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CHAPTER 1 

INTRODUCTION 

1.1 Summary 

Senescence is a permanent withdrawal from cell cycle that occurs naturally at a 

cellular level in response to the shortening of telomeres.  This shortening of telomeres is a 

result of the “end replication problem,” which occurs because the ends of the chromosomes 

cannot be effectively replicated.  This natural “clock” serves to limit the number of cell 

divisions and therefore protects the cell from an extended lifespan and potentially 

carcinogenic mutations.  However, senescence also occurs in response to external stresses 

to the cell, which is known as induced senescence.  This study compares the mechanisms 

of natural senescence, a response to the shortening of telomeres during replication, with 

induced senescence by using a variety of drugs to induce senescence: 5-aza-2-

deoxycytidine (a DNA demethylating agent), adriamycin (a chemotherapeutic drug), and 

H2O2 (an agent causing oxidative stress). 

MDAH041 cells, which are fibroblasts isolated from a patient with Li Fraumeni 

Syndrome, have heterozygous alleles of p53 (one wild-type allele and one allele with a 

frameshift mutation causing a protein truncation).  Fibroblasts from LFS patients can either 

undergo natural senescence with serial cell culture because of the wildtype, functional p53  

or at a low frequency spontaneously immortalize once the wild-type copy of p53 is lost.  

Therefore, this cell model provides naturally senescent cells as well as immortal cells 

which can be treated with the aforementioned drugs resulting in induced senescence.  Using 

these conditions, gene expression profiling was performed.  Gene expression analysis 

revealed 48 genes differentially expressed specifically in all 4 senescence types compared 
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to the immortal control.  Pathway analysis of these 48 genes from these 4 types of cellular 

senescence revealed several pathways, which are all  involved in innate immunity, showing 

for the first time a common gene expression profile among different types of senescence, 

as well as a central role for the IFN pathway in both natural and induced senescence.  

Specifically, the IL1 pathway was found to be up-regulated in all 4 types of senescence 

compared to immortal proliferating cells.  
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1.2 Multistep Carcinogenesis 

The development of cancer has long been considered to be a multistep mechanism, 

consisting of more than just one determining factor.  Vogelstein’s model of multistep 

carcinogenesis involved an average of 3 to 6 mutations during malignancy, either the loss 

of tumor suppressor genes or the activation of oncogenes [1].  Preceding Vogelstein, Farber 

described stepwise progression of cancer consisting of an initiation step, promotion and 

progression [2].  Initiation was shown to involve some mutagenic change in DNA, due to 

chemical interactions, radiation or other carcinogens.  After initiation, promotion occurs, 

resulting in an expanded population of cells resembling the original initiated cell.  Finally, 

progression results in a malignant transformation of cells which yields cancer [2].   

Several studies showed that oncogenes alone could not transform normal cells.  One 

example of this was the addition of an EJ oncogene (a mutant form of the human H-ras) to 

a normal hamster fibroblast line, which did not cause transformation.  However, if this 

oncogene was added to the fibroblasts after being immortalized, malignant transformation 

was observed indicating several steps in the pathway to tumorigenesis [3].  Similarly, 

embryonic cells transfected with the Ras oncogene did not become transformed unless the 

cells were immortalized previously.  If the Ras oncogene was introduced in conjunction 

with a Myc oncogene or the SV40 virus large T antigen, transformation did occur and the 

embryonic cells became malignant [4].  Therefore, tumorigenesis is multistep mechanism 

and is not the result of single genetic changes. 
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1.3 Cellular Senescence 

In 1961, Leonard Hayflick observed the cellular changes that are now collectively 

known as cellular senescence [5].  Hayflick initially described the tendency for fibroblasts 

to replicate only a limited number of times, and then enter a growth arrest or replicative 

senescence after approximately 60-80 cell doublings [5].  This was later found to be due to 

the “end replication problem” resulting from inefficient replication of the chromosome 

ends during replication [8].  In addition to spontaneous senescence, cells can be induced to 

undergo senescence in response to a variety of stimuli such as DNA damage (as with 

chemotherapeutic agents like adriamycin), oncogenic/mitogenic signals (as with H-Ras 

activation in the cell and termed specifically oncogene-induced senescence or OIS) and 

cellular stress (such as the oxidative stress following H2O2 treatment) [5].  Cellular 

senescence represents a checkpoint applied to the cell cycle that prevents cells from 

accumulating mutations that could enable them to develop an indefinite lifespan or 

“immortality”, a step on the pathway to tumorigenesis.   

The cells used in this thesis research are from patients with Li Fraumeni Syndrome, 

and provide a good example of the multistep nature of carcinogenesis.  The cells contain 

heterozygous copies of p53 (one wild-type allele and one allele with a mutation), and 

therefore become immortalized upon the loss of the wild-type copy of p53. However, the 

loss of p53 was found to be necessary but not sufficient to cause immortalization, again 

indicating multiple steps in cancer development [6].  Additionally, these immortal cells are 

not yet transformed and require even further mutations to yield a cancerous phenotype.  

These mutations may be due to the genomic instability caused by p53 insufficiency.  Upon 

transfection of a Ras-oncogene these immortal cells can become tumorigenic [7].   
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Telomere shortening leads to spontaneously senescent cells with a finite number of 

population doublings.  The repetitive DNA segments at the ends of the chromosomes 

average approximately 12 kb in human cells, but a limited number cannot be synthesized 

at each round of replication, due to the “end replication problem.” Therefore telomeres 

become shorter with age [8].  When the telomeres become too short, a DNA damage 

response is triggered through the activation of p53 and pRb [8].  Immortal cells must be 

able to overcome the shortening of telomeres in order to replicate indefinitely.  The 

majority of cancers do this by expressing an enzyme called telomerase which adds the 

repetitive DNA sequences on to the ends of chromosomes so that the telomeres never 

become so short that they trigger a DNA damage response [9].  A less common method for 

cancer cells to maintain their telomere length is known as alternative lengthening of 

telomeres, or ALT.  This mechanism employs homologous recombination to ensure the 

telomeres do not become too short and occurs in only 10-15% of cancers [10].  

Appropriately, gene expression changes between young cells and naturally senescent cells 

are decreased when hTERT is expressed in the cells, indicating that most gene expression 

changes are indeed due to telomere shortening [11].  It is important to note for this study 

that human fibroblasts that contain telomerase and are immortal can still be induced to 

senescence with various chemical agents that induce DNA damage independent of the 

telomeric DNA shortening [12]. 

In addition to the bypass of senescence through activation of telomerase or ALT, it can 

also be bypassed by inactivation of tumor suppressors.  For example, viral oncoproteins 

can bind and inactivate tumor suppressor genes.  SV40 (simian virus 40) large T antigen 

can bind and inactivate the p53 and pRb tumor suppressors which causes a bypass in the 
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senescent response [13, 14].  The E6 protein of the human papilloma virus can bind and 

inactivate p53 which also yields a bypass of the senescent response [15].  Additionally, the 

oncoprotein E7 from the human papilloma virus can complex with and inactivate pRb [16, 

17]. 
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1.4 Known Senescence Genes  

The two main mechanisms associated with cellular senescence involve the p53 and Rb 

pathways mentioned previously.  Both proteins serve as tumor suppressors and protect the 

cell from acquiring genetic mutations or DNA damage by activating a cell cycle 

checkpoint, which prevents a cell from becoming malignant.  In the event of telomere 

attrition, cytotoxic drugs, and oncogene introduction, ATM/ATR or CHK1/2 genes 

become activated, which leads to the accumulation of p53.  Additionally, p53 can be 

activated by p14ARF, which binds to MDM2 (a ubiquitin ligase) and therefore prevents 

the degradation of p53 [18].  The accumulation of p53 leads to the subsequent 

transcriptional activation of cell cycle inhibitor p21cip1, and the activation of cellular 

senescence through the inhibition of cyclin/CDK complexes.   

Alternatively, the Rb/p16 pathway can also lead to cellular senescence.  p16INK4a has 

been shown to be up-regulated in stressed and senescent cells, thus inhibiting cyclin D and 

cyclin-dependent kinases.  This prevents the phosphorylation of Rb, which leaves Rb 

available to bind E2F family members.  The subsequent association of Rb and E2F renders 

E2F unable to bind target genes and activate them during S-phase of the cell cycle [18].  

Therefore, up-regulation of p16 ultimately leads to transcriptional repression of cell cycle 

genes through E2F.  This prevents the progression through cell cycle and leads to a 

phenomenon known as Senescence Associated Heterochromatic Foci, or SAHF, which is 

a condensed chromatin structure that further prevents E2F activity on target gene promoters 

[19, 20].  However, it has also shown that formation of SAHF may be cell-type and 

damage-type specific [20].  Rb1 is a member of the pocket protein family, consisting of 

two additional members p107 and p130, however inactivation of these two family members 
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are rarely observed in cancer and there is little evidence to show a role for them during 

senescence [18].  The INK4A-ARF locus which encodes both the p16 and p14 proteins is 

the most commonly mutated or deleted locus in human tumors, allowing the cell to bypass 

senescence by p53 and Rb simultaneously [18]. 

Whether senescence is induced by activation of p53 or p16, it is dependent on the type 

of stress inflicted upon the cell.  However, in many cases, expression of both p53 and p16 

remain after sustained senescence.  For example, a senescence induced by the p53 response 

to DNA damage can also exhibit p16 activation after prolonged senescence due to p38-

MAPK pathway activation and ROS production [21]. 

In addition to the tumor suppressor genes that are frequently altered in expression after 

senescence, there are many other genes that play a role in senescence, including genes that 

were identified in the Tainsky laboratory [22].  RNA expression was analyzed during 

senescence using fibroblasts from a patient with Li Fraumeni Syndrome, which is a 

heritable cancer syndrome caused by a germline mutation in one allele of p53 [23].  The 

heterozygous mutation in p53 creates a unique cellular model system in that the fibroblasts 

can either enter senescence with telomere attrition (because of the wild-type allele of p53), 

or can undergo loss of the wild-type copy of p53 which leads to spontaneous 

immortalization.  This characteristic is not observed in any other genetic syndrome [24].  

These cells were previously used in our lab to study immortalization and senescence 

induced by treatment with 5-aza-2’-deoxycytidine, showing that 5-aza reverses epigenetic 

silencing of genes during immortalization.  That study used Affymetrix microarray analysis 

to identify genes with altered expression in senescence.  By comparing immortal LFS 

fibroblasts with senescent LFS fibroblasts induced into senescence by treatment with 5-



9 

 

 

 

aza, it was found that there are 3 critical pathways involved in cellular immortalization: 

cytoskeleton, cell cycle and interferon pathways [22].  Cytoskeletal changes were not 

surprising, given the large flattened morphology of fibroblasts during senescence.  Cell 

cycle gene expression changes were also not surprising, because the cells must withdraw 

from the cell cycle in order to cease division and enter senescence.  However, the interferon 

pathway’s involvement in senescence was an unexpected finding of the study.  

Additionally, senescent-associated genes were identified by identifying the unique subset 

of genes that were both up-regulated in senescence and down-regulated in immortalization, 

in all 4 of the LFS cell lines used.  This approach also identified a list of 14 genes that met 

these criteria: ALDH1A3, CLTB, CREG, CYP1B1, FLJ14675, HPS5, HSPA2, HTATIP2, 

IGFBPrP1, KIAA1750, MAP1LC3B, OPTN, SERPINB2 and TNFAIP2 [22].  When 

identifying possible senescence genes, one strategy is to look at genes that are up-regulated 

in senescence and down-regulated in immortalization because senescence has been shown 

to be a dominant pathway [25].  
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1.5 Senescence as a Tumor Suppressive Mechanism 

Senescence provides a barrier to tumor progression both in vitro and in vivo,  as 

evidenced through several studies, including a study of the E2F3 transcription factor, in 

which E2F3 was ectopically expressed in the pituitary gland, leading to hyperplasia, but 

subsequently led to induction of senescence [26].  Additional studies include the discovery 

of senescent cells in benign naevi (moles) which typically exhibit BRAF oncogenic 

mutations and a study in which RasV12 was conditionally expressed in a mouse lung, 

leading to pre-neoplastic lung adenomas but rarely progressed to neoplastic adenomas [18, 

27].  Senescence in the presence of an oncogene is termed oncogene-induced senescence 

or OIS.  The role of senescence in preventing progression of pre-neoplastic lesions to 

malignant cancer has been shown in cancers of the prostate, colon, lymph and breast [18].   

