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Chapter 1

Introduction

Sobolev spaces and geometric inequalities can be considered as one of the central tools in many

areas such as analysis, differential geometry, mathematical physics, partial differential equations,

calculus of variations, etc. The main aim of this dissertation is to study such inequalities in

several settings such as Euclidean spaces, Heisenberg groups, etc and their applications. More

precisely, we will prove many versions of singular Moser-Trudinger and Adams type inequalities,

which are the borderline cases of the Sobolev embeddings. Basically, the Sobolev embeddings

assert that W k,p
0 (Ω) ⊂ Lq (Ω) for 1 ≤ q ≤ np

n−kp , kp < n, n ≥ 2, where Ω ⊂ Rn is a

bounded domain. However, in the limiting case: n = kp, we can show by many examples that

W
k,n
k

0 (Ω) * L∞ (Ω). Thus, it is a very good question to ask what the best possible target

is of the Sobolev inequalities in this borderline situation. The Moser-Trudinger and Adams

inequalities answer this question and hence, can be considered as the perfect replacements for

the Sobolev embeddings when n = kp. For the convenience of the reader, we will first introduce

some versions of Moser-Trudinger and Adams inequalities in the literature.

1.1 Moser-Trudinger inequalities on Eucledian spaces

In the 1960s, Yudovich [96], Pohozaev [84] and Trudinger [93] worked independently and proved

that W 1,n
0 (Ω) ⊂ Lϕn (Ω) where Lϕn (Ω) is the Orlicz space associated with the Young function

ϕn(t) = exp
(
β |t|n/(n−1)

)
− 1 for some β > 0. More precisely, they proved that there exist
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constants β > 0 and Cn > 0 depending only on n such that

sup
u∈W 1,n

0 (Ω),
∫
Ω|∇u|

ndx≤1

∫
Ω

exp
(
β |u|

n
n−1

)
dx ≤ Cn |Ω|

However, the best possible constant β is much more interesting and was not exhibited until

the 1971 paper [80] of J. Moser. In fact, using the symmetrization argument to reduce to

the one dimensional case, J. Moser established the following result which is now called the

Moser-Trudinger inequality:

Theorem 1.1 (Moser [80]) Let Ω be a domain with finite measure in Euclidean n− space

Rn, n ≥ 2. Then there exist a sharp constant αn = n
(

nπ
n
2

Γ(n
2

+1)

) 1
n−1 and a positive constant

C0 = C0(n) such that

1

|Ω|

∫
Ω

exp
(
α |u|

n
n−1

)
dx ≤ C0

for any α ≤ αn, any u ∈W 1,n
0 (Ω) with

∫
Ω |∇u|

n dx ≤ 1. This constant αn is sharp in the sense

that if α > αn, then the above inequality can no longer hold with some c0 independent of u.

The Moser-Trudinger inequalities are refined and extended to many different settings. For

instance, a singular Moser-Trudinger inequality which is an interpolation of Hardy inequality

and Moser-Trudinger inequality was studied by Adimurthi and Sandeep in [5]: if Ω ⊂ Rn, n ≥ 2,

|Ω| <∞, then there exists a constant C0 = C0(n) > 0 such that

1

|Ω|1−
α
n

∫
Ω

exp
(
α |u|

n
n−1

)
|x|β

dx ≤ C0

for any β ∈ [0, n) , 0 ≤ α ≤
(

1− β
n

)
αn, any u ∈W 1,n

0 (Ω) with
∫

Ω |∇u|
n dx ≤ 1. Moreover, this

constant
(

1− β
n

)
αn is sharp in the sense that if α >

(
1− β

n

)
αn, then the above inequality
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can no longer hold with some C0 independent of u.

Recently, using the Lp affine energy Ep (f) of f instead of the standard Lp energy of gradient

‖∇f‖p , where

Ep (f) = cn,p

 ∫
Sn−1

‖Dvf‖−np dv

−1/n

,

cn,p =

(
nωnωp−1

2ωn+p−2

)1/p

(nωn)1/n ,

‖Dvf‖p =

∫
Rn

|v · ∇f (x)|p dx

1/p

,

the authors in [19] proved a sharp version of affine Moser-Trudinger inequality, namely,

Theorem 1.2 (Cianchi-Lutwak-Yang-Zhang [19]) Let Ω be a domain with finite measure

in Euclidean n−space Rn, n ≥ 2. Then there exists a constant mn > 0 such that

1

|Ω|

∫
Ω

exp
(
α |u|

n
n−1

)
dx ≤ mn

for any α ≤ αn, any u ∈ W 1,n
0 (Ω) with En (u) ≤ 1. The constant αn is sharp in the sense that

if α > αn, then the above inequality can no longer hold with some mn independent of u.

It is worthy to note that by the Holder inequality and Fubini’s theorem, we have that

Ep (f) ≤ ‖∇f‖p

for every f ∈ W 1,p (Rn) and p ≥ 1. Moreover, since the ratio
‖∇f‖p
Ep(f) is not uniformly bounded

from above by any constant, this affine Moser-Trudinger inequality is actually stronger than

the standard Moser-Trudinger inequality.
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When Ω has infinite volume, the above results become meaningless. In this case, the

subcritical Moser-Trudinger type inequalities for unbounded domains were first proposed by

D.M. Cao [17] when n = 2 and Do Ó [26] for the general case n ≥ 2. More precisely, they

proved that for any u ∈ W 1,n(Rn) with ‖∇u‖n ≤ m < 1 and ‖u‖n ≤ M < ∞, there exist a

constant C (m,M) > 0 and α > 0 independent of u such that

∫
Rn
φn,1

(
α |u|

n
n−1

)
dx ≤ C (m,M)

where

φn,1(t) = et −
n−2∑
i=0

ti

i!
.

These results were extended later by Adachi and Tanaka [1] in order to determine the best

constant α. In fact, they proved that

Theorem 1.3 (Adachi-Tanaka [1]) For any α ∈ (0, αn), there exists a constant Cα > 0 such

that

∫
Rn

φn,1

(
α |u|

n
n−1

)
dx ≤ Cα ‖u‖nn , ∀u ∈W 1,n (Rn) , ‖∇u‖n ≤ 1,

This inequality is false for α ≥ αn.

It can be noted that unlike the case of the bounded domains, the best constant αn cannot

be achieved. Thus, the result of Adachi-Tanaka can be considered as the sharp subcritical

Moser-Trudinger type inequality on unbounded domains.

We notice that if we replace the norm ‖∇u‖n by the full norm ‖∇u‖n + ‖u‖n in the Sobolev

space W 1,n (Rn), the best constants in the Moser-Trudinger inequalities in unbounded domains

can be attained. Thus, they can be considered as the critical Moser-Trudinger inequalities on
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unbounded domains. In fact, these results are studied in the last 10 years by the work of B.

Ruf [85] for the Moser-Trudinger type inequality when n = 2. This result was extended later to

the general dimension n by Y. X. Li and B. Ruf [65] and more recently, by Adimurthi and Yang

[6] for the singular case. Indeed, using the full norm of the Sobolev space W 1,n (Rn) instead of

‖∇u‖n, they can proved that for all α ≤
(

1− β
n

)
αn and τ > 0,

sup
‖u‖1,τ≤1

∫
Rn

φn,1

(
α |u|

n
n−1

)
|x|β

dx <∞

where

‖u‖1,τ =

(∫
Rn

(|∇u|n + τ |u|n) dx

)1/n

.

Moreover, this constant
(

1− β
n

)
αn is sharp in the sense that if α >

(
1− β

n

)
αn, then the

supremum is infinity.

We recall that in the paper [4], Adimurthi and Druet used the blow-up technique to study an

improvement of the Trudinger-Moser inequality in the spirit of Lions [69]. In fact, they proved

that

Cα (Ω) := sup
u∈W 1,2

0 (Ω), ‖∇u‖2≤1

∫
Ω
e4πu2(1+α‖u‖22)dx <∞ iff 0 ≤ α < λ1 (Ω) ,

λ1 (Ω) = inf
u∈W 1,2

0 (Ω)\{0}

‖∇u‖22
‖u‖22

.

We note that λ1(Ω) is the first eigenvalue for the Dirichlet problem of the Laplace operator on

Ω ⊂ R2. It is easy to see that this inequality is stronger than the original one of Moser where

4π is the best constant, while this inequality of [4] has the constant 4π
(

1 + α ‖u‖22
)
which is

larger than 4π. This result is extended to n-dimensional case by Lu and Yang [75] and Zhu [98].
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1.2 Moser-Trudinger inequalities on Heisenberg groups

Analysis and study of partial differential equations on the Heisenberg group has received great

attention in the past decades. Heisenberg group is the simplest example of noncommutative

nilpotent Lie groups which has a close connection with several complex variables and CR geome-

try. Sharp geometric inequalities on the Heisenberg group have particularly played an important

role in harmonic analysis, partial differential equations and differential geometry. A good ex-

ample of this role is the identification of the sharp constant and extremal functions for the L2

Sobolev inequality on the Heisenberg group. This was achieved in a series of celebrated works

of Jerison and Lee in conjunction with the solution of the CR Yamabe problem [43, 44, 45].

The following Sobolev inequality on the Heisenberg group is well known: for f ∈ C∞0 (H)

(∫
H
|f(z, t)|qdzdt

) 1
q

≤ Cp,q
(∫

H
| 5H f(z, t)|pdzdt

) 1
p

(1.1)

provided that 1 ≤ p < Q = 2n + 2 and 1
p −

1
q = 1

Q . This inequality was first proved by

Folland-Stein [31], see also [34], [70]. In the above inequality, we have used | 5H f | to express

the (Euclidean) norm of the subelliptic gradient of f :

| 5H f | =
n∑
i=1

(
(Xif)2 + (Yif)2

) 1
2 .

It is then clear that the above inequality is also true for functions in the anisotropic Sobolev

space W 1,p
0 (H) (p ≥ 1), where W 1,p

0 (Ω) for open set Ω ⊂ H is the completion of C∞0 (Ω) under

the norm

||f ||Lp(Ω) + || 5H f ||Lp(Ω).

Nevertheless, much less is known about sharp constants for Sobolev inequality (1.1) for the
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Heisenberg group than for Euclidean space. In fact, the first major breakthrough came after

the works by D. Jerison and J. Lee [45] on the sharp constants for the Sobolev inequality and

extremal functions on the Heisenberg group in conjunction with the solution to the CR Yamabe

problem (we should note the well-known results of Talenti [90] and Aubin [7] for sharp constants

and extremal functions in the isotropic case). More precisely, in a series of papers [43, 44, 45],

the Yamabe problem on CR manifolds was first studied. In particular, Jerison and Lee study

the problem of conformally changing the contact form to one with constant Webster curvature

in the compact setting.

In particular, the best constant Cp,q for the Sobolev inequality (1.1) on H for p = 2 was

found and the extremal functions were identified in [45].

Theorem 1.4 (Jerison and Lee [45]) The best constant for the inequality (1.1) on H is

C2, 2n+2
n

= (4π)−1n−2 [Γ(n+ 1)]
1

n+1

and all the extremals of (1.1) are obtained by dilations and left translations of the function

K|
(
t+ i(|z|2 + 1)

)
|−n.

Furthermore, the extremals in (1.1) are constant multiples of images under the Cayley transform

of extremals for the Yamabe functional on the sphere S2n+1 in Cn+1.

The sharp Sobolev inequality on the Heisenberg group for p = 2 is closely related to the

sharp Hardy-Littlewood-Sobolev inequality, also known as the HLS inequality:

∣∣∣∣∣
∫ ∫

H×H

f(u)g(v)

|u−1v|λ
dudv

∣∣∣∣∣ ≤ Cr,λ,n‖f‖r‖g‖s. (1.2)
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In fact, the result of Jerison and Lee is equivalent to the sharp version of HLS inequality

(1.2) when λ = Q− 2 and r = s = 2Q/(2Q− λ) = 2Q/(Q+ 2).

Very recently, in a remarkable paper of Frank and Lieb [35], they have succeeded to establish

the sharp constants and extremal functions of the HLS inequality on the Heisenberg group for

all 0 < λ < Q and r = s = 2Q
2Q−λ , an analogue to Lieb’s celebrated result in Euclidean spaces

[66]. We can state the result in [35] as the following theorem.

Theorem 1.5 (Frank & Lieb, Theorem 2.1 in [35]) Let 0 < λ < Q and r = 2Q/(2Q− λ).

Then for any f, g ∈ Lr(H),

∣∣∣∣∣
∫ ∫

H×H

f(u)g(v)

|u−1v|λ
dudv

∣∣∣∣∣ ≤
(
πn+1

2n−1n!

) λ
Q n!Γ((Q− λ)/2)

Γ2((2Q− λ)/4)
‖f‖r‖g‖r, (1.3)

with equality if and only if

f(u) = cH(δ(a−1u)), g(v) = c′H(δ(a−1v))

for some c, c′ ∈ C, δ > 0, a ∈ H (unless f ≡ 0 or g ≡ 0), and

H =

[
(1 + |z|2)2 + t2

]− 2Q−λ
4

.

Their results also justified Branson, Fontana and Morpurgo’s guess in [15] about the opti-

mizer H.

The work of Jerison and Lee [45] raised two natural questions. What is the best constant

Cp,q for the Lp to Lq Sobolev inequality (1.1) for all 1 ≤ p < Q and q = Qp
Q−p when p 6= 2?

What is the sharp constant for the borderline case p = Q? While the first question still seems
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to be open, the second question was answered in the work of Cohn and Lu in [21] on domains

of finite measure in the Heisenberg group. Namely, they proved [21] the sharp Moser-Trudinger

inequality on any domain Ω with |Ω| <∞ on the Heisenberg group.

As has been the case in most proofs of sharp constants in Euclidean spaces, one often

attempts to use the radial non-increasing rearrangement u∗ of functions u (in terms of a certain

norm) on the Heisenberg group. However, it is not known whether or not the Lp norm of the

subelliptic gradient of the rearrangement of a function is dominated by the Lp norm of the

subelliptic gradient of the function. In other words, an inequality like

|| 5H u
∗||Lp ≤ || 5H u||Lp (1.4)

is not available on the Heisenberg group. In fact, the work of Jerison-Lee on the best constant

and extremals [45] indicates that this inequality fails to hold for the case p = 2. Thus, in the

works of Jerison and Lee [45] and Frank and Lieb [35], substantially new ideas are needed in

deriving sharp Sobolev and Hardy-Littlewood-Sobolev inequalities on the Heisenberg group.

As for the Moser-Trudinger inequality on bounded domains on the Heisenberg group, the

borderline case of the Sobolev inequality when p = Q, we also have to avoid the rearrangement

argument due to the unavailability of the symmetrization inequality (1.4) when p = Q. This was

carried out in the work of Cohn and Lu [21]. In fact, we can adapt D. Adams’ idea in deriving the

Moser-Trudinger inequality for higher order derivatives in Euclidean space [2], which requires,

roughly speaking, an optimal bound on the size of a function in terms of the potential of its

gradient, namely a sharp representation formula. By using this one parameter representation

formula on the Heisenberg group, we are able to avoid considering the subelliptic gradient of

the rearrangement function. Instead, we will consider the rearrangement of the convolution of
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the subelliptic gradient with an optimal kernel (see [21] for more details).

