

troduced on photon energies. We apply a model-independent approach that incorporates
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both heavy quark symmetry for hadrons containing a heavy quark with mass mQ � ΛQCD,

and chiral SU(3)L × SU(3)R symmetries in the mq → 0 limit [43, 44]. We organize our

calculations in terms of an expansion in 1/mb and examine the contribution of terms up to

leading order in O(1/mb).

Similarly to B → `ν`γ [39], the decay amplitude for Bs → µ+µ−γ transition can be broken

into two generic parts containing internal bremsstrahlung (IB) and structure dependent (SD)

contributions. The bremsstrahlung contributions are still helicity suppressed, while the SD

contribution contain the electromagnetic coupling α but are not suppressed by the lepton

mass. Phenomenologically, the origin of that can be understood as follows. When the soft

photon in emitted from the Bs meson, heavy intermediate states including the JP = 1−

B∗s vector meson state become possible. This lifts helicity suppression since the lepton pair

couples directly to the spin 1 meson. In the kinematic regime where the photon is soft, we

expect that the significant contribution comes only from the vector B∗s resonance for reasons

analogous to the B∗ pole dominance in B → π`ν at near zero pionic recoil energies [45].

This is because in the large mb limit the B∗s and Bs become degenerate and the residual mass

splitting is mB∗ −mB ∼ O(1/mb) [46]. Therefore the excitation of the B∗s does not require

much energy. There are two diagrams containing an intermediate B∗s as seen in Fig. 3.2.1. In

the kinematic region of interest where Eγ < 60MeV , Fig. 3.2.1 (b) where the intermediate

B∗s decays to an on-shell soft photon is (1/MB0
s
) suppressed and will be neglected. Similarly,

a contribution of Fig. 3.2.1 (c) is formally (1/MB0
s
), so it will be neglected in what follows.

The calculation of soft photon effects should carefully deal with soft divergencies. Those

are cancelled between one-loop radiative corrections to Bs → µ+µ− and Bs → µ+µ−γ.

We employ heavy meson chiral perturbation theory (HMχPT) to calculate the amplitude

for Fig. 3.2.1 (a). The heavy meson superfield Ha contains both the B0
s and B∗0s bosons,

Ha =
1+ 6v

2
(B∗aµγ

µ −Baγ5), H̄a = γ0(Ha)
†γ0, (3.3)
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Figure 3.2.1: Resonant contributions to Bs → µ+µ−γ

where the indices a and b reflect the light quark flavor indices. The light mesons are intro-

duced through the matrix Qξ = 1
2
(ξ†Qξ + ξQξ†) where the field ξ = exp(iΠ/f) is defined in

terms of a 3× 3 unitary matrix containing the octet of pseudo-Goldstone bosons

Π =


π0√

2
+ η√

6
π+ K+

π− − π0√
2

+ η√
6

K0

K− K̄0 −
√

2
3
η

 . (3.4)

To evaluate diagram Fig. 3.2.1 (a) we need an amplitude for a B → B∗γ transition as

M[Bs→B∗sγs→µ+µ−γs] = Mµ
B∗s→µ+µ− ×

gµα
M2

B∗s

×Mα
Bs→B∗sγ, (3.5)

The amplitude for B → B∗γ is conventionally parameterized as

MBs→B∗sγ = −ieµη∗αvβkµε∗νεµναβ, (3.6)

where k is the 4-momentum of the photon, v the velocity of the decaying heavy meson, η is the

vector meson polarization, and ε is the photon polarization. The strength of the transition is
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Figure 3.2.2: One loop corrections to µ. The double lines denote the heavy mesons B and
B∗ while the single line denotes the goldstone bosons

described by the magnetic moment, µ, which receives contributions from the photon coupling

to both heavy and the light quark components of the electromagnetic current [47],

µ = µb + µ`. (3.7)

The bottom quark contribution is fixed by heavy quark symmetry to be µb = Qb/mb =

−1/(3mb), while the light quark contribution can be computed, to one loop, in HMχPT.

The relevant effective Lagrangian is [47, 48]

Lβ =
βe

4
Tr(H̄aHbσ

µνFµνQ
ξ
ba) +

ig

2
Tr
(
H̄aHbγµγ5(ξ†∂µξ − ξ∂µξ†)ba

)
, (3.8)

where Tr is a trace over the Dirac indices, and β is a coupling constant parameterizing a local

contribution to the light quark magnetic moment. We include the most important one-loop

correction, which is shown in Fig. 3.2.2.

The effective magnetic moment for the Bs → B∗sγ transition is then

µBsγ = − 1

3mb

− 1

3
β + g2 mK

4πf 2
K

, (3.9)

where g is the χPT coupling constant, and mK , fK are the mass and decay constant of

the kaon respectively. The constants β and g can be extracted from a combination of

the experimental D∗+ branching ratios, B(D∗+ → D+γ) = 0.016 ± 0.004 and B(D∗+ →

D0π+) = 0.677 ± 0.005, and the total width, where the newest preliminary result from



32

BaBar collaboration is reported to be ΓD∗+ = 83.5± 1.7± 1.2 KeV [49]. The decay widths

for these processes using the method above are given by

Γ(D∗+ → D+γ) =
αEM

3

(
2

3mc

− 1

3
β + g2 mπ

4πf 2
π

)2

|~k|3, (3.10)

Γ(D∗+ → D0π+) =
g2

6πf 2
π

| ~pπ|3. (3.11)

This yeilds the approximate values of the coupling constants, g ≈ 0.552 and β ≈ 7.29GeV −1.

With Eq.3.9 this gives us |µeff | ≈ 1.13 GeV−1.

To complete evaluation of Fig. 3.2.1 (a) in Eq. (3.5), we evaluate the B∗s → µ+µ− tran-

sition. The effective hamiltonian describing the weak b→ s`+`− transition is

Hb→s ¯̀̀ =
GF√

2
VtbV

∗
ts

e2

8π2

[
s̄γµ(1 − γ5)b · ¯̀

[
Ceff

9V (µ, q2)γµ + C10A(µ2)γµγ5

]
`

− 2imb
C7γ(µ

2)

q2
qν · s̄σµν(1 + γ5)b · ¯̀γµ`

]
, (3.12)

where qν = (p`+ + p`−)ν is the momentum of the lepton pair and Ci are scale-dependent

Wilson coefficients. The matrix element for B∗s → µµ̄ is then

MB∗s→µ+µ− = i
GF√

2
VtbV

∗
ts

e2

8π2
fBsMBs

[
η∗µū(pµ+)[C9γ

µ + C10γ
µγ5]v(pµ−)

− 2mb
C7

q2
(ū(pµ+)γµv(pµ−))qν(iε

µναβvαηβ + vµην − vνηµ)

]
, (3.13)

where ηµ and vµ are the polarization and 4-velocity of the vector meson respectively. We

defined 〈0|s̄LγµbL|B∗s 〉 = ηµfB∗s/2, and 〈0|s̄σµν(1 + γ5)b|B∗s 〉 = MBfBs [iε
µναβvαηβ + vµην −

vνηµ], with fB∗s = MBsfBs [50]. This gives for the amplitude of Fig. 3.2.1 (a)

M[Bs→B∗sγs→µ+µ−γs] =
GF√

2
VtbV

∗
ts

e3

8π2
µeff

fBs
q2 −M2

B∗s

(
εµναβε∗µkαqβ

)
×

[(
2C7mb − C9MB∗s

)
[ūp1γνvp2 ]− C10MB∗s [ūp1γνγ5vp2 ]

]
. (3.14)



33

The other contribution that is leading the MBs →∞ limit is given in Fig. 3.2.1 (d)

M[B0
s→µµ̄φ→µµ̄γs] =MB0

s→µµ̄φ ×
gµν
m2
φ

×Mφ→γs , (3.15)

Employing vector-meson dominance, and using the definition of the vector meson decay

constant 〈0|s̄γµs|φ〉 = fφmφη
µ
φ , where ηµφ is the polarization of the φ meson, and 〈γ|s̄(−ieQs 6