Benign melanocytic nevi in vivo were found to contain BRAF mutations, concurrent with 

positive staining for senescence-induced -galactosidase staining [28].  This would 

indicate that when a cell obtains an oncogene, a form of senescence is activated to prevent 

proliferation of that cell.  Additionally, markers of senescence have been found in vivo in 

several types of early neoplastic tissues, such as lung adenoma, mammary tumors, 

lymphomas, liver carcinomas and prostate neoplasias [29]. Therefore, evidence indicates 

that senescence is a barrier to tumorigenesis.  The senescence that occurs as a result of 

activation of an oncogene such as Ras or BRAF is a known natural cellular mechanism of 

carcinogenesis suppression.  It is thought that the increased replication due to oncogenic 

activation causes an abundance of DNA damage and consequently a DNA damage 

response via the p53 and pRb pathways [30].  It has also been proposed that the DNA 

damage response can be triggered by increased levels of ROS, which is a consequence of 
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oncogenic Ras expression [31].  Oncogene-induced senescence is a recently-identified 

mode of tumor suppression, similar to the classic tumor suppression mechanism of cell 

cycle arrest.  However, oncogene-induced senescence is thought to be irreversible, whereas 

generic cell cycle arrest (quiescence) due to DNA damage can be reversed if the DNA 

damage is repaired and the cell is allowed to re-enter the cell cycle [32].  In addition to 

oncogene-induced senescence and cell cycle arrest, tumor suppression largely occurs via 

apoptosis when damage to the cell is too extreme to repair [32].  The tumor suppressor p53 

dictates whether a cell will undergo senescence, quiescence or apoptosis in response to 

DNA damage [33].  Under normal conditions, p53 has a low level of expression, which is 

maintained through MDM2, an E3 ubiquitin ligase that ubiquitinates p53 and targets it for 

degradation [33].   
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1.6 Senescence Markers  

Markers of senescence include prolonged withdrawal from cell cycle, enlarged 

morphology, senescence-associated -galactosidase staining, increased levels of p16 and 

p21 and the formation of senescence-associated heterochromatic foci (SAHF) as well as a 

senescence-associated secretory phenotype (SASP).  Senescence-associated -

galactosidase staining is an assay that results from the accumulation of -galactosides 

within the lysosome of senescent cells due to enlarged lysosomal mass [34].  Because of 

this, -galactosidase is able to catalyze the hydrolysis of -galactosides into 

monosaccharides, which then results in the cleavage of 5-bromo-4-chloro-3-indolyl--D-

galacto-pyranoside (X-gal), which leads to a blue precipitate at pH 6.0 [35].  Another 

indicator of senescence is the decrease in expression of cell-cycle and proliferation related 

genes, such as cyclin A and cyclin B, though these reductions in expression are not specific 

to senescence but rather the withdrawal of the cell from the cell cycle  [36].  Additionally, 

the increase in expression of cyclin-dependent kinase inhibitors such as p21 can also 

indicate senescence [37]. 

SAHF or senescence-associated heterochromatic foci are areas of transcriptionally 

silent and compacted chromatin that result from the presence of repressive histone mark 

H3K9me3 and absence of activating histone mark H3K4me3 [38].  It is probable that 

SAHF maintains the cell in a non-proliferating state, as the E2F transcription factors cannot 

bind to the compressed and therefore inaccessible chromatin, which prevents  transcription 

of S-phase cell cycle related genes [19].  The occurrence of SAHF is dependent upon the 

cell type, as well as type of damage inflicted, but seems to be consistently associated with 

the activation of the tumor suppressor p16 [20].  In oncogene-induced senescence, the 
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formation of SAHF occurs concurrently with DNA damage response and also correlates to 

the increased expression of p16 [39]. 

The senescence-associated secretory phenotype is a collection of factors that are 

secreted from senescent cells [40].  The factors are considered to be inflammatory, 

including members from the IL1 family, proteases, MMPs and chemokines, several of 

which were identified in our RNA-seq to be up-regulated in senescence [41].  The effect 

of the SASP is controversial, with evidence for these factors causing paracrine senescence 

to surrounding cells or causing chronic inflammation and therefore contributing to 

malignant phenotypes [41].  Secreted factors are also thought to attract immune factors to 

aid in the elimination of senescent cells [42]. 
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1.7 Senescence Induction 

Senescence can be induced by a variety of mechanisms.  Firstly, oncogene-induced 

senescence can be achieved through the expression of an oncogene such as a mutated Ras 

[39].  Secondly, there are several chemical agents that can induce senescence through DNA 

damage or other stresses, such as chemotherapeutic agents and DNA damaging agents [43].  

Thirdly, senescence can be induced through the re-activation of tumor suppressive 

pathways such as p53 or p16 by re-introducing these genes back into cells or reversing 

their silencing through epigenetic remodeling [44].  Lastly, genes that are up-regulated 

during senescence such as IRF5 and IRF7 can be ectopically expressed in cells to cause 

senescence [45].  This project utilizes hydrogen peroxide, adriamycin and 5-aza-2-

deoxycytidine to induce senescence. 

H2O2 (hydrogen peroxide) has been shown to induce senescence in various cell types 

at sublethal concentrations [46].  At high concentrations, H2O2 treatment can result in 

apoptosis.  H2O2-treated cells were shown to be arrested in G1, which reflects senescent 

arrest [46].  p53 is temporarily up-regulated in these cells, while p21 showed a long-term 

up-regulation in response to H2O2 exposure [46].  Rb maintains low levels of 

phosphorylation, which is consistent with the senescent response: when Rb is not 

phosphorylated, it binds E2F and prevents transcription of proliferation-related genes [46].  

H2O2 treated cells have been found to be senescent-associated -galactosidase positive and 

have irreversible growth arrest [47]. 

5-aza-2-deoxycytidine is a DNA methyltransferase inhibitor that results in 

demethylation of promoters within the genome.  5-aza is a cytosine analog that incorporates 

into DNA, and covalently traps DNMTs, preventing further methylation activity [48].  
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Because many CpG islands in tumor suppressive promoters are frequently hyper-

methylated in cancers, the demethylating action of 5-aza-2-deoxycytidine causes 

senescence through reactivation of tumor suppressors epigenetically silenced during 

immortalization, such as p16 [49].   5-aza treatment of immortal LFS cells (the same type 

of cells used in this study) has shown three pathways affected by treatment: cytoskeletal 

pathway, cell cycle pathway, and the interferon pathway [22].  Further study has shown 

the loss of expression of the interferon pathway in immortalization of these cells, which 

can be thought of as the inverse of senescence [22].  High levels of histone 3 lysine 9 

(H3K9) methylation have been shown in heterochromatin silenced genes, but this effect is 

reversed in response to treatment with 5-aza, indicating a possible role of 5-aza in histone 

demethylation [50].  An additional study showed that treatment of cells with 5-azacytidine 

(a DNMT inhibitor that incorporates into both the DNA and RNA) caused changes in 

histone modification patterns [51]. 

Adriamycin is an anthracycline antibiotic that is frequently used in the treatment of 

breast cancer.  This drug typically causes induction of apoptosis when used chronically, 

however short-term acute treatment favors the senescent pathway [52].  Treatment with 

adriamycin has been shown to cause an increase in p53 levels, and decrease in telomerase 

levels, though the mechanism of action seems to be telomere length independent [52]. 
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1.8 Senescence and Aging 

Aging at a cellular level occurs through the shortening of telomeres, which limits 

the number of times a cell can proliferate.  When the telomeres become critically short, a 

DNA damage response is triggered and the cell enters senescence rendering it unable to 

replicate [53].  As an organism ages, telomere length of cells is known to decrease overall, 

and the number of senescent cells with critically short telomeres is known to increase [53].  

Additionally, syndromes of premature aging exhibit shortened telomeres compared to 

normal cells of these patients [53].  Several aging-related diseases such as infertility and 

digestive tract atrophies have also been shown to have shortened telomeres [53].  

Telomerase-deficient mice showed early aging but a higher resistance to cancer, and 

telomerase-null mice showed a decline in longevity [54]. 

Aging at an organismal level is a risk factor for a myriad of disorders, including 

stroke, heart disease, cancer, dementia, osteoporosis, kidney failure, blindness and arthritis 

[55].  Many of these disorders are a direct result of chronic inflammation, which has 

recently been found to be in part due to the senescence-associated secretory phenotype 

[55].  It has also been proposed that the elimination of senescent cells may reduce chronic 

inflammation and therefore decrease the amount of chronic disease due to aging [55].  Early 

hypotheses about senescence’s role in aging came from knowledge that tumor suppressors 

such as p53 and p16, which are up-regulated during senescence, cause mortality due to 

cancer at a young age when ablated in mice.  However, until recently it was difficult to 

prove the involvement of senescent cells in the aging phenotype due to lack of in vivo 

markers for senescence.  The most common markers for in vivo detection of senescence 

are senescence-associated -galactosidase and elevated levels of p16; however p21, 
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macroH2A (a histone variant), IL-6 and DNA damage can also be observed [21]. Using 

these markers, senescent cells have been shown in age-related diseases such as 

osteoarthritis, pulmonary fibrosis and Alzheimer’s disease [21]. 

 Further evidence for senescence in aging comes from a study of selective p16 

elimination from a mouse model.  Using a transgene INK-ATTAC (which targets p16 for 

destruction through caspase activation), cells showing a high level of p16 (senescent cells) 

were selected for apoptosis.  This selective elimination of p16 halted the progression of 

aging disorders in skeletal muscle and fat [56].  The role senescent cells play in tissue 

degeneration and organ dysfunction is unknown.  It is possible that degeneration and 

dysfunction are caused by a simple decrease in tissue regenerative potential, but several 

things are thought to contribute to this phenotype.  The microenvironment of aged cells 

limits stem cell viability, and regenerative potential of stem cells is improved when 

introduced to a “young” cell microenvironment [21].  Similarly, senescent cells secrete 

proteases that can disrupt tissues and membrane-bound receptors, as well as other 

components of the environment [21].  Other secreted factors such as IL6 and IL8 can 

stimulate tissue fibrosis.  As a whole, the senescence-associated secretory phenotype can 

cause chronic inflammation which is associated with aging and the consequent 

development of age-related diseases [21].  These inflammatory factors can “spread” 

senescence to surrounding cells which exacerbates the senescent phenotype and tissue 

degeneration, but these factors can also promote survival and proliferation, which is 

consistent with the notion that cancer drastically increases in old age [21].  This may 

explain why the production of senescent cells increases with time, or it is also possible that 
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the elimination of senescent cells simply decreases with time which would cause an 

accumulation of senescent cells.  

1.9 Antagonistic Pleiotropy 

Antagonistic pleiotropy as it pertains to senescence was introduced in 1957 by 

George Williams.  Briefly, antagonistic pleiotropy describes a phenomenon in which 

organisms can evolve mechanisms that hinder their overall survival but they are beneficial 

early in life [57].  Williams asserted that natural selection will promote genes beneficial 

during youth at the expense of adult life, because “an advantage during the period of 

maximum reproductive probability would increase the total reproductive probability more 

than a proportionately similar disadvantage later on would decrease it” [57].  Senescence 

fits this definition of antagonistic pleiotropy because it is beneficial early in life, serving to 

limit cancers but as an organism ages senescence will cause frailty, decreased regenerative 

capability and a general “old age” phenotype.   

 There is some evidence against senescence as antagonistic pleiotropy.  Although 

the senescence-associated secretory phenotype is generally thought to have a negative 

effect because the secreted factors can promote cancer, some believe that the secreted 

factors are beneficial as they promote clearance by the immune system [58].  Senescence 

also plays a role in wound healing and tissue repair, which can prevent organ degeneration 

and tissue fibrosis and is therefore beneficial in late life [58].   It has also been noted that 

there is no definitive evidence that cites senescence as being more beneficial in young life 

compared to late life, or conversely that the detriments of senescent are more prevalent in 

late life than young life [58]. 
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1.10 Senescence and the Interferon Pathway 

Previous analysis of senescence pathways was performed in the Tainsky laboratory 

through gene expression studies of immortal LFS cells, proliferating versus those induced 

into senescence by 5-aza-2’-deoxycytidine.  Three main pathways were found to be altered 

in immortalization and senescence: cell cycle, cytoskeleton and the interferon pathway 

[22].  Cell cycle was expected to be altered, due to a senescent cell’s halt in growth and 

associated withdrawal from cell cycle.  Cytoskeletal alterations are also not surprising 

given the stretched and enlarged morphology of a senescent cell.  Therefore, the surprising 

finding was that of the interferon pathway, and this was studied extensively.   

The Tainsky laboratory previously identified several interferon genes epigenetically 

silenced during immortalization [22, 48]; these genes were also found to be up-regulated 

in both natural senescence and senescence induced by 5-aza-2’-deoxycytidine [49].  

Further confirmation of these genes showed that overexpression of interferon regulatory 

factors IRF5 and IRF7 was able to inhibit growth and induce senescence in immortal LFS 

cells [45].  However, it was also shown that STAT1 expression was not sufficient to 

regulate this senescent interferon response [25].  Immortal cells with abrogated interferon 

signaling had a higher tolerance to miRNA created by overexpression of DICER, while 

cells with a normal interferon response responded to overabundance of miRNA with cell 

death, inhibition of growth and senescence.  This indicates a role for abrogation of the 

interferon pathway in early immortalization [59].  Because these changes were shown only 

in 5-aza-induced senescence, which is essentially the reversal of immortalization-related 

epigenetic silencing through the removal of methylation marks, the current study focused 
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on other types of induced senescence to assess whether the interferon pathway played a 

role in other types of senescence with different mechanisms of induction.   

