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CHAPTER 1 

Introduction 

Muscle Metaboreflex: the Afferent Arm   

Skeletal muscle is extensively innervated with afferent sensory nerve fibers 

which communicate information to the central nervous system (CNS) regarding its 

relative state or condition.  Skeletal muscle afferents refer to signals emerging from 

encapsulated skeletal muscle structures such as muscle spindles and Golgi tendon 

organs (i.e., proprioceptors) which relay proprioceptive information (e.g., muscle 

position, tension and rate of length change) to the CNS by way of group I and II afferent 

fibers.  In addition, skeletal muscle afferents relay “chemical” and “mechanical” 

information to the CNS regarding the current state of its interstitial chemical milieu and 

physical stress associated with muscle work (20; 79).  These types of signals are 

collectively and aptly referred to as ergoceptive information emerging from 

encapsulated, free nerve endings within skeletal muscle (i.e., ergoceptors) and are 

carried by neurons classified as group III and IV afferent fibers (76).   

In a classic series of human experiments by Alam and Smirk (4; 5), they 

discovered that exercise during complete circulatory occlusion (i.e., ischemic exercise) 

evoked marked elevations in blood pressure and heart rate (HR) that were sustained 

upon cessation of the exercise so long as the blood flow to the exercising muscle 

remained arrested.  The absence of arterial inflow to and venous outflow from the 

muscle effectively eliminated the potential for endocrine communication between the 

muscle and the CNS.  As a result, they concluded that the observed reflex response 

must be neurogenic and that the stimulus initiating and sustaining the reflex was the 

accumulation of metabolites within the muscle.  Although the findings of their initial 
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experiments were purely serendipitous, their studies are regarded as the pioneering 

work demonstrating the presence of such a ‘muscle metabolite’ reflex.  Following up on 

this work, Asmussen and Nielsen (11) produced similar results in dynamic exercising 

humans, however in addition to suggesting muscle chemoreceptors they also implicated 

muscle mechanoreceptors as the potential source of the reflex pressor response.  

Subsequent animal experiments by Coote and Perez-Gonzalez (25) and McCloskey 

and Mitchell (102) offered insights into the afferent arm of this reflex as they 

demonstrated the capacity of group III and IV ergoceptive fibers to elicit a reflex pressor 

response (i.e., increase in arterial blood pressure), while in addition they showed that 

the group I and II proprioceptive afferents played no role in evoking such a reflex.  

Further animal studies discovered multiple stimulus modalities for group III and IV 

afferents.  In general, group III afferents were shown to be primarily responsive to the 

mechanical stresses generated during muscle contraction (e.g., increases in tissue 

pressure) (63; 77; 78; 125), while group IV afferents were found to be acutely sensitive 

to metabolites (e.g., hydrogen ion, lactate, potassium ion, diprotonated phosphate and 

ATP) which accumulate within underperfused active skeletal muscle (34; 61; 86; 95; 

128; 145; 146; 157).  In support of these findings, the anatomical location of ergoceptive 

afferents has been visualized via electron microscopy revealing, in general, that group 

III afferent nerve endings are intimately associated with the connective tissue elements 

of skeletal muscle, whereas group IV afferent nerve endings emanate from small blood 

vessels within the muscle (160).  Adding a layer of complexity, many studies have 

demonstrated that “mechanoreceptors” can be sensitized by muscle metabolites 

developed during ischemia and that “metaboreceptors” are sensitive to mechanical 

stimulation (77; 85; 86; 127; 129).  Nonetheless, as a result of these findings, group III 
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and IV afferents were classified as mechanoreceptors and metaboreceptors, 

respectively.  It therefore became evident that the metabolically, chemo-sensitive reflex 

pressor response suggested by Alam and Smirk and other investigators, now referred to 

as the muscle metaboreflex, was indeed initiated by group III and group IV afferents. 

Muscle Metaboreflex: the Efferent Arm 

Following up on the early work elucidating the afferent structure and function of 

the muscle metaboreflex, a litany of experiments has been performed in humans and in 

animals with the intent of investigating its efferent arm.  Early investigators not only 

observed reflex-induced pressor responses, reflex increases in other hemodynamic 

(e.g., HR and pulmonary (e.g., ventilation) parameters were additionally reported in their 

studies (5; 11; 24; 102).  In order to study the efferent mechanisms of the muscle 

metaboreflex, focus was shifted to measuring and analyzing the hemodynamic 

outcomes of muscle metaboreflex-induced increases in sympathetic outflow from the 

CNS.  Incidentally, the mechanisms of integration in the control center of this reflex (i.e., 

the brainstem) are not well known.  A very common approach developed to elicit and 

study the reflex is the induction of skeletal muscle ischemia (by way of vascular 

occlusion) prior to or during a bout of static or dynamic  exercise (3; 4; 11; 24; 26; 31; 

74; 116; 144; 163).  Data from these types of experiments not only supported the 

findings of earlier studies, but also expanded the list of muscle metaboreflex-induced 

efferent responses.  Along with increases in mean arterial pressure (MAP), HR and 

cardiac output (CO), the muscle metaboreflex has additionally been shown to increase 

stroke volume (SV) (144), right atrial pressure (RAP) (140), ventricular performance (27; 

34; 116; 138; 151; 152) and sympathetic nerve activity (SNA) (114; 158; 159).  Even 

though there are innumerable observations of reflex-induced increases in these 
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cardiovascular parameters during exercise, most data suggest that the muscle 

metaboreflex only presents its negative feed-back influence over cardiovascular control 

when skeletal muscle is faced with a mismatch between oxygen supply and demand 

(i.e., during ischemia).  As muscle metabolites normally accumulate as a result of a 

decrease in perfusion to the working muscle, the muscle metaboreflex has often been 

regarded as a flow-sensitive reflex (120).  In fact, Wyss et al. (163) demonstrated the 

existence of a threshold for such a “flow error signal” while studying canines 

dynamically exercising at varying work intensities.  In general, as the intensity of the 

workload increased hindlimb perfusion progressively fell and the margin for error in 

muscle blood flow approached zero.  In contrast, data from Sheriff et al. (143) showed 

that it is not a reduction in flow per se that triggers the accumulation of muscle 

metabolites, rather it is a reduction in oxygen delivery to the muscle.  In any event, there 

is strong evidence that the muscle metaboreflex is tonically active during higher 

intensity (moderate to severe) exercise in dynamically exercising canines (14; 120; 

163).  Furthermore, in disease states where perfusion to skeletal muscle is impaired, 

such as in heart failure or peripheral arterial stenosis, the muscle metaboreflex may 

indeed be active even during lower intensity (mild to moderate) dynamic exercise (59; 

94).  It is generally believed that cardiovascular responses to mild exercise are 

controlled by feed-forward CNS efferent commands (i.e., central command) and 

principally modulated by the negative feed-back influence of the arterial baroreflex. 

However, there are data implicating muscle metaboreflex influence over cardiovascular 

function during mild exercise as well (2; 6; 135).  Very recently, Amann et al. (6) 

provided evidence in humans that increases in MAP, CO, HR and ventilatory rate during 

mild exercise might be, in part, controlled by a tonically active muscle metaboreflex.   
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Muscle Metaboreflex Activation During and Following the Cessation of Exercise  

In an attempt to separate the previously reported efferent responses of the 

muscle metaboreflex from the influence of central command and the baroreflex, 

investigators sought to “isolate” the reflex during the recovery from exercise.  This 

technique, first employed by Alam and Smirk, was designed to induce ischemia (by way 

of vascular occlusion) in the muscle immediately upon or before the cessation of the 

exercise and is commonly referred to as post-exercise muscle ischemia (PEMI) (16; 19; 

31; 45; 102; 132).  As expected, the cardiovascular parameters previously reported to 

be augmented by muscle metaboreflex activation during ischemic exercise are 

sustained during the recovery from exercise so long as the imposed circulatory 

occlusion is sustained, or PEMI (4; 19; 30; 45; 115; 133; 144).  Curiously though, there 

is one notable exception.  The vast majority of studies sustaining muscle metaboreflex 

activation during PEMI report a decline in HR during this maneuver while the pressor 

response is sustained (5; 16; 31; 45; 133; 144; 159).  With HR precipitously declining 

towards resting levels during PEMI, with a time-course similar to normal recovery from 

exercise, muscle metaboreflex control over the chronotropic function of the heart was 

drawn into question (46; 133; 134; 159).  Moreover, as CO is directly proportional to HR, 

questions immediately arose regarding the mechanism(s) sustaining the pressor 

response observed during PEMI in the absence of a sustained elevation in HR.  In the 

absence of a CO component, the only other mechanism available to sustain an 

elevation in MAP during PEMI would be peripheral vasoconstriction.  Indeed, previous 

studies both support (19; 30-32; 123; 132; 144) and refute (16; 32; 123) any role for CO 

in mediating the pressor response during PEMI.  Clearly, the role of CO vs. peripheral 

vasoconstriction in mediating the pressor response during PEMI is debatable, and it 



6 

 

remains a controversial issue yet to be resolved.  

In contrast to PEMI, it is well documented that during submaximal ischemic 

exercise, the pressor response occurs primarily via increased CO with little, if any, 

peripheral vasoconstriction (38; 59; 83; 116; 131; 140; 163).  Interestingly, many studies 

have demonstrated a “switch” from a flow-mediated rise in MAP during exercise to a 

vasoconstriction-mediated pressor response, when the reflex increase in CO is 

attenuated.  For example, Sheriff et al. (140) and Ichinose et al. (68) demonstrated 

substantial decreases in peripheral vascular conductance (i.e., increases in peripheral 

vasoconstriction) when they abolished the metaboreflex-induced increase in CO during 

mild, dynamic exercise via ventricular pacing with β1-adrenergic blockade or mechanical 

occlusion of the vena cavae, respectively.  In addition, Augustyniak et al. (14) 

demonstrated a shift from CO to peripheral vasoconstriction when workload approached 

maximal levels and further increases in CO were limited.  Moreover, studies from 

O’Leary and colleagues (59) and others (29) have demonstrated this same shift from 

CO to peripheral vasoconstriction in heart failure, a condition in which CO is attenuated 

as a result of impaired inotropic and/or chronotropic function.  Thus, it appears that 

whether or not increases in CO or peripheral vasoconstriction is utilized as a means to 

raise MAP with metaboreflex activation during dynamic exercise is dependent on the 

ability to increase CO.   

Very recently, Sala-Mercado et al. (136) reported attenuated metaboreflex-

induced chronotropic, inotropic and lusitropic responses in hypertension (HTN) during 

submaximal dynamic exercise.  Inasmuch as increases in CO with metaboreflex 

activation were markedly reduced, the rise in MAP was attenuated as well.  The pressor 

response likely resulted from a combination of the small increase in CO and enhanced 
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peripheral vasoconstriction.  Other studies investigating muscle metaboreflex function in 

HTN are limited, and the overall findings are equivocal: exaggerated (35; 52; 89; 106; 

107; 139; 148) vs. attenuated (126) metaboreflex responses.  Moreover, the 

mechanisms sustaining the muscle metaboreflex-mediated pressor response during 

PEMI in HTN are virtually unknown.   

Muscle Metaboreflex Activation and Ventricular Performance 

It is well known that CO is impaired in heart failure and that exercise in this 

condition results in muscle metaboreflex-mediated pressor responses that are 

principally generated by increases in peripheral vasoconstriction, not CO.  Hammond et 

al. (59) concluded that the observed peripheral vasoconstriction in heart failure was 

mediated by exaggerated SNA (as indexed by elevated plasma norepinephrine (NE) 

levels) and elevations in other vasoactive hormones such as arginine vasopressin 

(AVP) and renin.  Though one of the hallmarks of heart failure is heightened 

sympathoactivation at rest, this study additionally reported significant increases in SNA 

(and vasoactive hormones) with muscle metaboreflex activation during exercise.  The 

peripheral vasculature is not the sole efferent target of this reflex-induced elevation in 

SNA as there is marked sympathoactivation of the heart as well leading to increases in 

its chronotropic and inotropic functions as previously discussed.  Inasmuch as vascular 

smooth muscle cells of coronary blood vessels express alpha adrenergic receptors, 

they too are potential efferent targets of this elevated sympathetic outflow.  An increase 

in SNA to the heart can activate vascular smooth muscle α1-adrenergic receptors 

resulting in vasoconstriction of the coronary arteries (27; 57; 108).  On the other hand, 

an increase in SNA to the heart will also increase the work done by the heart which can 

in turn lead to the generation of local metabolites that induce a coronary vasodilation.  
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Another potential mechanism of coronary vasodilation is the feed-forward sympathetic 

activation of coronary β2-adrenergic receptors (49).  Overall, coronary vasomotor tone 

appears to be principally modulated by local metabolic vasodilation (i.e., active 

hyperemia) and sympathetically-mediated α1-adrenergic vasoconstriction (37; 40; 156).  

