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CHAPTER 1 INTRODUCTION 

1.1 Motivation	
  

Accelerometers are extensively used in a wide range of markets such as military, industrial, 

energy, transportation and healthcare[1-3].  In industry, monitoring and controlling vibration in 

rotating machinery could decrease the unscheduled downtime, increase profit and prevent 

potential safety threaten accident.  In mobile healthcare, accelerometers have been widely used 

for activity monitoring, posture detection, and fall detection for elderly people [4].  This thesis is 

particularly focused on the sensing of physiological acoustic signals on human body using 

accelerometers. The physiological acoustic signals include, but are not limited to, heart sounds, 

respiratory sounds and gastrointestinal sounds, which contain a rich reservoir of vital 

physiological and pathological information.  Continuous or mobile monitoring of physiological 

sounds is expected to play important role in the emerging mobile healthcare field. 

Because of its miniature size, easy installation and good response especially to high 

frequency vibrations[5, 6], accelerometer is an excellent choice for continuous physiological 

acoustic signal monitoring. Since its invention, numerous efforts have been spent on improving 

the performance of the accelerometer. Most accelerometers can been modeled as a spring-mass 

system[7].  Cantilever-based accelerometer, in which a cantilever functions as the spring, is one 

of the most widely used configurations due to its simplicity. When experiencing an acceleration, 

the seismic mass exerts a force on the sensing materials through the bending of the cantilever 

structure and converted to a measurable electrical signal. There are different types of sensing 
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materials such as piezoresistive and piezoelectric materials. Because the piezoelectric materials 

has many desired properties such as exceptional linearity, broad frequency range, high 

mechanical stiffness and unidirectional sensitivity[8, 9], we will focus on the piezoelectric 

cantilever based accelerometer in this thesis.  

For the physiological acoustic signal measurement applications, there are more 

demanding requirements on the sensitivity/noise performance of accelerometers.  While many 

improvements have been made on piezoelectric accelerometers, most of them employ a simple 

conventional cantilever structure by placing the piezoelectric layer close to the base and on the 

surface of the cantilever beam.  As explained in Chapter 2, since the sensitivity is proportional to 

the distance between the neutral plane and the sensing layer, the conventional structure limits the 

sensitivity and resolution which makes it challenging to be used in many applications requiring 

high resolution.  In this thesis, we present a unique piezoelectric accelerometer based on the 

asymmetric-gapped cantilever structure which exhibits significantly improved sensitivity.  It 

comprises a top piezoelectric layer and a bottom mechanical layer.  It is worth noting that the 

normal strain experienced by the piezoelectric layer is proportional to the distance between this 

layer and the neutral plane. For asymmetric-gapped cantilever, this distance could be much 

larger than it of the conventional cantilever as explained in Chapter 2. Thus, both the 

displacement and force sensitivity of the asymmetric-gapped cantilever could be improved by 

orders of magnitude compared with conventional ones with the same spring constant and length.  

Because it is hard to design an optimized asymmetric-gapped cantilever with low 

resonant frequency, the cascaded structure based on the basic gapped cantilever is developed for 

low frequency sensing application such as seismometer and ballistocardiogram (BCG) monitor 
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as discussed in Chapter 4.  Ridges are added to separate the original gapped beams into several 

stages and eliminated the undesired shear bending mode to achieve high sensitivity.  In the 

experiment, a prototype was mounted at the bottom side of an office chair and successfully 

acquired high quality BCG data generated by the person sat on the chair.  

Furthermore, from the energy perspective, the asymmetric gapped cantilever is also a 

more efficient design.  For the conventional cantilever structure, even with optimization, only 

less than 37% of the bending energy is applied on the piezoelectric layer and contributes to the 

output signal [10].  The majority of mechanical energy can be concentrated on the piezoelectric 

layer, and the overall energy conversion efficiency can reach about 90%[11]. Therefore, it could 

also be used for designing high efficiency vibration energy harvester as explained in Chapter 5. 

What’s more, in order to achieve a wind band energy harvesting ability, a folded gapped 

cantilever is designed to enable multiple resonant modes, which are dominated by pure bending 

of all stages, in a relative narrow bandwidth. The prototype is mounted on a ceiling air condition 

unit to harvesting the machinery vibration for the proof of concept test. 

 

1.2 	
  Objective	
  

The asymmetric-gapped cantilever structure could significantly improve the 

performance for piezoelectric accelerometer. Therefore, the advantage of the structure is 

summarized in the thesis. A fully investigation of utilizing the designed sensor for cardio-

respiratory sound monitoring is carried out. A prove of concept prototype is being tested to 

identify irregular heart sound of the heart failure patient in the hospital settings. Moreover, with 

improved cascaded structure developed particularly for low frequency sensing applications, the 
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sensor is able to detect physiological acoustic signal with much lower frequency components 

such as BCG signal.  Last, the asymmetric gapped cantilever hold great potential for vibration 

energy harvesting because of its high energy conversion ratio. Therefore, folded gapped 

structure is developed to address the needs of harvesting vibration energy across a wind 

bandwidth.    

The main objectives of this work are: 

1. To investigate the advantage of utilizing the asymmetric-gapped cantilever for 

piezoelectric accelerometer.  

2. To implement the gapped cantilever for cardio-respiratory sound monitoring and 

identify irregular hear sound in heart failure patient with proper signal processing 

techniques.  

3. To investigate the advantage of utilizing the cascaded gapped cantilever for low 

frequency vibration sensing, and implement it for BCG measurement and 

characterization.  

4. To investigate the advantage of utilizing the folded gapped cantilever for wind band 

vibration energy harvesting, and implement it for harvesting machinery vibration 

energy from ceiling air-condition unit.  
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1.3 	
  Thesis	
  Organization	
  

In chapter 2, the basic design factors of piezoelectric accelerometer including 

piezoelectric materials selection, intrinsic noise, readout circuit, etc. are presented.  The 

advantage of the asymmetric-gapped cantilever and the involved cascaded and folded structures 

are also discussed and summarized in chapter 2.  

In the chapter 3 and 4, two specific applications utilizing the piezoelectric 

accelerometer based on the asymmetric-gapped cantilever are presented.  In chapter 3, 

accelerometer used for continuous cardio-respiratory sound monitoring is designed.  

Preliminary tests are carried out on healthy individuals to verify the feasibility of the sensor. 

And further experiment is designed to utilize it on heart faliure patient monitoring to identify 

irregular heart sound changing through treatment.  In chapter 4, the accelerometer based on the 

cascaded structure for low frequency physiological acoustic sensing is designed.  The prototype 

which is attached to the bottom of an office chair has successful acquired BCG signal of the 

subject sitting on chair.  

Chapter 5 utilizes the high energy conversion efficiency characteristic of asymmetric 

gapped cantilever for vibration energy harvester design.  Furthermore, to enhance the vibration 

energy harvester’s performance over a wind bandwidth, a folded gapped structure is developed 

to enable multiple vibration modes with in a relative narrow frequency band.  Finally, the 

designed energy harvester is utilized on an air condition unit for harvesting machinery vibration.  

Chapter 6 summarizes the main contributions of the dissertation and gives suggestions 

for the potential work in the future.  
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CHAPTER 2 PIEZOELECTRIC ACCELEROMETER  

2.1 Introduction	
  

Accelerometer is a mechanical sensing element that consists of a proof mass attached to a 

mechanical suspension system. The acceleration, which causes the displacement of the proof mass, 

can be measured through the change on the sensing element. Based on the difference on the sensing 

element, the accelerometer could be classified as piezoresistive, piezoelectric and differential 

capacitive types, etc. Among them, the piezoelectric accelerometer has been a popular 

choice[12-14]. When under stretching/compression, the piezoelectric material generates 

electrical charge on the surface, which converts the mechanical signal to electrical signal and 

vice versa. Piezoelectric accelerometers are widely used for a large variety of applications: 

medical, consumer electronics, industrial and military. 

2.1.1 	
  Specifications	
  of	
  accelerometers	
  	
  

When choosing accelerometers for physiological acoustic sensing, we mainly consider the 

following technical specifications:  

1) Size and weight 

To minimize the inconvenience and uncomfortableness of wearing or carrying, it is desirable to 

have miniaturized sensors that have small size and light weight.  In this regard, MEMS 

accelerometers have an edge over conventional large-size ones.  It needs to be cautioned that the 

printed circuit board that hosts the MEMS chip, readout circuits, and power source (i.e., battery) 

will significantly increase the overall size of the system.  Furthermore, a small mass is not 

favorable for achieving high sensitivity.    
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2) Minimum detectable acceleration, noise and sensitivity 

The heart sounds typically generate accelerations at milli-gravity (mg) level. However, some 

subtle components have much lower amplitude.  Lung sounds are generally much weaker than 

heart sounds (e.g., 0.1 mg).  Whether or not an accelerometer is able to detect these sounds is 

determined by a specification called minimum detectable acceleration amin.  If we assume that an 

acceleration is detectable when it can generate a voltage larger than the noise of the 

accelerometer, then we have the following relationship:  

amin = Noise voltage/Sensitivity       (2.1) 

It can be observed that to detect small acceleration, a high sensitivity is required.  However, the 

ultimate noise floor of the accelerometer is determined by the thermo-mechanical noise [15].  It 

can be observed that the smaller the proof mass, the larger the minimum detectable acceleration.  

Therefore, in terms of minimum detectable acceleration, miniaturization is not favorable.  This is 

a challenge faced by MEMS accelerometers.   

3) Bandwidth 

The majority energy of heart sounds exists between 10-400 Hz.  Ballistocardiography signals are 

typically below 20 Hz. Lung sounds are mainly between 60 Hz and 2000 Hz, but tracheal sounds 

can be well above 2 kHz [16].  To detect these signals, accelerometers need to have appropriate 

bandwidth accordingly.  The upper end of the bandwidth is typically limited by the natural 

frequency of the accelerometer: 

𝑓! =
!
!!

!
!

         (2.2) 
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For piezoelectric accelerometers, there is also a lower limit of measurement bandwidth set by the 

RC time constant of the piezoelectric material and readout circuit.  Therefore, special attention 

needs to be paid when choosing piezoelectric accelerometers to detect low frequency vibrations. 

There is a tradeoff between the bandwidth and the sensitivity of the accelerometer when the mass 

is fixed.  Choosing an accelerometer with a much wider bandwidth than needed is not suggested 

since the sensitivity is not optimized.   

 

In addition, mass loading [17, 18] and sensitivity to air-borne noise [19] may need to be 

considered when selecting accelerometers. 

2.1.2 	
  Accelerometers	
  for	
  physiological	
  acoustic	
  sensing	
  

Accelerometers used for physiological acoustic sensing can be divided into two categories: 

miniaturized MEMS accelerometers and conventional large-size accelerometers.  A large variety 

of MEMS accelerometers are commercially available now.  As the technology advances, the cost 

of MEMS accelerometers is decreasing steadily. Their small size and light weight are highly 

desirable for mobile healthcare.  However, their capability to detect very small vibration is 

limited.  On the contrary, conventional accelerometers have high sensitivity but are not 

convenient for wearable applications due to their large size and heavy weight.   

Compared with the ones for activity monitoring or posture detection, MEMS accelerometers 

for physiological acoustic sensing need to have much better sensitivity or noise performance.  A 

number of high-performance MEMS accelerometers have been used for the detection of heart 

sounds which have relatively large amplitude.   
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Castiglioni et al. attached ST LIS3L02AL, a triaxial MEMS capacitive accelerometer from 

STMicroelectronics, on the left clavicle to record seismocardiogram (SCG), which can be 

considered as low-frequency component of heart sounds [20].  This group later integrated ST 

LIS3L02DL, which has digital output interfaces, into textiles to make a wearable device for SCG 

detection [21, 22].  The prototype developed is named the MagIC system which incorporates 

ECG and respiration detection as well.  This MagIC garment has been used for the 24-hour 

measurement of SCG in ambulant subjects [23].  ST LIS3L02DL has been used by Bryant et al. 

to develop an accelerometer-based chest-worn heart monitoring system [24].  Pandia et al. used a 

ST LIS3L02AL accelerometer to detect heart sound and developed algorithm to cancel motion 

artifact [25]. A LIS3 accelerometer was also used by Bombardini et al. to derive diastolic times 

and the diastolic/systolic time ratio from first and second heart sounds [26].  

Urbaszek et al. used CMA 3000-A0, a 3-axis MEMS capacitive accelerometer from VTI 

technologies (now Murata Electronics, Oy, Vantaa, Finland) to detect heart sounds of a sheep 

[27].  In their study, a pressure sensor was implanted into the pulmonary artery of the sheep to 

measure blood pressure.  They claimed that heart sound signal, combined with the blood pressure 

information, improves valve opening/closure detection [27].  KXM52-1050, a 3-axis 

accelerometer from Kionix, was used to monitor the daily activities of elderly people [28].  The 

acquired signals include heart sounds, respiration, posture and acceleration due to other 

behaviors. Bosch BMA180, a triaxial MEMS accelerometer, has been used for BCG 

measurement on head [29].  Imtiaz et al. used a 3-axis MEMS accelerometer, MMA7260QT 

from Freescale, to measure low frequency vibrations caused by heart beat (Seismocardiogram) 

[30].  
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One commercial product for continuous heart sound monitoring is Audicor® system from 

Inovise Medical, Inc. (Portland, Oregon), which provides the capability of recording both heart 

sounds and ECG simultaneously [31].  Their heart sound sensors were originally based on 

microphones, but later changed to accelerometers (most likely MEMS accelerometers).   

There are a number of studies in which MEMS accelerometers are used for sensing 

physiological acoustic sounds other than heart signals.  MMA7455L from Freescale has been 

used for sleep apnea study [32].  Note that MMA 7455L has a low resolution and may not be 

able to detect weak sound signals. In [32] it was used to measure snoring sounds, which have 

large amplitude.  Knowles BU-7135 has been studied for bioacoustics sensing [19]. Kistler 

8302A, a capacitive MEMS accelerometer, has been used to record respiratory 

mechanomyographic signals on dogs [33].  Kistler 8302A seems to have the best noise 

performance among the MEMS accelerometers reviewed: 25 µg over 10-100 Hz.  However, it 

also has the largest dimension: 18 mm × 17 mm ×5 mm.  