Other laboratories have reported a role for the interferon pathway in cellular 

senescence.  Senescence induced by 5-bromo-2’-deoxyuridine, distamycin, aphidicolin or 

hyrdoxyurea in both normal and cancer cells were found to activate JAK/STAT signaling, 

expression of interferon-stimulated genes such as the IRFs (interferon regulatory factors), 

as well as several interleukins and interferons [60].  Knockdown of JAK1 in this study was 

found to abrogate the expression of interferon-stimulated genes [60]. It has been shown 

that interferon cytokines are inhibitors of cell growth, both in vivo and in vitro, which is 

consistent with the idea that they are involved with senescence [61].  cDNA microarray 

analyses showed the interferon pathway to be silenced in a model of human prostate cancer, 

and up-regulated in senescent human prostate epithelial cells [62].  Analysis of prostate 

cancer cells via serial analysis of gene expression (SAGE) showed up-regulation of 

interferon genes [63].  The specific role of interferon genes in cellular senescence and 

immortalization is largely unknown, however a small number of specific interferon genes 

have been characterized, such as Choubey et al. who identified IFI16 as a key regulator of 

senescence in prostate epithelial cells [64].  Another example is IFN- which has an anti-

proliferative effect on gastric cancer cells [65] and can induce senescence in normal 

melanocytes [66]. 
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1.11 The Interleukin 1 Pathway and Senescence 

The senescence associated secretory phenotype is known to include members of the 

Interleukin 1 (IL-1) pathway [41].  IL1- or IL1-bind to the IL1 receptor (IL1R) and 

cause interaction with Myd88, an adaptor protein [67].  Activation of this adapter then 

causes downstream activation of IRAKs (interleukin-1 receptor associated kinases) and 

consequent activation of NF-kB [67].  The activation of NF-kB is thought to trigger the 

release of inflammatory cytokines that comprise the senescence associated secretory 

phenotype, including IL1-, IL1-, IL-8 and ICAM1 among several others.  IL1- is 

mainly membrane-bound, while IL1- is mainly secreted when activated [68].  

IL1- was found to be necessary for the secretion of downstream inflammatory factors 

during senescence, such as IL-6 and IL-8 [68].  During senescence, fibroblasts were found 

to have high amounts of membrane-bound IL1-, intracellular IL1- and IL1- mRNA, 

however very little secreted IL1- [68].  Neutralizing IL1- levels through IL1- 

antibodies, IL1- RNA interference and an IL1R antagonist all caused a decrease in 

senescence-associated IL-6 and IL-8 secretion, however the effect on amount of 

senescence was not noted in that study [68].  This study also showed a decrease in paracrine 

effects of the inflammatory phenotype: conditioned media from senescent cells depleted in 

IL1- did not have as much of an invasive phenotype in metastatic cancer cells [68].  

Conditioned media from cells undergoing replicative senescence, oncogene-induced 

senescence or drug-induced senescence contains high levels of Il-1, IL-6 and TGF, which 

can cause increased DNA damage by ROS [69].  This media is able to induce DNA damage 

and senescence in bystander cells [69].  Briefly, young BJ fibroblasts were exposed to 
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senescence-conditioned media from BJ fibroblasts undergoing oncogene-induced 

senescence, replicative senescence, or drug-induced senescence.  The young BJ cells 

exhibited increased levels of H2AX (a marker for DNA damage) as well as increased 

levels of senescence-associated -galactosidase staining indicating senescence [69].  

Additionally, U2OS osteosarcoma cells with a stably expressed GFP tag were mixed with 

U2OS cells that had undergone drug-induced senescence, and the GFP-positive cells 

showed an increase in H2AX DNA damage foci [69].  Similarly, independent studies 

showed that oncogene-induced senescence activates a senescence-associated secretory 

phenotype and media from these cells can cause paracrine senescence through the IL-1 

signaling network [70].  However, this study found that while IL1- alone can induce a 

senescence-associated secretory phenotype when up-regulated, neutralization of both IL1-

 and Il1- through antibodies or through the knockdown of the IL1R was necessary to 

block the senescence-associated secretory phenotype [70].  The increase in IL-1 is due to 

senescence-associated changes in steady-state H2O2 levels, and therefore intracellular Ca2+ 

levels which promote calpain activation and causes cleavage to mature IL1- [71]. 
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1.12 Senescence and Cancer Therapy 

The controversy surrounding senescence’s usefulness during cancer therapy greatly 

increased with the discovery of the senescence-associated secretory phenotype.  

Senescence was initially thought to be a beneficial outcome of cancer therapy, rendering 

the cells unable to replicate and therefore prevent tumor growth.  However, it has also been 

shown that senescent cells secrete inflammatory factors that can lead to chronic 

inflammation and consequently tumorigenesis [40].  Another theory is that senescence 

improves cancer therapy, but the senescent cells need to be expediently removed to avoid 

negative consequences of senescence [72].  Other approaches include preventing 

senescence altogether, or targeting the SASP to eliminate negative repercussions of 

lingering senescent cells [55].  Chronic inflammation as a result of normal aging is the 

leading cause of dementias, depression, atherosclerosis, cancers, diabetes and mortality 

[55].  This chronic inflammation may be due to an accumulation of senescent cells as the 

body ages.  

It is has been shown that senescent cells can be removed through the targeting of the 

biomarker p16.  In a study with BubR1 progeroid mice as a model, a transgene INK-

ATTAC was administered, and upon addition of a drug, the p16-positive cells, which are 

considered senescent, were removed through apoptosis.  When the p16-positive cells were 

removed throughout the mouse’s entire lifespan, age-related pathologies were prevented in 

tissues such as adipose, skeletal muscle and eye, where p16 expression is generally 

increased with age.  Additionally, when the p16-positive cells were cleared in late-life 

mice, the age-related disorders halted progression [56].  That study not only indicates a 

causal role for senescence in aging-related pathologies, but provides a proof of principle 
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that it may be possible to eliminate senescent cells in vivo, which will be significant in both 

cancer therapy and aging prevention. 

    



25 

 

 

 

CHAPTER 2 

METHODS 

2.1 Cell Culture and Cell Lines 

Li-Fraumeni Syndrome (LFS) is an inherited cancer syndrome caused by germline 

mutations in the tumor suppressor p53.  Patients with this syndrome are prone to several 

types of cancers, including breast cancers, soft tissue sarcomas, brain tumors, 

osteosarcomas, leukemias, lymphomas and adrenocortical carcinoma [73].  Dermal 

fibroblasts from these patients were established in cell culture, and characterized [74].  It 

was found that though these fibroblasts can grow normally and senesce due to telomere 

erosion as a normal cell would, they could also lose their functional copy of p53 due to 

genomic instability and spontaneously immortalize [7].  The immortal cells obtained 

included MDAH041, MDAH172, MDAH174 as well as four independent 

immortalizations of the same cell line: MDAH087-N, MDAH087, MDAH087-1 and 

MDAH087-10.  These immortal cells show altered morphology, as well as chromosomal 

anomalies and can be transformed by oncogenes to form tumors [7].  It is important to note 

that fibroblasts from normal patients or other cancer predisposing syndromes do not 

spontaneously immortalize in culture.  MDAH041 early passage cells possess one allele 

with a frameshift mutation at amino acid 184 of p53, which results in a truncated p53 

protein with no function.  Spontaneously immortalized MDAH041 cells subsequently lose 

their wild-type copy of p53 and therefore have no copies of functional p53 [74].  

MDAH041 cells contain active telomerase and therefore maintain short but stable telomere 

lengths.  MDAH172 and MDAH174 cells have a missense mutation at codon 175 of p53, 

and the MDAH087 cells have a missense mutation at codon 248 of p53 [74].  MDAH172, 
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MDAH174 and MDAH087 immortal cells do not have active telomerase but maintain long 

telomeres through the alternative lengthening of telomeres (ALT) mechanism [74, 75]. 

MDAH041 cells were derived from primary fibroblasts by skin biopsy from an LFS 

patient and were spontaneously immortalized in vitro.  Immortalized LFS MDAH041 

fibroblasts, as well as the 3 other LFS cell lines: MDAH087-1, MDAH087-N and 

MDAH172 were grown in Modified Eagles Medium (MEM, Invitrogen). Cells were 

supplemented with 10% fetal bovine serum (FBS, Hyclone), 100 units/ml penicillin and 

100 µg/ml streptomycin (Invitrogen) and were maintained at 37oC in 5% humidified CO2.  

Cells were maintained through passage from 1 plate to 4 plates every 3 days. 

2.2  Senescence-Inducing Drug Treatments 

H2O2 treatment was performed by plating immortal LFS cells at 4x105 cells per 10 

cm plate and adding H2O2 to cell media at a final concentration of 20 µM for MDAH-087-

N and MDAH087-1, 25 µM for MDAH172 and 85 µM for MDAH041 cells and incubating 

at 37oC for two hours in 5% CO2.  Optimal concentration of H2O2 for each cell line was 

determined by greatest number of SA--galactosidase positive cells.  Plates were then 

washed with PBS and replenished with growth media, and incubated at 37oC for 5 days. 

5-aza-2-Deoxycytidine treatment was performed by plating immortal LFS cells at 

3x105 cells per 10 cm plate, adding fresh preparations of sterile 5-aza in 50% acetic acid to 

cell media to a final concentration of 1 µM every other day and plates were harvested on 

day 8. 

Adriamycin treatment was performed by plating immortal LFS cells at 4x105 and 

adding a stock of adriamycin dissolved in water to cell media at a final concentration of 
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0.50 µM for MDAH041 cells and 0.20 µM for MDAH087-1, 087-N and 172 cells.  Optimal 

concentration of Adriamycin for each cell line was determined by greatest number of SA-

-galactosidase positive cells.  Cells were treated for two hours (MDAH041) or 1.5 hours 

(087-N, 087-1 and 172) at 37 oC, were washed with PBS and growth media was 

replenished.  Cells were grown at 37oC for 5 days before harvest.   

Proliferating cells were harvested at a lowest population doubling (PD 10-12), low 

population doubling (PD 18-20) and one plate of proliferating cells was kept to expand for 

naturally senescent cells of the same line.  Naturally senescent cells were achieved through 

serial passaging at a 1 to 2 split until cells halted proliferation and appeared 

morphologically senescent (PD 29-30). Immortal cells were employed at high population 

doublings (greater than 200).  Quiescent cells were obtained by plating immortal cells at 

3x105 cells per 10 cm plate, washing the next day with PBS, and adding media with 0.1% 

serum.  Cells were then incubated for 24 hours and harvested. 

2.3 Real-Time PCR and Primers 

cDNA was prepared from 3 µg of RNA, using the Superscript II system from 

Invitrogen.  Q-RT-PCR was performed using Power SYBR Green MasterMix from 

Applied Biosystems and analyzed on the ABI 5700 Sequence Detection System (Applied 

Biosystems).  Primers for each gene analyzed are listed in Table One.  The relative fold 

change was calculated using the CT method as follows: 2-ΔΔCT, where, ΔΔCT = (CT Gene of 

interest - CT GAPDH) experiment - (CT Gene of interest - CT GAPDH) control.  Statistical significance was 

determined through student’s t-test and a p-value of less than 0.05 was considered 

significant.   
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 Table 1: Primers used for RT-PCR 

  

IL1A Forward CTTAAGCTGCCAGCCAGAGA

IL1A Reverse ACCAAACCAGGGAGGGACAA

IL1B Forward CCAGCTACGAATCTCCGACC

IL1B Reverse CATGGCCACAACAACTGACG

Myd88 Forward CCTCAAGTCCTGGGGAAATGC

Myd88 Reverse AAGGCTCAGGAGACCCACTG

IL8 Forward GAGACAGCAGAGCACACAAG

IL8 Reverse GATGTGCTTACCTTCACACAGA

ICAM1 Forward GGTAGCAGCCGCAGTCATAA

ICAM1 Reverse TCCCTTTTTGGGCCTGTTGT

IRF5 Forward TTCTCTCCTGGGCTGTCTCTG

IRF5 Reverse CTATACAGCTAGGCCCCAGGG

IRF7 Forward GCAGCGTGAGGGTGTGTCTT

IRF7 Reverse GCTCCATAAGGAAGCACTCGAT

Cyclin A2 Forward AGTGATGTTGGGCAACTCTG 

Cyclin A2 Reverse TCCGGGTTGATATTCTCCTG

GAPDH Forward ATCAAGAAGGTGGTGAAGCAG

GAPDH Reverse TGTCGCTGTTGAAGTCAGAGG
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2.4 RNA Extraction  

RNA was extracted from 10 cm plates of 80% confluent cells of all conditions using 

the QIAGEN RNeasy Kit (QIAGEN).  Fully supplemented media was added to the cells 

approximately 18 hours before harvest to ensure cell cycle participation. 

2.5 Immunocytochemistry and Antibodies  

 Cells were plated in 2-well chamber slides (Thermo-Scientific).  Cells were fixed 

with 4% paraformaldehyde for 15 minutes at room temperature, washed three times with 

PBS and permeabilized with 0.1% Triton for 15 minutes.  Slides were then washed three 

times with PBS and blocked with 0.2% BSA for 30 minutes and incubated with primary 

antibody suspended in 0.2% BSA for 1 hour at room temperature.  Following three PBS 

washes, slides were incubated with appropriate secondary antibodies suspended in 0.2% 

BSA for one hour at room temperature.  Three washes with PBS were performed and excess 

PBS was allowed to evaporate from the chamber before Prolong Gold antifade reagent with 

DAPI (Life Technologies) was added to the slide, and covered with a coverslip.  Antibodies 

used are listed below. 
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Antibody Company Catalog Number 

IL1 R&D MAB601 

IL1 R&D MAB200 

Anti-Mouse FITC Santa Cruz SC-2099 

Anti-Mouse TRITC Santa Cruz SC-2981 

 

Table 2: Antibodies used for Immunocytochemistry  
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2.6 Senescence-Associated -Galactosidase Staining 

A senescence detection kit (BioVision) was used for staining according to the 

manufacturer’s instructions. Briefly, treated cells were stained for senescence-associated 

β-galactosidase activity after 5-7 days of drug treatment. In order to count the senescence-

associated β-galactosidase positive cells, cell plates were washed twice with PBS and fixed 

with fixative solution for 10-15 minutes at room temperature. The fixed cells were washed 

with PBS and stained with the staining solution containing X-gal and staining supplement 

and incubated at 37oC overnight with no CO2. Cells containing blue stain were counted as 

senescent, proportionate to the total number of cells per field of vision.  At least 3 fields of 

vision were counted, with a minimum of 200 cells per plate.  Statistical significance was 

determined through student’s t-test and a p-value of less than 0.05 was considered 

significant.   