A)s|φ〉 = (−ieQs)ε
∗
µ〈0|s̄γµs|φ〉,

Mµ
φ→γs =

1

3
e fφmφ ε

∗
µ. (3.16)

Again, we calculate MB0
s→µµ̄φ using (HMχpT). For the short distance contributions we use

the effective Hamiltonian describing b→ s ¯̀̀ transitions in Eq. 3.12, as well as the effective

Hamiltonian for b→ sγ,

Hb→sγ =
GF√

2
VtbV

∗
ts

e

8π2
mbC7γ(µ

2) · s̄σµν(1 + γ5)b · Fµν . (3.17)

In order to bosonize the quark currents found in Eqs. (3.12) and (3.17) we introduce the

light vector octet to the HMχpT [50],

ρµ ≡ i
gV√

2


ρ0√

2
+ ω√

2
ρ+ K∗+

ρ− − ρ0√
2

+ ω√
2

K∗0

K∗− K̄∗0 φ

 . (3.18)

The bosonized currents s̄γµ(1− γ5)b and s̄σµν(1 + γ5)b are, respectively,

Lµ1a = α1〈γ5Hb(ρ
µ)bcξ

†
ca〉,

Lµν1a = iα1

{
gµαgνβ − i

2
εµναβ

}
〈γ5Hb[γα(ρβ)bc − γβ(ρα)bc]ξ

†
ca〉. (3.19)
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A numerical value of α1 = −0.07GeV 1/2 [50] will be used for our calculations. Keeping only

the gauge invariant portion, the amplitude for the decay with an intermediate φ(1020) is

A(B0
s → µµ̄φ→ µµ̄γs) = GFVtbV

∗
ts

e3fφgφα1C7mb

24π2
√
MBsmφ(p1 · p2)

ε∗µ

(
(k · (p1 + p2))[ūp1γ

µvp2 ]

− (p1 + p2)µ[ūp1 6 kvp2 ] + iεµναβkα(p1 + p2)β[ūp1γνvp2 ]

)
. (3.20)

We checked that other contributions to the decay are smaller then the ones considered

above. We considered the bremsstrahlung diagrams where a soft photon is emitted from

one of the outgoing leptons. These diagrams will result in an infrared divergence in the soft

region, which has been shown to cancel with the 1-loop QED vertex corrections [51]. The

vertex corrections, as well as the bremsstrahlung contributions, will remain suppressed by a

power of the lepton mass. Therefore the remaining non-divergent contributions from both

the bremsstrahlung and vertex corrections to final states with either an electron or a muon

would not be significant.

The only contribution to the ampltitude from the effective hamiltonian describing the

weak transition in Eq.(3.12) ends up being the O10 operator. This come from obtaining the

matrix elements for the pseudoscalar meson,

〈0|(s̄γµ(1− γ5)b)|Bs〉 = −ifBP µ
B, (3.21)

〈0|(s̄σµν(1 + γ5)b)|Bs〉 = 0, (3.22)

where fB is the decay constant of the B meson. With these definitions and using the

conservation of the vector current we can arrive at an expression for the amplitude

MBrem = ie
αEMGF

2
√

2
VtbV

∗
tsfBC10mµ

[
µ̄

( 6ε 6PB
pµ− · k

− 6PB 6ε
pµ+ · k

)
γ5µ

]
, (3.23)

where εµ and k are the polarization and momentum of the photon respectively. Just as
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we would expect from the helicity structure involved, the amplitude for the bremsstrahlung

contribution is proportional to the lepton mass. So in the limit m` → 0, this contribution

should be negligible compared to the non helicity-suppressed contributions.

Putting everything together, the distribution of the decay width as a function of the

kinematic variable s = (PBs − k)2/M2
Bs

= q2/M2
Bs

, in the limit m` → 0,

dΓ

ds
=
dΓ

ds

∣∣∣∣
B∗s

+
dΓ

ds

∣∣∣∣
φB∗s

+
dΓ

ds

∣∣∣∣
φ

, (3.24)

where the decay distributions are given for the two different resonance amplitudes and their

interference.

dΓ

ds

∣∣∣∣
B∗s

= XCKMM
3
Bsf

2
Bsµ

2
eff

[
(|C9|2 + |C10|2)xB∗s + 4C2

7xb − 4C7C9xbxB∗s
] s(1− s)3

(s− x2
B∗s

)2
,

dΓ

ds

∣∣∣∣
φ

= XCKM

[
16C2

7 f
2
φ g

2
φm

2
b α

2
1

9m2
φ

]
(1− s)3

s
, (3.25)

dΓ

ds

∣∣∣∣
φB∗s

= XCKM

[
4
√

2fBsfφgφM
3/2
Bs
mbα1µeff

3mφ

(C7C9xB∗s − 2C2
7xb)

]
(1− s)3

s− x2
B∗s

,

where we have defined XCKM = (G2
F |VtbV ∗ts|2M2

Bs
α3
EM)/(768π4), xb ≡ mb/MBs , and xB∗s ≡

MB∗s/MBs . We use the Wilson coefficients Ci(λ) choosing the scale at λ ' mb ' 5GeV ,

with C7 = 0.312, C9 = −4.21 and C10 = 4.64 [37][52]. The CKM matrix elements are

|VtbV ∗ts| = (4.7 ± 0.8) × 10−2 [53]. With the most recent lattice calculation of fBs is ≈ 228

MeV [54]. Note that, when integrated over the endpoint window the last two terms in

Eq. (3.24) are much smaller than the first one. The interference contribution is destructive

and is

B(Bs → µ+µ−γE<60)φB∗s = −5.0× 10−17, (3.26)

B(Bs → µ+µ−γE<300)φB∗s = −1.1× 10−14, (3.27)
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Figure 3.2.3: Normalized differential spectrum in s. The grey shaded region corresponds to
the contribution from a soft photon energy cut at Eγ ∼ 60 MeV.

which are both much smaller than the B∗s contribution alone.

The normalized differential spectrum in s is shown in Fig.(3.2.3). The photon energy

is related to the invariant mass as Eγ = (1 − s)MB/2, so we can integrate the differential

spectrum over the required corresponding kinematic region in photon energy to obtain the

decay width.

Integrating Eq.(3.24) over the kinematic region corresponding to a soft photon cut of

Eγ ∼ 60, 300 MeV we get the respective branching ratios

B(Bs → µ+µ−γE<60) = 1.6× 10−12, (3.28)

B(Bs → µ+µ−γE<300) = 1.1× 10−10, (3.29)

which are quite too low to affect experimental determination of the branching ratio Bs →

µ+µ−, agreeing with the estimates of Ref. [34] where BSM(B0
s → µ+µ−) = (3.23 ± 0.27) ×

10−9.
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Figure 3.3.1: Bs → µ+µ−ν̄ν

3.3 B0
s → µ+µ−νµν̄µ transition

Because of the Glashow-Illiopulous-Maiani (GIM) mechanism, the SM loop diagram for

the helicity-suppressed B0
s → µ+µ− decay is dominated by the intermediate top quark despite

being suppressed by the CKM factors |VtbV ∗ts|2. A transition similar to the ones described

above, which on a portion of the available phase space looks like B0
s → µ+µ− is the tree-level

decay B0
s → µ+µ−νν̄. The dominant tree-level contribution for this process is depicted in

Fig. 3.3.1. This decay can have a contribution to the background, which appears only

below q2 = M2
Bs

and, if numerically significant, can affect the extraction of B(Bs → µ+µ−).

This process is neither loop-dominated nor is it helicity suppressed. It nevertheless has a

kinematic phase space suppression due to the four-particle final state. For the Bs meson

decay, an intermediate charm quark will give the largest contribution since the intermediate

top quark diagram will be suppressed by the mass of the top quark. Also, the up quark

contribution is suppressed by VubV
∗
us ≈ λ4 whereas the charm contribution is only suppressed

by VcbV
∗
cs ≈ λ2, where λ ≈ 0.22.