The balance of these antagonistic mechanisms will ultimately determine the degree of 

perfusion of the heart, or coronary blood flow (CBF).  At rest, the heart is an oxygen 

sink, as it extracts upwards of 80% of the oxygen in arterial blood (37; 40).  An increase 

in workload on the heart (e.g., the onset of exercise) increases myocardial oxygen 

demand, however this poses a significant challenge to the heart as it is incapable of 

extracting a significantly greater fraction of oxygen from the very blood it strips 80% 

from at rest.  Therefore, a coronary vasodilatory reserve is of paramount physiological 

importance to the heart, as an increase in CBF serves as the primary mechanism to 

increase the supply of oxygen available to the heart.  An increase in perfusion pressure 

to the heart will lead to an increase in oxygen delivery but will also initiate a myogenic 

autoregulatory vasoconstriction.  However, this negative feed-back mechanism is 

counteracted by a metabolic coronary vasodilation when the workload of the heart 

significantly increases (e.g., during moderate or severe exercise) permitting marked 

increases in CBF.  

There are reports, however, of an α1-adrenergic constrictor tone which reduces 

this coronary vasodilatory reserve during exercise.  Gwirtz et al. (57) demonstrated that 

as workload increases, there is progressively greater α1-adrenergic tone which restrains 

the metabolic coronary vasodilation.  Ansorge et al. (10) examined the potential 

contribution of the muscle metaboreflex to this α-adrenergic-mediated coronary 

vasoconstriction phenomenon by measuring CBF and coronary vascular conductance 
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(CVC) during dynamic exercise in canines.  During severe exercise, they reported an 

attenuated reflex increase in CBF along with a significant reduction in CVC due to 

accentuated coronary vasoconstriction with muscle metaboreflex activation.  They 

concluded that the muscle metaboreflex-induced rise in SNA to the heart functionally 

vasoconstricts the coronary vasculature, thereby attenuating the rise in CBF.  Thus, 

during strenuous exercise any coronary metabolic vasodilation induced by the increase 

in myocardial performance is counteracted by an increase in sympathetically-mediated 

coronary vasoconstriction.  These findings, along with the data demonstrating 

heightened SNA in canines with heart failure at rest and during exercise with muscle 

metaboreflex activation, suggested a possible mechanism for the impaired CO 

responses observed in heart failure.  Indeed, Ansorge et al. (9) demonstrated a 

significant reduction in CVC leading to an attenuated rise in CBF with muscle 

metaboreflex activation during mild and moderate exercise in animals with heart failure.  

They suggested that the marked coronary vasoconstriction observed in heart failure 

with muscle metaboreflex activation was as a potential mechanism responsible for the 

reduced ability to raise CO in this condition.  O’Leary et al. (118) reported another 

potential mechanism for this impaired CO response with muscle metaboreflex activation 

in heart failure during exercise when they demonstrated a concomitant reduction in SV.  

A reduced SV with muscle metaboreflex activation in heart failure suggested impaired 

ventricular function and/or preload and, in fact, subsequent studies from O’Leary and 

colleagues (137) reported impaired ventricular contractility with muscle metaboreflex 

activation in heart failure during exercise.  Furthermore, Gwirtz et al. (57) and O’Leary et 

al. (119) additionally reported an increase cardiac performance and CO, respectively, as 

a result of an abolition of coronary vasoconstriction following α-adrenergic blockade 
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during exercise.  Coutsos et al. recently demonstrated that during mild, dynamic 

exercise sympathetically-mediated restraint of coronary vasodilation (the extent 

determined by α-adrenergic blockade) during muscle metaboreflex activation impairs 

increases in left ventricular contractility in normal (27) and heart failure (28) animals.  

Collectively, these data suggest that a sympathetically-mediated restraint of metabolic 

coronary vasodilation during periods of increased myocardial metabolic demand can 

limit the rise in CBF and therefore further limit increases in ventricular performance and 

the rise in CO as seen in heart failure.  

As with heart failure, HTN is a condition in which individuals present with 

exaggerated levels of SNA (8; 51; 54; 72; 97; 101; 105; 155).  Moreover, resting 

coronary vasoconstriction and restrained coronary metabolic vasodilation during 

submaximal dynamic exercise (presumably due to heightened SNA) has been 

demonstrated in canines with renovascular HTN (55).  Sala-Mercado et al. (136) 

reported attenuated metaboreflex-induced increases in ventricular function and CO in 

HTN (Goldblatt 2K1C (47; 48)) during submaximal dynamic exercise.  The extent to 

which coronary vasoconstriction contributes to impaired ventricular function observed 

during muscle metaboreflex activation in HTN is unknown.   

Summary/Dissertation Aims  

Skeletal muscle ischemia during or immediately following exercise leads to the 

accumulation of metabolites (e.g., lactate and proton) which activate chemoreceptive 

afferents within the muscle leading to a reflex increase in sympathetic outflow 

generating substantial increases in MAP, CO and HR - termed the muscle 

metaboreflex.  The muscle metaboreflex is generally regarded as a flow-sensitive reflex 

that is elicited when skeletal muscle is faced with a mismatch between oxygen supply 
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and demand, and thereby increases cardiac function in an attempt to increase perfusion 

to the ischemic muscle.   

Two different approaches have been employed to study this reflex. Blood flow to 

the exercising muscle can be reduced prior to or during a bout of static or dynamic 

exercise thereby activating the reflex during ischemic exercise.  In contrast, the reflex 

can be elicited by inducing ischemia in the muscle immediately before or upon 

cessation of the exercise – PEMI.  When the reflex is activated during sustained 

submaximal dynamic exercise, the pressor response occurs primarily via increased CO.  

In contrast, during PEMI, whereas MAP remains elevated for as long as the ischemia is 

maintained, HR precipitously declines towards resting levels drawing into question the 

role of CO in mediating the pressor response during this period.  Indeed, the role of CO 

in mediating the pressor response during PEMI remains debatable.   

Specific Aim (I): To determine the mechanism(s) mediating the muscle-

metaboreflex-induced pressor response observed during PEMI in normal 

subjects.   

Many studies have demonstrated a “switch” from a flow-mediated rise in MAP 

during exercise to a vasoconstriction-mediated pressor response when the reflex 

increase in CO is attenuated (e.g., in heart failure).  It appears that whether or not 

increases in CO or peripheral vasoconstriction is utilized as a means to raise MAP with 

metaboreflex activation during dynamic exercise or sustain it during PEMI is dependent 

on the ability to increase CO.  In HTN, metaboreflex-mediated increases in CO are 

markedly attenuated during mild exercise.  

 

 



12 

 

Specific Aim (II): To determine the mechanism(s) mediating the muscle-

metaboreflex-induced pressor response observed during PEMI in hypertensive 

subjects.   

In heart failure, a sympathetically-mediated restraint of metabolic coronary 

vasodilation with metaboreflex activation during submaximal dynamic exercise limits the 

rise in CBF and therefore further limits increases in ventricular performance and the rise 

in CO.  In HTN, metaboreflex-mediated increases in ventricular function and CO are 

markedly attenuated during mild exercise.  As SNA is exaggerated in both heart failure 

and HTN, it is plausible that the mechanisms mediating the attenuation of CO in HTN 

with muscle metaboreflex activation are similar to those previously described in heart 

failure.   

Specific Aim (III): To determine if muscle metaboreflex activation during 

submaximal dynamic exercise in hypertensive animals induces a sympathetic 

restraint of metabolic coronary vasodilation that limits the rise in CBF and 

whether this restraint of CBF further limits increases in ventricular performance.   
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CHAPTER 2 

Role of Cardiac Output vs. Peripheral Vasoconstriction in Mediating Muscle 

Metaboreflex Pressor Responses:  Dynamic Exercise vs. Post-Exercise Muscle 

Ischemia 

Abstract 

Muscle metaboreflex activation (MMA) during submaximal dynamic exercise in 

normal individuals increases mean arterial pressure (MAP) via increases in cardiac 

output (CO) with little peripheral vasoconstriction.  The rise in CO occurs primarily via 

increases in heart rate (HR) with maintained or slightly increased stroke volume.  When 

the reflex is sustained during recovery (post-exercise muscle ischemia - PEMI), HR 

declines yet MAP remains elevated.  The role of CO in mediating the pressor response 

during PEMI is controversial.  In seven chronically instrumented canines, steady-state 

values with MMA during mild exercise (3.2 km/h) were observed by reducing hindlimb 

blood flow by ~60% for 3-5 minutes. MMA during exercise was followed by 60 s of 

PEMI.  Control experiments consisted of normal exercise and recovery.  MMA during 

exercise increased MAP, HR, and CO by 55.3 ± 4.9 mmHg, 42.5 ± 6.9 beats/min and 

2.5 ± 0.4 l/min, respectively.  During sustained MMA via PEMI, MAP remained elevated 

and CO remained well above the normal recovery levels.  Neither MMA during dynamic 

exercise nor during PEMI significantly affected peripheral vascular conductance.  We 

conclude that the sustained increase in MAP during PEMI is driven by a sustained 

increase in CO not peripheral vasoconstriction. 

Introduction 

Skeletal muscle ischemia during or immediately after exercise leads to the 

accumulation of metabolic by-products that activate group III and IV chemosensitive 
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afferents within the muscle (21; 34; 79; 86; 95; 128; 143; 145; 146; 157).  Activation of 

these skeletal muscle afferents causes a reflex increase in sympathetic outflow that 

generates substantial increases in arterial pressure termed the muscle metaboreflex (4; 

11; 24; 46; 102; 114-116; 121; 132; 133; 163).  Two different approaches have been 

employed to study this reflex.  Blood flow to the exercising muscle can be reduced 

before or during a bout of static or dynamic exercise thereby activating the reflex during 

ischemic exercise (3; 4; 11; 24; 26; 31; 116; 144; 163).  In contrast, the reflex can be 

elicited by inducing ischemia in the muscle immediately before or upon cessation of the 

exercise [a technique termed post-exercise muscle ischemia (PEMI)] (16; 19; 31; 45; 

46; 102; 132; 133; 157; 161).   

When the reflex is activated during sustained submaximal dynamic exercise in 

normal subjects, the pressor response occurs primarily via increased cardiac output 

(CO), which is driven by increased heart rate (HR) coupled with sustained or slightly 

increased stroke volume (SV) (31; 68; 138; 144; 163).  SV is maintained despite this 

tachycardia due to both enhanced ventricular contractility (27; 30; 116; 138) and 

maintained or increased ventricular filling pressure via substantial central blood volume 

mobilization (140).  In contrast, during PEMI, whereas mean arterial pressure (MAP) 

remains elevated for as long as the ischemia is maintained, HR precipitously declines 

toward resting levels with a time course similar to normal recovery, which led some to 

speculate that the muscle metaboreflex has little control over the heart (4; 45; 98; 133; 

158; 159; 161).  With HR on the decline during the recovery from exercise with or 

without PEMI, the role of CO in mediating the pressor response during PEMI remains 

controversial.  Indeed previous studies both support (19; 30-32; 123; 132; 144) and 

refute (16; 32; 123) any role for CO in mediating the pressor response during PEMI.  In 
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the present study, we elicited the muscle metaboreflex during dynamic exercise and 

sustained this activation during PEMI to compare the mechanisms underlying the 

muscle metaboreflex-mediated pressor responses in these two distinct settings. 

Methods 

Experimental subjects.  Seven adult mongrel canines were selected for the 

study.  All animals were healthy, ~20-25 kg body weight, of either sex (4 females; 3 

males), well adapted to the laboratory environment and willing to run on a motor-driven 

treadmill.  During experimentation, all animals exercised voluntarily and no negative 

reinforcement techniques were utilized.  The protocols developed and employed in the 

present study were reviewed and approved by the Institutional Animal Care and Use 

Committee of Wayne State University and complied with the National Institutes of 

Health Guide to the Care and Use of Laboratory Animals.   

Surgical procedures.  Each animal was completely instrumented with chronic, 

indwelling cardiovascular devices following two sterile surgical procedures: left 

thoracotomy and left flank retroperitoneal surgery in that order.  The animals recovered 

a minimum of 10 days before the second surgery and a minimum of 7 days before the 

first experiment.  During preoperative care, the animals were initially sedated with 

acepromazine (0.4-0.5 mg/kg IM).  After adequate sedation, the animals were 

anesthetized with a combined treatment of ketamine and diazepam (5.0 and 0.22 mg/kg 

IV, respectively).  Anesthesia was maintained with isoflurane gas (1-3%) after 

endotracheal intubation.  In addition, the animals received preoperative administration 

of cefazolin (antibiotic; 30 mg/kg IV), carprofen (analgesic; 4.0 mg/kg IV), buprenorphine 

(analgesic; 0.01 mg/kg IM) and fentanyl [analgesic; 125-175 µg/h, (72h) TDD].  Before 

the left thoracotomy, animals received selective intercostal nerve blockade with 
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bupivacaine HCl (2.0 mg/kg SQ).  After each surgical procedure, animals received 

cefazolin (30 mg/kg IV) and prophylactic cephalexin [antibiotic; 30 mg/kg (BID) PO] 

therapy for the term of the experimental protocol.  During the 12-hour post-operative 

period, animals were closely monitored and received buprenorphine and acepromazine 

(0.05 and 0.5 mg/kg IV, respectively) as needed.  For the following 10 days, animals 

received carprofen [4 mg/kg (OPD) PO].   