As mentioned previously, the reduction of mass leads to larger minimum detectable 

acceleration.  Therefore, it is challenging to use MEMS accelerometers to capture some subtle 

physiological sounds, such as heart murmur, third heart sound (S3), forth heart sound (S4) and 

lung sounds, with a high signal-to-noise ratio.  Therefore, off-the-shelf or custom-designed large-

size piezoelectric accelerometers have been used by many researchers.   Actually, before MEMS 

accelerometers are available, conventional accelerometers have long been used for physiological 

acoustic sensing.   
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Siemens EMT25C (Siemens), a piezoelectric accelerometer with a weight of 15.4 gram and a 

radius of 14 mm, has been extensively used for physiological sounds monitoring [16, 34-50].  

PPG (phonopneumography) sensor, a piezoelectric accelerometer developed by Technion Israel, 

is another popular choice for sensing lung sounds [51-59].  In addition, HP 21050 (Hewlett-

Packard), with a weight of 52.2 gram and radius of 7 mm, has been used by many researchers to 

record heart, lung, and muscle sounds [60-65].  However, HP 21050 is a displacement sensor, 

not accelerometer.   

Pasterkamp et al. compared the relative performance of four accelerometers for lung sound 

recording: HP 21050, Siemens EMT25C, PPG 201 sensor, and FYSPac2 (University of Brussels, 

Belgium) with three air-coupled microphones [66]. They found that accelerometers have similar 

maximum signal-to-noise ratio compared to air-coupled microphones, but have better 

performance at higher frequencies. Later, Siemens EMT25C accelerometer and PPG 201 

accelerometer have been studied for lung sound recording using a bioacoustic transducer testing 

system [67]. It was found that PPG sensor has a broader bandwidth extending to 4000 Hz.  

Suzuki et al. also characterized three commercially available accelerometers for lung sound 

recording on the chest: B&K 4393, HP 21050, and Siemens EMT25C [68].   B&K 4393 is a 

miniaturized accelerometer with a weight of only 2.4 gram. However, it also has a low sensitivity 

of 4.8 mV/g.  

Model 393C piezoelectric accelerometer from PCB Piezotronics was used to measure low-

frequency cardiac vibrations, or seismocardiogram [69-72].  This accelerometer has a sensitivity 

of 1000 mV/g and a resolution of 0.1 mg over a bandwidth from 1 to 10000 Hz.  However, it has 

a weight of 885 gram and a dimension of 57.2 mm (diameter) × 54.9 mm (height), not 



13	
  

	
  

	
  

appropriate for wearable applications. Brüel & Kjær 4381 piezoelectric accelerometer has been 

used to measure BCG on an ultralow frequency bed pendulum [73].  B&K 4381 has a weight of 

43 gram and a dimension of 21 mm (diameter) × 23.5 mm (height).  The noise is 0.02 mg over 

0.1 Hz – 4800 Hz.  

  Rendon et al. used Endevco 752A12, a commercially available general purpose 

piezoelectric, to map vibrations on the neck and thorax caused by heart beats, breathing and 

snoring [74].  Endevco 752A12 has also been used by Morillo et al. to record heart sounds and 

respiratory sounds for sleep apnea screening [75]. Endevco 752A12 has excellent noise 

performance: <150 µg over 1-10 kHz bandwidth.  It has a height of 23.6 mm and a weight of 13 

gram.   Endevco 752A12 is much lighter and smaller than PCB 393C. However, it is still not 

convenient for wearable applications.    

Prisk et al. reported  measurement of BCG in spaceflight using a MMA triaxial accelerometer 

(ERNO Raumfahrttechnik/Deutsche Aerospace) [76].  This accelerometer was specifically 

designed for space application and has a weight of 165 gram.   

In addition to piezoelectric sensors, piezoresistive accelerometers have also been used.  For 

instance, a 1971 paper reports the use of a “pixie” accelerometer (Endevco Ltd) based on 

semiconductor strain gauges for the detection of infant heart sounds [77].  However, 

piezoresistive accelerometers are generally not as sensitive as piezoelectric ones.     

There are also a number of efforts at universities to develop custom-designed accelerometers 

for heart or lung sounds recording. FYSPac2 characterized by Pasterkamp et al. [66] was 

developed at the Laboratory of Physiology and Physiopathology, University of Brussels, VUB 

[17].  FYSPac2 has been used to study sound transmission in respiratory system [78].  In early 
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90’s, Padmanabhan et al. developed a piezoelectric accelerometer for heart sound detection based 

on a dual-cantilever structure [79].  The accelerometer they developed weighed approximately 5 

gram and had a resonant frequency around 1.1 kHz.  The theoretical sensitivity is 125 mV/g.  

The developed sensors have been used to detect sounds caused by turbulent blood flow in 

coronary arteries with stenosis.  

While the currently available accelerometers could meet the demand of most applications, it 

is still challenging to use them for physiological acoustic sensing where the acceleration is very 

small and ultra high sensitivity and resolution sensor is required.  In my work, a high performance 

piezoelectric accelerometer based on an asymmetric-gapped structure is developed [80]. Even 

though similar structure is developed in some previous work, no systematically study has been 

done to optimize and utilize it to develop high sensitivity piezoelectric accelerometer[81].  For 

a prototype accelerometer developed for targeting lung and heart sound monitoring, it has a 

dimension of 35mm×18mm×7.8mm and a weight of 5 gram.  Its resonant frequency is 1100 Hz 

and reaches a noise floor of 40 ng/√Hz above 200 Hz.  Currently, the noise is dominated by the 

amplifier noise.  By optimizing the design, the performance can be further improved.  

Commonly used accelerometers for physiological acoustic sensing are summarized in Table 

2.1 and Table 2.2.  Note that some accelerometers, which are discontinued or lack of 

specifications, are not included in the tables.  

Table 2.1 Summary of commonly used MEMS accelerometers for physiological acoustic 

sensing. 

Accelerometer  Dimension bandwidth  Noise  Applications 
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and weight 

Bosch 

BMA180, 

Triaxial, 

switchable 

ranges and 

bandwidths 

3 mm × 3 

mm × 0.9 

mm  

10/20/40/75/15

0/300/600/1200 

Hz 

0.69 mg resolution 

over 10 Hz 

bandwidth with 2 g 

measurement range 

BCG measurement 

on head[29] 

Freescale 

MMA7260QT,  

6 mm × 6 

mm × 1.45 

mm 

(f-3dB): 350 Hz 

(XY), 150 Hz 

(Z); 

350 µg/√Hz for 1.5 

g measurement 

range 

Measurement of 

Seismocardiogram 

[30] 

Freescale 

MMA7455L, 3-

axis, Digital 

Output 

Accelerometer 

3 mm × 5 

mm × 1 

mm 

62.5 or 125 Hz 15.6 mg (based on 

the sensitivity 64 

counts/g) 

Sleep apnea study 

[32]  

STMicroelectro

nics 

LIS3L02AL,  

triaxial MEMS 

capacitive 

5 mm × 5 

mm ×1.6 

mm; 

0.08 gram;  

1.5 kHz  50 µg/√Hz for 2 g 

measurement range 

 

Heart sound, 

Seismocardiograph

y and BCG 

detection [25] [20] 

[26] 
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accelerometer  

STMicroelectro

nics 

LIS3LV02DL, a 

triaxial MEMS 

capacitive 

accelerometer 

with digital 

output 

4.4 mm × 

7.5mm × 

1mm; 

10/40/160/840 

Hz; 

1.0/2.0/3.9/15.6 mg 

 

Continuous 

measurement of 

SCG in ambulant 

subject for 24 hours 

[23].  

VTI 

technologies 

(now Murata 

Electronics) 

CMA 3000-

A01, 3-axis 

MEMS 

capacitive  

accelerometer 

2 mm × 2 

mm × 0.95 

mm 

200 Hz (Y axis) 300 µg/√Hz;  Heart sound 

detection at the 

chest of a sheep [27, 

82] 

Kionix, 

KXM52- 1050 

3-axis 

dimension: 

5×5×1.8m

(-3dB): 0-3000 

Hz (x and y), 0-

1500 Hz (z) 

35 µg/√Hz (x and 

y) and 65 µg/√Hz 

daily monitoring 

(including heart 

sounds) for solitary 
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accelerometer m (z) at 500 Hz elderly people [28] 

Kistler 8302A 

(2S1/10S1/20S1

) 

Single axis 

capacitive 

accelerometer 

Dimension: 

18 mm × 

17 mm ×5 

mm; 

weight: 2.8 

gram; 

bandwidth 

(±5%): 0-

400/1000/1000 

Hz; 

(10-100 Hz): 

25/125/250 µg 

Respiratory 

Mechanomyographi

c Signals recording 

[33] 

 

 

Table 2.2 Summary of conventional large-size accelerometers for physiological acoustic sensing. 

 

Accelerometer  Dimension 

and weight 

Bandwidth  Noise/Sensitivit

y 

Applications 

Brüel & Kjær 

4381 

piezoelectric 

accelerometer 

21 mm 

(diameter) × 

23.5 mm 

(height);  

Weight: 43 

gram; 

0.1-4800 Hz 0.02 mg over 

the bandwidth 

Sensitivity: 80 

mV/g 

BCG measurement 

on an ultralow 

frequency bed 

pendulum [73].   
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B&K 4393 

piezoelectric 

accelerometer  

diameter: 7.5 

mm; height: 

11 mm; 

Weight: 2.4 

gram;  

 (±10% 

amplitude 

response): 

0.1 Hz 16500 

Hz. 

Sensitivity: 4.8 

mV/g 

Lung sound 

recording [68] 

Custom-

designed 

accelerometer 

based on 

piezoelectric 

double-

cantilever 

structure 

Weight: 5 

gram 

resonant 

frequency: 

~1.1 kHz 

theoretical 

sensitivity: 125 

mV/g 

Detecting sounds of 

turbulent  blood 

flow in partially 

occluded coronary 

arteries [79] 

MMA triaxial 

accelerometer 

(ERNO 

Raumfahrttec

hnik/ 

Deutsche 

Aerospace) 

33 mm × 87 

mm × 65 mm;  

Weight: 165 

gram 

0.1 to 100 

Hz; 

3 µg  BCG measurement 

in spaceflight [76] 
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Endevco 

752A12 

piezoelectric 

accelerometer  

Height: 23.6 

mm 

Weight: 13 

gram 

bandwidth 

(±5%): 1-

8000 Hz; 

<150 µg over 1-

10 kHz 

bandwidth;  

Sensitivity: 100 

mV/g; 

Recording heart 

sounds and 

respiratory sounds 

for sleep apnea 

screening [74, 75] 

S12-M1S5B; 

PRIMO Co 

dimension: 10 

mm diameter 

and 5.4 mm 

height; 

Resonant 

frequency: 

0.8 kHz- 1.2 

kHz; 

sensitivity: -35 

dBv at 100 Hz;  

Heart sound 

mapping on the 

chest to study 

propagation route 

[83] 

PCB 393C 

piezoelectric 

accelerometer 

diameter: 57.2 

mm; height: 

54.9 mm; 

Weight: 885 

gram;  

(±5%): 0.025 

to 800 Hz; 

0.1 mg  over 1-

10000 Hz; 

Sensitivity: 

1000 mV/g 

 

Measurement of 

low-frequency 

cardiac vibrations or 

seismocardiography 

on the chest wall 

[70] [69] 

PPG sensor Coin-size  3-dB 

frequency 

response: 75 

Hz to 2,000 

 lung sound sensing  

[51-59] 
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Hz,  

[55] 

Siemens EMT 

25C 

 

Weight:15.4 

g; height:13 

mm; 

diameter: 28 

mm; 

100-1200 Hz 

(a roll-off of 

-15 

dB/octave 

beyond 1200 

Hz) [16] 

80 mV/g [50] Various 

physiological 

sounds monitoring 

[16, 34-49].   

Our work  Weight: 5 

gram; 

dimension: 

35mm×18mm

×7.8mm; 

resonant 

frequency: 

~1.1 kHz 

40 ng/√Hz 

above 200 Hz 

Sensitivity: 870 

mV/g (before 

amplification) 

Heart and lung 

sound monitoring 

[84] 

 

 

2.2 	
  Design	
  

2.2.1 	
  Asymmetric-­‐gapped	
  cantilevers	
  structure	
  

Fig. 2.1(a) shows the basic structure of a conventional accelerometer: a proof mass 

suspended by one cantilever beam. A piezoelectric layer is integrated on the surface of the 

cantilever beam. Fig. 2.1(b) shows the schematic structure of the accelerometer based on 
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asymmetrical gapped cantilever. It comprises a top piezoelectric beam (w2×t2×l), a bottom 

mechanical beam (w1×t1×l) and a proof mass or lever (wpm ×tpm ×lpm). The distance between 

middle planes of top and bottom layers is D.  

 

Figure 2.1 Comparison of the (a) conventional accelerometer (h is the cantilever thickness) and 

(b) new accelerometer design based on decoupled piezoelectric layer (asymmetric gapped 

cantilever).  

To analyze the asymmetric gapped cantilever, an imaginary cut is assumed between 

cantilever beams and proof mass as shown in Fig. 2.2. 
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Figure 2.2 Forces and bending moments applied to the cantilever. Fn1, Fn2, F1,  F2, M1 and M2 

are normal forces, shear forces and bending moments on bottom and top beams respectively, F is 

the force on proof mass in z direction, and D is the distance between top and bottom beams. 

Based on force and bending moment equilibriums, the following conditions need to be 

satisfied[11] 

𝐹!! − 𝐹!! = 0     (2.3) 

𝐹! + 𝐹! − 𝐹 = 0     (2.4) 

𝑀! +𝑀! + 𝐹!!
!
!
+ 𝐹!!

!
!
− 𝐹 !!"

!
= 0    (2.5) 

𝑧! = 𝑧!      (2.6) 

𝜃! = 𝜃! = 𝜃      (2.7) 

𝐷𝜃 = !!!
!!!!

+ !!!
!!!!

