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Prior to quantitative analyses, meta-analysts often explore descriptive characteristics of 
effect sizes. A graphic is proposed that treats effect sizes as fuzzy numbers. This plot can 
provide meta-analysts with such information such as heterogeneity of effects, precision of 
estimates, possible clusters, and existence of outliers. 
 
Keywords: Meta-analysis, fuzzy numbers, meta-analysis graphics 

 

Meta-Analysis and Graphics 

Meta-analysis is the statistical science of analyzing a collection of results from a 

set of studies with the intention of integrating individual findings (Glass, 1976). 

Over the past several decades, many fields have not only embraced the practical 

uses of meta-analysis, but have consistently strived to explore, enhance, and create 

new methodologies to answer complex research questions. Graphical displays of 

data in meta-analysis are intrinsic to answering such questions. As meta-analysis 

has evolved as a science, several graphical approaches have been developed (for 

overviews and usage suggestions, see Anzures-Cabrera & Higgins, 2010; Bax et al., 

2009). The study and introduction of new graphical methods remains active today 

(e.g., Schild & Voracek, 2015). 

The purposes of these graphics vary. Some aim to explore effect-size 

heterogeneity. Others reveal the possibility of publication bias. Perhaps the most 

widely used graphic is the forest plot. A forest plot vertically or horizontally “stacks” 

confidence intervals of collected effects in some predetermined order (e.g., by date, 

alphabetically). This display has the potential to inform meta-analysts on a variety 
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of descriptive qualities that are critical to interpretation including within-study 

variability, study-to-study variability, presence of outliers, and even differential 

effects due to moderators. However, forest plots have their weaknesses. Because 

forest plots stack effect-size confidence intervals, plots with a large number of 

effects become quite large, and thus can suffer from decreased usability and 

interpretability. Related to this, large forest plots may cover several pages, further 

complicating efficient and precise interpretation. As will be shown later, the fuzzy 

number graphic approach contrasts this by superimposing effects. 

When vertically or horizontally stacking effects using forest plots, one must 

make a decision as to how to order effects. Some orderings can lead to faulty 

inferences (e.g., false suggestions of effect-size clusters). For example, in some 

meta-analyses, ordering effects by moderators (e.g., by publication year) may help 

to explore possible or suspected differential effects. In other meta-analyses, random 

or non-meaningful effect-size orderings (e.g., by author name) have the potential 

to erroneously suggest moderating effects or effect-size clusters. The proposed plot 

automatically orders effects according to magnitude. 

The purpose of this article is to describe a new method of graphing effect sizes 

in meta-analysis using the same study information required for forest plots (i.e., 

estimates of effect sizes and their variances). The fuzzy number plot may prove 

useful when attempting to initially describe a collection of effects. To begin, 

condensed overviews of fuzzy sets and fuzzy-numbers are provided. These central 

concepts are then developed for the context of meta-analysis. Several examples 

using existing meta-analyses are provided. The paper concludes with several 

remarks. 

Crisp Sets and Fuzzy Sets 

In classical set theory, at the most intuitive level, a set can be described as a 

collection of elements (Halmos, 1960). An element is either in a set or it is not. In 

the context of fuzzy set theory, classical sets are often referred to as crisp sets. This 

terminology is derived from the indicator-like nature of the membership function 

which defines a crisp set. Let F be the crisp set of elements x from some universal 

set X. The membership function of X, denoted as μF, assigns a membership grade 

to all elements x ∈ X. In the case of crisp sets, membership functions are 

deterministic, namely 
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1,

0,
F

x F

x F



 


 . (1) 

 

As shown in (1), an element 𝑥 is either completely included in or excluded from 𝐹. 

Moving away from crisp sets, a fuzzy set F  containing elements x ∈ X is also 

defined by a membership function, which can be presented as a mapping of X to 

the closed interval [0, 1]. In the case of crisp sets, the membership function is a 

mapping of X to the finite set {0, 1}. The distinction between mapping to an interval 

of membership grades and mapping to a finite set of membership grades is critical. 

The first mapping assigns a membership grade to each element x ∈ X from the 

closed interval [0, 1] while the second mapping assigns a membership grade to each 

element x ∈ X from the finite set{0, 1}. Succinctly, a fuzzy set F  can be expressed 

as 

 

        , | , 0,1
F F

F x x x X x     . (2) 

 

As  
F

x  approaches unity, the degree of membership of x in F  increases, and as 

 
F

x  approaches zero, the degree of membership of x in F  decreases (Zadeh, 

1965). A membership grade of unity implies an element is completely included in 

the fuzzy set, while a membership grade of zero implies the element is completely 

excluded from the fuzzy set. One can consider membership grades for fuzzy sets as 

numerical specifications as to how well some element x ∈ X agrees with the 

imprecise mechanism (the membership function) which formulates the fuzzy set 

(Negoiță & Ralescu, 1987). Below are two heuristic examples of fuzzy sets. 

