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CHAPTER 1 

SUPRAMAXIMAL PANCREATIC STIMULATION WITH CAERULEIN LEADS TO 

ACUTE PANCREATITIS IN RATS 

Abstract 

Pancreatic digestive enzymes secreted following a meal are stored as inactive zymogens 

within membrane-bound secretory vesicles called Zymogen Granules (ZG), and activated 

extracellularly.  In acute pancreatitis however, the digestive enzymes are prematurely activated 

within the cell, resulting in autodigestion of the tissue.  A rat model of acute pancreatitis has 

previously been established to study the etiology of the disease.  In the current study, acute 

pancreatitis was induced using an established published procedure by supramaximal stimulation 

of the exocrine pancreas using caerulein.  Elevated amylase activity as well as increased 

immunoreactivity in the blood along with an increase in organ weight confirmed the 

establishment of acute pancreatitis. 

Introduction 

The pancreas is a compound organ where only 5% of pancreatic mass comprises 

endocrine function, and the remaining 95% constitute the exocrine pancreas (Brannon 1990).  

Here enzymes are stored and released into the duodenum of the small intestine for breakdown of 

ingested nutrients following a meal.  A majority of the digestive enzymes are synthesized in 

proenzyme form and not activated until their release into the duodenum (Halangk & Lerch 2004, 

Pandol 2010).  Acinar cells are the functional units within the pancreas that are responsible for 

the synthesis, storage and secretion of digestive enzymes.  Individual acinar cells exhibit 

morphology demonstrating a distinct basolateral pole that contains the nucleus and the 

endoplasmic reticulum, and an apical pole with high density of secretory granules containing 

digestive enzymes called zymogen granules (ZG) (Figure 1), that, when stimulated, release their 
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contents into the luminal space (Pandol 2010).  ZGs are electron dense subcellular organelles, 

ranging in size from 200 – 1200 nm in diameter (Figure 2) (Jena et al. 1997).  The integrity of 

the ZG is essential to proper pancreas health and function.  Inappropriate release of ZG contents 

leads to acinar cell death and is a hallmark in diseases like pancreatitis (VanAcker et al. 2002). 

 

 

 

 

Enzymes of the exocrine pancreas are primarily synthesized and stored as inactive 

proenzymes that are activated upon release (Table 1) (Pandol 2010, Halangk & Lerch).  

Pancreatic enzymes are essential for the digestion of proteins, carbohydrates, and fat of the 

chime that enters the duodenum.  These enzymes include trypsinogen, chymotrypsinogen, 

amylase, lipase, and phospholipase (Pandol 2010, Halangk & Lerch 2004, Kim 2008).  Released 

Figure 2. Purified ZGs imaged with electron microscopy (A) and atomic force microscopy (B)
indicate a heterogeneous distribution of vesicles with diameters ranging from 0.2 – 1.2μm (Jena
et al. 1997). 

Figure 1. Rat Pancreatic acinar cells
imaged with electron microscopy.  The
nucleus (N) is in the clearly identifiable
basolateral (BL) region along with the
mitochondria (M) where the ZGs
ranging in size from 0.2 to 1.2μm, are
concentrated at the apical (A) end of
the cells near the lumen (L) (Bar =
2μm) (Flack et al., in preparation). 
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enzymes travel to the duodenum of the small intestine before they are activated (Figure 3).  

Trypsinogen is activated to trypsin that activates the other pro-enzymes (Pandol 2010, Halangk 

& Lerch 2004).  The process of storage and release is highly coordinated and regulated.  

Cholecystokinin, for example, is a potent stimulator of digestive enzyme release, however other 

regulators include acetylcholine, gastrin releasing peptide, vasoactive intestinal peptide, secretin, 

and by the presence and contents of the ingested chyme itself in normal and healthy physiology 

(Brannon 1990, Pandol 2010). 

PROENZYMES ENZYMES 
Trypsinogen α-Amylase 
Chymotrypsinogen Lipase 
Procarboxypeptidase A DNase 
Procarboxypeptidase B RNase 
Prophospholipase   
Proelastase   
Mesotrypsin   

 
To maintain normal and healthy physiology, the secretory process for digestive enzyme 

release and other manufactured cellular products occurs in a highly regulated fashion.  In disease 

states such as pancreatitis there appears to be a disregulation of events that is not fully 

understood (Vanacker et al 2002).  The events leading to the proper secretion of vesicle content 

release have been under investigation in our laboratory as well as and how the secretory cascade 

is altered in pathological states.  This will not only add to our understanding of the secretory 

process, but will also further the development of treatment modalities in disease states such as 

pancreatitis. 

Pancreatitis is classified as a non-neoplastic gastrointestinal disorder (Foster 2013, Yadav 

et al. 2013, Ding et al. 2003) of which there is over 200,000 hospitalizations in the United States 

alone per year with a 5% mortality rate (NIDDK 2012).  Of all the gastrointestinal disorders 

pancreatitis is the most prevalent, with the most unclear understanding of the cause and 

Table 1. The exocrine pancreas produces,
stores, and secretes enzymes in both an
active form and in zymogen precursor to
prevent premature activation of the
digestive enzymes still housed within the
pancreatic acinar cells. (Pandol 2010) 
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progression of the disease (Yadav et al. 2013, Raraty et al. 2000, deDios et al. 2000).  Across the 

United States, pancreatitis afflicts older populations with more frequency than younger 

populations as well as those populations with higher smoking, obesity, and alcohol consumption 

rates (Yadav 2013).  High fat diets accompanied with diets high in red meat have also been 

correlated with the incidence of pancreatitis (Pandol et al. 2011).  

 

Gallstones and chronic alcoholism have also been correlated with a predisposition for 

acquiring pancreatitis (Yadav 2013, National Pancreas Foundation 2013, NIDDK 2012).  Acute 

pancreatitis can be mild or severe and chronic bouts of it can lead to chronic pancreatitis.  The 

Figure 3. Pancreatitis exists
in chronic and acute forms
with symptomology that
includes inflammation,
edema, necrotic damage to
the pancreas, and damage to
surrounding tissues from
inappropriate release of
digestive enzymes.  The
complex causes of
pancreatitis are likely
cumulative and cyclic in the
damage that occurs (Kim
2008). 
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etiology of acute pancreatitis includes rapid onset of pancreatic inflammation that resolves often 

after a few days, however the disease frequently leads to other complications.  Chronic 

recurrence of acute pancreatitis leads to ductular atrophy and pancreatic damage including 

fibrosis that may predispose individuals to diabetes due to global glandular destruction (NIDDK 

2012, Steer et al. 1995).  While acute pancreatitis is characterized by a sudden onset of 

abdominal pain many of its other features, like edema, hemorrhage, and necrosis often go 

undetected until hospitalization is necessary (NIDDK 2012, Foster 2013).  Pancreatitis as a 

disease is clinically relevant not only due to the large number of people admitted to the hospital 

each year with the ailment (NIDDK 2012, National Pancreas Foundation 2013), but because 

there are few treatment options for it currently.  Due to the large number of hospitalizations 

annually and poor treatment options, institutions such as the National Institute of Diabetes, 

Digestive, and Kidney disorders have increased research funding 350% between 1999 and 2003 

in the area (National Pancreas Foundation 2013).   

Pancreatitis is a little understood disease that currently requires focused and rigorous 

investigation to determine the underlying mechanisms leading to the disease (Magana-Gomez et 

al. 2006).  How the secretory cascade is altered in pancreatitis is critical in the amelioration of 

the disease.  Treatment options remain limited to global anti-inflammatory medication and diet 

restriction until the pathology resolves (National Pancreas Foundation 2013).  Access to the 

pancreas for diagnosis and/or biopsy is difficult and not often favored as surgical intervention 

may exacerbate disease progression (Hofbauer et al. 1998).  Pancreatitis involves interstitial 

edema and acinar cellular inflammation (Ding et al 2003).  At the level of the acinar cell ZGs do 

not release contents properly, acidic vacuoles form, other organelles become more fragile, 

lysosomal hydrolases do not localize to lysosomes properly (Saito et al. 1987), and inflammatory 

mediators (such as PLA2 isoforms) are upregulated (Nevalainen et al. 1985).  While the final 
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stage of the disease is characterized by autodigestion of the pancreas, the mechanism regulating 

this process is little understood (Magana-Gomez et al. 2006).  Premature zymogen activation is 

likely the key to the progression of pancreatitis, and hence the necessity to prevent proenzyme 

activation within cells.  

Caerulein induced pancreatitis mimics pancreatitis that occurs naturally due to inhibition 

of ZG content release (Saito et al. 1987).  The cause of this inhibition of secretion is little 

understood.  Lysosomal hydolase has been found to co-localization to ZGs (Hofbauer et al. 1998, 

Saluja et al. 1987, VanAcker et al. 2006), and altered v-H+ATPase function (Waterford et al. 

2005) have been previously reported.  As early as 15 minutes after stimulation with a 

supramamimal dose of caerulein, the lysosomal hydrolase, cathepsin B, has been reported to co-

localize with the starch digesting enzyme, amylase (Hofbauer et al. 1998).  Cathepsin B among 

other lysosomal hyrolases have an activating capacity for the precursor enzymes housed within 

the ZGs.  Lyosomal hydrolases exist in the lysosome at low pH and are capable of degrading 

inactivating peptides associated with zymogen precurson enzymes within the ZG (VanAcker et 

al. 2002).  Therefore the first goal of my study was to reliably induce pancreatitis in rats using 

the established model of caerulein-induced pancreatitis in the rat (Gorelick et al. 1995, Chen et al 

2010).   

Materials & Methods 

Induction of pancreatitis:   

Pancreatitis was induced using an established published procedure (Chen et al. 2010). 

Male Sprague Dawley rats (Harlan, Indianapolis, IN) weighing 100-150 g were used in the 

study.  To induce pancreatitis with caerulein, rats were injected i.p. with either one injection of 

50 μg/kg synthetic caerulein (American Peptide Company, Sunnyvale, CA, USA) dissolved in 

saline for the 1 hour animal studies, or two injections one at zero hour and the other at the 1 hour 



7 

 

for the 2 hour animal studies.  Control animals followed the same time regime except they were 

injected only with the vehicle saline.  Blood and pancreas were collected from both control and 

caerulein-injected rats at one and two hours following the first injection.  In each experimental 

group three to seven animals were used.  Both biochemical and morphological approaches were 

used to determine the establishment of acute pancreatitis.  

Estimation of plasma amylase:   

Blood was collected from CO2 euthanized rats by cardiac puncture using heparin-coated 

needles.  The blood was centrifuged at 7,500 x g for 15 min at 4°C and the resultant plasma 

supernatant was collected and stored at −80 °C until assayed both for amylase activity and 

amylase content.  Amylase activity was assayed using the Phadebas Amylase Test Reagent 

(Magle, Lund, Sweden).  Briefly one Phadebas tablet was diluted in 20 mL of amylase buffer 

(0.05M NaCl, 0.02M NaH2PO4, 0.02% sodium azide, pH 7.4).  Ten µl of plasma sample was 

mixed with 1ml of diluted Phadebas reactant and incubated for 10 min at 37°C in a shaking 

water bath.  The reaction was stopped by 0.5N sodium hydroxide and then diluted with 4 ml 

double distilled H2O.  The optical density of each sample was then measured at 620 nm and 

amylase activity estimated from the standard curve provided by the company in the data sheet.  

The relative plasma amylase content between control and experimental animals was estimated 

using Western blot analysis. 

Results 

Acute pancreatitis is known to result in increased levels of ZG enzymes in the blood 

plasma (Chen et al. 2010).  Blood plasma levels and activity of the starch digesting ZG enzyme 

amylase, was therefore assessed following induction of acute pancreatitis in rats using an 

established procedure (Gorelick et al. 1995, Chen et al 2010).  The relative amylase activity 

(Figure 4D) in blood plasma obtained from both control rats, and from 1h and 2h experimental 
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animals following caerulein-injection, was estimated. Results from the study demonstrate a near 

1.5-fold increase in the activity of plasma amylase in the 1h and over 2-fold increase in the 2h 

experimental animals (Figure 4D), demonstrating the successful induction of acute pancreatitis 

as previously reported (Chen et al. 2010), following administration of supramaximal dose of 

caerulein to rats. Since both control and experimental animals received food at lib; the controls in 

the study represent physiological levels of pancreatic stimulation.  

 
 

 

The 2h post caerulein injection group of rats experienced a 1.5-fold increase in pancreatic 

gland weight when compared to the saline injected controls.  Edema is visibly noticeable in 

dissected panreata during the course of pancreatitis and is measured as an increase in gland 

weight (Figure 4 A & B).  Established parameters for induced acute pancreatitis include an 

Figure 4. (A, B) An increase in pancreas weight 
is observed in the 2h experimental group.  The 
edematous tissue is more than double the weight 
of the saline alone (vehicle) treated animals. An 
increase in both amylase content (C) and (D) 
activity in rat blood plasma is demonstrated in 
both 1h and 2h post intraperitoneal injection of 
supramaximal caerulein. Note in both the 1h and 
2h control animals (CON) intraperitonially 
injected with vehicle alone, there is less amylase 
activity (D, blue bars), as well as 
immunoreactivity in the blood plasma compared 
to experimental animals (D, red bars) injected 
with caerulein. 

Figure 5. Capability to regulate volume
is abrogated in ZG isolated from
pancreatitic tissue. Isolated ZGs from rat
pancreata were challenged to swell in
vitro with GTP and mastoparan.
Control ZGs from vehicle injected rats
(left) swell vigorously when challenged
however, ZGs from rats treated with two
injections of 50 μg/kg caerulein (right)
failed to swell to the same extent. 
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increase in serum amylase, interstitial edema, and the presence of inflammatory mediators (Ding 

et al. 2003).  Results of increase amylase immunoreactivity as well as activity in the blood 

plasma, and the increase in tissue weight as previously reported, confirm the establishment of 

acute pancreatitis in my study. 

Previous studies have demonstrated that isolated ZGs rapidly swell following exposure to 

GTP and mastoparan (Jena et al. 1997, Cho et al. 2002, Abu-Hamdah et al. 2004, Kelly et al. 

2004a, Kelly et al. 2004b). In acute pancreatitis, this ability of ZG to regulate its volume 

following exposure to GTP-mastoparan is abrogated as shown in (Figure 5).  While isolated ZGs 

from saline injected animals swell in response to 20 and 40μM GTP and mastoparan, isolated 

ZGs from pancreata 2h post caerulein injection lose this ability.  Other research has shown that 

secretory vesicles fail to release their contents into the lumenal space after the induction of 

pancreatitis (Saito et al. 1987).  The current results indicate another layer of complexity in the 

pathophysiology of acute pancreatitis. 

Discussion 

In our model of pancreatitis, caerulein, a cholecystokinin (CCK) analogue, was used to 

induce pancreatitis in rats after supramaximal stimulation (50mg/kg, i.p.).  Alternative models to 

caerulein include ductal injections (Aho et al. 1980), closure of the duodenal loop (Foster 2013, 

Adler et al. 1986), and bile duct ligation (Walker et al. 1987), however these methods often 

require invasive surgery and have high rates of premature mortality.  Other non-invasive 

approaches also exist such as Charbachol (Chauduri et al. 2005, Sandstrom et al. 2005), 

anticholinesterase (Ikizceli 2005, Costa et al. 1984), L-argenine administration (Mizunuma et al. 

1984, Kishino et al. 1984), or alcohol consumption or infusion (Kono et al. 2001).  However 

caerulein is a CCK analogue, and because CCK serves as a major regulator of secretory events in 

the exocrine pancreas in rats, it is an optimal tool for the induction of pancreatitis. 
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While the classification of pancreatitis remains difficult, established parameters for 

laboratory induced pancreatitis include an increase in serum amylase, interstitial edema leading 

to increased glandular weight, and the presence of inflammatory mediators (Ding et al. 2003).  In 

both the one and two hour time groups of rats, plasma amylase activity was significantly 

increased over controls, as was the weight of the pancreatic tissue in the 2h experimental 

animals, demonstrating the establishment of acute pancreatitis in these animals.  As previously 

reported (Chen et al., 2010), administration of a supramaximal dose of caerulein to rats 

establishes acute pancreatitis.  ZG swelling is required for vesicle content explusion during 

secretion (Jeremic et al. 2005, Kelly et al. 2004, Cho et al. 2002).  Therefore in pancreatitis, the 

observed loss in the ability of ZG to swell in response to GTP-mastoparan (Figure 5) would 

compromise cell secretion.  Since there is an increase in both amylase activity and content in the 

blood plasma in acute pancreatitis, this suggests that following supramaximal caerulin 

stimulation of the pancreas results in the release of intravesicular contents from docked vesicles 

at the plasma membrane, however the remaining ZGs with compromised volume regulating 

capability, are incapable of intravesicular release.  This hypothesis was tested in my study, using 

both biochemical, immunochemical, and morphological approaches.  
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CHAPTER 2 

ZG MORPHOLOGY IS ALTERED IN ACUTE PANCREATITIS IN RATS 

Abstract 

Following a meal, acinar cells of the exocrine pancreas secrete digestive enzymes stored 

as inactive zymogens within membrane-bound secretory vesicles called zymogen granules (ZG) 

that become activated extracellularly.  In acute pancreatitis however, the digestive enzymes are 

blocked from being secreted and are activated within the cell leading to the common phenotype 

in pancreatitis.  In the current study ZGs were examined in situ within pancreatic acinar cells as 

well as in isolated form for morphological changes demonstrated after the induction of 

pancreatitis.  Examination of acinar cells using EM, demonstrate little change in their overall 

morphology following supramaximal caerulein exposure for up to 2 hours.  However these 

studies demonstrate approximately 14% increase in ZG diameter in acute pancreatitis 

independently confirmed with EM and AFM analysis. 

Introduction 

Over one-quarter million patients are diagnosed annually with pancreatitis, with hospital 

costs of over 2.5 billion dollars (Peery et al. 2012, Fagenholz et al. 2007a, Fagenholz et al. 

2007b).  Except for limited management of the disease, currently no treatments are available. 

Furthermore the incidence of acute pancreatitis continues to grow (Peery et al. 2012, Fagenholz 

et al. 2007a, Fagenholz et al. 2007b), hence understanding pathogenesis of the disease will lead 

to early diagnosis and treatment.  Following a meal, acinar cells of the exocrine pancreas secrete 

digestive enzymes stored as inactive zymogens within membrane-bound secretory vesicles called 

zymogen granules (ZG); these enzymes are then activated extracellularly (Neurath 1976).  In 

acute pancreatitis however, the digestive enzymes are blocked from being secreted and are 

activated within the cell, resulting in autodigestion of the tissue (Chiari 1896).  It is well 
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established that a variety of insults to the exocrine pancreas such as long-term exposure to 

alcohol, or supramaximal concentrations of cholecystokinin (>10-fold above physiological) or its 

analogue caerulein, stimulate the activation of zymogen within acinar cells, initiating pancreatitis 

(Katz et al. 1996, Pandol et al. 1999, Cosen-Binker et al. 2007).  Although it is known that the 

activation of zymogens plays a central role leading to pancreatitis, the molecular underpinnings 

of the process remain unclear (Fick 2012).  