𝑙 = 𝜃    (2.8) 
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It is worth noting that the deformation of the asymmetric gapped cantilever can be decomposed 

into pure bending (rotational movement) and shear modes. (translational movement) as shown in 

Fig. 2.3. Since the plane assumption is not valid in this case, conventional Euler-Bernoulli beam 

theory cannot be applied here. New analytical model has been developed for the asymmetrical 

gapped cantilever [85-88].   

 

Figure 2.3 Two deformation modes of the asymmetrically-gapped cantilever. 

The effective neutral plane of the asymmetrical gapped cantilever for pure bending mode 

is  
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        (2.9) 

where y1 and y2 are the vertical positions (please refer to Fig. 2.1 (b)), E1 and E2 are 

Young’s moduli of the bottom and top beams, respectively.  The bending rigidities for pure 

bending and S-shape bending Rp and Rs are given by  

  (2.10) 

    (2.11) 

The spring constants of the two modes are: 

      (2.12) 

         (2.13) 

where α = (l+lpm)/l and β = Rs/Rp.  Then, the total effective spring constant can be 

expressed as 

      (2.14) 
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Based on Rayleigh-Ritz method [89], the resonant frequency is 

   (2.15) 

 

The normal strain experienced by the top piezoelectric beam is: 

     (2.16) 

where a is the acceleration applied. It can be clearly observed that the sensitivity is 

proportional to y2 -yc, the distance between the top piezoelectric beam and the neutral plane of 

the asymmetrical gapped cantilever. This distance is approximately equal to the height of the gap 

for asymmetrical gapped cantilevers. In comparison, for the conventional cantilever, this distance 

is only about half of the cantilever thickness (h/2) as shown in the Fig. 2.1 (a). If the spring 

constants of the two designs are the same, the sensitivity of the new design will be D/(h/2) times 

of the conventional cantilever. Since D can be much larger than h/2, the sensitivity of the new 

design will be orders of magnitude higher than the conventional one. 

2.2.2 Energy	
  aspect	
  	
  

The advantage of the new structure can also be explained from the energy perspective. 

We will examine this from the perspective of the sensitivity and the minimum detectable 

acceleration in this session. The output signal of the sensor is  
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𝑉! = !
!

!
      (2.17) 

If the strain is uniform, the relationship between charge and energy stored in the piezoelectric 

layer can be expressed as 

!!

!!
= 𝐸!       (2.18) 

From equation (2.17) and (2.18), the voltage sensitivity can be derived as  

!
!

!
= !

!!!
𝐸!          (2.19) 

And the minimum detectable acceleration can be derived as 

𝑎!"# =
!!!!

!
!"!"

!!
!!

!!!
!!!

=
!!!!"#!

!!
!!

!!! !!
        (2.20) 

Based on the equation 2.19 and 2.20, it could be concluded that the voltage sensitivity is 

proportional to the total energy store in the piezoelectric layer 𝐸!, and the minimum detectable 

acceleration 𝑎!"# is inversely proportional to the square root of  𝐸!. Therefore, in order to 

improve sensitivity and resolution, it is desirable to allocate as much energy as possible for strain 

sensing from the total energy applied. Note that the vibration energy is distributed in different 

parts of the asymmetric gapped cantilever with different forms. However, what is effective in 

generating output voltage is only the energy stored in the top sensing layer in the form of normal 

strain. Here we defined the energy efficiency η as the ratio of the energy stored by normal strain 

of the top sensing layer to the total mechanical energy, which can be calculated in two steps. 
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First, the ratio of the pure-bending energy to the total energy can be calculated from spring 

constants, which is[11, 88] 

                                     (2.21) 

The pure bending energy is further distributed in both top and bottom beams. The 

percentage of pure bending energy stored in the top sensing layer in the form of normal stain is  

            (2.22) 

where γ= (yc-y1 )/D=d1/D . Therefore, the total percentage of the vibration energy used 

for strain sensing is  

                                       (2.23) 
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Figure 2.4 Plot of efficiency η as a function of γ with different C (α =11)[86] 

    The optimal γ that results in the maximum efficiency is 

                        (2.24) 

 

where C =t1
2/12D2  The plot of efficiency η  as a function of γ with different C  is 

presented in Fig. 2.3. Once γ0 has been decided, we can easily find the distance between neutral 

plane and top piezoelectric beam d2, and other related parameters such as w1, w1  and t2. 
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 In conventional piezoelectric cantilever, there is typically 30-40% of the total 

mechanical energy stored in the piezoelectric layer in the form of normal strain, contributing to 

the output signal. In comparison, the asymmetrical gapped cantilever allows 87% or even higher 

percentage of the mechanical energy to be used for piezoelectric sensing. 

2.3 FEA	
  simulation	
  	
  

2.3.1 Introduction	
  

Even though the basic physical principles could be used to analyze the behavior of the 

mechanical systems theoretically, it is prohibitively difficult to solve the equations of a complex 

structure or boundary conditions.  In many cases, in order to approach a theoretical solution, 

some approximations are made to simply the problem. For example, in the analysis of the 

asymmetrical gapped cantilever above, the proof mass is assumed rigid and the mass of the beam 

is neglected. Therefore, several numerical methods are developed to further verify the theoretical 

models or to analyze the complicated structure, which are extremely hard to be get theoretical 

solution. 

Finite Element Analysis is one of such approach. By breaking a complex mechanical 

structure down into a large number of simple analogue finite elements, the computer is able to 

solve the individual element with its loads and boundary condition applied. Thus the FEA 

approach translates a complicated problem into a “sum” of many simpler problems. It is worth 

noting that the finer the breaking down (meshing) is, the more accurate the final result is. 

However, due to the large amount of calculation during problem solving, the number of elements 

is always limited by the computer’s capability. With reasonable fine meshing, the finite element 
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analysis could offer a close enough prediction on the system behavior such as force, heat 

response and fluid flow property. The simulated result could be used as a guideline for designing 

engineering product. 

In order to verify the theoretical model of asymmetrical gapped cantilever developed 

above, we use COMSOL FEA software 4.3a to carry out a numerical simulation of the structure 

and compare the two results. The simulation flow is summarized in Table 2.3: 

Table 2.3 The simulation flow chart 

Pre-processing 

Choose solver type 

Post-processing 

Plot selected results 

Set model geometry Error analysis 

Set material property 

Export results 

Set boundary condition 

Set load condition 

Meshing 

Set solving parameters 

 

2.3.2 Model	
  verification	
  

In order to verify the analytical model developed above, we examine the corresponding 

FEA simulation model for two different cases in this session: 1) Ideal condition asymmetric-

gapped cantilever; 2) Real condition asymmetric-gapped cantilever. 

 In the first case, the FEA model preserve all the assumptions made during analytical 

derivation: 1) the Young’s modulus of the proof mass is set to be very high so that the 
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deformation of the proof mass could be neglected; 2) the density of the beams is set to be very 

low so that the mass of the beams could be neglected.  On the other hand, the real condition 

cantilever is also simulated in case 2 to verify the assumptions made is valid and do not change 

the behavior of the real cantilever by much. In the static analysis, a 10 m/s2 acceleration is 

applied in vertical direction on the proof mass.  The dimension of a specific design of the 

asymmetric gapped cantilever is presented in Table 2.4 The comparison of analytical and 

simulation results for both ideal and real cases is presented below in Table 2.5.  

Table 2.4 Design parameters of the asymmetric gapped cantilever 

 Length Width Thickness 

Top beam 15 μm 7 μm 3 μm 

Bottom beam 15 μm 90 μm 8 μm 

Proof mass 1500 μm 250 μm 110 μm 

 

Table 2.5 Analytical and simulation results for both ideal and real cases 

 Analytical 
Simulation 

(ideal) 

Difference 

(%) 

Simulation 

(real) 

Difference 

(%) 

Spring constant 

(N/m) 
1.06e+03 1.15e+03 8.5 1.08e+03 2 
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Resonant 

frequency (Hz) 
3.10e+04 2.93e+04 5.5 2.87 e+04 7.4 

 

We could see that the simulation results agree well with the analytical model. The error is 

within 10%.  In the real case, the spring constant and resonant frequency is slightly higher than 

the ideal case as expected because it takes consideration of the bending or the proof mass.   

2.4 Noise	
  

Noise is another critical factor to consider in the development of piezoelectric 

accelerometers. To understand the noise source will help the designer to further lower the noise 

floor and improve the minimum detectable acceleration of the sensors. This is particularly 

important for small signal applications such as seismic vibration detection at a frequency range 

from 0.001Hz to 100Hz. Even though in most cases, the overall noise is determined by the noise 

from the electronics such as amplifier, with the continuous development of low noise IC, the 

noise of the electronics could be small enough that the overall noise is dominated by the two 

fundamental noises of the piezoelectric accelerometer: the thermal-mechanical noise and the 

thermal-electrical noise. In this session, we will discuss all these three noises.  

2.4.1 2.4.1	
  Thermal-­‐mechanical	
  noise	
  

The origin of the thermal-mechanical noise is based on the well-known mechanism of 

Brownian Motion[15]. A cantilever structure based piezoelectric accelerometer could be 

modeled as a damped harmonic oscillator as shown in Fig. 2.5.  
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Figure 2.5 A cantilever structure based piezoelectric accelerometer could be modeled as a 

damped harmonic oscillator with a spring constant k, mass M and damping ratio r.  

Analogous to Johnson noise of a resistor, a mechanical spring-mass system always 

experiences a white noise force given by[90] 

𝐹!!! ∆𝑓 = 4𝑘!𝑇𝑟     (2.25) 

where 𝑟 = 𝜔!𝑚 𝑄 is the equivalent damping coefficient of the oscillator, 𝑘! is the Boltzmann’s 

constant, T is the absolute temperature. And 𝑄 is the quality factor of the harmonic oscillator.  

Therefore, for  𝑓  at all 𝑓 ≪ 𝑓! (resonant frequency), the acceleration spectral density of the 

thermal-mechanical noise 𝑎!" is expressed as [90] 

𝑎!" = !!!!!!
!"

       (2.26) 

And the corresponding voltage spectral density 𝑣!" is[90] 

𝑣!" = !!!!!!!!
!

!"!!
     (2.27) 

where 𝑄! is the charge sensitivity and C is the capacitance of the piezoelectric transducer.  
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In most cantilever-based accelerometers, the thermo-mechanical noise determines the 

lowest noise floor and is independent on the transduction mechanism, sensor structure, and 

readout circuits. Because it exists at the input of the sensor, increasing the sensor sensitivity will 

correspondingly increases the thermo-mechanical noise level as well. However, by optimizing 

the sensor design to lower other larger noises, the sensor could reach the thermo-mechanical 

noise dominant range. And this would be the highest resolution the accelerometer could achieve. 

2.4.2 2.4.2	
  Thermal-­‐electrical	
  noise	
  

Thermal-electrical noise is the intrinsic noise of piezoelectric material and depends on its 

loss factor 𝜂, which is inverse of the quality factor of the piezoelectric material[90].  Therefore, 

we have the following equivalent circuit model in Fig. 2.6 where the conductivity is assumed to 

be 0.   

 

Figure 2.6 The equivalent circuit of piezoelectric material  

The equivalent noise resistor R, due to the dielectric loss, leads to a Johnson noise that is 

a function of the loss factor 𝜂: [90] 

𝑅 = !
!"(!!!!)

     (2.28) 
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For most piezoelectric material, the loss factor is in the range from 0.014 to 0.017. So R could be 

simplified as 𝑅 = !
!"

. By submitting equation (2.28) to the general Johnson noise expression 

𝑣 = 4𝑘!𝑇𝑅, the voltage spectral density of the thermal-electrical noise 𝑎!" is expressed as[90]  

𝑣!" =
!!!!"
!"

     (2.29) 

And the corresponding acceleration spectral density 𝑎!" is[90] 

𝑎!" =
!!!!"#
!"!

!      (2.30) 

 The thermal-electrical noise is generally larger than thermal-mechanical noise in the 

piezoelectric transducer. This is particularly true in the low frequency range because the thermal-

electronic noise is inversely proportional to the frequency with a 1/f noise type. With the 

development of the lower noise IC, some piezoelectric accelerometers already enter the thermal-

electrical noise dominant range.  

2.4.3 Total	
  noise	
  	
  

By including the electronic noise of the amplifier, the total acceleration noise spectral 

density at the input of the readout circuit amplifier can be derived as [90] 

𝑎! = 4𝑘!𝑇
!!
!"

+ !"
!"!

! + !!!
!!

!
      (2.31) 

And the total voltage noise spectral density is [90] 

𝑣! = 4𝑘!𝑇
!!!!

!

!!!"
+ !

!"
+ 𝑒!!    (2.32) 
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Here a practical example of the noise analysis of the piezoelectric accelerometer based on 

a four-stage asymmetric-gapped cantilever structure is given to illustrate the theory above. The 

dimension of the cantilever is shown in Table 2.6.  In the noise calculation, the amplifier OPA 

129 from Texas Instrument is used as an example of the read out circuit. Its input voltage noise 

spectral density is shown in Fig. 2.7 below. The calculated result shows that the amplifier noise 

is dominant by an order of amplitude below 10Hz. As shown in Table 2.7, the electronic noise 

and thermal-electrical noise become comparable as the frequency increases. The thermal-

mechanical noise stays the same through the frequency spectrum and is the lowest noise level. 

This example also theoretically demonstrated the ability of accelerometer based on the 

asymmetric-gapped cantilever structure to reach Nano gram resolution. 

Table 2.6 Geometric properties of bottom beam, top beam and proof mass for four-stage 

cascaded asymmetric-gapped cantilever. 