2.7 Cell Cycle Analysis 

Cell cycle analysis was performed using propidium iodide staining.  MDAH041 immortal cells 

were plated at 50% confluence.  On the next day, they were rinsed 3 times with PBS and given 

media supplemented with 0.1% FBS.  A control plate of immortal cells was also included which 

were supplemented with 10% FBS.  After 48 hours, cells were trypsinized and rinsed twice with 

PBS.  Pellet was resuspended in 1 mL PBS and added dropwise to 1 mL ice cold 95% ethanol, and 

stored overnight at 4oC.  Cells were rinsed twice with PBS, then pelleted again and 

resuspended in 500 uL staining solution: 10 mL 0.1% Triton x-100 in PBS with 0.4 mL 

500 ug/mL propidium iodide and 25 uL 10 mg/mL RNAase A and incubated for 37 oC for 

15 minutes.  After incubation, tubes were transferred to 4 oC and protected from light until 

flow cytometry was performed by the flow cytometry core at Wayne State University. 
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2.9 RNA-sequencing and Data Analysis 

Quality control for all RNA samples was performed on the Agilent 2100 

Bioanalyzer by the Applied Genomics Technology Center at Wayne State University.  

Measurements include RIN (RNA integrity number) and 28S/18S ratio.  RIN measured the 

degradation of RNA, as well any potential contamination with genomic DNA, and values 

close to 10 are optimal.  The 28S/18S ratio is measured through electrophoresis, and the 

ratio should be close to 2.  The size ratio of the 28S/18S ribosome is technically 2.7:1, or 

5kb:2kb but 2:1 is the benchmark for intact RNA. 

  Preparation of samples for sequencing was done at the AGTC using the TruSeq 

RNA sample preparation kit (Illumina).  Briefly, mRNA is taken from the total RNA by 

magnetic beads containing T oligos, which bind the 3’ poly A tails of mRNA, separating 

it from the total RNA.  The samples are fragmented by divalent cations and elevated 

temperature and reverse transcribed into cDNA.  The ends are repaired by addition of an 

“A” base and ligated to adapters which enable multiplexing of samples, and all fragments 

are enriched with PCR to get a final cDNA library.  In this sequencing run, the samples 

were multiplexed with 6 samples per lane, in 4 lanes, for a total of 24 samples.   

Samples were then sequenced on the Illumina HiSeq 2000 System, and analyzed 

by Dr. Adele Kruger at the AGTC.  Briefly, samples were demultiplexed with Illumina’s 

CASAVA 1.8.2 software (www.illumina.com) and quality control was assessed using 

FastQC from Babraham Bioinformatics (www.bioinformatics.babraham.ac.uk/).  Reads 

were then aligned to the Human Genome Consortium’s reference human genome hg19 [76] 

using Tophat software [77], allowing 20 alignments to the genome per sequencing read.  

Relative abundances and differential expression was calculated with Cufflinks [78].  

http://www.illumina.com/
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Briefly, the Cuffdiff 2 feature of Cufflinks uses an algorithm that identifies differentially 

expressed genes by testing an observed fold change (calculated from FPKM values of 

different samples) against a null hypothesis (no change).  To account for variability, this 

program uses a model of variability which analyzes significance, through a table that 

predicts variance in number of gene reads for both conditions that are being compared.  

This algorithm eventually yields an estimate of the number of reads for each gene and a 

variance for that estimate, which are reported along with FPKM values and corresponding 

variance.  Differential expression if shown as fold change of FPKM, and the variance of 

FPKM allows the program to calculate variance for the fold change itself.  Therefore, a 

gene with variable expression will have a more variable fold change, and these variables 

are reflected in the resulting p-value. 

Pathway analysis was performed using Ingenuity Pathway Analysis (Ingenuity® 

Systems, www.ingenuity.com), Signaling Pathway Impact Analysis (SPIA) [79] with the 

help of Calin Voichita in the Computer Science Department, and Genomatix Genome 

Analyzer. 

Clustering analysis was performed using Cluster 3.0 software and Treeview 

software.  A hierarchical clustering was performed after log transforming the gene 

expression data (FPKM values or relative abundance).  The center median of the gene 

values were taken, and both the genes and arrays were clustered with an uncentered 

correlation and average linkage.  Results are presented as relative up-regulation or down-

regulation compared to the median expression of a given gene. 
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CHAPTER 3 

RESULTS 

3.1 Analysis of Samples for RNA-seq and RNA-seq 

 Eight RNA samples were obtained for potential RNA-seq: immortal cells 

(PD>200), lowest passage cells (PD 10-12), low passage cells (PD 17-19), replicatively 

senescent cells (PD 28-30), quiescent cells (PD>200, serum-starved), H2O2-induced 

senescent cells (PD>200, treated with H2O2), adriamycin-induced senescent cells 

(PD>200, treated with adriamycin), and 5-aza-induced senescent cells (PD>200, treated 

with 5-aza).  In order to perform RNA-seq, I first needed to confirm that the cells were 

senescent and the samples were high enough quality for sequencing.   

Senescence-associated -galactosidase staining was performed on simultaneous 

plates grown in parallel with those harvested for RNA to assess the amount of senescence 

in all samples (Figure 1).  Cell cycle analysis was performed on the quiescent samples to 

confirm withdrawal from the cell cycle (Figure 2). These RNA samples were transported 

to the Applied Genomics Technology Center, where quality control was performed to 

assess the amount of degradation of RNA and any potential contamination with genomic 

DNA (Figure 3).  After quality was ensured, the RNA was prepared for sequencing. 

In addition to quality control analysis performed by the Applied Genomics 

Technology Center, RT-PCR was performed on genes known to change during cellular 

senescence based on previous studies.  Cyclin A was shown to decrease in senescent 

samples, consistent with withdrawal from the cell cycle (Figure 4).  Additionally, interferon 

regulatory factors IRF3, IRF5 and IRF7 were examined to analyze the participation of the 



35 

 

 

 

interferon pathway in all types of senescence (Figures 5, 6, 7).  IRFs are transcription 

factors that can activate several members of the interferon pathway [80].   
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3.1.1 Senescence-Associated -Galactosidase Staining of RNA-seq Samples 

Senescence-associated -galactosidase staining was performed on all samples 

concurrent to RNA extraction (Figure 1).  All 4 types of senescence (natural, Adriamycin-

induced, 5-aza-induced and H2O2-induced) exhibited high levels of senescence-associated 

-galactosidase positive cells compared to the immortal and quiescent samples, which had 

only very low baseline levels of senescence-associated -galactosidase staining.  The 

difference in senescence-associated -galactosidase staining in the senescent samples was 

statistically significant compared to the immortal samples with p<.05 using a student’s t-

test.  Proliferating lowest passage cells and low passage cells showed a low level of 

senescence.  Three biological replicates were used for each condition.  This indicates that 

the 4 types of senescence were indeed senescent while the other conditions (immortal, 

quiescent, low passage, and lowest passage), were not senescent. 

 

  



37 

 

 

 

 

 

Figure 1: Senescence-Associated -galactosidase Activity Levels in RNA-seq Samples.  

All 4 types of senescence show a significantly higher level of SA--gal staining compared 

to the immortal, quiescent, lowest passage, and low passage samples.  Bars indicate 

percentage of total cells that are senescence-associated -galactosidase staining positive.  

Error bars represent three biological replicates. Statistical significance marked by astericks.   
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3.1.2 Cell Cycle Analysis of Quiescent Samples 

Cell cycle analysis was performed through propidium iodide staining to confirm 

cell cycle arrest in quiescent samples (Figure 2).  A plate of cells growing simultaneously 

to the plates harvested for RNA-seq was used for propidium iodide staining.  The quiescent 

samples showed increased levels of G1 and decreased levels of S phase compared to the 

proliferating immortal control, consistent with cell cycle arrest at G1/S.  Therefore these 

cells were confirmed to be quiescent and suitable for RNA-seq. 
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Figure 2: Cell Cycle Analysis of Quiescent Samples.  The quiescent MDAH041 cells 

show increased %G1 and decreased %S phase, indicating an accumulation of cells at 

G1/S, representing quiescence.  Dotted bars indicate immortal samples, squared bars 

indicate quiescent samples.  Results are shown as percentage of cells in each G1, S or G2 

phase via propidium iodide flow cytometry analysis.    
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3.1.3 Quality Control of RNA-seq Samples 

 Quality control was performed on all 24 samples used for RNA-seq (8 experimental 

cell conditions, in biological triplicate, to yield 24 samples).  Optimal samples have RIN 

(RNA integrity number) values close to 10 and 28S/18S ratios close to 2, as described in 

section 2.9).  All samples under consideration for RNA-seq exceeded values for quality 

control, with the exception of sample 8C which had a lower RIN than the rest of the 

samples, but was still deemed acceptable (Figure 3).  Therefore, all samples were then used 

for RNA-seq.  Sample 8C was later shown to have consistent gene expression levels with 

samples 8A and 8B, which validated the decision to include the sample in analysis. 
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Figure 3: RNA Integrity of RNA-seq Samples.  RIN (RNA Integrity Number) and 

28S/18S ratios are shown for each biological replicate of each condition.  Sample 8c was 

the only sample with a low RIN, but the RIN was not low enough to exclude the sample 

from sequencing. 
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3.1.4 Cyclin A Expression in RNA-seq Samples 

To further confirm that the 4 types of senescent cells were senescent, cell cycle 

withdrawal through RT-PCR analysis of Cyclin A was performed on all senescence types 

(Figure 4).  Previous studies in the Tainsky laboratory have shown that cyclin A expression 

decreases in various types of senescence because of cell cycle withdrawal that is incidental 

during senescence [36].  Cyclin A was down-regulated, in all 4 types of senescent cells 

compared to the proliferating immortal control.  This was consistent with previous studies, 

confirming these cells were senescent.  



43 

 

 

 

 

 

Figure 4: Cyclin A Expression in RNA-seq Samples.  All 4 types of senescent cells 

showed a decrease in Cyclin A2 expression compared to the immortal control.  Bars 

indicate RT-PCR log2 fold change of cyclin A compared to immortal cells.  Statistically 

significant changes relative to the immortal sample are marked with astericks.  Error bars 

indicate three biological replicates. 
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3.1.5 Interferon Regulatory Factor Expression in RNA-seq Samples  

Based on previous data from the Tainsky lab indicating the Interferon pathway is 

up-regulated during cellular senescence, RT-PCR analysis was performed on IRF3, IRF5 

and IRF7 from all senescence types to ascertain whether the interferon pathway was up-

regulated in all types of senescence (Figures 5, 6, 7).  IRF3 was down-regulated in H2O2 

and Natural senescence, and up-regulated in 5-aza-induced senescence (Figure 5).  In the 

RNA-seq data, IRF3 was not shown to be differentially expressed in any type of senescence 

compared to immortalization.  IRF5 was universally up-regulated compared to the 

immortal control, confirming a correlation of the interferon pathway and senescence 

(Figure 6).  In the RNA-seq data, IRF5 was not shown to be differentially expressed in any 

type of senescence compared to immortalization.  IRF7 showed up-regulation in 5-aza-

induced cells and natural senescence (Figure 7).  In the RNA-seq data, IRF7 was up-

regulated in natural senescence and 5-aza-induced senescence compared to the immortal 

control.  Additionally in the RNA-seq data, IRF9 was up-regulated in all 4 types of 

senescence compared to immortalization, however it was also shown to be up-regulated in 

quiescence at a similar level compared to immortalization, indicating this IRF may have a 

cell cycle related function.  RNA-seq data also showed IRF1 to be up-regulated in 

Adriamycin-induced, H2O2-induced and 5-aza-induced senescence compared to 

immortalization.  Each type of senescence exhibited a different profile of IRF expression, 

indicating a universal correlation of the interferon pathway in senescence but potential 

diversity of these interferon pathways in the various types of senescence.  
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Figure 5: Interferon Regulatory Factor 3 Expression in RNA-seq Samples.  IRF3 is 

down-regulated in H2O2-induced and naturally senescent cells, compared to immortal cells.  

Adriamycin shows no difference in IRF3 compared to immortal cells, and 5-aza-induced 

senescence shows up-regulation of IRF3 compared to immortal cells.  Bars indicate RT-

PCR log2 fold changes of IRF3 expression relative to the immortal sample.  Statistically 

significant changes from the immortal control are marked by astericks.  Error bars 

indicative of standard deviation of 3 biological replicates.  
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Figure 6: Interferon Regulatory Factor 5 Expression in RNA-seq Samples. IRF5 is up-

regulated in all 4 types of senescent cells compared to immortal cells.  Bars indicate RT-

PCR log2 fold changes of IRF5 expression relative to the immortal sample.  Statistically 

significant changes from the immortal control are marked by astericks.  Error bars 

indicative of standard deviation of 3 biological replicates. 
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Figure 7: Interferon Regulatory Factor 7 Expression in RNA-seq Samples. IRF7 is up-

regulated in 5-aza-induced and naturally senescent cells compared to immortal cells.  H2O2 

doesn’t show a significant different in IRF7 expression compared to immortal cells.  