In the first surgical procedure, the thoracic cavity was opened via a left 

thoracotomy (4th intercostal space) approach.  The pericardium was cut and reflected to 

expose the heart.  An ultrasonic perivascular flow probe (20PAU, Transonic Systems) 

was positioned around the ascending aorta to measure CO.  Approximately 10 cm 

caudal to the thoracotomy incision, an implantable telemetry blood pressure transmitter 

(TA11 PA-D70, Data Sciences International) was tethered subcutaneously.  The 

catheter of the transmitter was tunneled into the thoracic cavity through the 7th 

intercostal space, and the tip was inserted and secured inside the left ventricle for 

measuring left ventricular pressure (LVP).  For studies unrelated to the present 

investigation a blood flow transducer was also placed on the left circumflex artery.  The 

pericardium was loosely re-approximated, the cables were tunneled subcutaneously 

and exteriorized between the scapulae and the chest was closed in layers.   

In the second surgical procedure, an incision was made in the left flank cranial to 

the iliac crest.  The abdominal aorta was exposed and an ultrasonic perivascular flow 

probe (10PAA, Transonic Systems) was positioned around the terminal aorta for 

measuring hindlimb blood flow (HLBF).  All arterial side branches between the common 

iliacs and the flow probe were ligated and severed.  In addition, two perivascular 

hydraulic occluders (8-10 mm, DocXS Biomedical Products) were positioned around the 
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terminal aorta (distal to the flow probe) to provide the means to incrementally reduce 

HLBF.  A 19-gauge polyvinyl catheter (S54-HL, Tygon, Norton) was advanced through a 

ligated lumbar artery and secured into the terminal aorta cranial to the probe and 

occluders to measure arterial pressure.  For studies unrelated to the current 

investigation a blood flow transducer and vascular occluder were placed on the left 

renal artery.  The cables and vascular occluder tubing were tunneled subcutaneously 

and exteriorized between the scapulae. 

Data acquisition.  After complete postoperative recovery, each animal was 

brought into the laboratory and allowed to roam freely and acclimate for ~15-20 min.  

The animal was then directed onto the treadmill where the instrumentation was 

connected to the data acquisition system (TS420, Transonic Systems Blood Flow 

Meter, Gould; amplifiers, Data Science International, Telemetry System, LabScribe, 

iWorx). 

Experimental procedures.  All animals performed both control and experimental 

procedures on separate days, therefore, each animal served as its own control.  The 

experiments began with the animal standing unrestrained on the treadmill until all 

hemodynamic data were observed to be stable (typically 5-10 min).  The treadmill was 

turned on and the speed was gradually increased to 3.2 km/h at 0% grade [a mild 

workload for a canine (60)].  Steady state was generally reached within 3-5 min.  In the 

control experiment, after all variables had reached steady state during exercise, the 

treadmill was abruptly stopped and post-exercise (without ischemia) hemodynamic data 

were collected for 60 s while the animal was standing still.  In a separate experiment, 

the muscle metaboreflex was engaged via partial reductions in HLBF during mild 

exercise.  Once the reflex was strongly engaged, steady-state data were collected for 
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60 s.  The treadmill was then abruptly stopped and the occlusion was sustained for an 

additional 60 s (PEMI). 

Data analysis.  CO, HLBF, LVP, HR and MAP data were continuously recorded 

during each experiment.  Other hemodynamic parameters were calculated off-line [e.g., 

SV, dP/dtmax, dP/dtmin and non-ischemic vascular conductance (NIVC)].  NIVC was 

calculated as (CO - HLBF)/MAP and reflects vascular conductance of all vascular beds 

except the hindlimbs.  Because of technical difficulties, we were only able to obtain 

LVPs from six animals.  One-minute averages of steady-state data were calculated at 

rest, during exercise and during metaboreflex activation.  5 s averages were computed 

for both 60 s post-exercise conditions: post-exercise (without ischemia) and PEMI.  

These mean values were then averaged across all animals to obtain the mean values 

for the entire population of the study.  Finally, the last 10 s of recovery were averaged. 

Statistical analysis.  Averaged responses for each animal were analyzed via two-

way repeated measures ANOVA to compare hemodynamic data for time and/or 

condition effects.  In the event of a significant time-condition interaction, a C-matrix test 

for simple effects was performed.  Data are reported as means ± SE, and statistical 

significance was ascribed as P < 0.05. 

Results  

Figure 2.1 shows the responses in MAP, CO, HR, SV and HLBF from a control 

and experimental protocol in one animal.  In both protocols, with the transition from rest 

to exercise, there was a minimal increase in MAP and modest increases in CO and HR 

concomitant with a substantial rise in HLBF.  During the normal recovery from exercise, 

MAP remained unchanged while CO and HR gradually fell toward resting levels.  In the 

experimental protocol, the muscle metaboreflex was elicited immediately following 
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steady-state exercise and sustained during the post-exercise recovery period (PEMI).  

Muscle metaboreflex activation during the experimental protocol led to marked 

increases in MAP, CO and HR and little change in SV.  During PEMI, the rise in MAP 

was sustained.  Although CO and HR initially fell during the onset of PEMI, both 

subsequently plateaued well above their normal recovery levels.   
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Figure 2.2 shows the average values 

of MAP, HR, CO and NIVC during control 

and experimental procedures.  The 60 s of 

post-exercise recovery are plotted as 5 s 

averages.  The changes in MAP, HR, CO 

and NIVC from rest to exercise were not 

significantly different between the control and 

experimental protocols.  With muscle 

metaboreflex activation during exercise, 

MAP, HR and CO increased substantially.   

 

 

 

 

 

 

 

During PEMI, the ~60 mmHg rise in MAP, which was observed with muscle 

metaboreflex activation, was sustained during the entire 60 s, as every data point during 

this maneuver was significantly different from control.  NIVC fell during the PEMI period 

Figure 2.2.  Averaged time-course of 
MAP, HR, CO and non-ischemic vascular 
conductance (NIVC) during control (open 
circles) and experimental procedures (filled 
circles) in 7 animals.  Data at rest are the 
average values from both settings (half-
filled circles). * - p<0.05. 
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with a pattern not significantly different from during the normal recovery from exercise.  

HR and CO decreased abruptly during the first 15 s of PEMI; however, both of these 

variables subsequently plateaued significantly above normal recovery levels.   

Figure 2.3 shows the mean hemodynamic responses during exercise and the 

final 10 s of recovery with and without muscle metaboreflex activation.  During the last 

10 s of ischemic exercise, there were significant increases in MAP, CO, HR, dP/dtmax 

and dP/dtmin compared with the data during exercise without metaboreflex activation.   

 

 

Figure 2.3.  Mean hemodynamic responses during exercise and the final 10 
seconds of recovery with (filled bars) and without (open bars) muscle metaboreflex 
activation.  * - p<0.05 between normal exercise and ischemic exercise, † - p<0.05 
between normal recovery from exercise (open bars) and post-exercise muscle 
ischemia (PEMI) (filled bars). 
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During the last 10 s of the recovery from ischemic exercise, MAP, CO, HR, 

dP/dtmax and dP/dtmin were all significantly elevated compared with the values during the 

normal recovery from exercise, whereas there were no significant changes in NIVC or 

SV. 

Discussion 

Our major finding is that the mechanisms mediating muscle metaboreflex-

induced increases in arterial pressure are similar both when the reflex is activated 

during dynamic exercise and when the reflex is sustained during the recovery from 

exercise.  In both settings, the pressor response is primarily due to a substantial 

elevation in CO with little, if any, peripheral vasoconstriction.  Moreover, the elevation in 

CO is driven via an increased HR with a sustained SV.  Inasmuch as tachycardia itself 

can lead to decreases in SV (87; 162), increases in ventricular contractility likely 

contribute to the sustained SV.  The elevated dP/dtmax supports this conclusion.  Faster 

left ventricular relaxation (dP/dtmin) may also aid in the maintenance of SV by increasing 

filling time.  Therefore, our data demonstrate marked muscle metaboreflex-induced 

chronotropic, inotropic and lusitropic responses both when the reflex is activated during 

dynamic exercise and when the reflex is sustained during recovery from exercise. 

Muscle metaboreflex activation during exercise. CO versus vasoconstriction.  

Muscle metaboreflex activation during exercise evokes large increases in MAP, HR and 

CO (4; 5; 39; 104; 115; 116; 163).  However, the relative roles of CO versus peripheral 

vasoconstriction in this pressor response have been unclear.  We observed a 45% 

increase in CO with muscle metaboreflex activation during exercise with no significant 

peripheral vasoconstriction.  We determined the extent of peripheral vasoconstriction by 

calculating the conductance of all vascular beds with the exception of the hindlimbs 
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(NIVC) (13). Changes in hindlimb conductance must be excluded due to the mechanical 

effects of the occlusion.   

Previous studies have demonstrated a “switch” in the mechanisms of the muscle 

metaboreflex from a flow-mediated rise in MAP to a vasoconstriction-mediated pressor 

response when the reflex increase in CO is attenuated.  For example, Sheriff et al. (140) 

and Ichinose et al. (68) demonstrated substantial peripheral vasoconstriction when the 

metaboreflex-induced increase in CO was either pharmacologically or mechanically 

prevented.  In addition, Augustyniak et al. (14) demonstrated a shift from CO to 

peripheral vasoconstriction when workload approached maximal levels and further 

increases in CO were limited.  Similar results have been observed in subjects with 

congestive heart failure, a setting where substantial increases in CO are limited (12; 29; 

59; 121).  Thus whether or not increased CO or increased vasoconstriction is utilized as 

a means to raise MAP with metaboreflex activation during dynamic exercise appears 

dependent on the ability to increase CO. 

Muscle metaboreflex activation during PEMI. CO versus vasoconstriction.  

Previous studies have come to markedly different conclusions regarding the relative 

roles of CO versus peripheral vasoconstriction in mediating the pressor response during 

PEMI [(19; 30-32; 123; 132; 144) versus (16; 32; 123)].  One potential explanation is 

that a CO response is often seen during imposed PEMI following more intense exercise, 

whereas PEMI following relatively lower exercise intensities tends to demonstrate little 

change in CO and the pressor response occurs via peripheral vasoconstriction.  We 

observed a maintained elevation in CO (~50% above the normal recovery level) during 

PEMI with little or no change in NIVC.  The time course of the recovery of NIVC during 

PEMI and the normal recovery from exercise are virtually indistinguishable and not 
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significantly different.  It should be noted that NIVC contains not only conductance to 

inactive areas, but a substantial amount of NIVC is skeletal muscle outside of the 

hindlimbs (58), which also vasodilates in response to the exercise.  Thus with exercise 

NIVC increases and during recovery NIVC falls.  To what extent this fall in NIVC during 

recovery with or without PEMI is neurogenic versus passive vasoconstriction due to 

reduced metabolic vasodilation in skeletal muscle is not known.  Previously, Sheriff et 

al. (141) has shown that after ganglionic blockade, skeletal muscle vasodilation during 

exercise markedly exceeds normal levels.  Regardless of whether or not tonic 

sympathetic activity controls the speed of recovery of NIVC, it is clear that the pattern of 

change in NIVC was not different between the normal recovery and during PEMI. 

Role of HR and SV in mediating metaboreflex-induced increases in CO during 

exercise versus PEMI.  Previous studies in dogs and humans have concluded that HR 

and CO increase markedly when the muscle metaboreflex is activated during exercise 

(12-14; 27; 29-31; 38; 59; 68; 116; 163); however, during PEMI the effects on HR are 

more variable.  In general, PEMI elicited from the arm following moderate exercise 

evokes little sustained tachycardia and any CO response occurs via increased SV (5; 

45; 123).  In contrast, if PEMI follows leg exercise, HR remains above normal recovery 

values, and therefore the relative tachycardia contributes to an elevated CO (5; 45; 

123).  The observations in humans following leg exercise are similar to those we 

observed in the present study using canines.  Collectively, these studies indicate that 

either the HR response during PEMI depends on which limb is used or that these 

differential responses are due to differences in muscle mass. 

