Journal of Modern Applied Statistical Methods

Shlomo S. Sawilowsky
SENIOR EDITOR
College of Education
Wayne State University

Jack Sawilowsky
EDITOR
Reason Statistical Consulting

Harvey Keselman
ASSOCIATE EDITOR EMERITUS
Department of Psychology
University of Manitoba

Alan Klockars
ASSISTANT EDITOR EMERITUS
Educational Psychology
University of Washington

Bruno D. Zumbo
ASSOCIATE EDITOR
Measurement, Evaluation, & Research Methodology
University of British Columbia

Vance W. Berger
ASSISTANT EDITOR
Biometry Research Group
National Cancer Institute

Todd C. Headrick
ASSISTANT EDITOR
Educational Psychology & Special Education
So. Illinois University–Carbondale

Julie M. Smith, PhD
EDITORIAL ASSISTANT

Joshua Neds-Fox
EDITORIAL ASSISTANCE

JMASM (ISSN 1538–9472, http://digitalcommons.wayne.edu/jmasm) is an independent, open access electronic journal, published biannually in May and November by JMASM Inc. (PO Box 48023, Oak Park, MI 48237) in collaboration with the Wayne State University Library System. JMASM seeks to publish (1) new statistical tests or procedures, or the comparison of existing statistical tests or procedures, using computer-intensive Monte Carlo, bootstrap, jackknife, or resampling methods, (2) the study of nonparametric, robust, permutation, exact, and approximate randomization methods, and (3) applications of computer programming, preferably in Fortran (all other programming environments are welcome), related to statistical algorithms, pseudo-random number generators, simulation techniques, and self-contained executable code to carry out new or interesting statistical methods.

Journal correspondence (other than manuscript submissions) and requests for advertising may be forwarded to ea@jmasm.com. See back matter for instructions for authors.

ii
Table of Contents

Invited Articles

<table>
<thead>
<tr>
<th>Page</th>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 – 52</td>
<td>J. R. LEVIN</td>
<td>Improved Randomization Tests for a Class of Single Case Intervention Designs</td>
</tr>
<tr>
<td></td>
<td>J. M. FERRON</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B. S. GAFUROV</td>
<td></td>
</tr>
</tbody>
</table>

Regular Articles

<table>
<thead>
<tr>
<th>Page</th>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>53 – 75</td>
<td>J. R. CHEEMA</td>
<td>Some General Guidelines for Choosing Missing Data Handling Methods In Educational Research</td>
</tr>
<tr>
<td>76 – 83</td>
<td>D. J. BEST</td>
<td>Conover’s F Test as an Alternative to Durbin’s Test</td>
</tr>
<tr>
<td></td>
<td>J. C. W. RAYNER</td>
<td></td>
</tr>
<tr>
<td>84 – 105</td>
<td>H. FINCH</td>
<td>A Comparison of Methods for Group Prediction with High Dimensional Data</td>
</tr>
<tr>
<td>106 – 130</td>
<td>A. BEAUDUCEL</td>
<td>Retained Components Factor Transformation: Factor Loadings and Factor Score Predictors In the Column Space of Retained Components</td>
</tr>
<tr>
<td></td>
<td>F. SPOHN</td>
<td></td>
</tr>
<tr>
<td>131 – 150</td>
<td>N. H. JADHAV</td>
<td>Robust Winsorized Shrinkage Estimators for Linear Regression Model</td>
</tr>
<tr>
<td></td>
<td>D. N. KASHID</td>
<td></td>
</tr>
<tr>
<td>151 – 168</td>
<td>I. C. A. OYEKA</td>
<td>Pairwise Comparison in Repeated Measures</td>
</tr>
<tr>
<td></td>
<td>C. C. NNANATU</td>
<td></td>
</tr>
<tr>
<td>169 – 184</td>
<td>S. SEN</td>
<td>A Bivariate Distribution with Conditional Gamma and its Multivariate Form</td>
</tr>
<tr>
<td></td>
<td>R. LAMICHHANE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N. DIAWARA</td>
<td></td>
</tr>
<tr>
<td>Page Range</td>
<td>Authors</td>
<td>Title</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>185 – 200</td>
<td>D. M. SAKATE, D. N. KASHID</td>
<td>Comparison of Estimators in GLM with Binary Data</td>
</tr>
<tr>
<td>201 – 225</td>
<td>R. AL-AQQTASH, C. LEE, F. FAMOYE</td>
<td>Gumbel-Weibull Distribution: Properties and Applications</td>
</tr>
<tr>
<td>244 – 258</td>
<td>B. A. PARA, T. R. JAN.</td>
<td>Discrete Generalized Burr-Type XII Distribution</td>
</tr>
<tr>
<td>259 – 286</td>
<td>T. N. SINDHU, N. FEROZE, M. ASLAM</td>
<td>Bayesian Estimation of the Parameters of Two-Component Mixture of Rayleigh Distribution under Doubly Censoring</td>
</tr>
<tr>
<td>307 – 323</td>
<td>A. HASSAN, M. AHMAD</td>
<td>Life Testing Analysis of Failure Censored Generalized Exponentiated Data</td>
</tr>
<tr>
<td>324 – 354</td>
<td>R. R. L. KANTAM, B. SRIRAM</td>
<td>Some Methods of Estimation from Censored Samples in Exponential and Gamma Models</td>
</tr>
<tr>
<td>355 – 363</td>
<td>G. KHALAF, M. IGUERNANE</td>
<td>Ridge Regression and Ill-Conditioning</td>
</tr>
<tr>
<td>364 – 378</td>
<td>D. RAHARDJA</td>
<td>Comparison of Individual and Moving Range Chart Combinations to Individual Charts In Terms of ARL after Designing for a Common “All OK” ARL</td>
</tr>
<tr>
<td>Page Range</td>
<td>Authors</td>
<td>Title</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>399–419</td>
<td>J. ARASAN, M. B. ADAM</td>
<td>Double Bootstrap Confidence Interval Estimates with Censored and Truncated Data</td>
</tr>
<tr>
<td>420–431</td>
<td>F. SADIA, S. S. HOSSAIN</td>
<td>Contrast of Bayesian and Classical Sample Size Determination</td>
</tr>
<tr>
<td>432–443</td>
<td>O. M. YOUSEF, S. A. AL-SUBH</td>
<td>Estimation of Gumbel Parameters under Ranked Set Sampling</td>
</tr>
<tr>
<td>444–454</td>
<td>M. GHAIHARAMANI</td>
<td>The Information Criterion</td>
</tr>
<tr>
<td>455–463</td>
<td>M. RASEKHI, B. JAMSHIDI, F. RIVAZ</td>
<td>Optimal Location Design for Prediction of Spatial Correlated Environmental Functional Data</td>
</tr>
</tbody>
</table>

Emerging Scholars

<table>
<thead>
<tr>
<th>Page Range</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>493–505</td>
<td>J. G. D'CUNHA, K. A. RAO</td>
<td>Bayesian Inference for Volatility of Stock Prices</td>
</tr>
<tr>
<td>506–527</td>
<td>E. EDIONWE, J. I. MBEGBU</td>
<td>Local Bandwidths for Improving Performance Statistics of Model-Robust Regression 2</td>
</tr>
</tbody>
</table>

Statistical Software Applications and Review

<table>
<thead>
<tr>
<th>Page Range</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>528–545</td>
<td>X. LIU</td>
<td>Fitting Stereotype Logistic Regression Models for Ordinal Response Variables In Educational Research (Stata)</td>
</tr>
</tbody>
</table>