Dimension Top sensing 

(stage 1,2,3,4 are identical) 

Bottom mechanical Proof mass 

t (mm) 0.508 1.0 5.1 

w 1.8 16 65(84.5) 

l 10×4 10×4 110.5 
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Figure 2.7 Input voltage noise spectral density of TI OPA129 

Table 2.7 calculated noise level of the cascaded asymmetric-gapped cantilever in Table 2.6. 
Noise 0.01 ~10Hz 

bandwidth 
10 Hz 100 Hz 1000Hz 

Thermal Mechanical Noise 

 

0.9ng 0.9 ng/√Hz 0.9 ng/√Hz 0.9 ng/√Hz 

Electrical Thermal Noise 45ng 12 ng/√Hz 3.8 ng/√Hz 1.2 ng/√Hz 

Amplifier Noise 130ng 13 ng/√Hz 4.5 ng/√Hz 2.7 ng/√Hz 

Total noise 137ng 18 ng/√Hz 5.9 ng/√Hz 3.0 ng/√Hz 

 

2.5 Readout	
  circuit	
  	
  

Charge amplifier and voltage amplifier are two common readout circuits for high 

impedance piezoelectric transducers. In this session, we will discuss the key features of 
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piezoelectric transducers using these two types of readout circuit including signal to noise ratio 

(SNR), output voltage and bandwidth.  

2.5.1 Voltage	
  amplifier	
  	
  

 Voltage amplifier is widely used in signal processing circuit to amplify weak voltage 

signals. Because the piezoelectric transducer has very high capacitance, the amplifier output is 

decided by the amount of capacitance seen by the sensor, and the connect cable capacitance 

needs to be considered for the voltage amplifier design. Fig. 2.8 shows the voltage amplifier 

mode circuit model and the piezoelectric transducer is modeled as a charge source with a shunt 

capacitor Cp and resistor Rp.   

  

Figure 2.8 Voltage amplifier mode circuit model 

The signal at the output of the voltage amplifier can be derived as 

𝑉! =
!"

!!!!!
1 + !!

!!
     (2.33) 
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Since the noise at the output of the amplifier is  𝑉!_! = 𝑣! 1+ !!
!!

 where 𝑣! is the voltage noise 

at the input of the amplifier that is derived in session 2.4, the signal to noise ratio SNR is  

𝑆𝑁𝑅 = !!
!!_!

= !"
!! !!!!!

     (2.34) 

If C! ≫ C!,  𝑆𝑁𝑅 = !"
!!!!

. !!
!!!!!

≅ !!!
!!

 . The voltage sensitivity 𝑆! is critical in achieving a high 

SNR.  

If 𝐶! ≪ 𝐶! ,  𝑆𝑁𝑅 ≅ !"
!!!!

 . The charge sensitivity becomes critical in achieving a high SNR.  

 Therefore, only when the capacitance of the interface cable is much smaller than it of the 

piezoelectric transducer, the voltage amplifier is suited as the readout circuit to achieve a high 

SNR. In practice, this could be translated to the distance between the voltage amplifier and the 

transducer needs to be minimized.  

2.5.2 Charge	
  amplifier	
  	
  

The charge amplifier is a current integrator to amplify signals from a capacitive nature source. It 

transfers the input charge to smaller feedback reference capacitor and produces a lifted voltage 

equal to the voltage across the reference capacitor. Fig. 2.9 shows the charge amplifier mode 

circuit model and the piezoelectric transducer is modeled as a charge source with a shunt 

capacitor Cp and resistor Rp.   
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Figure 2.9 Charge amplifier mode circuit model 

The signal at the output of the charge amplifier can be derived as 

𝑉! =
!"
!!

      (2.35) 

Since the noise at the output of the charge amplifier is 𝑉!_! = 𝑣! 1+ !!
!!

 where 𝑣!  is the 

voltage noise at the input of the amplifier that is derived in session 2.4, the signal to noise ratio 

SNR is  

𝑆𝑁𝑅 = !!
!!_!

= !"
!! !!!!!

     (2.36) 

If C! ≫ 𝐶!,  𝑆𝑁𝑅 ≅ !!!
!!

. It can be concluded that the voltage sensitivity is still critical for the 

charge amplifier design. From the material point of view, what matters is the piezoelectric 

voltage coefficient g (Vm/N).  It is worth noting that even though the SNR is inversely 

proportional to the capacitance of the piezoelectric transducer, it does not necessarily indicate 

that a piezoelectric material with a smaller capacitance will yield a better SNR if the assumption 
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𝐶! ≫ 𝐶! is invalidated. Since the SNR is independent of the interface cable capacitance, the 

charge amplifier could be used in the circuit that the amplifier is far away the transducer and the 

interface cable capacitance is high. 

2.5.3 Comparison	
  of	
  the	
  lower	
  cutoff	
  frequency	
  

 The lower cutoff frequency of the voltage amplifier in Fig. 2.8 is  

𝑓!_! =
!

!!!! !!!!!
      (2.37) 

           The lower cutoff frequency of the charge amplifier in Fig 2.9 is  

𝑓!_! =
!

!!!!!!
      (2.38) 

In order to make a fair comparison of the lower cutoff frequency of the voltage amplifier and the 

charge amplifier, the output voltage and the output offset voltage are kept the same.  

𝑣! =
!"

!!!!!
1 + !!

!!
= !"

!!
    (2.39) 

𝑣!"#_!"" = 𝐼!𝑅! 1+ !!
!!

= 𝐼!𝑅!    (2.40) 

From the equation (2.39) and (2.40), we could derive that 

𝑓!_! = 𝑓!_!       (2.41) 

Therefore, the voltage amplifier and the charge amplifier perform the same on the lower cutoff 

frequency.  
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2.6 Summary	
  	
  

In this chapter the systematically study of gapped cantilever based accelerometer is 

carried out.  First, the operation principle of accelerometers and specifications that are important 

for mobile healthcare is discussed.  Next, accelerometers, including both commercial products 

and research prototypes, which have been reported in literatures for physiological acoustic 

sensing is reviewed.  While accelerometers have great potential for physiological acoustic signal 

monitoring, the state of the art accelerometers do not have high enough sensitivity and resolution 

to capture the detailed information for diagnostic purpose.   

Therefore, in the following session, the accelerometer based on an innovative asymmetric 

gapped cantilever, where the top sensing layer and the bottom mechanical lay is separated by a 

gap, is introduced.  To explain the structure, the analytical model is first derived.  Unlike 

conventional cantilever, the asymmetric gapped cantilever has both pure bending and shear 

bending.  The shear bending should be minimized since it does not contribute to the output signal.  

The optimization of the structure is then discussed from the energy point of view.  A parameter η 

is defined as the ratio of the bending energy on the sensing beam to the total energy in the whole 

structure.  An optimized design can be achieved by increasing η. 

The FEA simulation is then carried out to verify the analytical model by using the 

software Comsol version 4.3.  Two cases are studied in the simulation: Ideal condition where the 

proof mass is assumed to be rigid and real condition where the proof mass is not rigid.  It is 

observed that the simulation result agrees with the analytical model calculation closely.  
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Finally, the signal processing circuit for piezoelectric accelerometer is also discussed.  

The performance of two types of amplifiers are compared: charge amplifier and voltage 

amplifier.   The noise floor, which determine the resolution of accelerometer, is discussed in 

detail particularly. Which in many cases the amplifier noise plays a dominant role in the overall 

noise, the piezoelectric transducer could enter a thermal mechanical noise dominant range 

sometimes with an optimized design.   

In conclusion, a large variety of accelerometers have been used for physiological acoustic 

sensing.  This chapter discussed different critical aspects of accelerometers for this application.  

In particular, the accelerometer based on an asymmetric gapped cantilever design is proposed 

and verified by FEA simulation.  Compared with the accelerometer based on the conventional 

cantilever, the new design yield better sensitivity and resolution.   
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CHAPTER 3 CONTINUOUS CARDIO-RESPIRATORY SOUND 
MONITORING  

3.1 Introduction	
  	
  

The cardio-respiratory signal is one of the physiological vital signs to assess a person’s 

health [91-93]. Auscultation of the chest wall sounds which include both heart and lung sounds is 

a noninvasive, traditional and effective way to capture and diagnose many cardiovascular and 

respiratory diseases. A variety of critical information is included or can be derived from this 

signal such as heart sounds, heart rate, lung sound and even blood pressures, etc.)  

3.1.1 Heart	
  sound	
  	
  

Heart sounds are generated by the beating heart and the flow of blood through the heart. 

These auditory vibrations reflect the heart condition through its intensity, frequency, quality, and 

duration [94]. The recording of heart sound is called phonocardiography (PCG).  There are 

several other terminologies related to heart sound monitoring such as seismocardiography (SCG), 

which refers to the measurement of chest vibration induced by heart beats.  In some sense, SCG 

can be considered as the low-frequency components of heart sounds.  

Typical signals to look for in the normal heart sound are the first heart sound (S1) and the 

second heart sound (S2). These two sounds are related to closure of the mitral and tricuspid 

valves. In a patient with heart diseases, a variety of additional signals are presented, such as heart 

murmurs, S1 split, S2 split, the third heart sound (S3) and the fourth heart sound (S4).   

While electrocardiographic (EKG) method is a popular tool in heart examination in hospital 

nowadays, there are some heart diseases which are difficult to diagnose through EKG signal such 
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as the structural abnormalities in heart valves.  This kind of defects is not reflected on the 

electronic signal of the heart, but causes changes in vibration/acoustic signals. In such cases, 

heart sounds provide important diagnostic information.  

Therefore, heart sound monitoring could offer significant clinical value. One application is to 

monitor the congestive heart failure development through S3 in the patient heart sound [95-97]. 

S3 reflects heart features such as decreased cardiac output, reduced ejection fraction and elevated 

end-diastolic pressures that commonly occur in heart failure.  However, the weak intensity, short 

duration and low frequency (typically in the range 10-70Hz) characteristics of the third heart 

sound make it very difficult to be captured and identified by human ears through traditional 

auscultation devices such as stethoscopes. This also results high diagnosis disagreement among 

physicians.  However, this problem can be addressed by utilizing highly sensitive accelerometers 

and computer aided method to capture and identify S3 more effectively [95, 97, 98].   

Detection of coronary artery disease from heart sounds has been investigated [65, 99, 100].  

Coronary artery disease occurs when the coronary arteries are thickened or narrowed by 

deposited plagues.  It is hypothesized that the occluded arteries lead to restricted blood flow 

which accordingly generate characteristic turbulent sounds [99].  

There have been many efforts on extracting blood pressure from heart sounds [101-106].  If 

successful, this will provide a noninvasive method to continuously measure blood pressure, 

making significant impact on the management of cardiovascular diseases.  For example, Zhang 

et al. proposed that the timing of the second heart sound is related to aortic blood pressure [104].  

Imtiaz et al. measured SCG using a MEMS accelerometer and tried to find a correlation between 
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SCG and systolic blood pressure [30].  The reflected wave transit time (RWTT) extracted from 

arterial acceleration signals was found to be strongly coupled with the systolic blood pressure 

[107].    

There are many other parameters can be extracted from heart sound.  For example, changes 

in the left ventricular function have been correlated the changes of heart sounds or SCG [72]. 

Bombardini et al. derived diastolic times and the diastolic/systolic time ratio from first and 

second heart sounds recorded by an accelerometer [26].  More detailed discussion of clinical 

significance of heart sounds can be found in [31].  

3.1.2 Fetal	
  monitoring	
  	
  

By picking up the acoustic signal of the fetus transabdominally, accelerometers can also be 

used to monitor the heart beats/sounds or movements of fetus.  Because the strength of the 

acoustic signal generated from the fetus depends on the week of the gestation and the weight of 

the fetus, the signal can be too weak to be detected in early gestation. The phonocardiography 

(PCG) method normally becomes viable after the 30th week of gestation, and in some cases, as 

early as in the 28th week [108]. 

Compared with the traditional cardiotocography (CTG) based on the ultrasonic techniques, 

the acoustic based fetal PCG has the following advantages. First, enabled by accelerometers, it is 

a lost-cost, easy-to-carry-out fetal surveillance method, which is especially desirable in 

developing countries.  One of such application is to detect fetal congenital heart diseases  [109].  

In [109], Kovacs et al. presented a signal processing method for murmur discovery from fetal 

PCG, and demonstrated its potential as a screening technology for the discovery of congenital 
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heart disease through the cardiac murmurs[108].  Another advantage of fetal PCG is that the 

acoustic measurement is totally passive and suitable for long term and safe use.  

There are also two major challenges for acoustic based fetal PCG. First, because the fetal 

heart sound is very weak and contains mainly low frequency components (35-110Hz) [110], the 

acoustic sensor such as accelerometer needs to be designed with a very high sensitivity in the 

low frequency range to provide a reliable recording for detailed sound analysis. The second 

challenge is to develop a robust signal processing method to extract useful information in fetal 

heart sound from the contaminated signal mixed with the maternal heart sound, digestive system 

artifacts, etc. 

Fetal movement is another immediate indicator of fetus’s wellbeing.  The spontaneous 

movement reflects the early development of the fetus’s central nervous system.  For example, 

study has shown that decreasing in fetal movement is associated with fetal distress and placental 

dysfunction [111].  Moreover, the defection such as chromosome abnormalities, anencephaly, 

and cerebral malformations could also cause abnormal fetal movement[112].  

Fetal movement can be captured by placing a small acoustic sensor on the mother's abdomen.  

An ambulatory accelerometer-based fetal activity monitor (AFAM) for continuous fetal 

movement monitoring, and the detection and quantitatively characterization of fetal movements 

has been developed [113, 114].  

3.1.3 Respiratory	
  sound	
  	
  

The specific sound caused by friction of air against the lining of the airways through the lung 

fields is known as lung sound or respiratory sound. It is a fairly week acoustic signal with a 
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vibration amplitude less than 10 um.  The intensity, spectrum, and dynamics of lung sound 

provide critical information in diagnosing respiratory diseases such as asthma, tuberculosis, 

bronchitis and influenza [115-118]. For example, the median frequency (F50) of the lung sound 

was higher in asthmatic patients (239 Hz) than in healthy individuals (206 Hz)[116, 118, 119]. 

Another example is to detect flow obstruction during bronchial provocation testing for young 

patients since it does not require maximal breathing effort[119].  

