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CHAPTER 1. THE ORCHESTRATION OF 12-LIPOXYGENASE, INTEGRIN β4, AND C-

MET SIGNALING IN CANCER CELL INVASION AND METASTASIS 

Introduction 

Hematogenous metastasis presents the single most devastating occurrence to patient 

prognosis and survival. Unraveling this multi-dimensional mechanism is the key to understanding 

how to defeat the disease. While astounding progress has been made in this field over the last 

decade, there is still much to discover. The issue is that metastasis is not as simple as cell migration. 

It must be studied in the context of tissue microenvironment, immune regulation, environmental 

variables, epigenetics, etc., combined with the thousands of other variables which influence cancer 

cell invasion. The metastatic cascade consists of multiple, well-defined steps that involve the 

morphological epithelial to mesenchymal transition (EMT), which allows cells to detach from their 

primary location, elongate to invade through the surrounding tissue matrix via remodeling or 

degradation of the basement membrane architecture, and eventually culminate in the colonization 

of a distant secondary site. Throughout this journey, tumor cells are selected for survival while 

traversing hostile, foreign micro-environments, and outside their tissue of origin at the metastatic 

site, must be able to initiate angiogenesis to protect against apoptosis. Each step, or a combination 

of them, can be controlled in part by three different proteins: c-Met, integrin β4, and 12-

Lipoxygenase.  

Dietary Lipid Intake and Cancer Progression 

 Extensive research has been carried out concerning the effect of dietary omega-3 (n-3) to 

omega-6 (n-6) fatty acid ratios and the risk these ratios pose to cancer development. There are 

numerous epidemiological studies that suggest diets high in n-6 consumption increase the risk of 

developing cancer (de Lorgeril & Salen 2012; de Lorgeril et al. 1998; Kolonel 2001; Pearce & 

Dayton 1971). For example, meta-analysis of multiple independent breast cancer cohort studies 
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found dietary n-3 intake inversely associated with breast cancer risk and that this effect was more 

robust in women from Asian countries compared to Western populations (Yang et al. 2014). While 

that study does not show directly that an increase in n-6 fatty acids increases the risk of developing 

breast cancer, it is notable that western diets are largely composed of foods rich in n-6 poly-

unsaturated fatty acids, including red meats, dairy products, and eggs. The most predominant n-6 

fatty acid is arachidonic acid (AA), an essential fatty acid in mammals, meaning we acquire it 

strictly through dietary means. It has been demonstrated that elevated levels of AA lead to 

malignant gliomas (Elsherbiny et al. 2013). 

Another correlation of fatty acids with the promotion of tumorigenesis can be found in 

prostate cancer. A 12 year prospective study of 47,882 men found diets with increased fish 

consumption (n-3) were positively correlated with a decreased risk of metastatic prostate cancer 

(Augustsson et al. 2003), whereas red meat consumption was found to be a risk factor for prostate 

cancer (Norrish et al. 1999). Additionally, in a mouse model of prostate cancer, increasing n-6 

intake accelerated tumor growth compared to mice on an n-3 or low n-6 diet (Berquin et al. 2007). 

Interestingly, the mortality rate of prostate cancer is considerably higher in Europe and the USA 

compared to Japan and Asia, while immigrants from Asian countries have an increased risk of 

developing the disease if they relocate to the USA, presumably due to their adaptation to an n-6 

rich Western diet  (Haenszel & Kurihara 1968; Wynder et al. 1971). 

Cellular Lipid Metabolism 

 As noted, AA is the most predominant poly-unsaturated fatty acid and is acquired through 

dietary intake as mammals cannot synthesize it de novo. Linoleic acid is a major dietary precursor 

of AA and is elongated and desaturated, by multiple desaturase and elongase enzymes, from a C-

18 fatty acid to AA. Once absorbed into the bloodstream, AA is delivered to cells via chylomicrons 
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and esterified by fatty-acylCoA synthetase to membrane phospholipids such as 

phosphatidylethanolamine, phosphatidylcholine, and phosphatidylinositol. Chylomicrons are 

lipoprotein particles that carry triglycerides, phospholipids, cholesterol, and proteins from the 

intestines to other parts of the body. To be metabolized, AA must be cleaved from the phospholipid 

membrane. This can occur directly through phospholipase A2 (PLA2) or indirectly through 

phospholipase C (PLC) cleavage of diacylglycerol (DAG), which is subsequently cleaved by DAG 

lipase to yield AA (Figure 1) (Needleman et al. 1986). Once free within the cell, AA is metabolized 

by one of three different pathways: cyclooxygenase, cytochrome p450 epoxygenase, or the 

lipoxygenase pathways (Needleman et al. 1986; Serhan 1994; Spector et al. 1988). Activation of 

these pathways results in the production of bioactive lipid products collectively called eicosanoids, 

which function in diverse homeostatic biological roles, including, but not limited to, cell growth, 

apoptosis, adhesion, immunity, cellular adhesion, blood clot formation, and inflammation 

(Montero et al. 2003; Nie et al. 2001; Nie & Honn 2002; Pidgeon et al. 2007). 
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Figure 1. Arachidonic Acid Metabolism. Using AA as a substrate, COX1/2 enzymes produce PGG2 

and PGH2, which get converted into prostaglandins, prostacyclins, and thromboxanes. Lipoxygenases 

produce various HPETE products that are converted into HETEs, lipoxins, leukotrienes, hexpoxilins, 

and jasmonates. The cytochrome P450 expoxygenases produce epoxy eicosatraenoic acids (EpETrE). 

All of these products are collectively called eicosanoids and activate cell signaling. Modified from two 

sources: Pidgeon et al. 2007. Lipoxygenase Metabolism: Roles in Tumor Progression and Survival. 

Cancer and Metastasis Reviews 26, 503-524 and Patel et al. 2008. The Arachidonic Acid Pathway and 

its Role in Prostate Cancer Development and Progression. Journal of Urology 179, 1668-1675. 
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The Lipoxygenase Family of Lipid Enzymes 

Lipoxygenases are a family of non-heme iron dioxygenases that catalyze the addition of 

oxygen onto AA with regional and isomeric cis/trans configuration specificity and are named as 

such (Figure 2) (Brash 1999; Shimizu & Wolfe 1990). These lipid enzymes have dual oxygenase 

and lipoxin functions that lead to the production of unstable hydroperoxyeicosatetraenoic acids 

(HPETEs) that are reduced to hydroxyeicosatetraenoic acids (HETEs), leukotrienes, lipoxins, 

jasmonates and hepoxilins (Needleman et al. 1986; Nie et al. 2001; Romano et al. 1993; Spector 

et al. 1988). The lipoxygenase (LOX) family is composed of three major lipoxygenases identified 

in mammals, including 5-, 15-, and 12-lipoxygenase (Brash 1999). It is believed that 5-LOX, 12-

LOX and 15-LOX-1 are pro-tumorigenic as they are all upregulated in the initiation and 

progression of cancer, while the role of 15-LOX-2 is controversial (Pidgeon et al. 2007).  

5-LOX catalyzes the conversion of AA into 5-HPETE, which is then converted into 5-

HETE or leukotriene A4 (LTA4) (Samuelsson 1983). LTA4 can then be converted further into 

LTB4, LTC4, LTD4, or LTE4, products that are known to regulate anaphalaxis (Piper 1985). 15-

LOX-1 produces 15(S)-HETE from AA and 13(S)-HODE from linoleic acid (Pidgeon et al. 2007). 

13(S)-HODE is a lipid product observed to antagonize 12-LOX pro-tumorigenic function in cancer 

cells (Liu et al. 1995). 15-LOX-2 metabolizes linoleic acid poorly and like 15LOX-1, produces 

15(S)-HETE from AA.  12-LOX can be classified further by the existence of three isoforms named 

after their tissue of predominant expression: platelet, leukocyte, and epithelium (Yamamoto 1992). 

Each isoform has different substrate selectivity and metabolic profiles but, it is platelet 12-LOX 

that is associated with tumor progression. 
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Figure 2. Lipoxygenase Metabolism of Arachidonic Acid. 5-LOX, 8-LOX, 12-LOX, 

and 15-LOX insert oxygen into AA with regional and sterio-specificy to yield bioactive 

lipid products called eicosanoids. From lipidlibrary.aocs.org. 
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12-Lipoxygenase 

12-Lipoxygenase Isoforms: Leukocyte, Epithelium, and Platelet 

 Leukocyte 12-LOX was cloned from porcine leukocytes and is found expressed in human 

adrenal glomerulosa cells (Gu et al. 1994; Yoshimoto 1982). This enzyme converts AA or linoleic 

acid into 12(S)-HETE, 11-HETE, and 15(S)-HETE (Limor 2001). Epithelium 12-LOX was cloned 

from bovine tracheal epithelial cells and is found expressed in rat brain and human epithelial tissue 

(De Marzo et al. 1992). In humans, this isoform converts AA into the 12(R)-HETE enantiomer 

(Boeglin et al. 1998). Both leukocyte and epithelium type 12-LOX are more similar genetically to 

human and rabbit 15-LOX than to platelet 12-LOX (Yoshimoto et al. 1992). Human platelet 12-

LOX was cloned from erythroleukemia cells (Funk et al. 1990) and converts AA  into 12-HPETE 

via insertion of molecular oxygen into the carbon-12 position of the fatty acid (Figure 3). The 

resultant unstable HPETE intermediate is then reduced by glutathione peroxidases to the stereo-

isomeric 12(S)-HETE product (Brash 1999; Samuelsson 1983). Platelet 12-LOX also converts 

leukotriene A4 during platelet-leukocyte interactions into the anti-inflammatory mediators lipoxin 

A4 and B4 (Romano et al. 1993).  Because the platelet 12-LOX isoform is associated with tumor 

progression, it is the focus of this dissertation and will hereafter be referred to as simply 12-LOX. 
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Figure 3. 12-LOX Metabolism of Arachidonic Acid. 12-LOX 

enzymatically catalyzes the addition of molecular oxygen onto the 

carbon backbone of AA to yield the 12(S)-HPETE intermediate. 

This product is then reduced by glutathione peroxidases into the 

bioactive lipid product 12(S)-HETE. 
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12(S)-HETE Activation of its Cognate Receptor, 12HETER-1and Functional Outcomes 

12(S)-HETE binding its G protein-coupled receptor (GPCR), 12HETER-1 (previously 

known as GPR31) (Guo et al. 2011b) regulates a plethora of biological functions through activation 

of p42/44 MAPK (Szekeres et al. 2000), PI3K/AKT (Szekeres et al. 2002), and IP3/DAG/PKCα 

(Liu et al. 1995) pathways (Figure 4). 12HETER-1 was an orphan GPCR  cloned from PC-3 

prostate cancer cells and identified as a high affinity 12(S)-HETE receptor by radioligand binding 

assays (Guo et al. 2011b). 12-LOX signaling was shown to activate NF-κB, which leads to the 

induction of proliferation and resistance to apoptosis (Kandouz et al. 2003). In normal tissues, 12-

LOX signaling has been shown to regulate vasoconstriction, catecholamine synthesis, 

inflammation, and immune cell recruitment (Lacape et al. 1992; Phillis et al. 2006). The lipid 

enzyme also plays a role in various pathological conditions such as hypertension, atherosclerosis, 

Parkinson’s, diabetes, and Alzheimer’s (Tucker & Honn 2013).   

In cancer cells 12-LOX activation of the above signaling pathways leads to a variety of 

cancer phenotypes such as angiogenesis (Nie et al. 2006), motility (Honn et al. 1994a; Timár et al. 

1993), invasion (Chen et al. 1994; Guo et al. 2011b), proliferation (Ottino et al. 2003), induction 

of MMP-9 expression/extra cellular matrix degradation (Dilly et al. 2013), cell spreading (Honn 

et al. 1989), secretion of cathepsins B and L (Honn et al. 1994c; Ulbricht et al. 1996) non-

destructive endothelial cell retraction with tumor cell adhesion (Tang et al. 1993), and survival 

(Guo et al. 2011a; Pidgeon et al. 2003). For example, 12(S)-HETE activation of PKCα in a low 

metastatic rat prostate cell line led to motility and cell invasion (Liu et al. 1994a), and melanoma 

cell motility was enhanced with 12(S)-HETE stimulation (Timár et al. 1993). In agreement with 

the observation that 12(S)-HETE can stimulate cell motility, 12(S)-HETE treatment induced 

cytoskeletal rearrangements and endothelial cell retraction in a time and concentration dependent 
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manner, an effect that was also dependent on PKC (Tang et al. 1993). It was later discovered that 

PKC activation by 12(S)-HETE led to the secretion of cathepsin B, a proteinase well known for 

its role in invasion (Honn et al. 1994c). As another example of 12(S)-HETE pro-tumorigenic 

functions, endogenously produced 12(S)-HETE in tumor cells was found to enhance tumor cell 

adhesion in vitro and lung colonization in vivo, an effect mediated by αIIbβ3 integrin, a commonly 

expressed integrin on tumor cells (Chen et al. 1994; Liu et al. 1994b).  The bioactive lipid was also 

shown to stimulate the surface expression of αvβ3 integrin resulting in a more spread cell 

morphology, thereby preventing apoptosis in endothelial cells (Pidgeon et al. 2003; Tang et al. 

1995). Prostate cancer cells engineered to overexpress 12-LOX formed larger, more vascularized 

tumors compared to empty vector control cells when injected subcutaneously into mice (Nie et al. 

1998). It was later discovered that these cells secrete high levels of VEGF, a growth factor well 

known for its role in angiogenesis (Nie et al. 2006). Interestingly, 12-LOX activity increases VEGF 

production at the mRNA level and was found to be dependent on PI3K/AKT signaling. Under 

hypoxic conditions 12-LOX induces HIF1α transcription, protein production, and increases its 

DNA binding ability (Krishnamoorthy et al. 2010). Given that a major target of HIF1α in hypoxia 

induced angiogenesis is VEGF, the importance of 12-LOX in the regulation of angiogenesis is 

quite clear.  
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Figure 4. Activation of 12HETER-1 by 12(S)-HETE. After its production by 12-LOX, 

12(S)-HETE diffuses from the cell and work in an autocrine fashion through 12HETER-

1 (GPR31). This activates the signaling cascades of MAPK, PI3K/AKT, and 

IP3/DAG/PKCα to promote cell proliferation, survival, migration, and angiogenesis.  
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12-LOX Expression in Normal vs. Tumor Tissue 

Under normal circumstances, 12-LOX is expressed in platelets (Izumi et al. 1990), 

megakaryocytes, umbilical vein cells, and endothelial cells (Funk 1996; Funk et al. 1990; 

Hansbrough et al. 1990; Nakadate et al. 1986). However, its expression can be induced by pro-

inflammatory stimuli in cancer cells (Funk et al. 1990; Nakadate et al. 1986; Yamamoto 1992; 

Yoshimoto 1982). Sequencing and real time PCR data have confirmed that A431 epidermal 

carcinoma cells and prostate cancer cell lines express specifically the platelet type 12-LOX (Gao 

et al. 1995; Hagmann et al. 1996). Both 12-LOX and its bioactive lipid product, 12(S)-HETE, are 

associated with prostate (Gao et al. 1995; Guo et al. 2011b; Nie et al. 1998; Tang & Honn 1994), 

pancreatic (Ding et al. 1999), ovarian (Guo et al. 2011a), breast (Connolly & Rose 1998; Natarajan 

et al. 1997), skin (Tang et al. 2000; Timár et al. 1999), lung (Chen et al. 1994), and colon cancer 

(Wong et al. 2001b). For example, elevated 12-LOX mRNA was positively correlated with 

advanced stage/high grade human prostate cancer in 38% of cases (Gao et al. 1995).  

12-LOX Structure and Enzymatic Activation  

The 12-LOX enzyme, a 75kDa structure, consists of a single polypeptide chain folded into 

two important domains, the N-terminal β-barrel or PLAT domain (Polycystin-1, Lipoxygenase, 

Alpha-Toxin), and catalytic C-terminal portion containing octahedrally bound non-heme iron and 

the substrate binding site (Brash 1999; Ivanov et al. 2011). 12-LOX is a cytosolic enzyme that can 

be recruited to the membrane and subsequently activated under various physiological conditions 

(Hagmann et al. 1996). For instance, the levels of gluthathione peroxidases available to reduce 

12(S)-HPETE to 12(S)-HETE affect 12-LOX activity (Jung et al. 1997; Suzuki et al. 2000). 

Additionally, 12-LOX activity or protein levels can be altered by thrombin or Ca2+ (Baba et al. 

1989; Hagmann et al. 1993), tumor promoting phorbal ester (12-O-tetradecanoylphorbal-13-



13 

  
 

acetate, TPA) (Hagmann et al. 1993), glucose or angiotensin II (Natarajan et al. 1993), γ-radiation 

(Onoda et al. 1994), and EGF stimulation (Chang et al. 1993; Hagmann et al. 1996; Liu et al. 1997; 

Natarajan et al. 1997).  

Integrin β4 Regulation of 12-Lipoxygenase 

A novel paradigm of 12-LOX activation was suggested when yeast two hybrid screening 

using a cDNA library generated from A431 cells, an epidermoid carcinoma cell line,  revealed 12-

LOX interacts with integrin β4 (β4) (Tang et al. 2000). Other 12-LOX interacting partners were 

identified as lamin A, keratin, and the phosphoprotein C8FW (Tang et al. 2000). The pro-

tumorigenic functions of 12-LOX compounded with the role β4 plays in cancer cell motility 

(discussed in the following section) led us to hypothesize that 12-LOX interaction with β4 may 

influence cellular adhesion through disruption of hemidesmosomes, cell survival/apoptosis, and 

the invasive growth of carcinoma (Figure 5).  

 

 

 

 

 

 

 

 

 

 

 



14 

  
 

 

 

        

 

 

 

 

 

 

  

 

 

 

Figure 5. Hypothetical Implications of 12-LOX Interaction with β4. 12-LOX and β4 

association is hypothesized to affect cell adhesion through disruption of hemidesmosomes, cell 

survival or apoptosis, and cancer cell invasive growth.  
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The remaining information in this section was adapted from the following submitted 

publication to the International Journal of Cancer, unless otherwise indicated. The data figures 

excerpted highlight my contribution to the manuscript. 

 

“Convergence of Eicosanoid and Integrin Biology:  12-LOX seeks a partner” 

Keqin Tang*, Daotai Nie*, Yinlong Cai‡, Sangeeta Joshi‡, Elizabeth Tovar‡, Stephanie C. Tucker‡, 

Krishna Rao Maddipati‡, John D. Crissman‡, and Kenneth V. Honn‡ 

*Department of Radiation Oncology and ‡Pathology, Wayne State University School of Medicine, 

Karmanos Cancer Institute, Detroit, MI 48202; §Department of Internal Medicine, University of 

Michigan, Ann Arbor, MI 48109 

 

To begin addressing the above hypothesis, we sought to determine the impact of integrin 

stimulation on 12-LOX localization and activity. Initial biochemical studies from our lab found 

that β4 activation, either by the activating antibody 3E1 or β4’s natural ligand laminin, which both 

bind the extracellular head of β4, led to the recruitment of 12-LOX to the integrin as seen by co-

immunoprecipitation of β4 and 12-LOX in A431 cells, A431 12-LOX overexpressing cells, and 

CHO cells. Both 3E1 and laminin are well established activators of β4 (Mainiero et al. 1995). The 

interaction was time dependent, first appearing 5 minutes post β4 activation and tapering off after 

60 minutes.12-LOX and β4 were both transfected into CHO cells, which do not endogenously 

express either protein. In this cell line we found 12-LOX to interact specifically with the 

cytoplasmic tail of β4 based on the use of various β4 truncation mutants. Using confocal 

microscopy, we confirmed that β4 activation resulted in 12-LOX translocation from the cytosol to 

the membrane where it interacted with β4 in A431 cells. Addition of integrin β1 antibody did not 
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result in 12-LOX translocation or lead to its association with the integrin, which strongly suggested 

that the interaction of 12-LOX and β4 was specific.  

Next, we demonstrated that recruitment of 12-LOX to β4 on integrin stimulation of A431 

cells led to an increase in 12-LOX enzymatic activity reflected by the production of 12(S)-HETE 

in a time dependent manner as measured by RP-HPLC and LC-MS (Figure 6). Cells were 

stimulated with 3E1 for the indicated times and then treated with AA for 15 minutes. Without the 

addition of AA in non-stimulated cells, there was a low basal level of 12(S)-HETE production. 

With AA treatment, again in the absence of stimulation, there was a further increase in 12(S)-

HETE levels because the cells were given the substrate for 12-LOX to produce 12(S)-HETE, and 

again represents basal level 12-LOX activity. With 3E1 stimulation, there was a further time 

dependent increase in 12(S)-HETE levels. 

Additionally, β4 activation by 3E1 prevented BMD122-induced apoptosis. BMD122 

(BHPP-benzyl-N-hydroxy-5-phenylpentanamide; BMD122-Biomide Compound 122) is a 12-

LOX specific inhibitor, that exerts its function by chelating the  non-heme iron within 12-LOX, 

which overrides the pro-survival function of 12-LOX and leads to cell death. We also showed that 

12-LOX modulates β4-dependent cell migration in a Boyden chamber assay both on laminin or 

Matrigel. Specifically, A431 cells were pre-treated with 3E1 or laminin followed by EGF 

stimulation. Pre-treatment of the cells with either β4 activator led to increased cell migration, 

compared to EGF alone, and the effect was abrogated by BMD122 inhibition of 12-LOX. 

 

 

 

 



17 

  
 

 

 

                  

 

 

 

 

 

 

 

 

 

 

 

Figure 6. LC-MS Analysis of 12(S)-HETE Production Following β4 

Stimulation. A431 cells were treated with 3E1 for the indicated times, washed 

with HBSS, incubated with AA for 15 minutes, and then both cells and media were 

collected. Lipids were extracted as per standard protocols (see Materials and 

Methods). The data were analyzed by LC-MS in triplicate and error bars represent 

SEM. 
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To confirm that β4 integrin ligation stimulates 12-LOX production of 12(S)-HETE, and 

also to confirm the role of 12-LOX in α6β4-mediated, EGF-stimulated migration, we transfected 

A431 cells with six different shRNA constructs, each targeted to a unique region of the 12-LOX 

gene product (Table 1). Stable transfectants were selected for with puromycin. The resulting 

transfectants were screened for effective 12-LOX knockdown (12-LOX KD). Both 12-LOX gene 

expression and protein production were assayed to validate the knockdown. Compared to the 

parental and non-silencing (ns) shRNA control transfected cells, the #1 and #2 12-LOX KD clones 

effectively decreased 12-LOX mRNA expression, as measured by RT-PCR (Figure 7A). At the 

protein level, clone #1 showed almost a complete knockdown of 12-LOX compared to the parental 

and ns shRNA control cells (Figure 7B). These two clones were used in subsequent experiments. 
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Table 1. Sequences of shRNA Constructs Targeting 12-LOX.  Shown are the 12-

LOX shRNA pGIPZ lentiviral mature antisense sequences and where they target the 

12-LOX gene product. The #8 non-silencing shRNA control (not shown) is titled 

RHS_4346 with a mature antisense sequence of 

ATCTCGCTTGGGCGAGAGTAAG. 
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Figure 7. Validation of 12-LOX Knockdown.  A) 12-LOX mRNA 

levels measured by RT-PCR in A431 parental, ns (non-silencing) 

shRNA control cells, and 12-LOX KD (knockdown) cell lines. 

*p<0.001. B) Western blot analysis of 12-LOX protein levels in 12-LOX 

KD clones, ns shRNA control, parental A431, CHO (negative control for 

12-LOX expression; Santa Cruz polyclonal platelet-type 12-LOX 

antibody appears to be recognizing another 12-LOX isoform in CHO 

cells as they do not express platelet type 12-LOX), prostate cancer PC-3 

12-LOX overexpressors (positive control for 12-LOX), PC-3 empty 

vector control cells, and platelet whole cell lysate (positive control for 

12-LOX expression). 
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 We then analyzed for 12(S)-HETE production on 3E1 stimulation in the 12-LOX KD cells, 

which we already confirmed activates 12-LOX enzymatic activity in wild type cells (Figure 8A). 

Previously characterized PC-3 prostate cancer cells stably expressing 12-LOX were used as a 

positive control for 12(S)-HETE production (Nie et al. 2006). Cells were stimulated with 3E1 in 

the presence of AA, the substrate for 12-LOX, to produce 12(S)-HETE. In both the parental and 

ns shRNA control cells, 3E1 stimulation resulted in a marked increase of 12(S)-HETE production 

compared to AA treatment alone. This response was not seen in the #1 or #2 12-LOX KD clones, 

indicating that 12-LOX interaction with activated β4 stimulates its enzymatic activity. Production 

of 12(S)-HETE in response to β4-activated 12-LOX recruitment leads to autocrine activation of 

the cognate 12(S)-HETE receptor, 12HETER-1, which in turn activates MAPK signaling (Guo et 

al. 2011b; Pidgeon et al. 2007). As seen in Figure 8B, parental and ns shRNA control cells respond 

to 3E1 with an increase in ERK phosphorylation. The #1 clone had higher levels of basal ERK 

activation, but no increase in response to 3E1. In addition to confirming the effectiveness of 12-

LOX KD by shRNA #1, these results strongly support a role for β4 and 12-LOX acting together.  
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Figure 8. 12-LOX Knockdown Inhibits β4-mediated 12(S)-HETE Production and Downstream 

ERK Activation.  A) No increase in 12(S)-HETE levels were seen with 3E1 stimulation in #1 and #2 

12-LOX KD clones. 12-LOX activity was measured by 12(S)-HETE production using LC-MS after 

a six hour incubation with 3E1 and AA. Lipids were extracted as per standard protocols (see Materials 

and Methods). The data were analyzed in triplicate and error bars represent SEM. B) #1 12-LOX KD 

cells do not respond to 3E1 stimulation with an increase in phosphorylated ERK levels. Western blot 

evaluation of phosphorylated ERK with 30 minutes 3E1 stimulation. Densitometry analysis represents 

the ratio of phosphorylated ERK to total ERK. C) Densitometry of part B represented in graphical 

form as the percentage of ERK phosphorylation normalized to total ERK.  
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 Next, we utilized the 12-LOX KD cells to confirm the role of 12-LOX in α6β4-mediated, 

EGF-stimulated cell invasion (Figure 9). Consistent with previous results, 3E1 treatment increased 

invasion of the parental and ns shRNA control cells toward EGF, while BMD122 dramatically 

reduced invasion. Interestingly, invasion of the ns shRNA cells was increased in all conditions 

compared to the parental control and could be due to non-specific effects from the scrambled 

shRNA.  In the #1 and #2 12-LOX KD cell lines, EGF stimulation lead to a marginal increase in 

invasion. This supports a role for 12-LOX in EGF-stimulated invasion. Similar to the results seen 

in the parental and ns shRNA cells, BMD122 significantly reduced #2 12-LOX KD cell invasion, 

whereas the 12-LOX inhibitor had much less of an effect on the #1 12-LOX KD cells, and is likely 

because most of 12-LOX is knocked down in this cell line. The ineffectiveness of EGF to stimulate 

increased invasion following 3E1 treatment in the #1 12-LOX KD cells confirms our hypothesis 

that 12-LOX is involved in α6β4-mediated, EGF stimulated invasion. Additionally, because the 

#1 12-LOX KD cells did not respond to BMD122 with a decrease in cell invasion, we are confident 

that 12-LOX is indeed knocked down, further validating our results. 
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Figure 9. 12-LOX Knockdown Renders Cells Resistant to BMD122-inhibited 

Invasion and Non-responsive to EGF-stimulated Invasion.  A) #1 12-LOX KD 

cell invasion minimally affected by BMD122 enzymatic inhibition of 12-LOX. 

Cells were pre-treated with 20µM BMD122, then stimulated with 3E1 or 2 ng/mL 

EGF and allowed to invade through a Boyden Chamber insert coated with 

Matrigel for 24 hours. Migration of cells toward serum free media was a negative 

control and 0.1% BSA served as a positive control. MeOH was the vehicle control 

for BMD122. Images taken at 10x. B) Invaded cells were stained with crystal 

violet, the dye content dissolved in 10% acetic acid, and the absorbance measured 

at OD570nm. Columns represent the invasion reported as the mean of three samples 

+/- SEM. 
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 Continued work on 12-LOX and β4 interaction identified several important mechanisms 

of 12-LOX regulation. β4 activation by either 3E1 or laminin was found to result in SRC-

dependent phosphorylation of 12-LOX at residues Y19 and Y614 in A431 cells (Dilly et al. 

manuscript pending). The subsequent activation of 12-LOX resulted in 12(S)-HETE production. 