Previous studies from our laboratory and others have concluded that during 

PEMI there are sustained increases in sympathetic tone to the heart; however, there are 
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concurrent increases in parasympathetic activity as well (69; 111; 114).  This combined 

activation of both arms of the autonomic nervous system causes bradycardia but 

sustained increased ventricular contractility (Figure 2.3).  The differences in the HR 

responses between PEMI and metaboreflex activation during dynamic exercise may 

reflect that during PEMI one is observing responses during the recovery from exercise 

rather than during exercise per se.  Muscle metaboreflex-induced tachycardia occurs 

primarily via increased sympathetic activity to the heart (44; 114).  With the cessation of 

exercise, parasympathetic activity rises abruptly, which masks the chronotropic effects 

of sustained sympathetic tone (note that the inotropic effect is well sustained during 

PEMI; (Figure 2.3).  The extent to which sympathetic nerve activity remains elevated 

during PEMI may be dependent on the intensity and type of exercise performed (e.g., 

isometric vs. isotonic).  For example, in canines, the muscle metaboreflex is not 

tonically active during mild, free-flow treadmill exercise but becomes tonically active as 

workload increases and/or ventricular function declines (14; 60; 163).  In addition, 

Fisher et al. (44) demonstrated in humans performing static handgrip exercise that 

“robust” muscle metaboreflex activation (achieved during high-intensity exercise) was 

required to sustain sympathetic nerve activity during PEMI to a degree such that the 

prevailing parasympathetic effects on HR were counteracted.  However, Amann et al. 

(7) recently concluded that skeletal muscle afferents contribute to the cardiorespiratory 

responses during relatively mild exercise in humans. 

The increases in CO with metaboreflex activation likely require increased 

contractility as well as central blood volume mobilization to raise or maintain SV with the 

elevated afterload and shortened ventricular filling time.  Previous studies from our 

laboratory showed that the muscle metaboreflex can elicit marked increases in central 
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blood volume mobilization (140) as well as ventricular contractility [as evidenced by 

increased left ventricular maximal elastance, preload recruitable stroke work, as well as 

dP/dtmax (27; 116; 138)].  Moreover, Little et al. (92; 93) have shown that increases in 

left ventricular end-diastolic volume per se can lead to increases in dP/dtmax.  Thus it is 

possible that a portion of the rise in contractility with metaboreflex activation may be 

directly attributable to enhanced central blood volume mobilization.   

In the present study, the increase in contractility was sustained during PEMI 

(Figure 2.3).  Shoemaker et al. (144) showed a substantial muscle metaboreflex-

induced increase in SV during ischemic exercise, and Crisafulli et al. (30) also reported 

an increase in SV and ventricular contractility with muscle metaboreflex activation 

during PEMI.  These reflex increases in SV were suggested by these authors to be the 

principal mechanisms behind the increase in CO in these two distinct settings as HR 

was not affected.  We did not observe a significant increase in SV with muscle 

metaboreflex activation during exercise or PEMI in our studies, and it is possible that 

these different results are species dependent.  For example, there are reports that 

canines have a limited end-diastolic reserve compared to humans (17).  In contrast, 

other studies have shown that canines possess significant preload reserve (90; 96).  

Nonetheless, a maintenance or increase in SV during a hemodynamic period in which 

ventricular filling time is markedly reduced can likely only be achieved if there is an 

increase in the contractile state and/or an increase in preload. 

Perspectives and Significance.  Activation of the muscle metaboreflex both 

during submaximal exercise and during the recovery from exercise elicits substantial 

increases in ventricular function.  The major mechanism of the muscle metaboreflex-

mediated pressor response is increased CO with little, if any, peripheral 
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vasoconstriction in both settings.  Inasmuch as when workload rises, an increasingly 

smaller fraction of CO is directed to non-active vascular beds (e.g., brain, kidneys and 

splanchnic organs), even complete vasoconstriction of these beds would cause only a 

limited increase in arterial pressure (113).  In contrast, a metaboreflex-mediated rise in 

CO generates substantial increases in arterial pressure.  Thus, in these settings, the 

muscle metaboreflex is a flow-raising, pressure-raising reflex.  The rise in total systemic 

blood flow increases systemic perfusion pressure which likely acts to partially restore 

blood flow to ischemic muscle (120). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



28 

 

CHAPTER 3 

Mechanisms Mediating the Muscle Metaboreflex Pressor Response during Post-

Exercise Muscle Ischemia are altered in Hypertension 

Abstract 

During dynamic exercise, muscle metaboreflex activation (MMA; induced via 

partial hindlimb ischemia) markedly increases mean arterial pressure (MAP) and MAP is 

sustained when the ischemia is maintained following the cessation of exercise (post-

exercise muscle ischemia – PEMI).  We previously reported that the sustained pressor 

response during PEMI in normal individuals is driven by a sustained increase in cardiac 

output (CO) with no peripheral vasoconstriction.  However, we have recently shown that 

the rise in CO with MMA is significantly blunted in hypertension (HTN).  The 

mechanism(s) sustaining the pressor response during PEMI in HTN are virtually 

unknown.  In six chronically instrumented canines, hemodynamic responses were 

observed during rest, mild exercise (3.2 km/h), MMA and PEMI in the same animals 

before and after the induction of HTN (Goldblatt 2K1C).  In control, MAP, CO and HR 

increased with MMA (+52 ± 6 mmHg, +2.1 ± 0.3 l/min and +37 ± 7 bpm).  After the 

induction of HTN, MAP at rest increased from 97 ± 3 to 130 ± 4 mmHg, and the 

metaboreflex responses were markedly attenuated (+32 ± 5 mmHg, +0.6 ± 0.2 l/min 

and +11 ± 3 bpm).  During PEMI in HTN, HR and CO were not sustained and MAP fell 

to normal recovery levels.  We conclude that the attenuated metaboreflex-induced HR, 

CO and MAP responses are not sustained during PEMI in HTN. 

Introduction 

The muscle metaboreflex is a very powerful blood pressure-raising reflex (4; 11; 

24; 46; 116; 132; 136; 163).  Metabolically-sensitive afferents of this reflex (group III/IV) 
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are stimulated by metabolites (e.g., protons, lactate, potassium and diprotonated 

phosphate) which accumulate within underperfused active skeletal muscle (21; 34; 79; 

86; 95; 128; 130; 145-147; 157).  Activation of the muscle metaboreflex results in a 

reflex increase in sympathetic outflow from the brainstem (20; 71; 75; 79; 98-100; 158).  

During submaximal dynamic exercise, metaboreflex activation markedly increases heart 

rate (HR), cardiac output (CO) and ventricular contractility (dP/dtmax) with no net effect 

on the peripheral vasculature (14; 30; 31; 59; 68; 144; 150; 163).  Therefore, the 

substantial metaboreflex-mediated pressor response observed during mild dynamic 

exercise is virtually solely the result of the increase in CO.  

In contrast, when metaboreflex activation is maintained following the cessation of 

submaximal dynamic exercise (post-exercise muscle ischemia - PEMI) in normal 

subjects, the pressor response is sustained despite several investigators reporting that 

HR falls towards resting levels (4; 5; 45; 123; 133; 134; 158; 159; 161).  The fall of HR 

during PEMI led many investigators to question the role of CO in mediating the 

sustained pressor response during PEMI (45; 133; 134; 159).  We recently 

demonstrated that the sustained pressor response during PEMI following submaximal 

dynamic exercise is principally driven by elevated CO, not peripheral vasoconstriction 

(150).  The sustained elevation in CO during PEMI is driven by enhanced chronotropy 

(5; 31; 43; 67; 114; 138; 163) coupled with a sustained or slightly elevated stoke volume 

(SV) (27; 31; 116; 138; 144; 150) which is supported by enhanced inotropy (dP/dtmax) 

(27; 30; 68; 116; 138; 150), lusitropy (dP/dtmin) (68; 150) and central blood volume 

mobilization (140).  Therefore, the mechanisms mediating muscle metaboreflex-induced 

increases in MAP are similar regardless of whether the reflex is activated during 

dynamic exercise or if it is sustained during the recovery from exercise (150). 
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Very recently, we reported attenuated metaboreflex-induced chronotropic, 

inotropic and lusitropic responses in hypertension (HTN) during submaximal dynamic 

exercise (136).  Several studies from our group (12; 14; 59; 68; 121; 140) and others 

(29) have demonstrated a “switch” from a flow-mediated to a vasoconstriction-mediated 

pressor response during exercise when the reflex increase in CO is artificially 

attenuated (68; 140) or when there is a physiological inability to increase CO, such as 

during severe exercise (14) or in heart failure (12; 29; 59; 121).  Thus, it appears that 

whether or not increases in CO or peripheral vasoconstriction is utilized as a means to 

raise MAP with metaboreflex activation during dynamic exercise is dependent on the 

ability to increase CO.   

The mechanisms sustaining the pressor response during PEMI in HTN are 

virtually unknown.  Inasmuch as metaboreflex-induced increases in HR, CO and 

dP/dtmax are markedly attenuated in HTN, we tested the hypothesis that the sustained 

pressor response during PEMI would be principally supported by increased peripheral 

vasoconstriction, not CO. 

Methods 

Experimental subjects.  Six adult female mongrel canines were selected for the 

study.  All animals were healthy, ~20-25 kg body weight, well adapted to the laboratory 

environment and willing to run on a motor-driven treadmill.  During experimentation, all 

animals exercised voluntarily and no negative reinforcement techniques were utilized.  

The protocols developed and employed in the present study were reviewed and 

approved by the Institutional Animal Care and Use Committee of Wayne State 

University and complied with the National Institutes of Health Guide to the Care and 

Use of Laboratory Animals.  
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Surgical procedures.  The animals were prepared as described previously (136).  

Briefly, in the first sterile surgical procedure (left thoracotomy), an ultrasonic 

perivascular flow probe was positioned around the ascending aorta to measure CO and 

the catheter of an implantable telemetry blood pressure transmitter was inserted and 

secured into the left ventricle to measure left ventricular pressure (LVP).  In the second 

surgical procedure, ultrasonic perivascular flow probes were placed around the terminal 

aorta and left renal artery for measuring hindlimb blood flow (HLBF) and renal blood 

flow (RBF), respectively.  Two perivascular hydraulic occluders were positioned around 

the terminal aorta (distal to the flow probe) to provide the means to incrementally reduce 

HLBF in order to engage the muscle metaboreflex.  One perivascular hydraulic occluder 

was positioned around the left renal artery (distal to the flow probe) in order to reduce 

RBF to induce HTN (2K1C Goldblatt model).  Lastly, a catheter was secured into the 

terminal aorta (cranial to the flow probe and occluders) to measure arterial pressure. 

Following both surgical procedures, buprenorphine (0.05 mg/kg IV) and 

acepromazine (0.5 mg/kg IM) were administered for analgesia and sedation, 

respectively.  The animals were treated with cefazolin (30 mg/kg IV) pre- and 

postoperatively and with cephalexin (30mg/kg PO, twice daily) prophylactically for the 

term of the experimental protocol.  The animals were allowed a minimum of ten days for 

recovery between surgical procedures and a minimum of seven days before running 

control experiments. 

Data acquisition.  After complete postoperative recovery, each animal was 

brought into the laboratory and allowed to roam freely and acclimate for approximately 

15-20 minutes.  The animal was then directed onto the treadmill where the 

instrumentation was connected to the data acquisition system.  CO, CBF, HLBF and 
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RBF flow probe cables were connected to transit-time perivascular flow meters (TS420, 

Transonic Systems).  The LVP telemetry signal was collected by a receiver connected 

to a calibrated analog adapter and a barometric pressure reference device (RMC-1, 

R11CPA, APR-1, respectively; DSI).  The arterial catheter was connected to a pressure 

transducer (Transpac IV, ICU Medical).  All aforementioned hemodynamic variables, in 

addition to MAP (calculated) and HR (triggered by the CO signal), were monitored as 

beat-by-beat averages and real-time waveforms by a data acquisition system 

(LabScribe, iWorx) and recorded for subsequent off-line analysis.  

Induction of hypertension.  After completion of control experiments, HTN was 

induced via a Goldblatt 2K1C model (47; 48).  Blood flow to the left kidney was reduced 

to a target level of ~30% of baseline via partial inflation of the renal vascular occluder.  

HTN gradually developed over the next several weeks.  We defined HTN as systolic 

pressure ≥140 mmHg and diastolic pressure ≥90 mmHg.  The experiments were 

repeated after 31.5 ± 3.4 days of sustained HTN. 

Experimental design.  Each animal performed two experimental protocols before 

(normal) and after induction of HTN, and therefore each animal served as its own 

control.  On each day, the experimental protocol sequence was randomized to avoid 

any order effect.  All experiments began with the animal standing unrestrained on the 

treadmill until all hemodynamic resting data were observed to be stable (~5-10 min).  