The transition amplitude for this process is simple,

MBs→µ+µ−νν̄ =
G2
F

2
VcbV

∗
cs〈0|s̄γβ(1− γ5)

i(6pc +mc)

p2
c −m2

c

γα(1− γ5)b|Bs〉Lα1Lβ2 , (3.30)
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where Lα = µ̄γα(1−γ5)νµ. In the rest frame of the decaying meson we can reduce the phase

space integral’s dependence to five independent Lorentz invariants. In the same fashion as

in [55] we define these invariants as

S12 = (pµ− + pµ+)2, S13 = (pµ− + pν̄)
2, S34 = (pν̄ + pν)

2,

S123 = (pµ− + pµ+ + pν̄)
2 , S134 = (pµ− + pν̄ + pν)

2. (3.31)

Our width then becomes

dΓ =
(2π)4

2M

∫ (
π2

2M2

) |MBs→µ+µ−νν̄ |2

[−∆4(pµ− , pµ+ , pν̄ , pν)]
1/2
dS12dS123dS13dS134, (3.32)

where ∆4 is the symmetric Gram determinant

∆4(q, r, s, t) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

q2 q · r q · s q · t

r · q r2 r · s r · t

s · q s · r s2 s · t

t · q t · r t · s t2

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (3.33)

In order to avoid the divergence of 1/(−∆4)1/2 on the boundary, suitable variable changes

can be made thereby making the singularity integrable. We define

S134 =
1

2a

[
−b+ sin(S̃134)(b2 − 4ac)1/2

]
,

S13 = 4(−a)1/2S̃13 +m2
` , (3.34)

where a, b and c are the parameters solved by

−∆4(pµ− , pµ+ , pν̄ , pν) = aS2
134 + bS134 + c . (3.35)
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The limits of integration are calculated in [55], resulting in our partial width

dΓ

dS12

=
2

(4π)6M3

∫ M2

S12

dS123

∫ ξ

0

dS34

∫ 1

m2
`/S12

dS̃13

∫ π/2

−π/2
dS̃134 |MBs→µ+µ−νν̄ |2 , (3.36)

where ξ = (M2−S123)(S123−S12)/S123. We define the cut on missing energy as Scut12 (Ecut) =

M2−2M(Ecut) which gives us a lower limit on S12 for the final integral in order to obtain the

decay width. The branching ratios for this contribution can then calculated using numerical

phase-space integration for various cuts including the one that corresponds to the invariant

mass range seen at the LHCb [32].

B
[
Bs → µ+µ−νν̄

]
Ecut=60MeV

= 1.6× 10−25

B
[
Bs → µ+µ−νν̄

]
Ecut=300MeV

= 1.4× 10−18. (3.37)

As we can see, the due to enormous phase space suppression (we are only interested in a small

sliver of the available four-particle final state), the possible contribution from this decay is

unimportant for experimental analyses.

3.4 Results

Recent evidence from observation of the flavor-changing neutral current decay B0
s →

µ+µ− by the LHCb collaboration B(B0
s → µ+µ−) = (3.2+1.5

−1.2) × 10−9 is consistent with

the latest standard model predictions. We analyzed branching ratios of the decays B0
s →

µ+µ−X, with X = γ or νν̄, which can mimic B0
s → µ+µ− on portions of the parameter

space where X is soft. We performed a model-independent calculation of those processes

incorporating heavy quark and chiral symmetries of QCD. Our calculations concentrated on

the contributions that are not helicity suppressed by powers of mµ and leads to a correction
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to the SM prediction of approximately 3% at a photon energy cut of 300 MeV and less than

1% at a cut of 60 MeV from soft photon contributions to the decay Bs → µ+µ−. The possible

contamination from Bs → µ+µ−νν̄ is even smaller, at the sub percent level.
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CHAPTER 4

EXCLUSIVE W DECAY IN EFFECTIVE FIELD THEORY

4.1 General Analysis of W → P + γ and its motivation

We begin by taking a look at the radiative exclusive decay mode of the W boson, focusing

on W± → π± + γ. The W, which is a massive charged vector boson that mediates weak

interactions can decay into the a light pseudoscalar meson such as the pion which is the

bound state of an up and down quark (or charm and strange quarks in the case of a D±s

meson), and a real photon which is massless but energetic.

Intermediate vector bosons like the W are produced in high energy accelerators and the

study of such exclusive decay modes would provide very useful insight into electroweak and

strong interaction dynamics. High luminosity colliding beam facilities of pp, p̄p, or e+e−

collisions can produce Intermediate W bosons copiously and precise measurements of their

basic properties can then be analyzed [56]. In order to do this we need to learn as much

as possible about the theoretically predicted decay modes of these particles and pin down

their decay rates in the standard model. Although the decay modes discussed in this chapter

are rare, we can expect that these radiative decays could be observable in the future with

increased statistics at high luminosity colliders. Prospectively then, getting a good grip on

the standard model analysis can inform us about the room for discovery of new physics or

exotic particles and mesons in the decay products of intermediate vector bosons [57]. There

is also interest in measurements of W boson decay to pseudoscalar and vector particles at

experiments like the Tevatron and LHC [58]. The current experimental bound [59] from the

CDF at the Tevatron for the radiative W decay to a pion and a photon in pp̄ collisions is

BrEXP [W± → π±γ] < 8× 10−5. (4.1)
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Figure 4.1.1: Two body decay of W in its rest frame

So we can see there is much room for theoretical analysis and improvement. Experimentally

the W → πγ channel is interesting since it results in a clean final state in the detector. If

observed these exclusive decays would yield insight into the strong interaction effects involved

in the formation of the meson. Furthermore, the trilinear non-Abelian gauge coupling that

appears in these decays [Fig.4.2.1(a)] according to the standard model for weak interactions

can also be tested. Therefore these processes could be sensitive to physics beyond the

standard model involving anomalous coupling of the photon to the W boson.

The W boson is predicted to have a mass by the standard SU(2)L×U(1) Weinberg-Salam

model for weak interactions. The Particle Data Group (PDG) combine the measurements

from the LEP and Tevatron experiments to give a world average for the W mass [60, 61]

MW = 80.385± 0.015 GeV. (4.2)

Detection of its radiative decay along with the measurement of the photon energy can be

used to obtain an extremely precise determination of this mass provided the decay rate is

large enough. So a good theoretical calculation of these rare decay modes is significant and

can provide an important precision test of the standard model.

One can see this by noticing the kinematics that is dictated by this two-body decay. In

the rest frame of the initially decaying W boson the final products of the decay will have

momentum in opposite directions as shown in Fig.4.1.1. The photon that is produced is

real, and being massless it is highly energetic. Therefore the pion, which is light in mass,

is kicked in the opposite direction with an energy of about half the center of mass energy

provided by the W mass. Therefore the quarks that are bound in the pion are collinear and
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any transverse components essentially become negligible. We can neglect the mass of the

pion since it is quite smaller than the hard scale Q defined in this problem by the mass of

the decaying W boson so that mπ < Q ∼ mW .

There have been previous studies of W → Pγ, where P is a pseudo scalar meson (π,

Ds) using particular models [62, 63]. Arnellos, Marciano and Parsa [62] assume Brodsky-

Lepage form factors obtained from QCD calculation of πγ∗γ with an off shell photon in the

asymptotic limit. They obtain a branching ratio Br ∼ 10−8 and suggest that a detailed

QCD analysis should be carried out for the case of the axial vector form factor. On the

other hand, Keum and Pham [63] obtain a substantial enhancement of about two orders

of magnitude with a branching ratio Br ∼ 10−6. They employ a particular quark model

and use triangle diagrams with an effective yukawa type quark-pion coupling containing the

constituent quark masses in order to form the meson. One of our motivations in this project

is to verify the existence of this enhancement in a model independent discussion.

We estimate the branching ratio for these exclusive processes, specifically W → π + γ,

in the context of perturbative QCD as well as effective field theories. The mass of the W

boson gives us a hard scale mW and the only other scale is given by the collinear pion. So

the dynamics and kinematics of the problem suggests that SCET would be most relevant

as a playground for understanding these decays which involve the emission of an energetic

photon and a meson which is a collinear bound state of the quarks. We would like to

emphasize a model independent approach in our calculations. We intend to also include one-

loop contributions of up to order αs corrections and resumption of any leading logarithmic

terms.