The sharp constant for the Moser-Trudinger inequality on domains of finite measure in the

Heisenberg group is stated as follows. Throughout the remaining of this dissertation, we use

ξ = (z, t) to denote any point (z, t) ∈ H and ρ(ξ) = (|z|4 + t2)
1
4 to denote the homogeneous

norm of ξ ∈ H.

Theorem 1.6 Let αQ = Q
(

2πnΓ(1
2)Γ(Q−1

2 )Γ(Q2 )−1Γ(n)−1
)Q′−1

. Then there exists a uniform

constant C0 depending only on Q such that for all Ω ⊂ H, |Ω| <∞ and α ≤ αQ

sup
u∈W 1,Q

0 (Ω), ‖∇Hu‖LQ≤1

1

|Ω|

∫
Ω

exp(α |u(ξ)|Q
′

)dξ ≤ C0 <∞. (1.5)

The constant αQ is the best possible in the sense that if α > αQ, then the supremum in the

inequality (1.5) is infinite.

It is clear that when |Ω| = ∞, the above inequality (1.5) in Theorem 1.6 is not meaning-

ful. We also remark that using similar ideas of representation formulas and rearrangement of

convolutions as done on the Heisenberg group in [21], Theorem 1.6 was extended to the groups

of Heisenberg type in [21] and to general stratified groups in [9]. We refer to [8] for more

introduction of stratified groups.

Using a similar argument, the authors established the following version of singular Moser-

Trudinger inequality on bounded domains in [57]:

Theorem 1.7 Let Ω ⊂ H, |Ω| < ∞ and 0 ≤ β < Q. Then there exists a uniform constant

C0 <∞ depending only on Q, β such that

sup
u∈W 1,Q

0 (Ω), ‖∇Hu‖LQ≤1

1

|Ω|1−
β
Q

∫
Ω

exp(αQ

(
1− β

Q

)
|u(ξ)|Q

′

)dξ

ρ (ξ)β
≤ C0.
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The constant αQ
(

1− β
Q

)
is sharp in the sense that if αQ

(
1− β

Q

)
is replaced by any larger

number, then the supremum is infinite.

The situation is more complicated when dealing with unbounded domains on the Heisenberg

group. Before we state the Moser-Trudinger inequality on the entire Heisenberg group, we need

to recall some preliminaries.

Let u : H→ R be a nonnegative function in W 1,Q (H), and u∗ be the decreasing rearrange-

ment of u, namely

u∗(ξ) := sup {s ≥ 0 : ξ ∈ {u > s}∗}

where

{u > s}∗ = Br = {ξ : ρ (ξ) ≤ r}

such that |{u > s}| = |Br|. It is known from a result of Manfredi and V. Vera De Serio [79]

that there exists a constant c ≥ 1 depending only on Q such that

∫
H
|∇Hu

∗|Q dξ ≤ c
∫
H
|∇Hu|Q dξ (1.6)

for all u ∈W 1,Q (H). Thus we can define

c∗ = inf

{
c1/(Q−1) :

∫
H
|∇Hu

∗|Q dξ ≤ c
∫
H
|∇Hu|Q dξ, u ∈W 1,Q (H)

}
≥ 1.

We can now state the following version of the Moser-Trudinger type inequality (see [20]):

Theorem 1.8 Let α∗ = αQ/c
∗. Then for any pair β, α satisfying 0 ≤ β < Q and α ≤
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α∗(1− β
Q), there holds

sup
‖u‖

W1,Q(H)
≤1

∫
H

1

ρ (ξ)β

{
exp

(
α |u|Q/(Q−1)

)
− SQ−2 (α, u)

}
<∞ (1.7)

where

SQ−2 (α, u) =

Q−2∑
k=0

αk

k!
|u|kQ/(Q−1) .

Moreover, the supremum is infinite if α > αQ(1− β
Q).

We menton in passing that inequality (1.7) in Euclidean spaces when β = 0 was established

in two dimensional case R2 in [85] and high dimensional case RN in [65], while the singular case

0 ≤ β < N was treated in [6]. A subcritical case was studied first in two dimension R2 in [17].

We briefly outline the proof of Theorem 1.8 given in [20]. By using the rearrangement

inequality (2.6), we can reduce the inequality to the case where the functions are radial in terms

of the homogeneous norm on the Heisenberg group. Then we break the integral over the space H

into two parts, the interior of a large ball and the exterior of the ball. Over the finite ball, we can

use the sharp Moser-Trudinger inequality on finite domains proved in [21]. On the exterior of the

ball, we will then use the radial lemma for radial functions on the Heisenberg group. However,

we should note that, in the above Theorem 1.8, we cannot exhibit the best constant α∗(1− β
Q)

due to the loss of the non-optimal rearrangement argument in the Heisenberg group. In fact, in

the inequality controlling the norm of the subelliptic gradient of the rearranged function u∗, the

constant c∗ is not known to be 1. Therefore, the constant αQ
c∗ (1− β

Q) is not known to be equal to

αQ(1− β
Q). We note that using a cut-off function argument and thus avoiding the rearrangement

inequality (2.6), the above inequality (1.7) has also shown to be true for α strictly smaller than

αQ(1 − β
Q). Nevertheless, the more difficult critical case α = αQ(1 − β

Q) is still left open from
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[20].

1.3 Adams inequalities

We now turn to the discussion of high order Adams inequalities. Regarding the case of high

order derivatives, since the symmetrization is not available, D. Adams [2] proposed a new idea

to find the sharp constants for higher order Moser’s type inequality, namely, to express u as the

Riesz potential of its gradient of order m, and then apply O’Neil’s result on the rearrangement

of convolution functions and use techniques of symmetric decreasing rearrangements. To state

Adams’ result, we use the symbol ∇mu, m is a positive integer, to denote the m−th order

gradient for u ∈ Cm, the class of m−th order differentiable functions:

∇mu =


4

m
2 u for m even

∇4
m−1

2 u for m odd

.

where ∇ is the usual gradient operator and 4 is the Laplacian. We use ||∇mu||p to denote the

Lp norm (1 ≤ p ≤ ∞) of the function |∇mu|, the usual Euclidean length of the vector ∇mu.

We also use W k,p
0 (Ω) to denote the Sobolev space which is a completion of C∞0 (Ω) under the

norm of

||u||pLp(Ω) +

k∑
j=1

||∇ju||pLp(Ω)

1/p

. Then Adams proved the following:

Theorem 1.9 (Adams [2]) Let Ω be an open and bounded set in Rn. If m is a positive integer

less than n, then there exists a constant C0 = C(n,m) > 0 such that for any u ∈Wm, n
m

0 (Ω) and

||∇mu||
L
n
m (Ω)

≤ 1, then

1

|Ω|

∫
Ω

exp(β|u(x)|
n

n−m )dx ≤ C0
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for all β ≤ β(n,m) where

β(n, m) =


n

wn−1

[
πn/22mΓ(m+1

2
)

Γ(n−m+1
2

)

] n
n−m

when m is odd

n
wn−1

[
πn/22mΓ(m

2
)

Γ(n−m
2

)

] n
n−m

when m is even

.

Furthermore, the constant β(n,m) is best possible in the sense that for any β > β(n,m), the

integral can be made as large as possible.

It’s easy to check that β(n, 1) coincides with Moser’s value of αn and β(2m,m) = 22mπmΓ(m+

1) for both odd and evenm. In fact, Adams’ result was extended recently by Tarsi [91] to a larger

space, namely, the Sobolev space with homogeneous Navier boundary conditions W
m, n

m
N (Ω) :

W
m, n

m
N (Ω) :=

{
u ∈Wm, n

m : ∆ju = 0 on ∂Ω for 0 ≤ j ≤
[
m− 1

2

]}
.

We note that the Adams inequality was extended to compact Riemannian manifolds without

boundary by Fontana [32] and to measure spaces by Fontana and Morpurgo [33].

Concerning the Adams inequality for unbounded domains, in the spirit of Adachi-Tanaka

[1], T. Ogawa and T. Ozawa [83] in the case n
m = 2 and T. Ozawa [82] in the general case proved

that there exist positive constants α and Cα such that

∫
Rn

φn,m

(
α |u|

n
n−m

)
dx ≤ Cα ‖u‖

n
m
n
m
, ∀u ∈Wm, n

m (Rn) , ‖∇mu‖ n
m
≤ 1,
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where

φn,m(t) = et −
j n
m
−2∑

j=0

tj

j!

j n
m

= min
{
j ∈ N : j ≥ n

m

}
≥ n

m
.

Their approach of proving the above result is similar to the idea of Yudovich [96], Pohozaev

[84] and Trudinger [93]. However, their constant is not best possible. Therefore, the problem of

determining the best constant cannot be investigated by this way. In fact, as pointed out in [87],

it is still left as an open problem to identify the best constant. Thus, it is very interesting to

determine the best constants in such inequalities.

Similar to the Moser-Trudinger inequality, the critical Adams type inequality was also stud-

ied using the full norm in order to get the best constant. Indeed, it was investigated by Ruf-Sani

[86] when m is even, Lam-Lu [47] when m is odd and Lam-Lu [49] for the fractional derivative

case in Sobolev spaces of fractional orders. Moreover, using a similar idea to that of Adams

[2], but using the Bessel (type) potential instead of Riesz potential, and using a new idea of

rearrangement-free argument on domains of infinite volume, the sharp fractional singular Adams

type inequalities were proved by Lam and Lu in [53].

Theorem 1.10 (Lam-Lu [49]) Let 0 < α < n be an arbitrary real positive number, p = n
α

and τ > 0. There holds

sup
u∈Wα,p(Rn),

∥∥∥(τI−∆)
α
2 u
∥∥∥
p
≤1

∫
Rn
φn,α

(
β0 (n, α) |u|p

′
)
dx <∞
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where

β0 (n, α) =
n

ωn−1

[
πn/22αΓ (α/2)

Γ
(
n−α

2

) ]p′
.

Furthermore this inequality is sharp, i.e., if β0 (n, α) is replaced by any γ > β0 (n, α), then the

supremum is infinite.

There is also an improved version of the Adams type inequality in the Sobolev space

W 2,n
2 (Rn) , n ≥ 3. In this special case, it has been proved in [49] that: Let 0 ≤ α < n, n ≥ 3

and τ > 0. Then for all 0 ≤ β ≤
(
1− α

n

)
β(n, 2), we have

sup
u∈W 2, n2 (Rn),

∫
Rn |∆u|

n
2 +τ |u|

n
2 ≤1

∫
Rn

φn,2

(
β |u|

n
n−2

)
|x|α

dx <∞.

Moreover, the constant
(
1− α

n

)
β(n, 2) is sharp in the sense that if β >

(
1− α

n

)
β(n, 2), then

the supremun is infinite. We should note this result does not require the restriction on the full

standard norm and hence, it extends the results in [53]. Indeed, the results there are for the

special case n = 4 and they require that the full standard norm
∫
R4

(
|∆u|2 + σ |∇u|2 + τ |u|2

)
dx

is not greater than 1. Hen our result is an extension of the previous Adams type inequalities in

the spirit of [69], [4], [75].
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Chapter 2

Preliminary

2.4 Rearrangement

Let Ω ⊂ RN , N ≥ 2, be a measurable set. We denote by Ω# the open ball BR ⊂ RN centered

at 0 of radius R > 0 such that |BR| = |Ω| .

Let u : Ω → R be a real-valued measurable function. The distribution function of u is the

function

µu(t) = |{x ∈ Ω : |u(x)| > t}|

and the decreasing rearrangement of u is the right-continuous, nonincreasing function u∗ that

is equimeasurable with u :

u∗(s) = sup {t ≥ 0 : µu(t) > s} .

It is clear that suppu∗ ⊆ [0, |Ω|] . We also define

u∗∗(s) =
1

s

s∫
0

u∗(t)dt ≥ u∗(s).

Moreover, we define the spherically symmetric decreasing rearrangement of u :

u# : Ω# → [0,∞]

u#(x) = u∗
(
σN |x|N

)
.

Then we have the following important result that could be found in [19, 36, 67]:
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Lemma 2.11 (Pólya-Szegö inequality) Let u ∈W 1,p (Rn), p ≥ 1. Then f# ∈W 1,p (Rn),

E+
p

(
f#
)

= Ep
(
f#
)

=
∥∥∥∇f#

∥∥∥
p

and

E+
p

(
f#
)
≤ E+

p (f) ; Ep
(
f#
)

= Ep (f) ;
∥∥∥∇f#

∥∥∥
p

= ‖∇f‖p .

We now recall here following result that is a modified version of the key lemma used to

prove the Adams inequality in [2]. The proof of this Lemma can be carried out with a slight

modification of that in [2] and can be found in [53].

Lemma 2.12 Let 0 < α ≤ 1, 1 < p <∞ and a(s, t) be a non-negative measurable function on

(−∞,∞)× [0,∞) such that (a.e.)

a(s, t) ≤ 1, when 0 < s < t, (2.1)

sup
t>0

 0∫
−∞

+

∞∫
t

a(s, t)p
′
ds

1/p′

= b <∞. (2.2)

Then there is a constant c0 = c0(p, b) such that if for φ ≥ 0,

∞∫
−∞

φ(s)pds ≤ 1, (2.3)

then
∞∫

0

e−Fα(t)dt ≤ c0 (2.4)

where

Fα(t) = αt− α

 ∞∫
−∞

a(s, t)φ(s)ds

p′

. (2.5)
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2.5 Heisenberg group

We first introduce some preliminaries on the Heisenberg group. Let H be the n-dimensional

Heisenberg group

H = Cn × R

whose group structure is given by

(z, t) · (z′, t′) = (z + z′, t+ t′ + 2Im(z · z′)),

for any two points (z, t) and (z′, t′) in H.

The Lie algebra of H is generated by the left invariant vector fields

T =
∂

∂t
, Xi =

∂

∂xi
+ 2yi

∂

∂t
, Yi =

∂

∂yi
− 2xi

∂

∂t

for i = 1, · · ·, n. These generators satisfy the non-commutative relationship

[Xi, Yj ] = −4δijT.

Moreover, all the commutators of length greater than two vanish, and thus this is a nilpotent,

graded, and stratified group of step two.

For each real number r ∈ R, there is a dilation naturally associated with the Heisenberg

group struture which is usually denoted as

δru = δr(z, t) = (rz, r2t).
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However, for simplicity we will write ru to denote δru. The Jacobian determinant of δr is rQ,

where Q = 2n+ 2 is the homogeneous dimension of H.

The anisotropic dilation structure on H introduces a homogeneous norm

|u| = |(z, t)| = (|z|4 + t2)
1
4 .

With this norm, we can define the Heisenberg ball centered at u = (z, t) with radius R

B(u,R) = {v ∈ H : |u−1 · v| < R}.

The volume of such a ball is CQRQ for some constant depending on Q.

The subelliptic gradient on the Heisenberg group is denoted by

5Hf(z, t) =
n∑
j=1

((Xjf(z, t))Xj + (Yjf(z, t))Yj) .

