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Chapter 1. Introduction 
 
 

Posttraumatic stress disorder (PTSD) is an increasingly important social and 

medical issue (Kessler, 2000; Druss et al., 2009). Recent United States military 

engagements around the globe, most notably Operation Iraqi Freedom and Operation 

Enduring Freedom have increased the prevalence and awareness of PTSD diagnoses 

attributed to exposure to military conflict in United States citizens and as a result there 

has been a renewed interest in the disorder popularly and within the military and 

research communities. For example, popular books and movies, both fictional and 

nonfictional, have begun to utilize PTSD as major plot points and mechanisms 

(Maxwell, 2011). Likewise, Governmental and military institutions have contributed 

considerable money and energy towards studying PTSD. As an example, the 

identification of reliable biomarkers of PTSD has been identified as a priority research 

goal by the Institute of Medicine (Institute of Medicine, 2012), Department of Defense 

(Congressionally Directed Medical Research Programs, 2011), and the National 

Institute of Mental Health (NIMH, 2008). 

 Descriptions of PTSD-like syndromes can be found throughout recorded history, 

including in classical Greek and Roman writings (Shay, 1994; Pitman, 2013). For 

example, Plutarch describes Cassander’s response to physical and psychological 

abuse from Alexander in the following way (Plutarch):  

“All which made such a deep impression of terror in Cassander’s mind that, long 
after, when he was King of Macedonia and master of Greece, as he was walking 
up and down at Delphi, and looking at the statues, at the sight of that of 
Alexander he was suddenly struck with alarm, and shood all over, his eyes rolled, 
his head grew dizzy, and it was long before he recovered himself.”  
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Despite these ancient accounts, we can trace the contemporary origins of the concept 

of PTSD to the descriptions of post-railway accident syndromes by Charcot and 

Oppenheimer in the late 1800’s (Young, 1995; Pitman, 2013). Furthermore, it wasn’t 

until 1980, with the publishing of the Third Edition of the Diagnostic and Statistical 

Manual of Mental Disorders that PTSD first entered official psychiatric nosology (APA, 

1980).  

PTSD arising out of experiences of military service largely remains the driving 

force of discourse around trauma-related mental pathology, yet PTSD in the civilian 

population is also highly prevalent and highly costly, both to individuals and the state. In 

the United States, lifetime prevalence of PTSD is estimated to be 6.8% in the general 

population (Kessler and Wang, 2008) and 15-40% in inner city and combat-veteran 

populations (Villagomez et al., 1995; Breslau et al., 2004; Horowitz et al., 2005; 

Schwartz et al., 2005). Additionally, PTSD is associated with numerous comorbidities, 

including an increased risk of major depression (Breslau et al., 2000), substance 

dependence (Breslau et al., 2003), reduced life course opportunities (Kessler, 2000), 

and physical health problems (Farley and Patsalides, 2001; Simpson, 2002; Zayfert et 

al., 2002) including incident cardiovascular disease (Kessler, 2000; Kubzansky et al., 

2007; Kubzansky and Koenen, 2009; Kubzansky et al., 2009). As a result, the total cost 

to the nation is an estimated $3.8 billion annually (Kessler, 2000), not to mention the 

incredible personal cost to individuals. 

By definition, PTSD develops following exposure to a traumatic event (Shalev, 

2001), witnessed or experienced by the individual; this traumatic event must involve the 

threat or actuality of death, injury, or physical integrity; and must elicit a response of 



3 
 

 

horror, fear, or helplessness (Shalev, 2001)1. Although a majority (50-90%) (Kessler et 

al., 1995) of Americans experience a qualifying trauma in their lifetime, only a minority 

develop diagnosable PTSD (Kessler et al., 1995; Breslau et al., 1998; Acierno et al., 

2007). It should be noted, however, that while a minority develop PTSD, a higher 

percentage of individuals respond to traumatic exposures by developing an acute post-

trauma syndrome that largely approximates PTSD but that resolves within a month, thus 

precluding a diagnosis of PTSD (Harvey and Bryant, 1999). What accounts for 

disparities in risk for PTSD is a question of intense research effort. Environmental 

factors at both individual and community levels, such as gender, race, educational 

attainment (Kulka RA, 1990; Brewin et al., 2000; Koenen et al., 2002; DiGrande et al., 

2008; Galea et al., 2008; Kun et al., 2009), socioeconomic position (Kulka RA, 1990; 

Brewin et al., 2000; Koenen et al., 2002; Breslau et al., 2004; Koenen, 2007; DiGrande 

et al., 2008; Galea et al., 2008; Kun et al., 2009), and growing up in a low-income 

neighborhood (Breslau et al., 1991; Koenen, 2007) have been associated with 

increased risk of PTSD. Whereas some of this increased risk may be accounted for by 

individuals’ increased exposure to assaultive violence (Breslau et al., 1998; Breslau et 

al., 2004; Coulton et al., 2007; Melzer-Lange et al., 2007; Reyes et al., 2008; Gillespie 

et al., 2009; Obasaju et al., 2009) (the type of trauma which carries the highest 

conditional risk of PTSD), biological variation may underlie observed variation in PTSD 

risk. Indeed, biological factors, and their relation to PTSD (Galea et al., 2006), have 

                                                             
1 The diagnostic criteria detailed here is from the DSMIV-R. While completing this project, the DSM-V was 
published, thus altering the diagnostic criteria. The research in this dissertation was designed using the DSM-IV 
diagnostic criteria and utilized data that was collected in a manner consistent with DSM-IV diagnostic criteria. For 
these reasons, DSM-IV diagnostic criteria is used throughout this dissertation. 
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been given increased attention by social epidemiologists in recent years (Digangi et al., 

2013; Navarro-Mateu et al., 2013).  

Recently, attempts have been made to answer the question: “How does trauma 

get under the skin?” (Toyokawa et al., 2012). One putative, and increasingly empirically 

supported, mechanism by which trauma can lead to biological alterations is epigenetic 

variation and epigenetic modifications. 

 

Epigenetic mechanisms and PTSD 

Epigenetics refers to the stable yet modifiable regulation of gene function that 

occurs through non-DNA encoded mechanisms (Feinberg, 2008). Used here, this term 

refers to mechanisms that cause variation by altering the expression of genes, rather 

than their sequence. Although multiple epigenetic modifications have been identified 

(Kim et al., 2009), all involve chemical changes that regulate chromatin structure and/or 

DNA accessibility, which in turn alters the transcriptional activity of surrounding genetic 

loci. In contrast to DNA sequences, which are largely fixed, epigenetic factors are 

known to change in response to individuals’ physical, biological and social exposures in 

a manner that influences the long-term regulation of gene expression (Weaver et al., 

2004; Champagne et al., 2006; Bjornsson et al., 2008; Meaney, 2010). In addition to 

DNA methylation (which I describe separately below), epigenetic mechanisms include 

histone modifications, microRNAs, and non-coding RNAs (ncRNAs), each of which alter 

the expression of DNA without changing the genetic code. 

DNA methylation in particular is one of the major and best-studied epigenetic 

mechanisms to date. DNA methylation occurs in vertebrates through covalent 
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modification of DNA, whereby methyl groups are coupled to cytosine residues when 

cytosine and guanine are separated by a phosphate (i.e., at a CpG dinucleotide site) 

(Figure 1) (Bernstein et al., 2007). This chemical modification at specific DNA 

sequences regulates DNA accessibility, which in turn alters the transcriptional activity of 

the surrounding loci. In many cases, increased methylation in specific gene regions 

(e.g. promoters) is associated with reduced transcriptional activity and, therefore, gene 

expression (Eckhardt et al., 2006).  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. DNA methylation is a prominent epigenetic mechanism. DNA methylation 

at the 5 position of the cytosine at a CpG dinucleotide site (right panel) affects gene 
transcription via chromatin conformational changes (left panel). The left panel is 
modified from Macmillan Publishers Ltd: Nature 441:143-145. 
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Epigenetic factors have been the focus of increasing interest in the study of 

mental illness (Ptak and Petronis, 2010), including PTSD (Yehuda, 2006; Yehuda and 

LeDoux, 2007; Yehuda et al., 2009). This interest may be due to relatively few genes 

having been shown to contribute to the risk of common mood-anxiety disorders (e.g. 

(Lopez-Leon et al., 2008; Cornelis et al., 2010)) and evidence that epigenetic marks can 

change in response to external lived experiences (Weaver et al., 2004; Weaver et al., 

2005; Champagne and Meaney, 2006; Champagne, 2009). Indeed, as regulators of 

DNA accessibility and activity, epigenetic factors offer one mechanism by which the 

environment can moderate the effects of genes (Rutter et al., 2006). That is, epigenetics 

has the potential to collapse false dichotomies of nature vs. nurture and gene vs. 

environment. 

Evidence that DNA methylation is involved in the molecular pathology of mental 

health disorders, including in the developing brain, has been well documented 

(reviewed in (Houston et al., 2013)). As such, epigenetics offer a plausible way in which 

a traumatic experience may modify gene expression such that the risk of adverse 

psychopathological outcomes – PTSD for instance – increases (Yehuda et al., 2009). 

Indeed, animal models of PTSD have identified epigenetic differences that can discern 

rats with PTSD-like vs. non-PTSD-like behaviors (Cohen and Zohar, 2004) and, in 

humans expression signatures of PTSD have been reported in individuals identified in 

emergency rooms (Segman et al., 2005) or through long-term follow up of a traumatic 

experience (Zieker et al., 2007). Functional analyses of differentially expressed 

transcripts in these studies show a significant enrichment of genes that encode neural 

and endocrine proteins; genes expressed in the amygdala, hippocampus, and in the 
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HPA axis were found to be significantly overrepresented among the genes that 

distinguished trauma survivors with PTSD phenotypes (Segman et al., 2005), 

confirming the importance of these brain regions and biologic systems in mediating 

stress reactivity. Additionally, gene expression patterns associated with PTSD have 

been documented in postmortem brain tissue (Su et al., 2008) and peripheral blood 

(Segman et al., 2005; Zieker et al., 2007; Yehuda et al., 2009). It is important to note 

that the majority of these studies have looked at transcription changes in RNA derived 

from either PBMC or whole blood. Recently, Uddin and colleagues identified 

methylation-based epigenetic differences that distinguish trauma-exposed individuals 

with vs. without lifetime PTSD (Uddin et al., 2010). This work was closely followed by 

the publication of similar findings by Smith and colleagues (Smith et al., 2011a), with 

further studies further elucidating epigenetic differences associated with PTSD risk 

(Rusiecki et al., 2012; Rusiecki et al., 2013). Despite these advances, the underlying 

epigenetic changes that affect downstream gene expression and PTSD development 

remain largely unknown. 

Elucidating epigenetic underpinnings to mental health disorders holds promise 

for the development of effective treatments, as their modifiability makes them potential 

targets for reversal. Studies in rats have demonstrated that pharmacological 

interventions can reverse the methylation status of the glucocorticoid receptor (GR) 

promoter and, consequently, the stress response, and that this reversal is possible even 

in terminally differentiated tissues (Weaver et al., 2005). Results from these animal 

studies render it plausible that pharmacologically modifiable epigenetic risk variants for 
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PTSD may be identified in humans. Indeed, an epigenetic signature of childhood abuse 

has been identified in the NR3C1 GR promoter (McGowan et al., 2009). 

 

PTSD as adaptive trait 

 Whether PTSD can be understood to be an adaptive trait is a source of current 

debate with biological and philosophical implications. On the one hand, PTSD is 

detrimental to the mental well-being of individuals suffering from it as well as to society. 

On the other hand, it is clear that in the context of an extremely dangerous environment 

the complement of symptoms that constitute PTSD can be beneficial as increased 

arousal and alertness, avoidance of potentially dangerous places and scenarios, and 

constant reminders of passed traumatic experiences can all lead to behavioral changes 

that serve to avoid or mediate future, potential traumatic experiences. This has led to 

numerous perspectives on PTSD, ranging from the conclusion that PTSD is socially and 

historically constructed (Young, 1995) to attempts to reduce PTSD to physical 

neurobiological abnormalities (Sherin and Nemeroff, 2011). In this project, I focus my 

attention not on PTSD, per se, but rather on the capacity to develop PTSD. I consider 

PTSD as the product of a potentially adaptive, epigenetically regulated process of 

developmental plasticity. As such, I am interested in studying this developmental 

process as a biological trait. As such, if the capacity to develop PTSD is an adaptive 

biological trait, then it can best be understood through the lens of Tinbergen’s “Four 

Questions.”  
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Figure 2. Tinbergen’s Four Questions. This figure is modified from (Springer et al., 
2011) 
 

 

First proposed by Nikolaas Tinbergen, this perspective suggests that to 

understand a biological trait, one must first answer four distinct, but complementary 

questions concerning that trait (Figure 2):  

1) What is the ontogeny?  

2) What is the mechanism?  

3) What is the phylogeny?  

4) What is the adaptation?  
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Two of these questions (1 and 2), are concerned with a proximate understanding 

of the trait, while two (3 and 4) are concerned with an evolutionary understanding of the 

trait. Likewise, two (1 and 3) are concerned with a trait’s history, while two (2 and 4) are 

concerned with a trait’s function. 

Most of the research on PTSD has attempted to answer question 2 (What is the 

mechanism of PTSD?) To this end, biological correlates have been sought and 

biochemical, physiological, and neuroanatomical processes have been probed to reveal 

the factors that underlie PTSD risk. In contrast, much less has been done to answer the 

other three questions. The first question (What is the ontogeny?), has long been a goal 

of molecular epidemiologists, but has largely been precluded by the lack of large, 

longitudinal human cohorts with a focus on psychiatric outcome and with access to 

biological samples. The Detroit Neighborhood Health Study (DNHS), which I detail 

below, is one of the first such cohorts and opens up the possibility of testing hypotheses 

concerning PTSD ontogeny in human subjects. Evolutionary insights into PTSD are also 

relatively few in number. The question of the functional adaptation of PTSD has been 

addressed by only a few researchers directly (Silove, 1998; Bracha et al., 2005; Cantor, 

2009; Horwitz AV, 2012; Anderson and Adolphs, 2014), while others have developed 

theory for the potentially adaptive benefit of what is typically considered “pathological” 

psychobiology (Meaney, 2010).The question of phylogeny has largely been ignored. 

The work of this dissertation attempts to utilize the perspective of Tinbergen’s 

Four Questions in order to identify and test hypotheses that are needed towards a more 

complete understanding of PTSD. 

 



11 
 

 

Outline of the dissertation 

The work that follows consists of three distinct projects, which approach the 

epigenetic regulation of PTSD from distinct but complementary conceptual positions. 

Before describing the three projects themselves, it is necessary to describe the Detroit 

Neighborhood Health Study (DNHS) and some of the related studies that have been 

published to date. The DNHS is a five-wave longitudinal study. The DNHS consists of 

survey and biological samples from a community-based study population of 1,547 adult 

residents of Detroit, Michigan. One adult from homes included in a probability sample 

within Detroit city limits (inclusive of non-phone and non-listed-households) were 

recruited. Survey data includes demographics, health status, tobacco and alcohol use, 

exposure to trauma, and symptoms of PTSD, depression, and anxiety. Biological 

samples include peripheral blood and saliva samples. DNA and RNA was isolated from 

biological samples. Demographics of the DNHS sample are similar to the greater Detroit 

population in comparison to the American Community Survey (Uddin et al., 2010). 

Compared with NCS-R, current (11%) and lifetime (13.9%) prevalence of PTSD in 

DNHS at baseline is greater than national averages (current: 3.5%; lifetime: 6.8% 

(Kessler et al., 1995)), thus creating a unique research opportunity. 

The DNHS has yielded many studies, including relating to PTSD (Koenen et al., 

2011; Chang et al., 2012; Johns et al., 2012; Mitchell et al., 2013; Uddin et al., 2013; 

Nevell et al., 2014), depression (Uddin et al., 2011b; Uddin et al., 2013; Nevell et al., 

2014). Most importantly for the work of this dissertation, in 2010 Uddin and colleagues 

published the results of study which compared DNA methylation epigenome-wide 

between trauma exposed individuals with and without PTSD (Uddin et al., 2010). 
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Among the primary results of that study was a list of over 600 CpG dinucleotide sites at 

which there was differential DNA methylation between PTSD and control groups. This 

study raised many interesting questions. Does differential DNA methylation pre-exist 

trauma exposure and PTSD development as risk and resiliency factors or do they arise 

following trauma exposure and PTSD development and thus represent biomarkers? 

What is the evolutionary history of the CpG sites at which the epigenetic regulation of 

PTSD via differential methylation takes place? What are the relative contributions to 

PTSD risk of social factors, genetic factors, and epigenetic factors? What can 

epigenetics tell us about PTSD, specifically, and mental health disorders, generally? 

 In the dissertation that follows, I report research that was designed in order to 

address several of these questions. In Chapter 2, I report research that sought to 

address whether PTSD-associated differential methylation represents pre-trauma risk 

factors or post-trauma biomarkers in order to shed light on Tinbergen’s Question #2: 

What is the ontogeny? To do so, we took advantage of the DNHS in order to identify 

thirty incident cases of PTSD. These individuals were matched on the basis of age, 

gender, and trauma exposure to controls without a history of PTSD. DNA methylation 

was then examined before and after trauma exposure. Among the differentially 

methylated sites study by Uddin and colleagues (Uddin et al., 2010) were CpG 

dinucleotides at DNMT3B and DNMT3L loci. For these reasons, we chose to examine 

DNA methylation at four DNA methyltransferase genes: DNMT1, DNMT3A, DNMT3B, 

and DNMT3L. The work detailed in Chapter 3 is also based on this foundational work by 

Uddin and colleagues (Uddin et al., 2010). In this chapter, I report the results of a study 

designed to elucidate and characterize the evolutionary history of the CpG sites at 
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which Uddin and colleagues reported PTSD-associated differential methylation. By 

doing so, I contribute to Tinbergen’s Question #3: What is the phylogeny? To do so, we 

utilized phylogenetic methods within the context of mammals in order to infer the period 

of human evolutionary descent during which various CpG sites evolved. This 

evolutionary history was then biologically characterized using functional annotation 

clustering and identification of transcription factor binding sites. In Chapter 4, I present 

preliminary data on the association between hypothalamic-pituitary-adrenal axis SNPs 

and PTSD risk, in a contribution to answering Tinbergen’s Question #1: What is the 

mechanism? Finally, in Chapter 5, I attempt to bring all of these data together in order to 

propose that PTSD be understood to be the product of an evolutionarily conserved, 

epigenetically regulated program of developmental plasticity, thus addressing 

Tinbergen’s Question #4: What is the adaptation? 
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Chapter 2. Longitudinal epigenetic variation of DNA methyltransferase genes is 
associated with vulnerability to post-traumatic stress disorder (PTSD) 

 

This chapter published as: 
Sipahi L, Wildman DE, Aiello AE, Koenen KC, Galea S, Abbas A, and Uddin M. 
Longitudinal epigenetic variation of DNA methyltransferase genes is associated with 
vulnerability to post-traumatic stress disorder. Psychological Medicine (2014) DOI: 
http://dx.doi.org/10.1017/S0033291714000968.  
 
Abstract 

BACKGROUND: Epigenetic differences exist between trauma-exposed individuals with 

and without posttraumatic stress disorder (PTSD). It is unclear whether these epigenetic 

differences preexist, or arise following, trauma and PTSD onset. 

METHODS: In pre- and post-trauma samples from a subset of Detroit Neighborhood 

Health Study participants, DNA methylation (DNAm) was measured at DNMT1, 

DNMT3A, DNMT3B, and DNMT3L. Pre-trauma DNAm differences and changes in 

DNAm from pre- to post-trauma were assessed between and within PTSD cases (n=30) 

and age-, gender-, and trauma exposure-matched controls (n=30). Pre-trauma DNAm 

was tested for association with post-trauma symptom severity (PTSS) change. Potential 

functional consequences of DNAm differences were explored via bioinformatic search 

for putative transcription factor binding sites (TFBS). 

RESULTS: DNMT1 DNAm increased following trauma in PTSD cases (p=0.001), but 

not controls (p=0.067). DNMT3A and DNMT3B DNAm increased following trauma in 

both cases (DNMT3A: p=0.009; DNMT3B: p<0.001) and controls (DNMT3A: p=0.002; 

DNMT3B: p<0.001). In cases only, pre-trauma DNAm was lower at a DNMT3B CpG site 

that overlaps with a TFBS involved in epigenetic regulation (p=0.001); lower pre-trauma 

DNMT3B DNAm at this site was predictive of worsening of PTSS post-trauma 
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(p=0.034). Some effects were attenuated following correction for multiple hypothesis 

testing. 

CONCLUSIONS: DNAm among trauma-exposed individuals shows both longitudinal 

changes and preexisting epigenetic states that differentiate individuals who are resilient 

vs. susceptible to PTSD. These distinctive DNAm differences within DNMT loci may 

contribute to genome-wide epigenetic profiles of PTSD. 

 

Introduction 

PTSD is a prevalent and debilitating mental health disorder that may arise 

following exposure to a potentially traumatic event (Association, 2013). While the 

lifetime prevalence of traumatic exposure is 50-90% (Kessler et al., 1995), PTSD in the 

general U.S. population is estimated to be only 6.8% (Kessler and Wang, 2008). 