 

Pancreatic enzymes pose a danger to the gland if activated prematurely due to their 

digestive capacity.  Therefore digestive enzymes produced by the pancreas are often proenzymes 

that are activated at the site of action (Hofbauer et al. 1998, VanAcker et al. 2002, VanAcker et 

al. 2007).  In the duodenum, the amino terminal trypsin activation peptide (TAP) is cleaved by 

brush border enzymes thereby converting trypsinogen to its active form trypsin.  Trypsin then 

activates the other zymogen proenzymes into their respective active forms (Hofbauer et al. 

1998).  In the normal healthy pancreas acinar cells are observed to have a typical morphology 

that includes basolaterally located nuclei and apically located ZGs (Magana et al. 2006).  At the 

onset of pancreatitis, in rat models, the morphology is altered slightly in that a greater number of 

ZGs migrate to the apical pole and large vacuoles begin to form (Hofbauer et al. 1998). 

Figure 6. Rat Pancreatic acinar cells seen at
the light (inset) and electron microscope
level.  The polarity of isolated acinar cells
with clearly identifiable apical (A) and
basolateral (BL) regions is seen in the
differential interference contrast image.  The
nucleus (N) is present toward the basolateral
region, and the zymogen granules, ranging in
size from 0.1 to 1μm, are concentrated at the
apical end of the cells (Schneider et al. 1997).
(Bar = 5μm) Courtesy of BP Jena 
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The primary function of the exocrine pancreas to produce and secrete digestive enzymes 

however failure of this biological process does occur in pancreatitis (Halangk & Lerch 2004).  

This disease is not well understood and has poor treatment options (Saluja et al. 2007).  Previous 

beliefs placed the cause of pancreatitis on leakage of digestive enzymes out of the pancreatic 

duct, however is has been shown that pancreatitis begins at the level of the acinar cell (Foulis 

1980).  It is therefore my goal to examine ZGs both isolated from and examined in pancreatic 

acinar cells for morphological changes demonstrated after the induction of pancreatitis. 

Materials & Methods 

Isolation of Zymogen granules (ZG):   

ZGs were isolated by modification of our published procedure (Jena et al. 1997). 

Sprague–Dawley rats weighing 150–200 g were euthanatized by CO2 inhalation for the ZG 

preparations.  Pancreata was dissected and diced into 0.5-mm3 pieces.  The pieces of pancreas 

were suspended in 15% (wt/vol) ice-cold homogenization buffer (0.3 M sucrose, 25 mM Hepes, 

pH 6.5, 1 mM benzamidine, 0.01% soybean trypsin inhibitor) and homogenized using a Teflon 

glass homogenizer.  The resultant homogenate was centrifuged for 5 min at 300 x g at 4°C to 

obtain the supernatant.  One volume of this supernatant was mixed with 2 vol of a Percoll–

Sucrose–Hepes buffer (0.3 M sucrose, 25 mM Hepes, pH 6.5, 86% Percoll, 0.01% soybean 

trypsin inhibitor) and centrifuged for 30 minutes at 16,400 x g at 4°C.  ZGs as a loose white 

pellet at the bottom of the tube was isolated for analysis.  

Electron Microscopy:   

Isolated pancreatic lobules from control, 1 h, and 2 h caerulein-injected rats were fixed in 

4% glutaraldehyde/2% paraformaldehyde in ice-cold PBS for 24 hours.  Following three rinses 

in 0.1 M cacodylate buffer (pH 7.2), the samples were embedded in 2% SeaPrep agarose for 15 

minutes at 4°C, the agarose was cross-linked by immersion in Karnovsky’s fixative (2.5% 
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glutaraldehyde/1.0% paraformaldehyde in phosphate buffer) for 15 minutes at 4oC, and then 

rinsed three times (5 minutes each) in 0.1 M cacodylate buffer.  Next, minced pieces of the 

agarose-embedded acinar cell samples were post-fixed in 1% OsO4 in 0.1 M cacodylate buffer 

for 1 hour at 4oC, rinsed three times (10 minutes each) in 0.1 M cacodylate buffer, and stored 

overnight at 4oC in the same buffer.  The following day, the samples were dehydrated in a graded 

series of ethanol, through propylene oxide, and infiltrated with and embedded in Spurr’s resin. 

Ultrathin sections (60-80 nm thick) were cut with a diamond knife and retrieved onto nickel 200 

mesh thin-bar grids, and contrasted with 2% alcoholic uranyl acetate and lead citrate.  The 

sections were imaged with a JEOL 1400 transmission electron microscope (JEOL USA, Inc., 

Peabody, MA) operating at 60 or 80 kV.  Digital images were acquired with an AMT-XR611 11 

megapixel ccd camera (Advanced Microscopy Techniques, Danvers, MA) at the University of 

Vermont, and saved in tiff format (12.2 mB/image). 

Morphometric Analysis of ZG in Electron Micrographs:   

The size (diameter) distribution of ZG in control rat pancreas, and following 1h and 2h 

post caerulein administration (experimental), was estimated from electron micrographs of the 

tissue from control and experimental animals.  Obtained electron micrographs where enlarged by 

a factor of 4 and the radii of the ZGs were measured in millimeters.  The radii were converted to 

area via Area = πr2.  The area and diameter in millimeters and square millimeters was compared 

between ZGs of rats treated with saline and ZGs from rats after 1 or 2 hours of pancreatitis 

induction by caerulein. 

Analysis of Isolated ZG Using Atomic Force Microscopy:   

Atomic force microscopy (AFM) was performed on isolated ZGs obtained from both 

control, 1h, and 2h following caerulein-injection, and fixed using 4% glutaraldehyde and 2% 

paraformaldehyde in ice-cold PBS for 24 hours.  The aldehyde-fixed ZGs were placed on a mica 
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surface, and imaged by AFM using a minor modification of published procedures (Kelly et al. 

2004a, Kelly et al. 2004b).  Fixed ZGs in PBS were placed on mica, air-dried for 2 min, washed 

using distilled water to remove salt crystals, followed by air-drying for 2 min, and imaged using 

the AFM. ZGs were imaged using a Nanoscope IIIa AFM from Digital Instruments. (Santa 

Barbara, CA).  Images were obtained in the “tapping” mode in air, using aluminum coated 

silicon tips with a spring constant of 40 N.m-1, and an imaging force of <200 pN.  Images were 

obtained at line frequencies of 1-2 Hz, with 256 lines per image, and constant image gains. 

Topographical dimensions of ZGs were analyzed using the software Nanoscope IIIa4.43r8, 

supplied by Digital Instruments. 

Results 

Examination of acinar cells using EM, demonstrate little change in their overall 

morphology following supramaximal caerulein exposure for up to 2h (Figure 7).  However EM 

and AFM measurements of ZG size demonstrate a significant increase following caerulein 

exposure.  EM and AFM were employed to measure ZG size in control and experimental 

pancreatic acinar cells using an unbiased randomize approach.  ZG size within intact fixed cells 

were determined from electron micrographs of pancreatic tissue obtained from control rats, and 

those following 1h and 2h exposure to a supramaximal dose of caerulein.  Similarly, AFM 

measurements of ZG size was assessed using isolated ZG preparations obtained from control and 

experimental pancreas.  Although ZG diameter obtained from EM micrographs would be smaller 

than its actual size unless the section is taken right through the center of the organelle, the large 

sample size (>1,000) of ZG used in estimating the average ZG diameter, and the additional 

information regarding the size distribution of ZGs, provides a near accurate estimate of ZG 

diameter in different pancreatic tissues.  To further test results obtained using EM morphometry, 
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ZG size was assessed using AFM on the isolated organelle obtained from both control and 

experimental pancreas.  

 
Figure 7. Representative electron micrographs of control rat pancreas (A), and 1h (C), and (E) 
2h following caerulein injection with enlargements (B, D, F), respectively.  Pancreatic acinar 
cells demonstrate polarized morphology and the presence of electron dense secretory granules 
called Zymogen granules (ZG) at the apical compartment of the cell. The acinar lumen (L) at the 
apical end, and prominent cell nucleus (N) at the basolateral region of the cell is observed. Note 
little change in the number of ZG in experimental tissue, however vacuolar structures appear in 
the 2h acinar cells exposed to supramaximal caerulein. Scale Bar = 2 μm. 
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Vesicles from the 1h experimental group did not show a significant size increase however 

there is a significant increase in vesicle diameter at the 2h time point (N=1155, p < 0.001).  EM 

micrograph examination (Figures 7 & 8) reveals vesicle diameter increase from an average of 

553nm in control ZGs to 630nm in ZGs from the 2h experimental group.  Although amylase 

activity increased in the one hour group (examined in Chapter 1) and the shift in vesicle 

distribution (Figure 7 C & D and Figure 8) indicates the beginning of larger vesicle formation no 

significant change in average vesicle diameter was seen.  However, in the two hour group 

(Figure 7 E & F and Figure 8) the distribution of vesicles is shifted with fewer smaller vesicles 

present and the number of larger vesicles markedly increased.   

 
Figure 8. EM morphometry demonstrating ZG swelling in rat pancreatic acinar cells 2h 
following caerulein administration. Nearly, 13.9% increase in ZG diameter is observed in 2h 
experimental tissue compared to control or 1h experimental. The numbers of ZG measured for 
each category are shown as N at the top of the bar, and the distribution range of vesicles plotted 
are presented to the left of the respective bar graph, blue for control, and red and green for 1h 
and 2h experimental respectively. Note, although no significant change is noted in the average 
size of ZGs in the 1h time point, in the 1 and 2h cells there is an upward shift in vesicle size 
distribution. Data are presented as mean ± SEM (p < 0.001). 

Independent AFM analysis confirms the EM results.  ZGs were isolated from the 

pancreata of rats injected wither with supramaximal caerulein (50mg/kg, i.p.) or with the volume 

equivalent of saline for control for AFM analysis.  ZGs were isolated and the purity of the 
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fraction was determined using immunoanalysis.  Figure 9 indicates an enrichment in the ZG 

fraction over the total homogenate fraction of the ZG proteins, VAMP-2, AQP-1, and Gαi3 

verifying purity of the granule population.  One hundred fifty vesicles from each the control and 

2h group were analyzed and the diameter measured (Figure 10).   

Figure 9. Immunoblot 
(5μg protein per lane) 
analysis indicates an 
enrichment in isolated 
ZGs over total 
homogenate fractions 
indicating the purity of 
the ZG population. (A) 
Representative western 
blot of VAMP-2 protein 
(~15kDa), the v-SNARE 
present on vesicle 
membranes is enriched 
(B) in ZG fractions over 
total pancreatic 
homogenate (N=6 *p < 
0.01).  (C) 

Representative blots AQP1 (N=3 *p < 0.05), the water channel (~28 kDa) present on ZGs and 
(E) Gαi3(N=5 *p < 0.05), the heterotrimeric GTP-binding protein (~42 kDa) found in ZGs also 
demonstrated to be enriched (D, F)in the ZG fractions when compared to their counterpart total 
homogenate fraction.  PonchuS staining confirms total protein sample loaded in each well to be 
equal in relative content. 
 
Figure 10. AFM morphometry of isolated pancreatic 
ZG from 2h post caerulein administered rats 
demonstrating ZG swelling. A 14.2% increase in ZG 
diameter is observed in 2h experimental ZG 
compared to control. The numbers of ZG measured 
for each category represent N, and the distribution 
range of ZG plotted are presented to the left of the 
respective bar graph: blue for control and red for the 
2h experimental. Data are presented as mean ± SEM 
(p < 0.01). 
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Results from the EM study demonstrate a 13.9% increase in ZG mean diameter in the 2h 

experimental pancreas over those measured in control tissue (Figure 8).  AFM measurements of 

isolated ZG diameter obtained from 2h experimental animals demonstrated a 14.2% increase in 

ZG size over controls (Figure 10), confirming results obtained using EM morphometry.  These 

studies demonstrate approximately 14% increase in ZG diameter in acute pancreatitis.  Due to 

the significant changes in the morphometry of the two hour group the remainder of the studies 

will focus on the two hour time point compared to control ZGs from saline treated animals. 

Discussion 

The EM and AFM micrographs confirm a significant enlargement in the diameter of 

pancreatic ZGs in the 2h experimental group over saline injected controls.  The enlargement is 

likely due to inappropriate and premature activation of zymogen granule contents as well as 

biochemical changes taking place at the zymogen granule membrane (ZGM).  It has been 

previously demonstrated that ZGs autoactivate in the early stages of acute pancreatitis 

(VanAcker et al. 2007, Hofbauer et al. 1998).  But the question still remains as to what 

specifically is causing the granule enlargement.  Figures 8 and 10 demonstrate an increase in 

vesicle diameter indicating a premature enlargement of the vesicle.  This may be from premature 

swelling and therefore disallowing further swelling of the secretory vesicles upon stimulation at 

the plasma membrane. 

A physiological secretory stimulus of pancreatic acinar cells is known to result in 

approximately a 15% increase in ZG diameter within 2.5 min (Kelly et al. 2004a), followed by a 

decrease by 5 min.  This decrease in ZG size results from a fractional discharge of intravesicular 

contents (Kelly et al. 2004a).  The increased size of ZG even after 2 hours following 

supramaximal stimulation, suggests the inability of the ZG to fuse at the cell plasma membrane 

to release its contents.  The observed increase in content and activity of plasma amylase (as 
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examined in Chapter 1) following supramaximal stimulation may be a consequence of ZG 

swelling and content release from docked vesicles immediately after supramaximal stimulation, 

prior to a secretion block (Figure 7) resulting from altered ZG chemistry and its compromised 

ability to fuse at the cell plasma membrane. 

As previously reported in humans (Helin et al. 1980), morphometric analysis of ZG using 

both EM and AFM, demonstrate an increase in vesicle diameter in acute pancreatitis. Results 

from the study shows that this increase in ZG size in acute pancreatitis results from altered ZGM 

chemistry, that in-part may be a consequence of the observed overall loss of key ZG volume 

regulatory proteins at the ZGM including alterations in its lipid profile (Helin et al. 1980).  The 

causes of vesicle enlargement may be multi-factorial but several theories are hypothesized and 

explored further in Chapter 3.  Since the major molecule known to impart volume increase in ZG 

is water, and the bidirectional water channel AQP1 present at the ZGM is implicated in the 

process (Cho et al. 2002), ZG swelling in acute pancreatitis may occur prior to the observed loss 

of AQP1 and other ZG volume regulatory proteins in pancreatitis.  Furthermore, the enriched 

presence of the lysosomal cysteine protease cathepsin B in pancreatitic ZG as well as an increase 

in co-localization seen in experimental tissue with the LAMP-1 protein supports the likelihood of 

lysosomal vesicle fusion with ZG.  These results suggest that ZG swelling in acute pancreatitis 

may involve water and ion transport into ZG as well as the fusion of lysosome-derived vesicles. 
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CHAPTER 3 

ALTERED ZG COMPOSITION: IMPLICATION OF THE G-PROTEIN COUPLED 

RECEPTOR 98 IN GRANULE VOLUME REGULATION 

Abstract 

Pancreatic digestive enzymes secreted following a meal are stored as inactive zymogens 

within membrane-bound secretory vesicles called Zymogen Granules (ZG), and activated 

extracellularly.  In acute pancreatitis however, the digestive enzymes are prematurely activated 

within the cell, resulting in autodigestion of the tissue.  Two line of clinical evidence suggest 

altered ZG morphology and chemistry in causation of the disease.  However little is known about 

the specific mechanism and the proteins and lipids that might participate in this process.  Here it 

is reported that in acute pancreatitis, there are specific changes to both the proteome and 

lipidome of the ZG, contributing to altered ZG morphology and function.  LC-MS-based lipid 

and protein profiling and immunochemistry, collectively demonstrate altered ZG volume and 

activity regulating proteins and lipids, in acute pancreatitis.  Early events involving alterations in 

ZG membrane composition lead to zymogen activation within the organelle in thr etiology of the 

disease. Results from these studies have broader implications in understanding cell signaling. 

Introduction 

Secretion is a universal process at the cellular level that regulates numerous physiological 

activities in an organism that includes digestive enzyme release.  Cells and their contained 

membrane-bound vesicles undergo a tightly regulated process for proper release of vesicle 

contents into the extracellular compartment.  Disease states such as pancreatitis inhibit proper 

secretion.  Without correctly functioning secretory machinery the effective release of substances 

from cells would not be possible as diffusion across the plasma membrane of many cellular 

products does not occur at a rate that is physiologically beneficial (Jena 1997).   
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While acute pancreatitis is characterized by a sudden onset of abdominal pain many of its 

other characterizing symptoms like edema, hemorrhage, and necrosis often go undetected until 

hospitalization is required (NIDDK 2012, Foster 2013).  Due to this there is a lack of clear 

criteria describing the early stages of this disease.  Often, by the time a patient becomes 

hospitalized the disease symptoms have significantly progressed beyond the initial stages.  GI 

ultrasounds and serum amylase and lipase levels are the only current methods in practice for 

diagnosis (NIDDK 2012, Carroll et al. 2007).  Pancreatic biopsy may prove effective but due to 

complications and the risk a general surgery poses to the progression of this disease, biopsy is 

usually avoided (Carroll et al. 2007).  A limit on current treatment modalities compounds this 

problem (Hofbauer et al. 1998). 

Two lines of clinical evidence suggest alteration of the ZG and associated lipids in the 

etiology of the disease.  First, ultrastructural studies of the exocrine pancreas in human acute 

pancreatitic patients demonstrate an increase in ZG size (Helin et al. 2002), and similarly, lipid 

imbalance and a marked increase in pancreatic PLA2 activity in patients with acute pancreatitis 

have been reported (Aufenanger et al. 2002).  PLA2 catalyzes the hydrolysis of 

phosphatidylcholine (PC) to produce lyso-PC.  Calcium-dependent PLA2 and acyltransferase 

activity have been demonstrated to be present in ZG membrane (ZGM) in exocrine pancreas 

(Rubin et al. 1990), and the ZGM-associated Gαi3 G-protein is implicated in this PLA2 function 

(Jena et al. 1997, Cho et al. 2002, Abu-Hamdah et al. 2004, Kelly et al. 2004a, Kelly et al. 

2004b, Rubin et al. 1991).  Since a sharp rise in intracellular calcium is documented in acute 

pancreatitis (Fick 2012), and cytosolic PLA2 (cPLA2) present in the exocrine pancreas is a 

calcium-dependent PLA2 requiring Ca2+ for both its activity and translocation to a target 

membrane (Burke and Dennis 2009), its recruitment to the ZGM following induction of acute 

pancreatitis and the consequent elevation of intracellular Ca2+, was hypothesized.  Similarly, 
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since a drop in intracellular pH has been documented in numerous studies, and the involvement 

of lysosomes in zymogen activation in acute pancreatitis has previously been reported (Saluja et 

al. 1985, Saluja et al. 1997a, Saluja et al. 1997b, Saluja et al. 1999, Dawra et al. 2011, Saluja et 

al. 1987, Saluja et al. 1991, Gorelick and Matovcik 1995), the translocation of the lysosomal 

cysteine protease cathepsin B to ZG, and the activation of the Ca2+-independent PLA2 (iPLA2) 

which requires a low pH optimum (pH 4.5), and its participation in the elevation of lyso-PC in 

ZG was further hypothesized.  