Let u : H→ R be a nonnegative function in W 1,Q (H), and u∗ be the decreasing rearrange-

ment of u, namely

u∗(ξ) := sup {s ≥ 0 : ξ ∈ {u > s}∗}

where

{u > s}∗ = Br = {ξ : ρ (ξ) ≤ r}

such that |{u > s}| = |Br|. It is known from a result of Manfredi and V. Vera De Serio [79]

that there exists a constant c ≥ 1 depending only on Q such that

∫
H
|∇Hu

∗|Q dξ ≤ c
∫
H
|∇Hu|Q dξ (2.6)
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for all u ∈W 1,Q (H). Thus we can define

c∗ = inf

{
c1/(Q−1) :

∫
H
|∇Hu

∗|Q dξ ≤ c
∫
H
|∇Hu|Q dξ, u ∈W 1,Q (H)

}
≥ 1.

2.6 Bessel Potential

In this section, we provide some preliminaries. For u ∈ Wm, n
m (Rn), we will denote by ∇ju,

j ∈ {1, 2, ...,m}, the j − th order gradient of u, namely

∇ju =


4

j
2u for j even

∇4
j−1

2 u for j odd

.

We now introduce the Sobolev space of functions with homogeneous Navier boundary con-

ditions:

W
m, n

m
N (Ω) :=

{
u ∈Wm, n

m (Ω) : ∆ju = 0 on ∂Ω for 0 ≤ j ≤
[
m− 1

2

]}
.

It is easy to see that W
m, n

m
N (Ω) contains W

m, n
m

0 (Ω) as a closed subspace.

Now, for τ > 0, α ≥ 0, we define the operator Lτ,α(x) by

Lτ,α(x) = τ
n−α

2
1

(4π)α/2
1

Γ (α/2)

∞∫
0

e−
πτ |x|2
δ e−δ/4πδ(−n+α)/2dδ

δ
.

We notice that L1,α is the famous Bessel potential. Now, by Fourier transform, we can prove

the following lemma:

Lemma 2.13 (1) Lτ,α ∈ L1 (Rn) .

(2) L̂τ,α(x) =
(
τ + 4π2 |x|2

)−α
2
.
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(3) Let 1 < p <∞, and k is a positive integer. Then u ∈W k,p (Rn) if and only if u = Lτ,k∗f

for some f ∈ Lp (Rn).

In fact, the properties of the potential Lτ,α are pretty much the same with the properties of

the Bessel potential. Also, noticing that from the following identity (see [89]):

|x|−n+α

γ (α)
=

1

(4π)α/2
1

Γ (α/2)

∞∫
0

e−
π|x|2
δ δ(−n+α)/2dδ

δ

where

γ (α) = πn/22αΓ (α/2) /Γ (n/2− α/2)

we have that

Lτ,α(x) ≤ |x|
−n+α

γ (α)
. (2.7)

Now, for τ > 0, we have the following observations by Fourier transform:

∥∥∥(τI −∆)
m
2 u
∥∥∥2

2
=

m∑
i=0

(
m

i

)
τm−i

∥∥∇iu∥∥2

2
(2.8)

where (
m

i

)
=

m!

i!(m− i)!
.

From (2.8), we have

Lemma 2.14 Assume m ∈ N. Let a0 = 1, a1, ..., am > 0. There exists a real number τ > 0

such that for all u ∈Wm,2
(
R2m

)
:

∥∥∥(τI −∆)
m
2 u
∥∥∥2

2
≤

m∑
j=0

am−j
∥∥∇ju∥∥2

2
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Proof. We just need to choose τ > 0 such that

(
m

j

)
τm−j ≤ am−j , j = 0, 1, ...,m.
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Chapter 3

Sharp Moser-Trudinger inequality in the

entire Heisenberg group

3.1 Introduction

Our main purpose in this chapter is to establish the Moser-Trudinger type inequalities in the

critical case α = αQ(1 − β
Q) using a new method. Our new argument is completely different

from and much simpler than those used in [20]. Most importantly, our method allows us to

derive the best constant α = αQ(1− β
Q).

Indeed, our main result concerning the best constant for the Moser-Trudinger inequality on

the entire Heisenberg group H can be read as follows:

Theorem 3.1 Let τ be any positive real number. Then for any pair β, α satisfying 0 ≤ β < Q

and 0 < α ≤ αQ(1− β
Q) , there holds

sup
‖u‖1,τ≤1

∫
H

1

ρ (ξ)β

{
exp

(
α |u|Q/(Q−1)

)
− SQ−2 (α, u)

}
<∞ (3.1)

When α > αQ(1− β
Q), the integral in (3.1) is still finite for any u ∈W 1,Q (H), but the supremum

is infinite. Here

‖u‖1,τ =

[∫
H
|∇Hu|Q + τ

∫
H
|u|Q

]1/Q

.
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3.2 Proof of Theorem 3.1: The sharp Moser-Trudinger inequal-

ity

The primary purpose of this section is to offer a completely different and much simpler proof

of the best constant αQ(1 − β
Q) for the Moser-Trudinger inequality on unbounded domains in

the Heisenberg group H. All existing proofs on the Heisenberg group only give the subcritical

case for α < αQ(1 − β
Q). Our proof does not rely on the special structure of the Heisenberg

group and applies to much more general cases including the stratified groups ([8]), Euclidean

spaces and complete Riemannian manifolds, etc. However, for its simplicity and clarity, we only

present it on the Heisenberg group.

Proof. It suffices to prove that for any β, τ satisfying 0 ≤ β < Q and τ > 0, there exists a

constant C = C (β, τ,Q) such that for all u ∈ C∞0 (H)\{0} , u ≥ 0 and
∫
H |∇Hu|Q+τ

∫
H |u|

Q ≤ 1,

there holds

∫
H

1

ρ (ξ)β

{
exp

(
αQ

(
1− β

Q

)
|u|Q/(Q−1)

)
− SQ−2

(
αQ

(
1− β

Q

)
, u

)}
≤ C (β, τ,Q) . (3.2)

We fix some notations here:

A(u) = 2
− 1
Q(Q−1) τ

1
Q ‖u‖Q

Ω(u) = {ξ ∈ H : u(ξ) > A(u)} .

Then, it is clear that

A(u) < 1. (3.3)
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Moreover, since

∫
H
|u|Q ≥

∫
Ω(u)
|u|Q

≥
∫

Ω(u)
|A(u)|Q

= 2
− 1

(Q−1) τ ‖u‖QQ |Ω(u)|

we have

|Ω(u)| ≤ 2
1

(Q−1)
1

τ
. (3.4)

Now, we write

∫
H

1

ρ (ξ)β

{
exp

(
αQ

(
1− β

Q

)
|u|Q/(Q−1)

)
− SQ−2

(
αQ

(
1− β

Q

)
, u

)}
= I1 + I2

where

I1 =

∫
Ω(u)

1

ρ (ξ)β

{
exp

(
αQ

(
1− β

Q

)
|u|Q/(Q−1)

)
− SQ−2

(
αQ

(
1− β

Q

)
, u

)}

and

I2 =

∫
H\Ω(u)

1

ρ (ξ)β

{
exp

(
αQ

(
1− β

Q

)
|u|Q/(Q−1)

)
− SQ−2

(
αQ

(
1− β

Q

)
, u

)}
.

We will prove that both I1 and I2 are bounded by a constant C = C (β, τ,Q).
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Indeed, from (5.1), we see

I2 ≤
∫
{u(ξ)<1}

1

ρ (ξ)β

∞∑
k=Q−1

[
αQ

(
1− β

Q

)]k
k!

|u|kQ/(Q−1)

≤
∫
{u(ξ)<1}

1

ρ (ξ)β

∞∑
k=Q−1

[
αQ

(
1− β

Q

)]k
k!

|u|Q

≤
∫
{ρ(ξ)≥1}

∞∑
k=Q−1

[
αQ

(
1− β

Q

)]k
k!

|u|Q

+

∫
{ρ(ξ)<1}

1

ρ (ξ)β

∞∑
k=Q−1

[
αQ

(
1− β

Q

)]k
k!

≤ C (β, τ,Q) .

Now, to estimate I1, we first notice that if we set

v(ξ) = u(ξ)−A(u) in Ω(u),

then v ∈W 1,Q
0 (Ω(u)). Moreover, in Ω(u):

|u|Q
′

= (|v|+A(u))Q
′

≤ |v|Q
′
+Q′2Q

′−1
(
|v|Q

′−1A(u) + |A(u)|Q
′
)

≤ |v|Q
′
+Q′2Q

′−1 |v|
Q′ |A(u)|Q

Q
+Q′2Q

′−1

(
1

Q′
+ |A(u)|Q

′
)

≤ |v|Q
′

(
1 +

2
1

Q−1

Q− 1
|A(u)|Q

)
+ C(Q)

where we did use Young’s inequality and the following elementary inequality:

(a+ b)q ≤ aq + q2q−1
(
aq−1b+ bq

)
for all q ≥ 1 and a, b ≥ 0.
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Let

w(ξ) =

(
1 +

2
1

Q−1

Q− 1
|A(u)|Q

)Q−1
Q

v(ξ) in Ω(u),

then it’s clear that

w ∈W 1,Q
0 (Ω) and |u|Q

′
≤ |w|Q

′
+ C(Q). (3.5)

Moreover, we have

∇Hw =

(
1 +

2
1

Q−1

Q− 1
|A(u)|Q

)Q−1
Q

∇Hv.

Thus

∫
Ω(u)
|∇Hw|Q =

(
1 +

2
1

Q−1

Q− 1
|A(u)|Q

)Q−1 ∫
Ω(u)
|∇Hv|Q

=

(
1 +

2
1

Q−1

Q− 1
|A(u)|Q

)Q−1 ∫
Ω(u)
|∇Hu|Q

≤

(
1 +

2
1

Q−1

Q− 1
|A(u)|Q

)Q−1 [
1− τ

∫
H
|u|Q

]
.

Then

(∫
Ω(u)
|∇Hw|Q

) 1
Q−1

=

(
1 +

2
1

Q−1

Q− 1
|A(u)|Q

)[
1− τ

∫
H
|u|Q

] 1
Q−1

≤

(
1 +

2
1

Q−1

Q− 1
|A(u)|Q

)(
1− τ

Q− 1

∫
H
|u|Q

)

=

(
1 +

2
1

Q−1

Q− 1
2
− 1

(Q−1) τ ‖u‖QQ

)(
1− τ

Q− 1

∫
H
|u|Q

)

=

(
1 +

τ

Q− 1

∫
H
|u|Q

)(
1− τ

Q− 1

∫
H
|u|Q

)
≤ 1. (3.6)
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Here, we used the inequality

(1− x)q ≤ 1− qx for all 0 ≤ x ≤ 1, 0 < q ≤ 1.

From (5.3) and (5.4), using Theorem 1.4 and (5.2), we get

I1 ≤
∫

Ω(u)

exp
(
αQ

(
1− β

Q

)
|u|Q/(Q−1)

)
ρ (ξ)β

≤ eαQ
(

1− β
Q

)
C(Q)

∫
Ω(u)

exp
(
αQ

(
1− β

Q

)
|w|Q/(Q−1)

)
ρ (ξ)β

≤ eαQ
(

1− β
Q

)
C(Q)

C0 |Ω (u)|1−
β
Q

≤ C (β, τ,Q) .

The proof is then completed.
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Chapter 4

Q-sub-Laplacian type equation with critical

exponential growth

4.1 Introduction

As applications of our critical Moser-Trudinger type inequality, we study a class of partial dif-

ferential equations of exponential growth on the Heisenberg group. More precisely, we consider

the existence of nontrivial weak solutions for the nonuniforly subelliptic equations of Q−sub-

Laplacian type of the form:

− divH (a (ξ,∇Hu)) + V (ξ) |u|Q−2 u =
f(ξ, u)

ρ (ξ)β
+ εh(ξ) (NU)

where

|a (ξ, τ)| ≤ c0

(
h0 (ξ) + h1 (ξ) |τ |Q−1

)

for any τ in RQ−2 and a.e. ξ in H, h0 ∈ LQ
′
(H) and h0 ∈ L∞loc (H), 0 ≤ β < Q, V : H→ R is a

continuous potential, f : H×R→ R behaves like exp
(
α |u|Q

′
)
when |u| → ∞ and satisfy those

assumptions (V 1), (V 2), (V 3) and (f1), (f2), (f3) in Section 3, and h ∈
(
W 1,Q (H)

)∗
, h 6= 0

and ε is a positive parameter. The main features of this class of problems are that it is defined

in the whole space H and involves critical growth and the nonlinear operator Q−sub-Laplacian

type. In spite of a possible failure of the Palais-Smale (PS) compactness condition, in this

article we apply the mountain-pass theorem to obtain the weak solution of (NU) in the suitable



31

subspace E of W 1,Q (H). Moreover, in the case of Q−sub-Laplacian, i.e.,

a (ξ,∇Hu) = |∇Hu|Q−2∇Hu,

we will apply minimax methods, more precisely, the mountain-pass theorem combined with

minimization and the Ekeland variational principle to obtain multiplicity of weak solutions to

the nonhomogeneous problem

− divH

(
|∇Hu|Q−2∇Hu

)
+ V (ξ) |u|Q−2 u =

f(ξ, u)

ρ(ξ)β
+ εh(ξ). (NH)

We mention that the existence of nontrivial nonnegative solutions to the equation (NH)

was established in [20]. However, the multiplicity of solutions was not treated in [20]. It is

also worthy to note that the Moser-Trudinger type inequalities in Euclidean spaces play an

essential role in the study of elliptic partial differential equations the exponential growth. Here

we mention [18], [29], [68], [3], [25], [63], [47, 48] and the references therein.

We next state our main results concerning the existence and multiplicity of nontrivial non-

negative solutions to the N−sub-Laplacian equations (NH) on the Heisenberg group.

Theorem 4.1 Suppose that (V1) and V(2) (or (V3)) and (f1)-(f3) are as stated in Section 3

and λ1(Q) is as defined in Section 3. Furthermore, assume that

(f4) lim sup
s→0+

F (ξ, s)

k0 |s|Q
< λ1(Q) uniformly in ξ ∈ H.

Then there exists ε1 > 0 such that for each 0 < ε < ε1, (NU) has a weak solution of mountain-

pass type.
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Theorem 4.2 In addition to the hypotheses in Theorem 4.1, assume that

(f5) lim
s→∞

sf(ξ, s) exp
(
−α0 |s|Q/(Q−1)

)
= +∞

uniformly on compact subsets of H. Then, there exists ε2 > 0, such that for each 0 < ε < ε2,

problem (NH) has at least two weak solutions and one of them has a negative energy.

In the case where the function h does not change sign, we have

Theorem 4.3 Under the assumptions in Theorems 4.1 and 4.2, if h(ξ) ≥ 0 (h(ξ) ≤ 0) a.e.,

then the solutions of problem (NH) are nonnegative (nonpositive).

Our last result is

Theorem 4.4 Under the same hypotheses in Theorems 4.1 and 4.2, the problem (NH) with

ε = 0 has a nontrivial weak solution.