Adriamycin-induced senescence shows down-regulation of IRF7 compared to immortal 

cells.  Bars indicate RT-PCR log2 fold changes of IRF7 expression relative to the immortal 

sample.  Statistically significant changes from the immortal control are marked by 

astericks.  Error bars indicative of standard deviation of 3 biological replicates.  
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3.2 RNA-seq Analysis and Clustering 

RNA was sequenced as described in the methods section.  First, differentially 

expressed genes in all types of senescence compared to the immortal control were 

examined.  Differentially expressed genes were those that had a +/-2 fold change relative 

to the control with a p-value of less than 0.05.  The intersection of all 4 types of senescence, 

or genes that were differentially expressed in all 4 types of senescence yielded 93 genes 

(Figure 8).  However, the genes that were differentially expressed in quiescent cells 

compared to the immortal control were removed from this population of genes in an effort 

to remove the number of genes that were differentially expressed only due to withdrawal 

from cell cycle (quiescence) during senescence leaving those that were senescence-

specific.  Therefore, 45 genes were subtracted from the population, leaving a final list of 

48 genes that were differentially expressed in all 4 types of senescence compared to 

immortalization, but not differentially expressed in quiescence compared to 

immortalization.   

Pathway analysis was performed using a variety of programs, including Genomatix 

Genome Analyzer (GGA), Ingenuity Pathway Analysis (IPA) and Signaling Pathway 

Impact Analysis (SPIA).  SPIA analysis was performed by collaborators in the Computer 

Science Department.  Initially, Genomatix analysis showed the most probable pathways 

involved with senescence to be the immune system and interferon related pathways, which 

is consistent with previous results from the Tainsky laboratory.  To confirm these results, 

IPA analysis was also performed.  This type of analysis gave the same results, indicating 

the immune system and interferon pathways to play a large role in senescence based on the 

48 genes studied and showing it is not a software-dependent finding.   
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Clustering analysis was performed using Cluster 3.0 software and Treeview 

software (Figure 9, 10, 12, 13, 16) to compare patterns of gene expression among various 

samples.  This type of analysis showed that the 4 types of senescent cells had different gene 

expression profiles than immortalization, and that the quiescent cells showed a different 

gene expression profile than the senescent cells.  Additionally, a progression from lowest 

passage cells to low passage cells to natural senescence can be observed in the form of 

progressive up-regulation of certain genes associated with senescence.   
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3.2.1 Comparison of Differentially Expressed Genes 

5-aza-induced senescent cells had 3990 genes that were differentially expressed 

compared to the immortal control (Figure 8).  2449 were up-regulated and 1350 were 

down-regulated.  The adriamycin-induced group had 1425 genes that were differentially 

expressed compared to the immortal control, where 1067 genes were down-regulated and 

358 were up-regulated.  Naturally senescent had 2729 genes that were differentially 

expressed compared to the immortal cells, 1379 down-regulated and 1350 up-regulated.  

H2O2 senescent cells had 193 genes that were differentially expressed, 14 down-regulated 

and 179 up-regulated.  The intersection of these 4 conditions yielded a list of 93 genes that 

were differentially expressed in all 4 types of senescence.  Forty-five genes that were 

differentially expressed in quiescent cells compared to immortal cells were subtracted from 

the 93 genes in order to account for changes due only to the withdrawal from cell cycle.  

This yielded a total of 48 genes that were differentially expressed in all four types of 

senescence but not in quiescence.   
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Figure 8: Comparison of Differentially Expressed Genes.  The differential gene 

expression in 4 types of senescence compared to immortalization.  Black numbers indicate 

number of differentially expressed genes between the given sample and immortal sample, 

red number indicates number of genes up-regulated in the given sample compared to the 

immortal sample, and green numbers indicate number of genes down-regulated in the given 

sample compared to the immortal control.  Dark gray portions indicate overlap between 

samples, and the red center indicates overlap between all 4 types of senescence.  Red 

numbers show up-regulated genes and green show down-regulated genes. 
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3.2.2 Clustering Analysis of 45 Genes Differentially Expressed in Quiescent and 

Senescent RNA-seq Samples 

Clustering analysis of the 45 genes differentially expressed in quiescent cells, 

immortal cells as well as all 4 types of senescent cells was performed.  Interestingly, the 

quiescent gene expression was most similar to the immortal gene expression and very 

different from the senescent gene expression, which reinforced the validity of removing 

the quiescent genes from senescence-associated pathway analysis (Figure 9). 

The 45 genes were also clustered with the immortal sample being compared to the 

low passage and lowest passage samples, as well as natural senescence (Figure 10).  The 

immortal sample associated closest to the lowest passage sample, which is consistent with 

the idea that these genes are down-regulated during cell growth and up-regulated during 

senescence.  The low passage sample which are proliferating at a slower rate due to 

impending senescence associated closest to natural senescence, again indicating that these 

genes are up-regulated as a cell ages. 
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Figure 9: Clustering Analysis in Immortalization and Senescence of the 45 Quiescent-

Associated Genes.  The 45 quiescence-associated genes are mostly up-regulated in all 4 

types of senescence and down-regulated in quiescence and immortalization.  Green bars 

show relative down-regulation and red shows relative up-regulation compared to the 

median expression of a given gene.  Expression from all 4 types of senescence, quiescence 

and immortalization are shown. 
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Figure 10: Clustering Analysis in Immortalization and Aging Samples of the 45 

Quiescent-Associated Genes.  The 45 quiescence-associated genes were mostly up-

regulated in low passage aged cells and naturally senescent cells, and mostly down-

regulated in quiescent cells and immortal cells that are still proliferating.  The genes were 

clustered to show comparison of the genes between immortal, low passage, lowest passage 

and natural senescence.   Green bars show relative down-regulation and red shows relative 

up-regulation compared to the median expression of a given gene. 
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3.2.3 Forty-Eight Genes Differentially Expressed in all 4 Types of Senescence 

There were 48 genes that were deemed senescence-associated based on their 

differential expression in all 4 types of senescence compared to immortalization and 

absence of differential expression in quiescence compared to immortalization (Figure 11).  

Clustering was first performed on the 48 genes found to be differentially expressed in all 

four types of senescence compared to immortalization (Figure 12).  This showed an inverse 

relationship between senescence and immortalization, which was expected.  The genes that 

were highly up-regulated in all 4 types of senescence were down-regulated in 

immortalization, and the genes that were highly up-regulated in immortalization were 

down-regulated in all 4 types of senescence.  5-aza-induced senescence shows a higher up-

regulation of most genes compared to the other types of senescence.  This data shows the 

inverse relationship between senescence and immortalization and further confirms the 

validity of this RNA-seq dataset. 

 Additionally, these 48 genes were clustered for early lowest passage cells and low 

passage cells, as well as natural senescence and immortalization in order to analyze the 

relationship (Figure 13).This showed the closest relationship between immortalization and 

early low passage cells, which is not surprising seeing that both sets of cells are 

proliferating.  Additionally, the natural senescent cells were most closely associated with 

the low passage cells, which is not surprising seeing that the low passage cells are aged and 

approaching senescence, therefore not proliferating very much.  Additionally, a 

progressional up-regulation of genes from lowest passage, to low passage, to natural 

senescence can be observed which indicates that several senescence-associated genes 

become increasingly activated as the cell ages.   
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Figure 11: 48 Genes Senescence-Associated Genes.  48 genes were deemed senescence-

associated because they were differentially expressed in all 4 types of senescence compared 

to immortalization, but not differentially expressed in quiescence compared to 

immortalization.  After pathway analysis indicated a role for immune system  pathways in 

senescence, the list was updated to show genes related to the immune system in red.  

Additionally, genes listed with an asterick indicate genes that are part of the senescence-

associated secretory phenotype.  
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Figure 12: Clustering Analysis in Immortalization and Senescence of the 48 

Senescence-Associated Genes.  Immortal cells show an inverse relationship compared to 

the 4 types of senescence.  Genes down-regulated in immortalization are up-regulated in 

senescence, and genes up-regulated in immortalization are down-regulated in senescence.  

Immortal sample and all 4 types of senescence are shown here.  Green bar indicates relative 

down-regulation and red bars indicate relative up-regulation relative to the median 

expression of a given gene. 
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Figure 13: Clustering Analysis in Immortalization and Aged Samples of 48 

Senescence-Associated Genes.  Most of the 48 senescence-associated genes become 

increasingly up-regulated as a cell ages and approaches senescence.  Immortal sample, low 

passage, lowest passage and natural senescent samples are shown here.  Green bars indicate 

relative down-regulation and red bars indicate relative up-regulation compared to median 

expression of a given gene. 
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3.3 The Interferon/Inflammatory Pathway is Differentially Expressed in 4 Types of 

Senescence 

 After identification of the 93 genes that were differentially expressed in all types of 

senescence, the 45 genes that were also differentially expressed in quiescence were 

subtracted to yield a total of 48 genes that were differentially expressed in all 4 types of 

senescence but not associated with quiescence.  Cluster analysis from section 3.2 (Figure 

9) validated the decision to remove the 45 genes from senescence-associated pathway 

analysis because the quiescent sample associated most closely to the immortal sample for 

these 45 genes, indicating that the quiescent samples were different from the senescent 

samples.  The resulting 48 genes (Figure 11) after subtraction of the 45 quiescent genes 

were used for pathway analysis through Genomatix Genome Analyzer and Ingenuity 

Pathway Analysis. 

 Pathway analysis through both types of software indicated immune system 

pathways to be highly significant for these 48 genes, indicating a possible role for the 

immune system/inflammatory pathways in all 4 types of senescence (Tables 3 and 4).  This 

finding is consistent with previous data from the Tainsky laboratory, also showing a role 

for the Interferon/Inflammatory pathway in senescence.  All genes from the interferon 

pathway and IL1 pathway, shown below, were up-regulated in the dataset in all 4 types of 

senescence compared to immortalization.  A schematic of the genes included in the 

“inflammation” pathway according to Genomatix is shown in Figure 14.  All of the genes 

within this pathway were up-regulated in senescent cells.  Figure 15 shows a schematic of 

the “defense response” pathway according to Genomatix.  All genes in this pathway were 

also up-regulated in senescent cells compared to immortal cells. 
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 Because of previous Tainsky lab data showing a role for the interferon regulatory 

factors in 5-aza-induced senescence, I analyzed the presence of IRFs in all 4 types of 

senescence through clustering analysis (Figure 16).  The 5-aza-induced senescence sample 

associated similarly with the natural senescenct sample, indicating a similarity between the 

two types of senescence.  The analysis also showed a down-regulation of most IRFs in 

immortalized cells compared to the 4 types of senescent cells, which was expected due to 

the increased activity of IRFs in 5-aza-induced senescence that the Tainsky lab previously 

showed.  The 5-aza-induced senescence sample exhibited an up-regulation of IRF6 and 

IRF7, which is consistent with RT-PCR shown above which shows high up-regulation of 

IRF7 in this sample.  Additionally, natural senescence showed high expression of IRF4 and 

IRF7, which again is consistent with above RT-PCR data showing high levels of IRF7 in 

the natural sample.  Adriamycin showed high levels of IRF3, which was not confirmed in 

my RT-PCR data.  
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Table 3:  Genomatix Pathway Analysis of the 48 Senescence-Associated Genes. The 

48 senescence-associated genes are involved with immune system pathways.  The top 20 

pathways represented by the 48 genes common to all types of senescence but not 

quiescence according to Genomatix analysis are shown here, sorted from lowest p-value to 

highest p-value.  All pathways are statistically significant.   