Additionally, 3E1 and laminin stimulation led to phosphorylation of tyrosine residue 1494 on the 

tail of β4 (Figure 10). The importance of this residue will be discussed in later chapters. Sequential 

mutagenesis studies of the β4 cytoplasmic tail revealed that 12-LOX interacts specifically with an 

eleven amino acid segment of β4, named FNO1-2 (residues 1137-1147 of β4), embedded in FNO1 

of the first FNIII (fibronectin three) repeat of the β4 cytoplasmic tail (Figure 10) (Joshi et al. 

manuscript pending). Transfection of FNO1-2 into CHO or A431 cells competed with full-length 

β4 for interaction with 12-LOX as assessed by co-immunoprecipitation (Joshi et al. manuscript 

pending) Ectopic expression of GR16, a macrodomain of the β4 tail that contains the FNO1-2 

segment, was able to compete with full length β4 for interaction with 12-LOX in A431 cells. This 

led to reduced cell migration, a decrease in 12-LOX activity as measured by 12(S)-HETE 

production with LC-MS, decreased proliferation, and decreased colony formation with no effect 

on cell adhesion (Joshi et al. manuscript pending). Subcutaneous injection of A431 cells stably 

expressing GR16 resulted in suppressed tumor growth in athymic nude mice compared to parental 

cells, suggesting that β4 interaction with 12-LOX has significant bearing on tumor progression 

(Joshi et al. manuscript pending). Gene expression analysis of tumor tissue from the GR16 mice 

showed a decrease in VEGF, HIF1α, and BCL-2 levels while BAX levels were increased. This 

suggests that without β4 and 12-LOX interaction, tumor angiogenesis was suppressed while 

apoptosis was upregulated, which further confirms the role of 12-LOX in cell survival and tumor 

progression. These studies are the first indication of integrin regulation of a lipid enzyme in tumor 
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progression, and represent a major advancement in our knowledge of the link between cell 

adhesion and eicosanoid upregulation.  
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Figure 10. Schematic of 12-LOX Interaction with β4. β4 integrin consists of an extracellular 

domain, a transmembrane region, and a long and unique cytoplasmic tail containing two pairs of 

fibronectin three repeats (FNIII; [FN1+ FN2] and [FN3 +FN4]) separated by a connecting 

segment. By sequentially mutating segments of the β4 cytoplasmic tail, we found that 12-LOX 

interacts within the GR16 (1126-1315) region of β4. This segment is comprised of the FN1 and 

FN2 repeats. GR16 was then divided into three subdomains, and one of those domains, named 

FN1, was divided further into three more subdomains: FNO1, FNO2, and FNO3. Further analysis 

showed 12-LOX interacts within FNO1, a 23 amino acid segment (residues 1126-1157). Micro-

domain mapping localized the minimum 12-LOX binding site to an 11 amino acid portion of the 

β4 cytoplasmic tail in FNO1, named FNO1-2 (1137-1147). Y1494 is in the FN3 region of the β4 

cytoplasmic tail. 
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Integrin β4 Function in Hemidesmosomes and Cell Motility 

Integrins  

Integrins function in cell to extracellular matrix (ECM), and cell to cell adhesion to regulate 

differentiation, growth, survival, proliferation, and embryonic development through the translation 

of extracellular positional clues to the cytoskeleton (Dowling et al. 1996). Integrin β4 is a member 

of the integrin type 1, single pass, heterodimeric glycoprotein membrane receptors, although it 

bears little homology to any other member due to its cytoplasmic tail (Hogervorst et al. 1990). 

There are 18α and 8β integrins subunits that can combine to form 24 distinct heterodimeric integrin 

receptors. β4 exclusively partners with α6 integrin (Hynes 2002) to form the foundation for 

hemidesmosomes, which are specialized structures that function to adhere epithelial cells to the 

basement membrane through interactions with laminins, and allow cells to maintain proliferative 

potential (Borradori & Sonnenberg 1999).  

β4 Structure and Function in Normal Tissues 

β4 is expressed normally in epithelial (Kajiji et al. 1989; Sonnenberg et al. 1990), Schwann 

(Einheber et al. 1993), endothelial (Kennel et al. 1992), and double negative T-cells (Ramarli et 

al. 1998). The integrin has a cytoplasmic tail over 1,000 amino acids long and contains two pairs 

of FNIII repeats (FN1 + FN2; FN3 + FN4) separated by a 142 amino acid connecting segment 

(Figure 11) (Hogervorst et al. 1990). This unique cytoplasmic tail allows β4 to interact with 

hemidesmosomal structural proteins as well as signaling molecules and adapters. β4 

heterodimerizes with α6 to interact directly with the basal lamina, where its preferred binding 

partner is laminin-5 (renamed laminin-332) (Hao et al. 1996; Hynes 2002; Rousselle et al. 1991; 

Spinardi et al. 1995). Additional components of the hemidesmosome are the bullous pemphigoid 

antigens 180 (BPAG2) and 230 (BPAG1), plectin/HD1, and the membrane tetraspanin CD151. 
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BPAG2 is a transmembrane protein belonging to the plakin family and interacts with laminin in 

the ECM and the FN3 repeat of β4 (Koster et al. 2003). Plectin and BPAG1 are directly connected 

to the intermediate keratin filaments in the cell. Plectin binds two different sites of the β4 tail; the 

first site spans the FN2 repeat and the first 35 amino acids of the connecting segment (Niessen et 

al. 1997), the second site spans the c-terminal tail after the FN4 repeat (Geerts et al. 1999). The N-

terminus of BPAG1 interacts with the c-terminal portion of β4 (Koster et al. 2003). The tetraspanin 

family is known for regulating cell adhesion to the ECM, yet CD151 function in hemidesmosomes 

is still unclear. Immunohistochemistry of CD151 null mice revealed that although these mice have 

normal hemidesmosomes, β4 staining was abnormal and disorganized during wound healing 

(Cowin et al. 2006), indicating the tetraspanin may be important for proper β4 localization. 
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Figure 11. β4 Plays a Role in Hemidesmosomes in Stably Adherent Cells While Assisting in 

Cell Signaling and Migration Following Activation.  In stably adherent cells β4 is incorporated 

into hemidesmosomes and interacts with α6, laminin, plectin, BPAG1, BPAG2, and CD151 in a type 

I hemidesmosome. β4 interaction with only plectin is classified as a type II hemidesmosome.   β4 

integrin consists of an extracellular portion, a transmembrane region, and a long and unique 

cytoplasmic tail containing two sets of fibronectin three repeats (FNIII; [FN1+ FN2] and [FN3 

+FN4]) separated by a connecting segment. β4 interacts with laminin and α6 extracellularly while 

interacting with plectin, BPAG1, and BPAG2 intracellularly through its FNIII repeats. Plectin and 

BPAG-1 interact with intermediate filaments. After β4 activation, SRC family kinases, SHC, and 

SHP2 are recruited to activate PI3K/AKT for cell survival and RAS/MAPK for activation of cell 

cycle progression. The mechanism of β4 activation has not been fully elucidated. In both normal 

keratinocytes and in cancer cells, growth factor activation results in β4 phosphorylation involving 

PKCα and its translocation from hemidesmosomes to actin rich lamellipodia protrusions where it 

actively participates in migration. 
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Fully formed, type I hemidesmosmes are comprised of all the above proteins, and are found 

in stratified and pseudostratified epithelial tissues (Niessen et al. 1996; Sonnenberg et al. 1991). 

Type II hemidesmosomes are found in the constantly migrating simple gut epithelial cells and are 

characterized by β4 interaction with plectin (Uematsu et al. 1994). Type II hemidesmosomes are 

thought to be the precursor to type I because they are much more dynamic in nature, are compatible 

with migration, and contain the two primary proteins necessary for hemidesmosome seeding. 

Interestingly, the cytoplasmic tail of β4, independent of its extracellular domain interaction with 

ligand, is necessary and sufficient for incorporation of the integrin into hemidesmosomes, meaning 

it does not have to heterodimerize with α6 to interact with plectin (Nievers et al. 1998).  

Genetic ablation of β4 in mice identified the primary function of the integrin, and we now 

know that hemidesmosomes protect epithelial tissues from mechanical loads and sheer stress 

(Jones et al. 1994). The β4 knockout mice presented with a complete absence of hemidesmosomes 

which led to marked separation of the dermal and epidermal tissues, extensive skin denuding, 

gastrointestinal issues, respiratory failure, and death within hours of birth (Dowling et al. 1996). 

β4 mutations in humans lead to a disease called epidermolysis bullosa. The severity of the 

condition depends on the type and extent of the mutation(s), but is not usually as severe as that 

seen in the β4 knockout mice.  

Not only does β4 form the backbone for hemidesmosomes in cellular adhesion, it is also a 

signaling competent receptor even though it harbors no intrinsic kinase ability. When β4 is 

activated (by binding either laminin or 3E1), the integrin undergoes phosphorylation by a SRC 

family kinase, SHC is recruited, and RAS and PI3K signaling cascades are activated (Dans et al. 

2001; Gagnoux-Palacios et al. 2003; Mainiero et al. 1997; Mainiero et al. 1995; Shaw et al. 1997). 

β4 signaling results in cell cycle progression and proliferation through activation of RAS/MAPK 
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(Mainiero et al. 1997; Mainiero et al. 1995; Shaw et al. 1997). β4 also promotes cell survival 

through activation of PI3K/AKT (Schwartz 1997; Tang et al. 1999). However, in cells expressing 

wild-type p53, β4 activation of AKT can lead to apoptosis (Bachelder et al. 1999b).   

In normal keratinocytes, EGF stimulation leads to hemidesmosome disassembly through 

PKCα activation, subsequent β4 phosphorylation, and mobilization of β4 to F-actin rich 

protrusions at the leading edge of the cell in migration (Gipson et al. 1993; Mainiero et al. 1996; 

Rabinovitz et al. 1999; Wilhelmsen et al. 2007). This clearly indicates that β4 plays a role in 

migration, which stands in stark contrast to its role in cellular adhesion. The consequences of β4 

phosphorylation in terms of functional or phenotypic outcomes is complex, cell type, and tissue 

type specific and will be elaborated further on in this dissertation.  

β4 Expression in Cancer 

 The association between β4 and cancer has been established. In fact, β4 was first identified 

as a tumor-associated antigen (Falcioni et al. 1988). Soon after, abnormal β4 expression was found 

in epithelial tissue associated with psoriasis, a skin disorder marked by inflammation and hyper 

proliferation (Pellegrini et al. 1992). Since its discovery, β4 has been associated with increased 

aggressiveness of multiple cancers, including those outlined below. It is overexpressed in 

metastatic squamous cell carcinomas and associated with accelerated recurrence (Kimmel 1986; 

Savoia et al. 1993), synthesized de novo in invasive thyroid cancer (Rabinovitz & Mercurio 1996), 

and the degree of β4 expression in colon cancer was found to correlate with invasion (Falcioni et 

al. 1994). At the onset of early-stage pancreatic adenocarcinoma, β4 expression is increased and 

its localization redistributed from the basal side of pancreatic duct cells to the plasma membrane 

and cytoplasm (Cruz-Monserrate et al. 2007). β4 is also expressed in more aggressive melanomas 

(Raymond et al. 2007), and highly expressed in osteosarcoma cell lines and patient samples (Wan 
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et al. 2009). Further evidence of β4 association with cancer aggressiveness was identified by the 

cancer outlier profile analysis (COPA) of Oncomine data, which found β4 overexpression in a 

subset of aggressive prostate cancer tumors in 11 of 16 datasets (Yoshioka et al. 2013).  

β4 Function and Signaling Hijacked in Cancer: Switch from a Mechano-Adhesive Device to a 

Signaling Adapter for Growth Factor Receptors 

 

Cancer cells likely retain the expression of β4 to promote invasion and metastasis, though 

this may seem counterproductive because β4 is a necessary component of hemidesmosomes, 

anchoring structures that are incompatible with migration. It is the subcellular localization of β4 

that is altered from a polarized basal proximity to diffuse in the cellular membrane of most cancer 

cells (Carico et al. 1993; Hall et al. 1991; Mariani Costantini et al. 1990). As hemidesmosomes are 

disassembled in cancer progression, β4 adhesive contacts with the ECM laminins are dissolved 

and the integrin redistributes from its basal location becoming pericellular in the membrane. This 

altered localization of β4 may very well be the cause behind the dangerous matrix-independent β4 

signaling that occurs during tumor progression because it can then interact with various growth 

factor receptors (GFRs), enzymes, and kinases it wouldn’t normally have access to, enabling 

spurious activation. It is important to note that β4 can signal independent of dimerization with α6, 

and in many cases without external stimulation by laminin (Gambaletta et al. 2000). Additionally, 

because it is common for tumor suppressors like p53 to be lost or mutated in cancer cells, β4 

activation in a matrix-independent manner would no longer trigger apoptosis or anoikis (Bachelder 

et al. 1999b). 

Numerous studies have shown that β4 activation or expression in cancer cells facilitates 

their ability to migrate, invade, and protects them from apoptosis. Ectopic expression of β4 was 

shown to be sufficient to induce cellular transformation in rodent fibroblast NIH3T3 cells and 

mouse embryonic fibroblasts (MEFs) (Bertotti et al. 2006). However, β4 overexpression in the 
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normal human mammary epithelium cell lines MCF-10A and B5-589 did not induce cellular 

transformation, indicating that rodent fibroblasts are easier to transform (Bertotti et al. 2006). β4 

has also been shown to sustain anchorage-independent growth by activating NF-κB (Zahir et al. 

2003). Colorectal cancer cell invasion through Matrigel was found to be enhanced by β4 

expression (Chao et al. 1996). B16-F10 melanoma cell lung metastasis in vivo are mediated by β4 

interaction with the human calcium-activated chloride channel protein (hCLCA1) in pulmonary 

arteries, arterioles, and interlobular venules (Abdel-Ghany et al. 2002). Under stress conditions 

such as serum-starvation, ectopic expression of β4 prevented apoptosis and promoted survival by 

activating the PI3K/AKT pathway in breast cancer cells with mutated or dominant-negative p53 

(Bachelder et al. 1999a; Bachelder et al. 1999b). A431 cells, which do not have functional p53, 

subjected to stress by plating on non-coated polystyrene bacterial plates undergo apoptosis by 24 

hours, but antibody stimulation of β4 rescued the cells through activation of the PI3K pathway 

(Tang et al. 1999). There are many more examples of β4 promotion of tumorigenic phenotypes 

reviewed elsewhere (Guo & Giancotti 2004), which for the sake of brevity will not be discussed 

further here. 

The ability of β4 to influence the important cellular functions described above may arise 

from fact that β4 interacts with a plethora of signaling entities such as enzymes, adapter proteins, 

membrane receptors, and transcription factors, which allows β4 to coordinate signals to many 

different pathways under various physiological conditions (e.g. adherent or non-adherent states). 

In fact, β4 has been shown to act as a signaling adapter for GFRs, such as EGFR, ErbB2, c-Met, 

Ron, and the insulin-like growth factor-1 receptor, to promote cancer cell invasion (Bertotti et al. 

2005; Falcioni et al. 1997; Fujita et al. 2012; Gambaletta et al. 2000; Guo et al. 2006; Hintermann 
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et al. 2001; O'Connor et al. 1998; Santoro et al. 2003; Shaw et al. 1997; Trusolino et al. 2001; 

Yoshioka et al. 2013).  

It is the unique cytoplasmic tail of β4 that allows for cooperative signaling with GFRs. 

Targeted deletion of the cytoplasmic tail of β4 in mice results in defective neoangiogenesis induced 

by tumor xenografts (Nikolopoulos et al. 2004), indicating this region is required for signaling in 

tumorigenesis. On the other hand, the β4 cytoplasmic tail downstream of residue 1355 (located 

after the connecting segment between the two pairs of FNIII repeats, see Figure 10) is dispensable 

for β4 adhesive function, because mice lacking this C-terminal portion assemble fully-formed 

hemidesmosomes (Nikolopoulos et al. 2004). In parallel, the extracellular domain of β4 is not 

necessary to promote invasion, seen in ErbB2-driven invasion of NIH3T3 cells where the 

extracellular head of β4 was mutated and had no effect on invasion, whereas the portion 

encompassing residues 854 to 1183 of the β4 cytoplasmic tail were found to be critical for invasion 

(Gambaletta et al. 2000). Therefore, the adhesive and signaling functions of β4 can be separated 

and may be mutually exclusive.  

The role of β4 under normal circumstances, aside from forming hemidesmosomes, is to 

transduce extracellular locational information by activating the appropriate signaling pathways. 

Oncogenes can promote cell survival, proliferation, and invasion independent of adhesive cues in 

cancer, yet neoplastic cells still benefit from integrins by exploiting their signaling capacities. EGF 

(epidermal growth factor), MSP (macrophage stimulating factor), and HGF (hepatocyte growth 

factor), the ligands for EGFR, Ron, and c-Met respectively, can lead to the activation of β4 

(Rabinovitz et al. 1999; Santoro et al. 2003; Trusolino et al. 2001). As mentioned above in the 

context of normal keratinocytes, EGF stimulation of cancer cells also leads to partial 

hemidesmosome disassembly through PKCα phosphorylation of β4 and mobilization of the 
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integrin to actin-rich protrusions such as lamellipodia to promote migration and invasion (Gipson 

et al. 1993; Mainiero et al. 1996; O'Connor et al. 1998; Wilhelmsen et al. 2007). Consistent with 

EGF activation of β4, overexpression of ErbB2 and β4 led to increased NIH3T3 cell invasion 

(Falcioni et al. 1997), implying that activated GFRs can cross-activate the integrin.  Another group 

showed that β4 cooperates with ErbB2 to promote PI3K-dependent invasion of NIH3T3-ErbB2 

transformed cells (Gambaletta et al. 2000). Similar to EGF, MSP stimulation results in β4 serine 

phosphorylation by PKCα, hemidesmosome disassembly, and β4 translocation to lamellipodia in 

migrating keratinocytes (Santoro et al. 2003). In pancreatic cancer cells, immunoprecipitation and 

proximity ligation studies showed that after MSP treatment, Ron translocates to the cell membrane 

and interacts with plectin and β4, and through activation of PI3K, disrupts β4/plectin interaction 

resulting in enhanced cell migration and colocalization of β4 and Ron in lamellipodia (Yu et al. 

2012).   β4 interaction with c-Met and activation by HGF will be discussed in the section titled 

“History of Integrin β4 and c-Met Association: Interaction and Functional Significance”. 

Analysis of the phosphorylation status of β4 showed that 95% occurs on serine residues 

with EGF treatment (Rabinovitz 2004), and 50% of that phosphorylation occurs on S1356, S1360, 

and S1364, although tyrosine phosphorylation of β4 following EGF treatment has been observed 

(Mainiero et al. 1996; Mariotti et al. 2001; Rabinovitz et al. 1999), and HGF is known to lead to 

β4 tyrosine phosphorylation (Trusolino et al. 2001).  Immunofluorescent staining of formalin-fixed 

paraffin-embedded or frozen tissue samples of invasive squamous cell carcinomas showed 

increased serine phosphorylation of β4 and decreased hemidesmosomal structures compared to 

both normal tissue and carcinoma in situ (Kashyap 2011). In general, β4 phosphorylation of any 

kind (tyrosine, threonine, serine) inhibits hemidesmosome formation (Mainiero et al. 1995). The 

hypothesis is that phosphorylation of β4 interferes with plectin binding by modifying β4 
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conformation and thus compromising the interaction (Dans et al. 2001; Litjens et al. 2006; Nievers 

et al. 1998). However, breakdown of hemidesmosomes after GFR activation of β4 is only partial, 

and indicates that other residues or proteins may be phosphorylated for full hemidesmosome 

disassembly.  

Integrin β4 and 12-Lipoxygenase are required for HGF-Induced PC-3 Prostate Cancer Cell 

Invasion 

 

 As discussed previously, we found that β4 and 12-LOX physically interact to functionally 

affect cell migration, apoptosis, and 12(S)-HETE production. Earlier pilot studies from our lab 

also evaluated whether β4 and 12-LOX association was functionally relevant for HGF-induced 

invasion. It was thought that the cytoplasmic tail of β4 could perhaps function as a signaling 

adapter molecule for the c-Met receptor, which is activated by HGF.  

 To determine the significance of β4 and 12-LOX interaction in terms of HGF-induced 

invasion, PC-3 prostate cancer cells stably expressing a 12-LOX expression construct (nL12) and 

the neo-α controls were subjected to a Boyden chamber invasion assay (Figure 12A). Cells were 

seeded onto fibronectin coated inserts and stimulated with HGF. Into each cell line were also 

transfected different constructs of β4: full-length (wild-type), headless (missing the extracellular 

head of β4), and tailless (missing the entire cytoplasmic tail of β4) (Figure 12B). With HGF 

stimulation, cells that ectopically expressed 12-LOX and either β4 full-length or the tail of β4, 

showed significantly enhanced cellular invasion compared to the non-treated controls and the neo-

α controls. PC-3 cells are generally unresponsive to HGF stimulation for invasion (Humphrey et 

al. 1995), and this can be seen in the lack of invasion in the neo-α vector control cells when treated 

with HGF. These results strongly suggest that 12-LOX and the β4 cytoplasmic tail are required for 

HGF-induced PC-3 cell invasion.  
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Figure 12. The Cytoplasmic Tail of β4 and 12-LOX are 

Required for PC-3 Prostate Cancer Cell Invasion. A) The tail 

of β4 and 12-LOX are required for PC-3 cell invasion through 

fibronectin in a Boyden chamber invasion assay. PC-3 cells stably 

expressing a 12-LOX expression construct (nL12) and the neo-α 

controls were transfected with the  following β4 expression 

constructs: B) full-length, headless, and tailless, along with a lacZ 

reporter construct to identify transfected cells. Cells were seeded 

onto fibronectin coated inserts and stimulated with 50 ng/mL HGF. 

a, p<0.0001; b, p<0.005. Part A reprinted with permission. 
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c-Met Receptor Tyrosine Kinase 

 In neoplastic tissue, analogous to c-Met function in normal tissue, c-Met signaling mediates 

EMT where cells detach from the ECM, and in becoming mobile, invade through the surrounding 

interstitial matrix by remodeling the basement membrane (Jeffers et al. 1996; Meiners et al. 1998). 

By enabling cellular mobility, c-Met promotes the most dangerous step of cancer progression: 

metastasis. The notion that β4 and 12-LOX could facilitate this capacity is intriguing and highly 

relevant for combinational drug therapies, and is the basis of my own study. 

c-Met Structure and Function in Normal Tissues 

 c-Met is a receptor tyrosine kinase (RTK) whose signaling and functioning in normal 

tissues is well known. The proto-oncogene was discovered in a human sarcoma cell line as a 

transforming Met fusion protein with the translocated promoter region (TPR-Met), later identified 

as an RTK,  and renamed RTK-Met for its role in metastasis (Park et al. 1987; Rong et al. 1994). 

HGF, also known as scatter factor (HGF/SF) (Gherardi et al. 1989; Stoker et al. 1987), is the only 

known activator of c-Met and is secreted by stromal cells such as fibroblasts (Bottaro et al. 1991). 

HGF is synthesized in a pro-form and must be proteolytically cleaved to the active ligand by one 

of three serine proteinases, HGF activator (HGFA), matriptase, or hepsin (Owen et al. 2010). c-

Met is a disulfide-linked α and β chain heterodimer processed by proteolytic cleavage of the 

precursor protein, much like HGF, and is expressed on epithelial or endothelial cells (Figure 13). 

The α-chain is extracellular while the β-chain spans the extracellular and intracellular space via a 

transmembrane domain. The cytoplasmic portion of the β-chain contains the tyrosine kinase and 

docking domains (Gherardi et al. 2003).  

HGF binding to c-Met induces c-Met homodimerization, activation of its kinase domain 

by phosphorylation of tyrosine residues Y1230, Y1234, and Y1235, and auto-activation of the C-
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terminal docking site (Y1349 and Y1356) for adapter molecules to bind to and signal from 

(Ponzetto et al. 1994; Weidner et al. 1996). The most common signaling adapters and transducers 

that directly interact with activated c-Met are signal transducer and activator of transcription 3 

(STAT3), growth factor receptor-bound protein 2 (GRB2), phospholipase C-γ (PLCγ), GAB1, and 

SRC (Reviewed in (Gherardi 2012)). These molecules then recruit adapter proteins such as SHP2, 

SHC, PI3K, SOS, and others to signal to the MAPK/ERK pathway to promote cell cycle 

progression, PI3K/AKT for cell survival, and the GTPase RAC1 for cytoskeletal modulation and 

cell migration. 
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Figure 13. c-Met Signaling Axis. c-Met is a receptor tyrosine kinase composed of a 

disulfide linked extracellular α-chain and a membrane traversing β-chain containing the 

tyrosine kinase and docking domains. HGF, the ligand for c-Met, is synthesized in pro-form 

and must be cleaved to be activated. Following binding by HGF, c-Met homodimerizes, and 

the kinase domains are activated, which leads to auto-activation of the docking domains. 

This results in the recruitment of multiple signaling adapter and transducer molecules such 

as GAB1, GRB2, PLCγ, SOS, SHC, SHP2, SRC, PI3K, etc. to signal to AKT for cell 

survival, RAC1 for cytoskeletal remodeling, and MAPK for cell cycle progression. 
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c-Met has been shown to regulate a plethora of signaling pathways that play diverse 

biological roles, especially those related to long-distance migration and EMT, which have special 

significance to cancer invasion and metastasis. Survival and proliferation of epithelial and 

myogenic precursors during migration in embryogenesis is almost exclusively regulated by c-Met 

(Bladt et al. 1995; Schmidt et al. 1995; Uehara et al. 1995). Epithelial cells respond to HGF 

activation of c-Met by ‘scattering’, meaning cellular colonies are disrupted and the cells undergo 

EMT and become invasive (reviewed in (Thiery 2002)). The activation of RAS downstream of c-

Met was found to be essential for cell scattering by several groups (Hartmann et al. 1994; Potempa 

& Ridley 1998; Ridley et al. 1995). The RTK also regulates branching morphogenesis in tissue 

patterning (Montesano et al. 1991), organ regeneration/wound healing (Nakamura & Matsumoto 

1992; Stoker et al. 1987), and disruption of intercellular junctions along with matrix degradation 

through induction of MMP-9 activity (McCawley et al. 1998; Pepper et al. 1992). 

c-Met Oncogene in Cancer 

 Normally, HGF activation of c-Met is a tightly regulated event dependent on 

ligand/receptor spatial separation, receptor internalization, and receptor degradation or recycling. 

However, deregulation of c-Met signaling is commonly seen in cancer, is the cause of its oncogenic 

properties, and can occur through a variety of mechanisms including overexpression, 

amplification, mutation, or co-expression of HGF and c-Met resulting in autocrine activation. The 

oncogenic TPR-Met fusion gene, which is constitutively active, has been identified in gastric 

cancer and in adjacent normal tissues (Soman et al. 1991).  c-Met amplification, which causes 

protein overexpression and constitutive activation, is found in non-small cell lung cancer (NSCLC) 

(Engelman et al. 2007), and in colon cancer where the amplification encourages liver metastasis 

(Di Renzo et al. 1995). Although rare, germline and somatic missense mutations of c-Met, 
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occurring mostly in the kinase domain, have been identified in papillary renal carcinoma (Schmidt 

et al. 1997) and sporadic hepatocellular pediatric carcinoma (Jeffers et al. 1997). Such activating 

mutations allow for selective expansion of squamous carcinoma cells during metastasis (Di Renzo 

et al. 2000). The most common cause of deregulated c-Met signaling in cancer is protein 

overexpression in the absence of any genetic alterations. For example, high levels of c-Met have 

been detected in NSCLC (Olivero et al. 1996), breast cancer (Garcia et al. 2007), ovarian cancer 

(Wong et al. 2001a), malignant renal cell carcinoma, and pleural mesothelioma (Jagadeeswaran et 

al. 2006). Lastly, c-Met and HGF are expressed together in some cases of osteosarcoma resulting 

in autocrine constitutive activation (Ferracini et al. 1995). 

Once c-Met signaling has been deregulated, cancer cells exploit the vast functional 

outcomes c-Met can mediate to promote tumor progression. In head and neck cancers, activating 

c-Met mutations are selected for during metastasis, implicating c-Met in cancer cell invasion (Di 

Renzo et al. 2000). Not only does c-Met promote invasion, it is also a potent inducer of 

angiogenesis by inducing the expression of VEGFA (Abounader & Laterra 2005; Bussolino et al. 