The treadmill was turned on and the speed was gradually increased to 3.2 km/h at 0% 

grade (mild exercise for a canine).  Steady-state exercise was generally reached within 

3-5 minutes.  The following is the design of the two experimental protocols: 

 

1) Free-flow Exercise and Post-exercise Recovery:  Following the 3.2 km/h steady-

state, the treadmill was abruptly stopped and post-exercise recovery (without 
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ischemia – i.e., free-flow) hemodynamic data were collected for 60 seconds while 

the animal was standing still.  

 

2) Muscle Metaboreflex Activation and Post-exercise Muscle Ischemia:  Following the 

3.2 km/h steady-state, the metaboreflex was engaged during the exercise via partial 

reductions in HLBF and steady-state data were collected for 60 seconds.  The 

treadmill was then abruptly stopped and the occlusion was sustained for an 

additional 60 seconds while the animal was standing still.   

 

Data analysis.  CO, HLBF, LVP, HR and MAP data were continuously recorded 

during each experiment.  Other hemodynamic parameters were calculated off-line (e.g., 

SV, non-ischemic vascular conductance (NIVC), total peripheral resistance (TPR), 

dP/dtmax and dP/dtmin).  Due to technical difficulties, we were only able to obtain dP/dtmax 

and dP/dtmin data for five animals.  One minute averages of steady-state data were 

calculated at rest, during exercise and during metaboreflex activation.  5 second 

averages were computed for the 60 seconds of post-exercise recovery and PEMI.  

Responses for these two settings were taken as the last averaged 10 seconds.  Mean 

values were averaged across all animals to obtain mean values for the entire population 

of the study. 

Statistical analysis.  Averaged responses for each animal were analyzed via two-

way repeated measures ANOVA to compare hemodynamic data for time and/or 

condition effects.  In the event of a significant time-condition interaction, a C-matrix test 

for simple effects was performed.  Data are reported as means ± SE and statistical 

significance was ascribed as p<0.05.  

Results  

Following induction of HTN, MAP was significantly elevated at rest which was 
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due to an increase in TPR (Table 3.1).  

Table 3.1. MAP, CO and TPR (mmHg, l/min and mmHg/l/min ± SE, respectively) during 
rest, exercise (EX), muscle metaboreflex activation (MMA) and the last 10 s of post-
exercise muscle ischemia (PEMI) before (normal) and after induction of hypertension. 
 

 

 
    
 

 
REST  96.9 ± 2.9  3.45 ± 0.20  28.7 ± 2.2 129.5 ± 3.7* 3.56 ± 0.26 37.4 ± 3.1* 
EX 101.8 ± 3.6 4.91 ± 0.32 21.4 ± 2.0  124.8 ± 4.4* 4.92 ± 0.25 25.8 ± 1.8* 
MMA 153.5 ± 4.9 7.03 ± 0.60 22.6 ± 2.0 156.7 ± 6.5 5.49 ± 0.36*  29.0 ± 1.8* 
PEMI 151.5 ± 5.0 5.19 ± 0.49 28.5 ± 2.1 142.6 ± 6.8 4.08 ± 0.38* 36.0 ± 2.6* 
* - p<0.05 normal vs. hypertension  
 

Figure 3.1 shows responses in MAP, CO, HR, SV and HLBF from one animal 

during rest,  mild  dynamic  exercise,  muscle metaboreflex activation and  PEMI  before 

 

(normal) and after induction of HTN.  Resting MAP was markedly elevated following 

induction of HTN while CO, HR, SV and HLBF were similar to the levels observed prior 

MAP MAPTPR TPRCOCO 

Normal Hypertension 

Figure 3.1. Time-course of 
mean arterial pressure 
(MAP), cardiac output (CO), 
heart rate (HR), stroke 
volume (SV) and hindlimb 
blood flow (HLBF) during 
rest, mild exercise, muscle 
metaboreflex activation 
(MMA) AND PEMI before 
(normal) (dotted black lines)
and after induction of 
hypertension (solid black 
lines) in one animal. Data 
represented are the final 60 s 
of steady-state data during 
rest, exercise and MMA. 60 s 
of PEMI immediately followed 
the MMA steady-state.
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to induction of HTN.  From rest to exercise, CO, HR and HLBF markedly increased 

while MAP and SV remained similar to the values observed at rest.  These 

cardiovascular responses were similar following induction of HTN.  MAP, CO, HR and 

SV significantly increased with muscle metaboreflex activation, however these 

responses were attenuated following 

induction of HTN.  During PEMI, MAP, CO 

and HR were sustained in control, but fell to 

normal recovery levels following induction of 

HTN.  

Figure 3.2 shows average values of 

MAP, HR, CO, and NIVC during rest, mild 

exercise, muscle metaboreflex activation 

and PEMI before and after induction of HTN.  

The 60 seconds of PEMI are plotted as 5 

second averages.  Following induction of 

HTN, MAP was significantly higher, HR and 

CO were unchanged and NIVC was 

significantly lower at rest and during mild 

exercise with respect to normal.  HLBF was 
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reduced to the same level to induce muscle metaboreflex activation and was similarly 

maintained during PEMI before and after induction of HTN.  Metaboreflex-induced 

increases in MAP, HR, CO and NIVC were markedly attenuated following induction of 

HTN.  During PEMI, HR, CO and NIVC were significantly lower than normal during the 

entire 60 seconds of PEMI following induction of HTN, while MAP was not any different. 

Figure 3.3 shows mean hemodynamic responses in MAP, NIVC, CO, HR, SV, 

dP/dtmax and dP/dtmin during rest, mild exercise and the final averaged 10 seconds of 

post-exercise recovery before and after induction of HTN.  Resting MAP and dP/dtmax 

were  significantly  elevated,  NIVC  significantly  reduced and  CO, HR, SV and dP/dtmin  

 

Figure 3.3. Mean hemodynamic responses in MAP, NIVC, CO, HR, SV, dP/dtmax and
dP/dtmin during rest, mild exercise (EX) and post-exercise recovery (POST-EX) before
(open bars) and after induction of HTN (filled bars). * - p<0.05 between normal and HTN;
† - p <0.05 from previous setting 
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were similar to normal following induction of HTN.  NIVC, CO, HR and dP/dtmax 

significantly increased from rest to mild exercise while MAP, SV and dP/dtmin were 

unchanged.  Following induction of HTN, NIVC were reduced during exercise, CO and 

HR significantly increased as in normal, while MAP, SV and dP/dtmax and dP/dtmin were 

similar to rest.  During the final averaged 10 seconds of post-exercise recovery, MAP, 

SV and dP/dtmin remained unchanged while NIVC, CO, HR and dP/dtmax fell to levels not 

significantly different from those observed at rest (p>0.05).  Following induction of HTN, 

MAP, SV and dP/dtmin remained unchanged while CO and HR fell to rest as in normal.  

NIVC was significantly reduced and dP/dtmax significantly elevated with respect to 

normal and both parameters fell to rest (p>0.05; rest vs. post-exercise recovery).  

Figure 3.4 shows mean hemodynamic responses in MAP, NIVC, CO, HR, SV, 

dP/dtmax and dP/dtmin during rest, mild exercise, muscle metaboreflex activation and the 

final averaged 10 seconds of PEMI before and after induction of HTN.  All 

hemodynamic responses at rest and during mild exercise before and after induction of 

HTN were similar as shown in Figure 3.3.  All cardiovascular parameters significantly 

increased with muscle metaboreflex activation, however following induction of HTN 

metaboreflex-induced increase in these parameters were markedly attenuated.  During 

the final averaged 10 seconds of PEMI, all parameters fell significantly below 

metaboreflex activation levels and, with the exception of NIVC, all remained significantly 

elevated above post-exercise recovery levels.  Following induction of HTN, SV, dP/dtmax 

and dP/dtmin remained at metaboreflex activation levels while MAP, NIVC, CO and HR 

fell to levels not significantly different from those observed during post-exercise 

recovery without PEMI. 
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Discussion 

Our major new findings are that the attenuated muscle metaboreflex-induced 

pressor response in HTN is not sustained during PEMI and the mechanisms sustaining 

the pressor response during PEMI in normal subjects are altered in HTN.  

Muscle metaboreflex activation during exercise in normal subjects elicits a 
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Figure 3.4. Mean hemodynamic responses in MAP, NIVC, CO, HR, SV, dP/dtmax and
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substantial pressor response which is sustained during PEMI (4; 16; 19; 30-32; 45; 46; 

102; 123; 132; 144; 157; 161).  We recently demonstrated that this sustained pressor 

response during PEMI is supported by a sustained increase in CO and not peripheral 

vasoconstriction (150).  The sustained CO during PEMI was driven by enhanced 

chronotropy coupled with a sustained SV which was supported by enhanced inotropy 

and lusitropy.  We further concluded that the mechanisms mediating metaboreflex-

induced pressor responses are similar both when the reflex is activated during dynamic 

exercise and when the reflex is sustained during the recovery from exercise (PEMI).  

Several studies have demonstrated a “switch” from a flow-mediated to a 

vasoconstriction-mediated pressor response during exercise when the reflex increase in 

CO is attenuated (14; 29; 59; 68; 140).  In the present study we observed substantially 

attenuated metaboreflex-induced CO and MAP responses in HTN as recently shown by 

Sala-Mercado et al. (136).  However, the pressor response during PEMI was not 

sustained via enhanced peripheral vasoconstriction.  During PEMI, CO, HR, dP/dtmax 

and dP/dtmin fell to normal recovery levels and, despite a downward baseline shift in 

NIVC during all settings, the recovery pattern of NIVC was similar to control indicating 

no increase in peripheral vasoconstriction.  Therefore, the attenuated pressor response 

was not sustained during PEMI in HTN.  

Few studies have investigated muscle metaboreflex function during PEMI in HTN 

and the findings are equivocal.  Farquhar and colleagues recently demonstrated in 

elderly hypertensive humans that the pressor response to static handgrip exercise (30-

40% MVC) is exaggerated in HTN and sustained during PEMI (35; 52).  However, in a 

previous study from this group with similar subjects (139), the pressor response to 

rhythmic handgrip exercise (60% MVC) was not exaggerated in HTN, yet MAP was 
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sustained during PEMI.  In contrast, Rondon et al. (126) did not find an exaggerated 

pressor response to static handgrip exercise (30% MVC) in humans with untreated HTN 

and blood pressure fell to baseline during PEMI.  While the lack of a sustained pressor 

response during PEMI in the hypertensive groups is in agreement with the present 

study, the absence of a sustained pressor response during PEMI in the normotensive 

group is perplexing.  The lack of congruency of the present and aforementioned studies 

may be due to several confounding factors including: differences in species, age, type 

and intensity of exercise performed and experimental methodology.  We discussed 

several of these issues in a previous study (150).   

Studies from Farquhar and colleagues have reported sustained elevations in 

muscle sympathetic nerve activity (MSNA) during PEMI in HTN indicating enhanced 

peripheral vasoconstriction (35; 52).  However, as CO was not measured in these 

studies, to what extent CO contributed to the maintenance of MAP during PEMI is 

unknown.  The conflicting results of the present study and those from Farquhar and 

colleagues is potentially due to differences in exercise intensity and the muscle group in 

which the reflex was evoked.  For example, CO responses are often seen during PEMI 

following more intense exercise, whereas with PEMI following lower intensity exercise 

the pressor response occurs primarily via peripheral vasoconstriction (19; 30; 32; 144).  

In our model we robustly activated the metaboreflex, whereas Farquhar and colleagues 

elicited the reflex only during 30-40% MVC.  Moreover, as opposed to evoking the reflex 

from one arm, we engage the reflex from both hindlimb muscles during full body 

dynamic exercise.  In general, with PEMI following leg exercise, HR and CO remain 

elevated, while with PEMI following moderate arm exercise there is little HR or CO 

response (5; 45; 123).  Therefore, it is possible that the experimental model of Farquhar 
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and colleagues is one that is driven by peripheral vasoconstriction and not CO.  Indeed 

previous studies both support (19; 30-32; 123; 132; 144; 150) and refute (16; 32; 123) 

any role for CO in mediating the pressor response during PEMI.  As such, we would not 

expect the pressor response to fall during PEMI in HTN as in our model. 

Contrary to our hypothesis, we did not observe a vasoconstriction-mediated 

pressor response during PEMI in HTN.  Following induction of HTN, there was a 

marked downward baseline shift in NIVC during all settings indicating enhanced 

peripheral vasoconstriction, however the recovery pattern of NIVC during PEMI was 

similar to control indicating no increase in peripheral vasoconstriction.  In the present 

study, and a few previous studies (14; 27; 28; 83), we observed a small, but significant 

increase in NIVC with metaboreflex activation.  We have concluded from preliminary 

data that this significant increase in peripheral vascular conductance is due to a 

metaboreflex-induced release of epinephrine from the adrenal glands mediating a β2-

mediated vasodilation (80).  The rise in NIVC with metaboreflex activation after 

induction of HTN was blunted.  Whether this is due to reduced epinephrine release, 

fewer beta receptors or enhanced sympathetic α1-mediated vasoconstriction opposing 

the β2-mediated vasodilation is unknown. 