Because of its miniature size and low cost, accelerometer is a great tool for continuous 

respiratory sound monitoring.  It has been widely used to detect wheezing sounds for asthma and 

chronic obstructive pulmonary disease [48, 51, 53, 54, 58]. Other applications such as 

monitoring of regional ventilation by chest surface acoustical topography in the critical care 

could also be made possible with continuous multisite recording of respiratory sounds.  Sleep 

apnea study has also been carried by attaching an accelerometer on the suprasternal notch of 

subjects to measure respiratory and snoring sounds [75].  Bucklin et al. also reported the 

development of a sleep apnea screening technique based on a MEMS accelerometer [120]. The 

continuous respiratory sound monitoring will also play important roles in the operation room, by 

providing prompt information in situations of airway complications such as bronchial intubation, 

pulmonary edema and tube malfunctioning [121-123].  

Besides monitoring respiratory sounds alone, the combined information acquired through 

simultaneous monitoring of respiratory function, cardiac function, as well as activity level could 

together help greatly with certain disease diagnosis.  For instance, Mann et al. developed an 

accelerometer-based system for the detection of chronic obstructive pulmonary disorder (COPD) 

by simultaneous monitoring respiratory and activity signals [124].   
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More comprehensive discussion of clinical applications of lung sound monitoring can be 

found in [93].  

 

3.1.4 Technology	
  review	
  	
  

The following session gives a brief introduction of the technology used for cardio-

respiratory signal detection and the challenges of continuous monitoring of these signals. As we 

observed in the hospitals, the most common tool for acquiring the heart and lung sounds is the 

stethoscope. Since its inventory in France in 1816 by René Laennec, it remains simply conduits 

for sound conduction between the body surface and the ears. The modern stethoscope could be 

categorized into two types: acoustic and electronic. The patient’s heart and lung sound transmit 

from a chest piece, via air-filled hollow tubes, to the listener's ears. Because it relies on the 

mechanical structure which is frequency dependent to amplify the weak cardio-respiratory sound, 

the chest piece normally consists of two sensing side: a diaphragm to transmit higher frequency 

sounds and a bell to transmit low frequency sounds. Still, it is a less than ideal acoustic 

instrument because of the colored transmission of sounds[119]. Unlike acoustic stethoscopes, the 

electronic stethoscope uses transducer such as microphone to pick up the sound amplified by the 

air chamber as shown in figure 3.1. Some other technics include placing a piezo-electric crystal 

within foam behind a thick rubber-like diaphragm, or using an electromagnetic diaphragm with a 

conductive inner surface to form a capacitive sensor[119]. 

Despite the fact that electronic stethoscope has enabled PC-based analysis, which could 

interpret the cardiologic, and respiratory signals according to related algorithms, the stethoscope 
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still suffers from several drawbacks. First, the difference in the sizes and the shapes of coupling 

chambers could affect the overall frequency response. Secondly, the stethoscope suffers from 

ambient noise interference heavily. For instance, to record the signals, the stethoscope typically 

needs to be held against the skin by hands. This will lead to friction noise and make the detection 

of weak acoustic signals, such as lung sounds, more challenging. What’s more, the stethoscope is 

only suitable for intermittent auscultation due to its bulky size.  

 

Figure 3.1 A schematic drawing of the operating principle of the stethoscope after [92] 

Another approach of detecting heart/lung sounds is based on the accelerometer which is a 

spring mass system[66, 67, 92, 125]. Compared with the stethoscope, the miniaturized 

accelerometer can be taped on the chest wall for a more convenient and continuous cardio-

respiratory monitoring. However, because it is in direct contact with the skin and does not have 

an air chamber to couple and amplify the acoustic signal, the accelerometer itself needs to have a 

very high sensitivity. There have been many efforts in the development of accelerometer based 

acoustic sensors for heart/lung sound monitoring. Some researchers have used off-the-shelf 

accelerometers to detect heart/lung sounds. However, these off-the-shelf sensors are either too 

microphone

Skin 

x1

x2
Air chamber
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bulky or not sensitive enough to capture the details of heart sounds, let alone lung sounds. The 

accelerometer with the resolution of over 1µg/Hz1/2 is required for such measurement. As 

discussed earlier, the lack of continuous lung sound monitoring is mainly due to the immaturity 

of the sensor technology in this field. Therefore, the development of a sensitive accelerometer 

could potentially open doors to various clinical and healthcare applications.  

 

In this chapter, an ultra sensitive piezoelectric accelerometer is proposed to address this 

issue. It could provide a platform for heart failure patient remote monitoring, continuous asthma 

monitoring, the assessment of drug effectiveness for pain management in cancer patients, etc. 

[126-133]. What’s more, its miniature size also makes it a perfect candidate for vital sign 

monitoring among the remote military personnel.  

3.1.5 Challenges	
  and	
  prospect	
  	
  

There are a number of technical challenges the accelerometer-based mobile monitoring 

systems are facing.  The first challenge is motion noises and artifacts.  Compared with 

microphones, accelerometers are more sensitive to motion noises and artifacts.  Some algorithms 

have developed to remove motion artifacts.  For example, Pandia et al. reported a method that 

effectively extracts heart sound signals from accelerometer data overwhelmed by motion artifacts 

[25].  Friction noise, which can be generated between the sensor and the skin or between clothes 

and the sensor, is more detrimental than motion noise.  There are a number of methods to reduce 

or prevent friction noise including employing low friction noise wire and coating super slippery 

film on the sensor surface.  Alternatively, the sensors can be fixed to cloth to minimize friction. 
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For mobile or wearable applications, the power source is always a challenge.  Currently, 

battery is still the main power source for accelerometer-based mobile health monitors.  There are 

numerous efforts on developing energy scavenging methods to power wireless sensors without 

the battery [134-136].  The practical power harvested is typically at microwatt (µW) level. 

However, most accelerometer-based monitoring systems consume power above milliwatt (mW) 

level.  The majority of the power is consumed by the readout circuits and wireless transmission 

of data.  Low-power electronics is an active research topic currently. However, it is worth noting 

that there is a tradeoff between the power and the noise of the readout circuits.   An amplifier 

with lower power typically has a higher noise level.  Since wireless transmission of data 

consumes significant amount of power, it is beneficial to integrate on-chip signal processing or 

storage capabilities.  

A key question in this field is probably whether or not clinical relevant information can be 

extracted from acoustic/vibration signals captured by the accelerometers.  There are currently 

many contradictory conclusions in the literature.  For example, the clinical value of GI sounds 

has been challenged by a few researchers [137, 138].   This is probably due to one or more of the 

following issues: (1) the sensor is not good enough to capture some subtle signals that contain 

useful information; (2) the signal captured is corrupted by noises; and (3) there are not 

satisfactory models that associate the acoustic signatures with specific diseases or clinical 

conditions.   

To further advance this field, we believe that more sensitive sensors need to be developed to 

capture subtle signals.  In addition to MEMS sensors, conventional accelerometers will play 
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important roles as well.  For the conventional accelerometers, the battery and readout circuits can 

be integrated on the proof mass.  Therefore, the overall size of conventional accelerometers still 

can be kept small enough for wearable applications.   Noise reduction/cancellation algorithms 

and hardware need to be further investigated.   

We also envision that various sensors will be integrated with accelerometers to enable 

multiple-parameter monitoring. For instance, ECG electrodes and oximeter can be integrated 

with wearable accelerometers to simultaneously detect ECG, blood oxygen, and PCG.     

One major obstacle that prevents the wide acceptance of wearable healthcare is probably the 

inconvenience of wearing the sensor on a daily basis.  One approach to address this issue is to 

integrate sensors to garments, such as the MagIC system [21, 23].  However, smart garments will 

not be as convenient as regular garments in the foreseeable near future.  Therefore, un-obtrusive 

monitoring, such as BCG monitoring on chairs or beds, probably can be more easily accepted by 

patients or consumers. 

3.2 Design	
  

3.2.1 Structure	
  

The piezoelectric accelerometer is based on an asymmetric-gapped cantilever which is 

composed of a bottom mechanical layer and a top piezoelectric layer separated by a gap as 

shown in Fig. 2.1(a). As discussed in chapter 2, because the mechanical strain experienced by the 

top piezoelectric layer is proportional to the distance between the top beam and the neutral plane, 

the sensitivity is greatly increased in the gapped cantilever structure case. A meso scale 

prototype is designed and the respective geometric and material properties are listed in Table 3.2.  



54	
  

	
  

	
  

Following the theoretical model in chapter 2, a resonant frequency of 1100Hz and an average 

normal strain of 5.23 ×10-5
 on the top piezoresistive beam (with 1 g vertical acceleration) are 

calculated. 

Table 3.1 Geometric and material properties of bottom beam, top beam and proof mass of the 

asymmetric-gapped cantilever. 

 Bottom beam  Top  beam  Proof mass  

Length (mm) 4 4 20 

Width (mm) 15 2 15 

Thickness (mm) 0.7 0.127 3 

Young’s modulus (GPa) 69 66 69 

Density (kg/m3)  2700 7700 2700 

 

3.2.2 FEA	
  simulation	
  	
  

Finite element simulation is also carried out to verify the analytical calculations.  The 

comparison result is summarized in Table 3.2.  The simulation agrees well with analytical model 

with errors less than 10% for both ideal and real cases.   

Table 3.2 Analytical and simulation results for both ideal and real cases 

 Analytical 
Simulation 

(ideal) 

Difference 

(%) 

Simulation 

(real) 

Difference 

(%) 
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Normal strain 5.23×10-5 5.35×10-5 2 5.27×10-5 1 

Resonant 

frequency (Hz) 
1100 1175 7 1148 4 

 

 

3.3 Characterization	
  	
  

The packaged piezoelectric accelerometer is placed on a mechanical shaker (Labworks, 

ET-126B) and characterized by comparing the output with a commercial accelerometer (Model 

752A13, Endevco) as shown in Fig. 3.2. The dimension of the accelerometer under 

characterization is given in section 3.2.1. The overall weight for the packaged sensor is only 5 

gram with the size of 35mm×18mm×7.8mm (l×w×t). Figure 3.3 show a picture of the packaged 

prototype compared with a penny.  
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Figure 3.2 The packaged device was mounted on a mechanical shaker. A commercial 

accelerometer was used to calibrate the acceleration. 
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Figure 3.3 Prototype compared with a penny 

3.3.1 Signal	
  processing	
  circuit	
  

As we discussed in session 2.5.1, charge amplifier is usually used for amplifying the 

signal from high capacitance source such as piezoelectric transducers. OPA 129 from Texas 

Instrument (TI) is an ultra-low bias current monolithic operational amplifier. It uses an advanced 

geometry dielectrically-isolated FET (Difet®) inputs to eliminate isolation-junction leakage 

current and reduce the input bias current by a factor of 10 to 100. The ultra-low current helps to 

reduce voltage drift and saturation which makes it a perfect candidate for amplifying high 

impedance signal. Therefore, a charge amplifier circuit employing OPA 129 is designed with a 

1G ohm feedback resister and 10pf feedback capacitor as shown in Fig. 3.4 (a). This circuit 
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yields a low cutoff frequency of 16Hz which is satisfactory for heart and lung sound monitoring. 

Since the input capacitance of the piezoelectric transducer is about 1nf, the gain is estimated to 

be about 100.  

Another important issue to note is the input guarding for ultra-low input bias current op 

amps. Without proper input guarding, the leakage current on the surface of circuit board is 

possible to exceed the input bias current of the amplifier or even 100 times higher. Therefore, we 

designed a guard trace to completely surround the input terminals and other circuitry connecting 

to the inputs of the op amp to minimize the surface leakage.  

What’s more, to avoid noise generated by the triboelectric effects (friction-generated 

charge), the PCB board with the circuit on is placed on the proof mass of the cantilever structure 

and shielded in the aluminum package as shown in Fig. 3.4 (b). Finally, the output of the 

amplifier is recorded by a 12-bit data acquisition board (National Instrument NI 4461) and 

further read onto computer through NI Labview software. 
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Figure 3.4  (a) Amplifier circuit design (b) Inside view of the prototype with the PCB board on 

the proof mass 

3.3.2 3.3.2	
  Resonant	
  frequency	
  	
  

The frequency response of the accelerometer is shown in Fig. 3.5.  The accelerometer has 

a resonant frequency of about 1100Hz, which is higher than the heart sound frequency range.

 

Figure 3.5 Frequency response of the accelerometer under 1 g acceleration. A resonant 

frequency of 1100Hz and a quality factor of  80 were measured. 
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3.3.3 Sensitivity	
  	
  

Since the packaged prototype is rectangular shape, the sensitivities are measured in x, y 

and z three axis as shown in Fig 3.6. While the usable sensitivity in z direction should be as high 

as possible, the sensitivity in the other two directions should be minimized to reduce the air-

borne noise. By placing the prototype on the mechanical shaker and characterized using a 

commercial accelerometer (Model 752A13, Endevco), the sensitivities in three axis are measured 

as 64.5V/g in z axis, 11.6V/g in y axis and 5.1V/g in x axis. The z axis sensitivity is dominant as 

desired. Since the voltage sensitivity at the input of the amplifier could be expressed as  

𝑆!" =
𝑑!"𝐸!𝜀!𝐴

𝐶𝑔 = 0.538  𝑉/𝑔 

Considering the 100× amplifier gain, the theoretical sensitivity at the output of the 

amplifier is 53.8 V/g which is slightly lower than the experimental value 64.5V/g in z axis.  This 

discrepancy could be caused by the following reasons. First, the actual capacitance of the 

piezoelectric sheet might be reduced during the assembling which would result in a higher 

amplifier gain. Secondly, the actual piezoelectric coefficient might vary slightly from the product 

datasheet which is pretty common for piezoelectric materials because it is hard to control the 

consistency of the manufacturing condition. Also, the shielding aluminum box might resonant 

and amplify the vibration slightly.   
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Figure 3.6 Sensor positioned in x, y, z three directions. 

3.3.4 Noise	
  

Noise is another critical issue for piezoelectric transducers. As discussed in session 2.4, 

there are three basic noise sources for piezoelectric accelerometers: amplifier noise, thermal 

electrical noise and thermal mechanical noise. In the real application, however, the noise sources 

are much broader. The mechanical vibration from the environment, if not isolated, is also a 

significant noise source to the transducer. What’s, for a particular application such as heart sound 

monitoring, all other irrelevant vibration including breathing sound, talking, body movement and 

clothes friction are all considered as noise source and needs to be minimized.  