Earlier studies demonstrated the swelling of secretory vesicles during cell secretion (Jena 

et al. 1997, Cho et al. 2002, Abu-Hamdah et al. 2004, Kelly et al. 2004a), and the requirement of 

vesicle swelling for the regulated expulsion of intravesicular contents from cells during secretion 

(Kelly et al. 2004b).  This would suggest that since a block in pancreatic acinar cell secretion is 

observed in acute pancreatitis, the enlarged ZG in acinar cells seen in patients with acute 

pancreatitis, may reflect the inability of swollen ZGs following supramaximal stimulation to 

discharge their contents and hence remain larger than normal.  Since PLA2 together with Gαi3, 

AQP1, K+ and Cl- channels, and vH-ATPase present at the ZGM are involved in ZG volume 

regulation (Jena et al. 1997, Choss et al. 2002, Abu-Hamdah et al. 2004, Kelly et al. 2004a, Kelly 

et al. 2004b), alterations in one or more of these ZG volume regulatory proteins in acute 

pancreatitis was hypothesized. 

  

Moreover, since lipid imbalance and an increase in pancreatic PLA2 activity in patients 

with acute pancreatitis have been reported (Aufenanger et al. 2002), and PLA2 catalyzes the 

Figure 11. GTP binding proteins 
regulate a variety of ion channels that 
are responsible for creating and 
maintaining the electrochemical 
gradient necessary for water influx 
into the secretory vesicle prior to 
secretion (Jena et al. 1997). 



24 

 

hydrolysis of PC to produce lyso-PC, the involvement of PLA2 in remodeling of the ZG 

membrane, thereby influencing lipid protein interaction, was suggested.  Membrane function, 

especially transport and fusogenic properties greatly rely on lipid composition.  Specific lipids 

provide curvature to membranes (vanMeer et al. 2008), they provide interaction with specific 

membrane proteins to develop platforms for docking and fusion functions in cells (Cho et al. 

2007, Lam et al. 2008, Shin et al. 2010), and provide specific mechanical properties (vanMeer et 

al. 2008) to membrane or vesicle domains, required for optimal function both at the organelle 

and molecular level.  For example, the interaction of syntaxin-1 and N-type calcium channel has 

been found to be cholesterol dependent (Cho et al. 2007).  Syntaxin-1 is known to directly 

interact with phosphatidic acid and other polyphosphoinositide lipids (Lam et al. 2008). 

Similarly, lysophosphatidylcholine has been demonstrated to influence both the assembly and 

disassembly of the t-/v-SNARE complex (Lam et al. 2008, Shin et al. 2011).  Therefore, altered 

ZG lipid composition in acute pancreatitis was hypothesized and investigated using a caerulein-

induced rat model of the disease.  Employing electron microscopy (EM) and atomic force 

microscopy (AFM), increase in ZG size in acute pancreatitis was demonstrated. LC-MS-based 

lipid and protein profiling of ZG, and immunoanalysis, show altered ZG chemistry in acute 

pancreatitis.  Results from the study demonstrate that early events involving alterations in ZG 

membrane composition likely leads to zymogen activation within the organelle, in acute 

pancreatitis.  These results have now allowed the formulation and will allow for future testing of 

the hypothesis regarding the specific roles of the identified ZG proteins and lipids altered in 

acute pancreatitis.   

Initiator proteins such as the β2 adrenergic receptor have been shown to regulate vesicle 

swelling in synaptic vesicles (Chen et al. 2010).  In synaptic vesicles (SVs) co-immunoisolations 

of Gαo and the β2 adrenergic receptor have been demonstrated.  These two proteins have also 
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been functionally linked.  While a β2 agonist, isoproterenol, did not enhance vesicle swelling 

beyond control values stimulated by GTP and mastoparan, it did serve the ability to rescue 

vesicle swelling back to control values after the SV has been previously treated with the β2 

antagonist, alprenolol (Chen et al. 2010), thereby indicating a regulatory function of the β2  

receptor in SV activation. 

 
 
 

 

 

 

 

 

Figure 13. AQP1-specific antibody binds to the
ZG membrane and blocks water traffic. (A)
Immunoblot assay demonstrating the presence of
AQP1 antibody in SLO-permeabilized ZG.
Lanes: 1, AQP1 antibody alone; 2, nonpermeable
ZG exposed to antibody; 3, permeable ZG
exposed to AQP1 antibody. Immunoelectron
micrographs of intact ZGs exposed to AQP1
antibody demonstrate little labeling (B & C).
(Bar 200 nm.) Contrarily, SLO-treated ZG
demonstrate intense gold labeling at the luminal
side of the ZG membrane (D & E).
AQP1regulates GTP-induced water entry in ZG.
(F) Schematic diagram of ZG membrane
depicting AQP1-specific antibody binding to the
carboxyl domain of AQP1 at the intragranular
side to block water gating. (G,H, andK)
AQP1antibody introduced into ZG blocks GTP-
induced water entry and swelling (from G to H,
after GTP exposure). (I–K) However, only
vehicle introduced into ZG retains the
GTPstimulatable effect (from I to J, after GTP
exposure). Courtesy of BP Jena (Cho et al. 2002)

Figure 12. The β-adrenergic receptor was examined for 
co-immuno isolation with the Gαo protein in SVs.  
Additionally, this physical linkage was confirmed by 
the ability of Gαo to co-immuno isolate with the β-
adrenergic receptor (Chen et al. 2011). 
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The presence of an activator protein at the SV suggests that other secretory vesicles may 

contain similar mechanisms.  G-protein activation, like in the SV, is a requirement for Cl- and K+ 

gradient formation for water entry into the vesicle (Gilman 1987, Konrad et al. 1995, Weingarten 

et al. 1990).  Limited Mass Spectrometry was undertaken to elucidate any such protein or 

proteins that may be contributory to secretory activation at the level of the ZG.  Previous 

research has also shown the requirement for vesicular acidification prior to vesicle swelling and 

content expulsion.  In isolated synaptic vesicle preparations, SVs show a significant decrease in 

swelling when subject to treatment with the v-H+ATPase inhibitor baflomycin.  In normal 

physiology the v-H+ATPase pumps protons into the lumen of the vesicle contributing to the 

gradient created for water movement through the bidirectional water channel AQP1 allowing for 

the prerequisite swelling (Shin et al. 2010).  Since a block in secretion has been previously 

observed in pancreatitis (Chiari 1896) it would suggest v-H+ATPase alteration. 

 

My research has focused on how volume regulation is altered during this process, and 

how key lipid players are altered due to pancreatitis.  I have assessed many of the integral 

proteins involved in the secretory cascade and it is evident that changes occur after the induction 

of this disease.  My research has demonstrated a loss in the G-protein (Gαi3), AQP-1 and the v-

H+ATPase proton pump.  In addition to these data I have also confirmed an increase in Cathepsin 

B in ZGs during pancreatitis as well as a change in the localization of Cathepsin B from the 

Figure 14. Inhibition of the v-H+

ATPase proton pump prevents
vesicle acidification thereby
decreases the gradient along which
water enters the vesicle through the
AQP disallowing vesicle swelling
prior to explulsion of vesicle
contents.  (Shin et al. 2010). 
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basolateral pole to more apical regions overlapping with VAMP-2 marked ZGs.  An increase in 

the inflammatory mediators, cPLA2 and iPLA2, were also observed during pancreatitis.  Increases 

in PLA2 are an indication of inflammation at the cellular level (Nevalainen et al. 1985).  In 

healthy control acinar cells both of the PLA2 isotypes stained lightly and displayed a diffuse 

spread throughout the cell.  However after the induction of pancreatitis both PLA2 isoforms 

increased in quantity migrated apically in a region to colocalize with VAMP-2 marked ZGs. The 

increase in overall cellular acidity, demonstrated with an increase in BCECF staining, AQP-1 

protein, and inflammatory mediators primes the acinar cells and ZGs housed within for digestive 

enzyme activation.  The combination of factors present in the pancreas during pancreatitis 

predisposes ZGs for early activation and primes the cell for a vicious cycle of pancreatic damage 

and cellular death.  Therefore the third goal of my research has been to focus on the biochemical 

and lipid changes that occur in pancreatic ZGs after the induction of pancreatitis in rats.   

Materials & Methods 

Isolation of Zymogen granules (ZG):   

Zymogen granules were isolated as previously outlined in Chapter 2. 

Western blot analysis:   

Five micrograms of isolated ZG or total pancreatic homogenate (TH) preparations in 

Laemmli buffer (Laemmli 1970) were resolved in a 10% SDS-PAGE, followed by 

electrotransfer to 0.2 mm nitrocellulose sheets.  The nitrocellulose was incubated for 1 h at room 

temperature in blocking buffer (5% nonfat milk in phosphate buffered saline or PBS containing 

0.1% Tween-20 and 0.02% NaN3) followed by incubation for 1 h at room temperature with 

primary antibody at a dilution of 1:1,000 in blocking buffer.  The immunoblotted nitrocellulose 

sheets were washed in PBS containing Tween-20, before incubation, for 1 h at room temperature 

in horseradish peroxidase-conjugated secondary antibody at a dilution of 1:5,000 in blocking 
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buffer.  The immunoblots were washed in PBS containing 0.1% Tween-20 and processed for 

enhanced chemiluminescence and exposure to X-Omat-AR film.  The exposed films then were 

developed and scanned using a scanner and processed using Adobe Photoshop CS6 (Adobe, 

SanJose, CA). 

Estimation of major lipids in isolated ZG using mass spectrometry 

Lipid extraction for mass spectrometry:   

ZG were extracted for lipids with methanol and methyl-tert-butyl ether (MTBE) 

according to published methods (Matyash et al. 2008). Briefly, methanol (1.5 mL) containing 

100 ng each of internal standards (diheptadecanoyl PC, diheptadecanoyl PE, diheptadecanoyl PS, 

diheptadecanoyl PA, diheptadecanoyl PG, diheptadecanoyl glycerol-d5, 1,3- diheptadecanoyl -2-

(10Z)heptdecenoyl glycerol-d5, 1-palmitoyl(d31)-2-oleoyl-sn-glycero-3-phosphoinositol, and 

PAF-C16-d4) was added to a suspension of ZG (200 µL) followed by MTBE (5 mL), and mixed 

well.  The mixture was left for 1 h at room temperature with occasional mixing.  Water (1.5 mL) 

was added to the mixture, mixed thoroughly, and centrifuged (1000xg) for 5 min to assist the 

separation of phases.  The upper organic phase was collected to a clean glass tube.  The lower 

aqueous phase was extracted twice (2 mL each time) with MTBE saturated with methanol and 

water (10:3:2.5 v/v) and the extracts were combined.  The MTBE extracts were evaporated to 

dryness under a gentle stream of nitrogen and the residue was dissolved in LC-MS grade 

isopropanol-hexane-100 mM aqueous ammonium acetate (58:40:2 v/v).  The reconstituted lipid 

extract was analyzed for lipids by mass spectrometry. 

Mass spectrometric quantitation of lipid classes:   

Lipid extracts were directly infused into the TurboVion source by a syringe pump at 10 

µL/min and analyzed by QTRAP5500 mass spectrometer (ABSCIEX) using Information 

Dependent Acquisition method.  Mass analyzer conditions in the positive ion mode are as 
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follows: Ionization Potential: 5500 V, Declustering Potential: 120 V, Entrance Potential: 9 V, 

Collision cell Exit Potential: 9 V.  Collision energy for the survey scan was 10 eV and 45 eV for 

Enhanced Product Ion scans.  In each scan, three ions with highest intensity were chosen for 

dependent product ion acquisition and the detected ions were excluded for the rest of the 

experiment after three occurrences.  Data was analyzed for the identification of lipid species 

using LipidView software (ABSCIEX). Lipid were quantified against internal standards and 

normalized against protein values obtained by Bradford assay. 

Determination using mass spectrometry ZG proteins resolved using SDS-PAGE  

Matrix-assisted laser desorption ionization (MALDI):   

Ten micrograms of isolated ZGs each, from control and 2h experimental pancreas, were 

solubilized in Laemmli buffer (Laemmli 1970) and resolved using a 12.5% SDS-PAGE.  The 

Coomassie-stained protein bands were used for in-gel digest and mass spectrometry.  Mass 

spectrometry was performed using the Applied Biosystems (ABI) 4700 Proteomics Analyzer 

(TOF/TOF) in positive ion mode.  As previously described (Chen et al. 2010), a fraction of the 

tryptic peptides from each gel band in control ZG and 2h experimental ZG was spotted onto a 

MALDI target plate for mass spectrometric analysis.  Peptide mass fingerprints were collected 

for each well and the four most intense peaks above S/N of 60 were selected for MS/MS 

analysis.  After the MS and MS/MS, spectra were processed using 4700 ExplorerTM software 

(v2.0, Applied Biosystems).  The monoisotopic peak lists generated in ABI’s GPS ExplorerTM 

v2.0, was submitted to the GPS ExplorerTM v2.0 search tool (based on MASCOT) for protein 

identities.  The Non-redundant Protein Database, NCBInr, was searched using the following 

parameters for: 0 or 1 missed cleavage by trypsin, carboxyamidomethylation of cysteines as 

fixed modification, and methionine oxidations, N-terminal protein acetylation, Pyro-glu (N-term 

E), Pyro-glu (N-term Q) as variable modifications. 
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LC-MS/MS analysis and database search:   

After a detergent removal procedure, tryptic peptides were separated by reverse phase 

chromatography (Magic C18 column, Michrom), followed by ionization with the ADVANCE 

ion source (Michrom), and then analyzed in an LTQ-XL mass spectrometer (Thermo Scientific). 

Abundant species were fragmented with collision-induced dissociation.  Data analysis was 

performed using Proteome Discoverer 1.1 (Thermo), which incorporated the Mascot algorithm 

(Matrix Science).  The NCBI database was used against rat protein sequences and a reverse 

decoy protein database was run simultaneously for false discovery rate (FDR) determination.  

Duplicate samples from control and experimental ZG bands were analyzed by nanoLC-MS/MS.  

In this case, the tryptic peptides were separated on a reversed-phase C18 column with a 90 min 

gradient using the Dionex UltimateTM HPLC system.  Then the MS and MS/MS spectra were 

acquired on an Applied Biosystems QSTAR XL mass analyzer using information dependent 

acquisition mode.  A MS scan was performed from m/z 400-1,500 for 1s followed by product ion 

scans on two most intense multiply charged ions.  Peaklists were submitted to Mascot server to 

search against the NCBInr database for rat sequences with carbamidomethyl (C) used as a fixed 

modification and oxidation (M), N-acetylation (protein N terminus) as variable modifications. 

Secondary analysis of both the LTO XL and QSTAR XL were next performed using Scaffold 

(Proteome Software).  A fixed modification of +57 on cysteine (carbamidomethylation) and 

variable modifications of +16 on methionine (oxidation) and +42 on protein N-terminus 

(acetylation) were included in the database search.  Minimum protein identification probability 

was set at ≥95% with 2 unique peptides at 95% minimum peptide identification probability.  

Immunocytochemistry:   

Individual lobules were removed and fixed from pancreata and fixed in 2% 

paraformaldehyde and 2% gluteraldehyde overnight, washed in and stored at 4⁰C in PBS until 
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use.  Individual lobules were sliced to 3μm using a cryostat and fixed to glass slides using poly-

L-lysine.  Lobule slices were incubated in a blocking solution (5% bovine serum albumin in PBS 

with 0.05% Triton 100-X) for one hour at room temperature.  The primary polyclonal antibodies 

(Santa Cruz Biotechnology, Dallas, TX) were diluted to 1:500-1:1000 in 5% BSA in PBS with 

0.05% Triton-100X and incubated at room temperature for one hour.  Lobule slices were washed 

in PBS with 0.05% Triton-100X (3x) for five minutes.  The secondary antibodies, Alexa 488 or 

Alexa 594 fluorescent conjugated donkey anti-goat or anti-rabbit (Santa Cruz Biotechnology, 

Dallas, TX) were diluted to 1:1000 in 5% BSA in PBS with 0.05% Triton-100X and incubated 

for one hour at room temperature in dark conditions.  Lobule slices were washed in PBS with 

0.05% Triton-100X (3x) for five minutes in dark conditions.  DAPI (Santa Cruz Biotechnology, 

Dallas, TX) was diluted 1:1000 in 5% BSA in PBS with 0.05% Triton-100x and exposed to the 

lobule slices for 10 minutes at room temperature in dark conditions.  The sample slices were 

washed a final time with 0.05% Triton-100X (3x) for five minutes in dark conditions and sterile 

distilled H20 (1x) for five minutes before having coverslips placed with Vecta Sheild mounting 

media.  Fluorescent images of acinar cells were obtained using an immunofluorescence FSX100 

microscope (Olympus, Center Valley, PA).  Images were processed using CellSens and 

Photoshop CS6 software (Adobe, SanJose, CA). 

Immuno Co-Localization Studies:   

ZG proteins were solubilized and isolated according to modified procedure (Chen et al. 

2010, Jena et al. 2003, Lee et al. 2010).  Immunoisolation studies were performed by solubilizing 

250μL of isolated ZGs in a solubilization buffer (0.5% Triton-100X, 0.05% Lubrol, 5mM 

MgATP, 5mM EDTA, 1mM Benzamadine, 10μL/mL protease inhibitor cocktail (Sigma) in 

PBS, pH 7.5) for two hours with intermittent vortexing.  The ZG solution was spun down at 6000 

xg.  The supernatant was divided in half and exposed to either the GRP-98 or Gαi3 antibody 
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(Santa Cruz Biotechnology, Dallas, TX) conjugated to Protein A Plus-Agarose beads (Santa 

Cruz Biotechnology, Dallas, TX) for one hour on ice followed by washing (3x) with PBS 

containing 500mM NaCl, 10mM Tris, and 2mM EDTA, pH 7.5.  The immunoisolated samples 

bound to the immune-sepharose beads were eluted using low pH PBS buffer and subsequently 

brought to neutral pH.  SDS-PAGE, electrotransfer to nitrocellulose, followed by immunoblot 

analysis were then performed on the immunoisolated proteins.  GRP-98 immune isolates were 

probed with Gαi3 primary antibody and Gαai3 isolates were probed with GRP-98 primary antibody 

to confirm the interaction between the two proteins.   

Results 

Loss of ZG Volume Regulatory Proteins in Acute Pancreatitis 

 Proteins from isolated ZGs of rats injected with supramaximal caerulein (50mg/kg, i.p.) 

or with the volume equivalent of saline for control were resolved using SDS-PAGE for 

immunoanalysis and demonstrate a loss of Gαi3, v-H+ATPase, and AQP1 immunoreactivity, 2h 

following exposure of rats to a supramaximal dose of caerulein. No change in the membrane 

fusion protein v-SNARE at the ZG membrane is observed during the period, suggesting that loss 

from ZG membrane (ZGM) rather than proteolysis is involved in the observed decrease in Gαi3, 

v-H+ATPase, and AQP1 immunoreactivity in pancreatic ZG obtained from rats exposed to a 2h 

supramaximal dose of caerulein (Figure 15). It is concluded from these results that the loss of ZG 

volume regulatory proteins must have occurred post ZG swelling, between the 1h and 2h time 

points following caerulein exposure, since they would be required for the observed ZG swelling 

at 2h. 