  

Genomatix Pathway P-value

defense response 3.76E-13

immune response 4.22E-12

immune system process 6.55E-10

cytokine-mediated signaling pathway 6.76E-10

cellular response to cytokine stimulus 1.55E-09

response to stress 2.86E-09

inflammatory response 8.54E-09

response to cytokine stimulus 2.74E-08

innate immune response 3.65E-08

response to wounding 4.60E-07

response to organic substance 1.57E-06

cellular response to organic substance 2.20E-06

regulation of I-kappaB kinase/NF-kappaB cascade 3.72E-06

cell surface receptor linked signaling pathway 5.55E-06

response to stimulus 6.40E-06

response to molecule of bacterial origin 6.51E-06

positive regulation vascular endothelial growth factor production 7.55E-06

response to chemical stimulus 7.77E-06

multi-organism process 8.67E-06

regulation of interleukin-6 production 1.15E-05
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Ingenuity Pathway P-value

Dendritic Cell Maturation 0.00525

Role of Cytokines in Mediating Communication between Immune Cells 0.00687

Atherosclerosis Signaling 0.00799

NF-κB Signaling 0.015

Role of Macrophages, Fibroblasts and Endothelial Cells in Rheumatoid Arthritis 0.0194

Role of Hypercytokinemia/hyperchemokinemia in the Pathogenesis of Influenza 0.0231

Graft-versus-Host Disease Signaling 0.0262

IL-6 Signaling 0.0271

Role of Osteoblasts, Osteoclasts and Chondrocytes in Rheumatoid Arthritis 0.0287

LXR/RXR Activation 0.0311

TREM1 Signaling 0.0391

Hepatic Cholestasis 0.0391

IL-10 Signaling 0.0478

Acute Phase Response Signaling 0.049

Altered T Cell and B Cell Signaling in Rheumatoid Arthritis 0.0555

Communication between Innate and Adaptive Immune Cells 0.0572

Differential Regulation of Cytokine Production in Intestinal Epithelial Cells by IL-17A and IL-17F 0.062

PPAR Signaling 0.0639

FXR/RXR Activation 0.0665

IL-1 Signaling 0.0665

 

Table 4: Ingenuity Pathway Analysis of the 48 Senescence-Associated Genes.  The 48 

senescence-associated genes again are shown to be involved with immune system 

pathways.  The top 20 pathways represented by these genes according to Ingenuity 

Pathway Analysis are shown here, sorted from lowest p-value to highest p-value.  Fourteen 

pathways are statistically significant.   
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Figure 14: Inflammatory Pathway Activity According to RNA-seq Data. The 

inflammatory pathway was one of the most significant pathways to be important in all types 

of senescence compared to immortalization.  Shown here is a network of the inflammatory 

pathway genes that were in all 4 types of senescence based on the RNA-seq data.  Arrows 

indicate activation, and dashed lines indicate experimental validation.  All of these genes 

were up-regulated in the 4 types of senescence compared to immortalization.  Figure drawn 

using Genomatix. 
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Figure 15: Defense Response Activity According to RNA-seq Data.  Defense response 

was another highly significant pathway shown to be related to all 4 types of senescence.  

As shown above, the genes indicated in this pathway have a variety of complex 

interactions.  Arrows indicate activation, while dashed lines indicate experimental 

validation.  All of these genes were up-regulated in the 4 types of senescence compared to 

immortalization. Figure drawn using Genomatix. 
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Figure 16: Cluster Analysis of Interferon Regulatory Factors in Senescence and 

Immortalization.  IRF expression is variable among the different types of senescence, but 

as a whole, shows up-regulation in senescence compared to the immortal cells.  Immortal, 

5-aza, adria, and H2O2 samples are shown.  Red bars indicate up-regulation and green bars 

indicate down-regulation compared to the median expression of a given gene.  
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3.4 RNA-seq Demonstrates the Significance of the IL1 Pathway in All Types of 

Senescence 

After showing the interferon pathway’s presence in all 4 types of senescence 

through Genomatix and IPA analysis based on the 48 genes in common in all types of 

senescence but not quiescence, a slightly different approach was used to identify pathways.  

Signalling Pathway Impact Analysis was performed by the WSU Applied Genomics 

Technology Center, specifically Dr. Calin Voichita performed the analysis under the 

supervision of Professor Sorin Draghici, Department of Computer Science, WSU.  Dr. 

Voichita performed SPIA analysis on all genes differentially expressed in all types of 

cellular senescence.  SPIA, or Signaling Pathway Impact Analysis, identifies significant 

pathways based on over-representation of differentially expressed genes in pathways, as 

well as abnormal changes in pathways measured by changes across pathway topology [79].  

This type of analysis is different from Genomatix and Ingenuity, which rely on gene set 

enrichment analysis (GSEA).  Based on the genes differentially expressed in the 4 types of 

senescence compared to immortalization, the top 9 pathways that were given all involved 

the interferon and immune system pathways that were identified previously (Table 5).  

Based on these 9 pathways, the genes that comprised these pathways were extracted and 

the genes present in all 4 types of senescence were considered for further study.  This 

consisted of 9 genes that were interferon related and involved with cellular senescence 

(Tables 6 and 7).  These 9 genes represent a subset of genes also identified in the previous 

identification of 48 genes that were considered senescence-associated.  However IL8 (one 

of the 9 genes identified) was not included in the list of 48 genes because it was also 

differentially expressed in quiescence.  However, upon further examination, this gene was 
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actually down-regulated in quiescence compared to immortalization, while being up-

regulated during senescence, so while it was omitted from the original list of 48 

senescence-associated genes, it is indeed senescence-associated. 

Five out of 9 of the identified interferon-related genes were present in one pathway, 

which was the interleukin 1 pathway.  These genes were shown to be up-regulated in 

senescence compared to immortalization in MDAH041 cells through RT-PCR, and IL1 

and Il1 were shown to be up-regulated in 3 types of induced senescence compared to 

immortalization at a protein level in MDAH041 cells through immunocytochemistry.  I 

performed additional confirmation of this pathway through RT-PCR of MDAH087-N and 

MDAH087-1 cells, which showed up-regulation of IL1 and IL1 in the 3 types of induced 

senescence compared to immortalization.  The Il1 pathway was therefore confirmed to be 

up-regulated in 4 types of senescence compared to immortalization in multiple cell lines. 
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Table 5: Signaling Pathway Impact Analysis Reveals Inflammatory Pathways in all 4 

Types of Senescence.  Shown here are the 9 statistically significant pathways represented 

in at least one type of senescence as determined by SPIA.  There were 209 genes that 

comprised these pathways.  These genes were then further analyzed to identify the genes 

that were differentially expressed in all 4 types of senescence.  This yielded a total of 9 

genes that were considered for further study. 
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Table 6: Nine Genes Differentially Expressed in all 4 Types of Senescence According 

to SPIA Analysis of Senescent Pathways.  These genes are present in the 9 pathways 

listed in table 5 and are differentially expressed in all 4 types of senescence compared to 

immortalization.  The genes shown in red are all members of the IL1 pathway and were 

chosen for further analysis. 
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Table 7: Gene Expression of the IL1 Pathway According to RNA-seq Data.  Five 

members of the IL1 pathway were up-regulated in all 4 types of senescence compared to 

immortalization.  Log2 Fold changes in all four types of senescence for 5 of the 9 genes 

indicated by SPIA analysis to be important in senescence.  These values represent 

differential expression analysis of the original RNA-seq data, with each condition 

normalized to the immortal control.  All 5 of the genes were up-regulated compared to the 

immortal control. 

  

H2O2 Adria Nat 5-aza

IL1a 5.82 3.44 5.98 8.87

IL1b 6.38 3.75 4.58 9.57

Myd88 1.92 1.32 1.26 1.62

ICAM1 3.95 2.94 3.73 7.23

IL8 5.55 3.10 2.78 7.28
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Figure 17: IL1 Pathway Activity According to RNA-Seq Data.  The Interleukin 1 

pathway was a significant pathway in all types of senescence according to the Genomatix 

Genome Analyzer.  Arrows indicate activation, while dashed lines indicate experimental 

validation.  IL1, IL1 and IL1RN (IL1 receptor antagonist) all bind the IL1R (IL1 

receptor), and then interact with the adapter protein Myd88.  The IL1R did not show 

differential expression in our RNA-seq data.  
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3.5 Confirmation of the IL1 Pathway in All Types of Cellular Senescence 

 In order to validate the RNA-seq data, RT-PCR was performed to confirm the up-

regulation of the Il1 pathway in all 4 types of cellular senescence.  The up-regulation of 

IL1, IL1, Myd88, ICAM1 and IL8 were all confirmed in the MDAH041 cells (Figures 

18 and 19), and IL1 and IL1 were confirmed in induced senescence of the MDAH087-

1 and MDAH087-N cells (Figures 20 and 21).  Naturally senescent samples were not 

obtained for MDAH087 because the cells progress from decreased growth into a state of 

crisis where they proliferate quickly, and therefore an accurately senescent sample was not 

attainable.  In addition to RT-PCR, protein levels were also assessed using 

immunocytochemistry of MDAH041 cells.  Natural senescence was not included in the 

protein analysis of the IL1 pathway because they could not be plated on chamber slides 

properly.  If plated too early while the cells are not senescent, the cells will become too 

confluent for protein analysis, and if plated during senescence, the cells will not adhere to 

the plate.  Additionally, naturally senescent MDAH087 cells were not included in RT-PCR 

analysis because of their difficulty to obtain.  The MDAH087 cells typically stop 

proflieration in senescence very briefly, and enter crisis where they begin proliferating 

again, making isoluation of naturally senescent MDAH087 cells difficult.   
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Figure 18: IL1 and Il1 Expression in MDAH041 Cells.  IL1 and Il1 were both up-

regulated in all 4 types of senescence compared to immortalization in the MDAH041 cells.   

Changes shown are RT-PCR Log2 fold changes relative to immortalization.  Error bars 

indicate standard deviation of 3 biological replicates and astericks indicate a significant 

difference from immortalization with p<0.05. 
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Figure 19: Myd88, ICAM1 and IL8 Expression in MDAH041 Cells.  Myd88, ICAM1 

and IL8 were all up-regulated in all 4 types of senescence compared to immortalization in 

the MDAH041 cells.  Values shown are log2 fold changes in MDAH041 cells relative to 

immortalization.  Error bars indicate standard deviation of 3 biological replicates and 

astericks indicate a significant difference from immortalization with p<0.05. 
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Figure 20: IL1 and Il1 Expression in MDAH087-1 Cells. IL1 and Il1 were up-

regulated in the 3 types of induced senescence compared to immortalization in the 087-1 

cells.  Values shown are log2 fold changes compared to immortal MDAH087-1 cells.  Error 

bars are indicative of standard deviation of 3 biological replicates and astericks indicate 

significant difference compared to immortalization with p<0.05. 



76 

 

 

 

 

 

Figure 21: IL1 and IL1 Expression in MDAH087-N Cells.  IL1 and Il1 were up-

regulated in the 3 types of induced senescence compared to immortalization in the 087-N 

cells.  Values shown are log2 fold changes compared to immortal MDAH087-N cells.  Error 

bars indicate standard deviation of 3 biological replicates and astericks represent a 

significant difference from immortalization with p<0.05. 
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Figure 22: Immunocytochemistry Analysis of Il1 Protein Levels in MDAH041 Cells.  

IL1 was up-regulated at a protein level in the 3 types of induced senescence compared to 

immortalization.  Blue staining indicates DAPI (top row), green staining indicates IL1 

(middle row) and the bottom row shows a merged representation of both stainings.    
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Figure 23: Immunocytochemistry Analysis of Il1 Protein Levels in MDAH041 Cells.  

IL1 is up-regulated at a protein level in the 3 types of induced senescence compared to 

immortalization.  Blue staining indicates DAPI (top row), red staining indicates IL1 

(middle row) and the bottom row shows a merged representation of both stainings. 
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3.6 Histone Modifications in Senescence 

 Signaling Pathway Impact Analysis, or SPIA was performed with the help of the 

Wayne State University Computer Science Department on the differentially expressed 

genes in invidivual types of senescence compared to immortalization in order to elucidate 

any pathways unique to each type of senescence.  I chose to focus on adriamycin-induced 

senescence because of its relevance to cancer chemotherapy.  Adriamycin-induced 

senescence yielded the histone modification or chromatin modification pathway in this 

specific type of senescence.  Based on this analysis, a list of genes involved with chromatin 

modification were elucidated from the SPIA software, and a table of values was composed 

consisting of the different values of each gene (Table 8).   

Clustering analysis of these genes was performed (Figure 24). The first column, 

which represents adriamycin-induced changes in gene expression, show a greater down-

regulation of most genes than the other three types of senescence, which for the most part 

show only small levels of up-regulation or down-regulation of the genes related to 

adriamycin-induced senescence. 

 PRDM9 was analyzed, based on its high up-regulation in adriamycin-induced 

senescence.  PRDM9 is a histone H3 methyltransferase, which contains a PR domain [81].  

This protein is thought to dictate genetic recombination hotspots through its sequence-

specific binding to zinc finger domains [82].  Specifically, PRDM9 trimethylates H3K4, 

which is typically a histone mark that indicates active transcription.  Therefore, PRDM9 

was an interesting candidate for regulation of senescence because up-regulation of an 

active histone mark during senescence could cause increased expression of senescence 

genes.  PRDM9 was confirmed to be upregulated in adriamycin-induced senescence 
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compared to the immortal control, however it was also upregulated in 5-aza-induced 

senescence and H2O2-induced senescence (Figure 25).  It appeared to be down-regulated 

in natural senescence.  This may represent a unique method of induction of senescence in 

adriamycin treated cells. 