General structure of the amplitude

Even before we start calculating Feynman diagrams we can say a lot about what the ampli-

tude for the W → πγ decay should look like. The only free Lorentz covariant parameters we
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have to work with are the final state four-momenta of the photon k, and the pion P. Conser-

vation of energy-momentum constrains the initial state W momentum to be the sum of these

two. We also have the polarization vectors for the two vector bosons, εµ(k) corresponding to

the photon wavefunction and ελ(P + k) corresponding to the W boson wavefunction. The

orthgonality conditions given by the equations of motions for the polarizations of the vector

particles requires that ε(k) · (k) = ε(P + k) · (P + k) = 0 and also k2 = 0. We must also

impose the requirements of Lorentz invariance and gauge invariance. We can then obtain

the general structure of the amplitude in terms of the form factors

M = − ge

2
√

2
|Vud|[H2(P · kgµλ − Pµkλ) + iH6ε

αβµλkαPβ]ε∗µ(k)ελ(P + k). (4.3)

H2 is the form factor corresponding to the axial-vector component of the weak current and

H6 is the vector form factor corresponding to the electromagnetic component of the weak

charged current involved. Therefore the amplitude can be reduced simply to two Lorentz

structures where the form factors which are functions of the hard scale incorporate all strong

interaction effects. The problem then just boils down to calculating the form factors in a

convenient theory.

4.2 W → πγ in perturbative QCD

We begin with the leading order calculation of the W decay in perturbative qcd. The

photon in the two body decay W± → π±γ is a real, hard photon and we shall calculate the

amplitudes for the diagrams in the low pion mass limit where essentially mπ → 0. There are

three diagrams that contribute to the amplitude as shown in Fig. 4.2.1. The first diagram

is the W pole contribution and the next two are the structure dependent diagrams with the

emission of the photon from the quark legs. The initial W− boson has a momentum P + k
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ū

u

P

P
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Figure 4.2.1: Tree level contributions to W− → π−γ

which decays to a Pion with momentum P and the hard photon with momentum k. The

case of the W+ decay is obtained simply by charge conjugation.

To evaluate the first diagram we use the Weinberg Salam model for the weak couplings,

−ie[(2P + k)µgαλ − (P + 2k)αgµλ − (P − k)λgµα],

−i g

2
√

2
,

that are involved in the WWγ vertex and the coupling of the intermediate W to the weak

charged current in the pion respectively. Including the intermediate W propagator carrying

momentum P and the polarization vectors for the decaying W boson and the external photon

we obtain the amplitude
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MW = − eg

2
√

2
|Vud|fπε∗µ(k)ελ(P + k)

(gαβ − PαP β/m2
W )

P 2 −m2
W

×[(2P )µgαλ − (P + 2k)αgµλ − 2Pλgµα]Pβ, (4.4)

where we use the pion decay constant defined by the matrix element

〈π|d̄γβ(1− γ5)u|0〉 = ifπPβ. (4.5)

Using the orthogonality conditions εµ(k)kµ = 0 and ελ(P + k)(P + k)λ = 0, the amplitude

in the massless pion limit therefore simplifies to

MW = − eg

2
√

2
|Vud|fπε∗µ(k)ελ(P + k)gµλ, (4.6)

so we see that this W pole diagram contributes only to the axial-vector form factor H2.

The structure dependent amplitude can be written for the diagrams involving the emission

of the photon from the quarks at tree level. We can ignore the light quark masses in the

following expressions

Md =
−ige
2
√

2
Qd〈π|d̄γµ

( 6Pd+ 6k)

(Pd + k)2
γλ(1− γ5)u|0〉ε∗µ(k)ελ(P + k) (4.7)

Mu =
−ige
2
√

2
Qu〈π|d̄γλ(1− γ5)

(− 6Pu− 6k)

(Pu + k)2
γµu|0〉ε∗µ(k)ελ(P + k) (4.8)

In order to describe the distribution of the quark momenta within the pion we can assign

longitudinal momentum fractions to them with respect to the total outgoing pion momentum
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such that

Pd = xP (4.9)

Pu = x̄P, (4.10)

where x̄ = 1− x and x parametrizes the longitudinal momentum fraction so that 0 ≤ x ≤ 1.

To evaluate the matrix elements involved in the amplitudes we need to construct the

wave function for the pion which is a bound state of quarks. Here we employ the light cone

distribution amplitudes for light pseudo-scalar mesons up to the leading twist [64] and so we

can define the matrix

〈π(P )|d̄(z2)u(z1)|0〉 =
ifπ
4

(6Pγ5)

∫ 1

0

dxei(xp·z2+x̄p·z1)φπ(x), (4.11)

where φπ(x) = 6x(1 − x) is the leading twist distribution amplitude for the light meson in

the asymptotic limit. After integrating over the momentum fraction x and taking traces over

the Dirac structure in the relevant matrix elements the amplitude simplifies to

Mu+d =
ge

2
√

2

fπ
4

|Vud|
(P · k)

[6P · kgµλ − 2Pµkλ + 2iεαβµλkαPβ]ε∗µ(k)ελ(P + k). (4.12)

Since we are working in the massless pion limit, 2(P · k)→ m2
W in the frame of the decaying

W boson and the total amplitude including all three contributing diagrams is

MW+u+d =
ge

2
√

2
|Vud|

fπ
m2
W

[P · kgµλ − Pµkλ + iεαβµλkαPβ]ε∗µ(k)ελ(P + k), (4.13)

which we can see is gauge invariant. If we compare this amplitude to the general analysis

from Section 4.1, we see that the form factors that stem from the vector and axial-vector



48

component of the weak charged current is just simply H6 = H2 = −fπ
m2
W

. The decay width

that is obtained from the amplitude after the two-body phase space integrations is

Γ =
αGF

24
√

2
|Vud|2m3

W

(
1− m2

π

m2
W

)3(
2f 2

π

m2
W

)
, (4.14)

where α = e2/4π = 1/137 and GF is the fermi constant. Using the numerical values of mw =

80.3 GeV, fπ =0.132 GeV, |Vud| = 0.9 and the lifetime of the W boson from the PDG we

get the branching ratio for the process

Br[W± → π±γ] = 3.2× 10−9. (4.15)

4.3 Amplitude in SCET

We can write out the amplitude in SCET and obtain its factorization. The general

lorentz invariant and gauge invariant expression for the W± → π±γ decay as seen previously

in Section 4.1 is given by

M = − ge

2
√

2
|Vud|[H2(P · kgµλ − Pµkλ) + iH6ε

αβµλkαPβ]ε∗µ(k)ελ(P + k),

where H2 and H6 correspond to the axial-vector and vector form factors respectively.

If we look at this decay process in a SCET basis, the mass of the decaying W gives us a

hard scale MW . In its rest frame the W boson decays into a hard real photon and a light pion

that are back to back carrying about half the rest mass energy (in the limit of a massless

pion). The quarks constituting the pion are thus collinear and we can choose the momentum

of the photon along a light cone direction. If we parametrize a light cone direction along z

say, for the collinear particle nµ = (1, 0, 0, 1) and an orthogonal direction n̄µ = (1, 0, 0,−1)
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so that n2 = n̄2 = 0 and n · n̄ = 2, we can set the momentum of the particles in the light

cone basis to be

P µ =
MW

2
nµ

kµ =
MW

2
n̄µ. (4.16)

In this SCET basis, Eq.(4.3) is written as

M = − ge

2
√

2
|Vud|

M2
W

4
[H2(2gµλ − nµn̄λ) + iH6ε

µλαβn̄αnβ]ε∗µ(k)ελ(P + k). (4.17)

In fact we can notice that the nµn̄λ term multiplying ε∗µ(k) would vanish since in the rest

frame of the pion, (and thus in all other frames due to Lorentz invariance), the photon

polarization is orthogonal to its momentum and therefore also orthogonal to the back to

back pion momentum.