Although the majority of persons exposed to trauma display resiliency (Kessler et al., 

1995; Breslau et al., 1998; Acierno et al., 2007; Kessler and Wang, 2008), the molecular 

underpinnings of risk remain poorly characterized. The identification of risk markers, 

and particularly biomarkers, that distinguish between persons at high and low risk of 

developing PTSD following trauma exposure has been identified as a priority research 

goal by the Institute of Medicine (Institute of Medicine, 2012), Department of Defense 

(Congressionally Directed Medical Research Programs, 2011), and the National 

Institute of Mental Health (NIMH, 2008). Ideally, the ability to identify persons at high 

risk of developing PTSD would enable providers to target evidence-based interventions 

to high-risk groups (Andrews and Neises, 2012). The identification of robust predictive 
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biomarkers may also improve our understanding of the pathophysiology of PTSD and 

lead to more effective pharmacological interventions. 

Although much work has been done to identify social and environmental factors 

that contribute to PTSD risk [e.g. (Kulka RA, 1990; Breslau et al., 1991; Brewin et al., 

2000; Koenen et al., 2003; Breslau et al., 2004; DiGrande et al., 2008; Galea et al., 

2008; Kun et al., 2009)], the biological undergirding of differential PTSD risk and 

resiliency remains to be more fully elucidated. Twin studies have demonstrated 

heritability and genetic contribution to PTSD risk (True et al., 1993; Koenen et al., 2002; 

Stein et al., 2002) and targeted gene and GWAS approaches have identified both 

genetic risk loci (Lu et al., 2008; Ressler et al., 2011; Chang et al., 2012; Logue et al., 

2013) and important gene-by-environment interactions (Binder et al., 2008; Xie et al., 

2010; Uddin et al., 2013) that contribute to risk for the disorder; nevertheless, a 

substantial proportion of biologically mediated variance in PTSD risk has yet to be 

explained. 

Epigenetic variability is considered a plausible and increasingly empirically 

supported contributor to the etiology of phenotypes with marked genetic and 

environmental influences (Meaney, 2010), including certain psychopathologies 

(Toyokawa et al., 2012). Indeed, recent advances have revealed that PTSD risk and 

resiliency is associated with differential epigenetic variation (El-Sayed et al., 2012). 

Epigenetic mechanisms – including histone modifications, non-protein coding RNAs, 

and, most notably, DNA methylation (DNAm) – affect gene expression and cellular 

phenotype without altering the underlying DNA sequence (Feinberg, 2008; Meaney, 

2010). DNAm is stably heritable across mitotic replications, but is modifiable throughout 
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the life course in response to lived experiences and environmental exposures (Bird, 

2002). In primordial mammalian germ cells, global DNAm is removed (with the 

exception of imprinted loci) (Reik et al., 2001), with new patterns established by de novo 

methyltransferases DNMT3A, DNMT3B, and DNMT3L following fertilization (Bourc'his 

et al., 2001; Bourc'his and Bestor, 2004; Kaneda et al., 2004; Kato et al., 2007; Ooi et 

al., 2007). These reprogrammed DNAm patterns are largely maintained throughout 

mitotic DNA replication by the action of the maintenance methyltransferase DNMT1 (Li 

et al., 1992; Seisenberger et al., 2013). 

Although influenced by other variables, global DNAm patterns are largely 

established and maintained by the activity of the DNA methyltransferases, DNMT1, 

DNMT3A, DNMT3B, and DNMT3L (Feng and Fan, 2009). Gene expression evidence 

suggests that these DNMTs may be active throughout the life course (Robertson et al., 

1999; Feng et al., 2005; Siegmund et al., 2007), including in brain tissue (Goto et al., 

1994; Veldic et al., 2004; Feng et al., 2005) and in association with mental disorders 

(Veldic et al., 2004; Veldic et al., 2005). In addition, protein-level expression of DNMT1 

(Inano et al., 2000; Veldic et al., 2005) and DNMT3A (Feng et al., 2005) has been 

demonstrated in the mouse and human brain. With respect to PTSD, recent work 

confirms that DNMT activity plays a role in mediating risk for PTSD-related phenotypes, 

including fear conditioning and memory consolidation (Miller and Sweatt, 2007; Feng et 

al., 2010). Together, these findings suggest that DNAm and DNA methyltransferases 

represent promising targets for the identification of epigenetic underpinnings of 

differential PTSD risk and resiliency. 
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Studies of epigenetic variation have provided important insights into PTSD risk, 

but have been largely limited by cross-sectional analyses of post-trauma samples. Most 

notably, epidemiological cohorts from Detroit (Uddin et al., 2010) and Atlanta (Smith et 

al., 2011a) have been the basis of research that has demonstrated cross-sectional 

differential DNAm that distinguishes between trauma-exposed individuals with vs. 

without PTSD. DNMT3B and DNMT3L were among the differentially methylated loci 

identified in the Detroit study (Uddin et al., 2010). More recently, longitudinal DNAm 

data among PTSD cases and controls have been reported, including studies using 

samples from a cohort of U.S. military personnel deployed to Iraq and Afghanistan 

(Rusiecki et al., 2012; Rusiecki et al., 2013). To further elucidate whether differential 

DNAm between trauma exposed controls and PTSD cases represent pre-existing 

susceptibility/resiliency factors or downstream biomarkers of PTSD, additional 

longitudinal analyses are required. Finally, while the identification of epigenetic variation 

associated with mental health outcomes is important, work must begin to test the 

putative functionality of mental health-associated differential DNAm. For example, the 

identification of transcription factor binding sites (TFBS) that overlap with differentially 

methylated CpG sites and to which transcription factor binding may be disrupted offer 

one possibility of supporting DNAm functionality (Weaver et al., 2004). 

Here, we analyze DNAm from individuals pre- and post-trauma to identify 

differences that characterize individuals who are susceptible vs. resilient to PTSD 

following trauma. To assess potential functional consequences of examined DNAm 

differences, we then performed a bioinformatic search for the presence of putative 

transcription factor binding sites (Weaver et al., 2004). Results from this work suggest 
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that PTSD-relevant DNAm differences in DNMT loci may exist both prior to and 

following trauma, with implications for future targeted interventions. 

 

Methods and Materials 

Subjects 

Samples are from a subset of participants from the Detroit Neighborhood Health 

Study (DNHS), a longitudinal, community-representative cohort of adult residents in 

Detroit, MI. The current study draws on peripheral blood samples and survey data 

obtained at two time points from 60 DNHS participants. Forty-six were female and 

fourteen male; forty-six were African-American, twelve were Caucasian, and two were 

Hispanic. The average age was 55.1 years. PTSD diagnosis was assessed via 

structured interview administered via telephone (Breslau et al., 1998). PTSD symptoms 

were assessed in reference to both the traumatic event the participant regarded as their 

worst and one randomly selected traumatic event from the remaining traumas the 

participant experienced. Lifetime PTSD cases met all six DSM-IV criteria in reference to 

either the worst or random traumatic event. The diagnostic interview showed good 

validity against the Clinician Administered PTSD Scale (Blake et al., 1995) as described 

elsewhere (Uddin et al., 2010). The Institutional Review Board of the University of 

Michigan reviewed and approved the study protocol. Incident cases (n=30) of PTSD 

were identified in either waves 2, 3, or 4 of DNHS data collection among individuals for 

whom blood samples were available at both the wave of first PTSD diagnosis and the 

immediately previous, pre-incident trauma wave. Non-PTSD controls (n=30) were 

matched to cases on the basis of age, sex, and number of traumatic event types. DNA 
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samples were isolated from both pre- and post-trauma time points for both cases and 

controls. The time between pre- and post-trauma time points was approximately 1 year. 

Cases and controls had no history of PTSD prior to the post-trauma wave. 

 

DNA Isolation:  

DNA was isolated from whole blood acquired via venipuncture when available 

from DNHS participants selected for inclusion in this study. Blood spots were used as 

an alternate source of whole blood-derived DNA when venipuncture samples were 

unavailable. The exact tissue type was shared between matched case-control pairs in 

all instances. Venipuncture- and bloodspot-derived whole blood represent the same 

tissue and therefore should not differ with respect to DNAm, as confirmed by numerous 

studies to date (Wong et al., 2008; Aberg et al., 2013; Hollegaard et al., 2013). 

 

Whole blood:  

DNA was isolated from whole blood using the QIAamp DNA Blood Mini Kit 

(Qiagen, Valencia, CA) and the QuickGene DNA Whole blood Kit S (Lifesciences, 

FujiFilm, Tokyo, Japan) using manufacturers' recommended protocols. 

 

Blood spots:  

DNA was isolated using the QIAamp DNA Micro Kit (Qiagen) using the 

manufacturer's recommended protocol. For each sample, one 6mm punch was taken 

from dried blood spots using a disposable, sterile biopsy punch (Miltex, York, PA) within 

a sterile field and placed immediately into a sterile 1.7ml microcentrifuge tube. New 
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gloves, biopsy punches, and sterile fields were utilized for each sample. Negative 

controls in the form of blank extractions were included with all DNA isolations. 

 

Bisulfite conversion: 

For each sample, ~750ng of DNA was bisulfite converted using the EpiTect 

Bisulfite Kit (Qiagen) using the manufacturer's recommended protocol. Negative 

controls in the form of bisulfite conversion of water were included with each bisulfite 

conversion. 

 

Pyrosequencing: 

Assays to assess the methylation levels of CpG sites found in the DNMT1, 

DNMT3A, and DNMT3L and DNMT3B (see below for assay-specific details) were 

custom designed using the Pyromark Q24 Assay Design Software 2.0 (Qiagen). 

Targeted CpG sites were selected based on prior evidence(Uddin et al., 2010) of 

involvement in epigenetic regulation of PTSD risk (DNMT3B, DNMT3L) and to 

investigate whether longitudinal, PTSD-associated DNAm differences exist across DNA 

methyltransferase genes more broadly (DNMT1, DNMT3A, DNMT3B, and DNMT3L). 

Because the DNMT3B target CpG is located in a CpG island, our designed assay 

captures DNAm at 12 CpG sites in an approximately 70 base pair region of exon 1 (see 

DNMT3B assay section below for details). Single CpG sites were assessed at DNMT1, 

DNMT3A, and DNMT3L loci (see individual assay section below for details); these CpG 

sites did not fall into CpG islands. DNMT1, DNMT3A, and DNMT3L CpG sites and 2 

DNMT3B CpG sites assessed are also found on the HM27 and HM450K methylation 



22 
 

 

bead chips from Illumina (see below for actual HG19 nucleotide location). The capacity 

for each assay to capture DNAm levels ranging from 0-100% was validated using 

commercially available demethylated and highly methylated DNA at dilutions of 1:0 

(unmethylated), 3:1, 1:1, 1:3, and 0:1 (highly methylated). PCR amplification of target 

sequences was performed on 20ng of bisulfite-converted DNA samples using the 

PyroMark PCR kit (Qiagen). Bisulfite-converted, PCR-amplified DNA was 

pyrosequenced on the Pyromark Q24 Pyrosequencer (Qiagen) using the manufacturer's 

recommended protocol and default settings. All methylation analyses were conducted in 

triplicate with appropriate negative controls included at each of the following steps: DNA 

isolation, bisulfite conversion, PCR amplification, and pyrosequencing reaction. 

 

Details of each custom assay are listed below. 

DNMT1 

PCR forward primer: TTTTTTTAGGTGTGATGGGGATAAAG 

PCR reverse primer (biotinylated): CAAAAACTCTCACAAACCCTTAAA 

PCR program (50 cycles): 

Initial 15 minutes at 95oC 

Denaturation 30 seconds at 94oC 

Annealing 30 seconds at 58oC 

Extension 30 seconds at 72oC 

Final 10 minutes at 72oC 

Hold 4oC 

Sequencing primer: GTGATGGGGATAAAGT 
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Target sequence: AGCGAGAAGCCCCCAAGGGTTTGTGAGA (CpG 

target in bold; hg19: chr19:10,305,909-10,305,936) 

DNMT3A 

PCR forward primer: GGTGGGAGGTTGAATGAAATGA 

PCR reverse primer (biotinylated): AATACCCAACCCCAAATCCTAC 

PCR program (50 cycles): 

Initial 15 minutes at 95oC 

Denaturation 30 seconds at 94oC 

Annealing 30 seconds at 58oC 

Extension 30 seconds at 72oC 

Final 243 10 minutes at 72oC 

Hold 4oC 

Sequencing primer: AGTTGGAAGATTTTGTG 

Target sequence: TGTGCCTACACACCGCCCTCACCCCTTCACYGTGG 

GGGCTGTTCTCCTTCCCCATGGAGYGCTCAGGGCTCTAGGTTCCTGACTTG

GGGCACCTCTGTCTAATTCCACCAGCACAGCCACTCACTATGTGCTCATCTC

ACTCCTCCAGCAGCYGCTGTAGGACTTGGGGCTGGGCACC (CpG target in 

bold; hg19: chr2:25,565,782-25,565,959) 

DNMT3B 

PCR forward primer: GGGGTTAAGTGGTTTAAGTAAAT 

PCR reverse primer (biotinylated): CCTCCAAAAATCCCTAAAAAAAATCT 

CTCC 

PCR program (45 cycles): 
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Initial 15 minutes at 95oC 

Denaturation 30 seconds at 94oC 

Annealing 30 seconds at 52oC 

Extension 30 seconds at 72oC 

Final 10 minutes at 72oC 

Hold 4oC 

Sequencing primer: GTTAAGTGGTTTAAGTAAATTTAG 

Target sequence: CTCGGCGATCGGCGCCGGAGATTCGCGAGCCCAG 

CGCCCTGCACGGCCGCCAGCCGGCCTCCCGCCAGCCAGCCCCGACCCGC

GGCTCCGCCGCCCAGCCGCGCCCCAGCCAGCCCTGCGGCAGGTGAGCGC

CCCGGGGCCC 266 (CpG targets in bold; hg19: chr20:31,350,382-

31,350,523) 

DNMT3L 

PCR forward primer: AGTTTTTTTTATTGGGGTAGTTAGG 

PCR reverse primer (biotinylated): CTTAAAACCAAAAAACCACATTTTAT 

TCA 

PCR program (45 cycles): 

Initial 15 minutes at 95oC 

Denaturation 30 seconds at 94oC 

Annealing 30 seconds at 50oC 

Extension 30 seconds at 72oC 

Final 10 minutes at 72oC 

Hold 4oC 
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Sequencing primer: GATTTAGGGATAGAGAGGG 

Target sequence: GCGGTAGGGAGTGGGAAATCTGAATAA (CpG target 

in bold; hg19: chr21:45,683,527-45,683,553) 

 

To demonstrate the ability of our assays to resolve DNAm differences as small 

as reported, we computed intraclass correlation coefficients (ICC) between triplicate 

replicates for each assay. Average within-sample coefficient of variation was computed 

using a two-way mixed model, using an absolute agreement definition (Shrout, 1979), 

as implemented in SPSS (IBM, USA). ICCs for the 15 total CpG sites assayed ranged 

from 0.703 to 0.937, with a mean ICC of 0.855 (standard deviation: 0.066). This strongly 

supports the conclusion that these assays are capable of consistently resolving small 

DNAm differences. 

 

TFBS prediction 

Putative TFBS were identified that overlap target CpG sites using the 

MatInspector (Cartharius et al., 2005) tool from Genomatix, with default parameters. 

Input sequence included 200bp up- and downstream of the CpG site. Only putative 

TFBS that directly overlapped CpG sites of interest were retained. 

 

Statistical analyses 

Statistical testing was performed using SPSS Statistics for Windows, Version 

21.0 (IBM Corp., USA). DNAm at DNMT3B CpG sites was treated on a regional and an 

individual CpG site basis, similar to previous work (Rusiecki et al., 2013). Regional 
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values were calculated as the mean of 12 CpG sites. Paired-sample t-tests were used 

to test for differences in pre-trauma DNAm between cases and controls and to test for 

differences between pre- and post-trauma time points within cases and controls. Linear 

regression was used to test whether pre-trauma DNAm levels are predictive of post 

trauma symptom severity (PTSS) changes. PTSS change was calculated as the 

difference between PTSS and pre-trauma symptom severity. Analyses included severity 

scores of individual symptom criteria (hyperarousal, avoidance, or intrusion symptoms) 

as well as a total severity score that is inclusive of each symptom subdomain. 

Regression models were adjusted for age, gender, and pre-trauma symptom severity. 

The contribution of pre-trauma DNAm to post-trauma PTSS change was tested via the 

change in R square values comparing full to reduced models. We present primary 

results uncorrected for multiple testing as is consistent with the current state of the 

science of DNAm variation in association with psychiatric endpoints (Perroud et al., 

2011; Unternaehrer et al., 2012; Perroud et al., 2013; Rusiecki et al., 2013). In addition, 

to assess the extent to which our results may be attenuated by multiple hypothesis 

testing correction, we calculated stringent Bonferroni-corrected significance values 

(Dunn, 1961) as well as false discovery rate (FDR) Q values (Benjamini, 1995). FDR 

has recently been utilized to correct multiple hypothesis testing in studies utilizing 

DNAm data, with user-defined Q-values ranging from 0.05 to 0.2 (Provencal et al., 

2013; Zhao et al., 2013). 
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Results 

PTSD cases and controls do not differ in age, gender, ethnicity, or pre-trauma 

symptom severity, including individual symptoms of intrusion, avoidance, and 

hyperarousal (Table 1). 

 

Table 1. Demographic and pre-trauma characteristics of 30 posttraumatic stress 
disorder (PTSD) case-control pairs. 

 

  

 

 Controls (N = 30)  PTSD (N = 30)  t(d.f.) p-value 

 Mean/# s.d./%  Mean/# s.d./%    

         Age (years) 55.37 12.97  53.71 12.94  -0.47 (29) 0.638 

Female  23 76.7%  23 76.7%  NA (1) 1.000 

African-American  22 73.3%  24 80%  0.01 (1) 0.938 

Lifetime traumas 3.80 3.83  4.43 3.70  -0.84 (29) 0.407 

Assaultive Violence 0.87 1.33  1.07 1.55  -0.55 (29) 0.589 

Other Injury or Shccking 

Experience 

0.83 1.32  1.27 1.48  -1.51 (29) 0.141 

Learning about traumas to 

others 

1.20 1.50  1.17 1.37  0.12 (29) 0.909 

Sudden Death 0.77 0.43  0.70 0.47  0.63 (29) 0.536 

Other Event 0.13 0.35  0.23 0.43  -1.36 (29) 0.184 

Pre-trauma Symptom Severity 26.90 10.96  39.33 16.20  -1.12 (29) 0.275 

Intrusion 9.58 7.90  11.65 6.08  -0.99 (29) 0.333 

Avoidance 11.65 11.04  14.69 6.97  -1.14 (29) 0.267 

Hyperarousal 8.60 7.98  11.24 5.11  -1.24 (29) 0.226 

Post-trauma Symptom Severity 25.41 7.01  54.20 11.59  11.4 (29) <0.001 
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Pre-trauma DNAm variation is associated with PTSD 

PTSD-associated DNAm variation may both pre-exist trauma and be associated 

with post-trauma PTSD outcome. To test for pre-existing protective/risk factors, pre-

trauma DNAm at DNMT1, DNMT3A, DNMT3B, and DNMT3L loci was compared 

between trauma exposed individuals with vs. without PTSD. Pre-trauma DNAm was 

higher in controls compared with cases at a single DNMT3B CpG site (CpG 9) (Figure 

3; t=2.250, 29 df, p=0.032); no difference in pre-trauma DNMT3B regional DNAm mean 

was observed (t=1.538, 29 df, p=0.135). We observed no pre-trauma differences 

between cases and controls at DNMT1 (t=0.582, 29 df, p=335 0.565), DNMT3A 

(t=0.579, 29df, p=0.567), and DNMT3L (t=1.386, 29df, p=0.176) loci. 

 

 

 

 

 

 

 

 

 

 
 

Figure 3. Pre-trauma DNA methyltransferase 3B (DNMT3B) DNA methylation 
(DNAm) is significantly higher in trauma-exposed controls compared to 
posttraumatic stress disorder (PTSD) cases at CpG 9. Pre-trauma DNAm did not 
differ between cases and controls at the other 11 DNMT3B CpG sites assessed. Light 
gray bars indicate mean DNAm of controls. Dark gray bars indicate mean DNAm of 
PTSD cases. Error bars represent standard error of the mean. Difference between 
controls and cases was tested by paired-sample t-tests (N = 60; 30 cases and 30 
matched controls). *: p<0.05. 
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Pre-trauma DNAm variation predicts post-trauma changes in trauma symptom severity 

To explore whether this PTSD-associated pre-trauma DNAm is predictive of 

trauma response, we performed linear regression analyses with pre-trauma DNAm of 

DNMT3B at CpG 9 and PTSS change as predictor and outcome variables, respectively. 

Controlling for age, gender, and pre-trauma symptom severity, pre-trauma DNAm of 

CpG 9 (Figure 4; unstandardized B=-2.318, SE=1.25 p=0.034) predicted post-trauma 

symptom severity change. In this model, only pre-trauma symptom severity and pre-

trauma DNAm were significant predictor variables. DNMT3B CpG 9 DNAm explained 

approximately 6.8% of the variance in PTS severity change, as revealed by a 

comparison of the full and reduced models. The full model that included DNMT3B CpG 

9 DNAm, age, gender, and pre-trauma symptom severity explained approximately 24% 

of the variance in post-trauma PTSS change (Adjusted R Square=0.242, p=0.005). 

Because the relationship between pre-trauma DNAm and post-trauma changes 

in PTS symptom severity may be driven by distinct symptom subdomains 

(hyperarousal, avoidance, and intrusion), we regressed separately each subdomain 

symptom severity change onto pre-trauma DNAm, controlling for age, gender, and pre-

trauma symptom severity of the relevant subdomain. Pre-trauma DNAm of DNMT3B 

CpG 9 (hyperarousal: p=0.249; avoidance: p=0.137; intrusion: p=0.071) did not predict 

change in subdomain symptom severity. 
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Figure 4. Linear regression model of symptom severity (PTSS) change post-
trauma and pre-trauma DNA methyltransferase 3B (DNMT3B) CpG 9 DNA 
methylation (DNAm), adjusting for age, gender, and pre-trauma symptom severity 
(N=60). Only pre-trauma PTSS and DNAm were significant variables in this model. 