Magnetic Strength Example 

Suppose A  is a fuzzy set of strong magnetic field strengths (Gs). What precisely 

determines a strong magnetic field is a fuzzy concept. In this example, 
A

  assigns 

membership grades to elements a in A  such that larger membership grades 

correspond with stronger magnetic strengths (i.e., greater Gs). As an example, one 

possible fuzzy set consisting of four elements is A  = {(30, 0.2), (74, 0.6), (96, 0.7), 

(302, 1)}. For the fuzzy set A , an element (δ, ϵ)  is the paring of a magnetic strength 

(δ) with its membership grade (ϵ). Although the explicit membership function is 

not presented here, it is clearly evident that as magnetic strength increases, so does 

the membership grade. 
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Child Intelligence Example 

Suppose B  is a fuzzy set of high-scoring results from the Wechsler Preschool and 

Primary Scale of Intelligence (Wechsler, 2002). The concept of a high-scoring 

result is also fuzzy. As with the previous example, 
B

  assigns membership grades 

to elements b in B . Larger membership grades correspond with higher intelligence 

scores. Furthermore, suppose that B = {(61, 0.2), (81, 0.3), (111, 0.8), (145, 1)}. 

Similar to the previous example, for the fuzzy set B , an element (δ, ϵ) is the paring 

of an intelligence score (δ) with its membership grade (ϵ). As a child's intelligence 

score increases, the grade of membership increases. 

Confidence Intervals as Fuzzy Sets 

One relevant application of fuzzy sets in meta-analysis uses information from 

effect-size confidence intervals. The very nature of the confidence interval and its 

underlying notion of precision of estimating a parameter aligns with the ability of 

fuzzy sets (and later on, fuzzy numbers) to express imprecise beliefs regarding set 

membership. The pairing of an effect-size estimate and its sample variance provide 

insight into the precision of an estimate. This notion can also be thought of as 

representing the degree of fuzziness which exists between the true population 

parameter (here, an effect size) and the naturally imprecise estimate. Further detail 

on how to use confidence interval information with fuzzy numbers is presented 

later. 

Select Fuzzy Set Attributes 

Before introducing fuzzy numbers, several basic properties of fuzzy sets must be 

discussed. These definitions are presented in order to move towards defining fuzzy 

numbers. As will be discussed later, fuzzy numbers are fuzzy sets which satisfy 

several specifications. 

First, the height of a fuzzy set F  describes the largest membership grade, or 

the largest  
F

x  value, and is denoted as  hgt F . The height of a fuzzy set will 

necessarily be no larger than unity and will be larger than zero. Related to this, the 

core of a fuzzy set F  is the crisp set of all x ∈ X having maximal membership grade, 

denoted as  core F . It is critical to note that, although we are discussing properties 

of fuzzy sets,  core F  is a crisp set. 
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The α-cut (alpha cut) of a fuzzy set F , denoted as  cut F , is the crisp set 

of all x ∈ X for which  
F

x   , where α ∈ [0, 1]. Put another way, the α-cut is 

a crisp set with all elements having a membership grade greater than or equal to 

some value in the closed interval [0, 1]. When working with α-cuts from fuzzy sets 

in the context of statistical analysis, it should be noted that the α for determining an 

α-cut is completely unrelated to the α commonly used to specify Type I error. To 

avoid confusion, Type I error is denoted here by α'. 

The last definition required to introduce the concept of fuzzy numbers is the 

convexity of a fuzzy set. We say that a fuzzy set F  is convex if, for  , cutu v F  

and all α ∈ [0, 1], it holds that 

 

      1 cut 0,1u v F        . (3) 

 

To describe (3) in another light, a fuzzy set F  is convex if all α-cuts of F , which 

are themselves crisp sets, are convex (Zadeh, 1965). From here we proceed to 

introducing fuzzy numbers. 

Fuzzy Numbers 

A fuzzy number is a fuzzy set satisfying several requirements. More specifically, 

the fuzzy number f  may be defined from a fuzzy set F  if the following properties 

hold: 

 

1. F  is convex 

2.  hgt 1F   

3.  core 1F   

4. 
F

  is at least piecewise continuous, 

 

where |   | denotes the cardinality of a crisp set. For consistency, we use lower case 

letters to denote fuzzy numbers and uppercase letters to denote general fuzzy sets. 