Immunoanalysis of resolved ZG proteins from 2h control and experimental pancreas 

demonstrate the presence of similar amounts of Hsc70 proteins (Figure 15C). AQP1 

immunoisolates of solubilized ZG demonstrated greater association of Hsc70 and Hsp70 in 
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control over experimental (Figure 15 B & D). These results demonstrate that Hsc70 and Hsp70 

bind to ZG associated AQP1 and is most likely involved in AQP1 dissociation from ZG in acute 

pancreatitis. Hsp70 and Hsc70 may similarly regulate association and dissociation of Gαi3 and 

vH-ATPase among other proteins at the ZGM. To further confirm results from the study using 

immunoanalysis, mass spectrometry was performed on resolved ZG proteins from control and 

experimental animals. 

 
Figure 15. Immunoblot analysis of SDS-PAGE resolved ZG proteins (5µg per lane) from 2h 
control (C) and 2h experimental (E) pancreas, demonstrating loss of (A) AQP1 (~28kDa, N=6), 
(C) HSC70 (~71kDa), (E) Gαi3 (~42kDa, N=5) and, (F) v-H+ATPase (~51kDa, N=4), *p < 0.05.  
The SNARE protein VAMP-2 (~15 kDa, N=6) (G) does not show any change after caerulein 
stimulation of the pancreas in isolated ZGs.  Immunoprecipitation of solubilized ZG proteins 
from control and experimental pancreas using AQP1 antibody followed by immunoprobing 
using HSC70 antibody (B) and HSP70 antibody (B)  implicates the co-localization of AQP1 and 
both Hsc70 and Hsp70 at the ZGM, and their loss from ZG following supramaximal caerulein 
exposure of the exocrine pancreas. This study also demonstrates that at the ZGM, AQP1, Hsc70, 
and Hsp70 are present as a complex, and are potentially dissociated/dislodged following 
supramaximal caerulein exposure. PonchuS staining of nitrocellulose membranes confirms equal 
quantities of protein loaded per each lane. 
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Mass Spectrometry Confirms Loss of ZG Volume Regulatory Proteins in Acute Pancreatitis 

To prevent proteolysis, mass spectrometry was performed on ZG proteins first resolved 

using SDS-PAGE.  The separated ZG protein bands were stained using Coomassie Blue, and 

digested with trypsin following reduction and alkylation.  The resultant tryptic peptides were 

then analyzed by nano LC-MS/MS using an Applied Biosystems QSTAR XL mass analyzer.  

The separated ZG protein bands from 2h control and 2h experimental appear nearly identical 

(Figure 16A).  Excision of four sets of bands at identical molecular weights from control and 

experimental ZG, demonstrate loss of the volume regulatory Gαi3 protein, as demonstrated using 

immuno analysis (Figure 15).  Similarly, mass spectrometry confirms the presence of Hsc70 in 

both control and experimental ZG as demonstrated using immuno analysis (Figure 15).  

Interestingly, the G-protein coupled receptor 98 (GRP98), and the guanine nucleotide exchange 

factor (vav3), were both identified for the first time in control ZGs, and found to be absent in 

experimental ZGs (Figures 16 and 17), suggesting impaired ZG volume regulation in acute 

pancreatitis. 

 
 
 
 

Figure 16. Limited mass spectrometry
on ZG from control and 2h post
caerulein administered rat pancreas
demonstrating loss of Gαi3, G-protein
coupled receptor 98 (GRP98), and the
guanine nucleotide exchange factor
(vav3). Note: although the SDS-PAGE
of resolved bands of proteins appear
similar, the mass spectrometry
demonstrate otherwise. In each band,
multiple protein species were
identified. Several representative
protein identifications were shown
from each band of control and
experimental lanes. 
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Figure 17. G-protein binding receptor 98 was examined with immunoblot analysis and 
immunoflourescence. (A) Immuno blot analysis of GRP-98 (5μ protein per lane) reveals a 
significant enrichment in ZGs over total pancreatic homogenate (TH) where it was virtually 
undetectable (N=6 *p < 0.01). (B) Immuno blot analysis (5μ protein per lane) also indicates a 
significant decrease in GRP-98 presence in ZGs isolated from pancreata of rats injected caerulein 
(N=5 *p < .05). PonchuS staining of nitrocellulose membranes confirms equal quantities of 
protein loaded per each lane. (C) Phase image of control 3μm thick pancreatic acini 
immunostained using GRP-98 specific antibody. Note the specific localization of the apical 
region of the acini where ZGs are located. In contrast, a 3μm thick pancreatic acini (D) obtained 
from the 2h post-caerulein treatment demonstrates diffused staining and enhanced supranuclear 
GRP-98 staining.  A loss of GRP-98 at the acinar lumen is observed.  Scale bar = 5μm 
 

The wasp venom tetradecapeptide mastoparan, stimulates GTP-induced swelling of  ZG 

(Jena et al. 1997, Cho et al. 2002).  Mastoparan potentiates the GTPase activity of Gi/Go proteins 

by inserting into the phospholipid membrane, forming a highly structured α-helix that resembles 

the intracellular loops of G protein-coupled β-adrenergic receptor (Konrad et al. 1995, 

Higishijima et al. 1998, Vitale et al. 1993).  Analogous to receptor activation, mastoparan 

interacts with the COOH-terminal domain of the G protein α subunit (Weingarten et al. 2011).  

Hence the presence of a G-protein coupled receptor at the ZG membrane had been hypothesized, 

and now confirmed from results of the present study (Figures 16 and 17).  Similarly, a G protein-

coupled β-adrenergic receptor has been reported to be present in the synaptic vesicle membrane 

of neurons (Chen et al. 2011), and implicated in synaptic vesicle swelling and neurotransmitter 

release.  Collectively, proteomics results from mass spectrometry reveal new players involved in 

ZG volume regulation, and support the hypothesis that ZG-associated molecules involved in the 
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regulation of its volume are lost in acute pancreatitis.  Results from the study further shows, that 

the loss of volume regulating proteins such as AQP1 from the ZGM in acute pancreatitis, may 

in-part be via the Hsp70 and Hsc70 proteins (Figure 18).  In recent years, the interaction of 

Hsp70 with specific membrane lipids such as cholesterol (Zhu et al. 2012) and 

phosphatidylserine (Arispe et al. 2004), have also been reported.  Altered membrane lipids may 

therefore influence the binding of Hsp70 to its substrate membrane proteins. Since lipid 

imbalance and a marked increase in pancreatic PLA2 activity is found in patients with acute 

pancreatitis (Aufenanger et al.2002), and PLA2 catalyzes the hydrolysis of phosphatidylcholine 

(PC) to produce lyso-PC, altered ZG lipid composition in acute pancreatitis was hypothesized 

and tested. 

 
Figure 18. ZG associated GRP98 regulates ZG volume and interacts with Gαi3. (A) ZG 
immunoisolates using GRP98-specific antibody when probed using Gαi3-specific antibody, 
demonstrate colocalization of GRP98 and Gαi3. (B) Similarly, ZG immunoisolates using Gαi3-
specific antibody when probed with GRP98-specific antibody demonstrate co-localization of the 
two proteins. Gαi3-mediated ZG volume regulation by GRP98 is demonstrated by the ability of a 
GRP98 specific antibody to inhibit the potency and efficacy of GTP-Mastoparan induced 
swelling of isolated ZGs.  ZGs pre-incubated with the GRP98 antibody swell much less (C) and 
slower (D) when exposed to GTP-Masoparan. 
 

Elevated ZG PLA2 and Lyso-PC levels in Acute Pancreatitis 

Confirming the hypothesis, examination of the lipid profile using mass spectrometry 

(MS) of isolated ZG from control and 2h post supramaximal caerulein-treated rats, demonstrate 

elevated lyso-PC levels following caerulein exposure (Figure 19), suggesting elevation of PLA2 
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in ZG.  While ceramide PE and PE lipids decreased, PC lipids demonstrate a significant increase 

in ZG following caerulein treatment.  Furthermore, several lipid species with high 

polyunsaturated fatty acid (PUFA) content appeared exclusively in ZG from caerulein-treated 

animals (Figure 20).  Since unsaturated fatty acids increase membrane fluidity, an increase in 

PUFA content in membrane lipids of ZG may assist in the observed volume increase (Konings et 

al. 1985).  Additionally, PUFA released by PLA2 serve as substrates for the biosynthesis of lipid 

mediators of inflammation catalyzed by cyclooxygenases and lipoxygenases, resulting in 

inflammatory response in acute pancreatitis (Smith et al. 2011, Haegstrom et al. 2011, Serhan 

and Petasis 2011). 

 

 

 

Figure 19. Lipid class profiles in ZG
isolated from control and 2h post
caerulein administered rats. Lipid
profiles were generated by shotgun MS
analysis, and data analysis was
performed using LipidView
(ABXCIEX). Classes of lipids were
pooled based on the head groups
detected by neutral loss scan MS and
only the lipid classes that differed
between the two groups with statistical
significance (p ≤ 0.05) are shown. Data
represents mean ± SEM. 
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Figure 20. Lipid species that exclusively
appear in the 2h ZG of the experimental
group (2h post caerulein administered
rats). Lipid classes were identified by
shotgun MS analysis. Individual lipid
species identification was from fatty acids
detected by ms/ms of the detected lipids.
Data is presented as mean ± SEM. 
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Two major cellular parameters are altered in acute pancreatitis.  First, there is sharp rise 

in intracellular calcium, and second, a drop in intracellular pH is documented.  Since cytosolic 

PLA2 (cPLA2) present in the exocrine pancreas is a calcium-dependent PLA2 requiring Ca2+ for 

both its activity and translocation to a target membrane (Burke et al. 2009), its recruitment to the 

ZGM following supramaximal caerulein exposure is hypothesized.  Immunoblot and 

immunocytochemistry demonstrate the enriched presence of cPLA2 in ZG obtain from pancreas 

exposed to a supramaximal dose of caerulein (Figure 22).  Using 2’,7’-bis(2-carboxyethyl)-5(6)-

carboxyfluorescein (BCECF), one of the most common methods of determining intracellular pH, 

low pH was demonstrated in the apical portion of control acinar cells where ZGs are located 

(Figure 21A).  However, following a 2h exposure to a supramaximal dose of caerulein, a drop in 

intracellular pH is demonstrated, which is expressed as a diffused BCECF fluorescence 

throughout the cell (Figure 21B). 

 
 

 

 

Figure 21. BCECF stain indicates near neutral pH (~6.5) in acinar cells examined from
saline treated control animals (A), however the BCECF fluorescence is markedly reduced in
acinar cells examined from pancreata of the 2h experimental group (B), as a result in drop of
intracellular pH following a 2h supramaximal caerulein exposure. (N=nucleus, L=lumen)
Scale Bar = 5μm.  
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Figure 22. Altered distribution of cPLA2 in acute pancreatitis. Demonstration of its increased 
association with ZG. (A) Immunoblot analysis of 5μg of SDS-PAGE resolved ZG protein per 
lane, demonstrates a significant increase in cPLA2 in ZGs isolated from pancreata of the 2h 
experimental rat over control (N=6 *p < 0.05). (B) No change in total cPLA2 levels are observed 
in both the control and experimental groups. (C) There was also no significant difference in 
amylase quantity in the total homogenate fraction as examined by Western blot analysis (5ug of 
resolved protein per lane).   In agreement with the Western blot assays, immunocytochemistry 
(D-S) demonstrate increased association of cPLA2 levels in ZG in acute pancreatitis. 
Immunocytochemistry demonstrating enriched presence of cPLA2 in ZG in pancreas exposed to 
a 2h supramaximal dose of caerulein. Phase contrast images indicate the shape of pancreatic 
acinar cells with apical poles located surrounding a luminal center in both control and 2h 
experimental rat tissue.  Immuno staining verifies VAMP-2 localization in both the control (D,E) 
and experimental (H,I) group In contrast, the cPLA2 immunoreactivity is much greater in the 
apical region of the 2h experimental acini (J,K) over control (F,G) Very little co-localization is 
noticed in the control acinar cells (G) where as a greater overlap of VAMP-2 and cPLA2 proteins 
is present in the experimental tissue (K). Negative secondary staining controls (M,N with 
merged images O) for tissue isolated from control pancreata and (Q,R with merged images S) 
from 2h experimental pancreata demonstrate labeling specificity. PonchuS staining of 
nitrocellulose membranes confirms equal quantities of protein loaded per each lane. Scale bar = 
5μm.   
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Since the involvement of lysosomes in zymogen activation in acute pancreatitis has 

previously been reported (Saluja et al. 1985, Saluja et al. 1997a, Saluja et al. 1997b, Saluja et al. 

1999, Dawra et al. 2011, Saluja et al. 1987, Saluja et al. 1991, Gorelick et al. 1995), the 

translocation of the lysosomal cysteine protease cathepsin B to ZG, and the activation of certain 

Ca2+-independent iPLA2 requires a low pH optimum (pH 4.5) including lysosomal PLA2, the 

elevation of iPLA2 at the ZGM, and its involvement in lipid modeling at the ZGM in acute 

pancreatitis was suggested (Figure 23).  Both Western blots and immunocytochemistry (Figure 

24) confirms the increased presence of cathepsin B with ZG in 2h caerulein exposed pancreas, 

suggesting the possible fusion of lysosome-derived vesicles with the ZG in acute pancreatitis as 

previously reported (Saluja et al. 1985, Saluja et al. 1997a, Saluja et al. 1997b, Saluja et al. 1999, 

Dawra et al. 2011, Saluja et al. 1987, Saluja et al. 1991, Gorelick et al. 1995).  Similarly, 

Western blots and immunocytochemistry (Figure 23) also demonstrated the increased presence 

of iPLA2 with ZG in the 2h caerulein exposed pancreas. 
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Figure 23. Altered distribution of iPLA2 in acute pancreatitis. Demonstration of its increased 
association with ZG. (A) Immunoblot analysis of 5μg of SDS-PAGE resolved ZG protein per 
lane, demonstrates a significant increase in iPLA2 in ZGs isolated from pancreata of the 2h 
experimental rat over control (N=6 *p < 0.05). (B) No change in total iPLA2 levels are observed 
in both the control and experimental groups. (C) There was also no significant difference in 
amylase quantity in the total homogenate fraction as examined by Western blot analysis (5ug of 
resolved protein per lane).   In agreement with the Western blot assays, immunocytochemistry 
(D-S) demonstrate increased association of iPLA2 levels in ZG in acute pancreatitis. 
Immunocytochemistry demonstrating enriched presence of iPLA2 in ZG in pancreas exposed to 
a 2h supramaximal dose of caerulein. Phase contrast images indicate the shape of pancreatic 
acinar cells with apical poles located surrounding a luminal center in both control and 2h 
experimental rat tissue.  Immuno staining verifies VAMP-2 localization in both the control (D,E) 
and experimental (H,I) group In contrast, the iPLA2 immunoreactivity is much greater in the 
apical region of the 2h experimental acini (J,K) over control (F,G) Very little co-localization is 
noticed in the control acinar cells (G) where as a greater overlap of VAMP-2 and iPLA2 proteins 
is present in the experimental tissue (K). Negative secondary staining controls (M,N with 
merged images O) for tissue isolated from control pancreata and (Q,R with merged images S) 
from 2h experimental pancreata demonstrate labeling specificity. PonchuS staining of 
nitrocellulose membranes confirms equal quantities of protein loaded per each lane. Scale bar = 
5μm   
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Discussion 

Since the major molecule known to impart volume increase in ZG is water, and the 

bidirectional water channel AQP1 present at the ZGM is implicated in the process (Cho et al. 

2002), ZG swelling in acute pancreatitis may occur prior to the observed loss of AQP1 and other 

ZG volume regulatory proteins in pancreatitis.  Furthermore, the enriched presence of the 

lysosomal cysteine protease cathepsin B in pancreatitic ZG (Figure 24) as well as an increase in 

co-localization seen in experimental tissue with the LAMP-1 protein (Figure 25) supports the 

likelihood of lysosomal vesicle fusion with ZG.  These results suggest that ZG swelling in acute 

pancreatitis may involve water and ion transport into ZG as well as the fusion of lysosome-

derived vesicles. 

The loss of proteins from the ZGM could occur via cytosolic proteins such as chaperones 

that are known to bind and dislodge membrane proteins.  Molecular chaperones for example, 

besides protein folding and transport, are also involved in the association-dissociation of proteins 

into and out of cellular membranes (Young et al. 2003).  In eukaryotic cytosol, the chaperones 

belonging to the heat shock protein family: Hsp70, Hsc70, Hsp90, act through cycles of substrate 

binding and release governed by ATP hydrolysis (Young et al. 2003).  For example, the heat 

shock protein Hsp70 chaperone machinery has been implicated in the processing and transport of 

G-protein coupled receptors (Meimaridav et al. 2011).  Elevated levels of Hsp70, is known to 

protect pancreas from caerulein-induced pancreatitis (Bhagat et al. 2002) and heat shock 

promotes expression of both Hsp70 and AQP1 in cells (Umenishi et al. 2005).  Additionally, 

AQP12 null mice demonstrate increased susceptibility to caerulein-induced acute pancreatitis 

(Ohta et al. 209), and the direct physical interaction between Hsp70 and AQP2 has also been 

reported (Lu et al. 2007). 
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Figure 24. Altered distribution of cathepsin B in acute pancreatitis. Demonstration of its 
increased association with ZG. (A) Immunoblot analysis of 5μg of SDS-PAGE resolved ZG 
protein per lane, demonstrates a significant increase in cathepsin B in ZGs isolated from 
pancreata of the 2h experimental rat over control (N=6 *p < 0.05). (B) No change in total 
cathepsin B levels are observed in both the control and experimental groups. (C) There was also 
no significant difference in amylase quantity in the total homogenate fraction as examined by 
Western blot analysis (5ug of resolved protein per lane).   In agreement with the Western blot 
assays, immunocytochemistry (D-S) demonstrate increased association of cathepsin B levels in 
ZG in acute pancreatitis. Immunocytochemistry demonstrating enriched presence of cathepsin B 
in ZG in pancreas exposed to a 2h supramaximal dose of caerulein. Phase contrast images 
indicate the shape of pancreatic acinar cells with apical poles located surrounding a luminal 
center in both control and 2h experimental rat tissue.  Immuno staining verifies VAMP-2 
localization in both the control (D,E) and experimental (H,I) group In contrast, the cathepsin B 
immunoreactivity is much greater in the apical region of the 2h experimental acini (J,K) over 
control (F,G) Very little co-localization is noticed in the control acinar cells (G) where as a 
greater overlap of VAMP-2 and cathepsin B proteins is present in the experimental tissue (K). 
Negative secondary staining controls (M,N with merged images O) for tissue isolated from 
control pancreata and (Q,R with merged images S) from 2h experimental pancreata demonstrate 
labeling specificity.  PonchuS staining of nitrocellulose membranes confirms equal quantities of 
protein loaded per each lane. Scale bar = 5μm   
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Figure 25. Altered distribution of LAMP-1 in acute pancreatitis. Immunocytochemistry 
demonstrating enriched presence of LAMP-1 in pancreas exposed to a 2h supramaximal dose of 
caerulein. Phase contrast images indicate the shape of pancreatic acinar cells with apical poles 
located surrounding a luminal center in both control and 2h experimental rat tissue.  Immuno 
staining verifies VAMP-2 localization in both the control (A,B) and experimental (E,F) group In 
contrast, the LAMP-1 immunoreactivity is much greater in the 2h experimental acini (G,H) over 
control (C,D) Very little co-localization is noticed in the control acinar cells (D) where as a 
greater overlap of VAMP-2 and LAMP-1 proteins is present in the experimental tissue (H). 
Negative secondary staining controls (J,K with merged image L) for tissue isolated from control 
pancreata and (N,O with merged image P) from 2h experimental pancreata demonstrate labeling 
specificity. Scale bar = 5μm   

These studies suggest that heat shock proteins could modulate ZG volume either by the 

removal of certain volume regulatory proteins from the ZGM or by direct binding to modulate 

activity of proteins at the ZGM. Similarly, the loss of ZGM-associated Gαi3 could also be due to 

lipid modifications of the G proteins (Cabrera-Vera et al. 2008).  It is well established that fatty 

acid acylation serve as hydrophobic membrane anchor for G-proteins. In the Gi family of Gα 

subunits for example, both myristoylation and palmitoylation contribute to membrane 

association (Degtyarev et al. 1994, Morales et al. 1998, Mumby et al. 1994, Wise et al. 1997). 