In order to measure the noise level at the real operation environment as well as the true 

basic intrinsic noise level of the designed accelerometer, three experiments are carried out. The 

sensor is placed in regular lab table, in acoustic isolation room table and in acoustic isolation 



63	
  

	
  

	
  

room suspended on a wire. And the respective noise power spectrum is shown in Fig. 3.7 (a), (b) 

and (c). As we can tell in Fig. 3.7(a), the overall noise level is the highest among the three 

figures. There are a lot of random noise peaks at low frequency range. And a significant peak at 

the resonant frequency 1100Hz. This is mainly due to the various noise sources in the testing 

environment such as power line, room fans, engine sounds, people talking, etc. To minimize 

most of the acoustic noise from the surrounding, the sensor is placed on the table in the acoustic 

isolation room. As shown in Fig 3.7(b), the overall noise level is lower and the peak at the 

resonant frequency is much smaller. However, there is still a lot of low frequency noise below 

100Hz. This is mainly due to the mechanical vibration noise transmitted through the table such 

as building vibration. To further reduce these noises, the sensor is suspended on an elastic wire in 

the acoustic isolation room. As shown in Fig 3.7(c), the noise level between 10Hz and 100Hz is 

reduced significantly. The noise spectrum density is estimated at 3𝜇𝑉/ 𝐻𝑧. This is still not the 

intrinsic noise level because of the low frequency background noise could not be totally isolated. 

Further noise cancellation mechanism could be employed in the signal processing to reduce the 

common mode background noise to reach the intrinsic noise level.  
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(a) 

 

(b) 
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Figure 3.7 Noise in different environment (a) in lab;  (b) in acoustic isolation room, sensor 

placed on chair;  (c) in acoustic isolation room, sensor suspended in air. 

Another kind of noise for the packaged prototype is the airborne noise transmitted 

through the aluminum package. In the heart sound monitoring, the only useful signal is 

transmitted through the side of the package which is attached to the skin/clothes. Therefore, it is 

undesirable if other sides of the package couple the airborne noise into the sensor. To test 

whether the package of the sensor introduces a significant level of airborne noise, the following 

comparison experiment is carried out. By using a speaker set at 700Hz output as a constant noise 

source, the sensor is first placed on the same table as the speaker, and then suspended in the air 

keeping the distance from the speaker unchanged. The result is shown in Fig. 3.8. The peak at 

700Hz shows the responsive sensitivity of the sensor to the speaker signal. As we see, the signal 

amplitude transmitted through table is about 30 times higher than through air which means the 
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packaged sensor is much more sensitive to the signal transmitted through the contact surface than 

airborne noise.  

 

 

(a) 

 

Figure 3.8 Airborne noise tested in the environment with 700Hz noise generated by speaker. The 

sensor is placed (a) on the table; (b) suspended in air 
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3.4 Preliminary	
  tests	
  

Preliminarily tests for recording both heart and lung sounds are carried out on healthy 

volunteers and heart failure patients in a regular laboratory environment. The data from the 

sensor is transferred to a PC through data acquisition board (NI USB 6210) and further processed 

by LabVIEW® and MATLAB®. The sampling rate is set at 2 kHz for heart sound monitoring and 

4 kHz for lung sound monitoring. A comparison is made between the asymmetrical gapped 

accelerometer and a high-end electronic stethoscope (3M Littman 3200) in detecting heart and 

lung sounds. For both accelerometer and stethoscope data, a filter with a bandwidth from 20 Hz 

to 500 Hz is applied to extract the heart sound and a filter with a bandwidth from 350 Hz to 1000 

Hz is applied to extract the lung sound. The device location is chosen to be the 5th intercostal 

space to the left just lateral to the sternum (right AV auscultation) for cardiac signal detection 

and a right anterior intercostal space above the level of the 3rd rib for respiratory signal detection. 

Figure 3.9 shows the visible differences in signal quality between the asymmetrical 

gapped accelerometer and the electronic stethoscope in cardiac sound detection.  The signal-to-

noise ratio of the designed sensor is about two times higher.  Fig. 3.10 plots the lung sounds 

recorded by our sensor and the electronic stethoscope for regular gentle breathing.  Note that 

lung sounds are much weaker than heart sounds and thus are more difficult to detect, especially 

for a gentle breathing. As can be observed in Fig. 3.10 (b), the lung sound can hardly be 

distinguished in the signals captured by the stethoscope.  In comparison, the lung sound can be 

clearly detected by our sensor. It is also worth noting that these measurements were carried out 

in a regular laboratory environment full of air-borne noises. It can be observed that our sensor is 
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not very sensitive to air-borne noise. This preliminarily demonstrated that the designed 

accelerometer has satisfactory performance in monitoring heart and lung sound.    
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Figure 3.9 Sample waveforms of heart sound: (a) detected by our new accelerometer; (b) 

detected by an electronic stethoscope. 
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Figure 3.10 Sample waveforms of lung sound: (a) detected by our new accelerometer; (b) 

detected by an electronic stethoscope. 

 

 In order to demonstrate the clinical information the sensor could potential provides, it is 

used to record the heart sounds of heart failure patient before and after receiving treatment.  The 

comparison heart sounds are presented in Fig. 3.11.  Besides the time domain waveform, a 

wavelet analysis is also presented to show the frequency components of the heart sounds.  Unlike 

healthy people who only have two heart sounds S1 and S2 within one heart beat cycle, heart 

failure patient also has the third heart sound S3 which is normally diminished during the 

recovery. Therefore, S3 could be used as a signature signal for evaluating the heart failure 

development.  In Fig. 3.11 (a), the S3, which is marked with blue circle, is more prominent 

compared with the corresponding signal in Fig. 3.11 (b).  This change could also be seen on the 

wavelet analysis graph.  This result could be explained by the fact that the heart function has 

been improved after receiving the treatment.  From the proof of concept experiment, we 

demonstrated the potential of such heart sound measurement being used to evaluate the heart 

failure recovery and the effectiveness of the treatment.  
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Figure 3.11 Sample waveforms of heart sounds of heart failure patient: (a) before treatment; (b) 

after treatment 

 

3.5 	
  Summary	
  	
  

Meso scale piezoelectric accelerometer based on gapped cantilever structure is developed 

in this chapter.  It is designed to for the purpose of continuously recording cardio and respiratory 

sound which could provide critical clinical information.  The theoretical design is further verified 

by the finite element simulation.  The machined prototype is successfully characterized, and the 

experimental result agrees well with analytical and simulation result.  Moreover, a comparison 

test is carried out by using the developed accelerometer and the commercial digital stethoscope 

to monitor heart sound on a healthy individual simultaneously.  The result shows that the 

developed accelerometer yields a much better signal to noise ratio.  The sensor is also briefly 

tested on heart failure patient to acquire comparison heart sounds before and after treatment in 

order to demonstrate its potential for evaluating heart failure recovery process.  

There are also a few remaining tasks to be addressed in the future work. For example, the 

mass loading effect should be studied and considered in the future design for coupling the 

physiological acoustic source more effectively to the sensor. Noise corruption is another 

important issue to be addressed.  For example, the friction noise between the sensor surface and 

the clothes could be reduced by applying either low friction film or super high friction gel on the 

sensor surface.  What’s more, removing artifact noises such as speaking sound, body movement 

through advanced signal processing techniques is also critical for recovering useful information 
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in the acquired signal. Finally, more quantitative analysis on categorizing different information 

in heart sound also needs to be further studied.   
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CHAPTER 4 LOW FREQUENCY VIBRATION SENSING AND 
BCG MONITORING  

4.1 Introduction	
  

Low-frequency vibration sensors are of great interest for various applications such as 

structural health monitoring, landslide monitoring, earthquake monitoring, oil exploration, and 

biomedical monitoring[139-142].  There are already many sensors developed to detect low-

frequency vibrations by measuring displacement, velocity or acceleration [12, 139, 143-145].  

They are light in weight, built compactly and can save the power consumption of measuring 

instrument.  

However, there is a design tradeoff between the weight of the sensor and its minimum 

detectable acceleration. Some researchers developed light weight MEMS accelerometers with 

limited resolution[146-148]. While others try to decrease the noise floor by using a large size and 

heavy weight system. For example, the vibration sensor comprised of a cylindrical shape with 65 

mm diameter, 70 mm height, and 800 gm weight is developed to achieve higher resolution.  

Therefore, an opportunity exists for a lightweight accelerometer with low noise floor at 

low frequency to be developed. In this chapter, an accelerometer based on cascaded structure is 

designed and tested for this purpose. 

4.1.1 Ballistocardiogaph	
  (BCG)	
  monitoring	
  	
  

Ballistocardiograph (BCG) refers to the measurement of the repetitive human body 

displacement caused by the heart beat and blood ejection [149].  BCG provides some valuable 

information about cardiovascular function, such as the contractility of myocardia [150]. 
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Compared with other technologies, the main advantage of BCG is that it can provide an 

unobtrusive way to monitor the heart condition since sensors do not need to be in direct contact 

with the human body.  In this sense, it is more convenient to use than wearable sensors.  

Historically, BCG was measured using large-size equipment such as a swing bed or table [151].  

Recently, piezoelectric films, which function as force sensors, have been embedded in chairs to 

detect BCG signals [152].  A modified commercially available weight scale has been used to 

acquire BCG [153].   

Accelerometers have also been used for BCG measurement.  For example, He et al. used a 3-

axis MEMS accelerometer (Bosch BMA180) to measure BCG on head [29].  Prisk et al. reported 

the measurement of 3D BCG using a 3D accelerometer during a space flight [76].  It was 

reported that the greatest BCG acceleration was about 7 mg in the head to foot direction.  The 

acceleration along the dorso-ventral axis is about 4.3 mg.  The majority energy of BCG signal is 

in the infrasound range.  Therefore, accelerometers for BCG need to have good performance at 

low frequency band.  It is also possible to detect BCG by attaching an accelerometer to a chair or 

bed, thus enabling un-obtrusive cardiovascular monitoring.    

4.1.2 Seismic	
  monitoring	
  	
  

Accelerometers also provide the high quality seismic measurement to evaluate the 

viability of new wells in oil and gas industry. While the traditional geophones are widely used in 

the industry, its performance rolls off at frequency below 10Hz[141]. In comparison, low 

frequency accelerometers are light in weight, more compact and consume less power.  Moreover, 

their small distortion in phase spectrum and linear response in low frequency band are greatly 

desired in ground motion measurements as well.  By utilizing a high performance low frequency 
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accelerometer, the wasted cost of locating and drilling nonproductive wells could potentially be 

reduced.  

4.2 Design	
  

4.2.1 Structure	
  

A low-frequency vibration sensor based on a cascaded asymmetric-gapped cantilever structure 

has been developed.  The basic asymmetric-gapped cantilever has been previously demonstrated 

for high-performance accelerometers [86, 154].  Such a structure is able to increase the 

sensitivity and improve the energy efficiency significantly [85, 155].  However, one limitation is 

that the gapped cantilever tends to have a high spring constant which is not desired for low 

frequency sensing.  The effective spring constant of the basic asymmetric-gapped cantilever can 

be estimated by the following formula:  

     (4.1) 

 

For low-frequency vibration sensing, the spring constant needs to be reduced to achieve a 

high sensitivity.  Based on Eq. (45), this in theory can be accomplished by reducing the cross 

sectional area of the sensing beam A2.  Practically, this will make the manufacturing or 

fabrication of the sensor challenging and pose reliability issues.  Alternatively, we can increase 

the cantilever length l.  However, this will make the shear deformation of the asymmetric-gapped 

cantilever dominant and reduce the energy efficiency.  To address this issue, we developed a 
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simple but effective cascaded asymmetric-gapped cantilever to lower the spring constant while 

maintaining the dominance of pure bending.  A design based on a four-stage cascaded gapped 

cantilever is schematically illustrated in Fig. 4.1.  Both the top and bottom beams are divided 

into two splits placed apart from each other to subdue the undesirable torsional and lateral 

movements.   

 

Figure 4.1 Schematic of a low-frequency accelerometer based on a four-stage cascaded 

asymmetric-gapped cantilever structure. 

To simplify the analytical model, we neglect the shear bending of the cantilever, the 

deformation of the proof mass and the supporting ridges, the mass of the beams and supporting 

structures, and assume the mass is concentrated at the center of the proof mass.  With these 

simplifications, the resonant frequency is approximately:  

𝑓! =
!
!!

!!
!

     (4.2) 

It is expected that the real resonant frequency will be lower than the value predicted by Eq. (4.2) 

because of the simplifications.  
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The voltage sensitivity can be calculated by
        

 

𝑆! =
!
!
= !!!"!!!!

!!!!
𝑠!    (4.3) 

where λ is the ratio of effective piezoelectric beam length and the total length, d31 is the 

transverse piezoelectric coefficient, ε3 is the relative dielectric constant of PZT in direction 3, s2 

is the normal strain given by Eq. (4.3).  

 For a specific design with the parameters summarized in Table 4.1, the estimated theoretical 

resonant frequency is 109Hz, and the voltage sensitivity is 12.1V/g.  

Table 4.1 The prototype design parameters 

 Top beam Bottom beam Proof mass 

Length (mm) 10 10 72 

Width (mm) 4 18 39 

Thickness (mm) 0.5 1 5.1 

Material  PZT Aluminum Aluminum 

Young’s modulus (GPa) 66  69  69  

Density (×103 kg/m3) 7.8 2.7 2.7 

 

 

4.2.2 FEA	
  simulation	
  	
  

Finite Element Analysis (FEA) simulation was carried out to study the performance of the 

cascaded asymmetric-gapped cantilever using COMSOL 4.3a. For the design specified in Table 
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4.1, the simulated resonant frequency and voltage sensitivity are 88 Hz and 9.9 V/g respectively 

assuming perfect bonding between the piezoelectric beams and the aluminum substrate and 

ridges.  As expected, the resonant frequency from FEA simulation is lower than the value 

calculated from Eq. (4.2).  In order to illustrate the advantage of using the cascaded structure in 

low-frequency sensing, a single stage gapped cantilever with the same resonant frequency is also 

simulated for comparison.  Fig. 4.2 (a) and (b) show the bending shapes of the first resonant 

mode of both structures.  As observed in Fig. 4.2 (a), the cascaded structure is dominated by pure 

bending which is the desired bending shape. In contrast, the deflection of the single stage 

structure in Fig. 4.2 (b) is dominated by shear bending which does not generate output voltage 

effectively. Fig. 4.2 (c) also shows the second and third resonant modes of the cascaded 

cantilever at 403 Hz and 620 Hz, respectively, which are far away from the fundamental mode 

due to the split beams. 