Additionally, SUV420H1 was analyzed based on its down-regulation in 

adriamycin-induced senescence.  This gene was chosen based on having one of the highest 

down-regulations of the chromatin modification genes, as well as its known activity as a 

methyltransferase.  SUV420H1 is a histone H4K20 methyltransferase and contains a SET 

domain which allows for interactions with other proteins [83].  Specifically, SUV420H1 

trimethylates H4K20, which is typically a repressive histone mark.  Therefore, SUV420H1 

was an interesting candidate for the regulation of senescence bceause down-regulation of 

a respressive histone mark during senescence could cause increased expression of a given 

gene during cellular senescence.  It was confirmed to be down-regulated in adriamycin-

induced senescence, however it was also downregulated in H2O2-induced senescence, 5-

aza induced senescence, and natural senescence (Figure 26).  Based on the large amount of 

chromatin modifying genes differentially expressed in adriamycin-induced senescence, as 

well as the confirmation of two genes, it is probable that adriamycin-induced senescence 

involves chromatin remodeling, which is a novel method of induction of senescence for 

this agent, and is similar to the mechanism of 5-aza-induced senescence.  5-aza-induced 

senescence is essentially an epigenetic reversal of immortalization, as 5-aza is an inhibitor 

of DNA methyltransferase, and was shown to cause re-activation of several interferon 

genes upon treatment of immortal cells [49]. 
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Table 8: Chromatin Modification Genes Differentially Expressed in adriamycin-

induced Senescence.  Log2 fold change determined by RNA-seq for each chromatin 

modifying gene as well as probable functions are listed.  This chromatin modification of 

adriamycin-induced senescence could represent a novel mechanism of induction of 

senescence for adriamycin.   
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Figure 24: Clustering Analysis of the Genes Shown to be Unique to adriamcyin-

induced senescence. Adriamycin-induced senescence shows a slight down-regulation of 

most chromatin modifying genes compared to the other 3 types of senescence.  Green bars 

indicate relative down-regulation and red bars indicate relative up-regulation compared to 

median expression for a given gene.   
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Figure 25: PRDM9 Expression in MDAH041 Cells.  PRDM9 was up-regulated in the 3 

types of induced senescence compared to immortalization, but down-regulated in natural 

senescence compared to immortalization.  Changes shown are log2 fold changes of PRDM9 

relative to immortalization.  Error bars indicate standard deviation of 3 biological 

replicates.  Astericks indicate statistically different changes from the immortal control 

where p<0.05. 
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Figure 26: SUV420H1 Expression in MDAH041 Cells.  SUV420H1 is down-regulated 

in all 4 types of senescence compared to immortalization.  Changes shown are log2 fold 

changes relative to immortalization.  Error bars indicate standard deviation of 3 biological 

replicates.  Astericks indicate stastistically significant changes from immortalization with 

p<0.05. 
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3.7 Senescence Associated Secretory Phenotype Profiles 

 The senescence associated secretory phenotype is a group of secreted factors 

released from senescent cells into the microenvironment.  The RNA-seq data was analyzed 

for the presence of all known SASP factors [84].  These factors are grouped into three 

categories by their regulation: High increase (4+ fold change), intermediate increase (2-4 

fold change) and small increase (below 2 fold change) based on previous studies 

establishing these changes.   In order to assess the differences in the senescence associated 

secretory phenotype profiles among the different types of senescence, as well as the 

immortal control, clustering analysis was performed of the genes that make up the pathway.  

Analysis was performed using each category (high increase, intermediate increase and low 

increase) separately, and with all the categories of genes together to see overall changes.   

 Clustering analysis of all genes showed immortalization to have a high number of 

downregulated genes, whereas the multiple types of senescence show an increase in several 

of the genes (Figure 27).  Firstly, this confirms the senescent phenotype of the senescent 

cells, especially when compared to the immortal control which shows downregulation of 

these genes.  Secondly, this clustering analysis shows that again the naturally senescent 

cells group most closely with the 5-aza-treated senescent cells, showing that 5-aza-induced 

senescence mimics the natural aging process of DNA demethylation.  Aging cells have 

been shown to have decreased amounts of methylation with age, whereas immortal cells 

maintain methylation [85].  Therefore, the 5-aza induced senescence resembles natural 

senescence. 

 Clustering analysis of SASP components with high fold changes was performed 

(Figure 28).  Accordingly, the immortal control shows downregulation of every gene listed 
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(with exception of two which no values were found) and the senescent samples show 

upregulation of these SASP genes.  5-aza showed the highest number of upregulated genes, 

indicating a very strong SASP response, whereas adriamycin treatment didn’t show as 

much of the SASP as expected, given that DNA damage is known to cause a SASP 

response.   

 Clustering analysis of the SASP components with intermediate fold change 

revealed that again the immortal control has several of these genes downregulated, and the 

senescent samples have them upregulated (Figure 29).  5-aza again shows the highest 

amount of upregulation, indicating a strong SASP response.  Adriamycin treated cells again 

don’t show a high amount of upregulation as expected, given that DNA damage is a known 

cause of SASP [41].  There were 5 genes from this group of SASP members that were not 

found in our dataset (gray boxes).   

 Lastly, clustering analysis of SASP components with small fold changes was 

performed (Figure 30).  There were a large number of genes in this group that were not 

found in our dataset (gray boxes).  The immortal control again shows downregulation of 

most of the genes that were found in the dataset, while the senescent samples show 

upregulation of these genes.  Again, the 5-aza treated sample shows the highest amount of 

upregulation and a therefore a strong senescent response.  Adriamycin shows a large 

number that were upregulated, but also a fair amount that were downregulated.  This is 

somewhat unexpected as DNA damage is known to cause a SASP response. 
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Figure 27: Clustering Analysis of all Known SASP Components.  All known 

senescence associated secretory phenotype genes in all types of senescence and 

immortalization.  Empty gray boxes indicate that the gene was not found in the given 

sample according to RNA-seq.  12 genes were not shown based on not being present in 

RNA-seq data for any of the samples.  They were: GCP2, TNFRSF18, NAP2, OPG, 

SPG130, ACRP30, BLC, CCL16, MSP-a, SERPINEB2, SCF, and VEGF. 
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Figure 28: Clustering Analysis of SASP Components with High Fold Changes.  

Senescent associated secretory phenotype genes with typically high fold changes, as 

described by Freund et al. [84].  Gray boxes indicate where a value was not found for a 

given gene in our dataset.  Red boxes indicate relative up-regulation while green boxes 

indicate relative down-regulation compared to the median expression for a given gene. 
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Figure 29: Clustering Analysis of SASP Components with Intermediate Fold Change.  

Senescent associated secretory phenotype genes with an intermediate fold change as 

described by Freund at al [84].  Gray boxes indicate that no value was found in our data 

for the given gene.  Red boxes indicate relative up-regulation while green boxes indicate 

relative down-regulation compared to the median expression for a given gene. 
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Figure 30: Clustering Analysis of SASP Components with Small Fold Change.  

Senescent associated secretory phenotype genes with a small upregulation according to 

Freund et al. [84].  Gray boxes indicate that no value was found in our data.  Red boxes 

indicate relative up-regulation while green boxes indicate relative down-regulation 

compared to the median expression for a given gene. 
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CHAPTER 4 

DISCUSSION 

4.1 Goal of Study  

Cellular senescence during aging is believed to be a tumor suppressive mechanism, 

through limiting the replication of a cell and thereby preventing acquisition of hazardous 

mutations [86].  Senescence can protect the cell from replicating once an oncogene is 

activated, again serving as a protective mechanism [30].  However, senescence also occurs 

in response to other stressors, such as chemotherapeutic agents and oxidative stress, which 

can hinder therapeutic response [52].  Given the various mechanisms that generate 

senescent cells, it was important to understand these different types of senescence and 

compare their pathways by gene expression profiling.  Previous gene expression studies of 

cellular senescence have typically focused on a single mechanism of senescence, such as 

oncogene-induced senescence or senescence induced by radiation.  In this thesis research, 

I utilized a cellular model that allowed comparison of multiple types of senescence within 

one cell line, allowing me to contrast natural or replicative senescence and induced 

senescence, as well as compare senescence and immortalization without confounding 

issues of genetic variation among cell lines.   

4.2 The Role of the Inflammation and SASP in Senescence 

 Further complicating the understanding of senescence is the senescence-associated 

secretory phenotype, which involves a set of more than 70 secreted factors from most 

senescent cells that can cause inflammation, bystander senescence, and even 

transformation of surrounding pre-malignant cells [70].  Previously in the Tainsky 

laboratory, gene expression profiling was used to study epigenetic regulation of gene 
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expression during immortalization by comparison to 5-aza-2’-deoxycytidine-induced 

senescence.  Those studies showed dysregulation of the cytoskeletal pathway, cell cycle 

pathway, and interferon pathway [22].  While the cytoskeletal pathway and cell cycle 

pathway gene expression changes were expected due to changes in cell morphology and 

withdrawal from the cell cycle during senescence, the interferon pathway was an 

unexpected finding.  This role for the interferon pathway during cellular senescence that 

was identified by our lab has been cited as early evidence for presence of the senescence-

associated secretory phenotype [41].  RNA-seq analysis of 4 types of senescence in the 

present thesis research has shown that up-regulation of the interferon pathway is present in 

all 4 types of senescence, and therefore it is likely that the senescence-associated secretory 

phenotype is also present in all types of senescence.  Clustering analysis revealed that each 

type of senescence had at least some SASP factors up-regulated, although the exact SASP 

profiles were not consistent between samples.  For example, 5-aza-induced senescence, 

natural senescence, and H2O2-induced senescence all had large numbers of genes up-

regulated compared to immortal cells, but not the same genes.  This could indicate that 

while various types of senescence utilize the same mechanisms and characteristics (such 

as SASP), the specific genes involved in these processes may vary. 

Since the Tainsky study was published in 2003 showing a role for the interferon 

pathway in 5-aza-induced senescence, others have shown results consistent with those 

findings that interferon-related genes are up-regulated during senescence, but the reason 

for this is still largely unknown, with the exception of the hypothesis that the senescence-

associated secretory phenotype relies on these gene expression changes [60, 64, 66, 69, 

87].  Our lab has since shown various transcriptional regulators of the 
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interferon/inflammatory pathway can cause senescence when exogenously expressed, 

specifically IRF5 and IRF7 [45].  This thesis, utilizing RNA-seq analysis of multiple types 

of senescence, provides evidence that the interferon/inflammatory pathway is involved in 

all types of senescence studied (Natural, 5-aza, adriamycin, and H2O2), through pathway 

analysis, clustering analysis, and RT-PCR validation of gene expression.  The pathway 

analysis of senescence-associated genes was consistent among 3 different software 

approaches (Tables 3, 4, 5), which reinforces the finding that the inflammatory pathway is 

important in all types of senescence, and not software-dependent.  Clustering analysis of 

senescence-associated interferon genes, including the IRFs, showed that again the pathway 

itself is up-regulated but the same genes are not always up-regulated from mechanism to 

mechanism, indicating a universally necessary pathway with variable gene involvement.   

In conjunction with pathway analysis of the 48 genes in common in all 4 types of 

senescence, which indicated the interferon/inflammatory pathway, I also compared our 

data to a list of known senescence-associated secretory phenotype genes to assess the level 

of secreted factors in each type of senescence.  There were a large number of genes from 

this list present in our data, as expected (Figures 27, 28, 29, 30).  Interestingly, the 5-aza-

induced senescence produced a senescence-associated secretory phenotype that was more 

robust according to cluster analysis of gene expression comparing senescent cells to 

immortal cells.  The 5-aza sample showed both an increased number of genes from the 

known set as well as increased levels of expression of genes compared to the other 

senescent samples.  This wasn’t necessarily surprising, given that the 5-aza-induced 

senescence sample showed the most robust fold changes in gene expression as well 

compared to other types of senescence when normalized to immortal cells.  The 5-aza-
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induced senescence also exhibited a greater number of genes that were differentially 

expressed compared to immortalization than the other types of senescence.  When the 

senescence-associated secretory phenotype genes were analyzed using clustering software, 

the 5-aza-induced senescence associated most closely with natural senescence (Figures 27, 

28, 29, 30). 

This is consistent with the fact that 5-aza works through DNA demethylation and 

natural senescence is due, at least in part, by a natural and progressive demethylation of 

DNA as the cell ages [85].  When the 48 genes differentially expressed in all types of 

senescence were clustered, 5-aza-induced senescence clustered closely to natural 

senescence as well.  It is also important to note that 5-aza- induced senescence reverses 

immortalization; genes that are up-regulated during 5-aza-induced senescence are 

generally silenced during immortalization and the interferon/inflammatory pathway is a 

good example of this.  This is consistent with a recent study showing that 5-aza-induced 

senescence of chronic myeloid leukemia was a result of shortened telomeres, which is the  

mechanism by which natural, replicative senescence occurs [88].  This reinforces the 

concept that replicative senescence is mechanistically similar to 5-aza-induced senescence, 

and that 5-aza-induced senescence is the epigenetic reciprocal of immortalization and 

associated with stabilized telomeres.  Previous studies have shown that cells can have 

telomere attrition and senescence in response to oncogenes [89], and this may contribute 

to tumor suppression.  However, when hTERT is expressed in human cell lines in order to 

stabilize telomeres, the cell will still undergo induced senescence in response to irradiation 

or H2O2, independent of telomere length [90].  Consistently, MDAH041 immortal cells 

used in our study, which utilize telomerase to stabilize telomeres, were still able to undergo 
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senescence in response to H2O2 and adriamycin.  This suggests that although replicative 

senescence and 5-aza-induced senescence may both involve telomere attrition, and 

adriamycin-induced and H2O2-induced do not involve telomere attrition, there is still a 

common pathway between all 4 types of senescence: the interferon pathway.  This study 

provides evidence that although the mechanisms of each type of senescence are different, 

they involve common pathways. 

The adriamycin-induced senescence provided the most intense and consistent 

senescence-associated -galactosidase staining.  However, the gene expression changes 

generally were not as robust as the 5-aza-induced senescence in terms of fold change.  

Additionally, it was interesting that the adriamycin-induced senescence did not have a 

strong senescence-associated secretory phenotype (the adriamycin-induced sample did not 

show high up-regulation of genes present in the SASP, Figure 27), given the strong 

senescence-associated -galactosidase response and consistent with the fact that DNA 

damage is a known contributor to the secretory phenotype [41].  It will be interesting in 

future studies to determine whether the difference in secreted cytokines affects the amount 

of bystander senescence or transformation of surrounding cells. 