While myristoylation is relatively stable, palmitoylation is readily reversible.  Removal of 
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palmitoylation results in a partial shift in localization of the Gαi subunit from membrane to the 

cytoplasm (Degtyarev et al. 1994, Morales et al. 1998, Mumby et al. 1994, Wise et al. 1997, 

Cabrera-Vera et al. 2003).  Based on this information, possible changes in palmitoylation of ZG-

associated Gαi3, and or the involvement of Hsp70/Hsc70 in Gαi3, v-H+ATPase, and AQP1 loss 

from the ZGM, was hypothesized.  The involvement of Hsp70/Hsc70 on Gαi3, v-H+ATPase, and 

AQP1 loss from the ZGM was therefore tested (Figure 15).  

Identification for the first time of the presence of G-protein coupled receptor 98 (GRP98) 

and the guanine nucleotide exchange factor (vav3) in ZG, and the involvement of GRP98 in Gαi3-

mediated ZG volume regulation, was a surprise find that progressed our understanding of ZG 

volume regulation in pancreatic acinar cells.  Although the ligand for GRP98 is yet to be 

identified, the receptor possesses 35 calcium binding Calx-beta domains that could be involved 

in the signaling and regulation of the receptor.  Since caerulein-induced acute pancreatitis results 

in a significant increase in basal intracellular calcium (135 nmol/l, opposed to 72 nmol/l in 

control cells) (Bragado et al. 1996), the role of elevated calcium on the interaction between 

GRP98 and Gαi3 at the ZGM will need to be explored.  Earlier studies (Jena et al. 1997) report 

that calcium has no effect on GTP-mediated ZG swelling, suggesting that the calcium binding 

sites in GRP98 may regulate binding of the endogenous ligand to the receptor.  Hence, the 

endogenous ligand for ZG associated GRP98 needs to be identified.  Since calcium-dependent 

PLA2 and acyltransferase activity have been demonstrated to be present in ZGM (Rubin et al. 

1990), and ZGM-associated Gαi3 G-protein is implicated in this PLA2 function (Jena et al. 1997, 

Cho et al. 2002, Abu-Hamdah et al. 2004, Kelly et al. 2004a, Kelly et al. 2004b, Rubin et al. 

1991), the calcium-mediated interactions between GRP98, Gαi3, and PLA2, at the ZGM is 

hypothesized.  The involvement of GRP98 in Gαi3-mediated ZG volume regulation may be 

similar to the Gαo protein-coupled β-adrenergic receptor identified at the synaptic vesicle 
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membrane in neurons for regulated synaptic vesicle swelling and neurotransmitter release at the 

nerve terminal (Chen et al. 2011). 

Since results from the study demonstrate binding of Hsp70 and Hsc70 with the ZGM-

associated volume regulatory water channel AQP1, their involvement in the association-

dissociation of AQP1 at the ZGM is suggested.  Due to the previously reported protective power 

of Hsp70 against acute pancreatitis in rats (Bhagat et al. 2002), a possible role of Hsp70 may 

involve binding and stabilization of the associated AQP1 and other volume regulatory proteins at 

the ZGM.  The altered lipid composition of ZG in acute pancreatitis demonstrated from the 

study, and the reported interaction of Hsp70 with specific membrane lipids (Zhu et al. 2012, 

Arispe et al. 2004), suggests that this change in ZG membrane lipids possibly influences the 

binding of Hsp70 to AQP1 or other ZG volume regulatory proteins, resulting in their loss from 

the ZGM. 

The pH regulating vacuolar ATPase has been implicated in triggering zymogen activation 

in pancreatic acinar cells (Ohta et al. 2009), and the water channel aquaporin 1 (AQP1) is over 

expressed in the plasma membranes of pancreatic ducts in patients with autoimmune pancreatitis 

(AIP) (Waterford et al. 2005).  Hence the altered ZG volume regulation observed in acute 

pancreatitis may represent an early event in the etiology of the disease.  This hypothesis is 

further supported by the observation that AQP12 null mice show increased susceptibility to 

caerulein-induced acute pancreatitis (Ko et al. 2009). Since, Gαi3, PLA2, AQP1, and vH-ATPase 

are present in the ZG membrane, and their involvement in granule volume regulation is well 

established, the ZG size increase in acute pancreatitis appears to result from fluid entry rather 

than fusion between ZGs, since no loss in ZG number is demonstrated in acute pancreatitis.  This 

however does not preclude the fusion of small lysosomal vesicles with the ZG in acute 

pancreatitis, and therefore both water entry and lysosome fusion could reflect the observed ZG 
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volume increase.  The fusion of small 200 nm in diameter lysosomes, or 50-100 nm in diameter 

primary lysosomes or lysosome-derived vesicles with a certain population of ZG is likely. 

Moreover, to activate zymogen within ZGs would require initial hydration followed by 

activation via lysosomal enzymes.  Therefore preceding zymogen activation, there are critical 

changes at the ZGM, altering ZG function, leading to ZG hydration and ZG-lysozome fusion, 

consequently leading to the activation of zymogen within pancreatic acinar cells. Changes in ZG 

volume could also be assisted by changes in the lipid composition of the ZGM in acute 

pancreatitis.  The significant increase in PC and lyso-PC in pancreatitic ZG would increase the 

positive membrane curvature (Fuller and Rand 2001), introducing packing stress, effecting 

membrane integrity (Cullis et al. 1979, Gruner et al. 1985, Zhelev et al. 1998), and the 

conformation and activity of membrane proteins (Bezrukov et al. 1999).  Similarly, since 

polyunsaturated fatty acid contents are elevated in pancreatitic ZG, and polyunsaturated fatty 

acids are known to increase membrane fluidity, they are likely to assist in ZG volume increase. 

Based on these results and reported studies, impaired water transport at the ZGM, due in 

part to alteration in the GRP98-Gαi3–meadiated ZG volume regulation, a new paradigm in the 

pathophysiology leading to acute pancreatitis.  The fusion of lysosome with ZG in acute 

pancreatitis is further suggested from the study since the lysosomal cysteine protease cathepsin B 

is enriched in the ZG, and a 14% increase in average ZG diameter measuring 553 ± 8.04 nm 

would reflect the fusion of just two 200 nm in diameter lysosomes or nine 100 nm in diameter 

primary lysosomes or lysosome-derived vesicles.  The next objective is to determine the ligand 

for the ZG-associated GRP98, to be able to elucidate the entire signaling cascade at the ZGM 

involved in ZG volume regulation. 
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CHAPTER 4 

ZG MEMBRANE CHOLESTEROL ALTERS SWELLING COMPETENCY 

Abstract 

Cholesterol is critically important and has many functions in the body in a normal and 

healthy physiological state.  It ranges from a precursor of steroid hormones to being an integral 

component in cellular signaling and lipid raft formation.  This study has examined the effects of 

cholesterol on ZG swelling, and has specifically highlighted that excessive cholesterol presence 

or its depletion in the ZG membrane leads (ZGM) to a decrease in vesicle swelling competency.  

Vesicle swelling was measured by light scattering intensity was measured over time.  ZGs pre-

incubated in cholesterol or methyl-β-cyclodextran swelled to a lesser degree and more slowly 

than untreated control ZGs.  This suggests the need for a precision balance in cholesterol 

homeostasis in the pancreas.  

Introduction 

Previous studies have shown membrane composition to be an integral component in 

membrane fusion (Jeremic et al. 2006, Cho et al. 2007).  Integral membrane lipids like 

cholesterol and lysophosphatidylcholine (LPC) effect the positive and negative curvature, 

respectively, of lipid vesicles (McMahon and Gallop 2005).  They also alter the ability of 

SNARE proteins to disassemble after a secretory event.  It has been shown that when artificial 

vesicles enriched in v-SNAREs meet artificial vesicles enriched in t-SNAREs in solution they 

will freely form a ring complex and when n-ethylmaleimide-sensitive factor (NSF) plus ATP are 

added the SNARE proteins disassemble.  When LPC is added to the t- and v-SNARE enriched 

vesicles there is a lack of disassembly, but when cholesterol is added disassembly is not affected 

(Shin et al. 2011). 
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Cholesterol is also important for ideal secretory release at the porosome.  It has been 

established that syntaxin-1, a t-SNARE protein, co-localizes with cholesterol in synaptosomal 

membranes.  Further depletion of cholesterol from the synaptosomal membrane results in 

dissociation of N-type calcium channels and syntaxin-1 from the porosomal complex in the 

plasma membrane (Jeremic et al. 2006).  It has also been previously demonstrated that t-

SNAREs demonstrate a physical connection with calcium channels in the brain.  When 

cholesterol is depleted and t-SNAREs and calcium channels lose their direct interaction the 

porosomal machinery becomes unstable.  Loss of calcium channels at the porosome leads to loss 

of the primary fusogen (Jeremic et al. 2004) therefore transient docking of vesicles at the plasma 

membrane is not favorable (Cho et al. 2007). 

It has been established that cholesterol is required for more than membrane fusion alone.  

Synaptic vesicles (SVs) isolated from rat brain cortex swell after GTP and mastoparan 

stimulation (Lee et al. 2010, Chen et al. 2011).  It has been demonstrated that cholesterol is a 

requirement for vesicle swelling in SVs.  In isolated SVs where cholesterol has been depleted via 

methyl-β-cyclodextran (MβCD), GTP and mastoparan stimulable swelling is significantly 

abrogated.  Co-immunoisolations reveal the Gαo protein is associated with both the v-H+ATPase 

proton pump required for vesicle acidification and with AQP6.  However, after the SVs were 

incubated with the cholesterol removing detergent saponin, the association between Gαo and v-

Figure 26. Dynamic Light Scattering
Studies indicate a lack of SNARE
disassembly with NSF-ATP when the
artificial vesicles, liposomes, are
enriched in LPC.  However, in
cholesterol enriched vesicles
disassembly occurs normally (Shin et
al. 2012). 
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H+ATPase and the association between Gαo and AQP6 was significantly decreased.  These data 

indicate that cholesterol is necessary for synaptic vesicle swelling (Lee et al. 2010). 

 

Determining the role of cholesterol as it affects health and disease is increasingly 

important.  In cells containing AQP4, vesicles swell at a slower rate when cholesterol is present.  

The permeability of AQP4 is also altered by cholesterol presence.  In the presence of high 

concentrations of cholesterol, AQP4 permeability is diminished (Tong et al. 2012).  In light of 

this the hypothesis that cholesterol may alter AQP-mediated swelling in pancreatic ZGs is 

suggested.  My research has highlighted the importance of tight cholesterol regulation in the 

body.  Specifically, the effects of cholesterol on ZG swelling is examined and I have shown that 

excessive cholesterol presence at the ZGM or its depletion leads to a decrease in vesicle swelling 

ability.  This is key in understanding how metabolic disorders like high cholesterol predispose 

individuals to disease.  A lack of secretion is demonstrated in acinar cells during the course of 

pancreatitis.  It has therefore been important to examine one of the ways cellular secretion can be 

altered leading to potential disease states.  

The causes of pancreatitis on a global scale range from gall stones and alcohol abuse to 

metabolic disorders.  While physical or behavioral changes may ameliorate disease symptoms 

and improve prognosis associated with alcoholic or gall stone-induced pacreatitis (National 

Pancreas Foundation 2013, NIDDK 2012) metabolic disorders like altered lipid states are more 

Figure 27. Isolated SVs swell when stimulated with GTP and mastoparan.  Exposure of SVs
to 40μM MβCD significantly inhibits GTP and mastoparan-induced vesicle swelling and is
dose dependant.  In contrast, exposure of SVs to 20μM cholesterol demonstrates a significant
increase in GTP and mastoparan stimulated swelling (Lee et al. 2010). 
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difficult to control systemically.  Much less is known about how these factors contribute to 

cellular dysfunction that can potentially lead to disease states like pancreatitis (Pandol et al. 

2007).  Therefore my research goal has been to examine how the addition of exogenous 

cholesterol or the depletion of ZG membrane cholesterol effects the ability of the isolated ZG to 

swell when stimulated with GTP and mastoparan.  When vesicles are pre-incubated with 

exogenous cholesterol there appears to be a significant decline in the ability of the ZG to swell 

after being challenged with GTP and mastoparan.   

Cholesterol homeostasis in the pancreas is essential for proper ZG content release (Lee et 

al. 2010, Ravnskov 2002).  The swelling ability of the ZG is markedly altered when cholesterol 

levels are changed.  The addition or subtraction of cholesterol may serve to geographically 

isolate some of the key secretory cascade proteins from one another or interfere with their ability 

to function properly during a secretory event although currently this is only hypothesized.  High 

cholesterol and other lipids have been demonstrated to cause significant impairment in human 

physiology in more than one tissue bed (Ravnskov 2002). Therefore it has been my goal to 

examine the effects of altered cholesterol levels in isolated ZGs and subsequent swelling 

competency. 

Materials & Methods 

Isolation of Zymogen granules (ZG):   

Zymogen granules were isolated as previously outlined in Chapter 2. 

Right Angle Light Scattering:   

Kinetics of ZG vesicle swelling was monitored using right angle light scattering with 

excitation and emission set at 600nm in a Hitachi F-2000 spectrophotometer as previously 

established (Jeremic et al. 2003, Shin et al. 2011).  A 5μL ZG suspension was injected into 

cuvettes containing 700μL assay buffer (100mM Mes, 25mM KCl, pH 6.5) under continuous 
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stirring.  ZGs were assessed for swelling capability with and without the presence of the GRP-98 

(MASS-1) (Santa Cruz Biotechnology, Dallas, TX) antibody.  Light scattering was monitored in 

baseline conditions for 100 seconds then 40μM GTP and 40μM Mas7 were added to the 

suspension.  The ZG suspension was then monitored for 100 more seconds with average light 

scattering intensities averaged every two seconds.  Values are expressed in arbitrary units as 

percent light scattered over control (n=6).  Student’s t test was used comparisons between groups 

with significance established at p < 0.05. 

Results 

Isolated ZGs were then examined with right angle light scattering.  ZGs were stimulated 

to swell with increasing concentrations of GTP and mastoparan.  The greatest degree of swelling 

was observed with 40μM GTP and mastoparan (Figure 28A).  These data indicate the viability 

and functionality of the isolated ZGs suspended in assay buffer. ZGs stimulated to swell with 

40μM GTP and mastoparan but pre-incubated with cholesterol demonstrated a significant 

decrease in vesicle swelling (Figure 28B) as indicated by a decrease in light scattering intensity.   

Kinetics were also measured and the cholesterol pre-incubated ZGs swelled at a slower 

rate than their untreated ZG counterparts (Figure 28C).  Vesicle swelling was measured by light 

scattering intensity over time and averaged every five seconds.  As the vesicles swell it is 

represented by an increase in light scattering intensity.  The slope of the curve generated by the 

light scattering intensity over time was significantly decreased when compared to the slope of the 

curve generated from isolated ZGs that did not undergo cholesterol pre-incubation.   

Interestingly, when isolated ZGs were pre-incubated in MβCD then stimulated 40μM 

GTP and mastoparan there was also a deficit (Figure 28 B) in swelling degree  when compared 

control values.  This suggests that while the addition of copious amounts of cholesterol are 

detrimental for secretory vesicle swelling in the pancreas, the removal of cholesterol also impairs 
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vesicle swelling.  While the ZGs swelled to a lesser degree than control as seen by light 

scattering they also swelled at a slower rate than control, untreated ZGs (Figure 28D).  Raw data 

traces (Figure 28E) indicate the differences in light scattering over time. 

Discussion 

While cholesterol has been shown to be imperative in neuronal vesicle content release (Lee et al. 

2010) in that it potentiates membrane fusion (Shin et al. 2011) and complete loss of cholesterol due to 

MβCD significantly inhibits synaptic vesicle swelling (Lee et al. 2010), my research indicates that excess 

cholesterol presence in the pancreas is detrimental to proper secretory function (Figure 28 B & C). When 

these data are paired with that data showing a lack in vesicle swelling with the addition of MβCD these 

results indicate that the levels of cholesterol must be tightly regulated and that the presence or absence of 

excess cholesterol may allow symptoms including impaired cellular secretion from pancreatic acinar 

cells.  

 

Figure 28. Excess Cholesterol or depletion of membrane cholesterol inhibits GTP and 
mastoparan induced swelling.  Untreated isolated ZGs swell in response to GTP and mastoparan 
is demonstrated by right angle lights scattering (A).  However after pretreatment (B) with 
exogenous cholesterol or methyl-β-cyclodextran swelling is significantly abrogated (N=6, p < 
0.05).  Initial kinetics of GTP and mastoparan induced swelling (C-E) are first order.  The 
pretreated ZGs swell to a lesser extent and do so in a slower manner (B-D) than do their 
untreated counterparts. 
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Figure 28 C & D also indicate that when compared with control untreated ZGs the poor 

swelling response of ZGs due to the administration of excess cholesterol or the depletion of 

membrane cholesterol due to MβCD is accompanied with a swelling rate slower than control.  

Previous research indicates that cholesterol promotes membrane fusion where other molecules 

like LPC facilitate the longevity of a secretory event by inhibition of SNARE complex 

disassembly (Shin et al. 2011).  This suggests that in-vivo membrane-membrane fusion may not 

be altered, but cholesterol inhibits some other portion of the swelling cascade.  Cholesterol has 

also been demonstrated to decrease the permeability (Pf) of a plasma membrane but it is more 

likely that the water channel (Knepper et al. 1994), AQP1, is effected by the excess cholesterol 

presence in both the cholesterol (red trace) pre-incubation group and the MβCD (green trace) 

pre-incubation group. 

Other research has shown that alteration in the lipid bilayer can effect protein 

conformation and activity of proteins housed therein (Yuan et al. 2007, Perozo et al. 2002).  