1992; Grant et al. 1993). To avoid cell death, cancer cells exploit the fact that c-Met can directly 

interact with the death receptor Fas to prevent Fas-induced apoptosis  as well as directly interacting 

with β-catenin to promote transcription of WNT target genes, including itself, in the promotion of 

tumor progression (Boon et al. 2002). Of importance to cancer are the facts that c-Met can interact 

with the EGFR to promote proliferation and invasion of cancer cells (Puri & Salgia 2008; Shattuck 

et al. 2008), as well as interact with ErbB2 in tumor progression (Yoshioka et al. 2013). Therefore, 

the notion that c-Met could interact and cooperate with β4 in neoplastic cells to promote 

tumorigenic phenotypes, and that 12-LOX may influence this cooperation, is well supported 

through precedent. 
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History of Integrin β4 and c-Met Association: Interaction and Functional Significance 

There is a long history of research that has been executed concerning β4 and c-Met 

interaction in cancer, yet some of the simplest findings have been controversial and/or non-

replicable. Therefore, the details of their relationship are described below. 

β4 and c-Met were shown to constitutively associate in various cancer cell lines which 

endogenously or exogenously express both proteins, such as A431 epidermoid carcinoma cells, 

MDA-MB-435 and MDA-MB-231 breast cancer cells, GTL-16 gastric carcinoma cells, and others 

(Bertotti et al. 2005; Bertotti et al. 2006; Trusolino et al. 2001; Yoshioka et al. 2013). β4 cross-

activation by c-Met, where c-Met was activated by HGF, constitutively activated by 

overexpression, or activated by mutation, resulted in enhanced SHC and SHP-2 binding to β4, 

PI3K activation, increased SRC activity, and finally AKT and ERK activation (Bertotti et al. 2006; 

Trusolino et al. 2001). This activation of β4 by c-Met was shown to increase anchorage-

independent growth and enhanced invasion of cells endogenously expressing both proteins, as well 

as in transfected cells, through phosphorylation of the β4 cytoplasmic tail (Bertotti et al. 2006; 

Trusolino et al. 2001). HGF dramatically increased the invasion of MDA-MB-435 breast cancer 

cells transfected with β4, and knockdown of β4 in A431 cells reduced HGF-induced invasion 

(Trusolino et al. 2001). A mouse xenograft of MDA-MB-435 cells showed 7/10 mice had multiple 

pulmonary metastases of β4 transfected cells versus 3/10 mice with only one instance of metastasis 

in the control group (Trusolino et al. 2001). HGF stimulation resulted in β4 clustering at adhesive 

contacts and lamellipodia in MDA-MB-231 cells (Trusolino et al. 2000), indicating that not only 

can HGF lead to β4 activation, but that there are functional consequences. Chimeric protein studies 

suggest that both the intra and extracellular domains of c-Met interact with β4 and that β4 does not 

have to be liganded (i.e. stimulated) nor function as an adhesive device to enhance c-Met signaling, 
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as MDA-MB-435 cells expressing only the cytoplasmic tail of β4 still respond to HGF in invasion 

(Trusolino et al. 2001). Additionally, β4 does not have to be heterodimerized with α6 to enhance 

c-Met signaling (Merdek et al. 2007).  

Given the implications of β4 and c-Met cooperation in cancer, controversy over whether 

or not the two interact spurred reports questioning role of β4 as a signaling adapter for c-Met. 

Subsequently, it was found that c-Met and β4 do not interact as measured by co-

immunoprecipitation using A431, MDA-MB-435 cells transfected with β4, and MDA-MB-231 

cells with the same lysis buffer and protocol used previously (Chung et al. 2004). It is possible that 

the interaction is transient and therefore was missed by the investigators. Using MDA-MB-435 

cells overexpressing c-Met (no endogenous β4), the same group demonstrated that c-Met could 

function independently to promote invasion (Chung et al. 2004). They also showed HGF activation 

of β4 did not result in increased downstream signaling through SHP-2, AKT, or ERK, and the 

intracellular signaling domain of β4 alone was not sufficient to enhance c-Met mediated migration 

(Merdek et al. 2007), as previous reports had suggested. While ectopic expression of β4 generally 

promoted invasion, Chung et al. found the effect was not specific to HGF-induced invasion as 

invasion toward other chemoattractants also increased (Chung et al. 2004).  

In a contrasting study, c-Met was shown to enhance β4 overexpression-induced 

transformation and anchorage-independent growth of rat fibroblasts (Bertotti et al. 2005). Further, 

β4 activation by constitutively active, overexpressed c-Met was again shown and HGF stimulation 

lead to an increase in SRC, SHP2, GAB1, and ERK activation (Bertotti et al. 2006). Additionally, 

siRNA-mediated knockdown of β4 abolished HGF-induced colony formation (Bertotti et al. 

2006), supporting a role for β4 cooperation with c-Met. When β4 was expressed, with or without 

its extracellular domain, there was an increase in the size and number of MDA MB-435 colonies 
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formed (Bertotti et al. 2006). Inhibition of SHP2 interaction with β4 through mutation in the same 

breast cancer cells led to a decrease in colony formation, and dominant-negative SRC also 

decreased anchorage-independent growth (Bertotti et al. 2006). Of note is the observation that in 

breast cancer cells, constitutively active SRC acts to upregulate HGF transcriptionally to promote 

cancer progression through autocrine loop activation (Wojcik et al. 2006).   

The most recent report to analyze the functional relationship of c-Met with β4 suggested 

that the β4 ‘signaling domain’ (the cytoplasmic tail from residue 1355 onward), potentiates ErbB2 

and c-Met signaling in tumor cells (Yoshioka et al. 2013). This study showed that c-Met and β4 

associate, as measured by co-immunoprecipitation, in DU145 prostate cancer cells. Furthermore, 

knockdown of β4 decreased HGF-dependent cell proliferation and invasion (Yoshioka et al. 2013). 

However, in isolated tumor cells from β4-1355T mutant mice, neither HGF nor NRG treatment 

result in c-Met or ErbB2 activation, respectively, whereas in cells from the wild-type parental mice 

c-Met and ErbB2 phosphorylation was apparent after stimulation via their cognate ligands 

(Yoshioka et al. 2013). Instead of suggesting that β4 enhances GFR downstream signaling as the 

authors claim, these data imply that the β4 signaling domain is necessary for both c-Met and ErbB2 

activation, a conclusion not supported by other experimental evidence. For example, in MDA-MB-

435 cells, that do not express β4, HGF induced c-Met phosphorylation and the cells exhibited 

significant invasion toward HGF (Chung et al. 2004). HGF stimulation was also shown to activate 

AKT and ERK downstream of c-Met in the same cell line by another group (Merdek et al. 2007). 

The data suggest that β4 is not required for c-Met signaling or functioning in this background. 

Nonetheless, despite the variability in the data, the studies detailed above point to c-Met and β4 

crosstalk, emphasizing the importance of β4 in cancer. Yet it still remains unclear exactly how β4 

and c-Met cooperate in cancer cells and what this means in terms of functional significance.  
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Hypothesis  

The potential for β4 to be a signaling adapter for c-Met in c-Met-promotion of tumor 

invasion/metastasis, together with our own observation that the cytoplasmic tail of β4 along with 

12-LOX were required for HGF-induced PC-3 prostate cancer cell invasion allowed us to 

hypothesize that β4 uses 12-LOX as a scaffold, so as to enhance the invasive signaling originating 

from c-Met on binding HGF, modulating cell scattering and invasion (Figure 14). 
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  Figure 14. Hypothesis. We hypothesize that in collaboration with β4, 12-LOX acts as a scaffold to 

enhance the invasive signaling originating from c-Met on binding HGF, modulating cell scattering and 

invasion. HGF stimulation of c-Met results in activation via phosphorylation of the receptor. Several 

reports suggest that c-Met can cross-activate β4, but it is unclear whether this occurs and if so, what the 

mechanism is. We propose that 12-LOX is involved in β4 activation following HGF treatment and that 

in association with β4, 12-LOX acts as a scaffold to promote HGF-induced functions such as cell 

scattering and invasion in cancer cells.  
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CHAPTER 2. MATERIALS AND METHODS 

Cell Culture and Treatments 

A431 cells, a human epidermoid carcinoma cell line, were obtained from the ATCC and 

were cultured in DMEM media containing 4.5 g of glucose containing 10% fetal bovine serum, 

streptomycin (100 mg/ml), and penicillin (100 units/ml) (Gibco, Grand Island, NY).  The human 

prostate cancer cell lines PC-3, PC-3M, PC-3/M derivatives, and DU145 along with CHO cells 

(Chinese Hamster Ovary) were cultured in RPMI 1640 media containing the same additives as 

above.  The cells were grown at 37°C in a 5% CO2 atmosphere. PC-3 and PC-3M cells stably 

expressing 12-LOX expression constructs and PC-3M cells stably expressing shRNA targeted to 

12HETER-1 were previously established and characterized (Guo et al. 2011b; Tang et al. 2000). 

The A431 12-LOX KD cells were also previously characterized (see Chapter 1). Mycoplasma 

negative cultures were ensured using immunofluorescent DAPI staining and the VenorGeM 

Mycoplasma detection kit (Sigma-Aldrich, Saint Louis, MO). 

For treatment of cells with β4 monoclonal antibody (3E1) or HGF, 2x10
6
 cells were seeded 

in 100 mm petri dishes and serum-starved the following day for 24 hours prior to experimental 

use. Cells were washed 3x with serum-free media and stimulated with 3E1 (5 μg/mL) or HGF for 

30 minutes unless otherwise noted. Stimulation of the cells with HGF ranged from 10 ng/mL to 

400 ng/mL in the presence of 0.25% lipid-stripped FBS to ensure full activation of the recombinant 

HGF. Cells were treated with the indicated concentrations of INCB28060, BMD122, or baicalein 

two hours prior to HGF stimulation. 

Antibodies and Reagents 

3E1 mAb to human β4 integrin was from Millipore (Temecula, CA) and was used for 

activation of β4, immunoprecipitation, and immunofluorescence assays. Actin mAb was also from 
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Millipore. Purified mouse anti-human CD104 was from BD Pharminigen (Franklin Lakes, NJ) and 

used for detection of β4 via Western blot and for immunoprecipitation where indicated. CD104 

(clone 439-9B) was from eBioscience (San Deigo, CA). The integrin β4 residue-specific anti-

phosphotyrosine antibody (Tyr-1494; abbreviated β4-1494 throughout this manuscript) was from 

ECM Biosciences (Versailles, KY). Antibodies to platelet-type 12-LOX (C-20), Met (C-12):sc-10, 

plectin (C-20), and donkey anti-goat IgG-HRP were from Santa Cruz Biotechnology (Santa Cruz, 

CA). Anti-mouse and anti-rabbit IgG-HRP were from GE Healthcare (Piscataway, NJ). GAPDH, 

VEGFR2, phospho-c-Met (Y1234/1235), and total or phosphorylated AKT (S473) and ERK 

(T202/Y204) antibodies were from Cell Signaling (Danvers, MA). Global phosphotyrosine 

antibody (PY20) was from Enzo Life Sciences (Plymouth Meeting, PA).  Laminin from human 

placenta and EGF were from Sigma-Aldrich (St. Louis, MO). Matrigel was from BD Bioscience 

(Bedford, MA). Human Hepatocyte Growth Factor (HGF) was from Sigma-Aldrich (Saint Louis, 

MO). 12(S)-HETE was from Cayman Chemical (Ann Arbor, MI). Arachidonic acid was from 

NuCheck (Elysian, MN). The Alexa Fluor fluorophore conjugated antibodies GAM488, DAG594, 

and GAR594 were from Life Technologies (Grand Island, NY). INCB28060 (INC280) was from 

MedChemExpress (Princeton, NJ). Baicalein was from Enzo Life Sciences (Farmingdale, NY). 

BMD122 (previously known as BHPP-benzyl-N-hydroxy-5-phenylpentanamide; BMD122-

Biomide Compound 122) was a generous gift from Biomide Corporation (Grosse Pointe Farms, 

MI). 

Immunoblotting and Immunoprecipitation 

For protein isolation, cells were rinsed 3x with PBS and harvested using ice-cold lysis 

buffer (1% Triton X-100,150 mM NaCl, 10 mM Tris, pH 7.4, 1 mM EDTA, 1 mM EGTA, pH 8.0, 

0.2 mM sodium ortho-vanadate, 0.2 mM PMSF, 0.5% NP-40) with Protease Inhibitor Cocktail and 
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EDTA solution added (Thermo Scientific, Rockford, IL). For phosphorylated proteins, cells were 

harvested using lysis buffer and then snap frozen in liquid nitrogen. Lysates were sonicated for six 

seconds at 30% duty cycle, and then clarified by centrifugation (10,000 x g; 10 minutes). Protein 

concentration was determined using BCA Protein Assay Reagent (Thermo Scientific, Rockford, 

IL). 50 ug of protein in 4x SDS-PAGE sample loading buffer was used for immunoblotting.  For 

immunoprecipitation, lysates were normalized using protein concentration, pre-cleared with 

Protein G beads (Millipore, Billerica, MA) for 1 hour at 4°C, and incubated with the indicated 

antibody or species matched IgG for control overnight at 4°C with end-over-end rotating. The next 

day, Protein G beads were incubated with the lysates for two hours at 4°C again with end-over-

end rotating. The immunoprecipitates or whole cell lysates were then boiled for five minutes in 

SDS sample buffer, separated on either an 8% or 10% SDS-polyacrylamide gel, transferred to a 

nitrocellulose membrane, and immunoblotted using primary and the respective secondary HRP-

conjugated antibodies.  Visualization of detected bands was done with ECL reagent (Thermo 

Scientific, Rockford, IL) using the FluorChem imaging system and software from Alpha Innotech 

(San Leandro, CA).  Densitometric data was obtained using FluorChem software.  

Cell Transfection 

Knockdown of gene expression by shRNA was performed using Lentiviral pGIPZ 

constructs containing shRNA targeted to unique regions of the 12-LOX gene, that were purchased 

from Open Biosystems (Rockford, IL) and were designated as follows: V2LHS_112083 (#1), 

V2LHS_112086 (#2), V2LHS_112087 (#3), V3LHS_335849 (#5), V3LHS_335846 (#6), 

RHS4346 (#8).  For stable transfections, A431 cells were transfected with 2 µg plasmid DNA, 

using Lipofectamine LTX transfection reagent from Invitrogen (Grand Island, NY). 48 hours later, 

cell media was switched to DMEM containing 1 ug/mL puromycin (Invitrogen, Grand Island, NY). 
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Cells were selected for three weeks until all non-transfected cells were dead.  Treatment of cells 

with Scrambled, FNO1, and FNO1-2 peptides (synthesized by Invitrogen, Grand Island, NY): At 

60% confluence, cells were serum-starved 24 hours and then transfected using Chariot (Active 

Motif, Carlsbad, CA) with peptides (500 ng) for 4-6 hours in serum-free media. Transfection of β-

galactosidase served as a positive control and as a reporter of transfection efficiency. Images of β-

galactosidase staining were taken at 400x. Cells were utilized immediately following Chariot 

transfection. 

Measurement of 12-Lipoxygenase Activity LC-MS 

 Enzymatic activity of 12-LOX was determined by measuring 12(S)-HETE production 

using liquid chromatography-mass spectrometry. Cells (8x10
5
) were seeded into six well plates 

and serum-starved overnight the following day using serum-free phenol red-free media. Prior to 

experimental use, cells were stimulated with 3E1 or HGF in the presence of 10 µm arachidonic 

acid in 1% fatty acid-free BSA. AA untreated cells served as controls. As an additional control, 

wells without cells were treated with arachidonic acid to account for the spontaneous oxidation of 

arachidonic acid into 12(S)-HETE (experimental 12(S)-HETE production values are adjusted 

based on this number). The detailed lipid extraction protocol and analysis procedures have been 

described (Maddipati & Zhou 2011). Briefly, after 6 or 24 hours, conditioned media from the cells 

were collected into Eppendorf tubes and 5 µL 15-HETE-d8 was added as an internal standard to 

monitor extraction efficiency. Supernatants containing cell lipids were subjected to solid phase 

extraction using Strata X 33u Polymeric Reversed Phase columns (30 mg/1mL; Phenomenex, 

Torrance, CA), followed by elution of lipids from extracts with methanol.  These were evaporated 

under a stream of nitrogen and reconstituted in 50 µL LC-MS grade methanol. Immediately before 

LC-MS analysis, 50 µL of 35 mM ammonium acetate was added. Data were repeated in triplicate 
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and samples were analyzed by the Lipidomics Core at Wayne State University. For the time course 

measurement of 12(S)-HETE production in parental A431 cells stimulated with 3E1, cells were 

incubated with 3E1 for the indicated 90, 60, 30, 15, 5, or 0 minutes, washed 1x with serum-free 

phenol red-free media, then treated with 10 µM arachidonic acid (in 1% fatty acid free BSA) for 

15 minutes. Controls were the same as above. Cells and media were then collected into Eppindorf 

tubes and 15-HETE-d8 was added as an internal standard. Lipids were extracted and samples 

analyzed as biological tripicate by the Lipidomics Core at Wayne State University.  

Confocal Immunfluorescence 

Cells were grown to 80% confluency on glass coverslips coated with 250 µg/mL Matrigel 

and serum starved overnight prior to the indicated treatments. Cells were washed 3x with PBS and 

fixed with 3.7% formaldehyde in PBS for five minutes at 37°C followed by fixation with ice-cold 

methanol in the freezer for three minutes. For rehydration and permeabilization, cells were 

incubated in antibody dilution buffer (TBS, 0.1% Triton X-100, and 2% BSA) for ten minutes. 

This and subsequent labeling steps were done in humidified chambers at room temperature. Cells 

were incubated in primary antibody (1:100) for one hour, washed 3x with PBS, then incubated in 

the corresponding secondary fluorophore-conjugated antibody (1:500) for 30 minutes, and washed 

again 3x with PBS. In the case of double immunofluorescence, the second target protein was 

stained exactly as above sequentially. Lastly, cells were stained for DAPI 10 minutes, washed 3x 

with PBS then mounted in Mowiol. Images were taken at 63x with an oil immersion lens on a 

Leica TCS SP5 laser scanning confocal microscope at the Microscopy, Imaging, and Cytometry 

Core of Wayne State University. 
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Real-Time PCR 

2 µg of RNA isolated using the Macherey-Nagel NucleoSpin RNAII kit (Bethlehem, PA) 

was reverse-transcribed (Applied Biosystem’s High Capacity Reverse Transcription Kit, Foster 

City, CA). Real-time PCR was performed using 4.5 uL of a 1:5 dilution of the reverse transcribed 

cDNA along with 5 uL Taqman Gene Expression Master Mix (Applied Biosystems, Foster City, 

CA) and 0.5 uL of primer per reaction. ALOX12 (HS00167524) and GAPDH primers were from 

Applied Biosystems (Foster City, CA). All sample reactions were run in triplicate on the AB 7500 

Fast Real Time PCR System. The relative expression of 12-LOX was quantified by the Ct value 

measured against the internal standard GAPDH using the 7500 Fast System SDS software v1.4.0 

provided by Applied Biosystems (Foster City, CA). 

Invasion Assay 

Boyden chamber inserts with 8 µm pores (BD Falcon, Franklin Lakes, NJ) were coated 

with 250 ug/mL growth factor-reduced Matrigel in 100uL of phenol red-free, serum-free media. 

After incubation at 37
o
C for 1h, excess liquid was removed.  Inserts were seeded with cells at a 

density of 5 x 10
5
/mL in 0.5 mL serum-free media and allowed to adhere for two hours before 

treatment.  Where noted, cells were treated with HGF (indicated concentrations), 3E1, 2 ng/mL 

EGF, or 12(S)-HETE (100-600 nM). To inhibit enzymatic activity of 12-LOX, cells were pre-

treated for two hours prior to treatment with 20 µM BMD122 or 10 µM baicalein. The lower 

chamber contained serum-free media.  For controls in the lower chamber, serum-free media with 

0.25% or 10% lipid-stripped FBS were used respectively. A431 and DU145 cells were allowed to 

invade for 18 hours and PC-3M cells for 8 hours. Transmigrant cells on the underside of the insert 

were fixed with methanol, stained with crystal violet, and washed twice with distilled water.  

Residual, non-migrated cells were gently removed.  Images were taken at 10x. Membranes were 
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cut from the inserts, dissolved in 10% acetic acid and assayed for dye content of migrated cells at 

an absorbance of OD570nm. Results are reported as the mean of three samples.  

Adhesion Assay 

96 well plates were coated with 10 µg/mL Laminin overnight at 4°C or left uncoated as a control. 

Wells were washed with 0.1% BSA in serum-free media, blocked with 0.5% BSA in the 

corresponding media for 1 hour at 37°C, then washed again. Plates were chilled on ice until cells 

were ready to be seeded into them. Cells were serum-starved overnight then added to the wells at 

a concentration of 0.5x104 in 0.1 mL with HGF or 3E1 treatment for 2 hours at 37°C. Non-treated 

cells served as a control. Where indicated, cells were treated with 20 µM BMD122 for two hours 

prior to seeding into plates. Wells were washed 3x and adherent cells were fixed with 4% 

paraformaldehyde at room temperature for 15 minutes. Visualization of cells was done using 0.1% 

crystal violet (20 minutes, room temperature), followed by washing 1x with water, and left to 

completely dry. Images of cells were taken at 10x. Adhesion was measured by dissolving crystal 

violet stained cells in 2% SDS and reading the absorbance at OD550nm. Results are reported as the 

mean of three replicates. 

Scatter Assay 

Cells were seeded at low density (300 cells/well) into 96 well plates. At the point of colony 

formation (4-7 days), cells were serum-starved overnight and then treated with increasing 

concentrations of HGF for 16 hours. For visualization, cells were fixed with 3.7% formaldehyde 

in PBS for five minutes at 37°C and stained with crystal violet for 20 minutes (room temperature), 

followed by 3x washes with water. Images of the cells were taken at 100x. The number of 

intact/HGF-non-responsive colonies in each well were counted for each condition in triplicate. 

Subcellular Fractionation 
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2x106 cells were seeded into 100 mm plates and serum-starved the next day. Some cells 

were not serum-starved (‘basal’ condition). Following overnight serum starvation, cells were 

treated with 200 ng/mL HGF for 30 minutes. Cells were then collected and fractionated with the 

Biovision Fractionation Kit (Milpitas, CA) per the manufacturer’s instructions.  

Statistical Analysis 

For the experiments described above, samples were run in triplicate and statistical analysis 

was determined by estimating the p-value using the Student’s T-test. The results are represented 

as the mean +/- the standard error of the mean (SEM).  
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CHAPTER 3. A NOVEL FUNCTION FOR 12-LIPOXYGENASE IN C-MET AND 

INTEGRIN β4 AXIS CROSSTALK: INTERACTION AND FUCTIONAL STUDIES 

 

A431 Epidermoid Carcinoma Results 

β4 interacts with c-Met under basal conditions, but the interaction is disrupted with HGF 

stimulation 

 

 It was previously shown that c-Met and β4 interact (Bertotti et al. 2005; Trusolino et al. 

2001; Yoshioka et al. 2013), and that this interaction enhances c-Met signaling through the SRC-

SHP2 axis leading to increased anchorage-independent growth and invasion (Bertotti et al. 2006). 

However, the interaction was controversial given other groups were unable to detect the above 

interaction or confirm the functional consequences (Chung et al. 2004; Merdek et al. 2007). Prior 

to addressing the hypothesis that 12-LOX may act as a scaffold to facilitate β4-enhanced c-Met 

functioning, it was necessary to confirm that β4 and c-Met interact. Co-immunoprecipitation 

studies were carried out in A431 cells, an epidermoid carcinoma cell line, as the association was 

shown to both occur and not occur in this cell line. Additionally A431 cells natively express β4, 

c-Met, and 12-LOX (Figure 15A).  After immunoprecipitation for β4, c-Met associated with the 

integrin in serum-starved and basal (non-serum-starved) conditions (Figure 15B). On HGF 

stimulation, the interaction of c-Met and β4 appeared to decrease, which was likely due to 

disruption of the complex during hemidesmosome disassembly as the cells are stimulated to 

‘scatter’ by HGF. As a positive control, c-Met was pulled down in serum-starved cells and run 

next to the β4 immunoprecipitated samples, and as a negative control, matched IgG was 

immunoprecipitated to detect any non-specific interactions. The blot was also re-probed for β4 to 

ensure equal pull-down across samples, as was done for every immunoprecipitation following. 

These findings were then confirmed by performing the reciprocal immunoprecipitation, where c-

Met was pulled down and the blot probed for β4 (Figure 15C). Again, β4 and c-Met do associate 
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under serum-starved conditions, but dissociate with HGF stimulation. The levels of β4 associating 

with c-Met suggest both proteins exist in complexed and uncomplexed forms, as previous studies 

have suggested (Trusolino et al. 2001). 

 

 

 

 

 

 



59 

  
 

 
 

 

 

 

 

 

 

Figure 15. HGF Stimulation Disrupts the β4/c-Met Association A) Whole cell lysate protein 

levels of 12-LOX, β4, and c-Met assayed by Western blot. CHO cells are a negative control for 

all three proteins, human platelets are a positive control for 12-LOX. The other cell lines 

included were CRL-2221 normal immortalized prostate and the following prostate cancer cell 

lines: DU145, PC-3, PC-3M, PC-3M 12-LOX transfectants, PC-3M empty vector controls. 

Densitometry represents the ratio of the protein to actin. B&C: c-Met and β4 interact in serum-

starved and non-serum-starved (basal) conditions but the interaction is disrupted with 30 

minutes HGF treatment. Densitometry analysis represents the ratio of the co-

immunoprecipitated protein (upper panel) to pulled-down protein (lower panel). 

Immunoprecipitation of matched IgG was performed as a control. Direct immunoprecipitation 

of the co-immunoprecipitated protein (last lane, upper panel) was performed as a positive 

control and exposed for a shorter duration due to band intensity. B) Immunoprecipitation of β4 

followed by Western blot analysis for c-Met. The blot was stripped and re-probed for total β4 

(lower panel). C) Reciprocal immunoprecipitation of part B. 
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To corroborate the co-immunoprecipitation data, immunofluorescence studies were 

performed to detect the c-Met and β4 interaction. c-Met staining (red) presents as small, punctate 

dots in the cell membrane whereas β4 (green) is mainly localized to intense membrane clusters 

(Figure 16A). Under serum-starved conditions, β4 and c-Met co-localize mostly within the intense 

β4 clusters, indicated by white arrows pointing to yellow areas of green and red overlay (Figure 

16B). However, with HGF stimulation, β4 and c-Met co-localization is almost completely lost 

(Figure 16C). The total levels of β4 appear to decrease with HGF stimulation. However, 

immunoblot analysis showed the protein levels of β4 remain unchanged (Figure 16D), so the 

integrin is likely relocating from its diffuse location within the membrane to the intense clusters 

with HGF stimulation. Because the immunoprecipitation data also suggest β4 and c-Met 

interaction is lost with HGF treatment, we sought to determine if this was due to hemidesmosome 

disassembly when the cells are stimulated to scatter or become motile because of the HGF 

stimulus. A431 cells are known to form hemidesmosomes (Rabinovitz et al. 1999) and these 

structures are marked by punctate or granular staining of β4 with a ‘swiss cheese’ patterning 

(Spinardi et al. 1995). Because the simplest hemidesmosome, type II, is marked by plectin co-

localization with β4 (Uematsu et al. 1994), we stained for both proteins. Under serum-starved 

conditions, β4 (green) and plectin (red) co-localize to a greater extent than in the presence of HGF, 

indicating these cells are forming hemidesmosome-like structures that are disassembled with HGF 

treatment (Figure 16E-G).  
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Figure 16. HGF Stimulation Disrupts the β4/c-Met Association and Leads to 

Disassembly of Hemidesmosome-like Structures.  Co-localization of β4 with 

either c-Met or plectin is decreased with HGF treatment, indicating 

hemidesmosome-like structures are disassembled as assessed by confocal 

immunofluorescence. Images taken at 63x. White arrows indicate co-localization. 

A) β4 (detected with Alexa Fluor GAM488, green) interaction with c-Met (Alexa 

Fluor DAR594, red) in non-treated and HGF-treated conditions. Enlarged merged 

images show β4 co-localization with c-Met in B) non-treated and C) HGF-treated 

cells. The original image for parts B and C are in the upper left hand corner with the 

enlarged area outlined in white. D) β4 protein levels do not decrease with HGF 

treatment (30 minutes). Western blot analysis of whole cell lysate. CHO lysate was 

run as a negative control for β4 protein expression. E)  β4 co-localization with 

plectin (Alexa Fluor DAG594, red) in non-treated and HGF treated conditions. 

Enlarged merged images show β4 co-localization with plectin in F) non-treated and 

G) HGF- treated cells.  H) Secondary antibody controls for Figure 16 and 20. 
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 β4 is activated by c-Met, resulting in 12-LOX recruitment but not 12-LOX enzymatic activation 

 Previously it was shown that c-Met activation leads to β4 phosphorylation (Bertotti et al. 