In summary, we previously demonstrated in normal subjects that CO sustains the 

pressor response during PEMI.  Following induction of HTN, metaboreflex-induced CO 

and HR responses were markedly attenuated and the mechanisms sustaining the 

pressor response during PEMI were altered as CO and HR fell to normal recovery 

levels. Moreover, the recovery pattern of NIVC during PEMI was similar to control 

indicating no increase in peripheral vasoconstriction.  Therefore, the attenuated pressor 

response was not sustained during PEMI in HTN.  
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CHAPTER 4 

Exaggerated Coronary Vasoconstriction Limits Muscle Metaboreflex-Induced 

Increases in Ventricular Performance in Hypertension 

Abstract 

Increases in myocardial oxygen consumption mainly occur via increases in 

coronary blood flow (CBF) inasmuch as cardiac oxygen extraction is high even at rest.  

However, during exercise, sympathetically-mediated constrictor tone can limit increases 

in CBF.  Increased sympathetic nerve activity (SNA) during exercise may stem from 

muscle metaboreflex activation (MMA).  SNA is often elevated even at rest in subjects 

with hypertension (HTN).  We tested whether HTN causes exaggerated coronary 

vasoconstriction during mild treadmill exercise with MMA (imposed via reducing 

hindlimb blood flow by ~60%) which thereby limits increases in CBF and ventricular 

performance.  Experiments were repeated after α1-adrenergic blockade (prazosin; 75 

µg/kg) and in the same animals following induction of HTN (Goldblatt 2K1C model).  

HTN increased mean arterial pressure from 97.1 ± 2.6 to 132.1 ± 5.6 mmHg at rest and 

MMA-induced increases in CBF, left ventricular dP/dtmax and cardiac output were 

markedly reduced to only 32 ± 13%, 26 ± 11% and 28 ± 12% of the changes observed 

in control.  In HTN, α1-adrenergic blockade restored the coronary vasodilation and 

increases in ventricular function to the levels observed when normotensive.  We 

conclude that in HTN, exaggerated MMA-induced increases in SNA functionally 

vasoconstrict the coronary vasculature impairing increases in CBF which limits oxygen 

delivery and ventricular performance.  

Introduction 

When oxygen demand of working skeletal muscle exceeds oxygen supply the 
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muscle releases metabolites (e.g., hydrogen ion (21; 157), potassium ion (95), 

diprotonated phosphate (21; 146), lactate (34; 86; 128; 143; 147) and ATP (62; 91; 

153)) which stimulate metabolically-sensitive group III/IV afferents (3; 7; 24; 86; 102; 

128).  This reflexively increases sympathetic outflow from the brainstem – termed the 

muscle metaboreflex (20).  When engaged during submaximal dynamic exercise, the 

metaboreflex increases heart rate (HR) and ventricular contractility resulting in large 

increases in cardiac output (CO) and mean arterial pressure (MAP) (4; 11; 31; 38; 94; 

116; 132; 150; 163).  The rise in CO is driven by marked increases in HR (5; 31; 43; 67; 

114; 138; 163) coupled with a sustained or slight increase in stroke volume (SV) (27; 

31; 116; 138; 144; 150) which is supported via enhanced ventricular contractility 

(dP/dtmax) (27; 30; 68; 116; 138), lusitropy (dP/dtmin) (68; 150) and central blood volume 

mobilization (CBVM) (140).  This increase in CO is the primary mechanism mediating 

the rise in arterial blood pressure as little if any net peripheral vasoconstriction is 

observed (14; 30; 59; 68; 144; 150; 163).  Therefore, the muscle metaboreflex has been 

described as a flow-sensitive, flow-raising reflex (120) that works to improve oxygen 

supply to the ischemic working muscle (117). 

During exercise, the increased cardiac oxygen demand is met primarily via 

increases in CBF inasmuch as oxygen extraction is already ~80% even at rest (37; 40; 

156).  The rise in CBF is achieved via coronary metabolic and feed-forward, β2-

adrenergic vasodilation (37; 40; 156) which is restrained by the vasoconstrictor actions 

of the rise in cardiac SNA (57).  Muscle metaboreflex activation increases CBF solely 

via the large increase in MAP; despite large increases in cardiac work (greater CO 

pumped against a higher afterload), no coronary vasodilation occurs due to enhanced 

α1-adrenergic-mediated coronary vasoconstriction (10; 27; 119).  Blockade of the 
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constrictor tone increases CBF during muscle metaboreflex activation resulting in 

improved ventricular performance and CO (27; 28; 119).  

Resting SNA is heightened in hypertension (HTN) (51; 54; 72; 97; 101; 105; 

155).  Moreover, an enhanced sympathetically-mediated coronary constrictor tone and 

restrained coronary metabolic vasodilation during dynamic exercise has been 

demonstrated in HTN (55).  Recent studies support (23; 35; 52; 106; 107; 139) and 

refute (126) accentuated muscle metaboreflex function in HTN.  Very recently, we 

reported attenuated metaboreflex-induced chronotropic and inotropic responses in HTN 

(136).  We hypothesized that enhanced coronary vasoconstriction contributes to the 

impaired ability to increase ventricular performance during muscle metaboreflex 

activation in HTN.  

Methods 

Experimental subjects.  Six mongrel canines were designated for the study.  All 

animals were healthy, adult, female, ~20-25 kg in body weight, acclimatized to the 

laboratory surroundings and willing to run on a motor-driven treadmill.  During 

experimentation, all animals exercised voluntarily and no negative reinforcement 

techniques were utilized.  The protocols developed and employed in the present study 

were approved by the Institutional Animal Care and Use Committee (IACUC) of Wayne 

State University and complied with the National Institutes of Health Guide to the Care 

and Use of Laboratory Animals.   

Surgical procedures.  Each animal was completely instrumented with chronic, 

indwelling cardiovascular devices following two sterile surgical procedures: left 

thoracotomy followed by a left flank retroperitoneal surgery.  The animals recovered a 

minimum of ten days prior to the second surgery and a minimum of seven days prior to 
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the first experiment.  During preoperative care, the animals were initially sedated with 

acepromazine (0.4-0.5 mg/kg IM).  Following adequate sedation, the animals were 

anesthetized with a combined treatment of ketamine and diazepam (5.0 and 0.22 mg/kg 

IV, respectively).  Anesthesia was maintained with isoflurane gas (1-3%) following 

endotracheal intubation.  In addition, the animals received preoperative administration 

of cefazolin (antibiotic, 30 mg/kg IV), carprofen (analgesic, 2.0 mg/kg IV), buprenorphine 

(analgesic, 0.01 mg/kg IM) and fentanyl (analgesic, 125–175 µg/h (72h) TDD).  Prior to 

the left thoracotomy, animals received selective intercostal nerve blockade with 

bupivacaine HCL (2.0 mg/kg).  Following each surgical procedure, animals received 

cefazolin (30 mg/kg IV) and prophylactic cephalexin (antibiotic, 30 mg/kg (BID) PO) 

therapy for the term of the experimental protocol.  During the 12h postoperative period, 

animals were closely monitored and received buprenorphine and acepromazine (0.05 

and 0.5 mg/kg IV, respectively) as needed to control any potential discomfort.  For the 

following 10 days, animals received carprofen (4 mg/kg (OPD) PO). 

In the first surgical procedure, the thoracic cavity was opened via a left 

thoracotomy (4th intercostal space) approach.  The pericardium was cut and reflected to 

expose the heart.  An ultrasonic perivascular flow probe (20PAU, Transonic Systems) 

was positioned around the ascending aorta to measure CO.  Approximately 10 cm 

caudal to the thoracotomy incision, an implantable telemetry blood pressure transmitter 

(TA11 PA-D70, Data Sciences International) was tethered subcutaneously.  The 

catheter of the transmitter was tunneled into the thoracic cavity through the 7th 

intercostal space and the tip was inserted and secured inside the left ventricle for 

measuring left ventricular pressure (LVP).  Lastly, the left atrial appendage was 

reflected and the circumflex branch of the left coronary artery was exposed.  An 
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ultrasonic perivascular flow probe (3PSB, Transonic Systems) was positioned around 

the circumflex artery to measure coronary blood flow (CBF).  The pericardium was 

loosely re-approximated, the cables were tunneled subcutaneously and exteriorized 

between the scapulae and the chest was closed in layers.   

In the second surgical procedure, an incision was made in the left flank cranial to 

the iliac crest.  The abdominal aorta was exposed and an ultrasonic perivascular flow 

probe (10PAA, Transonic Systems) was positioned around it for measuring hindlimb 

blood flow (HLBF).  All side branches of the terminal aorta, between the common iliacs 

and the flow probe, were ligated and severed.  In addition, two perivascular hydraulic 

occluders (8-10 mm, DocXS Biomedical Products) were positioned around the terminal 

aorta (distal to the flow probe) to provide the means to incrementally reduce HLBF.  A 

19-gauge polyvinyl catheter (Tygon, S54-HL, Norton) was advanced through a ligated 

lumbar artery and secured into the terminal aorta cranial to the probe and occluders to 

measure arterial pressure.  Lastly, the left renal artery was exposed and an ultrasonic 

perivascular flow probe (4PSB, Transonic Systems) was positioned around the vessel 

to measure renal blood flow (RBF).  A perivascular hydraulic occluder (4-6 mm, DocXS 

Biomedical Products) was positioned around the renal artery (distal to the flow probe) to 

provide the means to reduce RBF.  The cables and vascular occluder tubing were 

tunneled subcutaneously and exteriorized between the scapulae and the abdomen was 

closed in layers. 

Data acquisition.  After complete postoperative recovery, each animal was 

brought into the laboratory and allowed to roam freely and acclimate for approximately 

15-20 minutes.  Following this period, the animal was directed onto the treadmill where 

its instrument cables and tubing were unpacked and prepared for data collection.  The 
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CO, RBF, CBF and HLBF flow probe cables were connected to transit-time perivascular 

flow meters (TS420, Transonic Systems).  The LVP transmitter was turned on and the 

signal was collected via telemetry (Data Sciences International).  The arterial catheter 

was aspirated, flushed and connected to a pressure transducer (Transpac IV, ICU 

Medical).  All aforementioned hemodynamic variables, in addition to MAP (calculated) 

and HR (triggered by the CO signal), were monitored as beat-by-beat averages and 

real-time waveforms by a data acquisition system (LabScribe, iWorx) and recorded for 

subsequent off-line analysis.  

Induction of hypertension.  HTN was induced via a modified Goldblatt (2K1C) 

model (48).  After competition of control experiments, blood flow to the left kidney was 

reduced to a target level of ~30% of baseline via partial inflation of the renal vascular 

occluder.  The level of RBF was checked at least 2x/day and the vascular occluder 

adjusted until flow was stable.  HTN gradually developed over the next several weeks.  

We defined HTN as a systolic pressure ≥ 140 mmHg and a diastolic pressure ≥ 90 

mmHg.  The experiments were repeated after 34.4 ± 1.6 days of sustained HTN.  Thus, 

the experiments were longitudinal in nature as each animal served as its own control. 

Experimental procedures.  Both control and experimental procedures began with 

the animal standing unrestrained and still on the treadmill until all resting hemodynamic 

data were observed to be stable (typically 5-10 min).  The treadmill was turned on and 

the speed was gradually increased to 3.2 km/h at 0% grade (mild exercise for a canine).  

Steady-state was generally reached within 3-5 minutes.  The muscle metaboreflex was 

engaged via partial reductions in HLBF during mild, dynamic exercise.  

Data analysis. CO, CBF, HLBF, RBF, LVP, HR and MAP data were continuously 

recorded during each experimental procedure.  Other hemodynamic parameters were 
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calculated during off-line data analysis (e.g., stroke volume (SV), dP/dtmax, dP/dtmin, total 

peripheral resistance (TPR), non-ischemic vascular conductance (NIVC), coronary 

vascular conductance (CVC) and cardiac power (CP)).  TPR, NIVC, CVC and CP were 

calculated as (MAP/CO), [(CO-HLBF)/MAP], CBF/MAP and [(MAPxCO)/451] (42), 

respectively.  Due to technical difficulties, we were only able to obtain dP/dtmax data for 

five animals.  One minute averages of steady-state data were calculated at rest, during 

exercise and during metaboreflex activation.  Mean values were averaged across all 

animals to obtain the population mean of the study.  