Just as F  was defined by its membership function 
F

 , the fuzzy number f  can 

be defined by its membership function 
f

 . There are infinitely many possibilities 

for creating f  from F  by defining the fuzzy number membership function 
f

  in  
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Figure 1. Graphic of single triangular fuzzy number 

 

 

different ways. A few specific types of fuzzy numbers are common in engineering, 

soft computing, and other fields. One of these common fuzzy numbers is 

particularly pertinent for meta-analytic applications, namely the triangular fuzzy 

number. Although other types of fuzzy numbers are available, using the triangular 

fuzzy number provides sensible comparability between the membership grade and 

the confidence interval. Rationale for this choice is discussed later. 

A triangular fuzzy number  1 rtfn , ,f f  , with modal value f  and 

respective left- and right-hand worst-case deviations γl and γr, is defined by the 

membership function for all f ∈ f : 

 

  

1
1

1

r
r

r

r 1

,

,

0,

f

f
f f

f

f
f f f

f

f f







 



 


  




  
 


 

  (4) 
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In (4), f  is a unique element with the maximal membership grade of unity. 

Elements outside the bounds of the worst-case deviations have a membership grade 

equal to zero, and thus are not in the fuzzy set. All other elements are assigned 

respective membership grades from the open interval (0, 1) by (4). 

Figure 1 shows a graphical representation of a single triangular fuzzy number 

using notation described above. The vertical axis represents the membership 

function 
f

  while the horizontal axis represents values of x ∈ X. The modal value 

and worst-case deviations refer to the center and edges of the triangle. There is a 

symmetry about f  in Figure 1, which is a specific type of triangular fuzzy number; 

asymmetrical triangular fuzzy numbers are also possible. 

Fuzzy Numbers for Meta-Analysis 

Each primary study in a meta-analysis includes at least one measure of effect, as 

well as an estimate of effect-size variability. This information is required for a 

forest plot. I propose to use this same information to create fuzzy numbers from 

effect sizes as an alternative way to represent the precision of effect-size estimation. 

For a meta-analysis with a collection of k studies, each with an effect size (Ti) and 

known variance (vi), the ith triangular fuzzy number is defined as 

 

    1 r
2 2

tfn , , tfn , ,i i i i i i i i it T Z v T T Z v         , (5) 

 

where 2Z  is the critical value of the standard normal distribution with a two-tailed 

Type I error rate of α' and i = 1,…, k. Recall that α is used to denote and α-cut and 

α' to denote Type I error. In (5), the modal value of the fuzzy number is the effect-

size estimate itself (Ti), and both worst-case deviations come from edges of the 

original confidence interval. The decreasing monotonicity moving outward in both 

directions from the effect-size estimate (resulting in strictly decreasing membership 

grades) closely resembles the inherent nature of a confidence interval, and more 

specifically its width. An argument for the choice of a triangular fuzzy number to 

represent a confidence interval has also been made by Yao, Su, and Shih (2008). 

Here, we use information derived using a standard normal confidence interval. The 

above definitions are valid for other types of confidence intervals as well. 

Defining the membership function for (5), we simply revise (4) such that for 

all t  
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  (6) 

 

Any collection of studies providing ample information to create a forest plot can 

necessarily be used to create a fuzzy number plot. Treating effect sizes as fuzzy 

numbers allows for effect-size imprecision to be viewed as fuzziness in effect-size 

estimation. For some effect-size metrics (e.g., the standardized mean difference), 

the triangular fuzzy number will be symmetric about 
it T  because 2i iT Z v  

is without bound on the set of real numbers. For other metrics (e.g., correlation 

coefficient), there is a possibility for asymmetry due to the natural bounds of the 

effect-size metric. Furthermore, it is possible to use other measures of variability to 

define worst-case deviations for triangular fuzzy numbers. One example would be 

the median absolute deviation. The use of variance in this paper is solely to coincide 

with confidence interval information found in forest plots. 

There are obvious similarities among typical confidence intervals, probability 

values, and fuzzy numbers. However, the two representations of effects differ in 

several important ways. First, there is an intrinsic uncertainty due to randomness 

and uncertainty due to fuzziness. Among other things, this concerns definitions of 

subset domains. Fuzzy set theory replaces typical σ-algebra domains by the 
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universe of discourse; see Aliev, Fazlollahi, and Aliev (2004) for a more elaborate 

discussion. Second, a membership grade is not the same as a probability value. One 

reason for this distinction is that probabilities must exist in the closed interval [0, 1]. 