2005; Bertotti et al. 2006; Trusolino et al. 2001). We confirmed this activation in A431 cells treated 

with increasing concentrations of HGF followed by immunoprecipitation of β4 by detecting global 

phosphorylated tyrosine using the PY20 antibody (Figure 17A). Our lab has shown that laminin 

or 3E1 direct stimulation of β4 leads to its activation and subsequent recruitment of 12-LOX to the 

integrin (Tang et al. manuscript pending). 3E1 is a well-established activator of β4 and has been 

shown to act similarly to laminin, the natural ligand (Mainiero et al. 1995). Specifically, we have 

shown that integrin stimulation using 3E1 resulted in β4 tyrosine 1494 (β4-Y1494) 

phosphorylation (Dilly et al. manuscript pending). Mutational analysis revealed this residue is 

critical for 12-LOX recruitment to β4 and therefore 12-LOX activation following integrin 

stimulation (Dilly et al. manuscript pending). β4-Y1494 is hypothesized to be a master regulator 

of β4 function (Dutta & Shaw 2008). When mutated, in addition to mutation of tyrosine 1257, 

overall β4 phosphorylation was decreased in response to constitutively active c-Met via 

overexpression through transfection (Bertotti et al. 2006). Therefore, this residue has been 

implicated, but never directly shown, in HGF activation of β4. Additionally, β4-Y1494 is known 

to be essential for β4-mediated carcinoma invasion (Shaw 2001). Mutation of β4-Y1494 inhibited 

ERK-mediated anchorage-independent growth of breast cancer cells in vitro  along with PI3K and 

SRC-mediated tumor growth and angiogenesis in vivo (Dutta & Shaw 2008). Recently it was 

discovered that β4-Y1494 stimulates SHP2 catalytic activity by interacting with its N-terminal 

SH2 domain, which was required for β4-dependent invasion (Yang et al. 2010). SHP2 recruitment 

to β4 following c-Met activation was shown to be important for ERK signaling (Bertotti et al. 

2006), which is known to be necessary for c-Met-mediated cell scattering and invasion (Hartmann 
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et al. 1994; Potempa & Ridley 1998; Ridley et al. 1995). Therefore, we assessed whether HGF 

stimulation could result in phosphorylation of β4-Y1494. Following cell treatment with HGF and 

immunoprecipitation of β4, β4-Y1494 was indeed found to be activated compared to non-treated 

cells (Figure 17B). These results show that HGF induces β4 phosphorylation, and specifically β4-

Y1494 phosphorylation. 
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Figure 17. HGF Stimulation Leads to β4 Phosphorylation. 

Immunoprecipitation of β4 shows A) β4 tyrosine phosphorylation and B) β4-

Y1494 phosphorylation is increased with HGF treatment (30 minutes; 

indicated concentrations). Western blot analysis for PY20 or phospho-β4-

Y1494 respectively. The membranes were stripped and re-probed for total β4 

(lower panel). Densitometry was calculated by taking the ratio of 

phosphorylated β4 or β4-Y1494 (upper panel) to total β4 (lower panel) and 

normalizing to the non-treated control. Matched IgG was immunoprecipitated 

as a control. 
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To prove it was HGF activation of c-Met that led to β4 phosphorylation, we used the c-Met 

inhibitor INCB28060, also known as INC280. This ATP competitive inhibitor was shown to be 

10,000 fold more selective for c-Met versus other human kinases (Liu et al. 2011). First, we 

performed a dose-dependent assay to determine what concentration of INC280 was sufficient to 

inhibit HGF-induced c-Met phosphorylation. Cells were treated with increasing concentrations of 

the inhibitor for two hours prior to treatment with HGF, and activated c-Met was detected with a 

phospho-specific c-Met antibody by Western blot. With 100 nM INC280, the levels of HGF-

induced phosphorylated c-Met were decreased significantly compared to HGF treatment alone 

(Figure 18A). At this concentration, c-Met phosphorylation was decreased even below the levels 

seen in non-treated cells. There is basal c-Met activation in A431 cells and is likely due to 

constitutively active EGFR in these cells, as EGFR can cross activate c-Met (Jo et al. 2000). Next, 

we treated cells with 100 nM INC280 and looked to see if this affected HGF-induced β4 

phosphorylation by immunoprecipitating for β4 followed by Western blot analysis using PY20 

antibody. With HGF stimulation, significant β4 phosphorylation occurred. However, pre-treatment 

of cells with the c-Met inhibitor completely abrogated the activation (Figure 18B). Therefore, HGF 

activation of c-Met leads to the cross-activation of β4. 
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Figure 18. The c-Met Inhibitor INC280 Reveals HGF Activation of c-Met Leads to β4 Activation. A) 

Dose-dependent assay to determine the concentration of INC280 required to prevent HGF-induced c-Met 

phosphorylation. Cells were pre-treated for two hours with INC280 at the indicated concentrations and then 

stimulated with 50 ng/mL HGF for 30 minutes. Phosphorylated (upper panel) and total c-Met (lower panel) 

were analyzed by Western blot. Densitometry represents the ratio of phosphorylated to total c-Met as a 

percentage of the HGF treated control (last lane; upper panel). B) 100 nM INC280 inhibits HGF-induced 

β4 phosphorylation. Cells were pre-treated with INC280 for two hours before HGF stimulation (30 minutes; 

200 ng/mL). Lysates were immunoprecipitated for β4 followed by Western blot analysis with PY20 to asses 

for phosphorylated β4. The membrane was stripped and re-probed for total β4 (lower panel). Densitometry 

was calculated by taking the ratio of phosphorylated β4 (upper panel) to total β4 (lower panel) and 

normalizing to the non-treated control. Immunoprecipitation of matched IgG was performed as a control. 
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Given that β4 is activated after HGF treatment, we wanted to determine whether this results 

in 12-LOX recruitment to the integrin. In parallel, direct activation of β4 by either 3E1 or laminin 

causes 12-LOX recruitment to β4 and subsequent activation of the enzyme resulting in 12(S)-

HETE production (Figure 19). Platelet type 12-LOX expression has been confirmed in A431 cells 

(Tang et al. 2000). After immunoprecipitation for β4 in A431 cells, 12-LOX interacted with β4 at 

levels barely detectable in serum-starved and basal conditions, but the association was increased 

after HGF treatment compared to the 3E1 treated positive control (Figure 20A). Human platelets 

express high levels of 12-LOX, therefore platelet lysate was loaded as a running control. In the 

reciprocal immunoprecipitation, pull-down for 12-LOX also showed β4 interaction with the 

enzyme in cells treated with HGF (Figure 20B). Immunofluorescence results confirm the 

immunoprecipitation data, where there was limited β4 (green) and 12-LOX (red) co-localization 

in serum-starved cells, but their interaction was increased with HGF stimulation (Figure 20C-E).  
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Figure 19. Schematic of 12-LOX Activation Following β4 Stimulation. In resting cells, 12-LOX 

is mostly cytoplasmic and is not enzymatically active. Following β4 stimulation with either laminin 

or 3E1, 12-LOX translocates from the cytosol to the membrane where it interacts with β4. 

Subsequently, 12-LOX is phosphorylated by SRC and is activated to produce 12(S)-HETE from AA. 
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Figure 20. HGF Stimulation Leads to 12-LOX Recruitment to β4. A&B:12-LOX and β4 

interact with HGF stimulation (30 minutes) similar to the 3E1 positive control. Densitometry 

analysis represents the ratio of the co-immunoprecipitated protein (upper panel) to pulled-down 

protein (lower panel). Immunoprecipitation of matched IgG was performed as a control. A) 

Immunoprecipitation of β4 followed by Western blot analysis for 12-LOX. Platelet whole cell 

lysate was run as a control. The membrane was stripped and re-probed for total β4 (lower panel). 

B) Reciprocal immunoprecipitation of part A. Immunoprecipitation for β4 (last lane; upper panel) 

was run as a control for co-immunoprecipitated β4 and exposed for a shorter duration due to band 

intensity. The membrane was stripped and re-probed for total 12-LOX (lower panel). C) Confocal 

immunofluorescence showing 30 minute HGF treatment leads to increased 12-LOX (Alexa Fluor 

DAG594, red) and β4 (Alex Fluor GAM488, green) co-localization. Images taken at 63x. Enlarged 

merged images show β4 co-localization with 12-LOX, indicated by white arrows, in D) non-treated 

and E) HGF treated cells. The original image for parts D and E are in the upper left hand corner 

with the enlarged area outlined in white.   
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As HGF stimulation caused recruitment of 12-LOX to β4, we next wanted to test whether 

this resulted in 12-LOX enzymatic activation. A431 cells were incubated with AA, the substrate 

for 12-LOX metabolism of 12(S)-HETE. At the experiment end point, lipids were isolated by solid 

phase extraction from cell-conditioned media and analyzed by LC-MS.  The results indicate that 

both 6 and 24 hour HGF treatment actually suppressed 12-LOX enzymatic activity, compared to 

the 3E1 positive control and AA treatment alone (Figure 21). This result lead us to hypothesize 

that in addition to its enzymatic action, 12-LOX may also play a novel role as a scaffold between 

β4 and c-Met to promote HGF-induced invasion through the cross-activation of β4 by activated c-

Met with HGF stimulation. 
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Figure 21. HGF Stimulation Does Not Result in 12-LOX Enzymatic Activation. 
12(S)-HETE levels measured in conditioned media using LC-MS indicate HGF does 

not activate 12-LOX enzymatic activity. Cells were treated with HGF and AA for the 

indicated times. 3E1 treatment was used as a positive control for 12(S)-HETE 

production. Lipids were extracted as per standard protocols (see Materials and 

Methods). The data were analyzed in triplicate and error bars represent SEM. 
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12-LOX is required for HGF-induced β4 activation  

To elucidate the role of 12-LOX in β4 and c-Met axis crosstalk, we utilized the previously 

characterized A431 12-LOX knockdown (KD) cells (Figure 7). Knockdown of 12-LOX was 

achieved through stable expression of shRNA targeted to 12-LOX and was confirmed at the 

protein level (Figure 22A). Immunoprecipitation of β4 was performed to ensure that 12-LOX no 

longer co-immunoprecipitated with β4 following 3E1 stimulation in the 12-LOX KD cell line 

(Figure 22B). As expected, 12-LOX does not pull-down with β4 in the 12-LOX KD cells compared 

to the ns shRNA cells. 
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Figure 22. Confirmation of 12-LOX Knockdown. A) Western blot analysis of 12-LOX protein 

levels in the following cell lines: 12-LOX KD (#1 clone), ns shRNA control, parental A431, CHO 

(negative control for 12-LOX expression; Santa Cruz polyclonal platelet-type 12-LOX antibody 

appears to be recognizing another 12-LOX isoform in CHO cells; band is slightly higher than 

that of platelet 12-LOX), PC-3 12-LOX overexpressors (positive control for 12-LOX), and 

platelet lysate (positive control for 12-LOX expression). B) 12-LOX was not recruited to β4 with 

3E1 stimulation (30 minutes) in the 12-LOX KD cells compared to the ns shRNA control cells. 

Immunoprecipitation of β4 followed by Western blot analysis for 12-LOX (upper panel). The 

membrane was stripped and re-probed for total β4 (lower panel). Immunoprecipitation of 

matched IgG was performed as a control. Platelet whole cell lysate was run as a positive control 

for 12-LOX (last lane; upper panel). 
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To determine if 12-LOX is required for the cross-activation of β4 by c-Met, A431 12-LOX 

KD cells and ns shRNA control cells were treated with increasing concentrations of HGF followed 

by immunoprecipitation for β4. Unlike the controls where HGF stimulation resulted in β4 tyrosine 

phosphorylation, as measured with PY20, no increase in β4 activation was seen in the 12-LOX 

KD cells (Figure 23A). Additionally, HGF treatment induced β4-Y1494 phosphorylation to the 

level of 3E1 treatment in the ns shRNA control cells, yet there was no activation above that seen 

in the non-treated control in the 12-LOX KD cells with either HGF or 3E1 (Figure 23B). 

 Downstream of 3E1 activation of β4, recruitment and enzymatic activation of 12-LOX, 

12(S)-HETE acts back on its receptor, 12HETER-1, to activate MAPK signaling (Guo et al. 2011b; 

Pidgeon et al. 2007). Using the 12-LOX KD cell line, 12-LOX was shown to be required for β4-

mediated downstream signaling to ERK and also shown to promote β4-mediated, EGF-stimulated 

cellular invasion using the 12-LOX specific inhibitor BMD122 (Figures 8&9). In the 12-LOX KD 

cells, inhibited β4 activation in response to HGF lead to suppressed downstream ERK and AKT 

activation compared to the ns shRNA control cells (Figures 23C&D). These results strongly 

suggest that 12-LOX is required for HGF-induced β4 phosphorylation and HGF-induced β4 

downstream signaling to AKT and ERK. 
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Figure 23. 12-LOX is Required for HGF-induced β4 Phosphorylation and 

Downstream Signaling. A) β4 is not phosphorylated following HGF treatment (30 

minutes) in the 12-LOX KD cells. Immunoprecipitation of β4 followed by Western 

blot analysis with PY20 (upper panel). The membrane was stripped and re-probed for 

total β4 (lower panel). Densitometry analysis represents the ratio of phosphorylated β4 

to total β4 normalized to the non-treated control. Immunoprecipitation of matched IgG 

was performed as a control. B-D: Western blot analysis of 12-LOX KD cells shows 

decreased B) β4-Y1494, C) ERK, and D) AKT phosphorylation in response to HGF 

stimulation (30 minutes) compared to ns shRNA control cell lysates. 3E1 stimulation 

was used as a positive control. Densitometry represents the ratio of phosphorylated 

(upper panel) to total protein (lower panel) normalized as a percentage to the non-

treated control in the ns shRNA cells.  
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Because 12-LOX is required for HGF-induced β4 phosphorylation, we wanted to test if 12-

LOX was scaffolding β4 and c-Met directly to permit cross-activation. Both immunoprecipitation 

for β4 and the reciprocal immunoprecipitation for c-Met show that the β4/c-Met complex is 

undisturbed in serum-starved cells (NT = no treatment) and HGF leads to their dissociation in both 

the 12-LOX KD and ns shRNA control cells (Figure 24A&B). These data show that 12-LOX is 

required for mediating β4 tyrosine phosphorylation following HGF treatment as well as promoting 

β4 downstream signaling to ERK and AKT, but that the enzyme does not appear to scaffold β4 

and c-Met directly.  
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Figure 24. 12-LOX is Not Required for β4 and c-Met Association. 12-LOX KD does not affect 

c-Met and β4 interaction in the no treatment (NT) condition, nor does it affect their dissociation 

with HGF treatment (30 minutes). Densitometry represents the ratio of co-immunoprecipitated 

protein (upper panel) to pulled-down protein (lower panel). Immunoprecipitation of matched IgG 

was performed as a control. Immunoprecipitation of the co-immunoprecipitated protein was 

performed as a positive control and exposed for a shorter duration due to band intensity (last lane; 

upper panel). A) Immunoprecipitation of β4 in 12-LOX KD and ns shRNA control cells followed 

by Western blot analysis for c-Met. The membrane was stripped and re-probed for total β4 (lower 

panel). B) Reciprocal immunoprecipitation of part A. 
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12-LOX promotes HGF-induced cell scattering and invasion  

Our demonstration that cross-activation of β4 by c-Met depends on the presence of 12-

LOX led to the hypothesis that β4 can act as a signaling adapter for c-Met. To test this, we assayed 

whether 12-LOX has any functional impact on HGF-induced cell scattering and invasion. Integrins 

have been implicated specifically in cell scattering and migration induced by HGF. HGF promotes 

integrin adhesion to laminins 1 and 5, which results in increased invasiveness, shown to be 

mediated by multiple integrins, including β4, using function-blocking antibodies (Trusolino et al. 

2000). This HGF-promoted integrin adhesion occurs concomitantly with hemidesmosome 

disassembly in cellular migration. Additionally, Ras is activated downstream of c-Met and is 

required for cell scattering (Hartmann et al. 1994; Potempa & Ridley 1998; Ridley et al. 1995). 

Due to the observed inhibited ERK activation in 12-LOX KD cells with HGF (Figure 23), cell 

scattering of parental A431, 12-LOX KD, and ns shRNA control cells were compared. Cells were 

seeded at a low density into 96 well plates and after colony formation on day seven were serum-

starved overnight followed by HGF treatment for 16 hours. With increasing concentrations of HGF 

stimulation, parental A431 cell colonies were disrupted as the cells began to migrate or ‘scatter’ 

away from one another (Figure 25A). This effect was increasingly evident at and above 100 ng/mL 

HGF and can be seen quantified as the number of colonies remaining after HGF treatment in Figure 

25B. Compared to the ns shRNA control cells, 12-LOX KD cells remained in tightly packed 

islands and were almost completely resistant to the HGF stimulus. Even at the highest 

concentration of HGF (400 ng/mL) there was a colony responding to HGF by scattering, severely 

contrasted by a neighboring colony that was clearly non-responsive in the 12-LOX KD cell line. 

Similar to the cell scatter effect, the 12-LOX KD cells displayed a significant reduction in response 

to HGF-induced invasion compared to the ns shRNA controls (Figure 25C), further supporting our 



83 

  
 

hypothesis that 12-LOX may be acting as a scaffold in cooperation with β4 to enhance c-Met-

mediated functions. As another control, we added 12(S)-HETE with HGF and found this does not 

significantly rescue the reduced invasion, again suggesting 12-LOX enzymatic activity plays no 

role in c-Met-mediated invasion. As yet another control, we assayed for 12HETER-1 expression 

by Western blot to ensure that A431 cells express the receptor. As seen in Figure 25D, A431 cells 

express 12HETER-1 compared to the prostate cancer cell line controls, which are all known to 

express it. The positive control was whole cell lysate from bacterial cells transformed with 

12HETER-1 (last lane). The bands corresponding to the receptor in the bacterial cell whole cell 

lysate are smaller in size than what is seen in the human cell lines due to differences in 

glycosylation between bacteria and mammals. 

In the scatter assay, to eliminate the possibility that the cells were merely migrating toward 

one another because the colonies were close in proximity due to high confluence levels, the assay 

was repeated where the cells were grown for four days instead of seven, leading to both fewer and 

smaller colonies (Figure 25E). Only two concentrations of HGF were tested, but again, the colonies 

in the 12-LOX KD cells were unresponsive to HGF stimulation, as most of the colonies remained 

un-scattered (Figure 25F). At the highest concentration of HGF in the A431 parental and ns shRNA 

control cells, most of the colonies were scattered into single cells. These results show that 12-LOX 

promotes HGF-induced, c-Met-mediated cell scattering and invasion. 
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Figure 25. 12-LOX Regulates HGF-induced Cell Scatter and Invasion. A) 12-LOX is required for 

HGF-induced cell scattering. Scatter assay of 12-LOX KD, ns shRNA control, and A431 parental cells. 

Cells were seeded at a low density, allowed to form colonies for seven days, were serum-starved 

overnight, and treated with increasing concentrations of HGF for 16 hours. Images taken at 100x. B) 

Quantitation of intact/HGF-non-responsive colonies from part A, counted in triplicate +/- SEM. C) 12-

LOX KD cells have a reduced capacity to invade with HGF stimulation compared to ns shRNA control 

cells, an effect that is not rescued by 12(S)-HETE add-back. Cells invaded through a Boyden chamber 

coated with Matrigel for 18 hours in response to the indicated treatments. 0.25% lipid stripped FBS and 

10% FBS were run as negative and positive controls respectively. Invasion was quantified by measuring 

the absorbance at 570nm of the crystal violet stain extracted from invaded cells. *p<0.05, student’s T-

test, bars represent the average of three trials. D.) Western blot analysis of 12HETER-1 in whole cell 

lysate from several prostate cancer cell lines, A431 cells, and the positive control bacterial cells 

transformed with the receptor.  E) Replication of scatter assay in part A after four days of colony 

formation instead of seven. F) Quantitation of intact/HGF-non-responsive colonies from part E, counted 

in triplicate +/- SEM. 
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Inhibition of 12-LOX interaction with β4 using FNO1 or FNO1-2 peptides hampers HGF-induced 

cell scattering and invasion 

 

 To validate the importance of 12-LOX in HGF-mediated functioning seen using the 12-

LOX KD cells, we transfected two different peptides, FNO1 and FNO1-2, into wild type A431 

cells to inhibit 12-LOX interaction with β4 through competitive binding. Sequential mutagenesis 

of the β4 cytoplasmic tail previously revealed that 12-LOX interacts within the GR16 region of β4 

(Joshi et al. manuscript pending) (Figure 10). Further analysis showed 12-LOX interacts within 

FNO1, a 23 amino acid peptide of GR16 (1126-1315) identical to β4 residues 1126-1157 of the 

first and second FNIII repeats on the cytoplasmic tail of β4. Fine mapping studies showed 12-LOX 

binds β4 within FNO1-2 (1137-1147), a sequence found within FN01. These peptides presented a 

novel way to validate the results from the 12-LOX KD cells and also to test whether using them 

may prove therapeutically efficacious in targeting c-Met signaling. Immunoprecipitation results 

confirm that transfection of cells with either FNO1 or FNO1-2 using the Chariot reagent for six 

hours led to decreased 12-LOX association with β4 compared to the scrambled control (Figure 

26). We also confirmed that cell transfection with FNO1 and/or FNO1-2 suppressed HGF-induced 

β4 phosphorylation and HGF-induced, β4-mediated downstream signaling to AKT and ERK 

(Figure 27).  Similar to the 12-LOX KD effect, the FNO1/FNO1-2 peptides inhibited 3E1-induced, 

β4-mediated signaling to AKT and ERK. Transfection efficiency, monitored using β-galactosidase 

staining, ranged from 50-70% and is most likely the cause of the residual 12-LOX and β4 

interaction leading to some β4 phosphorylation and downstream signaling with HGF stimulation. 
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Figure 26. FNO1 and FNO1-2 Peptides Decrease β4 and 12-LOX Interaction. FNO1 

and FNO1-2 peptides reduce 12-LOX interaction with β4. Immunoprecipitation of 

matched IgG was performed as a control. Densitometry represents the ratio of co-

immunoprecipitated protein (upper panel) to pulled-down protein (lower panel) 

normalized to the scrambled control.  A) Immunoprecipitation of β4 in A431 cells 

transfected with scrambled, FNO1, or FNO1-2 peptides for six hours using Chariot reagent 

followed by Western blot analysis for 12-LOX (upper panel). The blot was stripped and 

re-probed for total β4 (lower panel). Platelet and A431 parental whole cell lysates were 

run as a control for 12-LOX. B) Reciprocal immunoprecipitation of part A. 

Immunoprecipitation of β4 (last lane; upper panel) was run as a positive control for co-

immunoprecipitated β4 and exposed for a shorter duration due to band intensity. C). β-

galactosidase staining was used to monitor transfection efficiency of peptides. 
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Figure 27. FNO1 and FNO1-2 Peptides Suppress HGF-induced β4 Phosphorylation and 

Downstream Signaling. A) Immunoprecipitation of β4 in A431 cells transfected with scrambled, 

FNO1, or FNO1-2 peptides for six hours using Chariot reagent, treated with HGF (30 minutes; 200 

ng/mL), followed by Western blot analysis for PY20 (upper panel). The blot was stripped and re-

probed for total β4 (lower panel). Immunoprecipitation of matched IgG was performed as a control. 

Densitometry represents the ratio of phosphorylated β4 (upper panel) to total β4 (lower panel) 

normalized to the scrambled control.  B&C: FNO1 and FNO1-2 peptides suppress HGF-induced, β4-

mediated downstream signaling to ERK and AKT. Cells were transfected with peptides for six hours 

using Chariot reagent and then treated with HGF or 3E1 (30 minutes; 200 ng/mL HGF). Densitometry 

represents phosphorylated (upper panel) to total protein (lower panel). B) ERK and C) AKT 

activation were assessed by Western blot. D) β-galactosidase staining was used to monitor 

transfection efficiency of peptides. 
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Not only did the peptides recapitulate 12-LOX KD results in terms of cell signaling, but 

transfection of cells with FNO1 or FNO1-2 lead to a dramatic increase in the number of colonies 

remaining intact with HGF stimulation in the same scatter assay described previously (Figure 

28A). In fact, peptide inhibition of 12-LOX interaction with β4 lead to an approximate 30% 

increase in the number of intact or non-scattered colonies at the higher concentrations of HGF 

compared to cells transfected with scrambled peptide (Figure 28B). The cells were seeded at a low 

density, serum-starved overnight, transfected with peptides for six hours, and then treated with 

increasing concentrations of HGF. Transfection efficiency again was monitored with β-

galactosidase staining (Figure 28C). Cell transfection with FNO1 and FNO1-2 significantly 

decreased HGF-induced invasion compared to the scrambled controls, indicating again that 12-

LOX interaction with β4 enhances c-Met-mediated cell motility and invasion (Figure 28D). As 

before, 12(S)-HETE add back with HGF did not rescue the reduced invasion seen with peptide 

treatment.  

Replication of the scatter assay where the cells were grown for four days instead of seven, 

leading to both fewer and smaller colonies, also confirmed that cell transfection with FNO1 or 

FNO1-2 inhibited cell scattering by almost 50% (Figure 28F&G). All together these results 

demonstrate that 12-LOX is important for HGF-induced, c-Met-mediated cell scattering and 

invasion in cancer cells. 
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Figure 28. Inhibition of β4 and 12-LOX Interaction, by FNO1 or FNO1-2 Peptides, Decreased 

HGF-induced Cell Scattering and Invasion. A) A431 cells transfected with FNO1 and FNO1-2 

peptides show decreased cell scattering with HGF treatment compared to the scrambled control. 

Cells were seeded at a low density, allowed to form colonies for seven days, serum-starved 

overnight, transfected with the indicated peptides using Chariot reagent for six hours, and treated 

with increasing concentrations of HGF for 16 hours. Images taken at 100x. B) Quantitation of 

intact/HGF-non-responsive colonies from part A, counted in triplicate +/-SEM. C) β-galactosidase 

staining used to monitor transfection efficiency of peptides for scatter assay. 
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Figure 28. Continued. D) A431 cells transfected with FNO1 and FNO1-2 show decreased cell 

invasion with HGF treatment compared to the scrambled control and 12(S)-HETE does not rescue 

the reduced invasion. Cells were transfected with peptides using Chariot for four hours before 

treatment with the indicated reagents. Cells were allowed to invade through a Boyden chamber 

coated with Matrigel for 18 hours. 0.25% lipid stripped FBS and 10% FBS were run as negative 

and positive controls respectively. Invasion was quantified by measuring the absorbance at 570nm 

of the crystal violet stain extracted from invaded cells. *p<0.05, student’s T-test, bars represent the 

average of three trials. E) β-galactosidase positive control for invasion assay. F) Replication of 

scatter assay from part A using FNO1 or FNO1-2 transfected cell lines after 4 days of colony 

formation instead of 7. G) Quantitation of intact/HGF-non-responsive colonies for part F, counted 

in triplicate +/- SEM. H) β-galactosidase staining used to monitor transfection efficiency of for part 

F scatter assay. 
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Summary  

Altogether, the results above suggest the following: under serum-starved or basal (non-

serum-starved) conditions, β4 and c-Met associate while β4 is incorporated into hemidesmosome-

like structures. HGF stimulation caused disruption of the β4/c-Met complex, a decrease in 

hemidesmosome-like structures, β4 phosphorylation on tyrosine residues, and 12-LOX 

recruitment to the integrin. Despite 12-LOX association with β4, HGF did not stimulate 12-LOX 

production of 12(S)-HETE, but rather 12-LOX regulated β4 cross-activation by the c-Met receptor. 

12-LOX knockdown reduced HGF-induced β4 phosphorylation and decreased downstream 

signaling to AKT and ERK thereby functionally affecting HGF-driven cell scattering and invasion. 

12-LOX KD resulted in decreased cell scattering and invasion with HGF treatment compared to 

the ns shRNA controls cell. Similarly, cell transfection with FNO1 or FNO1-2, to inhibit β4 

interaction with 12-LOX, also led to decreased cell scattering and invasion compared to the 

scrambled control. Therefore, a novel function has been described for 12-LOX where the enzyme, 

together with β4, enhances c-Met mediated cancer cell motility and invasion through a scaffolding 

function. 
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Figure 29. 12-LOX Acts as a Scaffold to Enhance c-Met-mediated Cell Scattering and Invasion. 
Under serum-starved or basal (non-serum-starved) conditions, β4 and c-Met associate while β4 is 

incorporated into hemidesmosome-like structures. With HGF stimulation, the β4/c-Met complex was 

disrupted, hemidesmosome-like structures were decreased in number, β4 was phosphorylated on 

tyrosine residues, and 12-LOX was recruited to the integrin. Despite 12-LOX association with β4, the 

enzyme was not activated to produce 12(S)-HETE, but rather regulated β4 cross-activation by the c-

Met receptor following HGF stimulation. Knockdown of 12-LOX reduced HGF-induced β4 

phosphorylation and decreased downstream signaling to AKT and ERK, which functionally affected 

HGF-driven cell scattering and invasion. Cell transfection with FNO1 or FNO1-2 peptides, which 

inhibited β4 interaction with 12-LOX, also led to decreased β4 activation and downstream signaling 

following HGF stimulation resulting in decreased cell scattering and invasion compared to the 

scrambled control. Therefore, 12-LOX cooperates with β4 to enhance c-Met mediated cancer cell 

motility and invasion through a novel scaffolding function.  
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Prostate Cancer Cell Line Results  
 

β4 interacts with c-Met in a constitutive manner in prostate cancer cells 
 

As mentioned earlier, β4 and c-Met interaction in cancer cells is controversial, as there is 

literature to suggest the two interact and cooperate to enhance c-Met tumorigenic signaling through 

the SRC-SHP2 axis (Bertotti et al. 2005; Bertotti et al. 2006; Trusolino et al. 2001; Yoshioka et al. 