Studies using artificial vesicles enriched in AQP-4 have demonstrated a decrease in water 

permeability when the membrane is also enriched in exogenous cholesterol over unaltered lipid 

content (Tong et al. 2012).  This occurs due to a mismatch in hydrophobic and hydrophilic 

regions in the protein and the lipid membrane when excess foreign lipids are added (Mouritsen 

and Bloom 1984, Nyholm et al. 2007, Dumas et al. 2000).  When this mismatch occurs the unit 

bilayer then responds in one of two ways: 1) the protein changes conformation to realign 

hydrophobic regions or 2) the local thickness of the bilayer changes to overcome hydrophobic 

misalignment (Lundbaek 2008). 

While cholesterol is essential for proper cellular function (Cho et al. 2005, Jeremic et al. 

2006,) deviations from homeostasis result in pathophysiological conditions.  Without cholesterol 

cellular membranes lose rigidity and lipid rafts lose segregating ability (Simons and Ehehalt 
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2002).  However, when the biological level of cholesterol varies widely from what is considered 

healthy, aberrant conditions arise.  The American Heart association, among others, warns of 

increased cardiovascular risk (American Heart Association 2013).   

Lack of cholesterol control contributes to other pathophysiological states including those 

that effect the pancreas (NIDDK 2011, Uimari et al. 2011). The current research with ZGs 

isolated from the acinar cells of the pancreas illustrates the need for precise cholesterol balance 

in the pancreas.  ZG swelling function is significantly decreased in conditions of excess or 

decreased vesicle membrane cholesterol (Figure 28).  These data suggest that the alteration in 

lipid composition, specifically that of cholesterol, disallow GTP and mastoparan stimulable 

swelling via a mechanism that is currently unknown. 

While it has been demonstrated that excessive cholesterol levels impair vesicle swelling 

the course of hypercholesterolemia in the pancreas may be further reaching.  States of increased 

cholesterol and triglycerides may lead to more extensive damage in the pancreas.  Fat deposits 

are often found in pancreatic tissue from patients with acute or chronic pancreatitis and high 

serum lipid levels predispose patients for pancreatitis (Conwell et al. 2011, NIDDK 2011, 

Uimara et al. 2011).  Increased cholesterol levels have been linked to inflammatory mediator 

release that has been independently seen in cases of pancreatitis and pancreatic disease (Ding et 

al. 2003).   
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APPENDIX A 
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APPENDIX B 

Unabridged Mass Spectrometry Data 
 
BAND 1 CONTROL: 
MS data file    : Jena ZG band 1.tmp.tmp 
Database        : SwissProt 2012_04 (535698 sequences; 190107059 residues) 
Taxonomy        : Mus musculus (house mouse) (16528 sequences) 
Timestamp       : 8 May 2012 at 16:36:37 GMT 
Protein hits    : 

  GRP78_MOUSE 78 kDa glucose-regulated protein OS=Mus musculus GN=Hspa5 PE=1 SV=3 

 HSP7C_MOUSE Heat shock cognate 71 kDa protein OS=Mus musculus GN=Hspa8 PE=1 SV=1 

  CEL_MOUSE Bile salt-activated lipase OS=Mus musculus GN=Cel PE=1 SV=1 

  K1C10_MOUSE Keratin, type I cytoskeletal 10 OS=Mus musculus GN=Krt10 PE=1 SV=3 

  PDIA2_MOUSE Protein disulfide-isomerase A2 OS=Mus musculus GN=Pdia2 PE=1 SV=1 

  K2C1_MOUSE Keratin, type II cytoskeletal 1 OS=Mus musculus GN=Krt1 PE=1 SV=4 

  ACTB_MOUSE Actin, cytoplasmic 1 OS=Mus musculus GN=Actb PE=1 SV=1 

  SYG_MOUSE Glycine--tRNA ligase OS=Mus musculus GN=Gars PE=1 SV=1 

  GRP75_MOUSE Stress-70 protein, mitochondrial OS=Mus musculus GN=Hspa9 PE=1 SV=2 

  SYK_MOUSE Lysine--tRNA ligase OS=Mus musculus GN=Kars PE=1 SV=1 

  LIPR1_MOUSE Pancreatic lipase-related protein 1 OS=Mus musculus GN=Pnliprp1 PE=2 SV=2

  LIPP_MOUSE Pancreatic triacylglycerol lipase OS=Mus musculus GN=Pnlip PE=1 SV=1 

  AMYP_MOUSE Pancreatic alpha-amylase OS=Mus musculus GN=Amy2 PE=1 SV=2 

  AMY1_MOUSE Alpha-amylase 1 OS=Mus musculus GN=Amy1 PE=1 SV=2 

  SYTL1_MOUSE Synaptotagmin-like protein 1 OS=Mus musculus GN=Sytl1 PE=1 SV=2 

  SPI2_MOUSE Serpin I2 OS=Mus musculus GN=Serpini2 PE=1 SV=1 

  K2C5_MOUSE Keratin, type II cytoskeletal 5 OS=Mus musculus GN=Krt5 PE=1 SV=1 

  ALBU_MOUSE Serum albumin OS=Mus musculus GN=Alb PE=1 SV=3 

  K1C42_MOUSE Keratin, type I cytoskeletal 42 OS=Mus musculus GN=Krt42 PE=1 SV=1 

  ACTC_MOUSE Actin, alpha cardiac muscle 1 OS=Mus musculus GN=Actc1 PE=1 SV=1 

  ANXA6_MOUSE Annexin A6 OS=Mus musculus GN=Anxa6 PE=1 SV=3 

  K1C15_MOUSE Keratin, type I cytoskeletal 15 OS=Mus musculus GN=Krt15 PE=1 SV=2 

  K2C73_MOUSE Keratin, type II cytoskeletal 73 OS=Mus musculus GN=Krt73 PE=1 SV=1 

  K2C1B_MOUSE Keratin, type II cytoskeletal 1b OS=Mus musculus GN=Krt77 PE=1 SV=1 

  K2C79_MOUSE Keratin, type II cytoskeletal 79 OS=Mus musculus GN=Krt79 PE=1 SV=2 

  PABP1_MOUSE Polyadenylate-binding protein 1 OS=Mus musculus GN=Pabpc1 PE=1 SV=2 

  HBA_MOUSE Hemoglobin subunit alpha OS=Mus musculus GN=Hba PE=1 SV=2 

  K22E_MOUSE Keratin, type II cytoskeletal 2 epidermal OS=Mus musculus GN=Krt2 PE=1 
SV=1 

  K2C6A_MOUSE Keratin, type II cytoskeletal 6A OS=Mus musculus GN=Krt6a PE=2 SV=3 

  K2C4_MOUSE Keratin, type II cytoskeletal 4 OS=Mus musculus GN=Krt4 PE=1 SV=2 

  ACTBL_MOUSE Beta-actin-like protein 2 OS=Mus musculus GN=Actbl2 PE=1 SV=1 

  RPN1_MOUSE Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit 1 
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OS=Mus musculus GN=Rpn1 PE=2 SV=1

  SYFB_MOUSE Phenylalanine--tRNA ligase beta subunit OS=Mus musculus GN=Farsb PE=2 
SV=2 

  K1C13_MOUSE Keratin, type I cytoskeletal 13 OS=Mus musculus GN=Krt13 PE=1 SV=2 

  GP2_MOUSE Pancreatic secretory granule membrane major glycoprotein GP2 OS=Mus 
musculus GN=Gp2 PE=2 SV=3 

  HS90B_MOUSE Heat shock protein HSP 90-beta OS=Mus musculus GN=Hsp90ab1 PE=1 SV=3 

  HS90A_MOUSE Heat shock protein HSP 90-alpha OS=Mus musculus GN=Hsp90aa1 PE=1 SV=4 

  TRAP1_MOUSE Heat shock protein 75 kDa, mitochondrial OS=Mus musculus GN=Trap1 PE=1 
SV=1 

  TERA_MOUSE Transitional endoplasmic reticulum ATPase OS=Mus musculus GN=Vcp PE=1 
SV=4 

  CBPA2_MOUSE Carboxypeptidase A2 OS=Mus musculus GN=Cpa2 PE=2 SV=1 

  SYRC_MOUSE  Arginine--tRNA ligase, cytoplasmic OS=Mus musculus GN=Rars PE=2 SV=2 

  PCCA_MOUSE Propionyl-CoA carboxylase alpha chain, mitochondrial OS=Mus musculus 
GN=Pcca PE=2 SV=2 

  SPAT5_MOUSE Spermatogenesis-associated protein 5 OS=Mus musculus GN=Spata5 PE=2 SV=2 

  K2C8_MOUSE  

  EF1A1_MOUSE Elongation factor 1-alpha 1 OS=Mus musculus GN=Eef1a1 PE=1 SV=3 

  PDIA4_MOUSE Protein disulfide-isomerase A4 OS=Mus musculus GN=Pdia4 PE=1 SV=3 

  ENPL_MOUSE Endoplasmin OS=Mus musculus GN=Hsp90b1 PE=1 SV=2 

  CBPA1_MOUSE Carboxypeptidase A1 OS=Mus musculus GN=Cpa1 PE=2 SV=1 

  SWAP1_MOUSE ATPase SWSAP1 OS=Mus musculus GN=Swsap1 PE=2 SV=2 

  ERF3A_MOUSE Eukaryotic peptide chain release factor GTP-binding subunit ERF3A OS=Mus 
musculus GN=Gspt1 PE=1 SV=1 

  LIPR2_MOUSE Pancreatic lipase-related protein 2 OS=Mus musculus GN=Pnliprp2 PE=2 SV=1

  HAOX2_MOUSE Hydroxyacid oxidase 2 OS=Mus musculus GN=Hao2 PE=2 SV=1 

  NASP_MOUSE Nuclear autoantigenic sperm protein OS=Mus musculus GN=Nasp PE=1 SV=2 

  MFTC_MOUSE Mitochondrial folate transporter/carrier OS=Mus musculus GN=Slc25a32 PE=2 
SV=1 

  DUS3_MOUSE Dual specificity protein phosphatase 3 OS=Mus musculus GN=Dusp3 PE=1 SV=1

  CP135_MOUSE   

  ETUD1_MOUSE Elongation factor Tu GTP-binding domain-containing protein 1 OS=Mus 
musculus GN=Eftud1 PE=2 SV=1 

  ZN322_MOUSE Zinc finger protein 322 OS=Mus musculus GN=Znf322 PE=2 SV=1 

  TF_MOUSE  

  GLGB_MOUSE 1,4-alpha-glucan-branching enzyme OS=Mus musculus GN=Gbe1 PE=2 SV=1 

  HBE_MOUSE Hemoglobin subunit epsilon-Y2 OS=Mus musculus GN=Hbb-y PE=1 SV=2 

  CES1D_MOUSE Carboxylesterase 1D OS=Mus musculus GN=Ces1d PE=1 SV=1 

  YPEL5_MOUSE Protein yippee-like 5 OS=Mus musculus GN=Ypel5 PE=2 SV=1 

  POC1A_MOUSE  
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Mascot Score Histogram 
Ions score is -10*Log(P), where P is the probability that the observed match is a random event. 
Individual ions scores > 28 indicate identity or extensive homology (p<0.05). 
Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.  

 

BAND 2 CONTROL: 
MS data file    : Jena ZG band 2.tmp.tmp 
Database        : SwissProt 2012_04 (535698 sequences; 190107059 residues) 
Taxonomy        : Mus musculus (house mouse) (16528 sequences) 
Timestamp       : 8 May 2012 at 16:49:36 GMT 
Protein hits    : 
 GRP78_MOUSE 78 kDa glucose-regulated protein OS=Mus musculus GN=Hspa5 PE=1 SV=3

  HSP7C_MOUSE Heat shock cognate 71 kDa protein OS=Mus musculus GN=Hspa8 PE=1 SV=1 

  CEL_MOUSE Bile salt-activated lipase OS=Mus musculus GN=Cel PE=1 SV=1 

  K1C10_MOUSE Keratin, type I cytoskeletal 10 OS=Mus musculus GN=Krt10 PE=1 SV=3 

  GRP75_MOUSE Stress-70 protein, mitochondrial OS=Mus musculus GN=Hspa9 PE=1 SV=2 

  ALBU_MOUSE Serum albumin OS=Mus musculus GN=Alb PE=1 SV=3 

  K1C14_MOUSE Keratin, type I cytoskeletal 14 OS=Mus musculus GN=Krt14 PE=1 SV=2 

  K1C17_MOUSE Keratin, type I cytoskeletal 17 OS=Mus musculus GN=Krt17 PE=1 SV=3 

  K2C1_MOUSE Keratin, type II cytoskeletal 1 OS=Mus musculus GN=Krt1 PE=1 SV=4 

  PDIA2_MOUSE Protein disulfide-isomerase A2 OS=Mus musculus GN=Pdia2 PE=1 SV=1 

  K2C5_MOUSE Keratin, type II cytoskeletal 5 OS=Mus musculus GN=Krt5 PE=1 SV=1 

  CBPA1_MOUSE Carboxypeptidase A1 OS=Mus musculus GN=Cpa1 PE=2 SV=1 

  ACTB_MOUSE Actin, cytoplasmic 1 OS=Mus musculus GN=Actb PE=1 SV=1 

  ANXA6_MOUSE Annexin A6 OS=Mus musculus GN=Anxa6 PE=1 SV=3 

  K1C42_MOUSE Keratin, type I cytoskeletal 42 OS=Mus musculus GN=Krt42 PE=1 SV=1 

  K1C15_MOUSE Keratin, type I cytoskeletal 15 OS=Mus musculus GN=Krt15 PE=1 SV=2 

  AMYP_MOUSE Pancreatic alpha-amylase OS=Mus musculus GN=Amy2 PE=1 SV=2 

  K2C6A_MOUSE Keratin, type II cytoskeletal 6A OS=Mus musculus GN=Krt6a PE=2 SV=3 

  K2C73_MOUSE Keratin, type II cytoskeletal 73 OS=Mus musculus GN=Krt73 PE=1 SV=1 

  TRFE_MOUSE Serotransferrin OS=Mus musculus GN=Tf PE=1 SV=1 

  LIPP_MOUSE  Pancreatic triacylglycerol lipase OS=Mus musculus GN=Pnlip PE=1 SV=1 

  AMY1_MOUSE  Alpha-amylase 1 OS=Mus musculus GN=Amy1 PE=1 SV=2 

  K2C79_MOUSE  Keratin, type II cytoskeletal 79 OS=Mus musculus GN=Krt79 PE=1 SV=2 

  K1C13_MOUSE  Keratin, type I cytoskeletal 13 OS=Mus musculus GN=Krt13 PE=1 SV=2 

  K2C71_MOUSE  Keratin, type II cytoskeletal 71 OS=Mus musculus GN=Krt71 PE=1 SV=1 
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  LIPR1_MOUSE Pancreatic lipase-related protein 1 OS=Mus musculus GN=Pnliprp1 PE=2 SV=2

  GP2_MOUSE Pancreatic secretory granule membrane major glycoprotein GP2 OS=Mus 
musculus GN=Gp2 PE=2 SV=3 

  HS90B_MOUSE Heat shock protein HSP 90-beta OS=Mus musculus GN=Hsp90ab1 PE=1 SV=3 

  RPN1_MOUSE Dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit 1 
OS=Mus musculus GN=Rpn1 PE=2 SV=1 

  K2C7_MOUSE Keratin, type II cytoskeletal 7 OS=Mus musculus GN=Krt7 PE=1 SV=1 

  TRAP1_MOUSE Heat shock protein 75 kDa, mitochondrial OS=Mus musculus GN=Trap1 PE=1 
SV=1 

  HS90A_MOUSE Heat shock protein HSP 90-alpha OS=Mus musculus GN=Hsp90aa1 PE=1 SV=4 

  K22E_MOUSE Keratin, type II cytoskeletal 2 epidermal OS=Mus musculus GN=Krt2 PE=1 
SV=1 

  EF1A1_MOUSE Elongation factor 1-alpha 1 OS=Mus musculus GN=Eef1a1 PE=1 SV=3 

  K1C16_MOUSE Keratin, type I cytoskeletal 16 OS=Mus musculus GN=Krt16 PE=1 SV=3 

  K1C25_MOUSE Keratin, type I cytoskeletal 25 OS=Mus musculus GN=Krt25 PE=1 SV=1 

  SYRC_MOUSE Arginine--tRNA ligase, cytoplasmic OS=Mus musculus GN=Rars PE=2 SV=2 

  K2C4_MOUSE Keratin, type II cytoskeletal 4 OS=Mus musculus GN=Krt4 PE=1 SV=2 

  SPAT5_MOUSE Spermatogenesis-associated protein 5 OS=Mus musculus GN=Spata5 PE=2 SV=2 

  TERA_MOUSE Transitional endoplasmic reticulum ATPase OS=Mus musculus GN=Vcp PE=1 
SV=4 

  ACTC_MOUSE Actin, alpha cardiac muscle 1 OS=Mus musculus GN=Actc1 PE=1 SV=1 

  SAHH_MOUSE Adenosylhomocysteinase OS=Mus musculus GN=Ahcy PE=1 SV=3 

  SPI2_MOUSE Serpin I2 OS=Mus musculus GN=Serpini2 PE=1 SV=1 

  K2C8_MOUSE 

  K2C72_MOUSE 

  CALX_MOUSE Calnexin OS=Mus musculus GN=Canx PE=1 SV=1 

  PABP1_MOUSE Polyadenylate-binding protein 1 OS=Mus musculus GN=Pabpc1 PE=1 SV=2 

  LIPR2_MOUSE Pancreatic lipase-related protein 2 OS=Mus musculus GN=Pnliprp2 PE=2 SV=1

  SYK_MOUSE Lysine--tRNA ligase OS=Mus musculus GN=Kars PE=1 SV=1 

  SARNP_MOUSE 

  LMNA_MOUSE Prelamin-A/C OS=Mus musculus GN=Lmna PE=1 SV=2 

  DVL1_MOUSE 

  MTA70_MOUSE N6-adenosine-methyltransferase 70 kDa subunit OS=Mus musculus GN=Mettl3 
PE=2 SV=2 

  PCCA_MOUSE Propionyl-CoA carboxylase alpha chain, mitochondrial OS=Mus musculus 
GN=Pcca PE=2 SV=2 

  QN1_MOUSE Protein QN1 homolog OS=Mus musculus GN=Kiaa1009 PE=1 SV=2 

  ACOX2_MOUSE 

  GLGB_MOUSE 1,4-alpha-glucan-branching enzyme OS=Mus musculus GN=Gbe1 PE=2 SV=1 

  CES1D_MOUSE Carboxylesterase 1D OS=Mus musculus GN=Ces1d PE=1 SV=1 

  RBM44_MOUSE RNA-binding protein 44 OS=Mus musculus GN=Rbm44 PE=2 SV=1 

  ACTBL_MOUSE 

  GNN_MOUSE Tetratricopeptide repeat protein GNN OS=Mus musculus GN=Gnn PE=1 SV=1 

  GALP_MOUSE Galanin-like peptide OS=Mus musculus GN=Galp PE=2 SV=1 

  SYFB_MOUSE Phenylalanine--tRNA ligase beta subunit OS=Mus musculus GN=Farsb PE=2 
SV=2 

  MACF1_MOUSE Microtubule-actin cross-linking factor 1 OS=Mus musculus GN=Macf1 PE=1 
SV=2 

  HEY2_MOUSE Hairy/enhancer-of-split related with YRPW motif protein 2 OS=Mus musculus 
GN=Hey2 PE=1 SV=1 

  CANT1_MOUSE Soluble calcium-activated nucleotidase 1 OS=Mus musculus GN=Cant1 PE=2 
SV=1 
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  GLU2B_MOUSE Glucosidase 2 subunit beta OS=Mus musculus GN=Prkcsh PE=1 SV=1 

  SELS_MOUSE Selenoprotein S OS=Mus musculus GN=Sels PE=2 SV=3 

  UBP25_MOUSE 

  TJAP1_MOUSE Tight junction-associated protein 1 OS=Mus musculus GN=Tjap1 PE=1 SV=1 

  SPG7_MOUSE 

Mascot Score Histogram 
Ions score is -10*Log(P), where P is the probability that the observed match is a random event. 
Individual ions scores > 28 indicate identity or extensive homology (p<0.05). 
Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.  