This is not always the case for fuzzy membership functions. Also, it need not be 

the case that the summation of all membership grades is unity (for a detailed 

discussion, see Singpurwalla & Booker, 2004). Furthermore, in the absence of 

fuzzy set theory (i.e., simply plotting confidence intervals in the same manner of 

fuzzy numbers), the metric of the vertical axis is unclear. Using fuzzy set theory, 

an established and interpretable membership grade is assigned to the vertical axis. 

Aggregate Fuzzy Number 

It may prove desirable to compute and plot some aggregate fuzzy number measure, 

similarly to the common practice of plotting weighted means on forest plots. One 

could use typical fixed-effect or random-effects weighted means as fuzzy numbers 

using the same formulas discussed above. Parallel to how fuzzy numbers are 

constructed from fuzzy effects in (5), one could use components from fixed- or 

random-effects confidence intervals for means. The weighted mean estimate would 

be the modal value and worst-case deviations would be the edges of the confidence 

interval for the weighted mean. 

Alternatively, one could plot a mean fuzzy number  following Buckley 

(1985): 

 

 

 1

1

1 2

1 1 1

1 1 1

tfn , ,

tfn , ,

m m m

r

k

k k k

li i ri

i i i

t

k

k k t k

 

 



  

  



     

 
  

 
  

  (7) 

 

Where k is the number of studies in the meta-analysis, ⦁ is scalar multiplication and 

⨁ is fuzzy addition (Hanss, 2005). In the context of meta-analysis, (7) can be 

calculated as 

 

 1 1 1

2 2

1 1 1

tfn , ,
k k k

i i i i i

i i i

k T Z v k T k T Z v 

  

 

  

 
         

 
    . (8) 
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This aggregate measure is calculated as a direct function of fuzzy numbers, which 

is different than calculating a fuzzy number representing a fixed- or random-effects 

weighted mean. Typical fixed- and random-effects means in meta-analysis are 

inverse-variance weighted, so that studies with higher precision are afforded more 

weight when determining an average. The method presented in (8) averages each 

component of the collection of fuzzy numbers. This result is more similar to a 

“typical study result” than to a weighted mean. The endpoints of the fuzzy mean 

are not to be directly compared to those of a confidence interval. While statistical 

significance can be assessed using confidence intervals, this is not valid for fuzzy 

numbers. The fuzzy mean is essentially a representation of the fuzziness or 

uncertainty of a typical study. 

Examples of Fuzzy Number Plots 

Three examples of fuzzy number plots from published meta-analyses are shown 

and discussed. Forest plots with effects ordered by their magnitudes are also 

provided for comparison. When plotting fuzzy numbers, the degree of color shading 

provides a simple interpretation such that more dense (i.e., darker) shading 

corresponds with more fuzzy number overlap. All fuzzy number plots in this paper 

were produced using basic R (R Core Team, 2013) procedures along with the 

FuzzyNumbers package (Gagolewski, 2013). Forest plots were produced using the 

metafor package (Viechtbauer, 2010). R code for producing fuzzy number plots is 

provided in the appendix. 

Exercise Training and Depressive Symptoms: A Large Number of 

Effects 

The first example comes from a meta-analysis of the effects of exercise training on 

select depressive symptoms for patients with a chronic illness (Herring, Puetz, 

O’Connor, & Dishman, 2012). To quantify treatment effects, standardized mean 

differences (d) were calculated. These effects represented the mean difference 

between an exercise condition and a comparison condition on several mental and 

physical health outcomes. In total, 167 effect sizes were obtained from 90 studies. 

Figure 2 provides the fuzzy number plot for this data, while Figure 3 provides the 

forest plot for the same data. 

Recall that the notion of fuzziness is represented by the vertical axis (membership 

grade) and the width of the triangle associated with each effect size. A wider 

triangle denotes a fuzzier estimate. What is immediately noticeable from Figure 2 
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is that the vast majority of effect-size point estimates are positive, indicating a 

reduction in depressive symptoms in the exercise condition (compared to the non-

exercise condition). While most point estimates (i.e., circles falling on the vertical 

line where the membership grade is equal to unity) were positive, a dense cluster 

of effects falls in the interval [0, 0.75]. In this example, the center of the fuzzy mean 

 1 tfn 0.19, 0.35,0.89    is located in the approximate center of the clustered 

effects. Last, several large effects (d > 1) may be potential outliers. 