Error bar plots represent the mean plus/minus the 95% confidence intervals. 
Differences between posttraumatic stress disorder cases and trauma-exposed controls 
were tested by paired-sample t- tests (N = 60; 30 PTSD cases and 30 matched 
controls). *: p<0.05. 
 
 
Trauma induces PTSD-associated DNAm modifications 

DNAm differences may arise following trauma and be associated with PTSD 

development. To test this, we compared pre-trauma DNAm with post-trauma DNAm 

within PTSD cases and within trauma-exposed, healthy controls. Both PTSD-associated 

and PTSD-independent changes in DNAm following trauma were observed at DNMT 

loci (Figure 5). DNMT1 DNAm increased (Figure 5A; t=3.887, 29 df, p=0.001) following 
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trauma in the PTSD group, but not the control group (t=1.903, 29 df, p=0.067). At 

DNMT3A (Figure 5B) and DNMT3B (Figure 5C) loci, DNAm increased following trauma 

in both PTSD case (DNMT3A: t=2.806, 29 df, p=0.009; DNMT3B: t=4.286, 29 df, 

p<0.001) and control (DNMT3A: t=3.421, 29 df, p=0.002; DNMT3B: t=3.938, 29 df, 

p<0.001) groups. No change was observed in DNMT3L (Figure 5D) DNAm in either 

cases (t=1.551, 29 df, p=0.132) or controls (t=1.146, 29 df, p=0.261). Table 2 presents a 

summary including uncorrected p values, Bonferroni-corrected p values, and FDR 

values, as well as accompanying effect sizes, of our results described above. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

Figure 5. Longitudinal DNA methylation (DNAm) modifications of DNA 
methyltransferase (DNMT) loci in response to trauma in posttraumatic stress 
disorder (PTSD) cases and trauma-exposed controls. DNMT3B (region) represents 

the mean of 12 CpG sites. Differences between PTSD cases and trauma-exposed 
controls were tested by paired-sample t-tests (N = 60; 30 PTSD cases and 30 matched 
controls). Error bars represent standard error of the mean. *: p<0.05; **:p<0.01; 
***:p<0.001. 
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Table 2. Observed and corrected significance values of testsa 

Test 
Mean 
Differenceb SE 

Observed 
Pc Rank 

Bonferroni 
threshold 

FDR (BH) 
thresholds 

Pre- vs. post-trauma 
DNMT3B in Cases 

1.51 0.35 0.000* 1 0.002* 0.002* 

Pre- vs. post-trauma 
DNMT3B in Controls 

1.51 0.38 0.000* 2 0.002* 0.003* 

Pre- vs. post-trauma 
DNMT1 in Cases 

0.84 0.22 0.001* 3 0.002* 0.005* 

Pre- vs. post-trauma 
DNMT3A in Controls 

3.38 0.99 0.002* 4 0.002* 0.006* 

Pre- vs. post-trauma 
DNMT3A in Cases 

2.41 0.86 0.009* 5 0.002 0.008 

Cases vs. Controls 
DNMT3B (CpG 9) pre-
trauma 

0.77 0.34 0.032* 6 0.002 0.009 

CpG 9 Regression analysis 
(all symptoms) 

B: -2.318 0.034* 7 0.002 0.011 

Cases vs. Controls 
DNMT3B (CpG 2) pre-
trauma 

0.19 0.11 0.057 8 0.002 0.013 

Pre- vs. post-trauma 
DNMT1 in Controls 

0.56 0.30 0.067 9 0.002 0.014 

CpG 9 Regression analysis 
(Intrusion symptoms) 

B: -0.849 0.071 10 0.002 0.016 

Cases vs. Controls 
DNMT3B (CpG 12) pre-
trauma 

0.44 0.24 0.122 11 0.002 0.017 

Cases vs. Controls 
DNMT3B (CpG 10) pre-
trauma 

0.28 0.19 0.127 12 0.002 0.019 

Pre- vs. post-trauma 
DNMT3L in Cases 

0.74 0.47 0.132 13 0.002 0.020 

Cases vs. Controls 
DNMT3B pre-trauma 

0.27 0.17 0.135 14 0.002 0.022 

CpG 9 Regression analysis 
(Avoidance symptoms) 

B: -0.821 0.137 15 0.002 0.023 

Cases vs. Controls 
DNMT3B (CpG 1) pre-
trauma 

0.35 0.23 0.151 16 0.002 0.025 

Cases vs. Controls 
DNMT3B (CpG 8) pre-
trauma 

0.50 0.33 0.158 17 0.002 0.027 

Cases vs. Controls 
DNMT3L pre-trauma 

0.91 0.65 0.176 18 0.002 0.028 
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Cases vs. Controls 
DNMT3B (CpG 5) pre-
trauma 

0.25 0.19 0.221 19 0.002 0.030 

CpG 9 Regression analysis 
(Hyperarousal symptoms) 

B: -0.466 0.249 20 0.002 0.031 

Pre- vs. post-trauma 
DNMT3L in Controls 

0.36 0.32 0.261 21 0.002 0.033 

Cases vs. Controls 
DNMT3L post-trauma 

0.58 0.56 0.304 22 0.002 0.034 

Cases vs. Controls DNMT1 
post-trauma 

-0..19 0.19 0.323 23 0.002 0.036 

Cases vs. Controls 
DNMT3B post-trauma 

0.18 0.22 0.351 24 0.002 0.038 

Cases vs. Controls 
DNMT3A post-trauma 

0.56 0.66 0.356 25 0.002 0.039 

Cases vs. Controls 
DNMT3B (CpG 7) pre-
trauma 

0.11 0.12 0.487 26 0.002 0.041 

Cases vs. Controls DNMT1 
pre-trauma 

0.09 0.20 0.565 27 0.002 0.042 

Cases vs. Controls 
DNMT3A pre-trauma 

-0.41 0.73 0.567 28 0.002 0.044 

Cases vs. Controls 
DNMT3B (CpG 6) pre-
trauma 

0.11 0.17 0.603 29 0.002 0.045 

Cases vs. Controls 
DNMT3B (CpG 3) pre-
trauma 

0.06 0.15 0.711 30 0.002 0.047 

Cases vs. Controls 
DNMT3B (CpG 11) pre-
trauma 

0.11 0.39 0.773 31 0.002 0.048 

Cases vs. Controls 
DNMT3B (CpG 4) pre-
trauma 

0.03 0.14 0.881 32 0.002 0.050 

S.E., standard error; FDR, false discovery rate; DNMT, DNA methyltransferase. 
a Corrected significance thresholds at p<0.05 are listed using two controlling 
procedures: Bonferroni and FDR using the procedure of Benjamini & Hochberg 
(Benjamini, 1995). 
b For regression analyses, ‘B’ represents unstandardized B values. 
c The list of observed p values is sorted from smallest to largest (indicated by rank 
column). 
* Values meet significance at p<0.05 for the various correction procedures. 
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Transcription factor binding site prediction 

DNAm is associated with gene expression. One mechanism by which increased 

DNAm can lead to decreased gene expression is by affecting the binding of trans-

activating factors to cis-regulatory elements. To contextualize our DNAm findings, we 

used bioinformatic methods to identify putative TFBS that overlap CpG sites showing 

PTSD associated DNAm differences. In total, we identified 24 putative TFBS, including 

2, 3, 14, and 5 that overlap DNMT1, DNMT3A, DNMT3B, and DNMT3L CpG target 

sites, respectively (Table 3). Notable among these 24 TFBS are those that overlap with 

CpG sites at which we identified PTSD-associated differential methylation (2 overlap the 

DNMT1 CpG; 3 overlap DNMT3B CpG 9). Binding sites for heat shock factor 1 and 

E2F-4/DP-2 heterodimeric complex were identified to overlap with the DNMT1 CpG site 

at which an increase in DNAm was observed in PTSD cases, but not controls. 

Overlapping with DNMT3B CpG site 9, at which lower pre-trauma DNAm was 

associated with PTSD development and predictive of worsening of PTSS, we identified 

binding sites for Human motif ten element, ZF5 POZ domain zinc finger, and the 

insulator protein CTCF. 
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Discussion 

Our data represent preliminary findings suggesting that pre-trauma DNAm states 

and post-trauma DNAm modifications differ between those who develop PTSD following 

trauma and those who display resiliency. While baseline PTS symptoms did not differ 

between cases and controls, baseline DNAm at a DNMT3B CpG site was higher in 

resilient individuals compared to those who eventually developed PTSD. Additionally, 

longitudinal change in DNAm at a DNMT1 CpG site was associated with PTSD, with an 

increase in DNAm being observed in those with PTSD but not controls. Finally, 

increases in DNAm were observed following trauma at DNMT3A and DNMT3B loci that 

were independent of PTSD outcome, being observed in both PTSD cases and trauma 

exposed controls. Although some of these results were attenuated following correction 

for multiple hypothesis testing, our findings suggest that epigenetic variation plays a 

complex regulatory role in PTSD risk and etiology. 

One way in which DNAm may regulate gene transcription is by altering the 

strength and occupancy of transcription factor binding (Weaver et al., 2004). To provide 

insight into potential functional consequences of the observed PTSD-associated 

differences, we conducted a secondary analysis of TFBS overlapping the distinguishing 

CpG sites. Among the sites identified was a binding site for CTCF, a transcription factor 

known to be involved in chromatin remodeling (Barkess and West, 2012). We identified 

this binding site overlapping with DNMT3B CpG site 9, at which higher DNAm was 

identified as a protective/risk factor for PTSD and symptom severity change following 

trauma exposure. Differential methylation at this site is particularly compelling as a 

determinant of PTSD risk, given that DNAm at CTCF binding sites has been shown to 
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significantly affect CTCF occupancy (Wang et al., 2012) and downstream levels of gene 

transcription (Renaud et al., 2007). Due to the nature of our samples, we are unable to 

test directly whether DNAm at these identified TFBS influences gene expression. Where 

available, we have utilized ENCODE data (Consortium, 2011) to provide evidence for or 

against transcription factor binding at the PTSD-associated sites in blood-derived cell 

types. Among the TFBS identified that overlap PTSD-associated CpG sites (DNMT1 

and DNMT3B CpG 9), ENCODE data includes binding of CTCF and E2F4. ENCODE 

data supports the binding of CTCF to DNMT3B in blood tissue (specifically b-

lymphocyte cell lines: GM12864 and GM12874), but does not support the binding of 

E2F4 to DNMT1. This supports the potential functionality of observed DNAm differences 

at DNMT3B CpG 9 in pre-trauma samples in cases vs. controls. 

DNMTs have been previously implicated in PTSD, anxiety, and fear conditioning. 

In suicide completers relative to controls, DNMT3B was upregulated in the frontopolar 

cortex, hypothalamus, and dorsal vagal complex and down regulated, along with 

DNMT1, in the hippocampus (Poulter et al., 2008). Additionally, de novo 

methyltransferases have been shown to be upregulated during contextual fear 

conditioning, also in the hippocampus (Miller and Sweatt, 2007); DNMTs are required 

for fear conditioning and memory consolidation as demonstrated, respectively, by 

administration of DNMT inhibitors (Miller and Sweatt, 2007) and the creation of mice 

with the combined knockout of DNMT1 and DNMT3A (Feng et al., 2010). Our results 

thus add to the growing evidence implicating DNMTs in phenotypes of relevance to 

PTSD, and of psychiatric phenotypes more broadly. 
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The expression of DNMTs at the mRNA (Goto et al., 1994; Veldic et al., 2004; 

Kang et al., 2011; Sterner et al., 2012) and protein (Inano et al., 2000; Feng et al., 2005; 

Veldic et al., 2005) levels in post-mitotic neurons of the central nervous system 

suggests that they are involved in methyltransferase activity that persists into adulthood 

and that is unrelated to DNA replication (Goto et al., 1994). Indeed, previous work has 

identified DNMT1 protein expression in multiple brain regions in rodents (e.g. cortex, 

cerebellum (Inano et al., 2000)), as well as in specific cortical regions in adult humans 

(e.g. Broadmann’s Area 9 (Veldic et al., 2005)). Furthermore, recent work suggests that 

our epigenetic findings in peripheral blood may be relevant to brain tissue: 

environmental exposures such as trauma have been shown to induce parallel 

epigenetic modifications in peripheral blood and brain (McGowan et al., 2011; Klengel et 

al., 2013). Although the current study, based on 450 living participants drawn from a 

population-based cohort, precludes such work, future research is needed to address 

whether the epigenetic determinants of risk observed here in peripheral blood-derived 

DNA is also found in brain-derived DNA. 

Importantly, this study adds to emerging work utilizing a longitudinal study design 

capable of measuring biological markers prior to disease onset as well as change 

between pre-disease and post-disease time points (Nieratschker et al., 2012; Rusiecki 

et al., 2012; Perroud et al., 2013; Rusiecki et al., 2013). Existing longitudinal studies 

have documented the importance of DNAm to mental health disorder risk, including 

differential change in DNAm of BDNF among individuals with vs. without borderline 

personality disorder (Perroud et al., 2013), increased DAT (SLC6A3) DNAm with age 

that may be driven by alcohol dependence (Nieratschker et al., 2012), and increasing 
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SERT DNAm associated with bullying (Ouellet-Morin et al., 2013). Most relevant to the 

present study is work by Rusiecki et al. (Rusiecki et al., 2012) which provides evidence 

for increased global DNAm in controls, but not cases following trauma exposure, 

suggesting that resiliency is associated with increased global DNAm, potentially 

mediated by increased activity and expression of DNMTs. Indeed, our data presented 

here is consistent with this scenario, as DNAm of DNMT1 was observed to increase 

following trauma in cases, but not controls. In contrast, however, we observed an 

increase in DNMT3B DNAm following trauma in both cases and controls, and a pre-

trauma association between higher DNAm pre-trauma and resiliency post-trauma. The 

presence of a CTCF binding site opens the possibility that increased DNAm at this locus 

is associated with increased gene expression 473 because CTCF can act as either a 

transcriptional activator or repressor (Phillips and Corces, 2009), with strength of DNA 

binding inversely correlated with local DNAm (Barkess and West, 2012). If binding of 

CTCF to the DNMT3B locus results in transcriptional repression, then increased DNAm, 

and concurrent decreased CTCF binding, would be associated with increased, not 

decreased, gene expression. If true, this would put these findings in line with the 

previously published, longitudinal, trauma-associated epigenetic data: decreased DNAm 

in pre-trauma PTSD cases would result in tighter CTCF binding and reduced DNMT3B 

transcription and lower global DNAm levels, as reported by Ruisecki and colleagues 

(Rusiecki et al., 2012). Although DNMT1 is typically thought to maintain DNAm in adult 

tissues, evidence suggests that DNMT1 and DNMT3B cooperatively maintain DNAm, 

with one or the other, but not both, required for global DNAm (Rhee et al., 2002). More 

broadly, our data adds to the emerging evidence that longitudinal DNAm changes may 
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contribute to the etiology of mental illness and can be taken as a proof of principle that 

locus-specific epigenetic variability both pre-exist and arise following disease-onset in 

biologically meaningful ways. 

While our study is one of the first of its kind to compare pre- and post-trauma 

DNAm levels with regard to the development of PTSD, there is a minimum of four study 

limitations that should be kept in mind when interpreting our results. First, it is important 

to recognize that the epidemiological nature of our cohort precludes sample collection 

with a well-controlled experimental time course; times between pre-trauma data 

collection, trauma exposure, and post-trauma data collection differed between each test 

subject. As such, we are unable to resolve whether observed PTSD-associated post-

trauma DNAm changes precede PTSD-development (i.e. occurred within the first four 

weeks following trauma). As DNMTs are involved in the global regulation of DNAm, it is 

tempting to conclude from our data that observed changes in DNMT DNAm are an 

upstream process of PTSD development, thereby having the potential to help explain 

differences in DNAm epigenome-wide reported elsewhere (Uddin et al., 2010; Smith et 

al., 2011a; Rusiecki et al., 2012). However, it is also possible that the observed PTSD 

associated DNAm changes are downstream effects of PTSD development, with no or 

little involvement in epigenetic modifications across the epigenome. Second, the nature 

of the epidemiological samples collected precluded the assessment of pre- and post-

trauma gene expression differences and changes, as well as any analysis of blood cell 

composition. Third, the DNAm differences and effect sizes reported here are small; 

however, they are consistent with published work showing functional effects of DNAm 

variation (Tyrka et al., 2012). High intraclass correlation coefficients between 



41 
 

 

experimental replicates for each of our assays increases confidence of the validity of 

observed DNAm differences. Indeed, our sample size and observed effect sizes are 

consistent with published work in the field (Perroud et al., 2011; Byrne et al., 2013). 

Fourth, our results are not corrected for multiple testing. Although this is consistent with 

the current state of the science of DNAm variation in association with psychiatric 

endpoints (Perroud et al., 2011; Unternaehrer et al., 2012; Perroud et al., 2013; 

Rusiecki et al., 2013), we do report corrected results (Table 2) to assess the degree to 

which our findings might be attenuated by multiple hypothesis test correction. Accepting 

a stringent FDR of 0.05 requires that we reject several findings reported as significant in 

our study, notably pre-trauma DNAm differences between cases and controls at 

DNMT3B CpG 9. However, it also means that a significant association between DNAm 

and PTSD emerges as a result of correction, as a significant change in DNAm at 

DNMT3A following trauma is only seen in controls at this stringent FDR cutoff and 

would therefore be suggestive of a resiliency-associated change in DNAm (Table 2). 

While we have chosen to utilize a stringent FDR cut-off of 0.05, other DNAm analyses 

have accepted a cut-off as high as 0.20 (Provencal et al., 2013). Overall, we stress the 

preliminary nature of these findings—both uncorrected and corrected for multiple 

hypothesis testing—and the importance of replication in an independent cohort. 

Individuals exposed to trauma differ in their risk for subsequent PTSD. Our data 

suggest that variation in pre-trauma DNAm and post-trauma DNAm change may be part 

of the molecular underpinnings of PTSD risk and resiliency. Future research is needed 

to determine if the DNAm variation observed here is associated with functional changes 

that affect the long-term biology of individuals exposed to trauma. The identification of 
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risk markers, including epigenetic markers, is an important step to understanding the 

biological underpinnings of PTSD risk and may lead to the development of tools to 

identify those individuals most at risk of developing PTSD as well as to develop 

evidence-based interventions. 
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Abstract 

Epigenetic marks, including DNA methylation, are modifiable molecular factors 

that may underlie mental disorders, especially responses to trauma, including the 

development of and resilience to posttraumatic stress disorder (PTSD). Previous work 

has identified differential DNA methylation at CpG dinucleotide sites genomewide 

between trauma exposed individuals with and without PTSD, suggesting a role for 

epigenetic potential – the capacity to epigenetically regulate behavior and physiology in 

response to lived experiences. The human species is characterized by an increased 

period of adaptive plasticity during brain development. The evolutionary history of 

epigenetic potential in relation to adaptive plasticity is currently unknown. Using 

phylogenetic methods and functional annotation analyses, we trace the evolution of 

over 7,000 CpG dinucleotides, including 203 associated with PTSD, during the descent 

of humans in during mammalian evolution and characterize the biological significance of 

this evolution. We demonstrate that few (7%) PTSD-associated CpG sites are unique to 

humans, while the vast majority of sites have deep evolutionary origins: 73% and 93% 

were unambiguously present in the last common ancestor of humans/orangutans and 

humans/chimpanzees, respectively. Genes proximal to evolved PTSD-associated CpG 

sites revealed significant enrichment for immune function during recent human evolution 

and regulation of gene expression during more ancient periods of human evolution. 
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Additionally, 765 putative transcription factor binding motifs (TFBMs) were identified that 

overlap with PTSD-associated CpG sites. Elucidation of the evolutionary history of 

PTSD-associated CpG sites may provide insights into the function and origin of 

epigenetic potential in trauma responses, generally, and PTSD, specifically. The human 

capacity to respond to trauma with stable physiologic and behavioral changes may be 

due to epigenetic potentials that are shared among many mammalian species. 

 

Introduction 

The human species is characterized by an increased period of adaptive plasticity 

during brain development (Chugani, 1998; Sterner et al., 2012). This phenotypic 

plasticity enables individuals to respond in unique ways to environmental stimuli. Among 

other mechanisms, DNA methylation regulates phenotypic plasticity through epigenetic 

marks that are stable yet capable of experience-mediated dynamic change (Moore et 

al., 2013). Although DNA methylation may underlie mechanisms of phenotypic plasticity, 

the functional evolution of DNA methylation-mediated plasticity requires the presence of 

a genetic nucleotide substrate – the CpG dinucleotide. We thus refer to the presence of 

CpG dinucleotides required for phenotypic plasticity, “epigenetic potential”. The 

evolutionary history of this epigenetic potential is crucial to understanding various forms 

of phenotypic plasticity and related mental health outcomes. 

Posttraumatic stress disorder (PTSD) and resiliency comprise two phenotypes 

that may arise subsequent to exposure to a traumatic event. Given that trauma is 

unpredictable yet probable within a lifetime, mechanisms of phenotypic plasticity in 

response to trauma are expected to exist, despite the prediction that such mechanisms 
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will be costly (West-Eberhard, 2003). As such, we expect the epigenetic potential that 

underlies the capacity for trauma-induced phenotypic plasticity is possibly highly 

conserved. In humans, PTSD and trauma resiliency are associated with differential DNA 

methylation genomewide (Uddin et al., 2010; Smith et al., 2011b) and, therefore, may 

be regulated by epigenetic potential. 