We can now perform a matching at the required order to the operator in the effective

theory and obtain the relevant form factors in SCET. At tree level the amplitude can be

written from the diagrams in Fig. 4.2.1(b). The pion consists of collinear quarks so the full

theory current would match on to operators of the form

O = [ξ̄n,PdW ]ΓC(n̄ · p, µ)[W †ξn,Pu ], (4.18)

where C is a hard matching coefficient that is a function of the large collinear momentum

and the cut-off scale µ of the effective theory [65]. The C’s describe the short distance

interactions. The presence of the Wilson lines built out of collinear gluon fields ensures that

the operator is invariant under collinear gauge transformations and are required to connect

the non-local fields

W (y,−∞) = P exp

[
ig

∫ y

−∞
ds n̄ · An(sn̄)

]
. (4.19)
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Figure 4.3.1: Matching full theory diagrams to effective diagram at tree level

Using time ordered products of electromagnetic and weak currents and inserting the

appropriate quark propagator, we can write out the tree level amplitude for the diagrams in

Fig. 4.3.1 as

Md =
−ige
2
√

2
Qd〈π|[ξ̄n,PdW ]γµ⊥

(x 6n+ 6n̄)

2xMw

γλ(1− γ5)[W †ξn,Pu ]|0〉ε∗µ(k)ελ(P + k) (4.20)

Mu =
−ige
2
√

2
Qu〈π|[ξ̄n,PdW ]γλ(1− γ5)

(−x̄ 6n− 6n̄)

2x̄Mw

γµ⊥[W †ξn,Pu ]|0〉ε∗µ(k)ελ(P + k). (4.21)

Here x is the fraction of the longitudinal pion momentum carried by the down quark and

only the transverse component of the electromagnetic vertex, γµ⊥ = γµ− nµ 6̄n
2
− n̄µ 6n

2
is relevant

since the photon polarization is orthogonal to its momentum along the light cone. Using

the equations of motion for the collinear fields 6nξn,P = 0 , 6n6̄n
4
ξn,P = ξn,P we can simplify the

amplitude expressions and match their sum onto Eq.(4.3) to obtain the expressions for the

form factors

H2 =
i

M3
W

(
Qd

x
− Qu

x̄

)
〈π|[ξ̄n,PdW ] 6n̄(1− γ5)[W †ξn,Pu ]|0〉 − 4fπ

M2
W

(4.22)

H6 =
i

M3
W

(
Qd

x
+
Qu

x̄

)
〈π|[ξ̄n,PdW ] 6n̄(1− γ5)[W †ξn,Pu ]|0〉. (4.23)

The second term in H2 corresponds to the contribution from the W emitting the photon. In

SCET the matrix element can be written in terms of the light cone distribution amplitude

for the pion by boosting the expression involving the pion wavefunction defined by Brodsky-

Lepage. Defining C2 = Qd
x
− Qu

x̄
, C6 = Qd

x
+ Qu

x̄
and Γ = 6n̄γ5, we obtain the factorization
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C2,6〈π|[ξ̄n,PdW ]Γ[W †ξn,Pu ]|0〉 = −ifπn̄ · Pπ
∫ 1

0

C2,6φπ(x)dx. (4.24)

We can use the leading twist pion distribution amplitude as before and we know n̄ ·P = MW .

After integrating over the momentum fraction we obtain the result H2 = H6 = − fπ
M2
W

which

is the same as the result from PQCD approach at tree level. We therefore have established

a factorization formula so that the form factors can be written as a convolution of a hard

matching coefficient parametrizing the short distance, with the light-cone pion distribution

wavefunction. We expect this factorization to hold at all orders.

4.4 Summary and Further Work

We studied the rare radiative exclusive decay of the W boson into a pion and an energetic

photon. We calculated the relevant form factors and obtained a branching ratio for the

process at tree level in pQCD and SCET. The enhancement in the branching ratio claimed

by [63] was not found at tree level. We showed the factorization of the form factors in

the amplitude into a hard matching coefficient and a light cone distribution function at tree

level in SCET. We expect such a factorization to occur at higher orders as well and we are

calculating the order αs corrections at one-loop in SCET. We have calculated the one-loop

diagrams in pQCD, which include collinear virtual gluons that contribute to the structure

dependent part of the amplitude akin to [66]. We can then match them onto the relevant

loop diagrams in the effective theory, as shown in Fig. 4.4.1, to the obtain higher order

corrections to the transition form factors in SCET.
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1 LOOP CONTRIBUTIONS 

36
 

• Full Theory                                        vs                                        Effective theory 
 
 
 

 
 
 

 
 
 
 
 
 

(Continuing efforts) 

Figure 4.4.1: Matching diagrams from full theory onto effective theory at one-loop

We wish to verify wether the enhancement is an artifact of the constituent quark model

being used in [63] or if it might arise from the one-loop diagrams and resummation of any

logarithmic terms that arise from the higher order calculations. We also aim to extend the

calculations to include the charmed mesons in the decay, such as W → Dγ.
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CHAPTER 5

SUPER-WIMPS IN HEAVY MESON DECAYS

5.1 Weaker than WIMPS

There is evidence that the amount of dark matter (DM) in the universe by far dominates

that of the luminous matter. It comes from a variety of cosmological sources such as the

rotation curves of galaxies [14], features of CMB [15], gravitational lensing [16] and large

scale structures [17]. While the presence of DM is firmly established, its basic properties

are still a subject of debate. If dark matter is comprised of some fundamental particle,

experimentally-measured properties, such as its relic abundance or production cross-sections

can be predicted. Experimental measurements of the abundance ΩDMh
2 ∼ 0.12 by the

WMAP collaboration [67] can be used to place constraints on the masses and interaction

strengths of the DM particles. Indeed, the relation

ΩDMh
2 ∼ 〈σannvrel〉−1 ∝ M2

g4
, (5.1)

with M and g being the mass and the interaction strength associated with DM annihila-

tion, implies that, for a weakly-interacting massive particle (WIMP) of DM, the mass scale

should be set around the electroweak scale. Yet, difficulties in understanding of small-scale

gravitational clustering in numerical simulations with WIMPs may lead to preference being

given to much lighter DM particles. Particularly there has been interest in studying models

of light dark matter particles with masses of the keV range [68, 69]. According to Eq. (5.1),

the light mass of the dark matter particle then implies a superweak interaction between the

dark matter and standard model (SM) sector [70]. Several models with light O(keV-MeV)
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DM particles, or super-WIMPs, have been proposed [68, 69].

One of the main features of the super-WIMP models is that DM particles do not need

to be stable against decays to even lighter SM particles [68]. This implies that one does not

need to impose an ad-hoc Z2 symmetry when constructing an effective Lagrangian for DM

interactions with the standard model fields, so DM particles can be emitted and absorbed

by SM particles. Due to their extremely small couplings to the SM particles, experimental

searches for super-WIMPs must be performed at experiments where large statistics are avail-

able. In addition, the experiments must be able to resolve signals with missing energy [71].

Super-B factories fit this bill perfectly.

In this chapter we focus on bosonic super-WIMP models [68, 69] for dark matter candi-

dates and attempt to constrain their couplings with the standard model through examining

leptonic meson decays. The idea is quite straightforward. In the standard model the leptonic

decay width of, say, a B-meson, i.e. the process B → `ν̄, is helicity-suppressed by (m`/mB)2

due to the left-handed nature of weak interactions [72],

Γ(B → `ν̄) =
G2
F

8π
|Vub|2f 2

Bm
3
B

m2
`

m2
B

(
1− m2

`

m2
B

)2

. (5.2)

Similar formulas are available for charmed meson D+ and Ds decays with obvious substi-

tution of parameters. The only non-perturbative parameter affecting Eq. (5.2), the heavy

meson decay constant fB, can be reliably estimated on the lattice [74], so the branching ratio

for this process can be predicted quite reliably.

The helicity suppression arises from the necessary helicity flip on the outgoing lepton due

to angular momentum conservation as the initial state meson is spinless. The suppression

can be overcome by introducing a third particle to the final state that contributes to total

angular momentum [38, 39, 40] (see Fig. 5.1.1). If that particle is a light DM candidate,

helicity suppression is traded for a small coupling strength of DM-SM interaction. In this

case, the charged lepton spectrum of the 3-body B → `ν̄` + X (with X being the DM
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Figure 5.1.1: Diagrams for the super-WIMP emission in B → `ν̄`X. Similar diagrams exist
for D(s) decays. Note that the graph (b) is absent for the vector light dark matter particles
discussed in section 5.4.
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candidate) process will be markedly different from the spectrum of two-body B → `ν̄` decay.