2013). However, there is also literature arguing β4 is not necessary for c-Met-induced signaling 

and that the receptor can function independently of β4 to promote tumor cell invasion and 

metastasis (Chung et al. 2004; Merdek et al. 2007). Carcinoma cells that lack β4 expression still 

respond to HGF-induced c-Met-mediated invasion (Chung et al. 2004), clearly indicating that β4 

is not required for c-Met mediated invasive signaling. In prostate cancer cells, β4 may, like in the 

A431 epidermoid carcinoma cells, play an important role in promoting c-Met-mediated cell 

scattering and invasion in the context of 12-LOX. To determine whether or not β4 and c-Met 

interact in prostate cancer cells, we carried out co-immunoprecipitation studies in PC-3M prostate 

cancer cells.  These cells natively express c-Met, β4, and 12-LOX (Figure 15A). After 

immunoprecipitation for β4, c-Met associated with the integrin in a constitutive manner, as there 

was no difference between serum-starved, non-serum-starved (basal), or HGF-treated conditions 

(Figure 30A). Because HGF stimulation of the c-Met receptor did not affect its interaction with 

β4, we wanted to determine if stimulation of β4 using 3E1 would modify the complex. Despite 

3E1 treatment, the same amount of c-Met was pulled-down compared to serum-starved, basal, or 

HGF conditions. As a positive control, c-Met was pulled down in serum-starved cells and run next 

to the β4 immunoprecipitated samples, and as a negative control, mouse IgG was 

immunoprecipiated to detect any non-specific interactions. The blot was re-probed for β4 to ensure 

equal pull-down across samples, as was done for every following immunoprecipitation 

experiment. There appeared to be less total β4 in the 3E1 treated sample, and this was due to 
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treatment of the cells with the β4 activating antibody followed by pre-clearing during the 

immunoprecipitation protocol. When c-Met was pulled down in the reciprocal 

immunoprecipitation experiment, 3E1 stimulation lead to significantly greater levels of β4 

recruited to the receptor (Figure 30B). However, laminin stimulation of β4 did not result in 

enhanced integrin interaction with c-Met (Figure 30C), indicating that β4 stimulation does not 

affect its association with c-Met. Constitutive interaction of c-Met with β4 was also shown in PC-

3, PC-3 12-LOX overexpressing, and PC-3 3.1 control cells (Figure 31A-C). The interaction was 

recently detected in DU145 prostate cancer cells (Yoshioka et al. 2013), although we could not 

replicate the interaction in that cell line. Both β4 and c-Met are known to recycle from the 

membrane after activation. However, fractionation revealed both remain localized to the 

membrane after 30 minute treatments with either 3E1 or HGF, suggesting that is where the proteins 

are interacting (Figure 31D). 
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Figure 30. HGF Stimulation Does Not Disrupt β4 and c-Met Association in PC-3M Prostate 

Cancer Cells. β4 and c-Met associate constitutively in PC-3M prostate cancer cells, regardless 

of c-Met or β4 activation. Cells were treated with HGF (200 ng/mL), 3E1 or laminin (10 µg/mL) 

for 30 minutes. In immunoprecipitates, densitometry represents the ratio of co-

immunoprecipitated (upper panel) to pulled-down (lower panel) protein. Matched IgG was 

immunoprecipitated as a control. For positive controls, direct immunoprecipitation of the co-

immunoprecipitated protein was performed (last lane; upper panel). The blots were probed with 

the indicated antibodies, then stripped and re-probed for the immunoprecipitated protein (lower 

panel) to ensure equal pull-down. A) Immunoprecipitation of β4 (using 3E1 antibodies) in PC-

3M cells followed by Western blot analysis for c-Met. B) Immunoprecipitation of c-Met in PC-

3M cells followed by Western blot analysis for β4. C) Immunoprecipitation of c-Met in PC-3M 

cells treated with laminin instead of 3E1 followed by Western blot analysis for β4. 
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Figure 31. HGF Stimulation Does Not Disrupt β4 and c-Met Association in PC-3, PC-3 12-

LOX Overexpressing, or PC-3 Empty Vector Prostate Cancer Cells. β4 and c-Met associate 

constitutively in prostate cancer cells, regardless of c-Met or β4 activation. Cells were treated 

with HGF (200 ng/mL) or 3E1 for 30 minutes. In immunoprecipitates, densitometry represents 

the ratio of co-immunoprecipitated (upper panel) to pulled-down (lower panel) protein. Matched 

IgG was immunoprecipitated as a control. For positive controls, direct immunoprecipitation of 

the co-immunoprecipitated protein was performed (last lane; upper panel). The blots were probed 

with the indicated antibodies, then stripped and re-probed for the immunoprecipitated protein 

(lower panel) to ensure equal pull-down. Immunoprecipitation of β4 (using 3E1 antibodies) in 

A) parental PC-3, B) PC-3 cells transfected with a 12-LOX expression construct and C) PC-3 

empty vector controls followed by Western blot analysis for c-Met. D) After 30 minutes HGF 

treatment, both β4 and c-Met remain localized to the membrane.  Fractionation of PC-3M whole 

cell lysate followed by Western blot analysis with the indicated antibodies. The blot was probed 

for GAPDH as a control for the cytoplasmic fraction and for VEGFR-2 as a control for the 

membrane fraction. 
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To corroborate the immunoprecipitation data, immunofluorescence studies were 

performed to detect the c-Met and β4 interaction. As was seen in the immunoprecipitation data, 

neither β4 nor c-Met activation via their cognate ligands affected the co-localization in PC-3M 

cells (Figure 32A). In A431 cells we showed that β4 and c-Met interaction is disrupted by HGF 

stimulation and was due to the disruption of hemidesmosome-like structures (Figure 16). A431 

cells are known to form hemidesmosomes (Rabinovitz et al. 1999). However, prostatic carcinoma 

tissue samples reveal an absence of hemidesmosomes (Nagle et al. 1995). As mentioned 

previously, the simplest hemidesmosome, type II, is marked by plectin co-localization with β4. 

Both the diffuse β4 staining pattern and lack of co-localization of β4 with plectin in PC-3 and PC-

3M cells indicate that these cells do not form hemidesmosomes compared to the control (CRL-

2221 normal immortalized prostate cells) (Figure 32B). Secondary antibody controls show no non-

specific interaction (Figure 32C).  
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Figure 32. Confocal Immunofluorescence Confirms HGF Does Not Affect β4 and c-Met Co-

localization in PC-3M Prostate Cancer Cells and that Prostate Cancer Cells Do Not Form 

Hemidesmosomes. A) Confocal immunofluorescence confirming that β4 and c-Met co-

localization in PC-3M cells is not affected by 30 minutes HGF (200 ng/mL) or laminin (10 µg/mL) 

stimulation. Cells were plated on Matrigel coated glass coverslips and serum-starved overnight 

before treatment. Co-localization of β4 (Alexa Fluor GAM488, green) with c-Met (Alexa Fluor 

DAR594, red) are shown as single stains and in the merged overly images for each condition. B) 

Confocal immunofluorescence in CRL2221 normal immortalized prostate cells, PC-3M, and PC-3 

cells confirm prostate cancer cells do not form hemidesmosomes. Cells were seeded onto Matrigel 

coated glass coverslips. β4 (green) and plectin (DAG594, red) co-localization indicates a type II 

hemidesmosome. C) Secondary antibody controls. 
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β4 is activated by c-Met, resulting in 12-LOX recruitment in prostate cancer cells 

We have already shown that β4 can be phosphorylated by the c-Met receptor following its 

activation by HGF in A431 cells (Figures 17&18). Next, we asked whether or not this occurs in 

PC-3M prostate cancer cells. Immunoprecipitation of β4 following HGF stimulation did reveal 

that a 150 kDa protein was tyrosine phosphorylated (Figure 33A). This result was puzzling given 

the fact that full-length β4 is 204 kDa and runs just under 250 kDa on a 10% SDS-PAGE gel as 

detected by CD104, an antibody that recognizes the cytoplasmic tail of β4 (Figure 33B). Re-

probing of the blot with clone 439-9B, another antibody to β4, that like 3E1 is directed toward an 

extracellular epitope, recognized both the smaller secondary band running at 150 kDa in addition 

to full-length β4 (Figure 33A; lower panel). This suggests that 3E1 may be pulling down both full 

length and a cleaved form of β4. Immunoprecipitation using the β4 specific antibody CD104, 

instead of 3E1, resulted in HGF-induced β4 phosphorylation with band pattering corresponding to 

full-length β4 (Figure 33C).  Indeed, there are several calpain cleavage sites found along the 

cytoplasmic tail of β4, resulting in approximately 165 kDa and 130 kDa sized fragments (Giancotti 

et al. 1992) (Figure 33B). Because these cleavage sites are found on the tail of β4, it is possible 

that immunoprecipitation using 3E1 could pull-down a cleaved form of β4 whereas 

immunoprecipitation with CD104 would pull-down only full-length β4 that has not yet been 

cleaved. In fact, detection of β4 in PCa tissue samples using several antibodies targeted to β4 

suggest that cleaved forms of β4 exist in cells in vivo (Davis et al. 2001). In conclusion, β4 was 

phosphorylated in PC-3M cells following HGF stimulation.  
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Figure 33. HGF Stimulation Results in β4 Phosphorylation in PC-3M Prostate Cancer Cells. 

HGF stimulation (30 minutes; indicated concentrations) results in tyrosine phosphorylation of a 

150 kDa protein and full-length β4 in PC-3M cells. In immunoprecipitates, densitometry 

represents the ratio of phosphorylated protein (upper panel) to pulled-down protein (lower panel), 

normalized to the non-treated control. Matched IgG was immunoprecipitated as a control. The 

blots were probed with the indicated antibodies (upper panel), then stripped and re-probed for the 

immunoprecipitated protein (lower panel) to ensure equal pull-down and to calculate 

densitometry. A) Immunoprecipitation of β4 (using 3E1 antibodies) followed by Western blot 

analysis with PY20. The membrane was stripped and re-probed for β4 using both CD104 (middle 

panel) and 439-9B (lower panel) antibodies. B) Schematic of antibody targeted epitopes within β4 

and the location of two known calpain cleavage sites. C) Immunoprecipitation of β4 (using CD104 

antibodies) followed by Western blot analysis with PY20. 
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After confirming that HGF induces β4 activation in PC-3M cells, phosphorylation of β4-

Y1494 was then tested for activation with HGF. To reiterate, this residue is hypothesized to be a 

master regulator of β4 function (Dutta & Shaw 2008) and is phosphorylated following HGF 

stimulation in A431 cells (Figure 17). Immunoprecipitation for β4 using either CD104 (Figure 

34A) or 3E1 (Figure 34B) following treatment with increasing concentrations of HGF revealed 

that β4-Y1494 is not phosphorylated in PC-3M cells compared to A431 positive controls.  3E1 

stimulation also did not result in β4-Y1494 phosphorylation in this cell line (Figure 34B). 

Downstream signaling of β4-Y1494 involves AKT activation (Shaw 2001) and even though β4-

Y1494 was not phosphorylated with HGF, robust AKT activation still occurred (Figure 34C). This 

suggests the prostate cancer cells have found an alternate mechanism to mediate β4 enhancement 

of c-Met downstream signaling through AKT independent of β4-Y1494. Additionally, there may 

be other β4 specific residues other than β4-Y1494 that are important for c-Met signaling in prostate 

cancer cells. These results show that HGF induces β4 phosphorylation and downstream signaling, 

without β4-Y1494 phosphorylation, in PC-3M cells.  
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Figure 34. HGF Stimulation Does Not Result in β4-Y1494 Phosphorylation in PC-3M Prostate 

Cancer Cells. HGF stimulation (30 minutes; indicated concentrations) does not result in β4-Y1494 

phosphorylation. In immunoprecipitates, densitometry represents the ratio of phosphorylated protein 

(upper panel) to pulled-down protein (lower panel), normalized to the non-treated control. Matched 

IgG was immunoprecipitated as a control. The blots were probed with the indicated antibodies 

(upper panel), then stripped and re-probed for the immunoprecipitated protein (lower panel) to 

ensure equal pull-down. A) Immunoprecipitation of β4 (using CD104 antibodies) followed by 

Western blot analysis with phospho-specific β4-Y1494. A431 cells treated with HGF were used as 

a positive control for β4-Y1494 phosphorylation. B) Immunoprecipitation of β4 (using 3E1 

antibodies) followed by Western blot analysis with phospho-specific β4-Y1494. A431 cells treated 

with HGF were used as a control. C) HGF stimulation (30 minutes; indicated concentrations) results 

in AKT activation comparable to 3E1 stimulation. Western blot analysis of PC-3M whole cell 

lysates probed for phosphorylated AKT (upper panel). The membrane was stripped and re-probed 

for total AKT (lower panel).  A431 cells treated with 3E1 were used as a positive control. 

Densitometry represents the ratio of phosphorylated AKT to total AKT.  
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 Given that β4 is activated after HGF treatment in PC-3M cells and that downstream 

signaling to AKT still occurs despite the lack of β4-Y1494 phosphorylation, we wanted to 

determine whether this results in 12-LOX recruitment to the integrin. Immunoprecipitation for β4 

revealed low levels of 12-LOX interacting with the integrin when cells were treated with HGF or 

3E1 (Figure 35A). Human platelets express high levels of 12-LOX, therefore platelet lysate was 

loaded as a running control but exposed separately due to the band intensity. We also 

immunoprecipitated c-Met to test for 12-LOX interaction as we have shown that β4 and c-Met 

constitutively associate in PC-3M cells. Pull-down for c-Met again showed weak interaction of 

12-LOX with the receptor in cells treated with HGF or 3E1 (Figure 35B). The low levels of 12-

LOX interaction with β4 and c-Met could be the result of low 12-LOX protein expression in PC-

3M cells (Figure 15). To address this issue, PC-3M cells stably transfected with a 12-LOX 

expression construct were used to immunoprecipitate β4. Additionally, 4 mg of protein was used 

for the immunoprecipitation to ensure efficient recovery of both 12-LOX and c-Met from the cell 

lysate. In the PC-3M 12-LOX transfectants, HGF stimulation caused 12-LOX recruitment to β4, 

similar to the 3E1 control (Figure 35C; upper panel). A longer exposure of the blot revealed low 

levels of 12-LOX interacting with β4 in the PC-3M empty vector controls, like that seen in the PC-

3M parental cells (Figure 35A). HGF stimulation also decreased c-Met interaction with β4 in the 

PC-3M 12-LOX overexpressors compared to controls (Figure 35C; middle panel). This suggests 

that, when abundantly expressed, 12-LOX may be influencing β4 and c-Met interaction in PC-3M 

cells. These results agree with those seen in A431 cells, where these cells express high levels of 

12-LOX and β4 and c-Met interaction is disrupted with HGF stimulation (Figure 15). Recruitment 

of 12-LOX to β4 with HGF stimulation indicates the enzyme may play a role in HGF mediated 

functions, such as migration or invasion, as we have also shown in A431 cells (Figures 25 & 28). 
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Figure 35. HGF Stimulation Leads to 12-LOX Recruitment to β4 in PC-3M Prostate 

Cancer Cells. A-C: 12-LOX interacts with β4/c-Met with HGF stimulation (30 minutes) 

compared to 3E1 treatment. In immunoprecipitates, densitometry represents the ratio of co-

immunoprecipitated 12-LOX (upper panel) to pulled-down (lower panel) protein. Matched IgG 

was immunoprecipitated as a control. Human platelet lysate was run as a positive control for 12-

LOX. The blots were probed with anti-12-LOX antibody, then stripped and re-probed for the 

immunoprecipitated protein (lower panel) to ensure equal pull-down. A) Immunoprecipitation 

of β4 (using 3E1 antibodies) in PC-3M cells followed by Western blot analysis for 12-LOX. B) 

Immunoprecipitation of c-Met in PC-3M cells followed by Western blot analysis for 12-LOX. 

C) Immunoprecipitation of β4 (using 3E1 antibodies; 4 mg protein) in PC-3M 12-LOX stable 

transfectants and empty vector controls followed by Western blot analysis for 12-LOX. The 

membrane was stripped and re-probed for c-Met (middle panel) and β4 (lower panel).  
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12-LOX inhibition reduces HGF-induced invasion in prostate cancer cells 

 Next, because HGF stimulation caused recruitment of 12-LOX to β4, we wanted to test 

whether 12-LOX was involved in HGF-induced invasion. First, the optimal HGF concentration 

required to stimulate PC-3M invasion through transwell inserts coated with Matrigel was 

determined to be 400 ng/mL (Figure 36A).  Following pre-treatment with either of two 12-LOX 

specific inhibitors, BMD122 or baicalein, HGF-stimulated cellular invasion was found to decrease 

significantly compared to HGF treatment alone (Figure 36B&C). As mentioned previously, 

BMD122 inhibits 12-LOX enzymatic activity by chelating the iron at its core. Baicalein inhibits 

lipid peroxidation.  If 12-LOX enzymatic activity is important for invasion, i.e. inhibition of 12-

LOX activity and subsequent reduction of 12(S)-HETE levels was leading to decreased invasion, 

then 12(S)-HETE added back should rescue the phenotype. Interestingly, 12(S)-HETE addition 

did not rescue the reduced invasion in PC-3M (Figure 36D) or DU145 (Figure 37A) cells. DU145 

prostate cancer cells express higher levels of endogenous 12-LOX than PC-3 cells and have been 

shown to invade after HGF stimulation while PC-3 cells do not (Humphrey et al. 1995). Again, 

inhibition of 12-LOX enzymatic activity by BMD122 (Figure 37A) and baicalein (Figure 37B), 

reduced HGF-induced invasion in DU145 cells and 12(S)-HETE did not rescue the reduced 

invasion. Several concentrations of 12(S)-HETE were utilized because 12(S)-HETE activation of 

12HETER-1 manifests in a bell shaped curve where the optimal concentrations range from 100-

600 nM (Guo et al. 2011b). 
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Figure 36. Inhibition of 12-LOX Enzymatic Activity Reduces HGF-induced Invasion and is 

Not Rescued by 12(S)-HETE in PC3-M Prostate Cancer Cells. Boyden chamber invasion assays 

indicate BMD122 and baicalein reduce HGF-induced invasion and the effect is not rescued by 12(S)-

HETE. Where indicated, cells were pre-treated with 20 µM BMD122 or 10 µM baicalein for two 

hours before HGF or 12(S)-HETE stimulation at indicated concentrations, then cells were allowed 

to invade through Matrigel coated inserts for 8 hours. MeOH and DMSO were used as vehicle 

controls for BMD122 and baicalein respectively. 0.25% FBS was used as a negative control. 

Invasion was quantified by measuring the absorbance at OD570nm of the crystal violet stain extracted 

from invaded cells. *p<0.05, student’s T-test, bars represent the average of three trials. A) 

Optimization of HGF concentrations for invasion.  B) BMD122 and C) baicalein inhibition of 12-

LOX enzymatic activity reduces HGF-induced invasion in PC-3M cells. D)  12(S)-HETE (300 nM) 

does not rescue BMD122 inhibited, HGF-induced invasion. 
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Figure 37. Inhibition of 12-LOX Enzymatic Activity Reduces HGF-induced Invasion and is 

Not Rescued by 12(S)-HETE in DU145 Prostate Cancer Cells. Boyden chamber invasion assays 

indicate BMD122 and baicalein reduce HGF-induced invasion and the effect is not rescued by 12(S)-

HETE. Where indicated, cells were pre-treated with 20 µM BMD122 or 10 µM baicalein for two 

hours before HGF or 12(S)-HETE stimulation at indicated concentrations, then cells were allowed 

to invade through Matrigel coated inserts for 24 hours. MeOH and DMSO were used as vehicle 

controls for BMD122 and baicalein respectively. 0.25% FBS was used as a negative control. 

Invasion was quantified by measuring the absorbance at OD570nm of the crystal violet stain extracted 

from invaded cells. *p<0.05, student’s T-test, bars represent the average of three trials. A) BMD122 

and B) baicalein inhibition of 12-LOX enzymatic activity reduces HGF-induced invasion in 

DU145cells. 12(S)-HETE (100 and 600 nM) does not rescue BMD122-inhibited, HGF-induced 

invasion. 
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After being metabolized by 12-LOX, 12(S)-HETE acts to stimulate its own receptor 

12HETER-1 (Guo et al. 2011b). Our lab recently discovered that β4 interacts with the 12(S)-HETE 

receptor (Honn, unpublished data).  To rule out the possibility that 12HETER-1 may also be 

involved in HGF-induced invasion, PC-3M cells stably expressing plasmid DNA encoding shRNA 

to knockdown the receptor were subjected to the same Boyden chamber invasion assay as the wild-

type PC-3M cells above. HGF robustly induced cellular invasion that was significantly reduced by 

BMD122 inhibition of 12-LOX in 12HETER-1 silenced cells and non-silencing control cells 

(Figure 38A&B). As seen in the wild type parental cells, the addition of 12(S)-HETE does not 

rescue the reduced invasion in the 12HETER-1 silenced cells. As a control, we confirmed 

12HETER-1 mRNA (Figure 38C) and protein expression (Figure 25D) in prostate cancer cells 

relative to the cell line that 12HETER-1 was cloned out of, PC-3. Additionally, we verified with 

Western blot that 12(S)-HETE leads to downstream activation of ERK in DU145 and PC-3M 

prostate cancer cells (Figure 38D&E).  
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Figure 38. 12HETER-1 Does Not Play a Role in HGF-induced Invasion in PC-3M Prostate 

Cancer Cells. A&B: Boyden chamber invasion assay of PC-3M cells stably transfected with 

siRNA, to silence 12HETER-1 expression, plus non-silencing (ns) controls. Where indicated, 

cells were pre-treated with 20 µM BMD122 for two hours before HGF stimulation with indicated 

concentrations. 12(S)-HETE (300 nm) was added at the same time as HGF. MeOH was used as 

a vehicle control for BMD122. Invasion was quantified by measuring the absorbance at OD570nm 

of the crystal violet stain extracted from invaded cells. *p<0.05, student’s T-test, bars represent 

the average of three trials. A) PC-3M 12HETER-1 KD and B) ns control cells were treated with 

the indicated reagents and allowed to invade through a Matrigel coated Boyden chamber for 8 

hours. C) RT-PCR indicates prostate cancer cells express 12HETER-1. DU145 and PC-3M cells 

were analyzed for 12HETER-1 expression. PC-3 cells were used as a control. D&E: Signaling 

downstream of 12HETER-1 occurs in prostate cancer cells. D) DU145 and E) PC-3M cells were 

treated with 300 nm 12(S)-HETE for the indicated times and ERK phosphorylation was detected 

by Western blot analysis. The membranes were stripped and re-probed for total ERK (lower 

panel).  
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To ensure the reduction in HGF-induced invasion was not due to BMD122 disruption of 

β4 and c-Met interaction, PC-3M cells were immunoprecipitated for β4 following BMD122 and 

HGF stimulation. BMD122 pre-treatment did not affect β4 and c-Met interaction in serum-starved, 

basal, or HGF treated cells (Figure 39A). We also checked to see if BMD122 was causing a 

reduction in c-Met phosphorylation, which might explain the decrease in HGF-induced invasion. 

BMD122 pre-treatment also did not inhibit or reduce c-Met phosphorylation as detected by PY20 

(Figure 39B). Additionally, stimulation of β4 with 3E1 did not result in cross-activation of c-Met. 

These results indicate that enzymatic inhibition of 12-LOX reduces HGF-induced invasion, which 

is not rescued by exogenous 12(S)-HETE addition, but that this is not due to BMD122-induced 

disruption of β4 and c-Met interaction or a reduction in c-Met activity. 

 Both β4 and c-Met can be activated by cellular adhesion, independent of the adhesive 

substrate (Trusolino et al. 2001; Wang et al. 1996). Consistent with previous reports (Trusolino et 

al. 2000), HGF increased cell adhesion to laminin in PC-3M cells (Figure 40).  3E1 stimulation 

also resulted in increased cellular adhesion. BMD122 treatment did not significantly reduce the 

HGF-induced cell adhesion, confirming that enzymatic inhibition of 12-LOX reduces HGF-

induced invasion independent of cell adhesion.  
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Figure 39. 12-LOX Enzymatic Inhibition Does Not Affect β4 and c-Met Constitutive Association 

or c-Met Activation with HGF.  A) Constitutive interaction of β4 with c-Met is not affected by 

BMD122. Cells were pre-treated with 20 µM BMD122 in serum-starved, basal (non-serum-starved), or 

HGF treated conditions. Lysates were immunoprecipitated for β4 (using 3E1 antibodies) followed by 

Western blot analysis with c-Met. The blot was stripped and re-probed for total β4. Matched IgG was 

immunoprecipitated as a control. Densitometry represents the ratio co-immunoprecipitated c-Met 

(upper panel) to immunoprecipitated β4 (lower panel). B) HGF-induced c-Met phosphorylation is not 

affected by BMD122. Cells were pre-treated with 20 µM BMD122, then treated with the indicated 

concentrations of HGF or 3E1 for 30 minutes. Lysates were immunoprecipitated for c-Met followed by 

Western blot analysis with PY20. The blot was stripped and re-probed for total c-Met. Matched IgG 

was immunoprecipitated as a control. Densitometry represents the ratio of phosphorylated c-Met (upper 

panel) to total c-Met (lower panel) normalized to the non-treated control. 
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Figure 40. 12-LOX Enzymatic Inhibition Does Not Affect HGF-induced Cellular 

Adhesion. 12-LOX enzymatic inhibition with BMD122 does not affect HGF-induced 

cellular adhesion to laminin coated plates (10 µg/mL). Serum-starved cells were 

seeded onto laminin coated plates and then treated with HGF or 3E1. Where BMD122 

was used, cells were pre-incubated for two hours prior to seeding onto plates. Non-

coated plates were used as a control for laminin coating. Adhesion was quantified by 

measuring the absorbance of crystal violet stained cells (dissolved in 2% SDS) at 

OD550nm. Results are representative of three replicates. 
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HGF-induced 12-LOX recruitment to β4 does not result in increased 12(S)-HETE production in 

prostate cancer cells 

 To see if HGF-stimulated 12-LOX recruitment to β4 results in 12(S)-HETE production, 

PC-3M cells were incubated with AA, the substrate for 12-LOX metabolism of 12(S)-HETE, for 

six hours. At the experimental end point, lipids were isolated by solid phase extraction from 

collected cell-conditioned media and analyzed by LC-MS.  In the A431 positive control (3E1), 

there was an increase in 12(S)-HETE production. However, no increase in 12(S)-HETE was seen 

in the PC-3M cells after HGF stimulation (Figure 41). Collectively these data led us to the 

hypothesis that in addition to its enzymatic activity, 12-LOX plays a novel role as a scaffold 

between β4 and c-Met to promote β4-enhanced HGF-induced invasion in prostate cancer cells. 
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Figure 41. HGF Stimulation Does Not Increase 12(S)-HETE Production. 

LC-MS analysis of 12(S)-HETE production in PC-3M cells reveals HGF 

stimulation does not increase 12(S)-HETE levels. Cells were treated with HGF 

in the presence of AA (or not) for six hours following serum-starvation. A431 

cells stimulated with 3E1 were used as a positive control for 12(S)-HETE 

measurement. Lipids from conditioned media were extracted as per standard 

protocols (see Material and Methods) and samples were analyzed by LC-MS. 