Diagnostically, PTSD is a mental health disorder characterized by symptoms of 

intrusion, avoidance, and alterations in cognition and mood that cause distress or social 

impairment, last for more than one month, and are associated with a traumatic event 

consisting of direct or indirect exposure to actual or threatened death, injury, or sexual 

violation (Association, 2013). Although PTSD diagnoses have historically been confined 

to humans, the capacity to express traumatic symptoms likely exists on other primate, 

and possibly non-primate mammalian, lineages. For example, abused chimpanzees 

have been reported to exhibit symptoms that in humans are considered characteristic of 

PTSD, including symptoms of avoidance, arousal, and dissociation (Bradshaw et al., 

2008; Ferdowsian et al., 2011); elephants exposed to human violence have been 

documented exhibiting behaviors characterized by hyperaggression, abnormal startle 

response, depression, and asocial behaviors (Bradshaw et al., 2005); and rodents have 

been used as a model of PTSD, given their responses to trauma of social withdrawal 

and hyperarousal (Siegmund and Wotjak, 2006). These observations suggest that the 

capacity to express traumatic symptoms in response to extreme stress exists on non-

human lineages within primate or mammalian clades and that this capacity may be an 

ancestral state (Horwitz AV, 2012). 
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Emerging evidence suggests that epigenetic variation may help explain observed 

differential susceptibility and resilience to PTSD in humans (Breslau et al., 1998). 

Indeed, recent studies (Uddin et al., 2010; Smith et al., 2011b; Mehta et al., 2013), have 

demonstrated differential DNA methylation genomewide between individuals with PTSD 

and trauma exposed individuals without PTSD. Each of these studies demonstrated 

epigenetic dysregulation of immune system genes (Uddin et al., 2010; Smith et al., 

2011b) – a finding that is consistent with the knowledge that the hypothalamic-pituitary-

adrenal axis modulates the immune system (Wong, 2002; Irwin and Cole, 2011) and 

findings from previous publications that differential gene expression patterns in genes 

involved in immune activation exist between PTSD-affected and -unaffected individuals 

(Segman et al., 2005; Zieker et al., 2007). PTSD, therefore, appears to be epigenetically 

regulated. 

The evolutionary history of human epigenetic potential in relation to trauma-

induced phenotypic plasticity would likely be informative of human phenotypic plasticity 

responses, generally, and PTSD, specifically. We hypothesized that the capacity to 

regulate behavioral, physiological, and psychological processes in response to 

traumatic experiences is mediated by epigenetic regulation at genetically inherited CpG 

loci that are largely conserved across mammalian species. Specifically, we expect that 

most of the CpG sites associated with the epigenetic regulation of PTSD will be largely 

conserved (that is, not unique to humans), but instead will have much more ancient 

origins. Here we test this hypothesis by tracing and characterizing the evolution of 

human CpG dinucleotides previously associated with DNA methylation patterns in 

whole blood that differentiate trauma exposed individuals with PTSD from those without 
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PTSD. Doing so, we reveal the phylogenetic history of genetic CpG sites previously 

shown to be associated with the capacity to epigenetically regulate PTSD in humans 

and characterize different periods of the evolution of humans and other mammals. 

 

Materials and Methods 

Emergence of CpG Sites during Human Descent 

Human CpG site annotation data was obtained from the Infinium 

HumanMethylation27 (HM27) DNA Analysis BeadChip by Illumina, which targets 27,578 

CpG sites in more than fourteen-thousand genes. Multiple sequence alignments were 

constructed using both Ensembl (v54, PECAN(Paten et al., 2008) for global multiple 

sequence alignments) and UCSC (Feb. 2009 assembly; Z-blast (Rosenbloom et al., 

2010) for local multiple sequence alignments) using publicly available genomes of the 

following species: human (Homo sapiens), chimpanzee (Pan troglodytes), orangutan 

(Pongo abelii), macaque (Macaca mulatta), mouse (Mus musculus), rat (Rattus 

norvegicus), cow (Bos taurus), horse (Equus caballus), dog (Canis lupus familiaris), 

opossum (Monodelphis domestica), platypus (Ornithorhynchus anatinus), and chicken 

(Gallus gallus). The accelerated transformation maximum parsimony (ACCTRAN) 

algorithm (JS, 1970), implemented in PAUP*4.0, was used to infer ancestral CpG site 

statuses for 19,711 alignable CpG sites. Only CpG sites for which alignments could be 

constructed using both UCSC and Ensembl and for which ancestral states were inferred 

unambiguously by parsimony (CI=1) were utilized in downstream analyses. Using this 

process, the evolutionary history of 7202 CpG sites were unambiguously inferred along 

human descent within the context of a 12 species mammalian phylogenetic tree. 
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A note on human descent branch labels 

Throughout this paper we refer to branches on human descent in the following 

way, with divergence times estimates from (Meredith et al., 2011) where applicable, and 

(Jameson et al., 2011) for primate nodes. 

Human terminal: 7.2 million year period from the LCA of humans and 

chimpanzees until present. 

Human/chimpanzee stem: 10.8 million year period from the LCA of humans and 

orangutans (18.0mya) to the LCA of humans and chimpanzees (7.2mya). 

Ape stem: 7.4 million year period from the LCA of humans and macaques 

(24.5mya) to the LCA of humans and orangutans (18.0mya). 

Primate stem: 57.9 million year period from the LCA of humans and rodents 

(83.3mya; here represented by rat and mouse) to the LCA of humans and 

macaques (25.4mya). 

Euarchontoglires stem: 8.7 million year period from the LCA of humans and 

Laurasiatherians (92.0mya; here represented by dog, horse, and cow) to the 

LCA of humans and rodents (83.3mya). 

Placental stem: 98.0 million year period from the LCA of humans and 

opposums (190.0mya) to the LCA of humans and Laurasiatherians (92.0mya). 

Theria stem: 27.8 million year period from the LCA of humans and platypus 

(217.8mya) to the LCA of humans and opossum (190.0mya). 

Mammal stem: 106.7 million year period from the LCA of humans and chickens 

(324.5mya) to the LCA of humans and platypus (217.8mya). 
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Evolution of PTSD-associated CpG sites during Human Descent 

To gain insights into the evolutionary history and functional adaptive nature of 

PTSD, we inferred the evolutionary history of 203 PTSD-associated CpG sites identified 

by Uddin et al (Uddin et al., 2010). Smith et al. (Smith et al., 2011b) and Mehta et al. 

((Mehta et al., 2013)) have also published associations between PTSD and differential 

DNA methylation. Because samples utilized by these studies were chosen based on 

substantially different selection criteria – confined to PTSD in Uddin et al (Uddin et al., 

2010), whereas including selection for total life stress and childhood abuse in Smith et 

al. (Smith et al., 2011a) as well as Mehta et al. (Mehta et al., 2013) – we have chosen to 

analyze here only those PTSD-associated CpG sites identified by Uddin et al (Uddin et 

al., 2010). 

The following was completed on the 203 PTSD-associated CpG sites from Uddin 

and colleagues (Uddin et al., 2010) that mapped unambiguously onto our 12 species 

phylogenetic tree. Branch-specific rates of evolution during human descent were 

calculated using divergence dates estimates detailed above. Chi-square tests were 

utilized to analyze branch specific rates of evolution and are described in following: 

1) a Chi-square test was used to test whether statistically significant 

differences exist between the branch distribution observed in the whole 

dataset (7202 sites) and the PTSD-associated subset (203 sites). For this 

test, expected and observed values represent, respectively, the 

distribution of changes of the whole data set and the PTSD-associated 

dataset. 
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2: a Chi-square test was used to test whether the number of PTSD-

associated changes was branch specific (all branches considered). 

Respectively, expected and observed values represent an even 

distribution of changes and the actual distribution of changes in the 

dataset.  

3: given that there was a statistically significant difference according to 

branch, we used Chi-square tests to determine which branches differed 

from one-another (all individual branches compared to all other individual 

branches).  

Putative transcription factor binding motifs (TFBMs) were identified that overlap 

with CpG sites of interest using the Genomatix MatInspector (Quandt et al., 1995; 

Cartharius et al., 2005) tool, with default settings. Input sequences included 60 base 

pairs up- and downstream of PTSD-associated CpG dinucleotide sites, as obtained 

from the Infinium HumanMethylation27 (HM27) DNA Analysis BeadChip by Illumina. 

The Database for Annotation, Visualization and Integrated Discovery (DAVID) (Huang 

da et al., 2009) was used with default settings to assess branch-specific enrichment of 

gene ontology terms and functional annotation clustering (FAC) among genes proximal 

to PTSD-associated CpG sites. Genes proximal to the 7202 total CpG sites for which 

evolution was unambiguously inferred were used as background for enrichment 

computations. Functional annotation clusters with Enrichment Scores greater than 1.3 

were considered significant (Cartharius et al., 2005; Huang da et al., 2009). 
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Results 

Inference of PTSD-associated CpG dinucleotide phylogenetic history 

The phylogenetic histories of 7202 CpG dinucleotide sites from across the 

genome and assessed by the DNA methylation microarray were unambiguously 

mapped onto a mammalian phylogenetic tree (Figure 6A) by inferring ancestral states 

using a maximum parsimony method (Supplemental Table 1). Of these, 203 were 

previously identified to be differentially methylated in association with PTSD (Uddin et 

al., 2010). 

Of the 7202 human CpG sites examined in extant mammals, 10.5%, 52.0%, 75.0%, and 

91.4% were present in the last common ancestor (LCA) of humans and rodents, Old 

World monkeys, orangutans, and chimpanzees, respectively. 8.6% of the CpG sites 

assessed evolved on the human terminal branch. The percentage of of 203 PTSD-

associated CpG sites evolved prior to the LCA of humans and rodents (7%), Old World 

monkeys (48%), orangutans (73%), and chimpanzees (93%) showed a branch 

distribution that did not differ statistically from that observed among the total 7202 

assessed CpG sites (chi-square=0.044, df=7, p>0.99) (Figure 6B). Among all CpG sites 

assessed as well as the subset of those associated with PTSD, there was a statistically 

significant association between branch of human descent and number of evolved CpG 

sites (Table 1; Total: chi-square=7936.26, df=7, p<0.0001; PTSD subset: chi-

square=247.56 df=7, p<0.0001), such that the number of evolved PTSD-associated 

CpG sites was lowest on the mammal, Theria, placental, and Euarchontoglires stems, 

rose sharply beginning with the primate stem, peaked on the ape stem, and then 

decreased slightly on the human/chimpanzee stem and human terminal branch. The 
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number of PTSD-associated CpG sites that evolved on the primate stem was 

significantly greater than any other branch of human descent assessed. (Table 1, Figure 

6B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 6. Evolutionary history of PTSD-associated CpG dinucleotides. Bars, tree 
branches, and time scales in panels A-C are color coordinated and vertically aligned. 
Red: mammal stem; Orange: Theria stem; Yellow: placental stem; Green: 
Euarchontoglires stem; Light Blue: primate stem; Dark Blue: ape stem; Purple: 
human/chimpanzee stem; Pink: human stem A) Mammalian phylogenetic tree with 
species genomes utilized for the inference of molecular evolution here. Divergence 
dates at internal nodes along human descent, in millions of years ago. B) The absolute 
number (colored bars) and cumulative percentage (gray bars) of PTSD-associated CpG 
sites evolved on branches of human descent, as inferred by parsimony. C) Branch-
specific rates of evolution of PTSD-associated CpG sites through human descent.  
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Because there is high variability among the evolutionary time that spanned each 

of the branches assessed (Figure 6A), we computed branch-specific rates of evolution 

of total and PTSD-associated CpG sites (Figure 6C). The evolutionary rate of PTSD-

associated CpG sites was statistically greater on the primate, ape, human/chimpanzee, 

and human terminal branches compared to that on the mammal, Theria, placental, and 

Euarchontoglires branches (Table 1, Figure 6C). PTSD-associated CpG sites evolved at 

the highest rate (6.9 changes/million years) on the ape stem (Table 1, p<0.001 vs. all 

other branches). The rate of PTSD-associated CpG site evolution was lowest (Table 1) 

during human descent from the last common ancestor of all extant mammals 324.5 

million years ago until the LCA of humans and rodents 92 million years ago (combined 

mammal+Theria+placental+Euarchontoglires stem lineages), during which time the 

evolutionary rate of PTSD-associated CpG sites never exceeded 0.2 changes/million 

years; the rate of PTSD-associated CpG evolution did not significantly vary between 

these branches of more ancient human descent (Table 1). Additionally, we observed a 

strong association between branch-specific evolution of all CpG sites and PTSD-

associated CpG sites (Figure 7; R2=0.98338). That is, the proportion of PTSD-

associated CpGs among all evolved CpGs was found to scale linearly through human 

descent. 

Gene functional enrichment analyses of PTSD-associated CpG dinucleotides 

In order to shed light on selection pressures and biological significance of the 

evolution of PTSD-associated CpG sites, we tested for enrichment of gene ontology 

terms among genes located proximal (as predicted by beadchip annotation) to evolved 

PTSD-associated CpG sites. Background for this enrichment analysis was genes 

proximally located to the 7202 total CpG sites for which evolutionary history was 
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unambiguously inferred (Supplemental Table 1). Enrichment analyses were completed 

for all 203 PTSD-associated CpG sites identified by Uddin et al (Uddin et al., 2010) 

(Supplemental Tables 2, 3, and 4) as well as on a branch-by-branch basis (Table 2). 

Annotation clusters with the five highest enrichment scores on each branch are listed in 

Table 2. The complete results of functional annotation analyses, including enriched GO 

terms (Supplemental Table 2) and significantly enriched Functional Annotation Clusters 

(Supplemental Table 3) can be found in Supplemental Tables; Significant FAC results 

(considered here to be those clusters with enrichment scores greater than 1.3 (Huang 

da et al., 2009)) can be found in Supplemental Table 4. We detail several noteworthy 

findings below. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 7. Proportion of PTSD-associated CpG dinucleotides among all evolved 
CpG dinucleotides scales linearly through human descent. Color of circles 
corresponds to branches of human descent, as indicated in Figure 6. Red: Mammal 
stem; Orange: Theria stem; Yellow: placental stem; Green: Euarchontoglires stem; Light 
Blue: primate stem; Dark Blue: ape stem; Purple: human/chimpanzee stem; Pink: 
human stem. 
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In general, enriched annotation clusters involved transcriptional regulation 

throughout human descent, with the addition of immune-related annotations during 

more recent periods of human descent (Table 2). The human/chimpanzee stem lineage, 

during which the rate of PTSD-associated CpG evolution was greatest, was significantly 

enriched in annotation clusters involved in immune function, including adaptive (b cell 

receptor signaling pathway) and innate immune response (natural killer cell-mediated 

cytotoxicity) (Table 2). Likewise, the human terminal and ape stem lineages were 

enriched for immune response and B cell signaling annotation clusters, respectively 

(Table 2). Previous studies have found differential expression of immune function genes 

between trauma exposed persons with and without PTSD (Segman et al., 2005; Zieker 

et al., 2007). It is noteworthy, therefore, that the human terminal branch showed a FAC 

enriched for a number of immune functions including among others: immune response, 

immune response-activating cell surface receptor signaling pathway, T cell activation, 

lymphocyte activation, and leukocyte activation (Table 2).  

In contrast, the primate stem lineage, on which the greatest number of PTSD-

associated CpG sites evolved, had a FAC heavily associated with transcriptional 

regulation, including genes involved in epigenetic regulation: HDAC1 and HDAC11 

(Table 2). Additionally, the annoation clusters with the three highest enrichment scores 

were found on the primate stem; each involved in transcriptional regulation and heavily 

enriched for zinc finger transcription factors (Table 2). It is noteworthy also that, with the 

exception of the human terminal, human/chimpanzee branch, and Euarchontoglires 

branch, each branch contained among its five most enriched clusters at least one 

involved in transcriptional regulation (Table 2). 
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Table 5. Top 5 functional annotation clusters of genes proximal to PTSD-
associated CpG sites evolved on different branches of human descent. 
Stem Branch Annotation Cluster Cluster Rank Enrichment Score 

Human Plasma membrane 1, 2, 3, 4 3.30, 2.98, 1.47, 

1.45  Immune Response 5 1.30 

Human/chimpanzee Pathways in cancer 1 3.20 

 B cell receptor signaling pathway 2 3.17 

 MAPK/GnRH/Fc epsilon RI 

signaling 

3, 4 2.85, 2.38 

 Intestinal immune network (IgA) 5 2.09 

Ape zinc finger/ion binding 1 3.75 

 Plasma membrane 2 3.51 

 Transcription/Zinc finger regions 3 3.29 

 B cell/Fc epsilon RI/VEGF/GnRH/ 
Natural killer cell Signaling 

4 2.68 

 Long-term potentiation 5 2.46  

Primate  zinc finger region:C2H2 1, 2 7.74, 4.09 

 Transcription regulation 3 4.01 

 Plasma membrane 4 3.52 

 Intracellular organelle lumen 5 3.24 

Euarchontoglires Src homology-3 domain 1 1.32 

Placental transcription regulation 1, 2 2.88, 2.13 

 Protein modification 3 1.84 

 Cell fraction 4 1.35 

 Regulation of apoptosis 5 1.31 

Theria intracellular, non-membrane 

bound 

1 2.80 

 Transcription regulation 2 2.39 

 DNA-binding/helix-loop-helix 3 1.98 

 Organelle lumen 4 1.94 

 Sensory perception 5 1.42 

Mammal negative regulation of 

transcription 

1 1.71 
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Transcription factor binding motif identification and characterization 

As DNA methylation can regulate gene expression by structurally blocking 

transcription factor binding within gene promoter regions(Curradi et al., 2002), we 

sought to identify putative transcription factor binding sites that overlap with the 203 

PTSD-associated CpG sites. Using a motif prediction algorithm, 765 total transcription 

factor binding motifs (TFBMs) were identified that overlap 196 PTSD-associated CpG 

sites. Of these, 765, 407, 188, and 22 putative TFBMs were identified that overlap with 

196, 163, 107, and 21 unique PTSD-associated CpG sites at detection stringencies 

(mat_sim) of >0.80, >0.90, >0.95, and =1, respectively (Supplemental Table 5). A 

stringency score of 1 indicates that the candidate sequence corresponds to the most 

conserved nucleotide at each position of the reference matrix. The 22 TFBMs with the 

highest stringency score (i.e. 1) spanned 21 different PTSD-associated CpG sites 

(Table 3). Two TFBMs with a stringency score of 1 spanned the CpG site cg13316424 

of the gene CIZ1. Further, these 22 TFBMs were distributed among 9 different matrix 

families (Table 3). Notably, 4 of these TFBMs represent binding sites for transcription 

factor II B, which makes up the RNA polymerase II pre-initiation complex, while 2 are 

putative bindings sites of the transcription factor Beta2/NeuroD, which is responsible for 

neuron- and endocrine cell-specific gene expression. PTSD-associated CpG sites that 

overlap the RNA polymerase II pre-initiation complex binding motifs evolved on the ape 

(cg10498097/MGC50811), primate (cg04033774/GPSM2 and cg20318748/NANP), and 

placental (cg24673765/HSPB6) stem lineages, while those that overlap with 

Beta2/NeuroD binding motifs evolved on the ape (cg04587829/FN3K) and primate 

(cg00427635/TBC1D21) stem lineages. The branch-specific breakdown of the evolution 
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of the 22 high stringency TFBMs is as follows: human (2), human/chimpanzee (5), ape 

(6), primate (5), placental (2), and therian (2). 

 
Table 6. Matrix Families of TFBMs (mat_sim=1) that overlap PTSD-associated CpG 
dinucleotides. 
Matrix Family  CpG Gene Stem Branch  

C2H2 zinc finger transcription factors 2 cg27318281 C18ORF37 Human 

 cg19047670 CCND1 Human/chimpanzee 

 cg00962459 PROKR1 Ape 

 cg03570766 CATSPER1 Ape 

 cg12439773 SLC22A6 Theria 

RNA Polymerase II transcription factor II B cg10498097 MGC50811 Ape 

 cg04033774 GPSM2

  
Primate  

 cg20318748 NANP Primate 

 cg24673765 HSPB6

  
Placental 

Pleomorphic adenoma gene cg06445611 GABRR2 Human/chimpanzee 

 cg24505375 AMAC1L2 Human/chimpanzee 

 cg13316424 CIZ1 Primate  

 cg21835643 RBPSUHL Theria 

NeuroD, Beta2, HLH domain cg04587829 FN3K Ape 

 cg00427635 TBC1D21 Primate 

TALE homeodomain class recognizingTG 
motifs 

cg19531130 ANGPTL5 Human/chimpanzee 

 cg01813965 C16orf50 Ape 

Cart-1 (cartilage homeoprotein 1) cg13316424 CIZ1 Primate 

Human and murine ETS1 factors cg06084117 PLXNA4B Human/chimpanzee 

 cg20792833 PTPRCAP Placental 

Vertebrate SNAD family of transcription 
factors 

cg13471990 ENTPD1 Ape 

Par/bZIP family  cg25293251 GOLGA5 Human 
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Discussion 

Epigenetic modifications provide a mechanism by which lived experiences can 

reprogram gene expression patterns and affect biological processes broadly. The 

epigenetic potential to respond to stress and trauma is likely conserved across 

mammalian species. As such, we predicted that the genetic elements (CpG dinucleotide 

sites) required for this epigenetic potential would be conserved. We have previously 

demonstrated that differential DNA methylation of CpG dinucleotides genomewide 

distinguish those with PTSD from trauma exposed individuals without PTSD (Uddin et 

al., 2010). Here, by tracing and characterizing the evolutionary history of 203 of these 

PTSD-associated CpG dinucleotide sites using functional annotation clustering and 

transcription factor binding motif identification, we provide evidence that the genetic 

substrate associated with divergent epigenetic responses to trauma is largely conserved 

across mammalian species. Among those PTSD-associated CpG sites for which we 

could unambiguously infer ancestral states, we demonstrate that 1) the majority evolved 

prior to the LCA of humans and Old World monkeys, 2) there is an enrichment among 

genes found proximal to evolved PTSD-associated CpG dinucleotides on all branches 

of human descent for annotation clusters involved in transcriptional regulation, while 

more recent branches of human descent (ape and human/chimpanzee stem branches, 

and human terminal branch) are enriched also for immune function-related annotation 

clusters; and 3) there is overlap with more than 800 putative TFBMs, the 22 most 

stringently selected of which fall into 9 TFBM families and evolved overwhelmingly on 

primate, ape, human/chimpanzee, and human stem terminal. Taken together, our data 

demonstrate that the human potential to epigenetically regulate traumatic responses 
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may be shared with non-human primates and that the evolution of this capacity likely 

involved the targeting of TFBMs of many genes, including those involved in immune 

response and transcriptional regulation.  