4.2 Assumptions on the nonlinearity and the potential and

variational framework

In this section, we will provide conditions on the nonlinearity and potential of Eq. (NU)

and (NH). Motivated by the Moser-Trudinger inequality (Theorem 3.1), we consider here the

maximal growth on the nonlinear term f(ξ, u) which allows us to treat Eq.(NU) and (NH)

variationally in a subspace of W 1,Q (H). We assume that f : H × R → R is continuous,

f(ξ, 0) = 0 and f behaves like exp
(
α |u|Q/(Q−1)

)
as |u| → ∞. More precisely, we assume the

following growth conditions on the nonlinearity f(ξ, u):

(f1) There exist constants α0, b1, b2 > 0 such that for all (ξ, u) ∈ H× R,

|f(ξ, u)| ≤ b1 |u|Q−1 + b2

[
exp

(
α0 |u|Q/(Q−1)

)
− SQ−2 (α0, u)

]
,
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(f2) There exists p > Q such that for all ξ ∈ H and s > 0,

0 < pF (ξ, s) = p

s∫
0

f(ξ, τ)dτ ≤ sf(ξ, s)

(f3) There exist constant R0, M0 > 0 such that for all ξ ∈ H and s ≥ R0,

F (ξ, s) ≤M0f(ξ, s).

Since we are interested in nonnegative weak solutions, we will assume

f(ξ, u) = 0 for all (ξ, u) ∈ H× (−∞, 0] .

Let A be a measurable function on H×RQ−2 such that A(ξ, 0) = 0 and a(ξ, τ) = ∇τA (ξ, τ) is

a Caratheodory function on H×RQ−2. Assume that there are positive real numbers c0, c1, k0, k1

and two nonnegative measurable functions h0, h1 onH such that h1 ∈ L∞loc (H) , h0 ∈ LQ/(Q−1) (H) ,

h1(ξ) ≥ 1 for a.e. ξ in H and the following conditions hold:

(A1) |a(ξ, τ)| ≤ c0

(
h0 (ξ) + h1 (ξ) |τ |Q−1

)
∀τ ∈ RQ−2, a.e. ξ ∈ H

(A2) c1 |τ − τ1|Q ≤ 〈a(ξ, τ)− a(ξ, τ1), τ − τ1〉 ∀τ, τ1 ∈ RQ−2, a.e. ξ ∈ H

(A3) 0 ≤ a(ξ, τ).τ ≤ QA (ξ, τ) ∀τ ∈ RQ−2, a.e. ξ ∈ H

(A4) A (ξ, τ) ≥ k0h1 (ξ) |τ |Q ∀τ ∈ RQ−2, a.e. ξ ∈ H.

Then A verifies the growth condition:

|A (ξ, τ)| ≤ c0

(
h0 (ξ) |τ |+ h1 (ξ) |τ |Q

)
∀τ ∈ RQ−2, a.e.ξ ∈ H (4.1)
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For examples of A, we can consider A (ξ, τ) = h(ξ) |τ |
Q

Q where h ∈ L∞loc (H).

We also propose the following conditions on the potential:

(V 1) V is a continuous function such that V (ξ) ≥ V0 > 0 for all ξ ∈ H,

and one of the following two conditions:

(V 2) V (ξ)→∞ as ρ (ξ)→∞; or more generally, for every M > 0,

µ ({ξ ∈ H : V (ξ) ≤M}) <∞.

or

(V 3) The function [V (ξ)]−1 belongs to L1 (H).

We introduce some notations:

E =
{
u ∈W 1,Q

0 (H) :
∫
H h1(ξ) |∇Hu|Q dξ +

∫
H V (ξ) |u|Q <∞

}
‖u‖ =

(∫
H

(
h1(ξ) |∇Hu|Q + 1

k0Q
V (ξ) |u|Q

)
dξ
)1/Q

, u ∈ E

λ1 (Q) = inf

{
‖u‖Q∫

H
|u|Q

ρ(ξ)β
dξ

: u ∈ E \ {0}

}

Under the condition on the potential (V 1), we can see that E is a reflexive Banach space

when endowed with the norm

‖u‖ =

(∫
H

(
h1(ξ) |∇Hu|Q +

1

k0Q
V (ξ) |u|Q

)
dξ

)1/Q

and for all Q ≤ q <∞,

E ↪→W 1,Q (H) ↪→ Lq (H)
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with continuous embedding. Furthermore,

λ1 (Q) = inf

 ‖u‖Q∫
H
|u|Q

ρ(ξ)β
dξ

: u ∈ E \ {0}

 > 0 for any 0 ≤ β < Q. (4.2)

By the assumptions (V 2) or (V 3), we can get the compactness of the embedding

E ↪→ Lp (H) for all p ≥ Q.

Following from (f1), we can conclude for all (ξ, u) ∈ H× R,

|F (ξ, u)| ≤ b3
[
exp

(
α1 |u|Q/(Q−1)

)
− SQ−2 (α1, u)

]

for some constants α1, b3 > 0. Thus, by the Moser-Trudinger type inequalities, we have

F (ξ, u) ∈ L1 (H) for all u ∈W 1,Q (H). Define the functional E, T, Jε : E → R by

E (u) =
∫
HA(ξ,∇Hu)dξ + 1

Q

∫
H V (ξ) |u|Q dξ

T (u) =
∫
H
F (ξ,u)

ρ(ξ)β
dξ

Jε(u) = E (u)− T (u)− ε
∫
H hudξ

then the functional Jε is well-defined. Moreover, Jε is a C1 functional on E with

DJε (u) v =

∫
H
a (ξ,∇Hu)∇Hvdξ +

∫
H
V (ξ) |u|Q−2 vdξ −

∫
H

f(ξ, u)v

ρ (ξ)β
dξ − ε

∫
H
hvdξ, ∀u, v ∈ E
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4.3 Some basic lemmas

First, we recall what we call the Radial Lemma (see [20]) which asserts:

|u∗(ξ)|Q ≤ Q

ωQ−1

‖u∗‖QQ
ρ (ξ)Q

,∀ξ ∈ H \ {0}

where u∗ is the decreasing rearrangement of |u| and ωQ−1 =
∫
ρ(ξ)=1 dξ. Use this Radial Lemma,

we can prove the following two lemmas (see [27] and [20]):

Lemma 4.5 For κ > 0 and ‖u‖E ≤M with M sufficiently small and q > Q , we have

∫
H

[
exp

(
κ |u|Q/(Q−1)

)
− SQ−2 (κ, u)

]
|u|q

ρ (ξ)β
dξ ≤ C (Q, κ) ‖u‖q .

Proof. The proof is analogous to the proof of Theorem 1.1 in [20]. For the completeness, we

give the details here.

Setting

R (α, u) = exp
(
α |u|Q/(Q−1)

)
− SQ−2 (α, u) .

Assume that u∗ is the decreasing rearrangement of |u|. We have by the Hardy-Littlewood

inequality that ∫
H

R (κ, u) |u|q

ρ (ξ)β
dξ ≤

∫
H

R (κ, u∗) |u∗|q

ρ (ξ)β
dξ (4.3)
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Let γ be a positive number to be chosen later, we estimate

∫
ρ(ξ)≤γ

R (κ, u∗) |u∗|q

ρ (ξ)β
dξ

≤

(∫
ρ(ξ)≤γ

(R (κ, u∗))p dξ

)1/p(∫
ρ(ξ)≤γ

1

ρ (ξ)βs
dξ

)1/p′s(∫
ρ(ξ)≤γ

|u∗|qp
′s′ dξ

)1/p′s′

≤ C

(∫
ρ(ξ)≤γ

R (pκ, u∗) dξ

)1/p(∫
ρ(ξ)≤γ

|u∗|qp
′s′ dξ

)1/p′s′

where p > 1 and 1
p + 1

p′ = 1, 1 < s < Q
β , and 1

s + 1
s′ = 1. This together with Moser-Trudinger

type inequalities and the continuous embedding of E ↪→ Lt (H) , t ≥ Q implies

∫
ρ(ξ)≤γ

R (κ, u∗) |u∗|q

ρ (ξ)β
dξ ≤ C ‖u‖q (4.4)

for some constant C = C (Q, κ, γ), provided that ‖u‖E is sufficiently small such that pκ ‖u‖Q/(Q−1)
E ≤

α∗.

On the other hand, choosing γ sufficiently large such that (Q/ωQ−1)1/Q γ−1 ‖u‖E < 1/2, we

obtain by the Radial lemma and the continuous embedding of E ↪→ Lq (H) ,

∫
ρ(ξ)≥γ

R (κ, u∗) |u∗|q

ρ (ξ)β
dξ ≤ R (κ, u∗ (γ))

γβ

∫
ρ(ξ)≥γ

|u∗|q dξ (4.5)

≤ R (κ, 1/2)

γβ
‖u∗‖qq ≤ C ‖u‖

q
E

for some constant C. By (4.3), (4.6) and (4.7), we then complete the proof of the lemma.

Lemma 4.6 If κ > 0, 0 ≤ β < Q, u ∈ E and ‖u‖E ≤M with κMQ/(Q−1) <
(

1− β
Q

)
αQ, then

∫
H

[
exp

(
κ |u|Q/(Q−1)

)
− SQ−2 (κ, u)

]
|u|

ρ(ξ)β
dξ ≤ C (Q,M, κ) ‖u‖s
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for some s > Q.

Proof. First, recall the following inequality: For α ≥ 0, r ≥ 1, we have

(
eα −

Q−2∑
k=0

αk

k!

)r
≤ erα −

Q−2∑
k=0

(rα)k

k!
(4.6)

Now, using Holder inequality, (4.6) and Theorem 1.6, we have

∫
H

[
exp

(
κ |u|Q/(Q−1)

)
− SQ−2 (κ, u)

]
|u|

ρ(ξ)β
dξ

≤

∫
H

[
exp

(
κ |u|Q/(Q−1)

)
− SQ−2 (κ, u)

]r
ρ(ξ)rβ

dξ

1/r [∫
H
|u|s
]1/s

≤

∫
H

[
exp

(
κr |u|Q/(Q−1)

)
− SQ−2 (κr, u)

]
ρ(ξ)rβ

dξ

1/r

‖u‖s

≤ C (Q,M, κ) ‖u‖s .

where r, s ≥ 1, 1
r + 1

s = 1 and r is sufficiently close to 1.

We also have the following lemma (for Euclidean case, see [47]):

Lemma 4.7 Let {wk} ⊂ E, ‖wk‖E = 1. If wk → w 6= 0 weakly and almost everywhere,

∇Hwk → ∇Hw almost everywhere, then R(α,wk)
ρ(ξ)β

is bounded in L1 (H) for

0 < α < αQ

(
1− β

Q

)(
1− ‖w‖QE

)−1/(Q−1)
.

Proof. Using Brezis-Lieb lemma in [16], we deduce that

‖wk‖QE − ‖wk − w‖
Q
E → ‖w‖

Q
E .
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Thus for k large enough and δ > 0 small enough:

0 < α (1 + δ) ‖wk − w‖
Q/(Q−1)
E < αQ

(
1− β

Q

)
.

Now, by noticing that the function ex −
Q−2∑
k=0

xk

k! is increasing and convex in x ≥ 0 and the

fact that for all ε > 0 sufficiently small, there exists C (ε) > 0 such that for all real numbers

a, b :

|a+ b|Q
′
≤ (1 + ε) |a|Q

′
+ C(ε) |b|Q

′
,

we have

∫
H

R (α,wk)

ρ(ξ)β
dξ ≤ 1

p

∫
H

R ((1 + ε) pα,wk − w)

ρ(ξ)β
dξ +

1

q

∫
H

R (qC(ε)α,w)

ρ(ξ)β
dξ

where p, q ≥ 1 and 1
p + 1

q = 1. Now, by choosing p sufficiently close to 1 and ε small enough

such that (1 + ε) p < (1 + δ) and using Theorem 3.1, we get the conclusion.

4.4 The existence of solution to the problem (NU)

The existence of nontrivial solution to Eq. (NU) will be proved by a mountain-pass theorem

without a compactness condition such as the one of the Palais-Smale (PS) type. This version

of the mountain-pass theorem is a consequence of the Ekeland’s variational principle. First of

all, we will check that the functional Jε satisfies the geometric conditions of the mountain-pass

theorem.

Lemma 4.8 Suppose that (V 1), (f1) and (f4) hold. Then there exists ε1 > 0 such that for

0 < ε < ε1, there exists ρε > 0 such that Jε(u) > 0 if ‖u‖E = ρε. Furthermore, ρε can be chosen

such that ρε → 0 as ε→ 0.
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Proof. From (f4), there exist τ, δ > 0 such that |u| ≤ δ implies

F (ξ, u) ≤ k0 (λ1 (Q)− τ) |u|Q (4.7)

for all ξ ∈ H. Moreover, using (f1) for each q > Q, we can find a constant C = C(q, δ) such

that

F (ξ, u) ≤ C |u|q
[
exp

(
κ |u|Q/(Q−1)

)
− SQ−2 (κ, u)

]
(4.8)

for |u| ≥ δ and ξ ∈ H. From (4.7) and (4.8) we have

F (ξ, u) ≤ k0 (λ1 (Q)− τ) |u|Q + C |u|q
[
exp

(
κ |u|Q/(Q−1)

)
− SQ−2 (κ, u)

]

for all (ξ, u) ∈ H × R. Now, by (A4), Lemma 4.3, (4.2) and the continuous embedding E ↪→

LQ (H), we obtain

Jε(u) ≥ k0 ‖u‖QE − k0 (λ1 (Q)− τ)

∫
H

|u|Q

ρ (ξ)β
dξ − C ‖u‖qE − ε ‖h‖∗ ‖u‖E

≥ k0

(
1− (λ1 (Q)− τ)

λ1 (Q)

)
‖u‖QE − C ‖u‖

q
E − ε ‖h‖∗ ‖u‖E

Thus

Jε(u) ≥ ‖u‖E
[
k0

(
1− (λ1 (Q)− τ)

λ1 (Q)

)
‖u‖Q−1

E − C ‖u‖q−1
E − ε ‖h‖∗

]
(4.9)

Since τ > 0 and q > Q, we may choose ρ > 0 such that k0

(
1− (λ1(Q)−τ)

λ1(Q)

)
ρQ−1 − Cρq−1 > 0.

Thus, if ε is sufficiently small then we can find some ρε > 0 such that Jε(u) > 0 if ‖u‖ = ρε

and even ρε → 0 as ε→ 0.

Lemma 4.9 There exists e ∈ E with ‖e‖E > ρε such that Jε(e) < inf
‖u‖=ρε

Jε(u).
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Proof. Let u ∈ E \ {0} , u ≥ 0 with compact support Ω = supp(u). By (f2) and (f3), we have

that for p > Q, there exists a positive constant C > 0 such that

∀s ≥ 0, ∀ξ ∈ Ω : F (ξ, s) ≥ csp − d. (4.10)

Then by (4.1), we get

Jε(tu) ≤ Ct
∫

Ω
h0 (ξ) |∇Hu| dξ + CtQ ‖u‖QE − Ct

p

∫
Ω

|u|p

ρ (ξ)β
dξ + C + εt

∣∣∣∣∫
Ω
hudξ

∣∣∣∣
Since p > Q, we have Jε(tu) → −∞ as t → ∞. Setting e = tu with t sufficiently large, we get

the conclusion.

In studying this class of sub-elliptic problems involving critical growth and unbounded do-

mains, the loss of the (PS) compactness condition raises many difficulties. In the following

lemmas, we will analyze the compactness of (PS) sequences of Jε.

Lemma 4.10 Let (uk) ⊂ E be an arbitrary (PS) sequence of Jε, i.e.,

Jε (uk)→ c, DJε (uk)→ 0 in E′ as k →∞.