The results were analyzed in triplicate and represented +/- SEM. 
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Summary 

As depicted in Figure 42, β4 and c-Met interact constitutively in prostate cancer cells, 

regardless of c-Met activation by HGF. Direct stimulation of β4 by 3E1 also did not affect the 

interaction. However, 12-LOX appears to be recruited to β4/c-Met on HGF stimulation compared 

to the positive control, 3E1 treatment. Additionally, c-Met activation via HGF led to β4 tyrosine 

phosphorylation, but not at the Y1494 residue. Interestingly, even though β4-Y1494 was not 

activated following HGF stimulation, β4-Y1494 downstream signaling to AKT still occurs in 

prostate cancer cell lines. Despite 12-LOX being recruited to activated β4, there was no activation 

of 12-LOX enzymatic activity. Instead, inhibition of 12-LOX enzymatic activity reduced HGF-

induced invasion and this effect was not rescued by exogenous 12(S)-HETE production. These 

results are not explained by enzymatic inhibition of 12-LOX leading to decreased c-Met activation 

with HGF, a disruption of β4 and c-Met interaction, or decreased HGF-induced cellular adhesion 

to laminin. These data lead us to the following conclusions for prostate cancer cells: 1. 12-LOX is 

a scaffold, acting to mediate β4 enhancement of c-Met signaling/functioning in invasion, and 2. 

12-LOX enzymatic activity may regulate its scaffolding function. 
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Figure 42. 12-LOX Acts as a Scaffold to Regulate β4-enhanced c-Met-mediated Prostate Cancer 

Cell Invasion. β4 and c-Met interact constitutively in prostate cancer cells, regardless of β4 or c-Met 

activation by their cognate ligands. However, 12-LOX appears to be recruited to β4/c-Met on HGF 

stimulation compared to the positive control, 3E1 treatment. Additionally, c-Met activation via HGF 

leads to β4 tyrosine phosphorylation, but not at the β4-Y1494 residue. Interestingly, even though β4-

Y1494 was not activated following HGF stimulation, β4-Y1494 downstream signaling to AKT still 

occurs. Despite 12-LOX being recruited to activated β4, there was no activation of 12-LOX enzymatic 

activity. Instead, inhibition of 12-LOX enzymatic activity reduced HGF-induced invasion, and this 

effect was not rescued by exogenous 12(S)-HETE production. These results are not explained by 

enzymatic inhibition of 12-LOX leading to decreased c-Met activation with HGF, a disruption of β4 

and c-Met interaction, or decreased HGF-induced cellular adhesion to laminin. These data lead us to the 

following conclusions for prostate cancer cells: 1. 12-LOX is a scaffold, acting to mediate β4 

enhancement of c-Met signaling/functioning in invasion, and 2. 12-LOX enzymatic activity may 

regulate its scaffolding function. 

 



120 

  
 

CHAPTER 4. DISCUSSION 

In this study we sought to characterize the physical and functional cooperation of β4, 12-

LOX, and c-Met in terms of HGF-induced cell motility and the invasive potential of cancer cells. 

In A431 cells we found HGF stimulation led to the disruption of the β4 and c-Met complex, likely 

due to the disruption of hemidesmosome-like structures, resulting in 12-LOX recruitment to β4, 

but without an increase in 12-LOX enzymatic activity, i.e. no 12(S)-HETE production. Because 

of this puzzling observation – the fact that 12-LOX is recruited to activated β4 but not itself 

enzymatically activated – we utilized shRNA targeted to 12-LOX to confirm its role in HGF-

mediated functioning. We found this lipid enzyme to be required for HGF-induced, c-Met-

mediated cross-activation of β4 tyrosine phosphorylation and downstream signaling to AKT and 

ERK.  Although HGF-mediated activation of both AKT and ERK was inhibited when 12-LOX 

was knocked down, the basal phosphorylation level of each protein was higher than that seen in 

the corresponding ns shRNA control, indicating that 12-LOX may work as a negative regulator of 

their activation. This conjecture seems inconsistent when considering the fact that 12-LOX 

enhances cell scattering and invasion, two phenotypes that require MAPK and RAS pathway 

activation (Potempa & Ridley 1998). The inability of the 12-LOX KD cells to scatter with HGF 

treatment may reflect the inhibition of ERK activation above a certain threshold, perhaps because 

it was not properly de-phosphorylated to begin with, as both 12-LOX knockdown and peptide 

inhibition of 12-LOX interaction with β4 lead to reduced cell scattering/motility and reduced cell 

invasion in response to HGF. Therefore, we propose that 12-LOX is a novel scaffold, and in 

collaboration with β4, acts to enhance the invasive signaling originating from c-Met on binding to 

HGF, modulating cancer cell scattering and invasion. To our knowledge, this is the first 
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demonstration that 12-LOX lipid enzyme can moonlight, or display more than one function, as a 

scaffold. 

In prostate cancer cells, we found that β4 and c-Met interact constitutively, regardless of 

activation by either of their cognate ligands. Despite low expression levels of 12-LOX, the enzyme 

appeared to be recruited to β4/c-Met on HGF stimulation, as well as with 3E1 activation of β4. 

Overexpression of 12-LOX in PC-3M cells solidified the above observations, clearly indicating 

that 12-LOX interacts with β4 following HGF or 3E1 stimulation. Additionally, c-Met activation 

via HGF led to β4 tyrosine phosphorylation. Interestingly, even though β4-Y1494 was not 

activated following HGF stimulation in prostate cancer cells, like it was in A431 cells, β4-Y1494 

downstream signaling to AKT still occurred in response to HGF. This could indicate two 

possibilities, first that these cells have developed an alternate method of AKT activation 

independent of β4, or second that another residue beside β4-Y1494 signals downstream to AKT. 

Despite 12-LOX recruitment to activated β4, there was no activation of 12-LOX enzymatic 

activity. However, inhibition of 12-LOX enzymatic activity nonetheless reduced HGF-induced 

invasion, an effect not rescued by exogenous 12(S)-HETE addition. These results cannot be 

explained by enzymatic inhibition of 12-LOX leading to decreased HGF-induced c-Met activation. 

Similarly, 12-LOX enzymatic inhibition leading to decreased cellular invasion cannot be explained 

by a disruption of β4 and c-Met interaction with 12-LOX inhibition, as there was no effect on their 

constitutive association with BMD122 treatment. Therefore, when both proteins are endogenously 

expressed, 12-LOX, either acting as an enzyme or scaffold, does not impact β4 and c-Met 

interaction. Lastly, enzymatic inhibition of 12-LOX leading to inhibited cellular invasion was not 

the result of decreased HGF-induced cellular adhesion. 12-LOX inhibition by BMD122 led to 

inhibited HGF-induced invasion, so we reasoned this might also inhibit cellular adhesion, which 
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may negatively affect invasion. However, HGF-induced cell adhesion was not affected by 

BMD122, consistent with idea that α3β1, not β4, mediates initial adhesion and cell spreading 

(Kreidberg 2000). These prostate cancer cell data lead us to the following conclusions, which are 

consistent with those we inferred from the A431 cell line: 1) 12-LOX is a scaffold, acting to 

mediate β4 enhancement of c-Met signaling/functioning in invasion, and 2) 12-LOX enzymatic 

activity may regulate its scaffolding function. 

In characterizing the physical and functional interactions of β4, 12-LOX, and c-Met, there 

were several notable differences and similarities in the data obtained with the A431 cell line 

compared to the prostate cancer cells. First, the relationship between c-Met and β4 in A431 cells 

was dissociative on HGF stimulation vs. being constitutive in the prostate cancer cell lines. While 

there may be many explanations for this difference, an important one is that A431 cells form 

hemidesmosomes while prostate cancer cells do not. Normal epithelial prostate cells form 

hemidesmosomes and somewhere in the progression of cancer the structures are disassembled to 

allow tumor cells to metastasize. This occurs because of many factors including overactive growth 

factor receptors, like c-Met, that stimulate matrix degradation, cell survival in hostile 

microenvironments, and invasion. Interestingly enough, the prostate cancer cells used in this study 

were all metastatic and the A431 cells were not. This could indicate a switch in integrin function 

from a mechano-adhesive device to one that actively aids in cellular migration/invasion. It is likely 

that β4 function is dictated by the ECM and type of substrate the cells are attached to, which then 

ultimately controls β4 interacting partners and this likely affects 12-LOX enzymatic or scaffolding 

function.  

Yet, when 12-LOX was overexpressed in PC-3M cells, both HGF and 3E1 stimulation 

disrupted the β4/c-Met complex, which suggests that at a certain threshold of expression, 12-LOX 
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is regulating β4 and c-Met interaction. In prostate cancer cells where β4 is not incorporated into 

hemidesmosomes, but is diffuse within the cell membrane and constitutively interacting with c-

Met, perhaps 12-LOX is required for β4 and c-Met dissociation after HGF stimulation. This 

question remains open until more rigorous experiments can be performed, as 12-LOX was never 

successfully knocked down using shRNA in the prostate cancer cell lines. Additionally, in PC-3 

cells, 12-LOX overexpression did not affect β4 and c-Met interaction, but these cells have 

significantly lower β4 expression levels than PC-3M cells, which may explain the difference. 

However, in A431 cells, which do form hemidesmosomes, immunoprecipitation experiments 

using the 12-LOX knockdown cell line clearly indicated it makes no difference if 12-LOX is 

expressed in terms of β4 and c-Met interaction under basal conditions or their dissociation after 

growth factor receptor activation. It is possible that when cancer cells progress in stage and/or 

grade that 12-LOX may be upregulated to confer increased sensitivity to β4-enhanced c-Met 

signaling, and then at the metastatic site turn 12-LOX off as it is no longer needed to induce 

tumorigenic phenotypes such as endothelial cell retraction (Tang et al. 1993), 12(S)-HETE 

production for motility (Timár et al. 1993), and MMP-9 production for matrix degradation (Dilly 

et al. 2013).  In agreement with this hypothesis, most normal cells do not express 12-LOX, non-

metastatic cancer cells like A431 cells do express it, and metastatic cancer cells like PC-3M 

express low levels. 

In both A431 and the prostate cancer cell lines, HGF treatment resulted in 12-LOX 

recruitment to activated β4 integrin without the corresponding increase in 12-LOX enzymatic 

activity. As mentioned above, these results were surprising to us considering the only known 

function of 12-LOX is as a lipid enzyme. Additionally, when we first characterized the relationship 

between β4 and 12-LOX in A431 cells, direct stimulation of β4 by laminin or 3E1 led to β4 
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phosphorylation, followed by 12-LOX recruitment to the integrin and enzymatic activation. Even 

though 12-LOX was not enzymatically activated under HGF treatment conditions in the A431 or 

prostate cancer cells, several important pieces of data from both types of cell lines led us to the 

conclusion that in addition to its enzymatic activity, 12-LOX may actually be a scaffold required 

for β4 and c-Met cooperation in cancer cells. 

In A431 cells, 12-LOX knockdown decreased β4 phosphorylation, downstream signaling 

to AKT and ERK, cell scattering, and invasion in response to HGF activation of c-Met. Inhibition 

of 12-LOX interaction with β4 by the β4-derived fragments FNO1 or FNO1-2, also replicated the 

same phenotypes as 12-LOX knockdown. While we were unable to knockdown 12-LOX in PC-

3M prostate cancer cell lines, enzymatic inhibition of 12-LOX led to a decrease in HGF-induced 

invasion. It is unclear why, if 12-LOX enzymatic activity was not important in this context, that 

enzymatic inhibition would result in decreased HGF-induced invasion. Perhaps inhibition of 12-

LOX enzymatic activity alters its structure enough to preclude its scaffolding ability along with 

the ability of any additional adapters or signal transducers to bind. As seen in the LC-MS analysis, 

HGF stimulation of A431 cells actually suppressed 12-LOX enzymatic activity, and did not alter 

the activity in PC-3M cells, which appears to support our hypothesis.  

It is accepted that growth factor stimulation of cell motility leads to the release of β4 from 

hemidesmosomes where it subsequently associates with F-actin in lamellipodia (Frijns et al. 2010; 

Germain et al. 2009; Gipson et al. 1993; Mainiero et al. 1996; O'Connor et al. 1998; Rabinovitz et 

al. 1999; Trusolino et al. 2000). This topographical change in β4 location allows it to interact with 

the growth factor receptors and kinases that are normally inaccessible to the integrin, leading to 

this alternate integrin activation. In non-cancerous cells the activation of β4 is a tightly regulated 

phenomenon controlled by multiple complex mechanisms including the differentiation state of the 
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cell, protease activation, signaling cascades, tissue microenvironment, the ability to make adhesive 

contacts, cell survival, etc. However, in cancer cells where GFRs can be amplified, overexpressed, 

or constitutively active, like c-Met, certain stimuli (growth factors, chemoattractants, adhesion, 

etc.) can lead to uncontrollable β4 activation via cross-activation resulting in enhanced GFR-

initiated downstream signaling (Bertotti et al. 2006; Falcioni et al. 1997; Gambaletta et al. 2000; 

Guo et al. 2006; Hintermann et al. 2001; Santoro et al. 2003; Trusolino et al. 2001; Yoshioka et al. 

2013). Interestingly enough, β4 does not have to be bound to its natural ligand laminin or be 

heterodimerized with integrin α6 to function in cell signaling (Bertotti et al. 2005; Bertotti et al. 

2006; Gambaletta et al. 2000; Merdek et al. 2007; Trusolino et al. 2001). Also of note are the 

observations that EGFR and c-Met interact and cross-talk in A431 cells, where c-Met can be 

activated by the EGFR (Dulak 2011; Jo et al. 2000). Therefore, it is possible that β4/c-Met/EGFR 

may be complexed together and facilitate cross-activation of one another on ligand stimulation.  

Another group found that 24 hour EGF and HGF treatment of rat corneal epithelial cells 

lead to an increase in 12-LOX mRNA and protein levels followed by an increase in 12(S)-HETE, 

although EGF stimulated the most robust response (Ottino et al. 2003). Prior to that observation, 

EGF was shown to increase 12-LOX mRNA and activity in A431 cells within 10 hours (Chang et 

al. 1993). However there was confusion over which isoform of 12-LOX was being studied, 

leukocyte vs. platelet.  While our study found no increase in 12-LOX activity with HGF 

stimulation at six or 24 hours, the difference can be interpreted several ways: we have observed 

that the protein levels of 12-LOX and β4 can decrease with passage number, which likely affect 

cell responses to growth factors. In higher passage cells that have decreased or lost expression of 

12-LOX, they may respond to growth factor stimulation by re-expressing and activating the 

enzyme. This may explain the HGF-stimulated 12(S)-HETE production seen by Ottino et. al. 
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Additionally, we evaluated 12(S)-HETE released into the media while the study by Ottino et al. 

combined both media and cells as a homogenate, collected the microsomal fraction through 

centrifugation and then measured 12(S)-HETE production. The difference is we were evaluating 

12(S)-HETE production and secretion of intact cells while they were not. Our analysis does not 

rule out the possibility that HGF may stimulate 12-LOX activity in A431 cells as a delayed 

response to the chemoattractant, while the immediate function of 12-LOX is to act as a scaffold. 

The former would not be surprising given that c-Met activates PLA2, an enzyme responsible for 

cleaving AA from the membrane providing a substrate for 12-LOX (Hori 1993), and also activates 

SRC, a kinase we know to be responsible for 12-LOX activation following β4 activation (Dilly et 

al. manuscript pending).  The data above combined with this report collectively point toward a 

functional β4 and c-Met complex in cancer cells.  

Further evidence to support a functional relationship between β4 and c-Met was the finding 

that β4 expression upregulates the levels of Tiam1 (T-lymphoma invasion and metastasis), a Rac-

specific guanine nucleotide exchange factor, after HGF stimulation of pancreatic adenocarcinoma 

cell lines to promote chemotaxis and invasion (Cruz-Monserrate & O'Connor 2008). The increased 

Tiam1 resulted in activated Rac1 and was necessary for HGF-induced cell motility (Cruz-

Monserrate & O'Connor 2008). Another link between c-Met and β4 is that they can both be 

controlled by the Ets family members of transcription factors (Gambarotta et al. 1996). 

Additionally, β4 and c-Met both interact with the membrane tetraspanin CD151. Knockdown of 

CD151 decreased HGF-induced proliferation, anchorage independent growth, tumor progression 

in a mouse xenograft model, β4 phosphorylation, and c-Met and β4 complex formation (Franco et 

al. 2010). Studies using CD151 knockout mice showed CD151 expression increased the size, 

number, and time to malignant progression of squamous cell carcinoma through the promotion of 
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β4-induced survival and proliferative signaling (Li 2012). This suggests that CD151 may be 

needed for β4 and c-Met cooperative signaling, and may participate with 12-LOX, although we 

were never able to detect CD151 under our conditions. 

Recently our lab showed that stable expression of GR16 in A431 cells blocked β4 

interaction with 12-LOX, resulting in reduced cell motility and invasion toward EGF in Boyden 

chamber assays, reduced 12(S)-HETE production as measured by LC-MS, and decreased colony 

formation and proliferation. A decrease in in vivo tumor formation in athymic nude mice using the 

GR16 stably transfected cells was also seen compared to controls (Joshi et al. manuscript pending). 

We hypothesize that the GR16 fragment, which includes the FNO1 and FNO1-2 peptides, is 

interacting with 12-LOX in the cytoplasm to prevent its binding to the membrane associated β4, 

thereby preventing 12-LOX activation by β4 at the cell surface. The observation that FNO1 and 

FNO1-2 peptides inhibit HGF-induced cell scattering and invasion combined with the findings 

above, strengthen the idea that targeting not only c-Met, but also β4 and 12-LOX, will dramatically 

improve therapeutic efficacy in reducing tumor cell survival and therefore tumor cell 

aggressiveness. We have shown that β4 enhances c-Met signaling to promote tumor growth, and 

this study is the first to identify 12-LOX as a novel scaffold for β4-enhanced c-Met-induced cell 

scattering and invasion, which solidifies the importance of 12-LOX and β4 interaction as a 

druggable target. Understanding how these proteins cooperate to promote tumor cell 

motility/invasion will allow for targeting multiple points of intersecting pathways.  Combinational 

treatment will also likely reduce the drug resistance commonly seen with traditional, single-agent 

c-Met inhibitors in clinical trials. However, it remains to be determined what the combined effect 

of either peptide in addition to a c-Met inhibitor would have on tumor growth or progression in 

vivo, or even how the peptides would be delivered to cells. The peptides are only slightly 
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hydrophobic, and therefore cannot cross the cell membrane alone. Plus, in vivo, the un-capped 

peptides would be relatively unstable which would not allow efficacious treatment. However, 

biotechnology and nanotechnology advances are making peptides as therapeutic agents a viable 

reality. Additionally, the peptides could be used to screen for compounds or mimetics with similar 

inhibitory characteristics to treat cancer cells. 

12-LOX importance to tumor progression as a lipid enzyme or scaffold extends much 

further than in tumor cells alone. Platelet 12-LOX got its name from being highly expressed in 

platelets, and it is widely accepted that platelets can play a role in tumor progression (reviewed in 

(Menter et al. 2014)). Specifically, platelets can be activated by receptors on tumor cells, tumor 

cell exosomes, or other secreted factors originating from tumor cells/leaky tumor vasculature. 

Once activated, platelets will degranulate to release bioactive lipids and other inflammatory factors 

into the bloodstream. This can lead to the recruitment, activation, and aggregation of other 

platelets. This can also lead to the recruitment of tumor cells. Additionally, by recognizing tumor 

cell receptors and thereby interacting with them, this can protect the tumor cells from immune 

system destruction. If enough platelets interact with the tumor cell(s), aggregates may arrest in the 

microvasculature, allowing the tumor cells to extravasate, as platelets regulate vascular integrity, 

and through the production of 12(S)-HETE stimulate endothelial cell retraction (Honn et al. 

1994b). Tumor cells which express oncogenic c-Met would present with an extraordinary 

advantage in this situation. Given that 12-LOX acts as a scaffold to potentiate c-Met-mediated 

functioning, platelet production of 12(S)-HETE could serve to positively reinforce tumor cell 12-

LOX expression, as has it has been shown that 12(S)-HETE potentiates 12-LOX (Guo et al. 

2011b). Additionally, once arrested in circulation, tumor cells expressing oncogenic c-Met have 

the added advantage of exploiting c-Met-mediated invasion, metastasis, matrix degradation, and 
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EMT functions to establish secondary metastatic sites. To reiterate an earlier point, exogenous 

12(S)-HETE has been shown to protect cells from serum-starved-induced apoptosis (Honn & Tang 

1997; Tang et al. 1996), an effect that tumor cells also exploit, especially under the protection of 

β4 and c-Met anti-apoptotic signaling. 

One of the key ways tumor cells survive under hypoxic stress in both the primary and 

metastatic sites is through induction of angiogenesis, mediated by VEGF (Marschall et al. 2001; 

Shweiki et al. 1992). It has been shown that β4 can influence VEGF translation and protein 

expression through phosphorylation of 4E-binding protein (4E-BP1). Essentially, stimulation of 

β4 results in PI3K/AKT signaling (Bachelder et al. 1999a; Gambaletta et al. 2000; Hintermann et 

al. 2001; Shaw et al. 1997), the subsequent activation of mTOR (Sekulić et al. 2000), and 

consequent phosphorylation of 4E-BP1 resulting in disruption of its binding to eukaryotic 

translation initiation factor 4E (eIF-4E) (Chung et al. 2002). Once eIF-4E is freed, it can initiate 

translation of proteins such as VEGF. Interestingly, β4-Y1494 phosphorylation is critical for β4 

induced VEGF expression (Chung et al. 2002), and this is likely to involve 12-LOX.  In support 

of this conjecture is the fact that mice lacking the cytoplasmic tail of β4, meaning 12-LOX and β4 

could no longer interact, had a reduced angiogenic response to hypoxia as well as reduced 

angiogenesis induced by VEGF (Nikolopoulos et al. 2004). Our lab has shown that 12-LOX 

controls HIF1α under hypoxic conditions, MMP9 activity via 12(S)-HETE production, and 

angiogenesis through regulation of VEGF expression (Dilly et al. 2013; Krishnamoorthy et al. 

2010; Nie et al. 2006). Gene expression analysis of tissue from mice injected subcutaneously with 

A431 cells stably expressing GR16 (to inhibit β4 and 12-LOX interaction) show a decrease in 

VEGF, HIF1a, and BCL-2 mRNA levels while Bax levels were increased (Joshi et al.  manuscript 

pending) indicating decreased angiogenesis and increased cell apoptosis. c-Met also controls 
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angiogenesis, protease secretion or activation for tissue remodeling/cell motility/invasion, and is 

itself controlled by HIF1α in hypoxia  (Jeffers et al. 1996; Meiners et al. 1998). There are many 

clinical trials aimed at inhibiting angiogenesis by using VEGF inhibitors. Therefore, the findings 

of this study where 12-LOX and β4 could be modulated to impact c-Met and/or VEGF open a 

novel approach to tumor therapy.  

In summary, tumor cells coordinate the cooperative orchestration of β4, 12-LOX, and c-

Met signaling in tumor progression to promote invasion, metastasis, angiogenesis, and cell 

survival.  This study reports for the first time the finding that 12-LOX acts as a novel scaffold to 

regulate β4-enhanced c-Met-mediated cancer cell scattering and invasion. This not only expands 

our knowledge of how tumor cells invade, which is absolutely crucial to prevent the deadly 

metastasis of cancer, but it uncovered a novel target for cancer therapeutics. The unorthodox 

function of 12-LOX as a scaffold may also enforce the idea of evaluating proteins from a new 

perspective, and therefore lead to even more exciting discoveries. These findings have the ability 

to impact the survival and prognosis of cancer patients, and have opened new avenues of research 

for systems biology, protein-protein interaction, and cross-talk mechanisms. 

 

 

 

 

 

 

 

 



131 

  
 

REFERENCES 

Abdel-Ghany, M., Cheng, H.-C., Elble, R. C., Pauli, B. U. 2002. Focal Adhesion Kinase Activated 

by β4 Integrin Ligation to mCLCA1 Mediates Early Metastatic Growth. Journal of 

Biological Chemistry 277, 34391-34400. 

Abounader, R., Laterra, J. 2005. Scatter factor/hepatocyte growth factor in brain tumor growth and 

angiogenesis. Neuro-Oncology 7, 436-451. 

Augustsson, K., Michaud, D., Rimm, E., Leitzmann, M., Stampfer, M., Willett, W., Giovannucci, 

E. 2003. A prospective study of intake of fish and marine fatty acids and prostate cancer. 

cancer Epidemiol Biomarkers Prev. 12, 64-67. 

Baba, A., Sakuma, S., Okamoto, H., Inoue, T., Iwata, H. 1989. Calcium induces membrane 

translocation of 12-lipoxygenase in rat platelets. Journal of Biological Chemistry 264, 

15790-15795. 

Bachelder, R. E., Marchetti, A., Falcioni, R., Soddu, S., Mercurio, A. M. 1999a. Activation of p53 

Function in Carcinoma Cells by the α6β4 Integrin. Journal of Biological Chemistry 274, 

20733-20737. 

Bachelder, R. E., Ribick, M. J., Marchetti, A., Falcioni, R., Soddu, S., Davis, K. R., Mercurio, A. 

M. 1999b. P53 Inhibits α6β4 Integrin Survival Signaling by Promoting the Caspase 3–

Dependent Cleavage of Akt/PKB. The Journal of Cell Biology 147, 1063-1072. 

Berquin, I., Min, Y., Wu, J., Perry, D., Cline, J. M., Thomas, M. J., Thornburg, T., Kulik, G., 

Smith, A., Edwards, I. J., D'Agostino, R., Zhang, H., Hong, W., Kang, J. X., Chen, Y. Q. 

2007. Modulation of prostate cancer genetic risk by omega-3 and omega-6 fatty acids. The 

Journal of Clinical Investigation 117, 1866-1875. 



132 

  
 

Bertotti, A., Comoglio, P. M., Trusolino, L. 2005. β4 Integrin Is a Transforming Molecule that 

Unleashes Met Tyrosine Kinase Tumorigenesis. Cancer Research 65, 10674-10679. 

Bertotti, A., Comoglio, P. M., Trusolino, L. 2006. Beta4 integrin activates a Shp2-Src signaling 

pathway that sustains HGF-induced anchorage-independent growth. J Cell Biol 175, 993-

1003. 

Bladt, F., Riethmacher, D., Isenmann, S., Aquzzi, A., Birchmeier, C. 1995. Essential role for the 

c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature 

(London) 376, 768-771. 

Boeglin, W. E., Kim, R. B., Brash, A. R. 1998. A 12R-lipoxygenase in human skin: mechanistic 

evidence, molecular cloning, and expression. Proceedings of the National Academy of 

Sciences - PNAS 95, 6744-6749. 

Boon, E. M. J., van der Neut, R., van de Wetering, M., Clevers, H., Pals, S. T. 2002. Wnt Signaling 

Regulates Expression of the Receptor Tyrosine Kinase Met in Colorectal Cancer. Cancer 

Research 62, 5126-5128. 

Borradori, L., Sonnenberg, A. 1999. Structure and function of hemidesmosomes: more than simple 

adhesion complexes. Journal of investigative dermatology 112, 411-418. 

Bottaro, D. P., Rubin, J. S., Faletto, D. L., Chan, A. M., Kmiecik, T. E., Vande Woude, G. F., 

Aaronson, S. A. 1991. Identification of the hepatocyte growth factor receptor as the c-met 

proto-oncogene product. Science (New York, N.Y.) 251, 802-804. 

Brash, A. R. 1999. Lipoxygenases: Occurrence, Functions, Catalysis, and Acquisition of Substrate. 

Journal of Biological Chemistry 274, 23679-23682. 

Bussolino, F., Di Renzo, M. F., Ziche, M., Bocchietto, E., Olivero, M., Naldini, L., Gaudino, G., 

Tamagnone, L., Coffer, A., Comoglio, P. M. 1992. Hepatocyte growth factor is a potent 



133 

  
 

angiogenic factor which stimulates endothelial cell motility and growth. The Journal of 

Cell Biology 119, 629-641. 

Carico, E., French, D., Bucci, B., Falcioni, R., Vecchione, A., Mariani Costantini, R. 1993. Integrin 

beta 4 expression in the neoplastic progression of cervical epithelium. Gynecologic 

Oncology 49, 61-66. 

Chang, W. C., Liu, Y. W., Ning, C. C., Suzuki, H., Yoshimoto, T., Yamamoto, S. 1993. Induction 

of arachidonate 12-lipoxygenase mRNA by epidermal growth factor in A431 cells. Journal 

of Biological Chemistry 268, 18734-18739. 

Chao, C., Lotz, M. M., Clarke, A. C., Mercurio, A. M. 1996. A Function for the Integrin α6β4 in 

the Invasive Properties of Colorectal Carcinoma Cells. Cancer Research 56, 4811-4819. 

Chen, Y. Q., Duniec, Z. M., Liu, B., Hagmann, W., Gao, X., Shimoji, K.-i., Marnett, L. J., Johnson, 

C. R., Honn, K. 1994. Endogenous 12(S)-HETE Production by Tumor Cells and Its Role 

in Metastasis. Cancer Research 54, 1574-1579. 

Chung, J., Bachelder, R. E., Lipscomb, E. A., Shaw, L. M., Mercurio, A. M. 2002. Integrin (α6β4) 

regulation of eIF-4E activity and VEGF translation: a survival mechanism for carcinoma 

cells. The Journal of Cell Biology 158, 165-174. 