Functional annotation clustering and enrichment analysis of gene ontology terms 

identified enrichment of FACs involved in immune functioning that emerged throughout 

human descent generally, with over representation primarily concentrated during the 

most recent 15 million years of human evolution. It is notable that immune function 

dysregulation is a common finding among individuals with PTSD (Uddin et al., 2010; 

Smith et al., 2011b) and evidence suggests that the immune system may play an 

important role in PTSD phenomenology (Segman et al., 2005; Zieker et al., 2007). 

Although not surprising, it is important to note that functional annotation enrichment 

among the 203 PTSD-associated sites tested here do not markedly differ from that 

observed in the larger dataset of 624 differentially methylated sites from Uddin and 

colleagues (Uddin et al., 2010). Indeed, the immune system interfaces closely with the 

HPA axis, a key regulator of the stress response. Glucocorticoids from the HPA axis 

trigger changes in expression of cytokines and inflammatory genes in leukocytes, while 

cytokine receptors in the hypothalamus trigger the release of glucocorticoids from the 

HPA axis in response to immune activation (Irwin and Cole, 2011). This complex 

interplay between the HPA axis and the immune system supports the evidence of 

immune involvement presented here. The identification of enriched immune function 

FACs may suggest recent evolutionary innovations or selection pressures on the ability 

of the immune system to respond to environmental exposures, possibly including 

trauma. Moreover, there is now clear evidence that the immune response is associated 
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with a variety of mood disorders, and that cytokine activation in peripheral blood as well 

as brain cells, particularly microglia, underlie this association (Jones and Thomsen, 

2013). 

DNA methylation is thought to regulate gene expression, in part, by blocking the 

binding of transcription factor to binding sites (Iguchi-Ariga and Schaffner, 1989). 

Indeed, while several studies have identified differential methylation between trauma 

exposed individuals affected and unaffected by PTSD (Uddin et al., 2010; Smith et al., 

2011b), it is unclear what functional connection explains this association. Here, we 

identified approximately 800 putative transcription factor binding motifs that overlap 

PTSD-associated CpG sites, 22 of which met the highest detection stringency. 

Interestingly, 13 of these 22 putative binding sites overlapped with PTSD-associated 

CpG sites that evolved during relatively recent human evolution (human terminal = 2, 

human/chimpanzee stem = 5, ape stem = 6). 

Our approach is novel in that it combines empirical insights of epigenetic 

variation to inform a genetic comparative analysis for the purpose of understanding 

human evolution. Classically, comparative molecular studies have compared genetic 

sequence or expression variation across species. However, recent work has compared 

DNAm variation across species (Zeng et al., 2012; Hernando-Herraez et al., 2013), with 

the hypothesis that species differences are due in part to gene regulatory differences 

created by species-specific promoter methylation. In contrast, we explore here a trait 

thought to be undergirded by epigenetic malleability and conserved across species.  

A speculative interpretation of this data is that, in light of the strong conservation 

of PTSD-associated CpG sites, the potential to epigenetically regulate responses to 
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extreme traumatic stress may well be adaptive. Depending on environmental 

circumstances, PTSD or anxiety states more generally, can increase or decrease 

evolutionary fitness. Increased states of anxiety, although perhaps not ideal in many 

situations, can theoretically increase evolutionary fitness (Nesse, 2001; 2005). For 

example, genetic variants of catechol-O-methyltransferase (COMT) have been 

associated with a tradeoff between cognitive ability and behavioral measures of anxiety 

and stress resilience, giving rise to the so-called Worrier/Warrior selectionist model 

(Stein et al., 2002; Goldman et al., 2005; Mier et al., 2010). An epigenetically regulated 

developmental program that facilitates the plasticity required to assume an appropriate 

phenotype in response to environmental conditions may be similarly adaptive(Meaney, 

2010). Given that there is strong conservation of PTSD-associated CpG sites among 

non-human primates, it may be the case that selective pressures have maintained the 

capacity to increase or decrease PTSD-like responses to trauma, including re-

experiencing-, avoidance-, emotional numbing-, social withdrawal-, and hyperarousal-

type symptoms in response to lived experiences and environmental exposures. We 

propose that the capacity to develop and epigenetically regulate a PTSD-like syndrome 

is potentially present in many mammalian species. Indeed, symptoms resembling PTSD 

and other mood disorders have been observed in chimpanzees (Bradshaw et al., 2008; 

Ferdowsian et al., 2011). We do not, however, expect that all species will respond to 

trauma exposure in the same way. Just as only a subset of trauma exposed humans 

develop PTSD symptoms, it is likely that individual variation within and among species 

is common in response to trauma exposure. Finally, the evolutionary history of the 

capacity to epigenetically regulate trauma responsivity is significant in light of the finding 
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that environmentally induced epigenetic inheritance interacts with lifetime stress to alter 

brain development and genome activity (Crews et al., 2012). 

Our study is limited by the number of CpG dinucleotides assessed by the 

methylation microarray and the number of publically available genomes utilized. While 

inclusion of additional genomes would have allowed the inference of phylogenetic 

histories with greater resolution, doing so would have limited the number of CpG sites 

analyzed in downstream analyses due to a larger number failing to meet our 

requirement of an unambiguous multiple sequence alignment. Inclusion of more species 

will provide valuable information and warrants further research. Indeed, because a large 

number of PTSD-associated CpG sites are shared among primates, the replication of 

this study with a more detailed primate phylogeny would be insightful. Additionally, 

characterization of the evolutionary history of the human capacity to epigenetically 

regulate trauma responses is limited by the incompleteness of PTSD-associated CpG 

sites assessed. Specifically, only 203 of 624 PTSD-associated CpG sites from Uddin et 

al (Uddin et al., 2010) were both alignable and perfectly parsimonious, and therefore 

characterized here. That a majority of PTSD-associated CpG sites were unalignable or 

perfectly parsimonious is evidence of the dynamic nature of CpG evolution. Future 

studies are also needed to address the results here with regard to rapid deamination of 

methylated cytosines. Because of the high deamination mutation rate of methylated 

cytosines to thymines, there is an underrepresentation of CpG dinucleotides in the 

human genome. This may largely explain the observation that the vast majority of CpG 

evolution, including that of PTSD-associated CpGs, occurred more recently during 

human descent. Given this, it may be reasonable to examine the functional significance 
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of those PTSD-associated CpG sites that evolved more anciently, assuming that they 

have been conserved because of a strong selection pressure to maintain them. The 

observation that immune system genes are enriched among the analyzed genes on 

more recent branches of human evolution does not necessarily imply that immune 

genes are not important in the evolution of nonhuman lineages. Finally, it should be 

noted that the identification of the PTSD-associated CpG sites analyzed here was 

performed using DNA methylation obtained from peripheral blood samples. While brain-

derived DNA methylation data would be ideal to identify PTSD-associated biological 

markers, this is not feasible given a desire to use samples provided by living humans. 

However, individuals with PTSD have been shown to have reduced hippocampal area 

and hyperactivated amygdala relative to trauma exposed controls (reviewed in (Pitman 

et al., 2012)). Moreover, recent work suggests that there can be concordance between 

DNA methylation patterns in the blood and brain for stress-relevant genes (Klengel et 

al., 2013). 

Interestingly, while we have traced and characterized the evolutionary history of 

PTSD-associated CpG sites, we also now have data on the evolution of non-PTSD-

associated CpG sites. Comparing the branch-specific rates of evolution demonstrates 

that the rate of evolution of PTSD-associated CpG sites seems to scale linearly with 

human descent – suggesting that the evolutionary pattern observed, at least in terms of 

evolutionary rate, is a function of CpG evolution generally.  

The vast majority of people experience a potentially traumatic event at some 

point in their lifetime, yet relatively few subsequently develop the diagnosable mental 

disorder PTSD. Elucidating the molecular and evolutionary underpinnings of severe 
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trauma responses, such as PTSD, are required for the prevention and treatment of the 

disorder and for identifying factors involved in discrepancies in risk and resilience. Here, 

we contribute to the ongoing study of epigenetic influences on PTSD etiology and 

differential risk by having traced and characterized the evolution of genomic sites 

associated with the development of PTSD. Our data suggest that PTSD-associated 

CpG sites are found at highly predicted transcription factor binding sites, that the 

majority of such sites are shared by all primates and that the overrepresentation of 

PTSD-associated CpGs proximal to immune system-related genes may have 

disproportionately evolved during our more recent evolutionary history. Taken together, 

this data supports the hypothesis that the DNA sequences necessary for the epigenetic 

potential to develop a range of phenotypes in response to trauma (e.g. PTSD or 

resiliency) in humans have deep evolutionary origins and are widely conserved among 

mammalian species. It will be exciting to discover whether these epigenetic signals 

contributed to the evolution of human brain function and/or dysfunction. 
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Chapter 4. Genetic roles of the HPA axis in PTSD etiology 
 

Abstract 

Posttraumatic stress disorder (PTSD) is characterized by variable risk and resiliency, 

with a minority of individuals exposed to trauma subsequently developing diagnosable 

PTSD. Genetic variation may undergird this variable risk. Dysregulation of the 

hypothalamic-pituitary-adrenal (HPA) axis is commonly observed among individuals 

with PTSD and may underlie the etiology or symptoms of PTSD. As such, genetic 

variants of genes involved in the HPA axis constitute candidates for association with 

PTSD risk. The association between PTSD and 411 SNPs covering 21 HPA axis genes 

was tested using set-based association tests. We utilized genomic SNP data from a 

subset of the Detroit Neighborhood Health Study (DNHS), constituting 778 (trauma-

exposed individuals 140 cases, 638 controls). Our analyses failed to provide evidence 

in support of association between HPA axis SNPs and PTSD risk. Although eight SNPs 

were nominally statistically significantly associated with PTSD, none passed correction 

for multiple hypothesis testing. Set-based tests were employed to test the significance 

of sets of HPA axis SNPs, by gene, however no evidence of association with PTSD was 

found at the set level. This study represents preliminary data on the association 

between PTSD risk and HPA axis genetic variation. Numerous study design issues may 

account for the negative results of this study. We discuss these explanations and 

provide recommendations for future studies. 
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Introduction 

Post Traumatic Stress Disorder (PTSD) is an important medical issue (Kessler, 

2000; Druss et al., 2009). In the United States, lifetime prevalence is estimated to be 

6.8% in the general population (Kessler and Wang, 2008) and 15-40% in inner city and 

combat-veteran populations (Villagomez et al., 1995; Breslau et al., 2004; Horowitz et 

al., 2005; Schwartz et al., 2005). PTSD is associated with numerous comorbidities, 

including an increased risk of major depression (Breslau et al., 2000), substance 

dependence (Breslau et al., 2003), reduced life course opportunities (Kessler, 2000), 

and physical health problems (Farley and Patsalides, 2001; Simpson, 2002; Zayfert et 

al., 2002) including incident cardiovascular disease (Kessler, 2000; Kubzansky et al., 

2007; Kubzansky and Koenen, 2009; Kubzansky et al., 2009). The total cost to the 

nation is an estimated $3.8 billion annually (Kessler, 2000). By definition, PTSD 

develops following exposure to a Potentially Traumatic Event (PTE) (Shalev, 2001), 

witnessed or experienced by the individual; this PTE must involve the threat or actuality 

of death, injury, or physical integrity; and must cause clinically significant distress or 

impairment in the individual’s social interactions, capacity to work or other important 

areas of functioning(APA, 2013). Although a majority (50-90%) (Kessler et al., 1995) of 

Americans experience a PTE in their lifetime, only a minority develop PTSD (Kessler et 

al., 1995; Breslau et al., 1998; Acierno et al., 2007). Environmental factors at both 

individual and community levels, such as gender, race, educational attainment (Kulka 

RA, 1990; Brewin et al., 2000; Koenen et al., 2002; DiGrande et al., 2008; Galea et al., 

2008; Kun et al., 2009), socioeconomic position (Kulka RA, 1990; Brewin et al., 2000; 

Koenen et al., 2002; Breslau et al., 2004; Koenen, 2007; DiGrande et al., 2008; Galea 
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et al., 2008; Kun et al., 2009), and growing up in a low-income neighborhood (Breslau et 

al., 1991; Koenen, 2007) have been associated with increased risk of PTSD. Whereas 

some of this increased risk may be accounted for by individuals’ increased exposure to 

assaultive violence (Breslau et al., 1998; Breslau et al., 2004; Coulton et al., 2007; 

Melzer-Lange et al., 2007; Reyes et al., 2008; Gillespie et al., 2009; Obasaju et al., 

2009) (the type of PTE with highest conditional risk of PTSD), genetic variables offer 

plausible biologic mechanisms to explain variable PTSD risk. Indeed, biological factors 

may account in part for variable PTSD risk (Galea et al., 2006). Risk factor models 

supported by meta-analytic studies explain only approximately 30-35% of the variance 

in PTSD (Yehuda, 2001). 

As the primary neuroendocrine system controlling the mammalian stress 

response (Tsigos and Chrousos, 2002), genes involved in the regulation of the HPA 

axis offer strong candidates for loci involved in PTSD etiology. Perception of stressful 

stimuli causes the hypothalamic paraventricular nucleus to release corticotrophin-

releasing hormone (CRH) and arginine vasopression (AVP) into the median eminence 

to synergistically trigger the secretion of adrenocorticotropic hormone (ACTH) by 

binding, respectively, the anterior pituitary corticotroph receptors CRH-R1 and V1B. 

ACTH in turn triggers the production and secretion of glucocorticoid stress hormones 

(GCs) – chiefly cortisol – from the adrenal cortex by binding melanocortin type2 

receptors (MC2R) (Amweg et al., 2011). This interaction is facilitated by MC2R 

accessory protein (MRAP). By binding GC-receptors (NR3C1) expressed in tissues 

throughout the body, GCs mediate both the effects and, via negative feedback to the 

hypothalamus, the termination of the stress response. Also known as the “fight or flight” 
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mechanism, the stress response is initially adaptive; it mobilizes energy, increases 

vigilance and focus, facilitates memory formation, and depresses the immune response 

(Charney, 2004). However, failure to terminate the signal leads to the stress response 

becoming pathological. 

Downstream effects of chronically elevated HPA axis activity can lead to 

detrimental consequences, including immune suppression and hippocampal atrophy 

(Pruessner et al., 2010; Golub et al., 2011). Particularly relevant here, stress hormones 

are implicated in the over-consolidation of memory in PTSD (Yehuda, 2001; 

Rasmusson et al., 2003; Claes, 2004; de Kloet et al., 2006), thus suggesting that 

variation in HPA axis genes may mediate a highly stress reactive phenotype vulnerable 

to HPA axis dysregulation in response to trauma and therefore to PTSD development 

(Kalin and Shelton, 2003). Indeed, aberrant functioning of the stress response is a 

characteristic of PTSD phenomenology, frequently marked by increased levels of CRH 

in CSF and decreased levels of plasma cortisol (Bremner et al., 1997; Baker et al., 

1999; Martin et al., 2010). This observation, namely the disagreement between central 

and peripheral indicators of HPA axis activity, has led to the prediction that endocrine 

glands downstream of the hypothalamus are either downregulated, inhibited by GC 

negative feedback, or insensitive to the increased activity of stress response systems in 

the brain (Pace and Heim, 2011). At the level of the hypothalamus, GC sensitivity varies 

positively with GC and GC receptor concentration, and negatively with FKBP5 

concentration. FKBP5 is a co-chaperone of the NR3C1 heterocomplex that regulates 

hormone binding affinity and translocation of the NR3C1 heterocomplex to the nucleus 

via an intracellular negative feedback loop. Several studies using dexamethasone 
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suppression tests (Heim et al., 2008; Yehuda et al., 2009) and measurements within 

circulating immune cells (de Kloet et al., 2007; Rohleder et al., 2010) have supported 

the hypothesis that PTSD patients may exhibit enhanced GC-sensitivity. At the level of 

the pituitary, decreased sensitivity may be due to either decreased concentration of 

CRH, decreased expression of CRH receptors, and/or increased concentrations of 

CRH-binding protein (CRH-BP). CRH-BP concentration is negatively correlated with 

HPA-axis activity due to its ability to bind and inactivate free CRH. Furthermore, studies 

have provided evidence that early life stress interacts with FKBP5 SNPs (Binder et al., 

2008) and CRH haplotype (Bradley et al., 2008) to modify risk of PTSD and depression, 

respectively. Finally, at the level of the adrenal cortex, responsivity to the stress signal is 

proportional to expression of melanocortin receptor type 2 (MC2R; receptor of ACTH) 

and MC2R accessory protein (MRAP). MRAP regulates trafficking and function of 

MC2R. As such, mutations of MRAP cause glucocorticoid deficiency (type 2).  

It is well appreciated that PTSD risk is determined in part by genetic factors 

(Slater and Slater, 1944; Radant et al., 2001; Segman et al., 2005; Koenen, 2007; 

Koenen et al., 2008). Twin studies demonstrate that there is greater concordance of risk 

in monozygotic vs. dizygotic twins (True et al., 1993; Stein et al., 2002; Koenen et al., 

2003), that PTSD is approximately 30% heritable (True et al., 1993; Stein et al., 2002), 

and that children of PTSD-affected parents are more likely to develop PTSD (True et al., 

1993; Stein et al., 2002). Two studies have provided evidence for PTSD-related gene-

by-environment interactions at four SNPs at the FKBP5 locus (Binder et al., 2008; Xie et 

al., 2010). Studying an almost exclusively low-income African-American sample, Binder 

et al. provided evidence for an interaction between four FKBP5 SNPs and child abuse, 
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such that genotype and early life trauma is predictive of PTSD symptom severity in later 

life (Binder et al., 2008). Likewise, Xie et al. provided evidence of a gene-by-

environment interaction between a FKBP5 SNP and childhood adversity on PTSD risk 

(Xie et al., 2010). This interaction was not significant for European-Americans (Xie et 

al., 2010), suggesting putative ethnic/race-specific gene-by-environment effects. 

Moreover, Bachmann et al. found that a negative correlation between basal cortisol 

levels and PTSD severity existed in a subset of PTSD-affected combat veterans with a 

specific genotype at a SNP at the NR3C1 locus (Bachmann et al., 2005). Finally, Lu et 

al. identified correlations between four CNR1 SNPs and PTSD among white parents of 

youth with attention hyperactivity disorder (Lu et al., 2008).  

Based on the above discussions and additional evidence (e.g. (Newport et al., 

2003; Clark et al., 2008; de Kloet et al., 2008; Surget and Belzung, 2008; Carpenter et 

al., 2009; Kellner et al., 2010)) we propose 21 HPA axis regulatory genes as 

candidate genes for the study of association with PTSD risk (Table 7). Here, we 

examined the association of PTSD with individual SNPs as well as sets of SNPs, 

defined by gene. 

 

Table 7. PTSD candidate genes, by level of HPA axis regulatory activity 

Hypothalamus Pituitary 
Adrenal 
Cortex 

Periphery 

AVP CRHR1 MC4R CRH CRHR2 POU1F1 MC2R UCN2 NR3C2 

AVPR1A CRHR2 POMC CRHBP FKBP5 PROP1 MRAP UCN3 CRHR1 
AVPR1B LEP UCN2 CRHR1 NR3C1 TBX19  NR3C1 CRHR2 
CRH LEPR UCN3       
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Materials and Methods 

Sample Selection 

The sample includes genotype data from a 778 individual subset of the Detroit 

Neighborhood Health Study (DNHS), an epidemiological, community-representative 

cohort of adult residents in Detroit, Michigan. The current study draws on survey data 

and genotype data derived from DNA isolated from peripheral blood samples. Among 

the samples, 140 have a history of PTSD and 638 have no history of PTSD. PTSD 

diagnosis was assessed via structured interview administered via telephone (Breslau et 

al., 1998). Lifetime PTSD cases met all six DSM-IV criteria in reference to either the 

worst or random traumatic event. The diagnostic interview showed good validity against 

the Clinician Administered PTSD Scale (Blake et al., 1995) as described elsewhere 

(Uddin et al., 2010). The Institutional Review Board of the University of Michigan 

reviewed and approved the study protocol. All individuals in this study had a history of 

trauma exposure. Thus, comparisons reported are between trauma-exposed individuals 

with and without PTSD. Participant demographic and PTSD status data is detailed in 

Table 8. 