This example shows how the fuzzy plot reveals some simple yet valuable 

descriptive features when initially describing a collection of effects. Several large 

effects appear to be divergent from the rest of the data, which is an indicator of 

possible outliers. These effects do not stand out as prominently as in Figure 3. This 

attribute, as well as the clustering of effects around 0 to 0.75, is more easily seen 

with the fuzzy number plot (Figure 2) compared to the respective forest plot (Figure 

3). Furthermore, the sheer size of the forest plot is impractical. To include this forest 

plot in a relatively small area of a single publication page, effect sizes would need  
 
 

 
Figure 2. Fuzzy number plot of exercise training and depressive symptoms data 
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Figure 3. Forest plot of exercise training and depressive symptoms data 

 

 
 

to be graphed very close together. Consequently, the quality of interpretation can 

be diminished. On the other hand, increasing the size of the forest plot so that effects 

are not forced so close together would require more journal pages. This is not the 

case for the fuzzy number plot. The superimposition of effects resolves this issue. 

Positive Psychology Interventions for Well-Being: The Presence of 

Moderators 

The second example stems from a meta-analysis (Sin & Lyubomirsky, 2009) which 

synthesized bivariate correlations (r) from studies analyzing the effect of positive 

psychology interventions for well-being in depressive symptoms. This meta-

analysis collected 42 effect sizes from 37 studies. The original meta-analysis 

included more effects and studies. Although most studies in the meta-analysis were 

moderately recent, some date back to the 1970s and 1980s. The example in this  



CHRISTOPHER THOMPSON 

969 

 
 
Figure 4. Fuzzy number plot of psychology interventions data 

 

 
 

paper excluded all effects before 1990 (N = 7). Effects were plotted using both the 

novel fuzzy number plot (Figure 4) and the traditional forest plot (Figure 5). This 

example also illustrates the capability of fuzzy number plots to explore possible 

moderators. 

Both the fuzzy number and forest plots clearly show a preponderance of 

positive effects, indicating that positive psychological interventions were 

associated with higher states of well-being. The fuzzy number plot shows several 

clusters of effects. Although one of these clusters is located close to the fuzzy mean 

 2 tfn 0,0.24,0.48   and shows a moderately large effect, there is also a 

discernible cluster of effects around zero. 

To illustrate how potential moderators can be graphed on a fuzzy number plot, 

we again utilized the same data from Sin and Lyubomirsky (2009). One of the 

coded moderators in the original meta-analysis was whether physiological 

interventions were: 1) Individually Administered; 2) Group Administered; or 3) 

Self-Administered. To demonstrate the salience of this moderator, Figure 6 displays 

a revised fuzzy number plot with color-coded fuzzy numbers. Figure 6 suggests 

that those interventions administered by psychological professionals had more of 

an effect than interventions which were self-administered by the client. 
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Figure 5. Forest plot of psychology interventions data 

 

 

 
 
Figure 6. Fuzzy number plot of psychology interventions data with moderator 
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Alcohol Consumption and Coronary Heart Disease: The Presence of 

Outliers 

The third example was taken from a published meta-analysis on alcohol 

consumption and its effect on select biological markers known to be associated with 

adult risk of coronary heart disease (Brien, Ronksley, Turner, Mukamal, & Ghali, 

2011). These authors state that they “systematically reviewed the effect of 

experimentally manipulated alcohol consumption (alcohol use versus a period of 

no alcohol use) on the circulating concentrations of selected cellular and molecular 

biological markers of atherothrombotic conditions associated with increased 

coronary heart disease risk in adults without pre-existing cardiovascular disease” 

(Brien et al., 2011, p. 1). Analyses were reasonably extensive; over a dozen 

different biomarker means were examined. Here, we focus on results of one 

biomarker, high density lipoprotein cholesterol (HDLC). 
 
 

 
 
Figure 7. Fuzzy number plot of cholesterol biomarker data 
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Thirty-two mean differences comparing average concentration of HDLC 

biomarkers after alcohol consumption to the average concentration of the HDLC 

biomarker with no alcohol consumption were extracted. The original meta-analysis 

had 33 effects. However, an effect from one study had such a large variance (1.78) 

compared to the remaining effects, we decided that its exclusion would produce a 

more interpretable graphic. As with the previous example, effects were plotted 

using both the fuzzy number plot (Figure 7) and a traditional forest plot (Figure 8). 