Then, the rate for the process B → ` + /E, with /E being missing energy, can be used to

constrain properties of light DM particles.

We shall consider two examples of super-WIMPs, the “dark photon” spin-1 particle, and

a spin-0, axion-like state. The discussion of the vector dark matter effects is similar to a

calculation of the radiative leptonic decay [38, 39, 40], i.e. the spin of the added DM particle

brings the required unit of angular momentum. In the case of axion-like DM candidate,

there is a derivative coupling to the SM allowing the pseudoscalar particle to carry orbital

angular momentum and hence overcome helicity suppression as well. As a side note, we add

that the models of new physics considered here are very different from the models that are

usually constrained in the new physics searches with leptonic decays of heavy mesons [73].

This chapter is organized as follows. In Section 5.2 we examine the decay width for the

process M → `ν̄` + X for X = a being a spin-0 particle. We consider a particular two-

Higgs doublet model, taking into account DM-Higgs mixing in Section 5.3. In Section 5.4

we consider constraints on a spin-1 super-WIMP candidate. We conclude in Section 5.5.

5.2 Simple Axion-Like Dark Matter

We consider first an “axion-like” dark matter (ALDM) model, as suggested in [68] and

study the tree-level interactions with the standard model fermions. The most general La-

grangian consists of a combination of dimension-five operators,

La = −∂µa
fa

ψ̄γµγ5ψ +
Cγ
fa
aFµνF̃

µν , (5.3)

where X = a is the DM particle and the coupling constant fa has units of mass. Taking into

account the chiral anomaly we can substitute the second term with a combination of vector
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and axial-vector fermionic currents,

La = −
(

1

fa
+

4πCγ
faα

)
∂µa ψ̄γ

µγ5ψ − imψ

(
8πCγ
faα

)
aψ̄γ5ψ. (5.4)

The Feynman diagrams that contribute to the meson decay, for example B → `ν̄` + a, are

shown by Fig 5.1.1. The amplitude for the emission of a in the transition M → `ν̄` + a can

be written as

AM→`ν̄a = A` +Aq, (5.5)

where Aq, the quark contribution, represents emission of a from the quarks that build up the

meson and A`, the leptonic contribution, describe emission of a from the final state leptons.

Let’s consider the lepton amplitude first. Here we can parameterize the axial matrix

elements contained in the amplitude in terms of the decay constant fB as

〈0|ūγµγ5b|B〉 = ifBP
µ
B. (5.6)

If the mass of the axion-like DM particle is small (ma → 0), the leptonic contribution

simplifies to

A` = i
√

2GFVub
fB
fa
m`

(
m`

2k · p`
[ū` 6 k(1− γ5)vν ]− [ū`(1− γ5)vν ]

)
. (5.7)

Here k is the DM momentum. Clearly, this contribution is proportional to the lepton mass

and can, in principle, be neglected in what follows. The contribution to the decay amplitude

from the DM emission from the quark current is

Aq = i〈0|ūΓµb|B〉[ū`γµ(1− γ5)vν ] (5.8)
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where the current ūΓµb is obtained from the diagrams in Figure 5.1.1 (a) and (c),

Γµ =
GF√
2fa

Vub

[
(6 kγ5)(6 k− 6 pu +mu)γ

µ(1− γ5)

m2
a − 2pu · k

+
γµ(1− γ5)(6 pb− 6 k +mb)(6 kγ5)

m2
a − 2pb · k

]
. (5.9)

Since the meson is a bound state of quarks we must use a model to describe the effective

quark-antiquark distribution. We choose to follow Refs. [75] and [76], where the wave function

for a ground state meson M can be written in the form

ψM =
Ic√

6
φM(x)γ5(6 PM +MMgM(x)). (5.10)

Here Ic is the identity in color space and x is the momentum fraction carried by one of the

quarks. For a heavy meson H it would be convenient to assign x as a momentum fraction

carried by the heavy quark. Also, for a heavy meson, gH ∼ 1, and in the case of a light

meson gL = 0. For the distribution amplitudes of a heavy or light meson we use

φL ∼ x(1− x), (5.11)

φH ∼
[

(m2/M2
H)

1− x +
1

x
− 1

]−2

, (5.12)

where m is the mass of the light quark and the meson decay constant is related to the

normalization of the distribution amplitude,

∫ 1

0

φM(x)dx =
fM

2
√

6
. (5.13)

The matrix element can then be calculated by integrating over the momentum fraction [76]

〈0|q̄ΓµQ|M〉 =

∫ 1

0

dx Tr [ΓµψM ] . (5.14)

Neglecting the mass of the axion-like DM particle, the decay amplitude in the B± case
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simplifies to

Aq = i

√
3GFVubMB

fa(k · PB)

(
MBΦB

1 −mbΦ
B
0

) [
¯̀ 6 k(1− γ5)ν

]
, (5.15)

where mb is the mass of the b-quark (or, in general, a down-type quark in the decay), and

we defined

ΦM
n =

∫ 1

0

φM(x)

x(1− x)
xndx (5.16)

The total decay width is, then,

ΓB→a`ν` =
G2
Ff

2
B|Vub|2M5

B

64π3f 2
a

[
1

6
(2ρ2 + 3ρ4 + 12ρ4 log ρ− 6ρ6 + ρ8)

+ g2
B Φ(mb,MB)2(1− 6ρ2 − 12ρ4 log ρ+ 3ρ4 + 2ρ6)

]
, (5.17)

where ρ ≡ m`/mB. Also,

Φ(mb,MB) =
mbΦ0 −MBΦ1

fBMB

. (5.18)

Note that Φ(mb,MB) ∝ 1/m, which is consistent with spin-flipping transition in a quark

model, which would explain why this part of the decay rate is not proportional to m`. Similar

results for other heavy mesons, like D+ and D+
s are obtained by the obvious substitution of

relevant parameters, such as masses, decay constants and CKM matrix elements.

Experimentally, the leptonic decays of heavy mesons are best studied at the e+e− flavor

factories where a pair of M+M− heavy mesons are created. The study is usually done by

fully reconstructing one of the heavy mesons and then finding a candidate lepton track of

opposite flavor to the tagged meson. The kinematical constraints on the lepton are then

used to identify the decays with missing energy as leptonic decay.

In the future super-B factories, special studies of the lepton spectrum in M → `+missing

energy can be done using this technique to constrain the DM parameters from Eq. (5.17).

The lepton energy distributions, which are expected to be quite different for the three-body
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Channel
(Seen)

Experiment
(Maximum)

Standard
Model

f2aRa(E0)
E0 = 100 MeV

Rγs (E′0)
E′0 = 50 MeV

Rγs (E′0)
E′0 = 100 MeV

Rγs (E′0)
E′0 = 300 MeV

B
(
B± → τ±ν̄τ

)
1.7× 10−4 7.9× 10−5 1.6× 102 4.9× 10−5 1.9× 10−4 1.9× 10−3

B
(
D± → µ±ν̄µ

)
3.8× 10−4 3.6× 10−4 3.1× 103 4.0× 10−3 1.8× 10−2 1.7× 10−2

B
(
D±s → µ±ν̄µ

)
5.9× 10−3 5.3× 10−3 4.6× 102 2.0× 10−4 7.8× 10−4 6.0× 10−3

B
(
D±s → τ±ν̄τ

)
5.4× 10−2 5.1× 10−2 6.5× 100 2.1× 10−5 8.0× 10−5 6.2× 10−4

Channel (Unseen)

B
(
B± → e±ν̄e

)
< 1.9× 10−6 8.3× 10−12 6.6× 107 4.6× 102 1.8× 103 1.6× 104

B
(
B± → µ±ν̄µ

)
< 1.0× 10−6 3.5× 10−7 1.8× 103 1.1× 10−2 4.3× 10−2 3.6× 10−1

B
(
D± → e±ν̄e

)
< 8.8× 10−6 8.5× 10−9 3.1× 106 1.9× 102 7.6× 102 7.1× 103

B
(
D± → τ±ν̄τ

)
< 1.2× 10−3 9.7× 10−4 1.0× 101 1.7× 10−3 7.7× 10−3 6.2× 10−2

B
(
D±s → e±ν̄e

)
< 1.2× 10−4 1.2× 10−7 9.8× 106 8.6× 100 3.3× 101 2.6× 102

Table 5.2.1: Constraints on fa from various decays. The last three columns represent possible
soft photon pollution of M → `ν̄` decays for three different values of photon energy cutoff.

decays B− → a`−ν̄` are shown (normalized) in Fig. 5.2.1 for each lepton decay process.