 

Genotype data 

Genotype data were obtained for the 778 participants at approximately 733,000 

loci using the HumanOmniExpress platform (Illumina). Annotation of the genotype data 

comes from the HumanOmniExpress_12v1_H dataset (Illumina), which utilized human 

genome build hg19. Imputed data was not utilized. Sequenced DNA was isolated from 

whole blood obtained via venipuncture from all study participants. 
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Candidate gene selection 

21 genes (Table 7) involved in the regulation and signaling of the HPA axis were 

selected on the basis of evidence of involvement in the HPA axis as determined from a 

literature search and use of the gene network database, Pharmacogenomics 

Knowledge Base (PharmcoGKB) (Whirl-Carrillo et al., 2012) (Figure 8). The genes 

represent a diverse range of functions within the HPA axis, including hormones, 

hormone receptors, chaperones, targets and initiators of signaling. Using annotation 

data for the genotyping beadchip supplied by Illumina (HumanOmniExpress_12v1_H), 

411 SNPs were identified that were annotated to the 21 HPA axis candidate genes. A 

breakdown of these SNPs, including SNP ID, refseq gene name, genomic coordinates, 

and in which part of the gene each SNP lies (e.g. intron, exon, promoter region), can be 

found in Supplemental Table S1. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. HPA axis candidate gene activity within the HPA axis (left panel) and the 
periphery (right panel). Figures used with permission from PharmaGKB (Whirl-Carrillo 
et al., 2012) and Stanford University. Copyright to PharmGKB. 
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Linkage disequilibrium, haplotype blocks, and tagging SNPs 

For SNPs included in the study, Haploview (Broad Institute) (Barrett et al., 2005) 

was used to estimate linkage disequilibrium and identify haplotype blocks and tagging 

SNPs using population genetic data from the HapMap Project. Data representing 

Yoruba from Ibadan, Nigeria (YRI) was utilized. Haploview was employed using default 

settings. 

 

Association tests 

Association was tested between PTSD status and SNP genotype using a self-

contained set-test, employed in PLINK. We tested for associations between PTSD 

status and individual SNPs as well as between PTSD status and sets of SNPs. Sets of 

SNPs tested were defined by gene. Detailed lists of each set tested can be found in 

Supplemental Table S2. A significance value of p<0.05 was utilized, with correction for 

multiple hypothesis testing being completed using a Bonferroni correction. 

A secondary analysis was completed by which gene sets were parsed by genic 

context. Sets were parsed into a promoter/first exon set and a non-promoter/non-first 

exon set. Promoter regions were defined as 1kb 5’ to the transcriptional start site. 

Results 

PTSD cases and controls differed with regard to age and gender (Table 8). 

PTSD cases have significantly higher post-trauma symptom severity than do controls 

(Table 8). 

 
Table 8. Demographic and pre-trauma characteristics of 140 PTSD cases and 638 
trauma-exposed controls. 
 

PTSD (N=140)  
Control 
(N=638) 

Chi-square 
(df) 

p-value 
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 Mean/# se/% Mean/# se/%   

Age (years) 51.1 1.18  54.6 0.67 2.28 (776) 0.023 
Female 94 67%  353 55% 3.90(1) 0.048 
Post-trauma symptom severity 57.41 1.17  28.10 0.62 20.46 (776) <0.0001 

 

HPA axis SNPs are not associated with PTSD risk 

 411 HPA axis SNPs were tested individually for association with PTSD status 

between trauma-exposed individuals with and without PTSD. 8 SNPs were nominally 

significant (Table 9), but did not withstand correction for multiple hypothesis testing. 

 

Table 9. HPA axis SNPs nominally significantly associated with PTSD risk 

Gene SNP 
Genomic 

Coordinates 
Affected 

Frequency 
Unaffected 
Frequency 

CHISQ P OR 

LEPR rs17415296 1:66099013 0.040 0.080 5.505 0.01897 0.4744 

FKBP5 rs16878806 6:35569119 0.207 0.151 5.469 0.01936 1.4750 

NR3C2 rs17484063 4:149164905 0.022 0.056 5.428 0.01981 0.3799 

NR3C2 rs17024437 4:149081808 0.182 0.134 4.419 0.03553 1.4440 

NR3C2 rs11099681 4:149103454 0.072 0.114 4.211 0.04016 0.6036 

MC2R rs877128 18:13911628 0.300 0.243 3.953 0.04680 1.3350 

LEP rs17151922 7:127895216 0.179 0.233 3.891 0.04855 0.7166 

NR3C1 rs6861962 5:142750301 0.096 0.141 3.878 0.04893 0.6528 

 
  

Because no individual SNPs demonstrated a significant association with PTSD 

following correction for multiple hypothesis testing, set-based tests were employed to 

test for the significance of sets of SNPs. Neither a set composed of all HPA axis SNPs, 

nor individual gene based sets were significantly associated with PTSD risk (Table 10). 
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Table 10. HPA axis set-based association tests with PTSD risk. 

SET NSNP NSIG ISIG EMP1 SNPS 

AVP 3 0 0 1 NA 

AVPR1A 8 0 0 1 NA 

AVPR1B 13 0 0 1 NA 

CRH 4 0 0 1 NA 

CRHBP 8 0 0 1 NA 

CRHR1 12 0 0 1 NA 

CRHR2 9 0 0 1 NA 

FKBP5 15 1 1 0.1379 rs16878806 

LEP 18 1 1 0.5222 rs17151922 

LEPR 57 1 1 0.317 rs17415296 

MC2R 14 1 1 0.367 rs877128 

MC4R 5 0 0 1 NA 

MRAP 12 0 0 1 NA 

NR3C1 97 1 1 0.6962 rs6861962 

NR3C2 99 3 3 0.7594 rs17484063|rs17024437|rs11099681 

POMC 5 0 0 1 NA 

POU1F1 2 0 0 1 NA 

PROP1 5 0 0 1 NA 

TBX19 16 0 0 1 NA 

UCN2 2 0 0 1 NA 

UCN3 7 0 0 1 NA 

NSNP, number of SNPs in gene-based set; NSIG, number of SNPs from set that are nominally 
significantly associated with PTSD risk; ISIG, number of SNPs from set that are nominally 
significantly associated with PTSD risk correcting for linkage disequilibrium-based 
independence; EMP1, empirically significance value; SNPS, identificantion of independent (no 
evidence of genetic linkage) SNPs from gene-based set that are nominally significantly 
associated with PTSD risk. 
 

 Three NR3C2 SNPs were nominally significant for association with PTSD (Table 

10). Linkage disequilibrium between any or all of these SNPs may affect any set-based 

association tests which include them. Linkage disequilibrium analysis was thus 

employed to rule out this potential confounder. rs17024437 (chr4:149,081,808) and 

rs11099681 (chr4:149,103,454) are separated by approximately 20kb and thus were 

considered candidates for being affected by genetic linkage. However, upon 
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investigation, no evidence of linkage disequilibrium between these loci was found 

(Figure 9). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 
Figure 9. No linkage disequilibrium between NR3C2 SNPs rs17024437 
(chr4:149,081,808) and rs11099681 (chr4:149,103,454). rs11099681 is located in the 

red box to the right of the figure. rs17024437 was not included in the Haploview 
population data; it’s relative genomic location is marked in the figure above by a boxed 
in star to the left of the figure. Figure created in Haploview 4.2, from the Broad Institute 
(Barrett et al., 2005). 
 
 

 Because evidence suggests that DNAm is associated with gene expression in 

ways that are contingent upon the context within which the CpG site of methylation is 
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located, because DNAm is highly associated with PTSD risk, and because DNAm 

patterns can be influenced by proximal genetic variation, we conducted a secondary 

analysis to explore whether genetic context influenced SNP association with PTSD risk. 

SNP sets were still defined by gene, but were parsed into separate “Promoter/First 

Exon” and “Non-Promoter/Non-First Exon” sets. Despite this, no additional significant 

findings resulted. The “Promoter/First Exon” sets contained no significant individual 

SNPs and no significant sets. The “Non-Promoter/Non-First Exon” sets contained no 

significant sets, including no substantial improvements upon non-parsed sets. 

 

Discussion 

 Our data represents preliminary evidence that fails to support an association 

between genetic variation within HPA axis genes and risk for or resiliency to PTSD 

following exposure to trauma. Although eight SNPs were nominally significantly 

associated with PTSD, none withstood corrections for multiple hypothesis testing. 

Additionally, set-based tests that theoretically can demonstrate significance of sets even 

when the SNPs that compose them are not individually significant also failed to 

demonstrate significant associations with PTSD. While it is possible that there is indeed 

no association between PTSD risk and the SNPs tested, there are many reasons why 

this study design may have failed to detect a relationship between HPA axis genetic 

variation and PTSD risk, including: the effects of gender, trauma history, and childhood 

adversity; gene set selection that does not capture genetic diversity or fails to represent 

biologically significant processes. 
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 Female gender (Kessler et al., 1995; Brewin et al., 2000; Tolin and Foa, 2006), 

increased trauma history (Kessler et al., 1995), and the presence of childhood adversity 

(Yehuda et al., 2010) are each associated with increased risk of PTSD. The primary 

analyses reported here did not include these potentially important covariates. Future 

work using this dataset may benefit from inclusion of these variables.  

 Composition of genes within sets would likely affect results of set-based tests, 

even if using identical data. The set-based tests employed here use data from multiple 

SNPs to estimate a set-based p-value. While the inclusion of more SNPs in this study 

increased the probability of identifying highly significant SNPs, doing so may have 

decreased the effective significance of any given set tested. The negative results from 

this study may be taken as evidence that more biologically nuanced sets should be 

tested. For example, limiting sets to SNPs found in regulatory regions or from genes 

directly involved in regulation may improve the power of these set-based tests. Indeed, 

many prior findings of significance between HPA axis genetic and epigenetic variants 

and PTSD risk have included those genes that have direct regulatory roles (e.g. FKBP5 

and NR3C1). 

 A more nuanced definition of PTSD may be helpful in identifying effects of HPA 

axis gene variants. In this study we tested for the association between SNPs and PTSD 

risk, with PTSD risk defined as any history of PTSD. As PTSD diagnostic criteria is 

composed of three distinct categories of symptoms (hyperarousal, avoidance, and 

intrusive memories), it may be helpful to analyze the association between HPA axis 

genetic variants and individual symptoms types, separately. Indeed, it may make 

biological sense that dysregulation the HPA axis may be more associated with 
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symptoms of hyperarousal than of either of the other two symptom categories because 

of the general alignment between this category and the classically-understood fight or 

flight response. Another way in which PTSD definition may affect our results is the 

decision to analyze PTSD as a dichotomous outcome. Post-trauma symptom severity is 

a continuous measure of PTSD that has been alternatively utilized in the literature. 

Employment of this measure may give additional power to the association analyses, 

although an alternative method to set-based association tests would have to be 

employed. 

 Finally, one speculative interpretation of this data is that failure to achieve 

statistical significance may indicate a general conflation of chronic stress and acute 

stress. The HPA axis functions to regulate the stress response. As such, allostatic 

changes in the sensitivity of the system may be more increased following extended 

periods of stress and trauma opposed to a single traumatic event. It is possible that 

genetic variants affect the plasticity of the trauma response in such a way that a gene 

by environment effect may be at the heart of the association between the HPA axis and 

PTSD risk. In this way, certain genetic variants may be more susceptible to acute 

stress, but more resilient to chronic stress (or vice versa). Analyzing all cases of PTSD 

together, regardless of how chronic trauma is and number of traumatic exposures (e.g. 

inclusion of childhood adversity history) and ignoring other aspects of stress, may have 

prevented the elucidation of significant PTSD-HPA axis associations. 
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Chapter 5. Discussion 

Outlook 

In this project I have undertaken studies designed to elucidate the proximate and 

evolutionary underpinnings of PTSD, with an emphasis on the capacity for epigenetic 

regulation. I have utilized Tinbergen’s Four Questions (Figure 2 from Chapter 1) guide 

the design of the research that makes up this dissertation, with the aim to provide 

proximate and evolutionary insights into the capacity to develop PTSD. In Chapter 2, I 

reported evidence that the risk of PTSD is associated with pre-trauma epigenetic 

variation and post-trauma epigenetic change at DNA methyltransferase genes in a 

study that examined DNA methylation change longitudinally in trauma exposed 

individuals with and without PTSD. That study shed light on the complex role of 

epigenetics on PTSD etiology and thus contributes to answering Tinbergen’s Question 

#2: What is the ontogeny? In Chapter 3, I reported evidence for the deep evolutionary 

origins of PTSD epigenetic potential. That study demonstrated that the majority of 

genetic CpG sites associated with epigenetic regulation of PTSD (at which differential 

DNA methylation is associated with PTSD risk) are not unique to humans, but evolved 

prior to the divergence of humans and chimpanzees, with many having considerably 

more ancient origins. In that study I also characterized distinct periods of evolution 

throughout human descent by calculating evolutionary rates and identifying enriched 

functional annotation clusters of PTSD-associated CpG dinucleotide sites Chapter 3, 

therefore, contributes to answering Tinbergen’s Question #4: What is the phylogeny?  

Finally, in Chapter 4, I reported preliminary data that failed to support involvement of 

genetic variation of HPA axis genes in differential risk and resiliency of PTSD. Despite 
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negative results, I noted in that chapter various reasons why they may not reflect the 

absence of a genetic involvement of HPA axis variation in PTSD risk and provided 

recommendations for future studies. Thus, Chapter 4 contributes to answering 

Tinbergen’s Question #3: What is the mechanism? These three projects may seem to 

be conceptually very diverse, but in fact provide varying perspectives on the same 

process, that of epigenetic regulation of PTSD. In sum, I have presented evidence that it 

is important to look outside of genetics to identify biological risk factors for PTSD 

(Chapters 4, 2), that epigenetic variation is associated with PTSD risk in complex and 

dynamic ways both before and after trauma exposure (Chapter 2), and that the capacity 

to epigenetically regulate PTSD has deep evolutionary origins with functional 

implications (Chapter 3). These studies combine to paint a picture of PTSD as being 

mediated by an epigenetically-regulated developmental process the capacity for which 

is ancient and conserved. There are various ways in which this empirical evidence could 

be understood and synthesized. Here, I approach PTSD as the extreme end of a 

trauma response reaction norm that is the product of a capacity for developmental 

plasticity that is evolutionarily conserved and mediated by ongoing epigenetic 

modifications that respond to environmental stimuli. As such, this discussion will 

synthesize the research detailed in Chapters 2-4 in order to contribute to the answer to 

Tinbergen’s Question #4: What is the adaptation? Understanding how this perspective 

is novel first requires a survey of the biological perspectives of PTSD that currently 

predominate. 
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PTSD’s epistemic issues 

Although important work has been done on the genealogy of the biological 

understanding of trauma(Young, 1995) and the ways in which this understanding 

structures nosology, research, and policy (Kendler KS, 2012), the epistemology of 

PTSD is often ignored by biologists working in fields related to traumatic stress studies. 

Instead, a common epistemological narrative has emerged both popularly and within the 

scientific literature that understands PTSD to be both wound and disorder. This is 

unique among mental health conditions defined by the DSM, as all other DSM 

codifications are understood to be disorders. The acceptance of PTSD as both disorder 

and wound is understandable given the lack of empirical data to resolve the nature of 

PTSD and a need for a simple model upon which biological hypotheses can be built and 

tested, but doing so may prevent the advancement of a more complete biological theory 

of PTSD, as it precludes thinking about PTSD as a potentially adaptive trait, presumes 

disorder and wound to be necessarily separate entities, and reduces PTSD etiology to a 

simple interaction that can be localized in space and time. Our interpretations of 

empirical data are shaped and constrained by the epistemology we accept and while 

demystifying the biological nature of PTSD at one turn, the acceptance of this narrative 

of PTSD potentially remystifies the problem anew at the next. 

My intention here is not to resolve the question of the fundamental nature of 

PTSD. As stated earlier, there is not at present enough empirical data to resolve even 

the most basic of problems regarding whether PTSD is wound, disorder, both, or 

something else entirely. What I would like to propose, however, is that thinking about 

PTSD as an adaptive and evolutionarily conserved trait that is regulated by epigenetic 
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potential allows for a novel interpretation of PTSD molecular data that spans ontological 

scales from individual development to phylogenetic evolution and that has practical 

implications for both research and clinical practice. 

 

PTSD as wound and disorder 

What is the basic understanding of PTSD and how does it structure our 

understanding of empirical data? Diagnostically, PTSD is composed of two fundamental 

elements – exposure to a traumatic event and the subsequent development of post-

trauma symptoms (hyperarousal, intrusive memories, and avoidance) (APA, 1994; 

Association, 2013). Criterion A of DSM-IV PTSD diagnostic criteria requires “exposure 

to a traumatic event in which the person (1) experienced, witnessed, or was confronted 

by death or serious injury to self or others AND (2) responded with intense fear, 

helplessness, or horror” (APA, 1994). As such, Criterion A establishes PTSD as a 

wound such that the condition of having PTSD is contingent upon first having an 

experience that exists outside of one’s own biology. PTSD is caused, therefore, by 

something external. It should be noted that PTSD is unique among DSM 

psychopathologies in requiring a precipitating event (APA, 1994; Lopez-Ibor, 2002; 

Association, 2013). The upshot is that PTSD is understood to be a wound, roughly 

analogous to that caused by a gunshot (for example, see (Committee on the 

Assessment of Ongoing Effects in the Treatment of Posttraumatic Stress and Institute 

of, 2012). 

But a gunshot injures all individuals in roughly the same way, whereas traumatic 

experiences affect people in dramatically different ways. Although a majority of 
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Americans experience a potentially traumatic event in their lifetime (Norris, 1992; 

Resnick et al., 1993; Kessler et al., 1995; Breslau et al., 1998), only a minority 

subsequently develop PTSD (Kessler et al., 1995; Breslau et al., 1998; Acierno et al., 

2007). Additionally, those who experience even those traumatic events which carry the 

highest conditional risk for PTSD (among civilians, the conditional risk of PTSD 

following rape is 65% in males and 46% in females (Kessler et al., 1995)) are not 

guaranteed to develop PTSD. The development of PTSD, therefore, remains rare 

despite the high frequency of traumatic experiences. Is PTSD, then, more correctly 

seen as a disorder, analogous to all of the other psychopathologies codified within the 

DSM?  

The disorder model understands PTSD to be the result of something gone wrong 

within an individual as a susceptibility only to be revealed upon exposure to a traumatic 

experience. As mentioned above, all other mental health diagnoses roughly take this 

form. Although we may point to environmental factors that influence the etiology of 

depression, schizophrenia, and autism, to name just a few, these conditions are 

ultimately understood to be caused by something innately different between those who 

suffer from them and those who do not. Hypotheses about the disordered nature of 

PTSD predict the ability to locate the disorder that confers PTSD risk in everything from 

culturally-determined psychology, such as perceived discrimination and religious 

involvement (Scrimin et al., 2014), to brain form and function (Li et al., 2014), to genetic 

variants (Guffanti et al., 2013; Logue et al., 2013; Solovieff et al., 2014). 
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Combining these models of PTSD we arrive at the typical understanding of PTSD 

today – PTSD is the result of the interaction between a trauma induced wound and a 

preexisting, risk-conferring disorder. 

In the remainder of this chapter I will start by describing this general conception 

of PTSD – as depicted by the diathesis-stress model. I will describe the ways in which a 

focus on epigenetics has changed the thinking about PTSD in such a way as to 

biologically unify the “wounds” of traumatic experience and risk-conferring “disorder.” I 

will relate how this has given rise to a more nuanced life course model of PTSD. 

Drawing from the developmental origins of health and disease literature, I will then 

propose an alternative model of PTSD – as a phenotypic range within a trauma 

response reaction norm that arises out of an epigenetically-regulated developmental 

plasticity that is conserved through evolutionary history. Having described this 

perspective, I will contrast it with other evolutionary perspectives on PTSD and attempt 

to incorporate into this model my own research, as described in detail in Chapters 2-4, 

to demonstrate how this model can incorporate thinking about PTSD on multiple levels. 

Finally, I will provide a brief synopsis on how this perspective may influence research, 

clinical practice, and policy. 

 

From diathesis-stress to an epigenetic life course model 

The diathesis stress model of PTSD argues that differential risk of PTSD is the result of 

the interaction between external trauma (stress) and pre-existing susceptibility factors 

(diathesis) (Yehuda et al., 2011; Mehta and Binder, 2012). This model has informed 

much of the important research on PTSD in recent years and has primarily led to the 
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attempt to identify risk and resiliency factors as biological correlates of the psychiatric 

symptoms of PTSD. Specifically, this research has led to the identification of numerous 

biological risk factors as well as gene by environment interactions that are associated 

with PTSD risk. For example, studying an almost exclusively low-income African-

American sample, Binder and colleagues provided evidence for an interaction between 

four FKBP5 SNPs and child abuse, such that genotype and early life trauma was found 

to be predictive of PTSD symptom severity in later life (Binder et al., 2008); Xie and 

colleagues also provided evidence of a gene-by-environment interaction between a 

FKBP5 SNP and childhood adversity, although this interaction was not significant for 

European-Americans (Xie et al., 2010). Bachmann and colleagues reported a negative 

correlation between basal cortisol levels and PTSD severity in a subset of PTSD-

affected combat veterans with a specific NR3C1 SNP genotype (Bachmann et al., 

2005). And Lu and colleagues identified correlations between four CNR1 SNPs and 

PTSD among white parents of youth with attention hyperactivity disorder(Lu et al., 

2008). Within the realm of neuroanatomy, morphological abnormalities have been linked 

to PTSD in various forms, including a volumetric reduction in cerebral gray matter and 

hippocampal volume (Li et al., 2014), and functional and connective differences in 

numerous central nervous system regions, including: the amygdala, insula, and 

prefrontal lobe (Jin et al., 2013).  