What is immediately noticeable from Figure 7 is the overwhelming amount 

of positive effect-size point estimates corresponding with a positive relationship 

between alcohol consumption and the HDLC biomarker. In addition, a possible 

outlier appears at d = 0.63. This extreme value also appears to have more fuzziness 

compared to other effects, as indicated by the larger width of the triangle. A dense 

cluster of effects is seen between approximately d = 0 and d = 0.25. In the 

approximate center of this cluster is the fuzzy mean  3 tfn 0.06,0.13,0.32  . 

This graphical representation suggests a fairly weak overall effect, if any at all. 
 
 

 
 
Figure 8. Forest plot of cholesterol biomarker data 
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Concluding Remarks 

A novel method for graphing effects was proposed for describing study information 

in meta-analysis by way of treating and plotting effect sizes as fuzzy numbers. A 

brief introduction to fuzzy set theory was provided and extensions to meta-analysis 

were explained. Plots using data from both fuzzy number plots and forest plots were 

illustrated and discussed in the context of three previously published meta-analyses. 

Treating effects as fuzzy numbers allows the meta-analyst to use the same 

information required for the common forest plot but provides several advantages. 

For example, plotting effects as fuzzy numbers is likely to increase usability and 

interpretability in situations where a large number of effects are to be meta-

analyzed. In such situations, fuzzy number plots will use less publication page 

space than forest plots. Last, as was demonstrated, fuzzy number plots can be used 

to explore possible moderators and outliers at initial stages of a meta-analysis. 

There are some possible limitations to the method of plotting effects as fuzzy 

numbers. In select instances, it may be challenging to differentiate within a group 

of very small effects or within a group of very large effects. Also, compared to the 

state-of-the-art forest plots, creating fuzzy number plots for meta-analysis involves 

slightly more computation on the user's end. However, R code has been provided 

in the appendix for this very reason. 
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Appendix 

R Code for Fuzzy Number Plot 

library(FuzzyNumbers) 
 
## Data is a data set with k rows (one for each effect size) and three 
columns: effect-size measures, left-hand worst case deviations, right-
hand worst case deviations 
## T    is a column of effect-size measure 
## LH   is a column of left-hand worst case deviation 
## RH   is a column of right-hand worst case deviation 
 
# Color code from mages’ blog: 
# http://www.magesblog.com/2013/04/how-to-change-alpha-value-of-colours-
in.html 
add.alpha <- function(col, alpha=1){ 
  if(missing(col)) 
  stop("Please provide a vector of colours.") 
  apply(sapply(col, col2rgb)/255, 2,  
  function(x)  
  rgb(x[1], x[2], x[3], alpha=alpha))} 
 
DataM <- sum(Data$T)/length(Data$T) 
DataL <- sum(Data$LH)/length(Data$T) 
DataR <- sum(Data$RH)/length(Data$T) 
 
D<-list() 
for(i in 1:length(Data$T)){ 
  fuzzynameS<-paste('a',i,sep='') 
  D[[i]]<- PiecewiseLinearFuzzyNumber(Data$LH[i], Data$T[i], Data$T[i], 
Data$RH[i])} 
 
MeanData <- PiecewiseLinearFuzzyNumber(DataL, DataM, DataM, DataR) 
Dpointest<-rep(1.011,length(Data$T)) 
DpointestL<-rep(0,length(FPData$T)) 
DpointestR<-rep(0,length(FPData$T)) 
 
plot(D[[1]], type='l', lty=1, col=rgb(54/255, 100/255, 139/255, 
alpha=.4), 
     xlab='Effect Size (T)', ylab="Membership Grade") 
 
 
for(i in 2:length(D)){ 
  plot(D[[i]], type='l', col=rgb(54/255, 100/255, 139/255, alpha=.4), 
lty=1, add=TRUE)}  
 
plot(MeanData, type='l', col='black', lwd=1, add=TRUE) 
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abline(h=0, lwd=1) 
abline(v=0, lwd=1, lty=2, col="darkgreen") 
points(x=Data$T, y=Dpointest, type="p", pch=20, 
       col=add.alpha("steelblue3", alpha=0.2)[Ppointest], cex=2) 
points(x=DataM, y=Dpointest[1], type="p", pch=20, 
       col=add.alpha("black", alpha=0.35), cex=2) 
legend(-.52, 1.1, lty=c(1,1), c("Fuzzy Numbers","Fuzzy Mean"), 

       lwd=c(2,2), col=c("steelblue3", "black"), cex=.6, bty="n") 
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