 

 

(a) 
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(b) 

 

Figure 4.2 (a) The first resonant mode of a four-stage cascaded asymmetric-gapped cantilever; 

(b) the first resonant mode of single stage asymmetric-gapped cantilever; (c) the second and third 

resonant modes of the cascaded asymmetric-gapped cantilever.  

4.3 Characterization	
  	
  

A prototype device with the design specified in Table 4.1 was constructed and characterized.  

An aluminum piece was machined to form the proof mass, bottom mechanical beams and the 

supporting ridges of the device. Ceramic PZT (Lead zirconium titanate) sheets (Piezo Systems, 
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#PSI-5A4E), which function as strain sensing element, were bonded to the machined aluminum 

substrate using adhesive epoxy (3M DP-100-CLEAR).  Note that the epoxy has a much lower 

Young’s modulus compared with PZT and aluminum.  For the frequency response measurement, 

the device was mounted on a mechanical shaker (Labworks, Inc ET-126B-1) together with a 

reference accelerometer (Endevco, Model 4416B) to calibrate the acceleration as shown in Fig. 

4.3. The output voltage of PZT sheets was recorded using a data acquisition board (National 

Instrument, USB 6210) with a sampling rate of 2000Hz as the vibration frequency swept from 10 

Hz to 130 Hz.   

4.3.1 Resonant	
  frequency	
  and	
  sensitivity	
  

The acquired experiment data was plotted in Fig. 4.4 and fitted with the transfer function of a 

second order system.  The fitted resonant frequency f0 and the quality factor Q are 53.6 Hz and 

20, respectively. The low frequency sensitivity (before any amplification) is estimated to be 8.4 

V/g.  Note that the experimental resonant frequency is lower than the original simulation result.  

We believe that it is mainly because the epoxy layer between the PZT and aluminum has a much 

lower Young’s modulus and thus reduces the resonant frequency [156].  To verify this 

hypothesis, we studied a revised FEA model with a 100 µm thick epoxy layer with 0.3 GPa 

Young’s modulus added at all contact areas between PZT and aluminum.  The simulated 

resonant frequency and the voltage sensitivity of the new model are 57 Hz and 8.9 V/g, which 

are much closer to the experimental values.  This illustrates that the epoxy layer does have a 

significant impact on the sensor performance.  
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Figure 4.3 Prototype device mounted on a shaker together with the reference accelerometer 
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Figure 4.4 Frequency response of the designed accelerometer. 

 

4.3.2 Noise	
  

The noise floor, which determines the minimum detectable acceleration, is a critical parameter 

for the detection of weak vibrations.  To measure the noise floor, two identical charge amplifiers 

using TI opa129 were constructed to amplify the output of the two piezoelectric beams. The 

feedback resistor and capacitor of the charge amplifier are 1GΩ and 50 pF, respectively, yielding 

a lower 3dB frequency of 3.2Hz. There are mainly three noise sources for the piezoelectric 

accelerometer: the amplifier noise, the thermal-mechanical noise and the dielectric noise of the 

piezoelectric material. Considering these three noise sources, the noise equivalent acceleration is 

calculated by [90]  
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𝑎! = 4𝑘!𝑇
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!
                                                     (4.4) 

where kB is Boltzman’s constant, T = 300 °C is the temperature, m =40 g is the proof mass, f0 

=54 is the resonant frequency, Q =20 is the quality factor of the harmonic oscillator, f is the 

vibration frequency, C=3.1 nF is the capacitance of the transducer, η=0.02 is the loss angle of 

the PZT [12], en is the noise spectrum density of the TI opa 129 amplifier and SV =8.4 V/g is the 

transducer’s voltage sensitivity. Note that the amplifier noise is the dominant noise source in the 

low frequency range for this specific design.  Based on Eq. (4.4), the theoretical noise equivalent 

acceleration is calculated and plotted in Fig. 4.5 (a). 

The voltage noise spectrum of the accelerometer was measured using a NI-USB 6210 data 

acquisition board. The noise equivalent acceleration (NEA) was obtained by dividing the voltage 

noise spectrum by the fitted voltage sensitivity.  In order to reduce the background noise 

interference from the environment, the senor was wrapped with foams and placed on a vibration 

isolation table.  However, the background seismic noise is still well above the theoretical noise 

floor of the sensor as shown in Fig. 4.5 (a).  Therefore, we employed a coherence scaling method 

to cancel the background noises [157]. This method takes advantage of two identical sensors 

exposed to the same background stimuli.  The basic assumption is that the external noises 

generate coherent outputs on both sensors whereas the intrinsic noises generate un-correlated 

outputs. A much lower NEA can be calculated by removing the coherent component from the 

original signal [157].   

Since the two top sensing beams were designed to be identical and should vibrate in the same 
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mode below the resonant frequency, they were taken as the two inputs for the scaling method. As 

shown in Fig. 4.5(b), the coherence of two piezoelectric beams is above 0.95 between 10 Hz and 

50 Hz. Therefore, significant portions of the original NEA are correlated background noise and 

can be removed effectively by this method.  The scaled NEA in Fig. 4.5 (a) is much lower than 

the original measured NEA.  However, the outputs of two PZTs also have un-coherent external 

noises which cannot be cancelled by this method.  Therefore, the scaled NEA is still higher than 

the theoretical noise floor. The dips on the scaled NEA curve actually provide better 

approximation of the intrinsic noise floor.  For example, at 35 Hz, the scaled NEA reaches the 

theoretical intrinsic value.  The dip at 46 Hz is close to the intrinsic noise as well.   

One possible source of un-correlated noises at the low-frequency range could be drifting noise 

of amplifier circuits. With a better electronic design, we believe that the drifting noise can be 

significantly reduced.  
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(a)  

 

Figure 4.5 (a). Noise equivalent acceleration of the designed accelerometer. The initial measured 

NEA, the NEA scaled by the coherence and the theoretical noise floor are plotted for comparison. 

(b) Coherence between the two piezoelectric sensing beams  

 

4.4 Preliminary	
  tests	
  

The prototype device was evaluated for a real low-frequency sensing application: 

ballistocardiogaph (BCG) monitoring.  BCG is a non-invasive technique for assessing the 

cardiac function. It measures the movements of the body caused by the momentum of blood in 

the arterial system due to cardiac contraction [150, 158].  Because the BCG signal is relatively 
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weak compared with electrocardiogram or heart sound and the power is mainly below 20 Hz, 

recording BCG requires a low-frequency accelerometer with ultra-high sensitivity.  In this 

experiment, the sensor was mounted under the seat frame of a regular office chair to monitor the 

BCG signal of the subject sitting on it.   A heart sound sensor was attached to the subject’s chest 

to monitor the heart sound simultaneously[154].  The recorded BCG signal was filtered by a 20 

Hz low pass filter in LabVIEW.  Fig. 4.6 (a) shows a representative portion of the BCG 

measurement. The BCG signal can be clearly identified and further verified by the corresponding 

heart sound signal in Fig. 4.6 (b).  One representative BCG cycle in Fig. 4.6 (c) was enlarged to 

show the details of the signal and compared with a theoretical BCG signal [159, 160].  The 

extrema of the BCG waveform are denoted with letters F, G, H, I, J, K, L, M and N which 

matches the theoretical BCG waveform and its components very well.  These components of 

BCG waveform contain important information on the cardiac activity. For example, it could be 

used for measurement of systolic force (F) and minute cardiac force (MF) [161].  Studies also 

suggest that BCG can be used as a low-cost prescreening device in cardiology practice or clinical 

settings to avoid performing more expensive and time-consuming diagnostic techniques and as 

an unobtrusive technology for the management of cardiovascular disease at home [150, 158]. 
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Figure 4.6 (a) A representative portion of the experimental BCG signal acquired by the low-

frequency vibration sensor; (b) The corresponding heart sound signal with first heart sound (S1) 

and second heart sound (S2) denoted; (c) One BCG cycle was enlarged to show the details of the 

signal and compared with a theoretical BCG signal.  The extrema of the BCG waveform are 

denoted with letters F, G, H, I, J, K, L, M and N.  
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4.5 Conclusion	
  	
  

A low-cost and high-performance low frequency vibration sensor based on a cascaded 

asymmetric-gapped cantilever structure has been successfully demonstrated. The cascaded 

structure effectively reduces the spring constant and increases the sensitivity, while 

simultaneously minimizing the shear bending of the cantilever. A proof-of-concept prototype 

was constructed and tested. With a proof mass weight of 40 g, the sensor achieved an NEA close 

to theoretical value at 35 Hz. In the experiment, the coherent background noise was reduced 

significantly using the coherence method. The prototype sensor has successfully acquired clear 

BCG signals.   

In the future research, more study will be carried out to eliminate the low-frequency drifting 

noise of amplifiers to reach the theoretical noise floor.  New bonding methods such as solder 

bonding will be investigated as well.  
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CHAPTER 5 A WIDEBAND VIBRATION ENERGY 
HARVESTER BASED ON A FOLDED ASYMMETRIC-

GAPPED CANTILEVER 

5.1 Introduction	
  

With recent advances in low power electronics, harvesting useful energy from the ambient 

environment to power wireless sensors has attracted a lot of interests. Among different 

approaches, vibration energy harvesting is a popular choice since ambient mechanical vibration 

is ubiquitous. By converting vibration energy into electricity, a VEH can serve as a continuous 

power source to replace batteries in various wireless sensing applications. Currently most VEHs 

(typically a spring-mass system) are designed to operate at one resonant frequency, leading to a 

narrow operating bandwidth.  However, ambient vibration is normally wideband and time-

varying.  This makes the vibration energy harvesting very challenging because the VEH’s 

performance drops sharply when the frequency of ambient vibration deviates from VEH’s 

resonant frequency.  Furthermore, many VEHs do not generate an output voltage much larger 

than the threshold voltage of the rectifier diodes, thus resulting in significant energy loss during 

the rectification process.  Due to these reasons, vibration energy harvesting so far has not been 

widely used for practical applications.   

A number of methods have been proposed to broaden the VEH’s operation bandwidth.  One 

simple approach is to use multiple and independent spring-mass systems which have different 

resonant frequencies [162-164].  However, at every resonant frequency, only one proof mass is 

effectively utilized for energy harvesting.  Another approach is based on resonant frequency 
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tuning. It can be categorized as passive or active tunings based on whether additional power is 

used [165].  Passive tuning by manually adjusting a movable mass or changing preload to the 

cantilever beam has been proposed and investigated [165-168]. Active tuning is typically 

realized by integrating additional actuators and can achieve real-time tuning [169, 170]. The 

tradeoff is a system with higher complexity and cost.  Moreover, the actuators always consume 

power, which could be larger than the harvested power.  Another popular approach is based on 

non-linear vibrations, such as Duffing oscillation[171-173].  For example, when the 

displacement is large, a double-clamped beam can enter the nonlinear Duffing oscillation region 

due to the stretching force in the beam [171].   Non-linear vibration can also be induced using bi-

stable systems [174, 175].  However, the non-linear vibration only occurs under large vibration 

amplitude.  VEH based on meander-shape piezoelectric cantilever has been studied for wide-

band operation [176, 177].  Multi-mass multi-spring systems based on cascaded cantilevers have 

also been proposed and developed for wide band vibration operation [165, 178, 179].  For 

instance, a two-stage cascaded piezoelectric cantilever with two proof masses was investigated 

[178, 179].  The larger proof mass is placed on the first stage of the cantilever to ensure that the 

first two resonant modes are formed by the pure bending of the two piezoelectric segments.   

In this chapter, a wideband and high-efficiency VEH based on a multi-stage folded 

asymmetric-gapped cantilever is proposed.  The folded cantilever structure has been studied 

previously for vibration energy harvesting[180].  Wideband VEH based on a two-stage folded 

cantilever has been reported as well[181].  It is worth noting that the folded designs in [180] and 

[181] have shear bending modes which make it hard to predict the resonant modes and to harvest 

the energy effectively compared with pure bending.  To illustrate this point, I simulated the PEH 

in Fig. 4 of [181] (M1=7.2g, M2=16.8g) as an example.  Fig. 5.1 (a) shows the strain distribution 
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of the second resonant mode of this PEH.  The shear bending on the main beam can be observed 

from the different stress polarites (blue vs. red).  It can also be seen from the side view in Fig. 5.1 

(b).  Because the shear bending introduces both tensile/compress strain on the beam, multiple 

electrodes need to be used to cover tensile or compress areas separately to harvest all the energy.  

This will increase the complexity and cost of the whole system.   

 

Figure 5.1 Simulation of the bending mode and strain distribution of the PEH model in paper 

[181] (Figure 4). (a) Top view of the second resonant mode; (b) Side view of the second resonant 

mode. 
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I reduced the system complexity and improved the energy efficiency of multi-degree-of-

freedom folded structure for wideband energy harvesting, by suppressing the S-shape bending as 

well as using the asymmetric-gapped cantilever.  As reported previously, the asymmetric-gapped 

cantilever maximizes the energy conversion efficiency by increasing the voltage sensitivity and 

concentrating the vibration energy on the piezoelectric layer [85, 182, 183]. Inheriting the 

advantage of the basic asymmetric-gapped cantilever, I further developed the folded asymmetric-

gapped structure to enable wideband vibrating energy harvesting.  This design allows the largest 

proof mass to be placed at the last stage of the folded cantilever structure, and further enables 

multiple resonant modes formed by pure bending of every stage, maximizing the energy 

harvesting capability.  