While much of this research has centered on identifying genetic and 

neuroanatomical risk factors and the interaction between these risk factors and 

environmental trauma exposure, evidence of involvement of epigenetics has 

revolutionized the research program by providing a putative mechanism to unite stress 
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and diathesis (Meaney, 2010). In short, because epigenetic factors are stable yet 

modifiable in response to lived experience, they potentially can function as both disorder 

and wound, as both diathesis and stress. 

Indeed, recent work in the field of epigenetic psychiatry has identified epigenetic 

modifications that affect an individual’s response to trauma and others that are induced 

by trauma. The first indication of this role of epigenetic variation came from the 

foundational work by Michael Meaney and colleagues who demonstrated that 

epigenetic modifications are capable of being induced by early life experiences and 

persisting into adulthood to modify behavior and physiology. Most famously, rat pups 

that received high levels of maternal care during early postnatal life, as measured by the 

amount of received licking and grooming and arched-back nursing, as adults displayed 

more mild physiological responses to stress and higher maternal care behaviors 

themselves compared to pups that received low levels of maternal care (Weaver et al., 

2004). These effects were found to be mediated by an epigenetic modification, induced 

by exposure to early childhood to licking, grooming and arched-back nursing, of the 

gene that codes for the glucocorticoid receptor Nuclear Receptor Subfamily 3, Group C, 

Member 1 (NR3C1). Pups who received high degrees of maternal care had reduced 

levels of hippocampal DNA methylation and increased gene expression of NR3C1 

glucocorticoid receptor (Weaver et al., 2004). Importantly, NR3C1 is a modulator of the 

stress response and an integral component of the hypothalamic-pituitary-adrenal (HPA) 

axis. Indeed, these epigenetic changes were found to be concordant with differences in 

adult HPA axis responses to stressful stimuli, as measured by circulating corticosterone 

following restraint stress. This research demonstrated that lived experiences could lead 
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to epigenetic modifications capable of modulating behavior and biology and stable 

through time. Follow up work built on these findings by identifying similar epigenetic 

effects in other genes, including BDNF (Roth et al., 2009) and estrogen receptor-

alpha1b (Champagne et al., 2006). Further research has yielded yet more evidence of 

the role of epigenetics in mental health, generally, and PTSD, specifically, by expanding 

this foundational work into humans. 

 As in mice, stress and trauma experienced early in life has epigenetic effects that 

last into adulthood in humans. Among suicide victims, increased NR3C1 methylation 

was observed in the brains of suicide victims with a history of childhood abuse, 

compared to suicide victims without a history of childhood abuse. The association 

between increased DNA methylation at NR3C1 loci and early life exposures to stress 

and trauma has been demonstrated in additional studies. Increased methylation of a 

NGFI-A binding site at a NR3C1 locus while in cord blood was found to be associated 

with maternal mood, with more active stress responses measured via salivary cortisol at 

3 months postnatally (Oberlander et al., 2008). Additionally, increased NR3C1 DNA 

methylation was observed in whole blood samples from individuals with a history of 

childhood adversity (Tyrka et al., 2012). In addition to focused candidate gene studies, 

epigenetic differences associated with exposure to early life stress have been identified 

– Compared with adolescents whose mothers were unexposed to high stress levels 

during their first year of life, adolescents whose mothers reported high stress levels 

during their infancy showed higher DNAm levels at 139 CpG sites in buccal cell-derived 

DNA (Essex et al., 2013). Together, these data from animal and human studies suggest 

that early life experiences, and especially adverse early life experiences, have the 
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potential to alter epigenetic gene regulation and downstream gene function with lasting 

physiological, behavioural, and psychological implications (Meaney, 2010; Szyf, 2011). 

By constituting both disorder and wound, epigenetic variation and modifications 

provides a core around which a coherent life course approach to PTSD can be 

constructed. A, perhaps oversimplified, description of such an approach, emphasizing 

the role of epigenetics, would locate both risk factors that pre-exist trauma (“disorders”) 

and trauma-induced risk factors (“wound”) in epigenetic variation. Doing so collapses 

false dichotomies of diathesis vs. stress, nature vs. nurture, gene vs. environment, and 

biology vs. society/culture on to the mediating effects of epigenetics; the effect of each 

seemingly disparate input affects the output of mental health via epigenetic states and 

modifications. In this way, an individual at greater risk of PTSD is “disordered” because 

of certain epigenetic variation and is “wounded” by trauma by the induction of further 

epigenetic variation, all of which leads to more global effects physiology and behavior 

via changes in gene expression and transcription factor binding. 

Additionally, a life course approach creates a more nuanced understanding of the 

role of environmental trauma exposures on the etiology of PTSD. Despite diagnostic 

criteria (APA, 1994), research (Hong et al., 2014), and treatment (e.g. exposure 

therapy) that often centers on a single traumatic experience as the precipitating event of 

subsequent PTSD development, it is clear that the biological reality of PTSD is more 

complex; the etiology of PTSD is influenced by the entirety of lived experience. Indeed, 

evidence suggests that the number of traumatic experiences interacts with genetic 

variation to affect risk of PTSD (Koenen et al., 2011; Uddin et al., 2011a), risk of PTSD 

increases with each traumatic experience, and one of the greatest risk factors for the 
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development of adult PTSD is childhood adversity even when childhood adversity does 

not itself induce PTSD (LeardMann et al., 2010). Furthermore, many individuals develop 

PTSD following several traumatic event exposures, with symptoms that don’t track 

cleanly onto any single experience (Cloitre et al., 2009). Finally, numerous social factors 

exist that increase the risk of PTSD, independent of any association with increased 

exposure to traumatic exposure, including: perceived discrimination, lower religious 

involvement, and less social support (Scrimin et al., 2014). These observations are 

putatively explained using this life course approach by the induction of epigenetic 

modifications of lived experiences that, in turn, increase the risk of PTSD in response to 

future traumatic exposures. 

An epigenetic life course approach to PTSD considers the ongoing interaction 

between phenotype and environment, as opposed to a single interaction (Uddin and 

Sipahi, 2013). As such, PTSD as a phenotype arises out of a series of epigenetically-

mediated phenotype-by-environment interactions (Figure 10; (Uddin and Sipahi, 2013)).  
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Figure 10. A life course model of PTSD. (A) The etiology of posttraumatic stress 

disorder (PTSD) is contingent upon a series of developmental responses, mediated by 
epigenetic modifications, to lifetime social experiences. Two potential scenarios are 
illustrated in panels B and C. (B) Adverse childhood and adult experiences compound to 
increase risk of mental illness. Arrows represent epigenetically mediated developmental 
responses to social exposures. (C) Absence of childhood adversity allows for resiliency 
in the face of traumatic experiences in adulthood. In the social exposure (SE) columns, 
background color gradient represents developmental plasticity, with darker background 
indicating greater developmental plasticity and thus likely greater influence over future 
health. G, underlying inherited genotype. 
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It is important to note that while both my description here and the accompanying 

figure each present the etiology of PTSD as arising out of a series of distinct events or 

timeframes, it is perhaps more accurate to consider PTSD as the product of a long 

developmental process that may be marked by events of greater or lesser significance, 

but as a whole is neither disjointed nor discrete. We can envision, for example, that 

experiences of everyday racism and sexism, chronic stress over a lack or loss of life 

course opportunities, and trouble integrating within stable social networks, to name but 

a few contributing factors, each are translated into increased risk of PTSD via subtle, 

ongoing epigenetic modifications.  

Indeed, the research presented in Chapter 3 supports a life course approach to 

PTSD. In that study, risk-associated biological differences were observed in the form of 

pre-trauma epigenetic risk factors and post-trauma DNA methylation modifications. 

Importantly, we observed some changes in DNA methylation from pre- to post-trauma 

time points that were unique to individuals who developed PTSD and others which were 

shared by cases and controls alike (Sipahi et al., 2014). This suggests that trauma 

induces epigenetic changes in a predictable way regardless of whether PTSD 

subsequently develops. This may represent an empirical example of the type of events 

displayed in Figure 10. While that research controlled for the number of trauma 

exposure types, future research that took prior traumatic experiences into account in 

more nuanced ways may provide insight into the etiology of PTSD as the product of a 

lifelong developmental process. Additionally, while it is possible that the pre-trauma 

epigenetic risk factors identified in Chapter 3 may have been inherited or otherwise 

independent of lived experience, this observation is also consistent with the prediction 
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that these are the products of previous lived experiences, previous epigenetically 

regulated phenotype by environment interactions. Finally, while we only studied a 

limited number of loci – 15 total CpG dinucleotide sites over 4 DNMT genes – we 

predict that similar dynamic effects are at play at other epigenetic loci. Uddin and 

colleagues previously identified over 600 differentially methylated CpG sites across the 

genome in association with PTSD risk (Uddin et al., 2010). How many of these are 

dynamically regulated in response to traumatic experiences, how many occupy 

biologically relevant roles and thus confer risk or resiliency, and how many are reliable 

biomarkers of PTSD risk or state are questions that remain to be elucidated via future 

research, but that may be informed by a life course approach. 

  

Developmental plasticity and developmental origins of health and disease 

 We have seen that stressful and traumatic life experiences are translated into 

biological consequences by epigenetic modifications. That this happens predictably and 

in ways that in turn modulate future responses to stressful and traumatic experiences in 

a form that approximates a norm of reaction suggests that these changes may be 

functional. It is difficult, yet important, to distinguish between 1) the phenotypic results of 

a developmental program that is passively shaped by environmental inputs and 2) the 

phenotypic results of a developmental program that actively and functionally responds 

to environment inputs. This is a subtle difference, but one that carries tremendous 

implications for understanding PTSD and thus worth teasing apart. The distinction 

essentially can be reduced to whether a given example of phenotypic plasticity is 

adaptive or nonadaptive. In the case of PTSD, if we take for granted that the biological 
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trauma response is plastic in response to lived traumatic exposures, the question 

becomes whether this represents an active or passive form of plasticity.  

A clear articulation of this distinction comes from the examination of the effect of 

mechanical forces on the developing organism by Moore (Moore, 2003), who has 

identified four functions of the mechanical environment on the developing organism: 1) 

the mechanical environment can alter development via the inherent developmental 

plasticity of the organism; 2) the mechanical environment can provide information used 

by the developmental process itself; 3) the mechanical environment can provide a 

selection pressure; and 4) the mechanical environment can be itself changed by the 

developing organism. Items (3) and (4) relate to broader evolutionary questions, so I will 

focus, for the time being, on (1) and (2), which correspond to the numbered distinctions 

on the previous page. Function (1), passive plasticity, can be seen in many examples: 

enzymatic responses to pH and temperature changes (Pavasovic et al., 2004), 

decreased growth rate in response to low nutrient availability (Larque et al., 2013), and 

growth shape of coral molded by wave forces (Dollar, 1982). In contrast, classic 

examples of scenario (2), active plasticity, include plasticity that results in distinct 

polyphenisms, such as solitary and gregarious locust phenotypes (Applebaum and 

Heifetz, 1999), heterophylly in semiaquatic plants (Wells and Pigliucci, 2000), and 

morphology, reproductive strategy, and behavior of horned beetles (Valena and 

Moczek, 2012), to name but a few. Although most easily understood as plasticity that is 

responsible for polyphenic traits, active plasticity can also result in less distinct 

phenotypic forms that approximate norms of reactions, such as the development of the 

adaptive immune system (Galli et al., 2011). In addition, more complex syndromes, 
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composed of expansive complements of traits, have been predicted to represent the 

result of an adaptive form of phenotypic plasticity – for example, the thrifty phenotype 

and thrifty epigenotype theories of metabolic syndrome (Hales and Barker, 1992; 

Bateson and Gluckman, 2011). From this perspective, metabolic syndrome is the result 

of a plastic developmental process that responds to cues from the environment. Low 

nutrient availability in utero is hypothesized to initiate a developmental trajectory, 

mediated by epigenetic modifications, towards a thriftier phenotype (Barker et al., 1989; 

Waterland and Michels, 2007; Wadhwa et al., 2009). Such a phenotype is thought to be 

evolutionarily advantageous if the in utero cues accurately represent and predict the 

future environmental reality – namely, nutrient availability.  

Can we conceive of a similar process leading to the etiology of PTSD? Similar to 

metabolic disorder, PTSD is characterized by phenotypic plasticity in response to 

environmental cues – past trauma may predict future trauma (Tyler and Johnson, 2006; 

Klest, 2012). Also, similar to metabolic syndrome, PTSD seems to be a disorder in so 

far as the phenotype does not appropriately match the environment. However, in 

contrast to metabolic disorder, which is defined in relation to a largely stable 

environment (in the western world, high nutrient availability is a fairly consistent reality), 

PTSD is defined in relation to a much more unstable environment.  

It is illustrative to consider when PTSD becomes a disorder. If we hypothesize 

that the symptoms of PTSD (hyperarousal, avoidance, emotional numbing, and intrusive 

memories) are effective in leading to decreased exposure to future traumatic events, 

then it becomes clear that there are no clear delimiting boundaries for disease onset. 

Take for instance, a soldier who develops PTSD following exposure to combat. Is PTSD 
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a disorder if it prevents her from future exposure to life-threatening trauma? Is it a 

disorder as soon as she leaves the combat zone and returns to the relative safety of 

home? If she is then redeployed does her PTSD again cease to be a disorder? The 

case of a military veteran with multiple deployments may be an extreme example of 

dynamic environmental change, but it is also true for many civilians who face changing 

interpersonal relationships and a more difficult time escaping from the types of 

situations that may relate to past traumatic exposures.  

It is difficult to know when tradeoffs such as developmental plasticity are 

evolutionarily adaptive. Likewise, it is unclear if the capacity to develop symptoms of 

PTSD in the face of trauma is adaptive. But, by combining the life course model of 

PTSD etiology described earlier with the proximate ontological evidence from Chapter 2 

and the phylogenetic evidence from Chapter 3, it becomes plausible that the capacity to 

develop PTSD via active plasticity is adaptive. 

 

An evolutionary perspective 

 Interest in the relationship between evolution and epigenetics has recently seen 

a resurgence, although it is not a new field.  Theoreticians are revisiting and 

reinterpreting work by Waddington, Baldwin, and others in order to elucidate the role 

epigenetics can play in driving evolution (West-Eberhard, 2003; Pigliucci, 2010). The 

relationship between evolution and epigenetics is bidirectional – epigenetics influences 

and, perhaps, drives evolution and evolution shapes epigenetic processes (Baldwin, 

1896; 1897; Badyaev, 2009; Feinberg and Irizarry, 2010). My own research has focused 

on the latter of this relationship. 
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 Evolutionary theories about PTSD tend to occupy three camps. In the first, PTSD 

is seen to be the result of normal biological processes gone awry. The stress-diathesis 

model, when considering evolution, largely falls into this camp. In addition to the basic 

premises of the stress-diathesis model, the language utilized is revealing of its 

evolutionary theoretical underpinnings; as a representative example, (Ehlert, 2013) 

refers to certain responses to traumatic experiences, including PTSD, as “severe 

maladjustment with co-occurring psychiatric and physical pathologies.”. In the second, 

PTSD is seen as an unfortunate evolutionary trade-off;  for example, the biological 

sensitivity to context theory hypothesizes that individuals who are more susceptible to 

negative health effects following adversity (e.g. increased risk of PTSD) also have more 

potential to benefit from positive conditions (Boyce and Ellis, 2005; Ellis et al., 2011). As 

such, this theory hypothesizes that the development of PTSD in response to trauma is 

evolutionarily disadvantageous, but the very neurodevelopmental processes increase 

fitness in more “positive” social conditions. Finally, in the third, PTSD is seen as a 

mismatch between phenotype and environment such that the development of PTSD in 

response to traumas may have once been evolutionarily advantageous, but not longer 

makes sense (Silove, 1998) 

 

Implications for research, clinical practice, and policy 

 What is most restricting about the prevailing model of PTSD is the assumption of 

negativity. Wounds are bad and disorders are bad, necessarily, and the assumption of 

negativity precludes thinking about PTSD as adaptive or beneficial in any way. The 

stress-diathesis model attempts to be valueless, yet what constitutes stress is largely 
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informed by assumptions that arise primarily from cultural norms. Our theories about 

PTSD, specifically, and mental health, generally, tend to conflate cultural 

understandings of ordered vs. disordered thinking, biological understandings of function 

and dysfunction, and evolutionary understandings of adaptation and maladaptation. We 

take for granted that PTSD is a disorder and a wound at all levels, from molecular to 

evolutionary to societal. Theories of PTSD that are informed by an evolutionary 

perspective tend to recognize the need to differentiate between cultural norms, 

biological dysfunction, and mismatches between phenotype and environment. In this 

way they are improvements upon theories that ignore evolutionary insights. However, at 

their core, they still operate on the assumption that PTSD is “bad”.  Perhaps this is true. 

I in no way mean to suggest that PTSD is somehow a preferable state, nor that it 

shouldn’t be treated. PTSD is real and it is a medical and social issue. However, I would 

like to suggest that PTSD is neither disorder nor wound, in that PTSD represents the 

product of a functional developmental program that responds to lived traumatic 

experiences. The upshot of this perspective is that the responsibility of PTSD falls upon 

a society that creates the conditions for trauma, in the first instance. If PTSD arises in 

individuals that are responding appropriately, in an evolutionary sense, to traumatic 

exposures, then it becomes difficult to rationalize the focus of treatment, prevention, and 

policy being placed on individuals with PTSD. There are few examples of targeting a 

functional system for medical treatment. As an analogy, although we medically treat a 

fever if it is life threatening, we recognize that a fever is an evolved, adaptive response 

to infection. As such, we tend not to treat a fever, per se, but focus our intention on the 
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actual cause of medical concern. The infection is the real problem and, appropriately, 

we focus our efforts to prevent, treat, and limit the spread of the infectious agent.  

 We ought to take a similar approach with PTSD. While understanding that PTSD 

is rooted in biology, treatment and prevention of PTSD may best be accomplished by 

pursuing policy and social reforms designed to reduce the etiological agent of PTSD, 

which ultimately is trauma itself. 
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APPENDIX 
 

 
Supplemental Table 1. All evolved PTSD-associated CpG dinucleotides (7202) 
 

Name Symbol GeneID Accession node_change PTSD-association 

cg06648029 NR1I2 8856 NM_022002.1 node_13_human Uniquely Methylated, Affected 

cg10125195 LACRT 90070 NM_033277.1 node_13_human Uniquely Methylated, Affected 

cg13397379 OR2C3 81472 NM_198074.3 node_13_human Uniquely Methylated, Affected 

cg17108383 PCDHGC5 56097 NM_018929.2 node_13_human Uniquely Methylated, Affected 

cg18809535 LDHAL6B 92483 NM_033195.1 node_13_human Uniquely Methylated, Affected 

cg24172553 FLJ25660 148109 NM_152481.1 node_13_human Uniquely Methylated, Affected 

cg27303882 PAGE2 203569 NM_207339.1 node_13_human Uniquely Methylated, Affected 

cg27318281 C18orf37 125476 NM_194281.2 node_13_human Uniquely Methylated, Affected 

cg27412902 IL29 282618 NM_172140.1 node_13_human Uniquely Methylated, Affected 

cg01091565 MESP1 55897 NM_018670.1 node_14_node_13 Uniquely Methylated, Affected 

cg01558777 C10orf99 387695 NM_207373.1 node_14_node_13 Uniquely Methylated, Affected 

cg01770400 SERPINC1 462 NM_000488.2 node_14_node_13 Uniquely Methylated, Affected 

cg06084117 PLXNA4B 91584 NM_181775.2 node_14_node_13 Uniquely Methylated, Affected 

cg06445611 GABRR2 2570 NM_002043.1 node_14_node_13 Uniquely Methylated, Affected 

cg08256781 ACSBG2 81616 NM_030924.2 node_14_node_13 Uniquely Methylated, Affected 

cg09950370 GFRA2 2675 NM_001495.4 node_14_node_13 Uniquely Methylated, Affected 

cg10134939 FLJ13391 84141 NM_032181.1 node_14_node_13 Uniquely Methylated, Affected 

cg11204562 C10orf81 79949 NM_024889.3 node_14_node_13 Uniquely Methylated, Affected 

cg12177001 IFI27 3429 NM_005532.3 node_14_node_13 Uniquely Methylated, Affected 

cg18129786 ZNF445 353274 NM_181489.4 node_14_node_13 Uniquely Methylated, Affected 

cg18330203 TNNT2 7139 NM_000364.2 node_14_node_13 Uniquely Methylated, Affected 

cg18790143 OTOS 150677 NM_148961.3 node_14_node_13 Uniquely Methylated, Affected 

cg20732137 GMEB2 26205 NM_012384.2 node_14_node_13 Uniquely Methylated, Affected 

cg21695020 DPEP3 64180 NM_022357.1 node_14_node_13 Uniquely Methylated, Affected 

cg23654219 TCF19 6941 NM_007109.1 node_14_node_13 Uniquely Methylated, Affected 

cg24505375 AMAC1L2 83650 NM_054028.1 node_14_node_13 Uniquely Methylated, Affected 

cg25729716 CD79B 974 NM_000626.1 node_14_node_13 Uniquely Methylated, Affected 

cg02044879 PLA2G12B 84647 NM_032562.2 node_15_node_14 Uniquely Methylated, Affected 

cg03570766 CATSPER1 117144 NM_053054.2 node_15_node_14 Uniquely Methylated, Affected 

cg04587829 FN3K 64122 NM_022158.2 node_15_node_14 Uniquely Methylated, Affected 

cg05244766 GSTP1 2950 NM_000852.2 node_15_node_14 Uniquely Methylated, Affected 

cg10498097 MGC50811 375307 NM_198559.1 node_15_node_14 Uniquely Methylated, Affected 