Chung, J., Yoon, S.-O., Lipscomb, E. A., Mercurio, A. M. 2004. The Met Receptor and α6β4 

Integrin Can Function Independently to Promote Carcinoma Invasion. Journal of 

Biological Chemistry 279, 32287-32293. 

Connolly, J. M., Rose, D. P. 1998. Enhanced angiogenesis and growth of 12-lipoxygenase gene-

transfected MCF-7 human breast cancer cells in athymic nude mice. Cancer letters 132, 

107-112. 



134 

  
 

Cowin, A. J., Adams, D., Geary, S. M., Wright, M. D., Jones, J. C., Ashman, L. K. 2006. Wound 

healing is defective in mice lacking tetraspanin CD151. Journal of investigative 

dermatology 126, 680-689. 

Cruz-Monserrate, Z., O'Connor, K. L. 2008. Integrin alpha 6 beta 4 promotes migration, invasion 

through Tiam1 upregulation, and subsequent Rac activation. Neoplasia (New York, N.Y.) 

10, 408-417. 

Cruz-Monserrate, Z., Qiu, S., Evers, B. M., O'Connor, K. L. 2007. Upregulation and redistribution 

of integrin alpha6beta4 expression occurs at an early stage in pancreatic adenocarcinoma 

progression. Modern pathology 20, 656-667. 

Dans, M., Gagnoux-Palacios, L., Blaikie, P., Klein, S., Mariotti, A., Giancotti, F. G. 2001. 

Tyrosine Phosphorylation of the β4 Integrin Cytoplasmic Domain Mediates Shc Signaling 

to Extracellular Signal-regulated Kinase and Antagonizes Formation of Hemidesmosomes. 

Journal of Biological Chemistry 276, 1494-1502. 

Davis, T. L., Cress, A. E., Dalkin, B. L., Nagle, R. B. 2001. Unique expression pattern of the α6β4 

integrin and laminin-5 in human prostate carcinoma. The Prostate 46, 240-248. 

de Lorgeril, M., Salen, P. 2012. New insights into the health effects of dietary saturated and omega-

6 and omega-3 polyunsaturated fatty acids. BMC Medicine 10, 50. 

de Lorgeril, M., Salen, P., Martin, J., Monjaud, I., Boucher, P., Mamelle, N. 1998. Mediterranean 

dietary pattern in a randomized trial: Prolonged survival and possible reduced cancer rate. 

Archives of Internal Medicine 158, 1181-1187. 

De Marzo, N., Sloane, D. L., Dicharry, S., Highland, E., Sigal, E. 1992. Cloning and expression 

of an airway epithelial 12-lipoxygenase. American Journal of Physiology - Lung Cellular 

and Molecular Physiology 262, L198-L207. 



135 

  
 

Di Renzo, M. F., Olivero, M., Giacomini, A., Porte, H., Chastre, E., Mirossay, L., Nordlinger, B., 

Bretti, S., Bottardi, S., Giordano, S. 1995. Overexpression and amplification of the 

met/HGF receptor gene during the progression of colorectal cancer. Clinical Cancer 

Research 1, 147-154. 

Di Renzo, M. F., Olivero, M., Martone, T., Maffe, A., Maggiora, P., Stefani, A. D., Valente, G., 

Giordano, S., Cortesina, G., Comoglio, P. M. 2000. Somatic mutations of the MET 

oncogene are selected during metastatic spread of human HNSC carcinomas. Oncogene 

19, 1547-1555. 

Dilly, A.-K., Ekambaram, P., Guo, Y., Cai, Y., Tucker, S. C., Fridman, R., Kandouz, M., Honn, 

K. V. 2013. Platelet-type 12-lipoxygenase induces MMP9 expression and cellular invasion 

via activation of PI3K/Akt/NF-κB. International journal of cancer 133, 1784-1791. 

Ding, X. Z., Kuszynski, C. A., El-Metwally, T. H., Adrian, T. E. 1999. Lipoxygenase inhibition 

induced apoptosis, morphological changes, and carbonic anhydrase expression in human 

pancreatic cancer cells. Biochemical and Biophysical Research Communications 266, 392-

399. 

Dowling, J., Yu, Q. C., Fuchs, E. 1996. Beta4 integrin is required for hemidesmosome formation, 

cell adhesion and cell survival. The Journal of Cell Biology 134, 559-572. 

Dulak, A. M. 2011. HGF-independent potentiation of EGFR action by c-Met. Oncogene 30, 3625-

3635. 

Dutta, U., Shaw, L. M. 2008. A Key Tyrosine (Y1494) in the β4 Integrin Regulates Multiple 

Signaling Pathways Important for Tumor Development and Progression. Cancer Research 

68, 8779-8787. 



136 

  
 

Einheber, S., Milner, T. A., Giancotti, F. G., Salzer, J. L. 1993. Axonal regulation of Schwann cell 

integrin expression suggests a role for alpha 6 beta 4 in myelination. The Journal of Cell 

Biology 123, 1223-1236. 

Elsherbiny, M. E., Emara, M., Godbout, R. 2013. Interaction of brain fatty acid-binding protein 

with the polyunsaturated fatty acid environment as a potential determinant of poor 

prognosis in malignant glioma. Progress in Lipid Research 52, 562-570. 

Engelman, J. A., Zejnullahu, K., Mitsudomi, T., Song, Y., Hyland, C., Park, J. O., Lindeman, N., 

Gale, C.-M., Zhao, X., Christensen, J., Kosaka, T., Holmes, A. J., Rogers, A. M., 

Cappuzzo, F., Mok, T., Lee, C., Johnson, B. E., Cantley, L. C., Jänne, P. A. 2007. MET 

Amplification Leads to Gefitinib Resistance in Lung Cancer by Activating ERBB3 

Signaling. Science 316, 1039-1043. 

Falcioni, R., Antonini, A., Nisticò, P., Stefano, S. D., Crescenzi, M., Natali, P. G., Sacchi, A. 1997. 

α6β4 and α6β1 Integrins Associate with ErbB-2 in Human Carcinoma Cell Lines. 

Experimental Cell Research 236, 76-85. 

Falcioni, R., Sacchi, A., Resau, J., Kennel, S. J. 1988. Monoclonal Antibody to Human Carcinoma-

associated Protein Complex: Quantitation in Normal and Tumor Tissue. Cancer Research 

48, 816-821. 

Falcioni, R., Turchi, V., Vitullo, P., Navarra, G., Ficari, F., Cavaliere, F., Sacchi, A., Mariani 

Costantini, R. 1994. Integrin Beta-4 expression in colorectal-cancer. International journal 

of oncology 5, 573-578. 

Ferracini, R., Di Renzo, M. F., Scotlandi, K., Baldini, N., Olivero, M., Lollini, P., Cremona, O., 

Campanacci, M., Comoglio, P. M. 1995. The Met/HGF receptor is over-expressed in 



137 

  
 

human osteosarcomas and is activated by either a paracrine or an autocrine circuit. 

Oncogene 10, 739-749. 

Franco, M., Muratori, C., Corso, S., Tenaglia, E., Bertotti, A., Capparuccia, L., Trusolino, L., 

Comoglio, P. M., Tamagnone, L. 2010. The Tetraspanin CD151 Is Required for Met-

dependent Signaling and Tumor Cell Growth. Journal of Biological Chemistry 285, 38756-

38764. 

Frijns, E., Sachs, N., Kreft, M., Wilhelmsen, K., Sonnenberg, A. 2010. EGF-induced MAPK 

Signaling Inhibits Hemidesmosome Formation through Phosphorylation of the Integrin β4. 

Journal of Biological Chemistry 285, 37650-37662. 

Fujita, M., Ieguchi, K., Davari, P., Yamaji, S., Taniguchi, Y., Sekiguchi, K., Takada, Y. K., 

Takada, Y. 2012. Cross-talk between Integrin α6β4 and Insulin-like Growth Factor-1 

Receptor (IGF1R) through Direct α6β4 Binding to IGF1 and Subsequent α6β4-IGF1-

IGF1R Ternary Complex Formation in Anchorage-independent Conditions. Journal of 

Biological Chemistry 287, 12491-12500. 

Funk, C. D. 1996. The molecular biology of mammalian lipoxygenases and the quest for 

eicosanoid functions using lipoxygenase-deficient mice. Biochimica et biophysica acta 

1304, 65-84. 

Funk, C. D., Furci, L., FitzGerald, G. A. 1990. Molecular cloning, primary structure, and 

expression of the human platelet/erythroleukemia cell 12-lipoxygenase. Proceedings of the 

National Academy of Sciences 87, 5638-5642. 

Gagnoux-Palacios, L., Dans, M., van't Hof, W., Mariotti, A., Pepe, A., Meneguzzi, G., Resh, M. 

D., Giancotti, F. G. 2003. Compartmentalization of integrin α6β4 signaling in lipid rafts. 

The Journal of Cell Biology 162, 1189-1196. 



138 

  
 

Gambaletta, D., Marchetti, A., Benedetti, L., Mercurio, A. M., Sacchi, A., Falcioni, R. 2000. 

Cooperative Signaling between α6β4Integrin and ErbB-2 Receptor Is Required to Promote 

Phosphatidylinositol 3-Kinase-dependent Invasion. Journal of Biological Chemistry 275, 

10604-10610. 

Gambarotta, G., Boccaccio, C., Giordano, S., Ando, M., Stella, M. C., Comoglio, P. M. 1996. Ets 

up-regulates MET transcription. Oncogene 13, 1911-1917. 

Gao, X., Grignon, D. J., Chbihi, T., Zacharek, A., Chen, Y. Q., Sakr, W., Porter, A. T., Crissman, 

J. D., Edson Pontes, J., Powell, I. J., Honn, K. V. 1995. Elevated 12-lipoxygenase mRNA 

expression correlates with advanced stage and poor differentiation of human prostate 

cancer. Urology 46, 227-237. 

Garcia, S., Dalès, J.-P., Charafe-Jauffret, E., Carpentier-Meunier, S., Andrac-Meyer, L., 

Jacquemier, J., Andonian, C., Lavaut, M.-N., Allasia, C., Bonnier, P., Charpin, C. 2007. 

Poor prognosis in breast carcinomas correlates with increased expression of targetable 

CD146 and c-Met and with proteomic basal-like phenotype. Human Pathology 38, 830-

841. 

Geerts, D., Fontao, L., Nievers, M. G., Schaapveld, R. Q., Purkis, P. E., Wheeler, G. N., Lane, E. 

B., Leigh, I. M., Sonnenberg, A. 1999. Binding of integrin alpha6beta4 to plectin prevents 

plectin association with F-actin but does not interfere with intermediate filament binding. 

The Journal of Cell Biology 147, 417-434. 

Germain, E. C., Santos, T. M., Rabinovitz, I. 2009. Phosphorylation of a Novel Site on the {beta}4 

Integrin at the Trailing Edge of Migrating Cells Promotes Hemidesmosome Disassembly. 

Mol. Biol. Cell 20, 56-67. 



139 

  
 

Gherardi, E. 2012. Targeting MET in cancer: rationale and progress. Nature reviews. Cancer 12, 

89-103. 

Gherardi, E., Gray, J., Stoker, M., Perryman, M., Furlong, R. 1989. Purification of scatter factor, 

a fibroblast-derived basic protein that modulates epithelial interactions and movement. 

Proceedings of the National Academy of Sciences 86, 5844-5848. 

Gherardi, E., Youles, M. E., Miguel, R. N., Blundell, T. L., Iamele, L., Gough, J., Bandyopadhyay, 

A., Hartmann, G., Butler, P. J. G. 2003. Functional map and domain structure of MET, the 

product of the c-met protooncogene and receptor for hepatocyte growth factor/scatter 

factor. Proceedings of the National Academy of Sciences 100, 12039-12044. 

Giancotti, F. G., Stepp, M. A., Suzuki, S., Engvall, E., Ruoslahti, E. 1992. Proteolytic processing 

of endogenous and recombinant beta 4 integrin subunit. The Journal of Cell Biology 118, 

951-959. 

Gipson, I. K., Spurr-Michaud, S., Tisdale, A., Elwell, J., Stepp, M. A. 1993. Redistribution of the 

Hemidesmosome Components [alpha]6[beta]4 Integrin and Bullous Pemphigoid Antigens 

during Epithelial Wound Healing. Experimental Cell Research 207, 86-98. 

Grant, D. S., Kleinman, H. K., Goldberg, I. D., Bhargava, M. M., Nickoloff, B. J., Kinsella, J. L., 

Polverini, P., Rosen, E. M. 1993. Scatter factor induces blood vessel formation in vivo. 

Proceedings of the National Academy of Sciences 90, 1937-1941. 

Gu, J. L., Natarajan, R., Ben-Ezra, J., Valente, G., Scott, S., Yoshimoto, T., Yamamoto, S., Rossi, 

J. J., Nadler, J. L. 1994. Evidence that a leukocyte type of 12-lipoxygenase is expressed 

and regulated by angiotensin II in human adrenal glomerulosa cells. Endocrinology 

(Philadelphia) 134, 70-77. 



140 

  
 

Guo, A. M., Liu, X. H., Al-Wahab, Z., Maddippati, K., Ali-Fehmi, R., Scicli, A. G., Munkarah, A. 

R. 2011a. Role of 12-lipoxygenase in regulation of ovarian cancer cell proliferation and 

survival. Cancer chemotherapy and pharmacology 68, 1273-1283. 

Guo, W., Giancotti, F. G. 2004. Integrin signalling during tumour progression. Nat Rev Mol Cell 

Biol 5, 816-826. 

Guo, W., Pylayeva, Y., Pepe, A., Yoshioka, T., Muller, W. J., Inghirami, G., Giancotti, F. G. 2006. 

β4 Integrin Amplifies ErbB2 Signaling to Promote Mammary Tumorigenesis. Cell 126, 

489-502. 

Guo, Y., Zhang, W., Giroux, C., Cai, Y., Ekambaram, P., Dilly, A.-k., Hsu, A., Zhou, S., 

Maddipati, K. R., Liu, J., Joshi, S., Tucker, S. C., Lee, M.-J., Honn, K. V. 2011b. 

Identification of the Orphan G Protein-coupled Receptor GPR31 as a Receptor for 12-(S)-

Hydroxyeicosatetraenoic Acid. Journal of Biological Chemistry 286, 33832-33840. 

Haenszel, W., Kurihara, M. 1968. Studies of Japanese migrants. I. Mortality from cancer and other 

diseases among Japanese in the United States. JNCI : Journal of the National Cancer 

Institute 40, 43-68. 

Hagmann, W., Gao, X., Timar, J., Chen, Y. Q., Strohmaier, A.-R., Fahrenkopf, C., Kagawa, D., 

Lee, M., Zacharek, A., Honn, K. V. 1996. 12-Lipoxygenase in A431 cells: genetic identity, 

modulation of expression, and intracellular localization. Experimental Cell Research 228, 

197-205. 

Hagmann, W., Kagawa, D., Renaud, C., Honn, K. V. 1993. Activity and protein distribution of 12-

lipoxygenase in HEL cells: Induction of membrane-association by phorbol ester TPA, 

modulation of activity by glutathione and 13-HPODE, and Ca2+-dependent translocation 

to membranes. Prostaglandins 46, 471-477. 



141 

  
 

Hall, P. A., Coates, P., Lemoine, N. R., Horton, M. A. 1991. Characterization of integrin chains in 

normal and neoplastic human pancreas. The Journal of pathology 165, 33-41. 

Hansbrough, J. R., Takahashi, Y., Ueda, N., Yamamoto, S., Holtzman, M. J. 1990. Identification 

of a novel arachidonate 12-lipoxygenase in bovine tracheal epithelial cells distinct from 

leukocyte and platelet forms of the enzyme. Journal of Biological Chemistry 265, 1771-

1776. 

Hao, J., Yang, Y. J., McDaniel, K. M., Dalkin, B. L., Cress, A. E., Nagle, R. B. 1996. Differential 

expression of laminin 5 (alpha 3 beta 3 gamma 2) by human malignant and normal prostate. 

The American Journal of Pathology 149, 1341-1349. 

Hartmann, G., Weidner, K. M., Schwartz, H., Birchmeier, W. 1994. The motility signal of scatter 

factor/hepatocyte growth factor mediated through the receptor tyrosine kinase met requires 

intracellular action of Ras. J Biol Chem 269, 21936-21939. 

Hintermann, E., Bilban, M., Sharabi, A., Quaranta, V. 2001. Inhibitory Role of α6β4-Associated 

Erbb-2 and Phosphoinositide 3-Kinase in Keratinocyte Haptotactic Migration Dependent 

on α3β1 Integrin. The Journal of Cell Biology 153, 465-478. 

Hogervorst, F., Kuikman, I., von dem Borne, A. E., Sonnenberg, A. 1990. Cloning and sequence 

analysis of beta-4 cDNA: an integrin subunit that contains a unique 118 kd cytoplasmic 

domain. The EMBO journal 9, 765-770. 

Honn, K., Tang, D. G., Gao, X., Butovich, I., Liu, B., Timar, J., Hagmann, W. 1994a. 12-

lipoxygenases and 12(S)-HETE: role in cancer metastasis. Cancer and Metastasis Reviews 

13, 365-396. 



142 

  
 

Honn, K. V., Grossi, I. M., Diglio, C. A., Wojtukiewicz, M., Taylor, J. D. 1989. Enhanced tumor 

cell adhesion to the subendothelial matrix resulting from 12(S)-HETE-induced endothelial 

cell retraction. The FASEB Journal 3, 2285-2293. 

Honn, K. V., Tang, D. G. 1997. Eicosanoid 12(S)-HETE upregulates endothelial cell alpha V beta 

3 integrin expression and promotes tumor cell adhesion to vascular endothelium. Advances 

in experimental medicine and biology 400B, 765-773. 

Honn, K. V., Tang, D. G., Grossi, I. M., Duniec, Z. M., Timár, J., Renaud, C., Leithauser, M., 

Blair, I., Johnson, C. R., Diglio, C. A., Kimler, V. A., Taylor, J. D., Marnett, L. J. 1994b. 

Tumor cell-derived 12(S)-hydroxyeicosatetraenoic acid induces microvascular endothelial 

cell retraction. Cancer research (Baltimore) 54, 565-574. 

Honn, K. V., Timár, J., Rozhin, J., Bazaz, R., Sameni, M., Ziegler, G., Sloane, B. F. 1994c. A 

Lipoxygenase Metabolite, 12-(S)-HETE, Stimulates Protein Kinase C-Mediated Release 

of Cathepsin B from Malignant Cells. Experimental Cell Research 214, 120-130. 

Hori, T. 1993. Stimulation of prostaglandin production by hepatocyte growth factor in human 

gastric carcinoma cells. FEBS letters 334, 331-334. 

Humphrey, P., Zhu, X., Zarnegar, R., Swanson, P., Ratliff, T., Vollmer, R., Day, M. 1995. 

Hepatocyte growth factor and its receptor (c-MET) in prostatic carcinoma. Am J Pathol 

147, 386-396. 

Hynes, R. O. 2002. Integrins: Bidirectional, Allosteric Signaling Machines. Cell 110, 673-687. 

Ivanov, I., Di Venere, A., Horn, T., Scheerer, P., Nicolai, E., Stehling, S., Richter, C., Skrzypczak-

Jankun, E., Mei, G., Maccarrone, M., Kühn, H. 2011. Tight association of N-terminal and 

catalytic subunits of rabbit 12/15-lipoxygenase is important for protein stability and 



143 

  
 

catalytic activity. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of 

Lipids 1811, 1001-1010. 

Izumi, T., Hoshiko, S., Rådmark, O., Samuelsson, B. 1990. Cloning of the cDNA for human 12-

lipoxygenase. Proceedings of the National Academy of Sciences 87, 7477-7481. 

Jagadeeswaran, R., Ma, P. C., Seiwert, T. Y., Jagadeeswaran, S., Zumba, O., Nallasura, V., 

Ahmed, S., Filiberti, R., Paganuzzi, M., Puntoni, R., Kratzke, R. A., Gordon, G. J., 

Sugarbaker, D. J., Bueno, R., Janamanchi, V., Bindokas, V. P., Kindler, H. L., Salgia, R. 

2006. Functional Analysis of c-Met/Hepatocyte Growth Factor Pathway in Malignant 

Pleural Mesothelioma. Cancer Research 66, 352-361. 

Jeffers, M., Rong, S., Vande Woude, G. F. 1996. Hepatocyte growth factor/scatter factor-Met 

signaling in tumorigenicity and invasion/metastasis. Journal of molecular medicine 

(Berlin, Germany) 74, 505-513. 

Jeffers, M., Schmidt, L., Nakaigawa, N., Webb, C. P., Weirich, G., Kishida, T., Zbar, B., Vande 

Woude, G. F. 1997. Activating mutations for the Met tyrosine kinase receptor in 

human cancer. Proceedings of the National Academy of Sciences of the United States of 

America 94, 11445-11450. 

Jo, M., Stolz, D. B., Esplen, J. E., Dorko, K., Michalopoulos, G. K., Strom, S. C. 2000. Cross-talk 

between Epidermal Growth Factor Receptor and c-Met Signal Pathways in Transformed 

Cells. Journal of Biological Chemistry 275, 8806-8811. 

Jones, J. C., Asmuth, J., Baker, S. E., Langhofer, M., Roth, S. I., Hopkinson, S. B. 1994. 

Hemidesmosomes: extracellular matrix/intermediate filament connectors. Experimental 

Cell Research 213, 1-11. 



144 

  
 

Jung, K., Seidel, B., Rudolph, B., Lein, M., Cronauer, M. V., Henke, W., Hampel, G., Schnorr, 

D., Loening, S. A. 1997. Antioxidant Enzymes In Malignant Prostate Cell Lines and In 

Primary Cultured Prostatic Cells. Free Radical Biology and Medicine 23, 127-133. 

Kajiji, S., Tamura, R. N., Quaranta, V. 1989. A novel integrin (alpha E beta 4) from human 

epithelial cells suggests a fourth family of integrin adhesion receptors. The EMBO journal 

8, 673-680. 

Kandouz, M., Nie, D., Pidgeon, G., Krishnamoorthy, S., Maddipati, K., Honn, K. 2003. Platelet-

type 12-lipoxygenase activates NF-kappaB in prostate cancer cells. Prostaglandins Other 

Lipid Mediat 71, 189-204. 

Kashyap, T. 2011. Role of β4 integrin phosphorylation in human invasive squamous cell 

carcinoma: regulation of hemidesmosome stability modulates cell migration. Laboratory 

investigation 91, 1414-1426. 

Kennel, S. J., Godfrey, V., Ch'ang, L. Y., Lankford, T. K., Foote, L. J., Makkinje, A. 1992. The 

beta 4 subunit of the integrin family is displayed on a restricted subset of endothelium in 

mice. Journal of Cell Science 101 ( Pt 1), 145-150. 

Kimmel, K. A. 1986. Altered expression in squamous carcinoma cells of an orientation restricted 

epithelial antigen detected by monoclonal antibody A9. Cancer research (Baltimore) 46, 

3614-3623. 

Kolonel, L. N. 2001. Fat, meat, and prostate cancer. Epidemiologic Reviews 23, 72-81. 

Koster, J., Geerts, D., Favre, B., Borradori, L., Sonnenberg, A. 2003. Analysis of the interactions 

between BP180, BP230, plectin and the integrin α6β4 important for hemidesmosome 

assembly. Journal of Cell Science 116, 387-399. 

Kreidberg, J. A. 2000. Functions of α3β1 integrin. Current Opinion in Cell Biology 12, 548-553. 



145 

  
 

Krishnamoorthy, S., Jin, R., Cai, Y., Maddipati, K. R., Nie, D., Pagès, G., Tucker, S. C., Honn, K. 

V. 2010. 12-Lipoxygenase and the regulation of hypoxia-inducible factor in prostate cancer 

cells. Experimental Cell Research 316, 1706-1715. 

Lacape, G., Daret, D., Crockett, R., Riqaud, M., Larrue, J. 1992. Dual metabolic pathways of 12-

HETE in rat aortic smooth muscle cells. Prostaglandins 44, 167-176. 

Li, Q. 2012. Tetraspanin CD151 plays a key role in skin squamous cell carcinoma. Oncogene  

Limor, R. 2001. A novel form of platelet-type 12-lipoxygenase mRNA in human vascular smooth 

muscle cells. Hypertension (Dallas, Tex. 1979) 38, 864-871. 

Litjens, S. H. M., de Pereda, J. M., Sonnenberg, A. 2006. Current insights into the formation and 

breakdown of hemidesmosomes. Trends in Cell Biology 16, 376-383. 

Liu, B., Khan, W., Hannun, Y., Timar, J., Taylor, J. D., Lundy, S., Butovich, I., Honn, K. 1995. 

12(S)-hydroxyeicosatetraenoic acid and 13(S)-hydroxyoctadecadienoic acid regulation of 

protein kinase C-alpha in melanoma cells: role of receptor-mediated hydrolysis of inositol 

phospholipids. Proceedings of the National Academy of Sciences 92, 9323-9327. 

Liu, B., Maher, R., Hannun, Y., Porter, A. T., Honn, K. 1994a. 12(S)-HETE enhancement of 

postate tumor cell invasion: selective role of PKC alpha. J Natl Cancer Inst 86, 1145-1151. 

Liu, B., Marnett, L. J., Chaudhary, A., Ji, C., Blair, I. A., Johnson, C. R., Diglio, C. A., Honn, K. 

V. 1994b. Biosynthesis of 12(S)-hydroxyeicosatetraenoic acid by B16 amelanotic 

melanoma cells is a determinant of their metastatic potential. Laboratory investigation 70, 

314-323. 

Liu, X., Wang, Q., Yang, G., Marando, C., Koblish, H. K., Hall, L. M., Fridman, J. S., Behshad, 

E., Wynn, R., Li, Y., Boer, J., Diamond, S., He, C., Xu, M., Zhuo, J., Yao, W., Newton, R. 

C., Scherle, P. A. 2011. A Novel Kinase Inhibitor, INCB28060, Blocks c-MET–Dependent 



146 

  
 

Signaling, Neoplastic Activities, and Cross-Talk with EGFR and HER-3. Clinical Cancer 

Research 17, 7127-7138. 

Liu, Y.-W., Chen, B.-K., Chen, C.-J., Arakawa, T., Yoshimoto, T., Yamamoto, S., Chang, W.-C. 

1997. Epidermal growth factor enhances transcription of human arachidonate 12-

lipoxygenase in A431 cells. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid 

Metabolism 1344, 38-46. 

Maddipati, K. R., Zhou, S.-L. 2011. Stability and analysis of eicosanoids and docosanoids in tissue 

culture media. Prostaglandins & Other Lipid Mediators 94, 59-72. 

Mainiero, F., Murgia, C., Wary, K. K., Curatola, A. M., Pepe, A., Blumemberg, M., Westwick, J. 

K., Der, C. J., Giancotti, F. G. 1997. The coupling of [alpha]6[beta]4 integrin to Ras-MAP 

kinase pathways mediated by Shc controls keratinocyte proliferation. EMBO J 16, 2365-

2375. 

Mainiero, F., Pepe, A., Wary, K., Spinardi, L., Mohammadi, M., Schlessinger, J., Giancotti, F. G. 

1995. Signal transduction by the alpha 6 beta 4 integrin: distinct beta 2 subunit sites mediate 

recruitment of Shc/Grb2 and association with the cytoskeleton of hemidesmosomes. 

EMBO J 14, 4470-4481. 

Mainiero, F., Pepe, A., Yeon, M., Ren, Y., Giancotti, F. G. 1996. The intracellular functions of 

alpha6beta4 integrin are regulated by EGF. The Journal of Cell Biology 134, 241-253. 

Mariani Costantini, R., Falcioni, R., Battista, P., Zupi, G., Kennel, S. J., Colasante, A., Venturo, 

I., Curio, C. G., Sacchi, A. 1990. Integrin (alpha 6/beta 4) expression in human lung cancer 

as monitored by specific monoclonal antibodies. Cancer research (Baltimore) 50, 6107-

6112. 



147 

  
 

Mariotti, A., Kedeshian, P. A., Dans, M., Curatola, A. M., Gagnoux-Palacios, L., Giancotti, F. G. 

2001. EGF-R signaling through Fyn kinase disrupts the function of integrin α6β4 at 

hemidesmosomes. The Journal of Cell Biology 155, 447-458. 

Marschall, Z. v., Cramer, T., Höcker, M., Finkenzeller, G., Wiedenmann, B., Rosewicz, S. 2001. 

Dual mechanism of vascular endothelial growth factor upregulation by hypoxia in human 

hepatocellular carcinoma. Gut 48, 87-96. 