Then there exists a subsequence of (uk) (still denoted by (uk)) and u ∈ E such that



f(ξ,uk)

ρ(ξ)β
→ f(ξ,u)

ρ(ξ)β
strongly in L1

loc (H)

∇Huk(ξ)→ ∇Hu(ξ) almost everywhere in H

a (ξ,∇Huk) ⇀ a (ξ,∇Hu) weakly in
(
L
Q/(Q−1)
loc (H)

)Q−2

uk ⇀ u weakly in E
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Furthermore u is a weak solution of (NU).

In order to prove this lemma, we need the following two lemmas that can be found in [74],

[20].

Lemma 4.11 Let Br (ξ∗) be a Heisenberg ball centered at (ξ∗) ∈ H with radius r. Then there

exists a positive ε0 depending only on Q such that

sup∫
Br(ξ∗)|∇Hu|

Qdξ≤1,
∫
Br(ξ∗) udξ=0

1

|Br (ξ∗)|

∫
Br(ξ∗)

exp
(
ε0 |u|Q/(Q−1)

)
dξ ≤ C0

for some constant C0 depending only on Q.

Lemma 4.12 Let (un) be in L1 (Ω) such that un → u in L1 (Ω) and let f be a continu-

ous function. Then f(ξ,un)

ρ(ξ)β
→ f(ξ,u)

ρ(ξ)β
in L1 (Ω), provided that f(ξ,un(ξ))

ρ(ξ)β
∈ L1 (Ω) ∀n and∫

Ω
|f(ξ,un(ξ))un(ξ)|

ρ(ξ)β
dξ ≤ C1.

Now we are ready to prove Lemma 4.10.

Proof. By the assumption, we have

∫
H
A(ξ,∇Huk)dξ +

1

Q

∫
H
V (ξ) |uk|Q dξ −

∫
H

F (ξ, uk)

ρ (ξ)β
dξ − ε

∫
H
hukdξ

k→∞→ c (4.11)

and

∣∣∣∣∣
∫
H
a (ξ,∇Huk)∇Hvdξ +

∫
H
V (ξ) |uk|Q−2 ukvdξ −

∫
H

f(ξ, uk)v

ρ (ξ)β
dξ − ε

∫
H
hvdξ

∣∣∣∣∣ ≤ τk ‖v‖E
(4.12)

for all v ∈ E, where τk → 0 as k →∞.
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Choosing v = uk in (4.12) and by (A3), we get

∫
H

f(ξ, uk)uk

ρ (ξ)β
dξ + ε

∫
H
hukdξ −Q

∫
H
A (ξ,∇Huk)−

∫
H
V (ξ) |uk|Q−2 ukdξ ≤ τk ‖uk‖E

This together with (4.11), (f2) and (A4) leads to

(
p

Q
− 1

)
‖uk‖QE ≤ C (1 + ‖uk‖E)

and hence ‖uk‖E is bounded and thus

∫
H

f(ξ, uk)uk

ρ (ξ)β
dξ ≤ C,

∫
H

F (ξ, uk)

ρ (ξ)β
dξ ≤ C. (4.13)

Note that the embedding E ↪→ Lq (H) is compact for all q ≥ Q, by extracting a subsequence,

we can assume that

uk → u weakly in E and for almost all ξ ∈ H.

Thanks to Lemma 4.12, we have

f (ξ, un)

ρ (ξ)β
→ f (ξ, u)

ρ (ξ)β
in L1

loc (H) . (4.14)

Now, similarly as in [20], up to a subsequence, we define an energy concentration set for any

fixed δ > 0,

Σδ =

{
ξ ∈ H : lim

r→0
lim
k→∞

∫
Br(ξ)

(
|uk|Q + |∇Huk|Q

)
dξ′ ≥ δ

}

Since (uk) is bounded, Σδ must be a finite set. For any ξ∗ ∈ H r Σδ, there exist r : 0 < r <
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dist (ξ∗,Σδ) such that

lim
k→∞

∫
Br(ξ∗)

(
|uk|Q + |∇Huk|Q

)
dξ < δ

so for large k : ∫
Br(ξ∗)

(
|uk|Q + |∇Huk|Q

)
dξ < δ (4.15)

By results in [20], we have:

∫
Br(ξ∗)

|f (ξ, uk)| |uk − u|
ρ (ξ)β

dξ (4.16)

≤

∥∥∥∥∥f (ξ, uk)

ρ (ξ)β/q

∥∥∥∥∥
Lq

∥∥∥∥∥ 1

ρ (ξ)β

∥∥∥∥∥
1/q′

Ls

‖uk − u‖Lq′s′ ≤ C ‖uk − u‖Lq′s′ → 0

and for any compact set K ⊂⊂ H \ Σδ,

lim
k→∞

∫
K

|f (ξ, uk)uk − f (ξ, u)u|
ρ (ξ)β

dξ = 0 (4.17)

So now, we will prove that for any compact set K ⊂⊂ H \ Σδ,

lim
k→∞

∫
K
|∇Huk −∇Hu|Q dξ = 0 (4.18)

It is enough to prove for any ξ∗ ∈ H \ Σδ, and r given by (4.15), there holds

lim
k→∞

∫
Br/2(ξ∗)

|∇Huk −∇Hu|Q dξ = 0 (4.19)

For this purpose, we take φ ∈ C∞0 (Br (ξ∗)) with 0 ≤ φ ≤ 1 and φ = 1 on Br/2 (ξ∗). Obviously
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φuk is a bounded sequence. Choose v = φuk and v = φu in (4.12), we have:

∫
Br(ξ∗)

φ (a (ξ,∇Huk)− a (ξ,∇Hu)) (∇Huk −∇Hu) dξ ≤
∫
Br(ξ∗)

a (ξ,∇Huk)∇Hφ (u− uk) dξ

+

∫
Br(ξ∗)

φa (ξ,∇Hu) (∇Hu−∇Huk) dξ +

∫
Br(ξ∗)

φ (uk − u)
f (ξ, uk)

ρ (ξ)β
dξ

+ τk ‖φuk‖E + τk ‖φu‖E − ε
∫
Br(ξ∗)

φh (uk − u) dξ

Note that by Holder inequality and the compact embedding of E ↪→ LQ (Ω), we get

lim
k→∞

∫
Br(ξ∗)

a (ξ,∇Huk)∇Hφ (u− uk) dξ = 0 (4.20)

Since ∇Huk ⇀ ∇Hu and uk ⇀ u, there holds

lim
k→∞

∫
Br(ξ∗)

φa (ξ,∇Hu) (∇Hu−∇Huk) dξ = 0 and lim
k→∞

∫
Br(ξ∗)

φh (uk − u) dξ = 0 (4.21)

The Holder inequality and (4.16) implies that

lim
k→∞

∫
Br(ξ∗)

φ (uk − u) f (ξ, uk) dξ = 0

So we can conclude that

lim
k→∞

∫
Br(ξ∗)

φ (a (ξ,∇Huk)− a (ξ,∇Hu)) (∇Huk −∇Hu) dξ = 0

and hence we get (4.19) by (A2). So we have (4.18) by a covering argument. Since Σδ is finite,

it follows that ∇Huk converges to ∇Hu almost everywhere. This immediately implies, up to a

subsequence, a (ξ,∇Huk) ⇀ a (ξ,∇Hu) weakly in
(
L
Q/(Q−1)
loc (Ω)

)Q−2
. Let k tend to infinity in
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(4.12) and combine with (4.14), we obtain

〈DJε(u), h〉 = 0 ∀h ∈ C∞0 (Ω) .

This completes the proof of the Lemma.

4.4.1 The proof of Theorem 4.1

Proposition 4.13 Under the assumptions (V1) and (V2) (or V(3)), and (f1)-(f4), Then there

exists ε1 > 0 such that for each 0 < ε < ε1, the problem (NU) has a solution uM via mountain-

pass theorem.

Proof. For ε sufficiently small, by Lemmas 4.3 and 4.6, Jε satisfies the hypotheses of the

mountain-pass theorem except possibly for the (PS) condition. Thus, using the mountain-pass

theorem without the (PS) condition, we can find a sequence (uk) in E such that

Jε (uk)→ cM > 0 and ‖DJε (uk)‖ → 0

where cM is the mountain-pass level of Jε. Now, by Lemma 4.10, the sequence (uk) converges

weakly to a weak solution uM of (NU) in E. Moreover, uM 6= 0 since h 6= 0.

4.5 The multiplicity results to the problem (NH): Theorem 4.2

In this section, we study the problem (NH). Note that Eq. (NH) is a special case of the

problem (NU) where A (ξ, τ) = |τ |Q
Q . As a consequence, there exists a nontrivial solution of

standard "mountain-pass" type as in Theorem 4.1. Now, we will prove the existence of the

second solution.
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Lemma 4.14 There exists η > 0 and v ∈ E with ‖v‖E = 1 such that Jε(tv) < 0 for all

0 < t < η. In particular, inf
‖u‖E≤η

Jε(u) < 0.

Proof. Let v ∈ E be a solution of the problem

−divH

(
|∇Hv|Q−2∇Hv

)
+ V (ξ) |v|Q−2 v = h in H.

Then, for h 6= 0, we have
∫
H hv = ‖v‖QE > 0. Moreover,

d

dt
Jε(tv) = tQ−1 ‖v‖QE −

∫
H

f (ξ, tv) v

ρ(ξ)β
dξ − ε

∫
H
hvdξ

for t > 0. Since f(ξ, 0) = 0, by continuity, it follows that there exists η > 0 such that

d
dtJε(tv) < 0 for all 0 < t < η and thus Jε(tv) < 0 for all 0 < t < η since Jε(0) = 0.

Next, we define the Moser Functions (see [20, 47]):

m̃l(ξ, r) =
1

σ
1/Q
Q



(log l)(Q−1)/Q if ρ(ξ) ≤ r
l

log r
ρ(ξ)

(log l)1/Q if rl ≤ ρ(ξ) ≤ r

0 if ρ(ξ) ≥ r

Using the fact that |∇Hρ(ξ)| = |z|
ρ(ξ) where ξ = (z, t) ∈ H, we can conclude that m̃l (., r) ∈

W 1,Q(H), the support of m̃l(ξ, r) is the ball Br,

∫
H
|∇Hm̃l(ξ, r)|Q dξ = 1, and ‖m̃l‖W 1,Q(H) = 1 +O(1/ log l). (4.22)



48

Let ml(ξ, r) = m̃l(ξ, r)/ ‖m̃l‖E . Then by straightforward calculation, we have

m
Q/(Q−1)
l (ξ, r) = σ

−1/(Q−1)
Q log l + dl for ρ (ξ) ≤ r/l, (4.23)

where dl = σ
−1/(Q−1)
Q log l

(
‖m̃l‖−1/(Q−1) − 1

)
. Moreover, we have

‖m̃l‖ → 1 as l→∞

dl
log l

→ 0 as l→∞.

It’s now standard to check the following lemma (for the Euclidean case, see [27, 47]):

Lemma 4.15 Suppose that (V1) and (f1)-(f5) hold. Then there exists k ∈ N such that

max
t≥0

{
tQ

Q
−
∫
H

F (ξ, tmk)

ρ(ξ)β
dξ

}
<

1

Q

(
Q− β
Q

αQ
α0

)Q−1

Corollary 4.16 Under the hypotheses (V1) and (f1)-(f5), if ε is sufficiently small then

max
t≥0

Jε (tmk) = max
t≥0

{
tQ

Q
−
∫
H

F (ξ, tmk)

ρ(ξ)β
dξ − t

∫
H
εhmkdξ

}
<

1

Q

(
Q− β
Q

αQ
α0

)Q−1

Proof. Since
∣∣∫
H εhmkdξ

∣∣ ≤ ε ‖h‖∗, taking ε sufficiently small and using Moser-Trudinger type

inequalities, the result follows.

Note that we can conclude by inequality (4.9) and Lemma 4.14 that

−∞ < c0 = inf
‖u‖E≤ρε

Jε (u) < 0. (4.24)

Next, we will prove that this infimum is achieved and generate a solution. In order to obtain
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convergence results, we need to improve the estimate of Lemma 4.15.

Corollary 4.17 Under the hypotheses (V1) and (f1)-(f5), there exist ε2 ∈ (0, ε1] and u ∈

W 1,Q (H) with compact support such that for all 0 < ε < ε2,

Jε (tu) < c0 +
1

Q

(
Q− β
Q

αQ
α0

)Q−1

for all t ≥ 0

Proof. It is possible to raise the infimum c0 by reducing ε. By Lemma 4.22, ρε
ε→0→ 0. Conse-

quently, c0
ε→0→ 0. Thus there exists ε2 > 0 such that if 0 < ε < ε2 then, by Corollary 6.1, we

have

max
t≥0

Jε (tmk) < c0 +
1

Q

(
Q− β
Q

αQ
α0

)Q−1

Taking u = mk ∈W 1,Q (H), the result follows.

Now, similarly as in the Euclidean case (see [6, 27, 47]), we have the following lemma:

Lemma 4.18 If (uk) is a (PS) sequence for Jε at any level with

lim inf
k→∞

‖uk‖E <
(
Q− β
Q

αQ
α0

)(Q−1)/Q

(4.25)

then (uk) possesses a subsequence which converges strongly to a solution u0 of (NH).

4.5.1 Proof of Theorem 4.2

The proof of the existence of the second solution of (NH) follows by a minimization argument

and Ekeland’s variational principle.

Proposition 4.19 There exists ε2 > 0 such that for each ε with 0 < ε < ε2, Eq. (NH) has a

minimum type solution u0 with Jε (u0) = c0 < 0, where c0 is defined in (4.24).
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Proof. Let ρε be as in Lemma 4.22. We can choose ε2 > 0 sufficiently small such that

ρε <

(
Q− β
Q

αQ
α0

)(Q−1)/Q

Since Bρε is a complete metric space with the metric given by the norm of E, convex and the

functional Jε is of class C1 and bounded below on Bρε , by the Ekeland’s variational principle

there exists a sequence (uk) in Bρε such that

Jε (uk)→ c0 = inf
‖u‖E≤ρε

Jε (u) and ‖DJε (uk)‖ → 0

Observing that

‖uk‖E ≤ ρε <
(
Q− β
Q

αQ
α0

)(Q−1)/Q

by Lemma 6.3, it follows that there exists a subsequence of (uk) which converges to a solution

u0 of (NH). Therefore, Jε (u0) = c0 < 0.

Remark 4.20 By Corollary 6.2, we can conclude that

0 < cM < c0 +
1

Q

(
Q− β
Q

αQ
α0

)Q−1

Proposition 4.21 If ε2 > 0 is enough small, then the solutions of (NH) obtained in Proposi-

tions 5.1 and 6.1 are distinct.

Proof. By Proposition 5.1 and 6.1, there exist sequences (uk), (vk) in E such that

uk → u0, Jε (uk)→ c0 < 0, DJε (uk)uk → 0
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and

vk ⇀ uM , Jε (vk)→ cM > 0, DJε (vk) vk → 0, ∇Hvk(ξ)→ ∇HuM (ξ) almost everywhere in H

Now, suppose by contradiction that u0 = uM . As in the proof of Lemma 4.10 we obtain

f(ξ, vk)

ρ(ξ)β
→ f(ξ, u0)

ρ(ξ)β
in L1 (BR) for all R > 0. (4.26)

From this, we have by (f2), (f3) and the generalized Lebesgue dominated convergence theorem:

F (ξ, vk)

ρ(ξ)β
→ F (ξ, u0)

ρ(ξ)β
in L1 (BR) for all R > 0.