cg11148307 C10orf92 54777 NM_017609.2 node_15_node_14 Uniquely Methylated, Affected 

cg18271969 HTR3C 170572 NM_130770.2 node_15_node_14 Uniquely Methylated, Affected 

cg21596858 DCST2 127579 NM_144622.1 node_15_node_14 Uniquely Methylated, Affected 

cg00962459 PROKR1 10887 NM_138964.2 node_15_node_14 Uniquely Methylated, Affected 

cg02629257 EPPB9 27077 NM_015681.2 node_15_node_14 Uniquely Methylated, Affected 
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cg02854090 HIST1H2AA 221613 NM_170745.3 node_15_node_14 Uniquely Methylated, Affected 

cg08025786 CLK3 1198 NM_003992.1 node_15_node_14 Uniquely Methylated, Affected 

cg09174741 THSD1 55901 NM_018676.2 node_15_node_14 Uniquely Methylated, Affected 

cg16242770 KRTAP17-1 83902 NM_031964.1 node_15_node_14 Uniquely Methylated, Affected 

cg18034859 MYLK2 85366 NM_033118.2 node_15_node_14 Uniquely Methylated, Affected 

cg18992201 DPPA2 151871 NM_138815.2 node_15_node_14 Uniquely Methylated, Affected 

cg24751129 GNMT 27232 NM_018960.4 node_15_node_14 Uniquely Methylated, Affected 

cg25833031 PAPD1 55149 NM_018109.2 node_15_node_14 Uniquely Methylated, Affected 

cg26687173 LOC126248 126248 NM_173479.2 node_15_node_14 Uniquely Methylated, Affected 

cg27077685 SLC7A6OS 84138 NM_032178.1 node_15_node_14 Uniquely Methylated, Affected 

cg00512031 CYTL1 54360 NM_018659.2 node_17_node_15 Uniquely Methylated, Affected 

cg02009694 C9orf132 399665 NM_203305.1 node_17_node_15 Uniquely Methylated, Affected 

cg02254461 AXUD1 64651 NM_033027.2 node_17_node_15 Uniquely Methylated, Affected 

cg03662459 IL11RA 3590 NM_004512.3 node_17_node_15 Uniquely Methylated, Affected 

cg03870261 TIMM13 26517 NM_012458.2 node_17_node_15 Uniquely Methylated, Affected 

cg03986640 MIP 4284 NM_012064.2 node_17_node_15 Uniquely Methylated, Affected 

cg04033774 GPSM2 29899 NM_013296.3 node_17_node_15 Uniquely Methylated, Affected 

cg05958352 RNASE1 6035 NM_198232.1 node_17_node_15 Uniquely Methylated, Affected 

cg06308323 C9orf25 203259 NM_147202.1 node_17_node_15 Uniquely Methylated, Affected 

cg07443748 CESK1 150160 NM_014406.4 node_17_node_15 Uniquely Methylated, Affected 

cg07531356 INSL6 11172 NM_007179.2 node_17_node_15 Uniquely Methylated, Affected 

cg09923671 GATA5 140628 NT_011362.9 node_17_node_15 Uniquely Methylated, Affected 

cg13288195 FBXL22 283807 NM_203373.1 node_17_node_15 Uniquely Methylated, Affected 

cg14845091 ADPRHL1 113622 NM_199162.1 node_17_node_15 Uniquely Methylated, Affected 

cg17754680 NPC1L1 29881 NM_013389.1 node_17_node_15 Uniquely Methylated, Affected 

cg17894008 NACAL 342538 NM_199290.2 node_17_node_15 Uniquely Methylated, Affected 

cg19233472 FOXI1 2299 NM_012188.3 node_17_node_15 Uniquely Methylated, Affected 

cg19812619 ITGB7 3695 NM_000889.1 node_17_node_15 Uniquely Methylated, Affected 

cg20074593 GPR17 2840 NM_005291.1 node_17_node_15 Uniquely Methylated, Affected 

cg20668607 DNAJC11 55735 NM_018198.1 node_17_node_15 Uniquely Methylated, Affected 

cg20972495 SEC22L3 9117 NM_032970.2 node_17_node_15 Uniquely Methylated, Affected 

cg22194129 CLEC4C 170482 NM_130441.2 node_17_node_15 Uniquely Methylated, Affected 

cg24024214 BTNL8 79908 NM_024850.1 node_17_node_15 Uniquely Methylated, Affected 

cg24073022 TAL2 6887 NM_005421.1 node_17_node_15 Uniquely Methylated, Affected 

cg24661752 AP2M1 1173 NM_004068.3 node_17_node_15 Uniquely Methylated, Affected 

cg24734575 SLC7A9 11136 NM_014270.3 node_17_node_15 Uniquely Methylated, Affected 

cg24867501 MIOX 55586 NM_017584.5 node_17_node_15 Uniquely Methylated, Affected 

cg25762706 STMN4 81551 NM_030795.2 node_17_node_15 Uniquely Methylated, Affected 

cg26220985 DPT 1805 NM_001937.3 node_17_node_15 Uniquely Methylated, Affected 

cg27182551 RB1 5925 NT_024524.13 node_17_node_15 Uniquely Methylated, Affected 

cg07711515 BAG1 573 NM_004323.3 node_21_node_20 Uniquely Methylated, Affected 

cg16772207 MYT1 4661 NM_004535.2 node_21_node_20 Uniquely Methylated, Affected 

cg12439773 SLC22A6 9356 NM_004790.3 node_22_node_21 Uniquely Methylated, Affected 
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cg02838492 KIF12 113220 NM_138424.1 node_23_node_22 Uniquely Methylated, Affected 

cg02774160 GGT1 2678 NM_005265.2 node_13_human Uniquely Methylated, Unaffected 

cg23106779 CXorf2 1527 NM_001586.1 node_13_human Uniquely Methylated, Unaffected 

cg01344518 RGS11 8786 NM_183337.1 node_14_node_13 Uniquely Methylated, Unaffected 

cg05654164 C1orf52 148423 NM_198077.1 node_14_node_13 Uniquely Methylated, Unaffected 

cg07196761 WDR71 80227 NM_025155.1 node_14_node_13 Uniquely Methylated, Unaffected 

cg10618882 LRRC25 126364 NM_145256.2 node_14_node_13 Uniquely Methylated, Unaffected 

cg14959707 ZC3H7A 29066 NM_014153.2 node_14_node_13 Uniquely Methylated, Unaffected 

cg16087263 PLA2G2F 64600 NM_022819.2 node_14_node_13 Uniquely Methylated, Unaffected 

cg16879596 CYP3A5 1577 NM_000777.2 node_14_node_13 Uniquely Methylated, Unaffected 

cg19047670 CCND1 595 NT_078088.3 node_14_node_13 Uniquely Methylated, Unaffected 

cg24950749 SDCBP2 27111 NM_015685.3 node_14_node_13 Uniquely Methylated, Unaffected 

cg25685838 GDPD2 54857 NM_017711.2 node_14_node_13 Uniquely Methylated, Unaffected 

cg03343942 SLC39A5 283375 NM_173596.1 node_15_node_14 Uniquely Methylated, Unaffected 

cg05788638 SERPINA10 51156 NM_016186.1 node_15_node_14 Uniquely Methylated, Unaffected 

cg14701962 C1orf111 284680 NM_182581.1 node_15_node_14 Uniquely Methylated, Unaffected 

cg14784348 HCFC1 3054 NM_005334.1 node_15_node_14 Uniquely Methylated, Unaffected 

cg18598959 PIK4CB 5298 NM_002651.1 node_15_node_14 Uniquely Methylated, Unaffected 

cg20828084 KIAA1199 57214 NM_018689.1 node_15_node_14 Uniquely Methylated, Unaffected 

cg03003745 UNQ473 284340 NM_198477.1 node_17_node_15 Uniquely Methylated, Unaffected 

cg13316424 CIZ1 25792 NM_012127.2 node_17_node_15 Uniquely Methylated, Unaffected 

cg20399252 EBPL 84650 NM_032565.1 node_17_node_15 Uniquely Methylated, Unaffected 

cg20437604 ANXA9 8416 NM_003568.1 node_17_node_15 Uniquely Methylated, Unaffected 

cg21142272 LOC283849 283849 NM_178516.2 node_17_node_15 Uniquely Methylated, Unaffected 

cg23431988 PIWIL2 55124 NM_018068.2 node_17_node_15 Uniquely Methylated, Unaffected 

cg14818279 SH3TC2 79628 NM_024577.2 node_20_node_17 Uniquely Methylated, Unaffected 

cg25677709 NDST1 3340 NM_001543.3 node_21_node_20 Uniquely Methylated, Unaffected 

cg08341924 TGM1 7051 NM_000359.1 node_22_node_21 Uniquely Methylated, Unaffected 

cg01443452 GAPDHS 26330 NM_014364.3 node_23_node_22 Uniquely Methylated, Unaffected 

cg11098259 AQP9 366 NM_020980.2 node_13_human Uniquely Unmethylated, Affected 

cg22956254 GDF3 9573 NM_020634.1 node_13_human Uniquely Unmethylated, Affected 

cg01155039 AMN 81693 NM_030943.1 node_14_node_13 Uniquely Unmethylated, Affected 

cg01623438 CTSZ 1522 NM_001336.2 node_14_node_13 Uniquely Unmethylated, Affected 

cg08123074 PHACTR4 65979 NM_023923.2 node_14_node_13 Uniquely Unmethylated, Affected 

cg11952714 SNX7 51375 NM_015976.2 node_14_node_13 Uniquely Unmethylated, Affected 

cg16296356 RAD51L3 5892 NM_002878.2 node_14_node_13 Uniquely Unmethylated, Affected 

cg19531130 ANGPTL5 253935 NM_178127.2 node_14_node_13 Uniquely Unmethylated, Affected 

cg20938359 SLC6A12 6539 NM_003044.2 node_14_node_13 Uniquely Unmethylated, Affected 

cg21406461 IFI16 3428 NM_005531.1 node_14_node_13 Uniquely Unmethylated, Affected 

cg22933847 MRGPRF 219928 NM_145015.2 node_14_node_13 Uniquely Unmethylated, Affected 

cg27365426 ARHGAP15 55843 NM_018460.2 node_14_node_13 Uniquely Unmethylated, Affected 

cg05091653 SP100 6672 NM_003113.2 node_15_node_14 Uniquely Unmethylated, Affected 

cg06933965 CMKLR1 1240 NM_004072.1 node_15_node_14 Uniquely Unmethylated, Affected 



106 
 

 

cg08090640 IFI35 3430 NM_005533.2 node_15_node_14 Uniquely Unmethylated, Affected 

cg09503974 RARRES1 5918 NM_002888.2 node_15_node_14 Uniquely Unmethylated, Affected 

cg09735598 RGL1 23179 NM_015149.2 node_15_node_14 Uniquely Unmethylated, Affected 

cg14165663 GALR2 8811 NM_003857.2 node_15_node_14 Uniquely Unmethylated, Affected 

cg17749456 HSPBP1 23640 NM_012267.2 node_15_node_14 Uniquely Unmethylated, Affected 

cg00540769 ACOT12 134526 NM_130767.1 node_15_node_14 Uniquely Unmethylated, Affected 

cg01813965 C16orf50 84229 NM_032269.3 node_15_node_14 Uniquely Unmethylated, Affected 

cg07612655 PTGIS 5740 NM_000961.3 node_15_node_14 Uniquely Unmethylated, Affected 

cg13406950 GBP1 2633 NM_002053.1 node_15_node_14 Uniquely Unmethylated, Affected 

cg13471990 ENTPD1 953 NM_001776.3 node_15_node_14 Uniquely Unmethylated, Affected 

cg14324675 LST1 7940 NM_205838.1 node_15_node_14 Uniquely Unmethylated, Affected 

cg17966192 SULT1C2 27233 NM_006588.2 node_15_node_14 Uniquely Unmethylated, Affected 

cg18302652 IL8 3576 NM_000584.2 node_15_node_14 Uniquely Unmethylated, Affected 

cg00427635 TBC1D21 161514 NM_153356.1 node_17_node_15 Uniquely Unmethylated, Affected 

cg01860753 RASSF5 83593 NT_021877.18 node_17_node_15 Uniquely Unmethylated, Affected 

cg02151301 HM13 81502 NM_178580.1 node_17_node_15 Uniquely Unmethylated, Affected 

cg03017653 TTC13 79573 NM_024525.2 node_17_node_15 Uniquely Unmethylated, Affected 

cg05163348 RPP30 10556 NM_006413.2 node_17_node_15 Uniquely Unmethylated, Affected 

cg05829479 C6orf141 135398 NM_153344.1 node_17_node_15 Uniquely Unmethylated, Affected 

cg06196379 TREM1 54210 NM_018643.2 node_17_node_15 Uniquely Unmethylated, Affected 

cg06306751 F8 2157 NM_000132.2 node_17_node_15 Uniquely Unmethylated, Affected 

cg06495347 SUOX 6821 NM_000456.2 node_17_node_15 Uniquely Unmethylated, Affected 

cg08475827 RIF1 55183 NM_018151.3 node_17_node_15 Uniquely Unmethylated, Affected 

cg09076077 FLJ33860 284756 NM_173644.1 node_17_node_15 Uniquely Unmethylated, Affected 

cg09580336 ATP1A1 476 NM_000701.6 node_17_node_15 Uniquely Unmethylated, Affected 

cg10213821 G10 8896 NM_003910.2 node_17_node_15 Uniquely Unmethylated, Affected 

cg10521852 EDG4 9170 NM_004720.4 node_17_node_15 Uniquely Unmethylated, Affected 

cg11299964 MAPKAP1 79109 NM_001006620.1 node_17_node_15 Uniquely Unmethylated, Affected 

cg11368643 PCDHB15 56121 NM_018935.2 node_17_node_15 Uniquely Unmethylated, Affected 

cg12127282 HOXD4 3233 NM_014621.2 node_17_node_15 Uniquely Unmethylated, Affected 

cg12697789 TLR3 7098 NM_003265.2 node_17_node_15 Uniquely Unmethylated, Affected 

cg15239579 TRAP1 10131 NM_016292.1 node_17_node_15 Uniquely Unmethylated, Affected 

cg17173423 MS4A3 932 NM_006138.4 node_17_node_15 Uniquely Unmethylated, Affected 

cg19342782 ANKRD13C 81573 NM_030816.2 node_17_node_15 Uniquely Unmethylated, Affected 

cg20318748 NANP 140838 NM_152667.1 node_17_node_15 Uniquely Unmethylated, Affected 

cg21042619 EED 8726 NM_003797.2 node_17_node_15 Uniquely Unmethylated, Affected 

cg21092324 MMRN1 22915 NM_007351.2 node_17_node_15 Uniquely Unmethylated, Affected 

cg22764341 ATP10D 57205 NM_020453.2 node_17_node_15 Uniquely Unmethylated, Affected 

cg23398173 MTPN 136319 NM_145808.1 node_17_node_15 Uniquely Unmethylated, Affected 

cg23591853 IFT172 26160 NM_015662.1 node_17_node_15 Uniquely Unmethylated, Affected 

cg26815229 CYP2J2 1573 NM_000775.2 node_17_node_15 Uniquely Unmethylated, Affected 

cg08899626 LDB2 9079 NM_001290.2 node_21_node_20 Uniquely Unmethylated, Affected 

cg24673765 HSPB6 126393 NM_144617.1 node_21_node_20 Uniquely Unmethylated, Affected 
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cg25293251 GOLGA5 9950 NM_005113.2 node_13_human Uniquely Unmethylated, Unaffected 

cg02806777 PGLYRP1 8993 NM_005091.1 node_14_node_13 Uniquely Unmethylated, Unaffected 

cg07455279 NDUFA3 4696 NM_004542.1 node_14_node_13 Uniquely Unmethylated, Unaffected 

cg17421623 C3orf9 56983 NM_152305.1 node_14_node_13 Uniquely Unmethylated, Unaffected 

cg01079126 MTMR1 8776 NM_003828.1 node_15_node_14 Uniquely Unmethylated, Unaffected 

cg11320084 RNF2 6045 NM_007212.3 node_15_node_14 Uniquely Unmethylated, Unaffected 

cg19535609 B3GNT4 79369 NM_030765.2 node_15_node_14 Uniquely Unmethylated, Unaffected 

cg24127874 HES6 55502 NM_018645.3 node_15_node_14 Uniquely Unmethylated, Unaffected 

cg00186701 TSPYL5 85453 NM_033512.2 node_15_node_14 Uniquely Unmethylated, Unaffected 

cg11325578 GPR143 4935 NM_000273.1 node_15_node_14 Uniquely Unmethylated, Unaffected 

cg19441691 MAOA 4128 NM_000240.2 node_15_node_14 Uniquely Unmethylated, Unaffected 

cg19564367 AFAP 60312 NM_198595.1 node_15_node_14 Uniquely Unmethylated, Unaffected 

cg20371650 PRAF2 11230 NM_007213.1 node_15_node_14 Uniquely Unmethylated, Unaffected 

cg27389185 ZNF540 163255 NM_152606.2 node_15_node_14 Uniquely Unmethylated, Unaffected 

cg02493771 KRTAP13-2 337959 NM_181621.2 node_17_node_15 Uniquely Unmethylated, Unaffected 

cg06207804 ARTN 9048 NM_003976.2 node_17_node_15 Uniquely Unmethylated, Unaffected 

cg08532057 NUPL1 9818 NM_014089.3 node_17_node_15 Uniquely Unmethylated, Unaffected 

cg12335708 DPP4 1803 NM_001935.3 node_17_node_15 Uniquely Unmethylated, Unaffected 

cg14132995 SLC35A2 7355 NM_005660.1 node_17_node_15 Uniquely Unmethylated, Unaffected 

cg15768203 PPIG 9360 NM_004792.2 node_17_node_15 Uniquely Unmethylated, Unaffected 

cg16227684 GDI1 2664 NM_001493.1 node_17_node_15 Uniquely Unmethylated, Unaffected 

cg17552650 WDR45 11152 NM_007075.3 node_17_node_15 Uniquely Unmethylated, Unaffected 

cg17860158 CNTN2 6900 NM_005076.2 node_17_node_15 Uniquely Unmethylated, Unaffected 

cg17963840 ADRA1A 148 NM_033302.1 node_17_node_15 Uniquely Unmethylated, Unaffected 

cg18486150 KIF17 57576 NM_020816.1 node_17_node_15 Uniquely Unmethylated, Unaffected 

cg18910313 P2RY11 5032 NM_002566.4 node_17_node_15 Uniquely Unmethylated, Unaffected 

cg19118077 AKR1C3 8644 NM_003739.4 node_17_node_15 Uniquely Unmethylated, Unaffected 

cg20507276 OR2L13 284521 NM_175911.2 node_17_node_15 Uniquely Unmethylated, Unaffected 

cg20622056 SLC7A3 84889 NM_032803.3 node_17_node_15 Uniquely Unmethylated, Unaffected 

cg20825323 IGBP1 3476 NM_001551.2 node_17_node_15 Uniquely Unmethylated, Unaffected 

cg22598563 P4HA2 8974 NM_004199.2 node_17_node_15 Uniquely Unmethylated, Unaffected 

cg23066860 GPRASP2 114928 NM_138437.3 node_17_node_15 Uniquely Unmethylated, Unaffected 

cg25713185 SLC19A3 80704 NM_025243.2 node_17_node_15 Uniquely Unmethylated, Unaffected 

cg20792833 PTPRCAP 5790 NM_005608.2 node_21_node_20 Uniquely Unmethylated, Unaffected 

cg10709021 WRN 7486 NM_000553.2 node_22_node_21 Uniquely Unmethylated, Unaffected 

cg14473924 PDZRN3 23024 NM_015009.1 node_22_node_21 Uniquely Unmethylated, Unaffected 

cg21835643 RBPSUHL 11317 NM_014276.2 node_22_node_21 Uniquely Unmethylated, Unaffected 
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 Posttraumatic stress disorder (PTSD) is an important medical and social 

condition. Although the vast majority of individuals are exposed to traumatic events 

within their lifetime, a minority subsequently develop diagnosable PTSD.  What 

underlies differential risk and resiliency in the face of trauma is an ongoing research and 

clinical question with implications for prevention and treatment. Recent work has 

revealed a putative role of epigenetic variation and modification – most notably DNA 

methylation – in the etiology of PTSD. That DNA methylation is stable, yet modifiable in 

response to lived experiences, makes it a strong candidate to mechanistically explain 

the ontogeny of PTSD by putatively linking genetic and environment effects. Here, I 

provide proximate and evolutionary insights into this biological capacity through three 

distinct, but conceptually related research projects. In the first, I compare DNA 

methylation longitudinally in trauma-exposed individuals with and without PTSD to 

reveal a complex role of epigenetic variation and modification in PTSD development. In 

the second, I utilize phylogenetic methods to infer and characterize the evolutionary 

history of genetic loci necessary for the epigenetic regulation of PTSD, revealing that 
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this capacity may have ancient origins. In the third, I test, and fail to provide evidence 

for, genetic associations between PTSD risk and single nucleotide polymorphisms 

(SNPs) annotated to genes involved in the regulation and activity of the hypothalamic-

pituitary-adrenal (HPA) axis. Taken together, these data are suggestive of an 

evolutionarily-conserved capacity to regulate behavior, physiology, and psychology in 

response to extreme traumatic experiences. I argue that this capacity is epigenetically 

regulated and represents an example of adaptive developmental phenotypic plasticity. 

This model of PTSD etiology has implications for policy, clinical practice, public health, 

and research. 
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