 

BAND 3 CONTROL: 
MS data file    : Jena ZG band 3.tmp.tmp 
Database        : SwissProt 2012_04 (535698 sequences; 190107059 residues) 
Taxonomy        : Mus musculus (house mouse) (16528 sequences) 
Timestamp       : 8 May 2012 at 16:52:05 GMT 
Protein hits    : 
 LIPP_MOUSE  Pancreatic triacylglycerol lipase OS=Mus musculus GN=Pnlip PE=1 SV=1

  K1C10_MOUSE  Keratin, type I cytoskeletal 10 OS=Mus musculus GN=Krt10 PE=1 SV=3 

  LIPR1_MOUSE  Pancreatic lipase-related protein 1 OS=Mus musculus GN=Pnliprp1 PE=2 
SV=2 

  K22E_MOUSE  Keratin, type II cytoskeletal 2 epidermal OS=Mus musculus GN=Krt2 PE=1 
SV=1 

  AMY1_MOUSE  Alpha-amylase 1 OS=Mus musculus GN=Amy1 PE=1 SV=2 

  K2C5_MOUSE  Keratin, type II cytoskeletal 5 OS=Mus musculus GN=Krt5 PE=1 SV=1 

  VAT1_MOUSE  Synaptic vesicle membrane protein VAT-1 homolog OS=Mus musculus GN=Vat1 
PE=1 SV=3 

  K2C1_MOUSE  Keratin, type II cytoskeletal 1 OS=Mus musculus GN=Krt1 PE=1 SV=4 

  K2C75_MOUSE  Keratin, type II cytoskeletal 75 OS=Mus musculus GN=Krt75 PE=1 SV=1 

  K2C6A_MOUSE  Keratin, type II cytoskeletal 6A OS=Mus musculus GN=Krt6a PE=2 SV=3 

  PDIA6_MOUSE  Protein disulfide-isomerase A6 OS=Mus musculus GN=Pdia6 PE=1 SV=3 

  AMYP_MOUSE  Pancreatic alpha-amylase OS=Mus musculus GN=Amy2 PE=1 SV=2 

  EF1A1_MOUSE  Elongation factor 1-alpha 1 OS=Mus musculus GN=Eef1a1 PE=1 SV=3 

  ATPB_MOUSE  ATP synthase subunit beta, mitochondrial OS=Mus musculus GN=Atp5b PE=1 
SV=2 

  CBPA1_MOUSE  Carboxypeptidase A1 OS=Mus musculus GN=Cpa1 PE=2 SV=1 

  K22O_MOUSE  Keratin, type II cytoskeletal 2 oral OS=Mus musculus GN=Krt76 PE=2 SV=1 

  K2C7_MOUSE  Keratin, type II cytoskeletal 7 OS=Mus musculus GN=Krt7 PE=1 SV=1 
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  CEL_MOUSE  Bile salt-activated lipase OS=Mus musculus GN=Cel PE=1 SV=1 

  ENOA_MOUSE  Alpha-enolase OS=Mus musculus GN=Eno1 PE=1 SV=3 

  K1C13_MOUSE  Keratin, type I cytoskeletal 13 OS=Mus musculus GN=Krt13 PE=1 SV=2 

  K1C17_MOUSE  Keratin, type I cytoskeletal 17 OS=Mus musculus GN=Krt17 PE=1 SV=3 

  K2C73_MOUSE  Keratin, type II cytoskeletal 73 OS=Mus musculus GN=Krt73 PE=1 SV=1 

  K2C4_MOUSE  Keratin, type II cytoskeletal 4 OS=Mus musculus GN=Krt4 PE=1 SV=2 

  K2C79_MOUSE  Keratin, type II cytoskeletal 79 OS=Mus musculus GN=Krt79 PE=1 SV=2 

  K2C1B_MOUSE  Keratin, type II cytoskeletal 1b OS=Mus musculus GN=Krt77 PE=1 SV=1 

  K1C14_MOUSE  Keratin, type I cytoskeletal 14 OS=Mus musculus GN=Krt14 PE=1 SV=2 

  K1C15_MOUSE  Keratin, type I cytoskeletal 15 OS=Mus musculus GN=Krt15 PE=1 SV=2 

  KRT84_MOUSE  Keratin, type II cuticular Hb4 OS=Mus musculus GN=Krt84 PE=2 SV=2 

  LIPR2_MOUSE  Pancreatic lipase-related protein 2 OS=Mus musculus GN=Pnliprp2 PE=2 
SV=1 

  K2C8_MOUSE  Keratin, type II cytoskeletal 8 OS=Mus musculus GN=Krt8 PE=1 SV=4 

  ENOB_MOUSE  Beta-enolase OS=Mus musculus GN=Eno3 PE=1 SV=3 

  KRT85_MOUSE  Keratin, type II cuticular Hb5 OS=Mus musculus GN=Krt85 PE=2 SV=2 

  K2C72_MOUSE  Keratin, type II cytoskeletal 72 OS=Mus musculus GN=Krt72 PE=2 SV=1 

  EIF3F_MOUSE  Eukaryotic translation initiation factor 3 subunit F OS=Mus musculus  
 GN=Eif3f PE=1 SV=2 

  RHG01_MOUSE  Rho GTPase-activating protein 1 OS=Mus musculus GN=Arhgap1 PE=1 SV=1 

  AL9A1_MOUSE  4-trimethylaminobutyraldehyde dehydrogenase OS=Mus musculus GN=Aldh9a1  
 PE=1 SV=1 

  K1C25_MOUSE  Keratin, type I cytoskeletal 25 OS=Mus musculus GN=Krt25 PE=1 SV=1 

  EF1G_MOUSE  Elongation factor 1-gamma OS=Mus musculus GN=Eef1g PE=1 SV=3 

  ACTB_MOUSE  Actin, cytoplasmic 1 OS=Mus musculus GN=Actb PE=1 SV=1 

  NUCB2_MOUSE  Nucleobindin-2 OS=Mus musculus GN=Nucb2 PE=1 SV=2 

  CD1D1_MOUSE  Antigen-presenting glycoprotein CD1d1 OS=Mus musculus GN=Cd1d1 PE=1 SV=3 

  SPI2_MOUSE  Serpin I2 OS=Mus musculus GN=Serpini2 PE=1 SV=1 

  MTOR_MOUSE   

  CA087_MOUSE   

  NFH_MOUSE  Neurofilament heavy polypeptide OS=Mus musculus GN=Nefh PE=1 SV=3 

  GGLO_MOUSE   

  LR16C_MOUSE   

  CBPA2_MOUSE  Carboxypeptidase A2 OS=Mus musculus GN=Cpa2 PE=2 SV=1 

  YBOX1_MOUSE  Nuclease-sensitive element-binding protein 1 OS=Mus musculus GN=Ybx1 
PE=1  SV=3 

  VAV3_MOUSE  Guanine nucleotide exchange factor VAV3 OS=Mus musculus GN=Vav3 PE=1 
SV=2 

  GGT1_MOUSE  Gamma-glutamyltranspeptidase 1 OS=Mus musculus GN=Ggt1 PE=1 SV=1 

  METK2_MOUSE  S-adenosylmethionine synthase isoform type-2 OS=Mus musculus GN=Mat2a 
PE=2  SV=2 

  OST48_MOUSE  Dolichyl-diphosphooligosaccharide--protein glycosyltransferase 48 kDa  
 subunit OS=Mus musculus GN=Ddost PE=1 SV=2 

  RL4_MOUSE  60S ribosomal protein L4 OS=Mus musculus GN=Rpl4 PE=1 SV=3 

  RAE1D_MOUSE   

  DUS11_MOUSE  RNA/RNP complex-1-interacting phosphatase OS=Mus musculus GN=Dusp11 PE=2 
 SV=1 

  K1C20_MOUSE   

  ASAP2_MOUSE  Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein 2  
 OS=Mus musculus GN=Asap2 PE=1 SV=3 

  MYH1_MOUSE  Myosin-1 OS=Mus musculus GN=Myh1 PE=1 SV=1 
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  IQUB_MOUSE   

  GPR98_MOUSE  G-protein coupled receptor 98 OS=Mus musculus GN=Gpr98 PE=2 SV=1 

  ILEUB_MOUSE  Leukocyte elastase inhibitor B OS=Mus musculus GN=Serpinb1b PE=1 SV=1 

  F207A_MOUSE  Protein FAM207A OS=Mus musculus GN=Fam207a PE=1 SV=1 

  PSMD1_MOUSE  26S proteasome non-ATPase regulatory subunit 1 OS=Mus musculus GN=Psmd1 
PE=1 SV=1 

  CCNC_MOUSE   

  SMC5_MOUSE   

  COT1_MOUSE  COUP transcription factor 1 OS=Mus musculus GN=Nr2f1 PE=2 SV=2 

  PO2F1_MOUSE   

  TDG_MOUSE  G/T mismatch-specific thymine DNA glycosylase OS=Mus musculus GN=Tdg 
PE=2  SV=1 

  SMC3_MOUSE  Structural maintenance of chromosomes protein 3 OS=Mus musculus GN=Smc3 
PE=1 SV=2 

  DNPEP_MOUSE  Aspartyl aminopeptidase OS=Mus musculus GN=Dnpep PE=2 SV=2 

  FBW10_MOUSE  F-box/WD repeat-containing protein 10 OS=Mus musculus GN=Fbxw10 PE=2 
SV=1 

  RADI_MOUSE  Radixin OS=Mus musculus GN=Rdx PE=1 SV=3 

  GATM_MOUSE  Glycine amidinotransferase, mitochondrial OS=Mus musculus GN=Gatm PE=1 
SV=1 

  HUTH_MOUSE  Histidine ammonia-lyase OS=Mus musculus GN=Hal PE=1 SV=1 

  ALBU_MOUSE  Serum albumin OS=Mus musculus GN=Alb PE=1 SV=3 

  SHRM3_MOUSE  Protein Shroom3 OS=Mus musculus GN=Shroom3 PE=1 SV=2 

  TXD11_MOUSE  Thioredoxin domain-containing protein 11 OS=Mus musculus GN=Txndc11 PE=2 
 SV=1 

 

Mascot Score Histogram 
Ions score is -10*Log(P), where P is the probability that the observed match is a random event. 
Individual ions scores > 28 indicate identity or extensive homology (p<0.05). 
Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.  

 

BAND 4 CONTROL: 
MS data file    : Jena ZG band 4.tmp.tmp 
Database        : SwissProt 2012_04 (535698 sequences; 190107059 residues) 
Taxonomy        : Mus musculus (house mouse) (16528 sequences) 
Timestamp       : 8 May 2012 at 16:55:32 GMT 
Protein hits    : 
 LIPP_MOUSE  Pancreatic triacylglycerol lipase OS=Mus musculus GN=Pnlip PE=1 SV=1

  LIPR1_MOUSE  Pancreatic lipase-related protein 1 OS=Mus musculus GN=Pnliprp1 PE=2 
SV=2 
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  AMYP_MOUSE  Pancreatic alpha-amylase OS=Mus musculus GN=Amy2 PE=1 SV=2 

  PDIA6_MOUSE  Protein disulfide-isomerase A6 OS=Mus musculus GN=Pdia6 PE=1 SV=3 

  VAT1_MOUSE  Synaptic vesicle membrane protein VAT-1 homolog OS=Mus musculus GN=Vat1 
PE=1 SV=3 

  AMY1_MOUSE  Alpha-amylase 1 OS=Mus musculus GN=Amy1 PE=1 SV=2 

  ATPB_MOUSE  ATP synthase subunit beta, mitochondrial OS=Mus musculus GN=Atp5b PE=1 
SV=2 

  K1C10_MOUSE  Keratin, type I cytoskeletal 10 OS=Mus musculus GN=Krt10 PE=1 SV=3 

  ENOA_MOUSE  Alpha-enolase OS=Mus musculus GN=Eno1 PE=1 SV=3 

  TBB4B_MOUSE  Tubulin beta-4B chain OS=Mus musculus GN=Tubb4b PE=1 SV=1 

  CBPA1_MOUSE  Carboxypeptidase A1 OS=Mus musculus GN=Cpa1 PE=2 SV=1 

  EF1A1_MOUSE  Elongation factor 1-alpha 1 OS=Mus musculus GN=Eef1a1 PE=1 SV=3 

  CEL_MOUSE  Bile salt-activated lipase OS=Mus musculus GN=Cel PE=1 SV=1 

  K2C1_MOUSE  Keratin, type II cytoskeletal 1 OS=Mus musculus GN=Krt1 PE=1 SV=4 

  K1C17_MOUSE  Keratin, type I cytoskeletal 17 OS=Mus musculus GN=Krt17 PE=1 SV=3 

  K1C14_MOUSE  Keratin, type I cytoskeletal 14 OS=Mus musculus GN=Krt14 PE=1 SV=2 

  K1C15_MOUSE  Keratin, type I cytoskeletal 15 OS=Mus musculus GN=Krt15 PE=1 SV=2 

  K1C18_MOUSE  Keratin, type I cytoskeletal 18 OS=Mus musculus GN=Krt18 PE=1 SV=5 

  K2C5_MOUSE  Keratin, type II cytoskeletal 5 OS=Mus musculus GN=Krt5 PE=1 SV=1 

  LIPR2_MOUSE  Pancreatic lipase-related protein 2 OS=Mus musculus GN=Pnliprp2 PE=2 
SV=1 

  K1C19_MOUSE  Keratin, type I cytoskeletal 19 OS=Mus musculus GN=Krt19 PE=1 SV=1 

  NUCB2_MOUSE  Nucleobindin-2 OS=Mus musculus GN=Nucb2 PE=1 SV=2 

  K1C42_MOUSE  Keratin, type I cytoskeletal 42 OS=Mus musculus GN=Krt42 PE=1 SV=1 

  ENOB_MOUSE  Beta-enolase OS=Mus musculus GN=Eno3 PE=1 SV=3 

  EF1G_MOUSE  Elongation factor 1-gamma OS=Mus musculus GN=Eef1g PE=1 SV=3 

  CBPA2_MOUSE  Carboxypeptidase A2 OS=Mus musculus GN=Cpa2 PE=2 SV=1 

  K1C16_MOUSE  Keratin, type I cytoskeletal 16 OS=Mus musculus GN=Krt16 PE=1 SV=3 

  HS90A_MOUSE  Heat shock protein HSP 90-alpha OS=Mus musculus GN=Hsp90aa1 PE=1 SV=4 

  TRAP1_MOUSE  Heat shock protein 75 kDa, mitochondrial OS=Mus musculus GN=Trap1 PE=1 
SV=1 

  K2C6A_MOUSE  Keratin, type II cytoskeletal 6A OS=Mus musculus GN=Krt6a PE=2 SV=3 

  K2C74_MOUSE  Keratin, type II cytoskeletal 74 OS=Mus musculus GN=Krt74 PE=2 SV=1 

  VTDB_MOUSE  Vitamin D-binding protein OS=Mus musculus GN=Gc PE=1 SV=2 

  TBB1_MOUSE  Tubulin beta-1 chain OS=Mus musculus GN=Tubb1 PE=1 SV=1 

  TBA1A_MOUSE  Tubulin alpha-1A chain OS=Mus musculus GN=Tuba1a PE=1 SV=1 

  AL9A1_MOUSE  4-trimethylaminobutyraldehyde dehydrogenase OS=Mus musculus GN=Aldh9a1  
 PE=1 SV=1 

  K22E_MOUSE  Keratin, type II cytoskeletal 2 epidermal OS=Mus musculus GN=Krt2 PE=1 
SV=1 

  CD1D1_MOUSE  Antigen-presenting glycoprotein CD1d1 OS=Mus musculus GN=Cd1d1 PE=1 SV=3 

  EIF3F_MOUSE  Eukaryotic translation initiation factor 3 subunit F OS=Mus musculus  
 GN=Eif3f PE=1 SV=2 

  K1C24_MOUSE   

  KRT35_MOUSE   

  RHG01_MOUSE  Rho GTPase-activating protein 1 OS=Mus musculus GN=Arhgap1 PE=1 SV=1 

  DNPEP_MOUSE  Aspartyl aminopeptidase OS=Mus musculus GN=Dnpep PE=2 SV=2 

  CTRB1_MOUSE   

  GDIB_MOUSE  Rab GDP dissociation inhibitor beta OS=Mus musculus GN=Gdi2 PE=1 SV=1 

  PDIA1_MOUSE  Protein disulfide-isomerase OS=Mus musculus GN=P4hb PE=1 SV=2 
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  AMNLS_MOUSE   

  K22O_MOUSE  Keratin, type II cytoskeletal 2 oral OS=Mus musculus GN=Krt76 PE=2 SV=1 

  GATM_MOUSE  Glycine amidinotransferase, mitochondrial OS=Mus musculus GN=Gatm PE=1 
SV=1 

  CA087_MOUSE   

  MTOR_MOUSE   

  RL4_MOUSE  60S ribosomal protein L4 OS=Mus musculus GN=Rpl4 PE=1 SV=3 

  GGLO_MOUSE   

  E2AK4_MOUSE  Eukaryotic translation initiation factor 2-alpha kinase 4 OS=Mus 
musculus  GN=Eif2ak4 PE=1 SV=2 

  ATX3_MOUSE   

  DUS11_MOUSE  RNA/RNP complex-1-interacting phosphatase OS=Mus musculus GN=Dusp11 PE=2 
 SV=1 

  LR16C_MOUSE   

  RAE1D_MOUSE   

  IQUB_MOUSE   

  RN111_MOUSE   

  CPNE5_MOUSE   

  K1731_MOUSE   

  RRAS_MOUSE   

  RN169_MOUSE   

  MATN4_MOUSE   

  ASAP2_MOUSE  Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein 2  
 OS=Mus musculus GN=Asap2 PE=1 SV=3 

  GGH_MOUSE  Gamma-glutamyl hydrolase OS=Mus musculus GN=Ggh PE=1 SV=2 

  PLD1_MOUSE   

  PO2F3_MOUSE  POU domain, class 2, transcription factor 3 OS=Mus musculus GN=Pou2f3  
 PE=2 SV=2 

  K1C20_MOUSE   

  ODB2_MOUSE  Lipoamide acyltransferase component of branched-chain alpha-keto acid  
 dehydrogenase complex, mitochondrial OS=Mus musculus GN=Dbt PE=2 SV=2 

  S41A3_MOUSE   

  VWA2_MOUSE   

  GGT1_MOUSE  Gamma-glutamyltranspeptidase 1 OS=Mus musculus GN=Ggt1 PE=1 SV=1 

  FBW10_MOUSE  F-box/WD repeat-containing protein 10 OS=Mus musculus GN=Fbxw10 PE=2 
SV=1 

  SHP1L_MOUSE  SHC SH2 domain-binding protein 1-like protein OS=Mus musculus GN=Shcbp1l 
 PE=2 SV=1 

  HMOX2_MOUSE  Heme oxygenase 2 OS=Mus musculus GN=Hmox2 PE=2 SV=1 

  SHRM3_MOUSE  Protein Shroom3 OS=Mus musculus GN=Shroom3 PE=1 SV=2 

  SHRM2_MOUSE  Protein Shroom2 OS=Mus musculus GN=Shroom2 PE=1 SV=1 

  ALBU_MOUSE  Serum albumin OS=Mus musculus GN=Alb PE=1 SV=3 
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Mascot Score Histogram 
Ions score is -10*Log(P), where P is the probability that the observed match is a random event. 
Individual ions scores > 28 indicate identity or extensive homology (p<0.05). 
Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.  