4.3 The Role of the IL1 Pathway in Senescence 

Among the several interferon/inflammatory genes that were found to be up-

regulated, several of the genes were present within one pathway: the Interleukin 1 Pathway.  

Il1, Il1, Myd88, ICAM1 and IL8 were all confirmed through RT-PCR analysis to be up-

regulated in the 4 types of senescence compared to immortal cells (Figures 17-23).  It is 

interesting to note that Il1, Il1 and IL8 are all canonical members of the senescence-

associated secretory phenotype, indicating an association between increased gene 
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expression of these members and increased secretion.  Paradoxically, the Interleukin 1 

Receptor Antagonist was also up-regulated in all 4 types of senescence.  However, the 

antagonist serves to inhibit binding of Il1 and Il1 to the Il1 receptor, and Il1/Il1 have 

been shown to exhibit increased activity during senescence, so it is unlikely that the 

receptor antagonist is causing inhibition of the IL1 pathway [68].  

The up-regulation of IL1 family members has been previously shown in various 

cell lines and senescence-inducing drugs.  Bleomycin treatment of the Human sigmoid 

colon adenocarcinoma cell line HCA2 yields an up-regulation of IL1 and Il1 [68].  

Inhibition of IL1 in that study decreased secretion of IL6 and IL8, which are major 

components of the SASP.  Several cancer cell lines such as Hela, A549 and U2OS show 

up-regulated IL1 pathway members in response to 5-bromo-2’-deoxyuridine, distamycin, 

aphidicolin and hydroxyurea which all induce senescence [60].  BJ fibroblasts were shown 

to up-regulate IL1 during replicative senescence, oncogene-induced senescence and 

distamycin-induced senescence [69].  Conditioned media from those senescent cells was 

capable of inducing bystander senescence in BJ fibroblasts, and those cells also exhibited 

up-regulated IL1 expression.  IMR90 cells have up-regulated IL1 pathway members, and 

knockdown of the IL1R which prevents binding of IL1 and Il1 causes a decrease in 

associated paracrine senescence [70].  Therefore, the up-regulation of IL1 pathway 

members that was observed in our RNA-seq data is consistent with other studies, but 

provides a better comparison of multiple types of senescence, as well as immortalization, 

within a single genetic background. 
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4.4 Quiescent Gene Expression  

For the analysis of gene expression data, we included RNA from quiescent cells, in 

order to identify the portion of genes that were not senescence-specific but rather cell cycle 

specific, given that quiescent cells have withdrawn from the cell cycle albeit not 

permanently.  I observed up-regulated 45 genes in all 4 types of senescence and quiescence, 

and therefore these 45 genes were not used for pathway analysis of senescence.  Clustering 

analysis of these 45 genes showed that while the quiescent gene expression had significant 

overlap with the senescent gene expression, the quiescent sample associated very closely 

with the immortal proliferating sample in gene clustering analysis, possibly indicating the 

quiescent-associated genes in the quiescent sample were not as similar to senescent 

samples as they appear based only on fold change analysis.  This further validated our 

reasoning for segregating these genes from the pathway analysis of senescence (Figure 9).  

Surprisingly, pathway analysis on the 45 genes showed interferon/inflammatory pathway 

as the most significant pathway (data not shown).  Among these genes, there were several 

interferon induced proteins, including IFIT1, IFIT2, IFIT3, IFITM1, IFI44L, IFIH1, and 

IFI6.  Additionally, IRF9, an interferon regulatory factor, was also up-regulated in the 

quiescent control, indicating a role for the IRFs in activating the interferon/inflammatory 

pathway in both senescence and quiescence.  IRF3, IRF5 and IRF7 were found in the RNA-

seq data to be up-regulated in senescence but were not consistent among the different types 

of senescence (Figures 5, 6, 7, 16).   

The cell cycle kinase inhibitor p21, which promotes cell cycle arrest, was also up-

regulated in the quiescent control compared to the immortal cells in the Cufflinks analysis 

of differential expression.  However, when relative abundances of quiescent cell gene 
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expression were compared to the 4 types of senescent cells via gene clustering, p21 

appeared slightly down-regulated compared to the senescent samples.  Up-regulation of 

p21 would not be surprising given the fact that the quiescent samples are withdrawn from 

the cell cycle, and therefore p21 may be playing a role in cell cycle arrest.  However, the 

fact that the quiescent sample showed up-regulation in the fold change analysis but down-

regulation of p21 in clustering analysis indicates that the expression of p21 is not as robust 

in the quiescent samples as the senescent samples which are permanently withdrawn from 

the cell cycle. 

4.5 Progressive Up-Regulation of Genes during Cellular Aging 

 In addition to comparing various types of senescence to elucidate common senescent 

pathways, we also wanted to analyze the progression of young, proliferating cells into naturally 

senescent cells.  For this reason, we included lowest available passage cells (PD 10-12), low 

passage cells (PD 17-19), and naturally senescent cells (PD 28-30).  Clustering analysis of the 48 

senescence-associated genes revealed a relative down-regulation of these genes in the lowest 

passage sample, and a slight up-regulation of these genes in the low passage sample.  This is likely 

to represent a property of cells proliferating at a slower rate and approaching senescence.  When 

the cells stopped proliferating and entered natural senescence, the 48 genes were highly up-

regulated.  This illustrates an interesting progressive up-regulation of senescence-associated genes 

which is consistent with the theory that senescence genes are dominant and therefore up-regulated 

during senescence [91].  These senescence-associated genes were predominantly part of the 

inflammatory pathway indicating that the inflammatory/immune response increases as a cell ages 

and this response is silenced during immortalization.  A recent RNA expression study utilized 

young, middle aged, old aged, and naturally senescent IMR90 cells to assess the progression of 

senescence-associated genes.  A progressive down-regulation of 1149 genes was observed, which 
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corresponded to proliferation and replication pathways [11].  There was also a progressive up-

regulation of 454 genes, including the senescence-associated p21 and p16; however pathway 

analysis of these 454 genes did not yield consistent pathway involvement.  These data are consistent 

with our RNA-seq study, showing that several genes become increasingly up-regulated as a cell 

ages, concurrent with the cell proliferation decreasing with age and consequently showing a 

decrease in replication-related genes.  The progressive up-regulation and down-regulation of genes 

is most likely due to the progressive loss of telomeres as a cell ages, as expression of hTERT in the 

IMR90 cells reverted most of the gene expression changes that occurred with senescence [11].   

 As mentioned previously, senescence-associated genes (which are predominantly 

inflammatory/immune system related) are progressively up-regulated during aging and into 

senescence, and this up-regulation is universal throughout all 4 types of senescence.  Inversely, the 

inflammatory/immune system pathway is epigenetically abrogated during cellular immortalization.  

The up-regulation of the inflammatory pathway is most likely due to the expression of the 

senescence-associated secretory phenotype, whereas the silencing of this pathway during 

immortalization seems paradoxical.  It is unclear why it would be advantageous for an immortal 

cell to turn off a protective mechanism such as the innate immune system response.  It is possible 

that the cells with a defective interferon response/immune system pathway have a higher miRNA 

tolerance [59].  Previous studies in the Tainsky lab showed that immortal cells with a dysfunctional 

interferon response (MDAH087-10) had increased levels of miRNAs in response to DICER 

expression, whereas immortal cells with a functional interferon response (MDAH087-N) had 

decreased levels of miRNAs in response to DICER expression.  miRNAs typically serve as negative 

regulators of gene expression, and therefore cells without a functional interferon response and 

consequently higher levels of miRNAs would have high levels of gene repression.  This could cause 

repression of senescence-associated genes or cell cycle inhibitory genes that would hinder the 

growth of a cell, and therefore represent an advantage of having an abrogated interferon response.  
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Similarly, knockdown of DICER in endometrial cancer cell lines causes increased growth and 

migration, concurrent with decrease in miRNA levels [92].  In conjunction with lower total levels 

of miRNA expression, there was an overall increase in interferon-stimulated genes, which is 

consistent with the Tainsky study [92].  This suggests that silencing of the interferon pathway 

during immortalization confers a higher miRNA tolerance than cells with a normal interferon 

response. 

4.6 Senescence as an Approach to Cancer Therapy 

Cancer cells have bypassed the senescent response in order to achieve unrestricted 

growth.  Therefore, re-activation of the senescent response is a logical approach to cancer 

treatment.  However, the ability to exploit senescence during cancer treatment will be 

complicated and require a deeper understanding of the pathways involved.  For instance, it 

may be possible to inhibit senescence in an effort to increase the amount of apoptotic cell 

death during cancer treatment, such as treatment with adriamycin.  It has been shown that 

there are a portion of tumor cells that undergo senescence and not apoptosis in response to 

chemotherapeutic agents [52], and this could be one reason for tumor dormancy.  

“Irreversibly” senescent cells may be a misnomer and these cells may be able to re-enter 

the cell cycle if additional mutations or changes in gene expression are acquired.  

Preliminary experiments have shown that cells treated with H2O2 undergo senescence, but 

are able to begin proliferating again after a short cell cycle arrest (data not shown).  In 

contrast, cells that were treated with adriamycin entered senescence and slowly began 

dying, presumably going through apoptosis but were not able to start proliferating again 

(data not shown).  Therefore, senescence may not be as irreversible as it seems.  RNA-seq 

data from this study showed that in genes differentially expressed in adriamycin-induced 

senescence compared to immortalization, 150 of these genes could be grouped into the 
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apoptosis pathway gene set as defined by Genomatix Genome Analyzer (150 out of 1314 

known apoptosis genes, with a p-value of 4.24-6), indicating that the cell may have the 

option of apoptosis or senescence.  H2O2-induced senescence had 32 out of 1314 known 

apoptosis genes, with a p-value of 2.72-5, again indicating induced senescence can be an 

alternative to apoptosis depending on the circumstance. 

Conversely, it may be beneficial to favor senescence as an outcome for 

chemotherapy rather than try to inhibit it, assuming that senescence is truly “irreversible”.  

However, the senescence-associated secretory phenotype will need to be considered in this 

complex situation because the secreted factors can have a complicated impact on 

surrounding cells, both promoting bystander senescence of normal cells and bystander 

transformation of pre-malignant cells, as well as potentially increasing the overall level of 

inflammation.  Perhaps favoring senescence as an outcome will be beneficial if the 

senescence-associated secretory phenotype is inhibited simultaneously in an effort to 

decrease the effects of the secreted factors.  For example, it has been shown that inhibition 

of IL1 can decrease the levels of factors that are secreted as a result of senescence [68].  

It may also be possible to induce senescence as a cancer therapy, and concurrently stimulate 

the immune system to clear the senescent cells before they are able to secrete inflammatory 

factors that may be detrimental to the surrounding microenvironment by causing bystander 

senescence or bystander transformation. 

4.7 Summary 

Comparison of 4 types of cellular senescence showed a common involvement of 

the inflammatory/immune system pathway during senescence.  Further analysis showed 

heterogeneous involvement of certain inflammatory genes, such as IRF5 and IRF7, 



102 

 

 

 

indicating that while certain pathways are universal during senescence, the genes involved 

from those pathways can vary among different types of senescence.  I specifically 

confirmed the up-regulation of the IL1 pathway in all types of senescence, and in multiple 

cell lines.  It is probable that this pathway plays a causative role in the senescence-

associated secretory phenotype, which was also present in all 4 types of senescence, though 

to varying degrees.  This RNA-seq study utilized a cell model which allowed a comparison 

between multiple types of senescence within the same genetic background, and 

demonstrated a universal role for the inflammatory pathway in multiple types of 

senescence, as well as a progressive up-regulation of senescence-associated inflammatory 

genes as a cell ages.    
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Senescence is a permanent withdrawal from cell cycle that occurs naturally in cells 

in response to the shortening of telomeres.  This natural “clock” serves to limit the number 

of cell divisions and therefore protects the cell from potentially carcinogenic mutations.  

However, senescence also occurs in response to external stresses to the cell, which is 

known as induced senescence.  This study compares the mechanisms of natural senescence, 

a response to the shortening of telomeres during replication, with induced senescence by 

using various drugs to induce senescence: 5-aza-2-deoxycytidine (a demethylating agent), 

Adriamycin (a chemotherapeutic drug), and H2O2 (an agent causing oxidative stress). 

MDAH041 cells, which are fibroblasts isolated from a patient with Li Fraumeni 

Syndrome, have heterozygous alleles of p53 and can therefore undergo natural senescence 

with serial cell culture or at a low frequency spontaneously immortalize once the wildtype 

copy of p53 is lost.  Therefore, this cell model provides naturally senescent cells as well as 

immortal cells which can be treated with the aforementioned drugs resulting in induced 

senescence.  Using these conditions, gene expression profiling was performed.  Gene 

expression analysis revealed 48 genes differentially expressed in all 4 senescence types 
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compared to the immortal control.  Pathway analysis of these 48 genes from all types of 

cellular senescence revealed several pathways, each of which are involved in innate 

immunity, showing for the first time a common gene expression profile among different 

types of senescence, as well as a central role for the IFN pathway in both natural and 

induced senescence.  Specifically, I have focused on the IL1 pathway which is up-regulated 

in all types of senescence compared to immortal proliferating cells and will be the basis for 

additional mechanistic studies.  
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