However, we can put some constraints on the DM coupling parameters using the currently

available data on M → `ν̄`. The experimental procedure outlined above implies that what

is experimentally detected is the combination,

Γexp(M → `ν̄`) = ΓSM(M → `ν̄`) +

∫
E<E0

dEa
dΓ(M → a`ν̄`)

dEa

= ΓSM(M → `ν̄`) [1 +Ra(E0)] , (5.19)

where E0 is the energy cutoff that is specific for each experiment. Equivalently, cutoff in q2

can also be used. In the above formula we defined

Ra(E0) =
1

ΓSM(M → `ν̄`)

∫
E<E0

dEa
dΓ(M → a`ν̄`)

dEa
. (5.20)

Our bounds on the DM couplings from different decay modes are reported in Table 5.2.1

for the cutoff values of E0 = 100 MeV. Note that similar expressions for the leptonic decays

of the light mesons, such as π → a`ν̄ and K → a`ν̄ come out to be proportional to the

mass of the final state lepton. This is due to the fact that in the light meson decay the term

proportional to g vanishes. Thus, those decays do not offer the same relative enhancement of
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the three-body decays due to removal of the helicity suppression in the two-body channel. It

is interesting to note that the same is also true for the heavy mesons if a naive non-relativistic

constituent quark model (NRCQM), similar to the one used in Refs. [77, 78] is employed.

We checked that a simple replacement

pb =
mb

mB

PB, pu =
mu

mB

PB (5.21)

advocated in [77, 78] is equivalent to use of a symmetric (with respect to the momentum

fraction carried by the heavy quark) distribution amplitude, which is not true in general.

Currently, the SM predictions for the B− → `−ν̄` decay for ` = µ, e are significantly

smaller than the available experimental upper bounds [79, 80], which is due to the smallness

of Vub and the helicity suppression of this process. Thus, even in the standard model, there

is a possibility that some of the processes B− → γs`
−ν̄`, with γs being the soft photon ,

are missed by the experimental detector. Such photons would affect the bounds on the DM

couplings reported in Table 5.2.1.

The issue of the soft photon “contamination” of B− → `−ν̄` is non-trivial if model-

independent estimates of the contributions are required (for the most recent studies, see

[38]). In order to take those into account, the formula in Eq. (5.19) should be modified to

Γexp(M → `ν̄`) = ΓSM(M → `ν̄`) [1 +Ra(E0) +Rγs(E
′
0)] . (5.22)

In general, the experimental soft photon cutoff E ′0 could be different from the DM emission

cutoff E0. Since we are only interested in the upper bounds on the DM couplings, this

issue is not very relevant here, as the amplitudes with soft photons do not interfere with the

amplitudes with DM emission. Nevertheless, for the purpose of completeness, we evaluated

the possible impact of undetected soft photons using NRCQM as seen in [77, 78]. The results

are presented in Table 5.2.1 for different values of cutoff on the photon’s energy. We present
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Figure 5.2.1: Normalized electron (dashed) and muon (solid) energy distributions for the
heavy (B±, D±, D±s ) meson decay channels. Here ma = 0 and x = E`/mB.

the NRCQM mass parameters in Table 5.2.2 with the decay constants calculated in [81].

The relevant plots for D (Ds) decays can be obtained upon substitution MB → MD(Ds),

fB → fD(Ds), and Vub → Vcd(cs). Note that there is no CKM suppression for Ds decays.

In order to bound fa we use the experimentally seen transitions B → τ ν̄, D(s) → µν̄, and

Ds → τ ν̄. We note that the soft photon “contamination” can be quite large, up to 10% of

the standard model prediction for the two body decay. The resulting fits on fa can be found

in Table 5.2.3. As one can see, the best constraint comes from the D± → µ±ν̄µ decay where

experimental and theoretical branching ratios are in close agreement.
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Quark Constituent Mass

mu 335.5 MeV
md 339.5 MeV
ms 486 MeV
mc 1550 MeV
mb 4730 MeV

Table 5.2.2: Constituent quark masses [82] used in calculations.

Channel fa,MeV

B (B± → τ±ν̄τ ) 12
B (D± → µ±ν̄µ) 236
B (D±

s → µ±ν̄µ) 62
B (D±

s → τ±ν̄τ ) 11

Table 5.2.3: Constraint on fa using the various seen decay channels.

5.3 Axion-like Dark Matter in a Type II Two Higgs

Doublet Model

The generic axion-like DM considered in the previous section was an example of a simple

augmentation of the standard model by an axion-like dark matter particle. A somewhat

different picture can emerge if those particles are embedded in more elaborate beyond the

standard model (BSM) scenarios. For example, in models of heavy dark matter of the “ax-

ion portal”-type [83], spontaneous breaking of the Peccei-Quinn (PQ) symmetry leads to an

axion-like particle that can mix with the CP-odd Higgs A0 of a two Higgs doublet model

(2HDM). For the sufficiently small values of its mass this state itself can play the role of

the light DM particle. The decays under consideration can be derived from the B → `νA0

amplitude. An interesting feature of this model is the dependence of the light DM coupling

upon the quark mass. This means that the decay rate would be dominated by the contri-

butions enhanced by the heavy quark mass. This would also mean that the astrophysical
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constraints on the axion-like DM parameters might not probe all of the parameter space in

this model.

In a concrete model [83], the PQ symmetry U(1)PQ is broken by a large vacuum expec-

tation value 〈S〉 ≡ fa � vEW of a complex scalar singlet Φ. As in [84], we shall work in an

interaction basis so that the axion state appears in Φ as

Φ = fa exp

[
ia√
2fa

]
(5.23)

and A0 appears in the Higgs doublets in the form

Φu =

 vu exp

[
i cotβ√
2vEW

A0

]
0

 , Φd =

 0

vd exp

[
i tanβ√
2vEW

A0

]
 , (5.24)

where we suppress the charged and CP-even Higgses for simplicity and define tan β = vu/vd

and vEW =
√
v2
u + v2

d ≡ mW
g

. We choose the operator that communicates PQ charge to the

standard model to be of the form1

L = λΦ2ΦuΦd + h.c. (5.25)

This term contains the mass terms and, upon diagonalizing, the physical states in this basis

are given by [84]

ap = a cos θ − A0 sin θ (5.26)

A0
p = a sin θ + A0 cos θ (5.27)

where tan θ = (vEW/fa) sin 2β. Here ap denotes the “physical” axion-like state. Thus, the

1This is the case of the so-called Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) axion, although other forms
of the interaction term with other powers of the scalar field Φ are possible [84].
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fa(MeV ) fa(MeV ) fa(MeV ) fa(MeV )
Channel tanβ = 1 tanβ = 5 tanβ = 10 tanβ = 20

B (B± → τ±ν̄τ ) 70 340 357 361
B (D± → µ±ν̄µ) 416 2874 3078 3131
B (D±

s → µ±ν̄µ) 532 1380 1499 1529

Table 5.3.1: Constraint on fa using the observed decays for various tan βs.

amplitude for B → `νap can be derived from

M(B → `νap) = − sin θM(B → `νA0) + cos θM(B → `νa) (5.28)

In a type II 2HDM [84, 85], the relevant Yukawa interactions of the CP-odd Higgs with

fermions are given by

LA0ff̄ =
ig tan β

2mW

mdd̄γ5dA
0 +

ig cot β

2mW

muūγ5uA
0 (5.29)

where d = {d, s, b} refers to the down type quarks and u = {u, c, t} refers to the up type

quarks. The interaction with leptons are the same as above with d→ ` and u→ ν.