5.2 Design	
  

5.2.1 Structure	
  

For proof of concept, we designed a three-stage folded asymmetric gapped structure which 

targets low frequency operation below 200 Hz within which there are abundant environmental 

vibrations.  A schematic drawing of the device is presented in Fig. 5.2, and the detailed 

parameters of the design are listed in Table. 5.1.  The overall size of the device is 5.1mm × 120 

mm× 85 mm. The overall proof mass of stages I, II and III are 29g, 20g, and 50g, respectively.  

For every stage, the top piezoelectric layer, which is marked in red in Fig. 1, is separated by a 

gap from the bottom mechanical beam in order to increase the voltage sensitivity and thus 

improve the AC-DC conversion efficiency.  Note that a large voltage output is required to 

overcome the threshold voltage of rectifier diodes.  The bottom beams of every stage are divided 

into two beams placed apart from each other to suppress the undesirable torsional and lateral 
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modes.  

 
Table 5.1 Parameters of the three-stage folded asymmetric-gapped cantilever structure 

investigated in this paper.  
 

 Stage I Stage II Stage III 

Piezoelectric layer Dimension (l ×w ×t) 

(mm) 

8.5 ×10 

×0.127 

8.5 ×5 

×0.127 

8.5 ×2.5 

×0.127 

Material Ceramic PZT (Lead zirconium titanate) 

Density (×103 kg/m3) 7.8 

Young’s modulus (GPa) 66 

Bottom 

mechanical beam 

Dimension (l ×w ×t) 

(mm) 

8.5 ×8 ×1 8.5 ×8 ×1 8.5 ×8 ×1 

Material Aluminum 

Density (×103 kg/m3) 2.7 

Young’s modulus (GPa) 69 

Proof mass Weight (g) 29 20 50 

Material Aluminum 

Density (×103 kg/m3) 2.7 
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Young’s modulus (GPa) 69 

 

 

Figure 5.2 Schematic of the wideband VEH based on a three-stage folded asymmetric-gapped 

cantilever structure  

 

5.2.2 FEA	
  simulation	
  

The finite element simulation was first carried out (COMSOL Multiphysics®) to study the 

vibration modes, the resonant frequencies and the strain distribution on the piezoelectric layers 

among three stages.  The results of the first three resonant modes are shown in Fig. 5.3.  The 

color in the mode shape illustrates the magnitude and polarity of the mechanical strain (red for 

tensile strain and blue for compressive strain).  The first three short-circuit (open-circuit) 

resonant frequencies based on the simulation are 36.9 Hz (37.4 Hz), 69.9 Hz (70.7 Hz) and 131.6 

Hz (132.2 Hz), respectively.    In the first resonant mode shown in Fig. 5.3 (a), the three stages 

vibrate in the same phase (upward), and all the piezoelectric layer experience compressive strain 
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(indicated by the blue color).  Our design also enables the strain to be almost equally distributed 

among the three piezoelectric stages.    In the second mode shown in Fig. 5.3 (b), stages I and III 

vibrate in the same phase and are 180° apart from stage II.  This phase information can also be 

observed by the different polarities of the mechanical strains (red vs. blue) experienced by the 

three stages.   Stage II is dominant in this mode and the strain is mainly distributed on stage II. In 

the third mode shown in Fig. 5.3 (c), stages I and II vibrate in the same phase and are 180° apart 

from stage III. Stage III is dominant in this mode, and the strain is mainly distributed on stage 

III.    In all three modes, every stage of the folded structure deflects in the form of pure bending 

which is the desired bending mode for effectively generating output voltage.  Since the heaviest 

proof mass is placed at the last stage of the folded cantilever, it is effectively utilized to 

stretch/compress the piezoelectric layers.  Other higher order modes typically lead to mechanical 

strains of opposite signs along the thickness or lateral directions of the piezoelectric layer, 

canceling generated charges or making the electrode design much more complicated.   
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Figure 5.3 The simulation results of the first three resonant modes of the three-stage folded 

asymmetric gapped structure: (a) the first resonant mode; (b) the second resonant mode; and (c) 

the third resonant mode.   

5.3 Charactorization	
  	
  

A prototype device with the design parameters shown in Table 5.1 was constructed and 

characterized to verify the simulation results.  An aluminum block was machined to form proof 

masses and bottom mechanical beams of the device. Ceramic PZT (Lead zirconium titanate) 

sheets (Piezo Systems, #PSI-5A4E), which function as energy conversion elements, were bonded 

above the mechanical beams as schematically shown in Fig. 5.2. The device was mounted on a 

mechanical shaker (Labworks, Inc ET-126B-1) together with a reference accelerometer 
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(Endevco, Model 4416B) to calibrate the acceleration. The open-circuit frequency responses of 

the three stages were recorded using a data acquisition board (National Instrument, USB 6210) 

as the vibration frequency swept from 15 Hz to 200 Hz.  The first three open-circuit resonant 

frequencies are 35.4 Hz, 74.2 Hz and 126.4 Hz, respectively.   The short-circuit resonant 

frequencies were also measured by loading the outputs of PZT sheets with three 1kΩ resistors.  

The first three short-circuit resonant frequencies are 34.5 Hz, 73.7 Hz and 124.9 Hz, 

respectively, slightly lower than the open-circuit values as expected.  For both short-circuit and 

open-circuit cases, the measured resonant frequencies are within 10% error range of the 

simulation result.  The dominant stages of every resonant mode are also consistent with the 

simulation.  As shown in Fig. 5.4, in the first resonant mode, the three stages have almost equal 

voltage outputs.  In the second resonant mode, stage II dominates, and has the largest output 

voltage, whereas in the third resonant mode, stage III displays the largest output voltage.  As 

noticed, the first three resonant frequencies of the folded structure are fairly close to each other, 

which is highly desirable for wideband VEH.  Moreover, the second and third modes exhibit 

reasonably high voltage sensitivities, allowing this device to harvest a reasonable amount of 

energy from the second and third resonant modes. 
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Figure 5.4 Frequency responses of the three stages of the folded cascaded structure. 

5.4 Preliminary	
  tests	
  

The energy harvesting ability of the device was evaluated for a real building automation 

application: air conditioning system monitoring.  In the experiment, the prototype was mounted 

on the air conditioning unit on the ceiling in our engineering lab as shown in Fig. 5.5.  The 

vibration of the air conditioning unit was measured using a commercial accelerometer (Endevco, 

Model 4416B).  The average vibration amplitude was below 0.1g (gravity), and its power 

spectrum density is plotted in Fig. 5.6.  As we can observe from the spectrum, this air 

conditioning unit generates vibrations in a broad frequency band.  There are a few main 

frequency components at about 30 Hz, 48Hz, 70Hz and 146Hz for this particular air conditioning 

unit. The red lines illustratively show the resonant peaks of the folded VEH at 34.5 Hz, 73.7 Hz 

and 124.9 Hz. While the proof-of-concept prototype is not particularly designed for this air 
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conditioning unit, it definitely demonstrates a great potential in matching up its multi-resonant 

frequencies to the vibration characteristics of this air conditioning unit to achieve the optimal 

wideband energy harvesting.  Even for this prototype, the output voltage of the three 

piezoelectric stages still generated an average peak voltage over 3V as shown in the inset of Fig. 

5.7.  The three alternating current outputs were separately rectified by three bridge rectifiers and 

then combined to charge a 2200 µF capacitor.  A sample charging curve is presented in Fig. 5.7. 

The average harvested power is estimated to be 1.1 µW.  The power can be further increased by 

designing an optimized device which better matches the vibration characteristics of this air 

conditioning unit. It is also worth noting that the asymmetric-gapped structure contributes to the 

relatively high output voltage under the weak ambient vibration, i.e., 0.1g. It is very critical to 

have a large voltage (e.g., >1.4 V) to avoid significant power loss in diode rectifiers.   

 

Figure 5.5 The VEH prototype mounted on the ceiling air conditioning unit. 
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Figure 5.6 The vibration spectrum of the ceiling air conditioning unit 
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Figure 5.7 The output voltage of a 2200 µF capacitor charged by the prototype VEH under the 

vibration of a ceiling air conditioning unit. The inset plots representative output voltages of the 

piezoelectric layers in stages I, II and III before rectification.   

 

5.5 Conclusion	
  	
  	
  

While ambient vibrational energy is widespread, its wideband and time-varying nature as 

well as its weak amplitude in many applications make it a challenging task to generate enough 

power from vibration. This chapter reports the development of a wideband VEH based on a 

folded asymmetric-gapped cantilever structure.   Compared with other multi-mass multi-spring 
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systems, in our design the largest proof mass can be placed at the last stage and simultaneously 

the first three resonant modes are constituted by pure bending, which is the most effective 

bending shape to generate electricity.  Such a device demonstrated a rectified power of 1.1 µW 

under weak vibration (~0.1 g) of an air conditioning unit.   It is worth noting that the VEH 

presented in this paper is for proof-of-concept purpose, and is not specifically designed for this 

air conditioning unit.  With a targeted design to better match the resonant frequencies of the 

vibration source (e.g., air conditioning unit), the harvested power could be significantly 

increased.  We believe the design proposed in this paper could be useful for powering medical 

implants and wireless sensors for structural health monitoring, machine monitoring, and 

geophysical monitoring.  
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CHAPTER 6 FUTURE WORK 

6.1 Piezorelectric	
  accelerometer	
  

In the future work, more design aspects of the piezoelectric accelerometer will be studied. 

First, the selection of piezoelectric materials will be investigated. By comparing different 

piezoelectric material properties and selecting the feasible materials, the accelerometer 

performance could be further enhanced. Second, we will further investigated into the charge 

amplifier optimization. This including the feedback capacitance selection and input guarding 

issues which is very critical for amplifying a high impedance signal. Third, the improvement on 

the noise reduction will be investigated.  Last but not the least, the mass loading effect for 

vibration sensing will be studied for better the signal coupling.  

6.2 Cardio-­‐respiratory	
  sound	
  monitoring	
  

While the preliminary test shows promising result of cardio-respiratory sound monitoring in 

a noise-controlled environment. In the future, we will investigate the methods to reduce the 

artificial noise generated form clothes friction with the senor surface or wire friction. This could 

possibly achieve by adding a low friction coating on the package surface.  What’s more, by 

applying a reference sensor on the side, the common mode noise could be reduced by the noise 

cancellation technique.  

Meanwhile, more clinical test will be carried out to further investigate the sensor’s 

performance on heart failure patient. And the study of how to analyze and categorize different 

types of heart sound signal will also be carried out.   
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6.3 BCG	
  monitoring	
  and	
  seismic	
  sensing	
  	
  

In the previous study, we carried out some basic analytical analysis for the cascaded 

structure to prove of the concept that it has the potential to be used in low frequency sensing.  

Later, a more comprehensive analytical model for the cascaded structure should be further 

studied for design optimization. The BCG signal was successfully acquired by the prototype in a 

controlled environment.  In the future, more work will be carried out on the characterization of 

the detailed information in the BCG signal.  What’s more, even the sensor has a low enough 

noise floor for BCG monitoring purpose, in order the utilize it in a more challenging 

environment such as for seismic sensing, the noise performance at low frequency range between 

0.1 Hz and 10Hz needs to be further reduced.   

6.4 Vibration	
  enegy	
  harvesting	
  

It this thesis, the folded gapped structure has been developed for enabling multiple 

resonances in a relatively narrow bandwidth to mimic wide band vibration energy harvesting.  

Even though the FEA simulation matches the experimental result, it is still hard to predict the 

higher mode vibration such as the dominant stage and resonant frequencies.  In order to better 

align the design with the vibration signature of the targeted source, more systemic study should 

be carried out in the future.  Also, the prototype uses d31 mode of the piezoelectric material for 

energy harvesting. In the future, more work could be done to explore the d33 mode to achieve 

higher energy conversion efficiency since the d33 mode has a much higher piezoelectric 

coefficient.  Moreover, besides the harvesting component, energy conversion and storage 

components as well as low power IC and wireless transmission technology all together plays 

critical role in building a high efficient and reliable wireless sensing node.  Therefore, more work 
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could be done on the system level integration in the future.   

6.5 Other	
  applications	
  

What’s more, there are many other potential applications on physiological acoustic sensing 

worth investigation.  For example, accelerometer-based physiological sound monitors can record 

heart sounds, seismocardiogram, ballistocardiogram, respiratory sound and gastrointestinal 

sounds.  There are a number of challenges need to be addressed by collaborative effort of 

researchers from multiple disciplines.  With the advances in sensors, signal processing 

algorithms, and a better understanding of the genesis of physiological sounds, the accelerometer-

based acoustic monitoring system is expected to make more significant clinical impact, 

especially on the emerging mobile healthcare.  

Other applications including the sensing beam design for the atomic force microscope, 

force sensing and time reference, etc., is also of great interests.   
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ABSTRACT 

 

HIGH-PERFORMANCE ACCELEROMETER BASED ON ASYMMETRIC-GAPPED 

CANTILEVERS FOR PHYSIOLOGICAL ACOUSTIC SENSING  

by 
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Advisor: Dr. Yong Xu  

Major: Electrical Engineering  

Degree: Doctor of Philosophy 

Continuous or mobile monitoring of physiological sounds is expected to play important 

role in the emerging mobile healthcare field.  Because of the miniature size, low cost, and easy 

installation, accelerometer is an excellent choice for continuous physiological acoustic signal 

monitoring.  However, in order to capture the detailed information in the physiological signals 

for clinical diagnostic purpose, there are more demanding requirements on the sensitivity/noise 

performance of accelerometers.  In this thesis, a unique piezoelectric accelerometer based on the 

asymmetric-gapped cantilever which exhibits significantly improved sensitivity is extensively 

studied.  A meso-scale prototype is developed for capturing the high quality cardio and 

respiratory sounds on healthy people as well as on heart failure patients.  A cascaded gapped 

cantilever based accelerometer is also explored for low frequency vibration sensing applications 

such as ballistocardiogram monitoring.  Finally, to address the power issues of wireless sensors 

such as wireless wearable health monitors, a wide band vibration energy harvester based on a 

folded gapped cantilever is developed and demonstrated on a ceiling air condition unit. 
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