McCawley, L. J., O'Brien, P., Hudson, L. G. 1998. Epidermal growth factor (EGF)- and scatter 

factor/hepatocyte growth factor (SF/HGF)-mediated keratinocyte migration is coincident 

with induction of matrix metalloproteinase (MMP)-9. Journal of Cellular Physiology 176, 

255-265. 

Meiners, S., Brinkmann, V., Naundorf, H., Birchmeier, W. 1998. Role of morphogenetic factors 

in metastasis of mammary carcinoma cells. Oncogene 16, 9-20. 

Menter, D. G., Tucker, S. C., Kopetz, S., Sood, A. K., Crissman, J. D., Honn, K. V. 2014. Platelets 

and cancer: a casual or causal relationship: revisited. Cancer and Metastasis Reviews 33, 

231-269. 

Merdek, K. D., Yang, X., Taglienti, C. A., Shaw, L. M., Mercurio, A. M. 2007. Intrinsic Signaling 

Functions of the β4 Integrin Intracellular Domain. Journal of Biological Chemistry 282, 

30322-30330. 

Montero, A., Uda, S., Kelavkar, U., Yoshimura, A., Badr, K. F., Munger, K. A. 2003. Increased 

5-lipoxygenase activating protein in immune-mediated experimental nephritis. Journal of 

nephrology 16, 682-690. 

Montesano, R., Matsumoto, K., Nakamura, T., Orci, L. 1991. Identification of a fibroblast-derived 

epithelial morphogen as hepatocyte growth factor. Cell 67, 901-908. 



148 

  
 

Nagle, R. B., Hao, J., Knox, J. D., Dalkin, B. L., Clark, V., Cress, A. E. 1995. Expression of 

hemidesmosomal and extracellular matrix protiens by normal and malignant human 

prostate tissue. The American Journal of Pathology 146, 1498-1507. 

Nakadate, T., Aizu, E., Yamamoto, S., Kato, R. 1986. Some properties of lipoxygenase activities 

in cytosol and microsomal fractions of mouse epidermal homogenate. Prostaglandins 

leukotrienes and medicine 21, 305-319. 

Nakamura, T., Matsumoto, K. 1992. Hepatocyte growth factor: molecular structure, roles in liver 

regeneration, and other biological functions. Crit Rev Oncog 3, 27-54. 

Natarajan, R., Esworthy, R., Bai, W., Gu, J. L., Wilczynski, S., Nadler, J. 1997. Increased 12-

lipoxygenase expression in breast cancer tissues and cells. Regulation by epidermal growth 

factor. The journal of clinical endocrinology and metabolism 82, 1790-1798. 

Natarajan, R., Gu, J. L., Rossi, J., Gonzales, N., Lanting, L., Xu, L., Nadler, J. 1993. Elevated 

glucose and angiotensin II increase 12-lipoxygenase activity and expression in porcine 

aortic smooth muscle cells. Proceedings of the National Academy of Sciences 90, 4947-

4951. 

Needleman, P., Truk, J., Jakschik, B. A., Morrison, A. R., Lefkowith, J. B. 1986. Arachidonic Acid 

Metabolism. Annual Review of Biochemistry 55, 69-102. 

Nie, D., Che, M., Grignon, D. J., Tang, K., Honn, K. V. 2001. Role of eicosanoids in prostate 

cancer progression. Cancer and Metastasis Reviews 20, 195-206. 

Nie, D., Hillman, G. G., Geddes, T., Tang, K., Pierson, C., Grignon, D. J., Honn, K. V. 1998. 

Platelet-type 12-lipoxygenase in a human prostate carcinoma stimulates angiogenesis and 

tumor growth. Cancer research (Baltimore) 58, 4047-4051. 



149 

  
 

Nie, D., Qiao, Y., Zacharek, A., Krishnamoorthy, S., Jin, R., Tang, K., Guo, Y., Milanini, J., Pages, 

G., Honn, K. 2006. Mechanisms regulating tumor angiogenesis by 12-Lipoxygenase in 

prostate cancer cells. J Biol Chem 281, 18601-18609. 

Nie, D. H., Honn, K. V. 2002. Cyclooxygenase, lipoxygenase and tumor angiogenesis. Cellular 

and molecular life sciences : CMLS 59, 799-807. 

Niessen, C. M., Hulsman, E. H., Rots, E. S., Sanchez-Aparicio, P., Sonnenberg, A. 1997. Integrin 

alpha 6 beta 4 forms a complex with the cytoskeletal protein HD1 and induces its 

redistribution in transfected COS-7 cells. Molecular biology of the cell 8, 555-566. 

Niessen, C. M., Raaij-Helmer, M. v. d., Hulsman, E. H., Neut, R. v. d., Jonkman, M. F., 

Sonnenberg, A. 1996. Deficiency of the integrin beta 4 subunit in junctional epidermolysis 

bullosa with pyloric atresia: consequences for hemidesmosome formation and adhesion 

properties. Journal of Cell Science 109, 1695-1706. 

Nievers, M., Schaapveld, R., Oomen, L., Fontao, L., Geerts, D., Sonnenberg, A. 1998. Ligand-

independent role of the beta 4 integrin subunit in the formation of hemidesmosomes. J Cell 

Sci 111, 1659-1672. 

Nikolopoulos, S. N., Blaikie, P., Yoshioka, T., Guo, W., Giancotti, F. G. 2004. Integrin β4 

signaling promotes tumor angiogenesis. Cancer Cell 6, 471-483. 

Norrish, A. E., Skeaff, C. M., Arribas, G. L. B., Sharpe, S. J., Jackson, R. T. 1999. Prostate cancer 

risk and consumption of fish oils: A dietary biomarker-based case-control study. Br J 

Cancer 81, 1238-1242. 

O'Connor, K. L., Shaw, L. M., Mercurio, A. M. 1998. Release of cAMP Gating by the α6β4 

Integrin Stimulates Lamellae Formation and the Chemotactic Migration of Invasive 

Carcinoma Cells. The Journal of Cell Biology 143, 1749-1760. 



150 

  
 

Olivero, M., Rizzo, M., Madeddu, R., Casadio, C., Pennacchietti, S., Nicotra, M. R., Prat, M., 

Maggi, G., Arena, N., Natali, P. G., Comoglio, P. M., Di Renzo, M. F. 1996. 

Overexpression and activation of hepatocyte growth factor/scatter factor in human non-

small-cell lung carcinomas. British journal of cancer 74, 1862-1868. 

Onoda, J. M., Kantak, S. S., Piechocki, M. P., Awad, W., Chea, R., Liu, B., Honn, K. V. 1994. 

Inhibition of radiation-enhanced expression of integrin and metastatic potential in B16 

melanoma cells by a lipoxygenase inhibitor. Radiation research 140, 410-418. 

Ottino, P., Taheri, F., Bazan, H. E. 2003. Growth factor-induced proliferation in corneal epithelial 

cells is mediated by 12(S)-HETE. Experimental Eye Research 76, 613-622. 

Owen, K. A., Qiu, D., Alves, J., Schumacher, A. M., Kilpatrick, L. M., Li, J., Harris, J. L., Ellis, 

V. 2010. Pericellular activation of hepatocyte growth factor by the transmembrane serine 

proteases matriptase and hepsin, but not by the membrane-associated protease uPA. 

Biochemical journal 426, 219-228. 

Park, M., Dean, M., Kaul, K., Braun, M. J., Gonda, M. A., Vande Woude, G. 1987. Sequence of 

MET protooncogene cDNA has features characteristic of the tyrosine kinase family of 

growth-factor receptors. Proceedings of the National Academy of Sciences 84, 6379-6383. 

Pearce, M. L., Dayton, S. 1971. Incidence of cancer in men on a diet high in polyunsaturated fat. 

The Lancet (British edition) 1, 464-467. 

Pellegrini, G., De Luca, M., Orecchia, G., Balzac, F., Cremona, O., Savoia, P., Cancedda, R., 

Marchisio, P. C. 1992. Expression, topography, and function of integrin receptors are 

severely altered in keratinocytes from involved and uninvolved psoriatic skin. The Journal 

of Clinical Investigation 89, 1783-1795. 



151 

  
 

Pepper, M. S., Matsumoto, K., Nakamura, T., Orci, L., Montesano, R. 1992. Hepatocyte growth 

factor increases urokinase-type plasminogen activator (u-PA) and u-PA receptor 

expression in Madin-Darby canine kidney epithelial cells. Journal of Biological Chemistry 

267, 20493-20496. 

Phillis, J. W., Horrocks, L. A., Farooqui, A. A. 2006. Cyclooxygenases, lipoxygenases, and 

epoxygenases in CNS: Their role and involvement in neurological disorders. Brain 

Research Reviews 52, 201-243. 

Pidgeon, G., Lysaght, J., Krishnamoorthy, S., Reynolds, J., O’Byrne, K., Nie, D., Honn, K. 2007. 

Lipoxygenase metabolism: roles in tumor progression and survival. Cancer and Metastasis 

Reviews 26, 503-524. 

Pidgeon, G., Tang, K., Cai, Y. L., Piasentin, E., Honn, K. 2003. Overexpression of Platelet-type 

12-Lipoxygenase Promotes Tumor Cell Survival by Enhancing alpha v beta3 and alpha v 

beta  5 Integrin Expression. Cancer Research 63, 4258-4267. 

Piper, P. 1985. Leukotrienes: Potent Mediators of Airway Constriction. Int Arch Allergy Appl 

Immunol 76, 43-48. 

Ponzetto, C., Bardelli, A., Zhen, Z., Maina, F., dalla Zonca, P., Giordano, S., Graziani, A., 

Panayotou, G., Comoglio, P. M. 1994. A multifunctional docking site mediates signaling 

and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell 77, 

261-271. 

Potempa, S., Ridley, A. J. 1998. Activation of Both MAP Kinase and Phosphatidylinositide 3-

Kinase by Ras Is Required for Hepatocyte Growth Factor/Scatter Factor–induced Adherens 

Junction Disassembly. Molecular biology of the cell 9, 2185-2200. 



152 

  
 

Puri, N., Salgia, R. 2008. Synergism of EGFR and c-Met pathways, cross-talk and inhibition, in 

non-small cell lung cancer. Journal of Carcinogenesis 7 

Rabinovitz, I. 2004. Protein kinase C-alpha phosphorylation of specific serines in the connecting 

segment of the beta 4 integrin regulates the dynamics of type II hemidesmosomes. 

Molecular and cellular biology 24, 4351-4360. 

Rabinovitz, I., Mercurio, A. M. 1996. The integrin alpha 6 beta 4 and the biology of carcinoma. 

Biochemistry and cell biology 74, 811-821. 

Rabinovitz, I., Toker, A., Mercurio, A. M. 1999. Protein Kinase C–Dependent Mobilization of the 

α6β4 Integrin from Hemidesmosomes and Its Association with Actin-Rich Cell Protrusions 

Drive the Chemotactic Migration of Carcinoma Cells. The Journal of Cell Biology 146, 

1147-1160. 

Ramarli, D., Scupoli, M. T., Fiorini, E., Poffe, O., Brentegani, M., Villa, A., Cecchini, G., Tridente, 

G., Marchisio, P. C. 1998. Thymocyte Contact or Monoclonal Antibody-Mediated 

-6 (IL-6) Transcription Factors 

(NF-κB and NF-IL6) and IL-6 Production in Human Thymic Epithelial Cells. Blood 92, 

3745-3755. 

Raymond, K., Kreft, M., Song, J.-Y., Janssen, H., Sonnenberg, A. 2007. Dual Role of 

{alpha}6beta4 Integrin in Epidermal Tumor Growth: Tumor-suppressive Versus Tumor-

promoting Function. Mol. Biol. Cell 18, 4210-4221. 

Ridley, A. J., Comoglio, P. M., Hall, A. 1995. Regulation of scatter factor/hepatocyte growth factor 

responses by Ras, Rac, and Rho in MDCK cells. Molecular and cellular biology 15, 1110-

1122. 



153 

  
 

Romano, M., Chen, X. S., Takahashi, Y., Yamamoto, S., Funk, C. D., Serhan, C. N. 1993. Lipoxin 

synthase activity of human platelet 12-lipoxygenase. Biochemical journal 296 ( Pt 1), 127-

133. 

Rong, S., Segal, S., Anver, M., Resau, J., Vande Woude, G. F. 1994. Invasiveness and metastasis 

of NIH 3T3 cells induced by Met-hepatocyte growth factor/scatter factor autocrine 

stimulation. Proc Natl Acad Sci USA 91, 4731-4735. 

Rousselle, P., Lunstrum, G. P., Keene, D. R., Burgeson, R. E. 1991. Kalinin: an epithelium-specific 

basement membrane adhesion molecule that is a component of anchoring filaments. The 

Journal of Cell Biology 114, 567-576. 

Samuelsson, B. 1983. Leukotrienes: mediators of immediate hypersensitivity reactions and 

inflammation. Science (New York, N.Y.) 220, 568-575. 

Santoro, M. M., Gaudino, G., Marchisio, P. C. 2003. The MSP Receptor Regulates α6β4 and α3β1 

Integrins via 14-3-3 Proteins in Keratinocyte Migration. Developmental Cell 5, 257-271. 

Savoia, P., Trusolino, L., Pepino, E., Cremona, O., Marchisio, P. C. 1993. Expression and 

topography of integrins and basement membrane proteins in epidermal carcinomas: basal 

but not squamous cell carcinomas display loss of alpha 6 beta 4 and BM-600/nicein. 

Journal of investigative dermatology 101, 352-358. 

Schmidt, C., Bladt, F., Goedecke, S., Brinkmann, V., Zschiesche, W., Sharpe, M., Gherardi, E., 

Birchmeier, C. 1995. Scatter factor/hepatocyte growth factor is essential for liver 

development. Nature (London) 373, 699-702. 

Schmidt, L., Duh, F. M., Chen, F., Kishida, T., Glenn, G., Choyke, P., Scherer, S. W., Zhuang, Z., 

Lubensky, I., Dean, M., Allikmets, R., Chidambaram, A., Bergerheim, U. R., Feltis, J. T., 

Casadevall, C., Zamarron, A., Bernues, M., Richard, S., Lips, C. J., Walther, M. M., Tsui, 



154 

  
 

L. C., Geil, L., Orcutee, M. L., Stackhouse, T., Lipan, J., Slife, L., Brauch, H., Decker, J., 

Niehans, G., Hughson, M. D., Moch, H., Storkel, S., Lerman, M. I., Linehan, W. M., Zbar, 

B. 1997. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-

oncogene in papillary renal carcinomas. Nature genetics 16, 68-73. 

Schwartz, M. A. 1997. Integrins, oncogenes, and anchorage independence. The Journal of Cell 

Biology 139, 575-578. 

Sekulić, A., Hudson, C. C., Homme, J. L., Yin, P., Otterness, D. M., Karnitz, L. M., Abraham, R. 

T. 2000. A Direct Linkage between the Phosphoinositide 3-Kinase-AKT Signaling 

Pathway and the Mammalian Target of Rapamycin in Mitogen-stimulated and 

Transformed Cells. Cancer Research 60, 3504-3513. 

Serhan, C. N. 1994. Lipoxin biosynthesis and its impact in inflammatory and vascular events. 

Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism 1212, 1-25. 

Shattuck, D. L., Miller, J. K., Carraway, K. L., Sweeney, C. 2008. Met Receptor Contributes to 

Trastuzumab Resistance of Her2-Overexpressing Breast Cancer Cells. Cancer Research 

68, 1471-1477. 

Shaw, L. M. 2001. Identification of Insulin Receptor Substrate 1 (IRS-1) and IRS-2 as Signaling 

Intermediates in the α6β4 Integrin-Dependent Activation of Phosphoinositide 3-OH Kinase 

and Promotion of Invasion. Molecular and cellular biology 21, 5082-5093. 

Shaw, L. M., Rabinovitz, I., Wang, H. H. F., Toker, A., Mercurio, A. M. 1997. Activation of 

Phosphoinositide 3-OH Kinase by the [alpha]6[beta]4 Integrin Promotes Carcinoma 

Invasion. Cell 91, 949-960. 

Shimizu, T., Wolfe, L. S. 1990. Arachidonic acid cascade and signal transduction. Journal of 

neurochemistry 55, 1-15. 



155 

  
 

Shweiki, D., Itin, A., Sofffer, D., Keshet, E. 1992. Vascular endothelial growth factor induced by 

hypoxia may mediate hypoxia-initiated angiogenesis. Nature (London) 359, 843-845. 

Soman, N. R., Correa, P., Ruiz, B. A., Wogan, G. N. 1991. The TPR-MET oncogenic 

rearrangement is present and expressed in human gastric carcinoma and precursor lesions. 

Proceedings of the National Academy of Sciences 88, 4892-4896. 

Sonnenberg, A., Calafat, J., Janssen, H., Daams, H., van der Raaij-Helmer, L. M., Falcioni, R., 

Kennel, S. J., Aplin, J. D., Baker, J., Loizidou, M., Garrod, D. 1991. Integrin alpha 6/beta 

4 complex is located in hemidesmosomes, suggesting a major role in epidermal cell-

basement membrane adhesion. The Journal of Cell Biology 113, 907-917. 

Sonnenberg, A., Linders, C. J., Daams, J. H., Kennel, S. J. 1990. The alpha 6 beta 1 (VLA-6) and 

alpha 6 beta 4 protein complexes: tissue distribution and biochemical properties. Journal 

of Cell Science 96 ( Pt 2), 207-217. 

Spector, A. A., Gordon, J. A., Moore, S. A. 1988. Hydroxyeicosatetraenoic acids (HETEs). 

Progress in Lipid Research 27, 271-323. 

Spinardi, L., Einheber, S., Cullen, T., Milner, T. A., Giancotti, F. G. 1995. A recombinant tail-less 

integrin beta 4 subunit disrupts hemidesmosomes, but does not suppress alpha 6 beta 4-

mediated cell adhesion to laminins. The Journal of Cell Biology 129, 473-487. 

Stoker, M., Gherardi, E., Perryman, M., Gray, J. 1987. Scatter factor is a fibroblast-derived 

modulator of epithelial cell mobility. Nature 327, 239-242. 

Suzuki, Y., Kondo, Y., Himeno, S., Nemoto, K., Akimoto, M., Imura, N. 2000. Role of antioxidant 

systems in human androgen-independent prostate cancer cells. The Prostate 43, 144-149. 



156 

  
 

Szekeres, C. K., Tang, K., Trikha, M., Honn, K. V. 2000. Eicosanoid Activation of Extracellular 

Signal-regulated Kinase1/2 in Human Epidermoid Carcinoma Cells. Journal of Biological 

Chemistry 275, 38831-38841. 

Szekeres, C. K., Trikha, M., Honn, K. V. 2002. 12(S)-HETE, pleiotropic functions, multiple 

signaling pathways. Advances in experimental medicine and biology 507, 509-515. 

Tang, D., Diglio, C., Bazaz, R., Honn, K. 1995. Transcriptional activation of endothelial cell 

integrin alpha v by protein kinase C activator 12(S)-HETE. J Cell Sci 108, 2629-2644. 

Tang, D. G., Chen, Y. Q., Honn, K. V. 1996. Arachidonate lipoxygenases as essential regulators 

of cell survival and apoptosis. Proceedings of the National Academy of Sciences 93, 5241-

5246. 

Tang, D. G., Honn, K. V. 1994. 12-Lipoxygenase, 12(S)-HETE, and Cancer Metastasis. Annals of 

the New York Academy of Sciences 744, 199-215. 

Tang, D. G., Timar, J., Grossi, I. M., Renaud, C., Kimler, V. A., Diglio, C. A., Taylor, J. D., Honn, 

K. V. 1993. The Lipoxygenase Metabolite, 12(S)-HETE, Induces a Protein Kinase C-

Dependent Cytoskeletal Rearrangement and Retraction of Microvascular Endothelial 

Cells. Experimental Cell Research 207, 361-375. 

Tang, K., Finley, R. L., Nie, D., Honn, K. V. 2000. Identification of 12-Lipoxygenase Interaction 

with Cellular Proteins by Yeast Two-Hybrid Screening†. Biochemistry 39, 3185-3191. 

Tang, K., Nie, D., Cai, Y., Honn, K. V. 1999. The [beta]4 Integrin Subunit Rescues A431 Cells 

from Apoptosis through a PI3K/Akt Kinase Signaling Pathway. Biochemical and 

Biophysical Research Communications 264, 127-132. 

Thiery, J. P. 2002. Epithelial-mesenchymal transitions in tumour progression. Nature reviews. 

Cancer 2, 442-454. 



157 

  
 

Timár, J., Raso, E., Honn, K. V., Hagmann, W. 1999. 12-lipoxygenase expression in human 

melanoma cell lines. Advances in experimental medicine and biology 469, 617-622. 

Timár, J., Silletti, S., Bazaz, R., Raz, A., Honn, K. V. 1993. Regulation of Melanoma-Cell Motility 

by the Lipoxygenase Metabolite 12(S)-HETE. Int J cancer 55, 1003-1010. 

Trusolino, L., Bertotti, A., Comoglio, P. M. 2001. A Signaling Adapter Function for 

[alpha]6[beta]4 Integrin in the Control of HGF-Dependent Invasive Growth. Cell 107, 643-

654. 

Trusolino, L., Cavassa, S., ANGELINI, P., ANDÒ, M., BERTOTTI, A., COMOGLIO, P. M., 

BOCCACCIO, C. 2000. HGF/scatter factor selectively promotes cell invasion by 

increasing integrin avidity. The FASEB Journal 14, 1629-1640. 

Tucker, S. C., Honn, K. V. 2013. Emerging targets in lipid-based therapy. Biochemical 

pharmacology 85, 673-688. 

Uehara, Y., Minowa, O., Mori, C., Shiota, K., Kuno, J., Noda, T., Kitamura, N. 1995. Placental 

defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. 

Nature (London) 373, 702-705. 

Uematsu, J., Nishizawa, Y., Sonnenberg, A., Owaribe, K. 1994. Demonstration of type II 

hemidesmosomes in a mammary gland epithelial cell line, BMGE-H. Journal of 

biochemistry (Tokyo) 115, 469-476. 

Ulbricht, B., Hagmann, W., Ebert, W., Spiess, E. 1996. Differential secretion of cathepsins B and 

L from normal and tumor human lung cells stimulated by 12(S)-hydroxy-eicosatetraenoic 

acid. Experimental Cell Research 226, 255-263. 

Wan, X., Kim, S. Y., Guenther, L. M., Mendoza, A., Briggs, J., Yeung, C., Currier, D., Zhang, H., 

Mackall, C., Li, W. J., Tuan, R. S., Deyrup, A. T., Khanna, C., Helman, L. 2009. Beta4 



158 

  
 

integrin promotes osteosarcoma metastasis and interacts with ezrin. Oncogene 28, 3401-

3411. 

Wang, R., Kobayashi, R., Bishop, J. M. 1996. Cellular adherence elicits ligand-independent 

activation of the Met cell-surface receptor. Proceedings of the National Academy of 

Sciences 93, 8425-8430. 

Weidner, K. M., Di Cesare, S., Sachs, M., Brinkmann, V., Behrens, J., Birchmeier, W. 1996. 

Interaction between Gab1 and the c-Met receptor tyrosine kinase is responsible for 

epithelial morphogenesis. Nature (London) 384, 173-176. 

Wilhelmsen, K., Litjens, S. H., Kuikman, I., Margadant, C., van Rheenen, J., Sonnenberg, A. 2007. 

Serine phosphorylation of the integrin beta4 subunit is necessary for epidermal growth 

factor receptor induced hemidesmosome disruption. Molecular biology of the cell 18, 

3512-3522. 

Wojcik, E. J., Sharifpoor, S., Miller, N. A., Wright, T. G., Watering, R., Tremblay, E. A., Swan, 

K., Mueller, C. R., Elliot, B. E. 2006. A novel activating function of c-Src and Stat3 on 

HGF transcription in mammary carcinoma cells. Oncogene 25, 2773-2784. 

Wong, A. S., Pelech, S. L., Woo, M. M., Yim, G., Rosen, B., Ehlen, T., Leung, P. C., Auersperg, 

N. 2001a. Coexpression of hepatocyte growth factor-Met: an early step in ovarian 

carcinogenesis? Oncogene 20, 1318-1328. 

Wong, B. C. Y., Wang, W. P., Cho, C. H., Fan, X. M., Lin, M. C. M., Kung, H. F., Lam, S. K. 

2001b. 12-Lipoxygenase inhibition induced apoptosis in human gastric cancer cells. 

Carcinogenesis 22, 1349-1354. 

Wynder, E. L., Mabuchi, K., Whitmore, W. F. J. 1971. Epidemiology of cancer of the prostate. 

Cancer 28, 344-360. 



159 

  
 

Yamamoto, S. 1992. Mammalian lipoxygenases: molecular structures and functions. Biochimica 

et biophysica acta 1128, 117-131. 

Yang, B., Ren, X.-L., Fu, Y.-Q., Gao, J.-L., Li, D. 2014. Ratio of n-3/n-6 PUFAs and risk of breast 

cancer: a meta-analysis of 274135 adult females from 11 independent prospective studies. 

BMC Cancer 14, 105. 

Yang, X., Dutta, U., Shaw, L. M. 2010. SHP2 Mediates the Localized Activation of Fyn 

Downstream of the α6β4 Integrin To Promote Carcinoma Invasion. Molecular and cellular 

biology 30, 5306-5317. 

Yoshimoto, T. 1982. Arachidonate 12-lipoxygenase of porcine leukocyte with activity for 5-

hydroxyeicosatetraenoic acid. Biochimica et biophysica acta 713, 638-646. 

Yoshimoto, T., Arakawa, T., Hada, T., Yamamoto, S., Taskahashi, E. 1992. Structure and 

chromosomal localization of human arachidonate 12-lipoxygenase gene. The Journal of 

biological chemistry 267, 24805-24809. 

Yoshioka, T., Otero, J., Chen, Y., Kim, Y.-M., Koutcher, J. A., Satagopan, J., Reuter, V., Carver, 

B., de Stanchina, E., Enomoto, K., Greenberg, N. M., Scardino, P. T., Scher, H. I., Sawyers, 

C. L., Giancotti, F. G. 2013. β4 Integrin signaling induces expansion of prostate tumor 

progenitors. The Journal of Clinical Investigation 0, 0-0. 

Yu, P. T., Babicky, M., Jaquish, D., French, R., Marayuma, K., Mose, E., Niessen, S., Hoover, H., 

Shields, D., Cheresh, D., Cravatt, B. F., Lowy, A. M. 2012. The RON-receptor regulates 

pancreatic cancer cell migration through phosphorylation-dependent breakdown of the 

hemidesmosome. International journal of cancer 131, 1744-1754. 

Zahir, N., Lakins, J. N., Russell, A., Ming, W., Chatterjee, C., Rozenberg, G. I., Marinkovich, M. 

P., Weaver, V. M. 2003. Autocrine laminin-5 ligates α6β4 integrin and activates RAC and 



160 

  
 

NFκB to mediate anchorage-independent survival of mammary tumors. The Journal of Cell 

Biology 163, 1397-1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



161 

  
 

ABSTRACT 
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Cancer cell metastasis is the single most threatening occurrence of tumor progression and 

predicts patient prognosis as well as survival. Invasion can be regulated by the Met receptor 

tyrosine kinase (c-Met), integrin β4 (β4), and the lipid enzyme, 12-Lipoxygenase (12-

LOX).  Therefore we sought to determine if β4, c-MET and 12-LOX comprise a signaling axis. c-

Met is implicated in cancer cell dissemination through regulation of invasion in EMT where cell-

cell junctions are disturbed to allow motility. Furthermore, β4 promotes cellular adhesion to the 

extracellular matrix through hemidesmosomes.  However, the homeostatic signaling functions of 

β4’s cytoplasmic tail can be hijacked by growth factor receptors during tumor growth to promote 

tumor cell survival and metastasis. β4 interacts with 12-LOX, an enzyme that metabolizes 

arachidonic acid to yield 12(S)-HETE, a bioactive lipid that also promotes invasion, tumor growth, 

and resistance to apoptosis.  Our findings reveal that c-Met and β4 interact in a cell type and 

condition specific manner. HGF treatment led to β4 phosphorylation, disruption of the c-Met 

interaction, and concomitant 12-LOX recruitment. However, despite 12-LOX recruitment, LC-MS 

analyses showed that HGF stimulation did not lead to increased 12(S)-HETE production.  12-LOX 

knockdown with shRNA abolished HGF-induced β4 phosphorylation and downstream signaling, 
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leading to decreased HGF-induced invasion and cell scattering. Inhibition of β4 interaction with 

12-LOX using specifically designed peptides recapitulated the 12-LOX knockdown phenotype. 

Additionally, inhibition of 12-LOX led to decreased HGF-induced invasion. This is the first 

demonstration that 12-LOX may have a novel function in modulating c-MET and β4 signaling 

through a scaffolding function and outlines a clear rationale to target all three proteins in cancer 

therapeutics.  
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