In the axion portal scenario the axion mass is predicted to lie within a specific range of

360 < ma ≤ 800 MeV to explain the galactic positron excess [83]. Using the quark model

introduced in the previous section we obtain the decay width

Γ (B → `ν`ap) =
G2
F |Vub|2m3

B

256π3
(
f 2
a + v2

EW sin2 2β
)

×
[
cos 2β

(
muΦ

B
1 +mb(Φ

B
0 − ΦB

1 )
)

+ 5
[
mb(Φ

B
1 − ΦB

0 ) +muΦ
B
1

]]2
(5.30)

×
[

12x4
a log(xa)− 4x6

a + 3x4
a + (ρ− 1)4(4(ρ− 2)ρ+ 1)− 12(ρ− 1)4 log(1− ρ)

]

Here we defined xa = ma/mB, and ρ = m`/mB. If we assume fa � vEW sin 2β we can then

provide bounds on fa as seen in Table 5.3.1. Just like in the previous section, the results for

other decays, such as D(s) → `ν̄`, can be obtained by the trivial substitution of masses and
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decay constants.

5.4 Light Vector Dark Matter

Another possibility for a super-WIMP particle is a light (keV-range) vector dark matter

boson (LVDM) coupled to the SM solely through kinetic mixing with the hypercharge field

strength [68]. This can be done consistently by postulating an additional U(1)V symmetry.

The relevant terms in the Lagrangian are

L = −1

4
FµνF

µν − 1

4
VµνV

µν − κ

2
VµνF

µν +
m2
V

2
VµV

µ + Lh′ , (5.31)

where Lh′ contains terms with, say, the Higgs field which breaks the U(1)V symmetry, κ

parameterizes the strength of kinetic mixing, and, for simplicity, we directly work with the

photon field Aµ. In this Lagrangian only the photon Aµ fields (conventionally) couple to the

SM fermion currents.

It is convenient to rotate out the kinetic mixing term in Eq. (5.31) with field redefinitions

A→ A′ − κ√
1− κ2

V ′, V → 1√
1− κ2

V ′. (5.32)

The mass mV will now be redefined as mV → mV√
1−κ2 . Also, both A′µ and V ′µ now couple to

the SM fermion currents via

Lf = −eQfA
′
µψ̄fγ

µψf −
κeQf√
1− κ2

V ′µψ̄fγ
µψf , (5.33)

where Qf is the charge of the interacting fermion thus introducing our new vector boson’s

coupling to the SM fermions. Calculations can now be carried out with the approximate
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modified charge coupling for κ� 1,

κe√
1− κ2

≈ κe. (5.34)

As we can see, in this case the coupling of the physical photon did not change much compared

to the original field Aµ, while the DM field V ′µ acquired small gauge coupling κe. It is now

trivial to calculate the process B → `ν̄VDM , as it can be done similarly to the case of the

soft photon emission in Sect. 5.2. Employing the gauge condition ε · k = 0 for the DM fields,

the amplitudes become in the limit mV → 0

Aq = i
GFVubκeε

∗α

6k · pB
[Aµα

¯̀γµ(1− γ5)ν` +B ¯̀γα(1− γ5)ν` + Cα ¯̀(1− γ5)ν`,

+ Dµ ¯̀σµα(1 + γ5)ν`] (5.35)

with the coefficients

Aµα =
[
3
√

2fB − 2
√

3(ΦB
0 + ΦB

1 )
]
kµqα − 2

√
3(ΦB

0 − 3ΦB
1 )iεµασρkσqρ, (5.36)

B = −
[
3
√

2fB − 2
√

3(ΦB
0 + ΦB

1 )
]

(k · q)− 3√
2
fBm

2
B

− 2
√

3gmB [m2(φ0 − 3φ1) + 2mBφ1] , (5.37)

Cα = 3
√

2fBm`
qαk · p` − pα` k · q

k · p`
, (5.38)

Dµ = −3
√

2ifBm`
k · q
k · p`

kµ, (5.39)

and q = p` + pν . Again, we fit the parameter κ using the same data as in the axion-like DM

case. The results are shown in Figure 5.4.1 where the D± → µ±ν̄µV decay can yield the

best bound. Using the best constraint on κ from the D± → µ±ν̄µV decay we can limit the

contribution to yet-to-be-seen decays in Table 5.4.2.

As we can see, the constraints on the kinetic mixing parameter κ are not very strong,

but could be improved in the next round of experiments at super-flavor factories.
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Figure 5.4.1: Normalized electron (dashed) and muon (solid) energy distributions for the
heavy {(B±, D±, D±s } meson decay channels. Here mV = 0 and x = E`/mB.

Channel
κ−2RV (E0)

E0 = 100 MeV
κ

B (B± → τ±ν̄τ ) 8.8× 10−3 ≤ 11.6
B (D± → µ±ν̄µ) 5.7× 10−1 ≤ 0.31
B (D±

s → µ±ν̄µ) 5.4× 10−2 ≤ 1.49
B (D±

s → τ±ν̄τ ) 1.3× 10−4 ≤ 20.8

B (B± → e±ν̄e) 1.8× 103 ≤ 11.2
B (B± → µ±ν̄µ) 1.0× 10−1 ≤ 4.17
B (D± → e±ν̄e) 1.5× 103 ≤ 0.83
B (D± → τ±ν̄τ ) 1.8× 10−4 ≤ 36.4
B (D±

s → e±ν̄e) 5.2× 102 ≤ 1.37

Table 5.4.1: Constraints on κ using various decay channels. All other values are the same
as in Table 5.2.1.



69

Channel B(κ = 0.31)

B (B± → e±ν̄e) 1.4× 10−9

B (B± → µ±ν̄µ) 3.6× 10−9

B (D± → e±ν̄e) 1.2× 10−6

B (D± → τ±ν̄τ ) 1.7× 10−8

B (D±
s → e±ν̄e) 6.2× 10−6

Table 5.4.2: Contributions to various yet-to-be-seen channels using the the fit on κ in Ta-
ble 5.4.1.

5.5 Results

We considered constraints on the parameters of different types of bosonic super-WIMP

dark matter from leptonic decays of heavy mesons. The main idea rests with the fact

that in the standard model the two-body leptonic decay width of a heavy meson M =

{B±, D±, D±s }, or Γ(M → `ν̄), is helicity-suppressed by (m`/mB)2 due to the left-handed

nature of weak interactions [72]. A similar three-body decay M → `ν̄`X decay, which

has similar experimental signature, is not helicity suppressed. We put constraints on the

couplings of such DM particles to quarks. We note that the models of new physics considered

here are very different from the models that are usually constrained in the new physics

searches with leptonic decays of heavy mesons [73].
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CHAPTER 6

SUMMARY

In this doctoral dissertation we have discussed the possible standard model contributions

to select leptonic heavy meson decay modes. We calculated a 1 − 3% increase in Bs →

µ+µ− from soft photon contributions through select vector resonances is a nearly model-

independent method.

We have analyzed the radiative exclusive W decay W± → π±γ and obtained the form

factors involved in describing them at leading order. We calculated the branching ratio for

the process and did not notice any enhancement. We established a factorization in SCET for

the form factors into a hard matching coefficient and a meson distribution function which

would exist at all orders. We are working on improving the calculation at next-to-leading

order with the inclusion of 1-loop contributions and resummation of logarithmic terms.

We have computed constraints for two super-WIMP dark matter models from the rare

leptonic decays of heavy mesons. While these are not as tight as constraints from new

physics, tighter experimental bounds and measurements of particular channels with increased

statistics will allow our calculation to be refit more stringently.
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In this doctoral dissertation I discuss the phenomenology of some weak interaction decays

using a model independent approach by employing effective field theories. I discuss the soft

photon contribution and background effect to the rare dimuonic decay of the neutral B

meson. I also study some radiative exclusive W boson decays in the standard model in the

context of pQCD and SCET. Additionally I invoke leptonic decays of charged mesons to

constrain two general models of light dark matter.
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