Now, recall the following inequalities: there exists c > 0 such that for all (ξ, s) ∈ H× R+ :

F (ξ, s) ≤ c |s|Q + cf(ξ, s) (4.27)

F (ξ, s) ≤ c |s|Q + cR (α0, s) s∫
H

f(ξ, vk)vk
ρ(ξ)β

dξ ≤ C,
∫
H

F (ξ, vk)

ρ(ξ)β
dξ ≤ C.

We will prove that for arbitrary δ > 0, we can find R > 0 such that

∫
ρ(ξ)>R

F (ξ, vk)

ρ(ξ)β
dξ ≤ 3δ and

∫
ρ(ξ)>R

F (ξ, u0)

ρ(ξ)β
dξ ≤ δ.

As a consequence, we get

F (ξ, vk)

ρ(ξ)β
→ F (ξ, u0)

ρ(ξ)β
in L1 (H) . (4.28)
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First, we have

∫
ρ(ξ)>R
|vk|>A

F (ξ, vk)

ρ(ξ)β
dξ ≤ c

∫
ρ(ξ)>R
|vk|>A

|vk|Q

ρ(ξ)β
dξ + c

∫
ρ(ξ)>R
|vk|>A

f(ξ, vk)

ρ(ξ)β
dξ

≤ c

RβA

∫
ρ(ξ)>R

|vk|Q+1 dξ + c
1

A

∫
H

f(ξ, vk)vk
ρ(ξ)β

dξ

≤ c

RβA
‖vk‖Q+1

E + c
1

A

∫
H

f(ξ, vk)vk
ρ(ξ)β

dξ.

Hence, since ‖vk‖E is bounded and using (4.27), we can choose A and R such that

∫
ρ(ξ)>R
|vk|>A

F (ξ, vk)

ρ(ξ)β
dξ ≤ 2δ.

Next, we have

∫
ρ(ξ)>R
|vk|≤A

F (ξ, vk)

ρ(ξ)β
dξ ≤ C(α0, A)

Rβ

∫
ρ(ξ)>R
|vk|≤A

|vk|Q dξ

≤ 2Q−1C(α0, A)

Rβ


∫

ρ(ξ)>R
|vk|≤A

|vk − u0|Q dξ +

∫
ρ(ξ)>R
|vk|≤A

|u0|Q dξ

 .

Now, using the compactness of embedding E ↪→ Lq (H) , q ≥ Q and noticing that vk ⇀ u0,

again we can choose R such that

∫
ρ(ξ)>R
|vk|≤A

F (ξ, vk)

ρ(ξ)β
dξ ≤ δ.
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Thus we have ∫
ρ(ξ)>R

F (ξ, vk)

ρ(ξ)β
dξ ≤ 3δ.

Similarly, we also have ∫
ρ(ξ)>R

F (ξ, u0)

ρ(ξ)β
dξ ≤ 3δ.

Thus, we can get (4.28).

Now, by standard arguments (see [27, 47]), we can deduce a contradiction.

4.5.2 Proof of Theorem 4.3

Corollary 4.22 There exists ε3 > 0 such that if 0 < ε < ε3 and h(ξ) ≥ 0 for all ξ ∈ H, then

the weak solutions of (NH) are nonnegative.

Proof. Let u be a weak solution of (NH), that is,

∫
H

(
|∇Hu|Q−2∇Hu∇Hv + V (ξ) |u|Q−2 uv

)
dξ −

∫
H

f (ξ, u) v

ρ(ξ)β
dξ −

∫
H
εhvdξ = 0

for all v ∈ E. Taking v = u− ∈ E and observing that f (ξ, u (ξ))u− (ξ) = 0 a.e., we have

∥∥u−∥∥Q
E

= −
∫
H
εhu−dξ ≤ 0

Consequently, u = u+ ≥ 0.

4.5.3 Proof of Theorem 4.4

It’s similar to the proof of Theorem 4.1 and 4.2. First, we can find a sequence (vk) in E such

that

J0 (vk)→ cM > 0 and DJ0 (vk)→ 0
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where cM is the Mountain-pass level of J0. Moreover, we have that the sequence (vk) converges

weakly to a weak solution v of (NH) with ε = 0. It’s now enough to show that v 6= 0. Indeed,

suppose that v = 0. Similarly as in the previous part, we get

F (ξ, vk)

ρ(ξ)β
→ 0 in L1 (H) . (4.29)

Thus

‖vk‖QE → QcM > 0. (4.30)

Also, we have from the previous sections that cM ∈
(

0, 1
Q

(
Q−β
Q

αQ
α0

)Q−1
)
. Hence, we can find

δ > 0 and K ∈ N such that

‖vk‖QE ≤
(
Q− β
Q

αQ
α0
− δ
)Q−1

for all k ≥ K. (4.31)

Now, if we choose τ > 1 sufficiently close to 1, then by (f1) we have

|f(ξ, vk)vk| ≤ b1 |vk|Q + b2

[
exp

(
α0 |vk|Q/(Q−1)

)
− SQ−2 (α0, vk)

]
|vk| .

Hence

∫
H

|f(ξ, vk)vk|
ρ(ξ)β

≤ b1
∫
H

|vk|Q

ρ(ξ)β
+ b2

∫
H

[
exp

(
α0 |vk|Q/(Q−1)

)
− SQ−2 (α0, vk)

]
|vk|

ρ(ξ)β
.

Using Holder inequality, Theorem 3.1, Lemma 4.6 and (4.31), we can conclude that

∫
H

|f(ξ, vk)vk|
ρ(ξ)β

→ 0.
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Since DJ0 (vk)→ 0, we get ‖vk‖E → 0 and it’s a contradiction.
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Chapter 5

Adams type inequalities

5.1 Introduction

It is well-known that sharp geometric inequalities such as Sobolev inequalities, Hardy-Littlewood-

Sobolev inequalities, Moser-Trudinger inequalities, Adams inequalities, etc and their extremals

play an important role in the study of partial differential equations and geometric analysis.

Proofs of such sharp inequalities often require rearrangement argument to reduce the underly-

ing problems to the radial case.

Our main purpose in this chapter is to develop a new approach to prove a general version of

Adams type inequality. The method developed here does not use the rearrangement argument

and therefore applies to settings where symmetrization is not available. Indeed, as our first

main result in this chapter, we will prove the following singular Adams type inequality in the

high order Sobolev spaces Wm, n
m (Rn) for arbitrary positive integer m:

Theorem 5.1 Let m be a positive integer less than n, τ > 0 and 0 ≤ α < n. There holds

sup
u∈Wm, nm (Rn),

∥∥∥(τI−∆)
m
2 u
∥∥∥ n
m

≤1

∫
Rn

φ
(
βα,n,m |u|

n
n−m

)
|x|α

dx <∞
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where

φ(t) = et −
j n
m
−2∑

j=0

tj

j!
,

j n
m

= min
{
j ∈ N : j ≥ n

m

}
≥ n

m
,

βα,n,m =
(

1− α

n

)
β0(n,m),

β0 (n,m) =
n

ωn−1

[
π
n
2 2mΓ

(
m
2

)
Γ
(
n−m

2

) ] n
n−m

.

Moreover, the constant βα,n,m is sharp in the sense that if we replace βα,n,m by any β > βα,n,m,

then the supremum is infinity.

We notice that for arbitrary positive integer number m and any a0 = 1, a2 > 0, · · · , am > 0,

there is some τ > 0 such that (see Lemma 2.2):

∥∥∥(τI −∆)
m
2 u
∥∥∥2

2
≤

m∑
j=0

am−j

∫
Rn

∣∣∇ju∣∣2 dx.
Consequently, in the special case: n = 2m and m is an arbitrary positive integer, using our

Theorem 5.1, we can prove the following stronger result which is another main theorem of this

chapter. Namely, we will replace the norm
∥∥∥(τI −∆)

m
2 u
∥∥∥
n
m

by the standard Sobolev norm in

the above Theorem 5.1 in the case n = 2m for all positive integer m.

Theorem 5.2 Let m be a positive integer number and 0 ≤ α < 2m. For all constants a0 =

1, a1, ..., am > 0, there holds

sup

u∈Wm,2(R2m),
∫
R2m

 m∑
j=0

am−j |∇ju|2

dx≤1

∫
R2m

[
exp

((
1− α

2m

)
β0 (2m,m) |u|2

)
− 1
]

|x|α
dx <∞.
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Furthermore this inequality is sharp, i.e., if
(
1− α

2m

)
β0(2m,m) is replaced by any β >

(
1− α

2m

)
β0(2m,m),

then the supremum is infinite.

As a consequence of Theorem 5.2, we can conclude the following sharp Adams inequality

with the standard Sobolev norms.

Theorem 5.3 Let m ≥ 1 be a positive integer number. There holds

sup
u∈Wm,2(R2m),‖u‖Wm,2≤1

∫
R2m

[
exp

((
1− α

2m

)
β0 (2m,m) |u|2

)
− 1
]

|x|α
dx <∞.

Furthermore this inequality is sharp, i.e., if β0(2m,m) is replaced by any β > β0(2m,m), then

the supremum is infinite.

We are ready to make some comments about the Adams type inequalities. First, let us

outline the existing proof of sharp Moser-Trudinger type inequalities in the entire Euclidean

space Rn:

Step 1: Using standard symmetrization arguments, we can reduce the problem to radial

case.

Step 2: We now break the integral into two parts:

∫
Rn

φ
(
β |u|

n
n−1

)
|x|α

dx =

∫
BR0

φ
(
β |u|

n
n−1

)
|x|α

dx+

∫
Rn\BR0

φ
(
β |u|

n
n−1

)
|x|α

dx

where BR0 is a ball centered at the origin and with radius R0 and R0 can be chosen sufficiently

large such that the second term
∫
Rn\BR0

φ
(
β|u|

n
n−1

)
|x|α dx can be handled easily by Radial Lemmas.

With the integral on the finite volume ball BR0 , we will use the Moser-Trudinger inequality

on the finite domain and symmetrization. Our concern here is that u is not in the Sobolev
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space W 1,n
0 (BR0) and thus, we need to modify our function in order to use the classical Moser-

Trudinger inequality. In fact, if we set v(|x|) = u(|x|) − u(R0), then v is now in W 1,n
0 (BR0)

that enables us to use the Moser-Trudinger inequality. Indeed, thanks to the perturbation term

τ
∫
Rn |u|

n dx in the norm we choose, we now are able to use the Moser-Trudinger inequality on

finite domains to estimate the first integral. It can be noted that symmetrization argument

plays an important role in this approach.

As far as the Adams inequality in high order Sobolev space Wm, n
m (Rn) is concerned, when

Ω has infinite volume, Kozono et al. [46] could find a constant β∗n,m ≤ β(n, m), with β∗2m,m =

β(2m, m), such that if β < β∗n,m then

sup
u∈Wm, nm (Rn),‖u‖m,n≤1

∫
Ω
φ
(
β |u|

n
n−m

)
dx ≤ Cn,m,β

where Cn,m,β > 0 is a constant depending on β, n and m, while if β > β(n, m), the supremum

is infinite. Here they used the norm

‖u‖m,n =
∥∥∥(I −∆)

m
2 u
∥∥∥
n
m

which is equivalent to the Sobolev norm

‖u‖
Wm, nm

=

‖u‖ nmn
m

+

m∑
j=1

∥∥∇ju∥∥ nmn
m

m
n

.

In particular, if u ∈Wm, n
m

0 (Ω) or u ∈Wm, n
m (Rn), then ‖u‖

Wm, nm
≤ ‖u‖m,n.

To do this, they followed main steps similar to those of Adams. Namely, using the Bessel

potentials instead of Riesz potentials, they apply O’Neil’s result on the rearrangement of con-
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volution functions and use techniques of symmetric decreasing rearrangements. However, with

this approach, the critical case β = β(n, m) cannot be established. Recently, Ruf and Sani

studied the Adams type inequality for higher derivatives of even orders when Ω has infinite

volume in this critical case. Indeed, they proved the following Adams type inequality (see [86]):

Theorem 5.4 Let m be an even integer less than n. There exists a constant Cm,n > 0 such

that for any domain Ω ⊆ Rn

sup

u∈Wm, nm
0 (Ω),‖u‖m,n≤1

∫
Ω
φ
(
β0 (n,m) |u|

n
n−m

)
dx ≤ Cm,n

where

β0 (n,m) =
n

ωn−1

[
π
n
2 2mΓ

(
m
2

)
Γ
(
n−m

2

) ] n
n−m

.

This inequality is sharp in the sense that if we replace β0 (n,m) by any β > β0 (n,m), then the

supremum is infinite.

The method of Ruf and Sani in [86] to prove the above Theorem is similar to the way we

prove the first order Moser-Trudinger type inequalities in the whole space as we just outlined

above. Namely, they also break the whole space into a ball and its exterior. Hence, again, radial

function plays a crucial role in this approach. However, it’s well-known that symmetrization

does not hold in general for the higher order operators. To overcome this difficulty, they carry

out the following steps:

Step 1: They must establish a comparison principle for the polyharmonic operator. More
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precisely, they prove that if u is a weak solution of


(−∆ + I)k u = f in BR

u ∈W 2k,2
N (BR)

where f ∈ L
2n
n+2 (BR) and v is a weak solution of


(−∆ + I)k v = f# in BR

v ∈W 2k,2
N (BR)

where f# is the Schwarz rearrangement of f , then for every r ∈ (0, R) we have

∫
Br

u#dx ≤
∫
Br

vdx.

As a consequence, for every convex nondecreasing function φ : [0,+∞)→ [0,+∞) we have

∫
Br

φ (|u|) dx ≤
∫
Br

φ (|v|) dx.

In order to do this, they use an induction argument and apply some comparison principles of

the second order elliptic equation in [90] and [92]. Therefore, we can reduce the problem to the

radial case.

Step 2: This step is very similar to the way as the one we did for the Moser-Trudinger

inequality.

However, it can be noted that the argument in Step 1 just hold for the case when m is

an even number in [86]. Thus, the work of Ruf and Sani raised a good open question: Does
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Theorem 5.4 hold when m is odd? In fact, Lam and Lu answered and extended partly this

question in the recent papers [52, 53]. More precisely, it was proved that

Theorem 5.5 Let m be an odd integer less than n: m = 2k + 1, k ∈ N. There holds

sup

u∈Wm, nm (Rn),‖∇(−∆+I)ku‖
n
m
n
m

+‖(−∆+I)ku‖
n
m
n
m
≤1

∫
Rn
φ
(
β (n,m) |u|

n
n−m

)
dx <∞.

Moreover, the constant β(n,m) is sharp in the sense that if we replace β(n,m) by any β >

β(n,m), then the supremun is infinite.

Theorem 5.6 Let 0 ≤ α < n, m > 0 be an even integer less than n. Then for all 0 ≤ β ≤

βα,n,m =
(
1− α

n

)
β0(n,m), we have

sup
u∈Wm, nm (Rn),

∥∥∥(−∆+I)
m
2 u
∥∥∥ n
m

≤1

∫
Rn

φ
(
β |u|

n
n−m

)
dx

|x|α
dx <∞

where φ(t) = et −
j n
m
−2∑

j=0

tj

j! . Moreover, β(n,m) is sharp in the sense that if β > βα,n,m, the

supremum is infinite.