For slope analysis (Figure 4.5, left panel), all data points were fitted to two linear 

regression lines (initial response and metaboreflex-induced response lines) and three 

points were used to characterize the responses: free-flow exercise (mild exercise with 

no reduction in HLBF), threshold (intersection of the two linear regression lines) and 

max (maximal metaboreflex-induced response at lowest imposed level of HLBF).  For 

Figure 4.7, a straight line was ascribed (via least squares linear regression analysis) to 

all data points (i.e., all graded reductions) between and including free-flow exercise and 

max (from left to right, respectively) for each of the four conditions.  In Figure 4.8, the 

ratio of the changes in CVC and CP from free-flow exercise to max (i.e., ∆CVC:∆CP) 

were calculated for each of the four conditions.  For Figure 4.9, a straight line was 

ascribed (via least squares linear regression analysis) to all data points: rest, free-flow 

exercise and max (from left to right, respectively) for each of the four conditions. 

Statistical analysis.  Averaged responses for each animal were analyzed with 

Systat software (Systat 11.0).  A P < 0.05 was set to determine statistical significance.  

A two-way repeated measures ANOVA was used to compare hemodynamic data for 

time and/or conditional effects.  In the event of a significant time-condition interaction, a 
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C-matrix test for simple effects was performed.  Data are reported as means ± SE.  

Results 

Resting MAP and TPR were significantly elevated while CO was unaffected 

following induction of HTN (Table 4.1). 

Table 4.1. MAP, CO and TPR (mmHg, l/min and mmHg/l/min ± SE, respectively) at rest 
in the same animals before (normal) and after induction of hypertension. 

 

 

 
 

Rest  97.1 ± 2.6  3.44 ± 0.18 28.7 ± 1.9 132.1 ± 5.6* 3.56 ± 0.17 37.6 ± 2.4* 
 

Average steady-state MAP, HR, SV, CO and NIVC (Figure 4.1) and CBF, CVC, 

dP/dtmax and CP (Figure 4.2) values are shown during rest, mild exercise and muscle 

metaboreflex activation in control and after α1-adrenergic blockade in normal animals 

and in the same animals after induction of HTN. 

Normal: control vs. α1-adrenergic blockade.  In control, HR, CO, NIVC, CBF, 

CVC, dP/dtmax and CP increased from rest to exercise, while MAP and SV remained 

unchanged.  Metaboreflex activation elicited increases in all cardiovascular parameters.  

Following α1-adrenergic blockade, resting MAP and SV were lower, HR and CVC were 

higher and CO, NIVC, CBF, dP/dtmax and CP were similar with respect to control.  MAP, 

HR, CO, NIVC, CBF, CVC, dP/dtmax and CP increased from rest to exercise, while SV 

remained unchanged.  Metaboreflex activation increased all cardiovascular parameters.  

MAP and SV were lower, HR, CO, NIVC CBF, CVC and dP/dtmax were higher and CP 

was similar with respect to control during metaboreflex activation.  

MAP MAPTPR TPRCOCO 

Normal Hypertension

* - p<0.05 between normal and hypertension.
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Figure 4.1. Average steady-state mean arterial pressure (MAP), heart rate (HR), stroke
volume (SV), cardiac output (CO) and non-ischemic vascular conductance (NIVC)
values during rest, mild exercise (EX) and muscle metaboreflex activation (MMA) in
control (filled bars) and after α1-adrenergic blockade (striped bars) in the same animals
before (normal) and after induction of hypertension. * - p<0.05 between control and α1-
adrenergic blockade; † - p<0.05 from previous setting. 
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Hypertension: control vs. α1-adrenergic blockade.  In HTN, HR, CO, NIVC, CBF, 

CVC, dP/dtmax and CP increased from rest to exercise, while MAP and SV remained 

unchanged.  Metaboreflex activation elicited increases in MAP, HR, CO, NIVC, CBF, 

dP/dtmax and CP, but did not affect SV and CVC.  Following α1-adrenergic blockade, 

resting MAP was lower, NIVC was higher and HR, SV, CO, CBF, CVC, dP/dtmax and CP 

were similar with respect to control.  HR, CO, NIVC, CBF, CVC and CP increased from 

rest to exercise, while MAP, SV and dP/dtmax remained unchanged.  Metaboreflex 
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Figure 4.2. Average 
steady-state coronary 
blood flow (CBF), 
coronary vascular 
conductance  (CVC), 
dP/dtmax and cardiac 
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and muscle metaboreflex 
activation (MMA) in 
control (filled bars) and 
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previous setting. 



52 

 

activation increased MAP, HR, CO, NIVC, CBF, CVC, dP/dtmax and CP, but did not 

affect SV.  HR, CO, NIVC, CBF, CVC, dP/dtmax and CP were higher, SV lower and MAP 

similar with respect to control during metaboreflex activation.   

 

Figure 4.3.  Average steady-state changes in MAP, HR, SV, CO and NIVC from rest to
mild exercise (EX) and mild exercise to muscle metaboreflex activation (MMA) in control
(filled bars) and after α1-adrenergic blockade (striped bars – prazosin (PZ)) in the same
animals before (normal) and after induction of hypertension. * - p<0.05 between control
and prazosin; # - p<0.05 between normal and hypertension. 

Normal Hypertension 

REST EX EX MMA REST EX EX MMA 
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Average steady-state changes in MAP, HR, SV, CO and NIVC (Figure 4.3) and 

CBF, CVC, dP/dtmax and CP (Figure 4.4) are shown from rest to mild exercise and mild 

exercise to muscle metaboreflex activation in control and after α1-adrenergic blockade 

in normal animals and in the same animals after induction of HTN.  

 

 

 

Normal: control vs. α1-adrenergic blockade.  Increases in MAP, HR, SV, CO, 

NIVC, CBF, dP/dtmax and CP from rest to mild exercise were not significantly affected by 

α1-adrenergic blockade, however CVC was significantly augmented.  From mild 

exercise to metaboreflex activation, the rise in MAP was attenuated, CO, NIVC, CBF, 

CVC and dP/dtmax were augmented and HR, SV and CP were not significantly affected 

following α1-adrenergic blockade. 

Hypertension: control vs. α1-adrenergic blockade.  Increases in all cardiovascular 

parameters from rest to mild exercise were not significantly affected by α1-adrenergic 

blockade.  From mild exercise to metaboreflex activation, the rise in HR, CO, NIVC, 

CBF, CVC, dP/dtmax and CP were augmented and MAP and SV were not significantly 

affected following α1-adrenergic blockade.  

Normal vs. hypertension.  Increases in NIVC from rest to exercise in normal 

animals was significantly lower in the same animals following induction of HTN.  

Figure 4.4.  Average steady-state changes in CBF, CVC, dP/dtmax and CP from rest to
mild exercise (EX) and mild exercise to muscle metaboreflex activation (MMA) in control
(filled bars) and after α1-adrenergic blockade (striped bars – prazosin (PZ)) in the same
animals before (normal) and after induction of hypertension. * - p<0.05 between control
and prazosin; # - p<0.05 between normal and hypertension. 
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Metaboreflex-induced increases in MAP, HR, SV, CO, NIVC, CBF, dP/dtmax and CP 

were significantly attenuated following induction of HTN, while CVC was unaffected.  

Following α1-adrenergic blockade, increases in MAP, HR, CO, NIVC, CBF, CVC, 

dP/dtmax and CP from mild exercise to metaboreflex activation were not any different 

from normal levels following α1-adrenergic blockade. 

Figure 4.5 (left panel) shows stimulus-response relationships for MAP, CO, HR, 

CBF, CVC and dP/dtmax during free-flow exercise, threshold and max, from right to left, 

respectively.  Data were collected following graded reductions in HLBF during mild 

exercise in control and after α1-adrenergic blockade in normal animals and in the same 

animals after induction of HTN.  The slopes of the metaboreflex-response lines are 

indicative of the gain of the metaboreflex for each individual cardiovascular parameter.  

Figure 4.5 (right panel) shows the changes in the slopes of the metaboreflex-induced 

response   lines   for   MAP,  CO,   HR,   CBF,   CVC and  dP/dtmax in  control  and  after 
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CVC and dP/dtmax as a function of graded reductions in hindlimb blood flow (HLBF).  
Data plotted are free-flow exercise, threshold and max (from right to left, respectively) 
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before (normal) and after induction of hypertension. * - p<0.05 between control and 
prazosin; # - p <0.05 between normal and hypertension. 
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α1-adrenergic blockade in normal animals and in the same animals after induction of 

HTN.  Following α1-adrenergic blockade, the slopes of the metaboreflex-induced 

response lines for CO, HR, CBF, CVC and dP/dtmax were significantly higher while MAP 

was unchanged.  These slopes were significantly lower for all cardiovascular 

parameters following induction of HTN, while α1-adrenergic blockade fully restored the 

slopes (except CO; p=0.042) to normal levels following α1-adrenergic blockade. 

The relationship between CVC and CP in one animal is shown in Figure 4.6.  A 

straight line was ascribed from rest to free-flow exercise.  Linear regression analysis 

was used fit a straight line through free-flow exercise and all subsequent reductions in 

HLBF.  The relationship from rest to max was exceedingly nonlinear.  Therefore, resting 

data were excluded and a straight line was ascribed to the remaining data points (i.e., 

free-flow exercise and all HLBF reductions) via linear regression analysis in order to 

appropriately compare the slopes of the relationship before and after induction of HTN 

and with and without α1-adrenergic blockade (Figure 4.7).  
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Figure 4.7 shows the relationship between CVC and CP in control and after α1-

adrenergic blockade in normal animals and in the same animals after induction of HTN 

during rest, free-flow exercise and max (left to right, respectively).  After induction of 

HTN, the slope of the relationship (from free-flow exercise to max) was significantly 

lower and the increase in CP was markedly attenuated.  Following α1-adrenergic 

blockade, the slope of the relationship was significantly shifted upward and not any 

different than during α1-adrenergic blockade prior to induction of HTN.  Moreover, the 

increase in CP was not any different following α1-adrenergic blockade before and after 

induction of HTN. 
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Figure 4.7.  The relationships between CVC and CP during rest, free-flow exercise
and max (left to right, respectively) in control (solid lines/filled symbols) and after
α1-adrenergic blockade (dashed lines/open symbols) in the same animals before
(circles) and after induction of hypertension (triangles).  * - p<0.05 max CP before
and after induction of hypertension. 
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Figure 4.8 shows the ratio of the changes in CVC and CP from free-flow exercise 

to max (i.e., ∆CVC:∆CP) in control and following α1-adrenergic blockade before and 

after induction of HTN.  Following α1-adrenergic blockade, ∆CVC:∆CP was significantly 

greater than in control.  Following induction of HTN, ∆CVC:∆CP was significantly 

reduced.  Following α1-adrenergic blockade, ∆CVC:∆CP was not any different than 

during α1-adrenergic blockade prior to induction of HTN. 

 

Figure 4.9 shows the relationship between dP/dtmax and CBF in control and after 

α1-adrenergic blockade in normal animals and in the same animals after induction of 

HTN.  The slope of the relationship between dP/dtmax and CBF was exceedingly linear 
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Figure 4.8.  Ratio of changes in CVC and CP from free-flow exercise to max (i.e.,
∆CVC:∆CP) in control (filled bars) and following α1-adrenergic blockade (striped
bars) in the same animals before (normal) and after induction of hypertension.  * -
p<0.05 between control and α1-adrenergic blockade; † - p <0.05 between normal
and hypertension. 
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with all data points considered.  After induction of HTN, metaboreflex-induced increases 

in both dP/dtmax and CBF were significantly attenuated.  However, metaboreflex-induced 

increases in both dP/dtmax and CBF were not any different following α1-adrenergic 

blockade before and after induction of HTN. 

 

Discussion 

Our major new findings are that after induction of HTN, increases in CBF during 

metaboreflex activation are attenuated and the ability to increase ventricular contractility 

is reduced.  Blockade of α1-adrenergic receptors restored the increases in CBF and 

ventricular function to normal levels indicating that the primary mechanism mediating 

the impaired metaboreflex-induced increases in ventricular function in HTN is coronary 

vasoconstriction.  Inasmuch as metaboreflex-induced increases in CO and MAP are 
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Figure 4.9.  Relationship between dP/dtmax and CBF in control (filled symbols) and
after α1-adrenergic blockade (open symbols) in the same animals before (normal)
(circles) and after induction of hypertension (triangles).   
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also attenuated in HTN, the ability of the reflex to restore blood flow to ischemic working 

muscle is also likely impaired which may contribute to exercise intolerance.  Moreover, 

coronary vasoconstriction during exercise in HTN may produce adverse cardiovascular 

events (e.g., coronary vasospasms, arrhythmias and myocardial ischemia). 

The increase in myocardial oxygen demand during submaximal dynamic 

exercise is principally met by increases in CBF inasmuch as myocardial oxygen 

consumption is highly blood flow dependent since oxygen extraction is already near 

maximal at rest (37; 40; 156).  The rise in CBF is largely mediated by coronary 

metabolic vasodilation (while ~25% of coronary vasodilation is feed-forward, β2-

adrenergic-mediated) as there is little increase in MAP (49).  At the same time, the rise 

in cardiac SNA with exercise limits coronary vasodilation as it activates vascular α1-

adrenergic receptors inducing a coronary constrictor tone (15; 33; 57; 65; 110; 154).  