In order to prove Theorems 5.5 and 5.6, we used the same techniques as of Ruf and Sani.

Namely, we also established the comparison principle for the polyharmonic operator


(−∆ + I)k u = f in BR

u ∈W 2k,2
N (BR)

and 
(−∆ + I)k v = f# in BR

v ∈W 2k,2
N (BR)
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and get that for every r ∈ (0, R) we have ∗

∫
Br

u#dx ≤
∫
Br

vdx.

Now, noting that

∥∥∥∇ (−∆ + I)k u
∥∥∥
n
m

= ‖∇f‖ n
m
≥
∥∥∥∇f#

∥∥∥
n
m

=
∥∥∥∇ (−∆ + I)k v

∥∥∥
n
m

,

again we can reduce the problem to the radial case which is much easier to deal with and then

Theorem 5.5 follows. This has been carried out in [53]. However, this method only works for

the very restricted norm

∥∥∥∇ (−∆ + I)k u
∥∥∥ nm
n
m

+
∥∥∥(−∆ + I)k u

∥∥∥ nm
n
m

but does not work for other norms such as
∥∥∥(τI −∆)

m
2 u
∥∥∥
n
m

with arbitrary positive integer

number m. Therefore, this motivates us to discover a new method of proving Theorem E when

we have a standard norm
∥∥∥(τI −∆)

m
2 u
∥∥∥
n
m

.

To prove Theorem 5.6, again we used the comparison principle to reduce our problem to

radial case. Then using the ideas of Adams, we can set up a singular Adams inequality for

bounded domains. Finally, following the ideas in proving Moser-Trudinger type inequalities, we

split the whole space to the interior and the exterior of a ball and thanks to Radial Lemmas,

we can derive our Theorem 5.6. However, this method only works when m is even. Again, this

motivates us to develop a new method to establish Theorem 5.6 for arbitrary integer m.
∗This comparison inequality for solutions to polyharmonic operators (−∆ + I)α u = f in BR for any positive α

has also been established by a different and much simpler way using the Bessel potentials and Riesz rearrangement
inequality in [52].
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It can be noted that when m is even, our main result Theorem 5.1 recovers Theorem 5.6.

Moreover, Theorem 5.1 is still available in the case that m is odd. It is also very interesting to

note that when α = 0, our best constant β0(n,m) is different than the best constant β(n,m) in

Theorem 5.5. This marks a substantial difference in sharp constants for the Adams inequality

when we use a different norm here.

Now, let us describe our method in the proof of Theorem 5.1. First, using an idea of Adams

[2], we write our functions in terms of the Bessel potentials and then apply O’Neil’s result on the

rearrangement of convolution functions to set up the following singular Adams type inequality

for arbitrary bounded domain:

Theorem 5.7 Let m be an integer less than n, τ > 0, 0 ≤ α < n. There holds

sup
Ω⊂Rn; |Ω|<∞

sup
u∈Wm, nm (Rn),

∥∥∥(τI−∆)
m
2 u
∥∥∥ n
m

≤1

1

max
(

1, |Ω|1−
α
n

)∫
Ω

exp
(
βα,n,m |u|

n
n−m

)
|x|α

dx <∞.

Moreover, the constant βα,n,m is sharp in the sense that if we replace βα,n,m by any β > βα,n,m,

then the supremum is infinity.

With the help of Theorem 5.7, we will find a ”good” way to split our domain: instead of

breaking the whole Euclidean space into the interior and exterior of a ball, we will divide the

whole space into 2 domains: a domain on which our function is small enough and the remainder.

Our key observation is that the volume of this remainder must be finite. Thus, we can use the

result of Theorem 5.7. It is crucial that our approach does not require us to reduce to the

radial case. Hence, our approach can be applied to other non-Euclidean settings where the

symmetrization does not hold.

Next, still using this new method, we can prove a strengthened version of sharp Adams



65

inequality in the second order Sobolev spaces W 2,m(R2m).

Theorem 5.8 Let 0 ≤ α < 2m and τ > 0. Then for all 0 ≤ β ≤
(
1− α

2m

)
β(2m, 2), we have

sup
u∈W 2,m(R2m),

∫
R2m |∆u|m+τ |u|m≤1

∫
R2m

φ
(
β |u|

m
m−1

)
|x|α

dx <∞

where

φ(t) = et −
m−2∑
j=0

tj

j!
.

Moreover, the constant
(
1− α

2m

)
β(2m, 2) is sharp in the sense that if β >

(
1− α

2m

)
β(2m, 2),

then the supremun is infinite.

We should note that our Theorem 5.8 does not require the restriction on the full standard

norm and hence, our Theorem 5.8 extends the results in [53, 95]. Indeed, the results there are for

the special casem = 2 and they require that the full standard norm
∫
R4

(
|∆u|2 + σ |∇u|2 + τ |u|2

)
dx

is less than 1.

Finally, as our last result in this chapter, we will set up some Adams type inequalities on

Sobolev spaces W γ,n
γ (Rn) of arbitrary positive fractional order γ < n. More precisely, we will

prove that:

Theorem 5.9 Let 0 < γ < n be an arbitrary real positive number, p = n
γ and τ > 0. Then for

every domain Ω with finite n−measure in Euclidean n−space Rn, there exists C = C (γ, n, τ) >

0 such that

sup
u∈W γ,p(Rn),

∥∥∥(τI−∆)
γ
2 u
∥∥∥
p
≤1

1

|Ω|

∫
Ω

exp
(
β0 (n, γ) |u|p

′
)
dx < C.
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Here

p′ =
p

p− 1
,

β0 (n, γ) =
n

ωn−1

[
πn/22γΓ (γ/2)

Γ
(n−γ

2

) ]p′
.

Furthermore this inequality is sharp, i.e., if β0 (n, γ) is replaced by any β > β0 (n, γ), then the

supremum is infinite.

Theorem 5.10 Let 0 < γ < n be an arbitrary real positive number, p = n
γ and τ > 0. There

holds

sup
u∈W γ,p(Rn),

∥∥∥(τI−∆)
γ
2 u
∥∥∥
p
≤1

∫
Rn
φ
(
β0 (n, γ) |u|p

′
)
dx <∞

where

φ(t) = et −
jp−2∑
j=0

tj

j!
,

jp = min {j ∈ N : j ≥ p} ≥ p.

Furthermore this inequality is sharp, i.e., if β0 (n, γ) is replaced by any β > β0 (n, γ), then the

supremum is infinite.

Theorems 5.9 and 5.10 are extensions of Theorems 5.7 and 5.1 to fractional Sobolev spaces

respectively. Their proofs are very similar to those of Theorems 5.7 and 5.1 and will only be

sketched.
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5.2 Proof of Theorem 5.7

The main purpose of this section is to establish the sharp local singular Adams inequality

on domains Ω in Rn of finite measure. We take a perspective that any function in the high

order Sobolev spaces Wm, n
m (Rn) can be represented as a Bessel potential. Thus, we can fully

use the tools from harmonic analysis and the kernel properties of the polyharmonic operators

(τI −∆)
m
2 . As a result, we will avoid using the deep comparison principle of Talenti [90] and

Trombett-Vasquez [92] to establish the Adams inequality on finite domains by as done in [86]

and [53, 54].

Once we have established this sharp local Adams inequality, then we can adapt the splitting

method we will develop in this chapter to derive a global sharp Adams inequality from a local

one.

Proof. Since u ∈Wm, n
m (Rn), we can write u as a potential Lτ,m ∗ f , f ∈ Lp (Rn) , p = n

m , p
′ =

n
n−m . Then, we have ‖f‖Lp(Rn) ≤ 1 since

∥∥∥(τI −∆)
m
2 u
∥∥∥
p
≤ 1.

By O’Neil’s Lemma, we have for all t > 0:

u∗(t) ≤ 1

t

t∫
0

f∗(s)ds

t∫
0

L∗τ,m(s)ds+

∞∫
t

f∗(s)L∗τ,m(s)ds.

Here, we notice that L∗τ,m(s) = Lτ,m(σ
−1/n
n s1/n).

Next, we change the variables

φ(t) = |Ω|1/p e−
t
p f∗(|Ω| e−t)

ψ(t) =
1

M
|Ω|1/p

′
e
− t
p′L∗τ,m(|Ω| e−t)

M =

(
1

β0 (n,m)

)p′
.
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After some calculation, the Hardy-Littlewood inequality and the fact that with h(x) = 1
|x|α ,

then h∗(t) =
(
σn
t

)α
n , we have:

∫
Ω

exp
(
βα,n,m |u|p

′
)

|x|α
dx ≤ σ

α
n
n

|Ω|∫
0

exp
(
βα,n,m |u∗(t)|p

′
)

|x|α
dt

≤ C (α)
1

|Ω|1−α

∞∫
0

e
−F(1−αn )(t)

dt

where

F(1−α
n )(t) =

(
1− α

n

)
t−
(

1− α

n

)et ∞∫
t

e
− s
p′ φ(s)ds

∞∫
t

e
− s
pψ(s)ds+

t∫
−∞

φ(s)ψ(s)ds

p
′

.

Using Lemma 2.1, it is easy to check that

∞∫
−∞

φp(s)ds ≤ 1

sup
s>0

ψ(s) ≤ 1

0∫
−∞

ψp
′
(s)ds <∞.

We notice that the second inequality comes from (2.7).

Thus, Theorem 1.4 is just a consequence of Lemma 2.12 with

a(s, t) =


ψ(s), s < t

et

 ∞∫
t

e
− s
pψ(s)ds

 e
− s
p′ , s > t

.
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To prove that the constant βα,n,m is sharp, we use the approach as in [2]. We set

Lτ,m,p (E) = inf ‖f‖pp

where the infimum is taken over all f ≥ 0 in Lp such that Lτ,m ∗ f(x) ≥ 1, for all x ∈ E.

Similarly as in [2], it’s enough to check that

Lτ,m, n
m

(B(0, r)) ≤ ω−1
n−1 (2π)n (log 1/r)−1 as r → 0.

Again, this follows from the inequality (2.7).

5.3 Proof of Theorem 5.1, Theorem 5.2 and Theorem 5.3

In this section, we will develop a new approach to prove the sharp Adams inequality in high

order Sobolev spacesWm, n
m (Rn) for arbitrary integer order m. The main novelty is to carry out

an argument to derive the global sharp Adams inequality in the entire space Rn from the local

one on domains of finite measure. This method will allow us to avoid using the symmetrization

which is not available in the high order Sobolev spaces Wm, n
m (Rn). In [86], the authors use the

Talenti [90] and Trombetti-Vázquez [92] comparison principle for the polyharmonic operators

(I −∆)
m
2 to reduce the functions to radial ones. Then they use rather involved construction

of auxiliary radial functions to conclude the sharp Adams inequality in Wm, n
m (Rn) when m

is even. In [53, 54], we extend the ideas of [86] to include all odd integers. However, when

m = 2k + 1 is odd this method only works for the very restricted norm

∥∥∥∇ (−∆ + I)k u
∥∥∥ nm
n
m

+
∥∥∥(−∆ + I)k u

∥∥∥ nm
n
m
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but does not work for other norms such as
∥∥∥(τI −∆)

m
2 u
∥∥∥
n
m

with arbitrary positive integer

number m.

In this chapter, we will employ a completely different and surprisingly simple method to

establish the sharp Adams inequality in Wm, n
m (Rn) for arbitrary integer m under the norm∥∥∥(τI −∆)

m
2 u
∥∥∥
n
m

.

Now, we are ready to prove Theorem 1.1

Proof. For any u ∈Wm,p (Rn) \ {0} ,
∥∥∥(τI −∆)

m
2 u
∥∥∥
p
≤ 1, we write

∫
Rn

φ
(
βα,n,m |u|p

′
)

|x|α
dx =

∫
Ω(u)

φ
(
βα,n,m |u|p

′
)

|x|α
dx+

∫
Rn\Ω(u)

φ
(
βα,n,m |u|p

′
)

|x|α
dx

where

Ω(u) = {x : |u(x)| ≥ 1} .

We have

|Ω(u)| =
∫

Ω(u)
1dx

≤
∫
Rn
|u(x)|p

≤ A−p

where

A = inf
u∈Wm,p(Rn)\{0}

∥∥∥(τI −∆)
m
2 u
∥∥∥
p

‖u‖p
> 0.
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Hence, by Theorem 1.4, we get

∫
Ω(u)

φ
(
βα,n,m |u|p

′
)

|x|α
dx ≤ C |Ω(u)|1−

α
n

≤ CA−p(1−α
n ).

for some universal constant C > 0.

Now, noting that on the domain Rn \ Ω(u), we have |u(x)| < 1. Thus

∫
Rn\Ω(u)

φ
(
βα,n,m |u|p

′
)

|x|α
dx

=

∫
{|u(x)|<1; |x|<1}

φ
(
βα,n,m |u|p

′
)

|x|α
dx+

∫
{|u(x)|<1; |x|>1}

φ
(
βα,n,m |u|p

′
)

|x|α
dx

≤C1

∫
{|x|<1}

1

|x|α
dx+

∫
{|u(x)|<1}

φ
(
βα,n,m |u|p

′
)
dx

≤C2

for some universal constants C1 and C2.

When β > βα,n,m, α = 0 and τ = 1, using Bessel potential, Kozono, Sato and Wadade in

[46] showed that the supremum is infinite. Moreover, when m is even, Ruf and Sani can exhibit

a sequence of test functions that made the integral arbitrarily large. See Proposition 6.2 in [86].

In our case, we can use the similar method as in [46]. Indeed, using Lτ,m,p instead of Bessel

potential as in the proof of Theorem 1.4, we can again show that our integral can be made

arbitrarily large when β > βα,n,m.
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Proof of Theorem 5.2 and Theorem 5.3. Choosing τ > 0 as in Lemma 2.2, we have

sup

u∈Wm,2(R2m),
∫
R2m

 m∑
j=0

am−j |∇ju|2

dx≤1

∫
R2m

[
exp

((
1− α

2m

)
β0 (2m,m) |u|2

)
− 1
]

|x|α
dx

≤ sup
u∈Wm,2(R2m),

∥∥∥(τI−∆)
m
2 u
∥∥∥

2
≤1

∫
R2m

[
exp

((
1− α

2m

)
β0 (2m,m) |u|2

)
− 1
]

|x|α
dx

<∞.

Now, if we choose a0 = a1 = ... = am = 1, we can derive Theorem 1.3.

5.4 Proof of Theorem 5.8

In this section, we deal with the sharp Adams inequality in the special case of second order

Sobolev spacesW 2,m(R2m). The main novelty of this result is that we use a much less restricted

norm
∫
R2m |∆u|m + τ |u|m. This norm is smaller than the standard norm ‖(τI −∆)u‖m.

Proof of Theorem 5.8: For any u ∈W 2,m
(
R2m

)
,
∫
R2m |∆u|m + τ |u|m ≤ 1, we set

A(u) = 2
− 1
m(m−1) τ

1
m ‖u‖m

Ω(u) =
{
x ∈ R2m : u(x) > A(u)

}
.

Then, we have

A(u) < 1 (5.1)

and

|Ω(u)| ≤ 2
1

(m−1)
1

τ
(5.2)
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since

∫
R2m

|u|m ≥
∫

Ω(u)
|u|m

≥
∫

Ω(u)
|A(u)|m

= 2
− 1

(m−1) τ ‖u‖mm |Ω(u)| .