Gwirtz et al. demonstrated an α1-adrenergic-mediated coronary constrictor tone during 

dynamic exercise in normal animals (57) and in animals with renovascular HTN (55).  

Moreover, a coronary constrictor tone during exercise has also been shown to attenuate 

increases in CBF (56; 57; 65; 84; 110), myocardial oxygen delivery (65), ventricular 

function (27; 56; 57; 84) and CO (27; 84).  Paradoxically, it has been demonstrated that 

this constrictor tone plays a beneficial role in redistributing left-ventricular CBF from the 

epicardium to the more metabolically-challenged subendocardium (41; 66).  Clearly, 

whether or not the presence of a coronary constrictor tone during exercise in normal 

individuals is advantageous or merely a cardiac-limiting consequence of elevated SNA 

during exercise remains debatable.  

Following muscle metaboreflex activation, substantial increases in cardiac SNA, 

CO and afterload intensify cardiac work (4; 114; 116; 119; 132; 158; 159; 163).  In this 
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setting, myocardial oxygen demand is met by increases in CBF which are solely driven 

by increases in MAP as no coronary vasodilation is observed (10; 27; 119).  In fact, 

Coutsos et al. (27) reported an α1-adrenergic-mediated functional coronary 

vasoconstriction with metaboreflex activation during exercise as metaboreflex-mediated 

increases in CVC and CBF markedly improved following α1-adrenergic blockade.  

Metaboreflex activation in heart failure, coupled with attenuated coronary vasodilation 

due to a decrease in cardiac work, leads to frank coronary vasoconstriction (28).  

Therefore, during muscle metaboreflex activation, there is a “push-pull” dynamic for the 

control over coronary tone.  It is likely that with the increase in cardiac work, coronary 

vasodilation is opposed by α1-adrenergic-mediated coronary vasoconstriction. 

Is muscle metaboreflex function attenuated in HTN?  While few studies have 

investigated the effects of HTN on metaboreflex control of cardiovascular function, most 

report that its function is accentuated (35; 52; 89; 106; 107; 139; 148) rather than 

attenuated (126).  We analyzed the gain (or strength) of metaboreflex-mediated 

cardiovascular responses in HTN by determining the slope of the metaboreflex-induced 

response line for each parameter we measured.  After induction of HTN, the slopes 

were significantly lower for all cardiovascular parameters (Figure 4.5) indicating that 

metaboreflex function is attenuated in HTN.  However, following α1-adrenergic blockade 

the slopes of all metaboreflex-induced response lines (except CO; p=0.042) were fully 

restored to the levels observed in control experiments following α1-adrenergic blockade.  

These data suggest that chronotropic and inotropic function are attenuated during 

metaboreflex activation in HTN due to a restriction in CBF stemming from exaggerated 

coronary constrictor tone, not an attenuation in metaboreflex function per se nor any 

inherent reduction in intrinsic myocardial function (e.g., heart failure). 
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While changes in CBF can directly influence ventricular function, changes in 

ventricular function can indirectly influence CBF via changes in coronary metabolic 

vasodilation.  As an increase in perfusion pressure can increase CBF independent of 

any change in coronary vasomotor tone (10), the extent of coronary vasodilation can 

only accurately be determined by calculating changes in conductance (or 

resistance)(113).  Feigl and colleagues (49; 50) have shown the utility of quantifying 

coronary vasodilation as a function of myocardial oxygen consumption.  As in our 

previous studies (27; 28), we used cardiac power (CP) which is well correlated to 

myocardial oxygen consumption (81).  In normal animals, CVC increased from rest to 

exercise and a small further increase occurred with metaboreflex activation similar to 

the response observed previously (with exception of the small increase in CVC which 

was not statistically significant in our previous study).  After induction of HTN, the slope 

of the relationship (from free-flow exercise to max) was significantly lower and the 

increase in CP was markedly attenuated indicating attenuated myocardial oxygen 

delivery as a result of a restrained coronary vasodilation.  Following α1-adrenergic 

blockade, the slope of the relationship was significantly shifted upward and not any 

different than during α1-adrenergic blockade prior to induction of HTN.  Moreover, the 

increase in CP was not any different following α1-adrenergic blockade before and after 

induction of HTN.  The findings demonstrate that attenuation of metaboreflex-induced 

increases in CP are largely, if not solely, dependent on heightened α1-adrenergic-

mediated coronary vasoconstriction in HTN. 

The ∆CVC:∆CP relationship was significantly lower after induction of HTN.  As 

the rise in CP with metaboreflex activation is smaller in HTN, this would tend to increase 

∆CVC:∆CP.  Therefore, it is clear that the significant decrease in ∆CVC:∆CP following 
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induction of HTN is due to a decrease in the rise in CVC with metaboreflex activation.  

The ∆CVC:∆CP relationship (from free-flow exercise to max) in HTN was significantly 

greater following α1-adrenergic blockade and was not any different than during α1-

adrenergic blockade prior to induction of HTN.  This suggests that the rise in CVC with 

metaboreflex activation is markedly restrained in HTN and that this exaggerated 

coronary vasoconstriction can be ameliorated following α1-adrenergic blockade.  

An increase in CBF can improve ventricular function via an increase in 

myocardial oxygen delivery (112).  To analyze the relationship between ventricular 

function and coronary perfusion, we plotted dP/dtmax versus CBF (Figure 4.8).  This 

relationship was exceptionally linear.  After induction of HTN, metaboreflex-induced 

increases in both dP/dtmax and CBF were significantly attenuated, without any change in 

the slope of the relationship.  Following α1-adrenergic blockade, metaboreflex-induced 

increases in dP/dtmax and CBF were restored to the same levels following α1-adrenergic 

blockade prior to induction of HTN.  These data support hypothesis that exaggerated 

coronary vasoconstriction in HTN with metaboreflex activation restrains coronary 

perfusion thereby limiting myocardial oxygen delivery and increases in ventricular 

function.  While the highly linear relationship between dP/dtmax and CBF suggests that 

ventricular function is intimately dependent on changes in CBF, the fact that the slope of 

this relationship did not change after induction of HTN suggests that most, if not all, of 

the ventricular impairment observed in this study was solely due to exaggerated 

coronary vasoconstriction, not myocardial dysfunction per se.  Coutsos et al. (28) 

reported that exaggerated metaboreflex-mediated coronary vasoconstriction attenuates 

the rise in CBF and impairs increases in ventricular function in a heart failure model.  

Furthermore, they demonstrated that this impairment in ventricular function was partially 
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ameliorated following α1-adrenergic blockade.  They concluded that the impaired 

ventricular function in heart failure was due to both intrinsic ventricular dysfunction as 

well as exaggerated coronary vasoconstriction.  

The pathology of HTN is wide-ranging.  Structural and/or functional changes 

have been well documented in the heart and the vasculature (122).  Moreover, 

alterations in arterial baroreflex (22; 53; 73; 109; 149; 164; 164) and muscle 

metaboreflex function (35; 52; 89; 106; 107; 126; 136; 139; 148) as well as brainstem 

processing of this reflex information has been demonstrated (53).  The attenuation of 

chronotropic and inotropic function after induction of HTN observed in the present study 

is clearly not due to overt pathology of the heart and the vasculature as α1-adrenergic 

blockade fully restored chronotropic and inotropic function to the same levels observed 

after α1-adrenergic blockade prior to induction of HTN.  The arterial baroreflex buffers 

muscle metaboreflex-mediated pressor responses by attenuating its capacity to 

increase peripheral resistance by constricting the peripheral vasculature (82; 142).  

There are reports of reduced baroreflex function in HTN (73; 109; 149; 164), however, 

to the best of our knowledge, there are no studies demonstrating accentuated 

baroreflex function.  Therefore, it is unlikely that the attenuated cardiovascular 

responses reported in the present study are a result of exaggerated arterial baroreflex 

buffering of the muscle metaboreflex.  Moreover, Smith et al. (148) demonstrated that 

impaired baroreflex function in HTN has little, if any, effect on skeletal muscle reflex 

function.  Dysfunctional metaboreflex afferent signal processing could at least partially 

explain the attenuated reflex-mediated increases in cardiovascular function, however 

data suggest that metaboreceptors are actually sensitized in HTN (106).  While we did 

not study β-adrenergic function in the present study, studies have demonstrated 



65 

 

impaired cardiac responses potentially stemming from reduced β-adrenergic receptor 

function (18; 165) and density (103).  

Potential limitations.  By chance and availability, all animals in the present study 

were female.  Data were not collected from animals during estrus.  Our group (88) has 

shown that in dogs muscle metaboreflex function is not influenced by gender.  

Systemic α1-adrenergic blockade can alter loading conditions as it reduces total 

peripheral resistance.  Gwirtz and colleagues (36; 56; 84) administered prazosin via the 

intracoronary route.  However, results from such studies on changes in ventricular 

function following α1-adrenergic blockade are limited to the particular segment of the left 

ventricle infused with drug.  In the present study, we were interested in the effects of α1-

adrenergic blockade on global left-ventricular function, and therefore we infused 

prazosin systemically.  We employed a selective α1-adrenergic blocker, as α2-

adrenergic receptor blockade has negligible effects on coronary vasomotor tone during 

exercise (33; 154).  Following α1-adrenergic blockade in normal animals, MAP was 

lower at rest, during exercise and during exercise with metaboreflex activation with 

respect to control.  After induction of HTN in the same animals, MAP was lower at rest 

and during exercise with respect to control.  Interestingly, during exercise with 

metaboreflex activation, MAP following α1-adrenergic blockade was not any different 

than control (likely due to the blunted rise NIVC in HTN).  Our hypothesis was that 

increases in ventricular function would be impaired due to exaggerated coronary 

vasoconstriction during metaboreflex activation in HTN.  Therefore, the major potential 

concern with systemic prazosin administration would be its effects on our index of 

contractility (dP/dtmax) as this measurement is sensitive to loading conditions.  However, 

while changes in preload can significantly affect dP/dtmax (124), changes in afterload 



66 

 

have little, if any, direct effect on this parameter (1; 70; 96; 124).  

In summary, we found that coronary vasoconstriction in HTN with metaboreflex 

activation restrains coronary perfusion and thereby limits myocardial oxygen delivery 

and increases in ventricular function during submaximal dynamic exercise.  

Accentuated coronary vasoconstriction in HTN could partially explain exercise 

intolerance and potentially precipitate adverse cardiovascular events during exercise 

such as coronary vasospasms, arrhythmias, myocardial ischemia or sudden cardiac 

death (64).  
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Skeletal muscle ischemia during or immediately following exercise leads to the 

accumulation of metabolites (e.g., lactate, proton and diprotonated phosphate) which 

activate chemoreceptive afferents within the muscle leading to a reflex increase in 

sympathetic outflow generating substantial increases in mean arterial pressure (MAP), 

cardiac output (CO) and heart rate (HR) - termed the muscle metaboreflex.  When the 

reflex is activated during submaximal dynamic exercise, the pressor response occurs 

via increased CO with no net peripheral vasoconstriction.  When metaboreflex activation 

is sustained during the recovery from exercise (i.e., post-exercise muscle ischemia – 

(PEMI)), whereas MAP remains elevated for as long as the ischemia is maintained, HR 

precipitously declines towards resting levels drawing into question the role of CO in 

supporting the pressor response.  When the reflex increase in CO is attenuated (e.g., in 

heart failure), heightened peripheral vasoconstriction supports the pressor response.  In 

hypertension (HTN), metaboreflex-mediated increases in ventricular function and CO 

are markedly attenuated during mild exercise.  As sympathetic nerve activity (SNA) is 

exaggerated in both heart failure and HTN, it is plausible that the mechanisms 

mediating the attenuation of CO in HTN with muscle metaboreflex activation are similar 
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to those previously described in heart failure.  Employing a chronically-instrumented 

canine model, data were collected from control animals and the same animal after 

induction of HTN.  We addressed three specific questions: 1) what are the 

mechanism(s) mediating the muscle-metaboreflex-induced pressor response observed 

during PEMI in normal subjects, 2) what are the mechanism(s) mediating the muscle-

metaboreflex-induced pressor response observed during PEMI in hypertensive subjects 

and 3) does metaboreflex activation during submaximal exercise in hypertensive 

animals functionally restrain coronary vasodilation further limiting increases in 

ventricular performance.  We found that: 1) the sustained increase in MAP during PEMI 

is driven by a sustained increase in CO not peripheral vasoconstriction, 2) the 

attenuated pressor response in HTN is not sustained during PEMI as HR and CO fall to 

normal recovery levels and 3) in HTN, exaggerated metaborelfex-induced increases in 

SNA functionally vasoconstrict the coronary vasculature impairing increases in CBF 

which limits oxygen delivery and ventricular performance. 
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