Now, we write ∫
R2m

φ
(
β |u|

m
m−1

)
|x|α

= I1 + I2

where

I1 =

∫
Ω(u)

φ
(
β |u|

m
m−1

)
|x|α

and

I2 =

∫
R2m\Ω(u)

φ
(
β |u|

m
m−1

)
|x|α

.

We will prove that both I1 and I2 are bounded by a constant C = C (α, τ,m).

Indeed, from (5.1), it easy to see that

I2 ≤
∫
{u(x)<1}

1

|x|α
∞∑

k=m−1

βk

k!
|u|km/(m−1)

≤
∫
{u(x)<1}

1

|x|α
∞∑

k=m−1

βk

k!
|u|m

≤
∫
{|x|≥1}

∞∑
k=m−1

βk

k!
|u|m

+

∫
{|x|<1}

1

|x|α
∞∑

k=m−1

βk

k!

≤ C (α, τ,m) .
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Now, to estimate I1, we first notice that if we set

v(x) = u(x)−A(u) in Ω(u),

then v ∈W 2,m
N (Ω (u)). Moreover, in Ω(u):

|u|
m
m−1 = (|v|+A(u))

m
m−1

≤ |v|
m
m−1 +

m

m− 1
2

1
m−1

(
|v|

1
m−1 A(u) + |A(u)|

m
m−1

)
≤ |v|

m
m−1 +

m

m− 1
2

1
m−1
|v|

m
m−1 |A(u)|m

m
+

m

m− 1
2

1
m−1

(
m− 1

m
+ |A(u)|

m
m−1

)
≤ |v|

m
m−1

(
1 +

2
1

m−1

m− 1
|A(u)|m

)
+ C(m)

where we did use Young’s inequality and the following elementary inequality:

(a+ b)q ≤ aq + q2q−1
(
aq−1b+ bq

)
for all q ≥ 1 and a, b ≥ 0.

Let

w(x) =

(
1 +

2
1

m−1

m− 1
|A(u)|m

)m−1
m

v(x) in Ω(u),

then it’s clear that

w ∈W 2,m
N (Ω) and |u|

m
m−1 ≤ |w|

m
m−1 + C(m). (5.3)

Moreover, we have

∆w =

(
1 +

2
1

m−1

m− 1
|A(u)|m

)m−1
m

∆v.
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Thus

∫
Ω(u)
|∆w|m =

(
1 +

2
1

m−1

m− 1
|A(u)|m

)m−1 ∫
Ω(u)
|∆v|m

=

(
1 +

2
1

m−1

m− 1
|A(u)|m

)m−1 ∫
Ω(u)
|∆u|m

≤

(
1 +

2
1

m−1

m− 1
|A(u)|m

)m−1 [
1− τ

∫
R2m

|u|m
]

Then

(∫
Ω(u)
|∆w|m

) 1
m−1

=

(
1 +

2
1

m−1

m− 1
|A(u)|m

)[
1− τ

∫
R2m

|u|m
] 1
m−1

≤

(
1 +

2
1

m−1

m− 1
|A(u)|m

)(
1− τ

m− 1

∫
R2m

|u|m
)

=

(
1 +

2
1

m−1

m− 1
2
− 1

(m−1) τ ‖u‖mm

)(
1− τ

m− 1

∫
R2m

|u|m
)

=

(
1 +

τ

m− 1

∫
R2m

|u|m
)(

1− τ

m− 1

∫
R2m

|u|m
)

≤ 1 (5.4)

Here, we used the inequality

(1− x)q ≤ 1− qx for all 0 ≤ x ≤ 1, 0 < q ≤ 1.
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From (5.3) and (5.4), using Theorem 1.6 and (5.2), we get

I1 ≤
∫

Ω(u)

exp
(
β |u|m/(m−1)

)
|x|α

≤ eβC(m)

∫
Ω(u)

exp
(
β |w|m/(m−1)

)
|x|α

≤ eβC(m)C (α, τ,m) |Ω (u)|1−
α

2m

≤ C (α, τ,m) .

The proof now is completed.

5.5 Sharp Adams inequalities for fractional order Sobolev spaces

W γ,nγ (Rn))

In this section, we will give proofs of Theorems 5.9 and 5.10. These are results concerning sharp

Adams inequalities on Sobolev spaces W γ,n
γ

(Rn) of arbitrary fractional order 0 < γ < n.

5.5.1 Proof of Theorem 5.9

Since u ∈W γ,p (Rn), we first write u as a convolution Lτ,γ∗f , f ∈ Lp (Rn). Since
∥∥∥(τI −∆)

γ
2 u
∥∥∥
p
≤

1, we have ‖f‖Lp(Rn) ≤ 1 .

Now, applying O’Neil’s lemma, we have for all t > 0:

u∗(t) ≤ 1

t

t∫
0

f∗(s)ds

t∫
0

L∗τ,γ(s)ds+

∞∫
t

f∗(s)L∗τ,γ(s)ds.

Here L∗τ,γ(s) = Lτ,γ(σ
−1/n
n s1/n).
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Now, we will change the variables (without loss of generality, we may assume that |Ω| = 1):

φ(t) = e
− t
p f∗(e−t)

ψ(t) =
1

M
e
− t
p′L∗τ,γ(e−t)

M =
σ

1/p′
n Γ

(n−γ
2

)
πn/22γΓ

(γ
2

) .
By direct calculation, we have

1

|Ω|

∫
Ω

exp
(
β0 (n, γ) |u|p

′
)
dx =

1∫
0

exp
(
β0 (n, γ) |u∗(t)|p

′
)
dt

≤
∞∫

0

e−F (t)dt

where

F (t) = t−

et ∞∫
t

e
− s
p′ φ(s)ds

∞∫
t

e
− s
pψ(s)ds+

t∫
−∞

φ(s)ψ(s)ds

p
′

.

We can also check that

∞∫
−∞

φp(s)ds ≤ 1

sup
s>0

ψ(s) ≤ 1

0∫
−∞

φp
′
(s)ds <∞.
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Thus, Theorem 1.1 is just a consequence of Lemma 2.12 with α = 1, where

a(s, t) =


ψ(s), s < t

et

 ∞∫
t

e
− s
pψ(s)ds

 e
− s
p′ , s > t

.

To show the sharpness of β0 (n, γ), we proceed as in [2, 52, 46, 86]. Indeed, we just need to

use the Lτ,γ potential instead of Bessel potential and the result follows by (2.7).

5.5.2 Proof of Theorem 5.10

We need to prove that

sup
u∈W γ,p(Rn)\{0},

∥∥∥(I−∆)
γ
2 u
∥∥∥
p
≤1

∫
Rn
φ
(
β0 |u|p

′
)
dx <∞

where β0 = β0 (n, γ).

Indeed, for any u ∈W γ,p (Rn) \ {0} ,
∥∥∥(τI −∆)

γ
2 u
∥∥∥
p
≤ 1, we can write

∫
Rn
φ
(
β0 |u|p

′
)
dx =

∫
Ω(u)

φ
(
β0 |u|p

′
)
dx+

∫
Rn\Ω(u)

φ
(
β0 |u|p

′
)
dx (5.5)

= I1 + I2.

Here

Ω(u) = {x ∈ Rn : |u(x)| ≥ 1} .

We notice that since ∫
Rn
|u|p ≥

∫
Ω(u)
|u|p ≥ |Ω(u)| ,
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we can conclude that there exists a constant C1(γ, n, τ) such that

|Ω(u)| ≤ C1(γ, n, τ). (5.6)

Now, we have

I2 =

∫
Rn\Ω(u)

φ
(
β0 |u|p

′
)
dx

≤
∞∑

k=jp−1

(β0)k

k!

∫
{|u(x)|<1}

|u|p
′k dx

≤
∞∑

k=jp−1

(β0)k

k!

∫
Ω(u)
|u|p

≤ C2(γ, n, τ). (5.7)

Moreover, by (5.6) and Theorem 5.9, we get

I1 =

∫
Ω(u)

φ
(
β0 |u|p

′
)
dx

≤ C1(γ, n, τ)
1

|Ω(u)|

∫
Ω(u)

exp
(
β0 |u|p

′
)
dx

≤ C3(γ, n, τ). (5.8)

From (5.5), (5.7) and (5.8), we get our desired result.

The sharpness of the constant β0 (n, γ) can be verified by the process similar to that in the

proof of Theorem 5.9.



80

REFERENCES

[1] Adachi, S.; Tanaka, K.: Trudinger type inequalities in RN and their best exponents. Proc.

of the Amer. Math. Soc. 128 (1999), 2051–2057.

[2] Adams, D. R.: A sharp inequality of J. Moser for higher order derivatives. Ann. of Math.

(2) 128 (1988), no. 2, 385–398.

[3] Adimurthi: Existence of positive solutions of the semilinear Dirichlet problem with critical

growth for the n−Laplacian, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17 (1990), no. 3,

393–413.

[4] Adimurthi; Druet, O.: Blow-up analysis in dimension 2 and a sharp form of Trudinger-

Moser inequality. Comm. Partial Differential Equations 29 (2004), no. 1-2, 295-322.

[5] Adimurthi; Sandeep, K.: A singular Moser-Trudinger embedding and its applications.

NoDEA Nonlinear Differential Equations Appl. 13 (2007), no. 5-6, 585–603.

[6] Adimurthi; Yang, Y.: An interpolation of Hardy inequality and Trudinger-Moser inequality

in RN and its applications. Int. Math. Res. Not. IMRN 2010, no. 13, 2394–2426.

[7] Aubin, T.: Best constants in the Sobolev imbedding theorem: the Yamabe problem, in

Seminar on Differential Geometry, S.-T. Yau, ed., Princeton University, Princeton, 1982,

173–184.

[8] Bonfiglioli, B.; Lanconelli, E.; Uguzzoni, F.: Stratified Lie groups and potential theory for

their sub-Laplacians. Springer Monographs in Mathematics. Springer, Berlin, 2007.

[9] Balogh, Z.; Manfredi, J.; Tyson, J.: Fundamental solution for the Q-Laplacian and sharp

Moser-Trudinger inequality in Carnot groups. J. Funct. Anal. 204 (2003), no. 1, 35-49.



81

[10] Beckner, W.: Weighted inequalities and Stein-Weiss potentials, Forum Math. 20 (2008),

no. 4, 587–606.

[11] Beckner, W.: Pitt’s inequality with sharp convolution estimates, Proc. Amer. Math. Soc.

136 (2008), 1871–1885.

[12] Beckner, W.: Pitt’s inequality and the fractional Laplacian: sharp error estimates, Forum

Mathematicum 24 (2012), 177–209.

[13] Beckner, W.: Embedding estimates and fractional smoothness, arXiv:1206.4215v2.

[14] Beckner, W.: Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality.

Ann. of Math. (2) 138 (1993), no. 1, 213-242.

[15] Branson, T.; Fontana, L.; Morpurgo, C.: Moser-Trudinger and Beckner-Onofri’s inequali-

ties on the CR sphere. Ann. of Math. (2) 177 (2013), no. 1, 1–52.

[16] Brézis, H.; Lieb, E.: A relation between pointwise convergence of functions and convergence

of functionals, Proc. Amer. Math. Soc. 88 (1983), no. 3, 486–490.

[17] Cao, D.: Nontrivial solution of semilinear elliptic equation with critical exponent in R2.

Comm. Partial Differential Equations 17 (1992), no. 3-4, 407–435.

[18] Carleson, L.; Chang, S. Y. A.: On the existence of an extremal function for an inequality

of J. Moser. Bull. Sci. Math. (2) 110 (1986), no. 2, 113-127.

[19] Cianchi, A.; Lutwak, E.; Yang, D.; Zhang, G.: Affine Moser-Trudinger and Morrey-Sobolev

inequalities. Calc. Var. Partial Differential Equations 36 (2009), no. 3, 419–436.



82

[20] Cohn, W. S.; Lam, N.; Lu, G.; Yang, Y.: The Moser-Trudinger inequality in unbounded do-

mains of Heisenberg group and sub-elliptic equations. Nonlinear Analysis-Theory, Methods

and Applications, 75 (2012), no. 12, 4483-4495.

[21] Cohn, W. S.; Lu, G.: Best constants for Moser-Trudinger inequalities on the Heisenberg

group. Indiana Univ. Math. J. 50 (2001), no. 4, 1567–1591.

[22] Cohn, W. S.; Lu, G.: Sharp constants for Moser-Trudinger inequalities on spheres in

complex space Cn. Comm. Pure Appl. Math. 57 (2004), no. 11, 1458-1493.

[23] Cohn, W. S.; Lu, G.: Best constants for Moser-Trudinger inequalities, fundamental solu-

tions and one-parameter representation formulas on groups of Heisenberg type. Acta Math.

Sin. (Engl. Ser.) 18 (2002), no. 2, 375-390.

[24] de Figueiredo, D.G.; do Ó, J. M.; Ruf, B.: On an inequality by N. Trudinger and J. Moser

and related elliptic equations. Comm. Pure Appl. Math. 55 (2002), no. 2, 135–152.

[25] de Figueiredo, D.G.; do Ó, J. M.; Ruf, B.: Elliptic equations in R2 with nonlinearities in

the critical growth range, Calc. Var. Partial Differential Equations 3 (1995), no. 2, 139–153.

[26] do Ó, J. M.: N-Laplacian equations in RN with critical growth. Abstr. Appl. Anal. 2

(1997), no. 3-4, 301–315.

[27] do Ó, J. M.; Medeiros, E.; Severo, U.: On a quasilinear nonhomogeneous elliptic equation

with critical growth in Rn, J. Differential Equations 246 (2009), no. 4, 1363–1386.

[28] Duc, D. M.; Thanh Vu, N.: Nonuniformly elliptic equations of p-Laplacian type, Nonlinear

Anal. 61 (2005), no. 8, 1483–1495.



83

[29] Flucher, M.: Extremal functions for the Trudinger-Moser inequality in 2 dimensions. Com-

ment. Math. Helv. 67 (1992), no. 3, 471-497.

[30] Folland, G.B.; Stein, E.M.: Estimates for the ∂b complex and analysis on the Heisenberg

group, Comm. Pure Appl. Math. 27 (1974), 429–522.

[31] Folland, G.B.; Stein, E.M.: Hardy spaces on homogeneous groups, Mathematical Notes,

28. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1982.

xii+285 pp.

[32] Fontana, L.: Sharp borderline Sobolev inequalities on compact Riemannian manifolds.

Comm. Math. Helv., 68 (1993) 415-454.

[33] Fontana, L.; Morpurgo, C.: Adams inequalities on measure spaces. Adv. Math. 226 (2011),

no. 6, 5066–5119.

[34] Franchi, B.; Gallot, S.; Wheeden, R.L.: Sobolev and isoperimetric inequalities for degen-

erate metrics, Math. Ann. 300 (1994), no. 4, 557-571.

[35] Frank, R.L.; Lieb, E.H.: Sharp constants in several inequalities on the Heisenberg group,

arXiv:1009.1410v1, to appear in Annals of Mathematics.

[36] Haberl, C.; Schuster, F.E.; Xiao, J.: An asymmetric affine Pólya–Szegö principle. Mathe-
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