 

BAND 1 2h EXPERIMENTAL: 
MS data file    : Jena ZG band 5.tmp.tmp 
Database        : SwissProt 2012_04 (535698 sequences; 190107059 residues) 
Taxonomy        : Mus musculus (house mouse) (16528 sequences) 
Timestamp       : 8 May 2012 at 18:06:37 GMT 
Protein hits    : 
 LIPP_MOUSE  Pancreatic triacylglycerol lipase OS=Mus musculus GN=Pnlip PE=1 SV=1

  LIPR1_MOUSE  Pancreatic lipase-related protein 1 OS=Mus musculus GN=Pnliprp1 PE=2 
SV=2 

  K1C10_MOUSE  Keratin, type I cytoskeletal 10 OS=Mus musculus GN=Krt10 PE=1 SV=3 

  AMY1_MOUSE  Alpha-amylase 1 OS=Mus musculus GN=Amy1 PE=1 SV=2 

  AMYP_MOUSE  Pancreatic alpha-amylase OS=Mus musculus GN=Amy2 PE=1 SV=2 

  CBPA2_MOUSE  Carboxypeptidase A2 OS=Mus musculus GN=Cpa2 PE=2 SV=1 

  CEL_MOUSE  Bile salt-activated lipase OS=Mus musculus GN=Cel PE=1 SV=1 

  EF1A1_MOUSE  Elongation factor 1-alpha 1 OS=Mus musculus GN=Eef1a1 PE=1 SV=3 

  CBPA1_MOUSE  Carboxypeptidase A1 OS=Mus musculus GN=Cpa1 PE=2 SV=1 

  SPI2_MOUSE  Serpin I2 OS=Mus musculus GN=Serpini2 PE=1 SV=1 

  ENOA_MOUSE  Alpha-enolase OS=Mus musculus GN=Eno1 PE=1 SV=3 

  VAT1_MOUSE  Synaptic vesicle membrane protein VAT-1 homolog OS=Mus musculus GN=Vat1 
PE=1 SV=3 

  K2C1_MOUSE  Keratin, type II cytoskeletal 1 OS=Mus musculus GN=Krt1 PE=1 SV=4 

  K2C5_MOUSE  Keratin, type II cytoskeletal 5 OS=Mus musculus GN=Krt5 PE=1 SV=1 

  ENOB_MOUSE  Beta-enolase OS=Mus musculus GN=Eno3 PE=1 SV=3 

  K22E_MOUSE  Keratin, type II cytoskeletal 2 epidermal OS=Mus musculus GN=Krt2 PE=1 
SV=1 

  K1C15_MOUSE  Keratin, type I cytoskeletal 15 OS=Mus musculus GN=Krt15 PE=1 SV=2 

  IF4A1_MOUSE  Eukaryotic initiation factor 4A-I OS=Mus musculus GN=Eif4a1 PE=2 SV=1 

  K2C8_MOUSE  Keratin, type II cytoskeletal 8 OS=Mus musculus GN=Krt8 PE=1 SV=4 

  K1C42_MOUSE  Keratin, type I cytoskeletal 42 OS=Mus musculus GN=Krt42 PE=1 SV=1 

  K2C6A_MOUSE  Keratin, type II cytoskeletal 6A OS=Mus musculus GN=Krt6a PE=2 SV=3 

  K2C75_MOUSE  Keratin, type II cytoskeletal 75 OS=Mus musculus GN=Krt75 PE=1 SV=1 
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  EF1G_MOUSE  Elongation factor 1-gamma OS=Mus musculus GN=Eef1g PE=1 SV=3 

  K2C73_MOUSE  Keratin, type II cytoskeletal 73 OS=Mus musculus GN=Krt73 PE=1 SV=1 

  K2C71_MOUSE  Keratin, type II cytoskeletal 71 OS=Mus musculus GN=Krt71 PE=1 SV=1 

  K1C16_MOUSE  Keratin, type I cytoskeletal 16 OS=Mus musculus GN=Krt16 PE=1 SV=3 

  PDIA6_MOUSE  Protein disulfide-isomerase A6 OS=Mus musculus GN=Pdia6 PE=1 SV=3 

  K1C13_MOUSE  Keratin, type I cytoskeletal 13 OS=Mus musculus GN=Krt13 PE=1 SV=2 

  K1C18_MOUSE  Keratin, type I cytoskeletal 18 OS=Mus musculus GN=Krt18 PE=1 SV=5 

  ILEUA_MOUSE  Leukocyte elastase inhibitor A OS=Mus musculus GN=Serpinb1a PE=1 SV=1 

  QCR1_MOUSE 
 Cytochrome b-c1 complex subunit 1, mitochondrial OS=Mus musculus 
GN=Uqcrc1  
 PE=1 SV=2 

  METK1_MOUSE 
 S-adenosylmethionine synthase isoform type-1 OS=Mus musculus GN=Mat1a 
PE=2  
 SV=1 

  IF2B_MOUSE  Eukaryotic translation initiation factor 2 subunit 2 OS=Mus musculus  
 GN=Eif2s2 PE=1 SV=1 

  PKHA7_MOUSE  Pleckstrin homology domain-containing family A member 7 OS=Mus musculus  
 GN=Plekha7 PE=1 SV=2 

  K1C24_MOUSE  Keratin, type I cytoskeletal 24 OS=Mus musculus GN=Krt24 PE=2 SV=2 

  AMNLS_MOUSE   

  RM10_MOUSE  39S ribosomal protein L10, mitochondrial OS=Mus musculus GN=Mrpl10 PE=2 
SV=2 

  K2C79_MOUSE  Keratin, type II cytoskeletal 79 OS=Mus musculus GN=Krt79 PE=1 SV=2 

  RL4_MOUSE  60S ribosomal protein L4 OS=Mus musculus GN=Rpl4 PE=1 SV=3 

  MTOR_MOUSE   

  F10A1_MOUSE  Hsc70-interacting protein OS=Mus musculus GN=St13 PE=2 SV=1 

  METK2_MOUSE  S-adenosylmethionine synthase isoform type-2 OS=Mus musculus GN=Mat2a 
PE=2  SV=2 

  IF4A3_MOUSE  Eukaryotic initiation factor 4A-III OS=Mus musculus GN=Eif4a3 PE=2 SV=3 

  K2C4_MOUSE  Keratin, type II cytoskeletal 4 OS=Mus musculus GN=Krt4 PE=1 SV=2 

  K2C7_MOUSE  Keratin, type II cytoskeletal 7 OS=Mus musculus GN=Krt7 PE=1 SV=1 

  K2C72_MOUSE   

  KRT84_MOUSE   

  CA087_MOUSE   

  LIPR2_MOUSE  Pancreatic lipase-related protein 2 OS=Mus musculus GN=Pnliprp2 PE=2 
SV=1 

  YBOX1_MOUSE  Nuclease-sensitive element-binding protein 1 OS=Mus musculus GN=Ybx1 
PE=1  SV=3 

  GATM_MOUSE  Glycine amidinotransferase, mitochondrial OS=Mus musculus GN=Gatm PE=1 
SV=1 

  DUS11_MOUSE  RNA/RNP complex-1-interacting phosphatase OS=Mus musculus GN=Dusp11 PE=2 
 SV=1 

  NUP50_MOUSE  Nuclear pore complex protein Nup50 OS=Mus musculus GN=Nup50 PE=1 SV=3 

  GDF7_MOUSE  Growth/differentiation factor 7 OS=Mus musculus GN=Gdf7 PE=2 SV=2 

  ASAP2_MOUSE  Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein 2  
 OS=Mus musculus GN=Asap2 PE=1 SV=3 

  PCLO_MOUSE  Protein piccolo OS=Mus musculus GN=Pclo PE=1 SV=3 

  K1C20_MOUSE   

  SAHH_MOUSE  Adenosylhomocysteinase OS=Mus musculus GN=Ahcy PE=1 SV=3 

  PHRF1_MOUSE   

  GGH_MOUSE  Gamma-glutamyl hydrolase OS=Mus musculus GN=Ggh PE=1 SV=2 

  INHBA_MOUSE   

  NDF2_MOUSE   
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  PO2F1_MOUSE   

  DUS3_MOUSE  Dual specificity protein phosphatase 3 OS=Mus musculus GN=Dusp3 PE=1 
SV=1 

  HNRPF_MOUSE  Heterogeneous nuclear ribonucleoprotein F OS=Mus musculus GN=Hnrnpf PE=1 
 SV=3 

  ADCYA_MOUSE   

  GDIB_MOUSE  Rab GDP dissociation inhibitor beta OS=Mus musculus GN=Gdi2 PE=1 SV=1 

  ATX3_MOUSE   

  PRS7_MOUSE  26S protease regulatory subunit 7 OS=Mus musculus GN=Psmc2 PE=1 SV=5 

  ANXA7_MOUSE  Annexin A7 OS=Mus musculus GN=Anxa7 PE=2 SV=2 

  FBW10_MOUSE  F-box/WD repeat-containing protein 10 OS=Mus musculus GN=Fbxw10 PE=2 
SV=1 

  T3JAM_MOUSE   

  SPG7_MOUSE   

Mascot Score Histogram 
Ions score is -10*Log(P), where P is the probability that the observed match is a random event. 
Individual ions scores > 27 indicate identity or extensive homology (p<0.05). 
Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.  

 

BAND 2 2h EXPERIMENTAL: 
MS data file    : Jena ZG band 6.tmp.tmp 
Database        : SwissProt 2012_04 (535698 sequences; 190107059 residues) 
Taxonomy        : Mus musculus (house mouse) (16528 sequences) 
Timestamp       : 8 May 2012 at 18:08:16 GMT 
Protein hits    : 
 LIPP_MOUSE  Pancreatic triacylglycerol lipase OS=Mus musculus GN=Pnlip PE=1 SV=1

  VAT1_MOUSE  Synaptic vesicle membrane protein VAT-1 homolog OS=Mus musculus GN=Vat1 
PE=1 SV=3 

  LIPR1_MOUSE  Pancreatic lipase-related protein 1 OS=Mus musculus GN=Pnliprp1 PE=2 
SV=2 

  CEL_MOUSE  Bile salt-activated lipase OS=Mus musculus GN=Cel PE=1 SV=1 

  K1C10_MOUSE  Keratin, type I cytoskeletal 10 OS=Mus musculus GN=Krt10 PE=1 SV=3 

  CBPA1_MOUSE  Carboxypeptidase A1 OS=Mus musculus GN=Cpa1 PE=2 SV=1 

  AMY1_MOUSE  Alpha-amylase 1 OS=Mus musculus GN=Amy1 PE=1 SV=2 

  PDIA6_MOUSE  Protein disulfide-isomerase A6 OS=Mus musculus GN=Pdia6 PE=1 SV=3 

  AMYP_MOUSE  Pancreatic alpha-amylase OS=Mus musculus GN=Amy2 PE=1 SV=2 

  EF1A1_MOUSE  Elongation factor 1-alpha 1 OS=Mus musculus GN=Eef1a1 PE=1 SV=3 

  K2C1_MOUSE  Keratin, type II cytoskeletal 1 OS=Mus musculus GN=Krt1 PE=1 SV=4 

  K1C14_MOUSE  Keratin, type I cytoskeletal 14 OS=Mus musculus GN=Krt14 PE=1 SV=2 
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  K2C5_MOUSE  Keratin, type II cytoskeletal 5 OS=Mus musculus GN=Krt5 PE=1 SV=1 

  SPI2_MOUSE  Serpin I2 OS=Mus musculus GN=Serpini2 PE=1 SV=1 

  K1C18_MOUSE  Keratin, type I cytoskeletal 18 OS=Mus musculus GN=Krt18 PE=1 SV=5 

  K1C17_MOUSE  Keratin, type I cytoskeletal 17 OS=Mus musculus GN=Krt17 PE=1 SV=3 

  K1C19_MOUSE  Keratin, type I cytoskeletal 19 OS=Mus musculus GN=Krt19 PE=1 SV=1 

  K1C15_MOUSE  Keratin, type I cytoskeletal 15 OS=Mus musculus GN=Krt15 PE=1 SV=2 

  CBPA2_MOUSE  Carboxypeptidase A2 OS=Mus musculus GN=Cpa2 PE=2 SV=1 

  ENOA_MOUSE  Alpha-enolase OS=Mus musculus GN=Eno1 PE=1 SV=3 

  TBB4A_MOUSE  Tubulin beta-4A chain OS=Mus musculus GN=Tubb4a PE=1 SV=3 

  K1C42_MOUSE  Keratin, type I cytoskeletal 42 OS=Mus musculus GN=Krt42 PE=1 SV=1 

  ENOB_MOUSE  Beta-enolase OS=Mus musculus GN=Eno3 PE=1 SV=3 

  K1C13_MOUSE  Keratin, type I cytoskeletal 13 OS=Mus musculus GN=Krt13 PE=1 SV=2 

  K2C6A_MOUSE  Keratin, type II cytoskeletal 6A OS=Mus musculus GN=Krt6a PE=2 SV=3 

  SAHH_MOUSE  Adenosylhomocysteinase OS=Mus musculus GN=Ahcy PE=1 SV=3 

  K1C16_MOUSE  Keratin, type I cytoskeletal 16 OS=Mus musculus GN=Krt16 PE=1 SV=3 

  ERP44_MOUSE  Endoplasmic reticulum resident protein 44 OS=Mus musculus GN=Erp44 PE=1 
SV=1 

  TBA1A_MOUSE  Tubulin alpha-1A chain OS=Mus musculus GN=Tuba1a PE=1 SV=1 

  EF1G_MOUSE  Elongation factor 1-gamma OS=Mus musculus GN=Eef1g PE=1 SV=3 

  K2C1B_MOUSE  Keratin, type II cytoskeletal 1b OS=Mus musculus GN=Krt77 PE=1 SV=1 

  K2C73_MOUSE  Keratin, type II cytoskeletal 73 OS=Mus musculus GN=Krt73 PE=1 SV=1 

  K1C25_MOUSE  Keratin, type I cytoskeletal 25 OS=Mus musculus GN=Krt25 PE=1 SV=1 

  IF4A1_MOUSE  Eukaryotic initiation factor 4A-I OS=Mus musculus GN=Eif4a1 PE=2 SV=1 

  LIPR2_MOUSE  Pancreatic lipase-related protein 2 OS=Mus musculus GN=Pnliprp2 PE=2 
SV=1 

  K1C24_MOUSE  Keratin, type I cytoskeletal 24 OS=Mus musculus GN=Krt24 PE=2 SV=2 

  K1C40_MOUSE   

  K22E_MOUSE  Keratin, type II cytoskeletal 2 epidermal OS=Mus musculus GN=Krt2 PE=1 
SV=1 

  F10A1_MOUSE  Hsc70-interacting protein OS=Mus musculus GN=St13 PE=2 SV=1 

  METK1_MOUSE  S-adenosylmethionine synthase isoform type-1 OS=Mus musculus GN=Mat1a 
PE=2  SV=1 

  RM10_MOUSE  39S ribosomal protein L10, mitochondrial OS=Mus musculus GN=Mrpl10 PE=2 
SV=2 

  RL3_MOUSE  60S ribosomal protein L3 OS=Mus musculus GN=Rpl3 PE=2 SV=3 

  CTRB1_MOUSE   

  TBB1_MOUSE  Tubulin beta-1 chain OS=Mus musculus GN=Tubb1 PE=1 SV=1 

  DUS11_MOUSE  RNA/RNP complex-1-interacting phosphatase OS=Mus musculus GN=Dusp11 PE=2 
 SV=1 

  ASAP2_MOUSE  Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein 2  
 OS=Mus musculus GN=Asap2 PE=1 SV=3 

  GATM_MOUSE  Glycine amidinotransferase, mitochondrial OS=Mus musculus GN=Gatm PE=1 
SV=1 

  RL4_MOUSE  60S ribosomal protein L4 OS=Mus musculus GN=Rpl4 PE=1 SV=3 

  PO2F3_MOUSE  POU domain, class 2, transcription factor 3 OS=Mus musculus GN=Pou2f3 
PE=2  SV=2 

  IQUB_MOUSE   

  PDIA1_MOUSE  Protein disulfide-isomerase OS=Mus musculus GN=P4hb PE=1 SV=2 

  GGH_MOUSE  Gamma-glutamyl hydrolase OS=Mus musculus GN=Ggh PE=1 SV=2 

  PKHA7_MOUSE  Pleckstrin homology domain-containing family A member 7 OS=Mus musculus  
 GN=Plekha7 PE=1 SV=2 
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  IF4G2_MOUSE  Eukaryotic translation initiation factor 4 gamma 2 OS=Mus musculus 
GN=Eif4g2 PE=1 SV=2 

  EHMT1_MOUSE  Histone-lysine N-methyltransferase EHMT1 OS=Mus musculus GN=Ehmt1 PE=1 
SV=2 

  DLGP4_MOUSE   

  K0415_MOUSE  Protein KIAA0415 OS=Mus musculus GN=Kiaa0415 PE=2 SV=1 

  TRAP1_MOUSE  Heat shock protein 75 kDa, mitochondrial OS=Mus musculus GN=Trap1 PE=1 
SV=1 

  HS90A_MOUSE  Heat shock protein HSP 90-alpha OS=Mus musculus GN=Hsp90aa1 PE=1 SV=4 

  GDIA_MOUSE  Rab GDP dissociation inhibitor alpha OS=Mus musculus GN=Gdi1 PE=1 SV=3 

  FBW10_MOUSE  F-box/WD repeat-containing protein 10 OS=Mus musculus GN=Fbxw10 PE=2 
SV=1 

  SHRM3_MOUSE  Protein Shroom3 OS=Mus musculus GN=Shroom3 PE=1 SV=2 

  XPR1_MUSMC   

  KAP0_MOUSE   

 

Mascot Score Histogram 
Ions score is -10*Log(P), where P is the probability that the observed match is a random event. 
Individual ions scores > 28 indicate identity or extensive homology (p<0.05). 
Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.  

 

BAND 3 2h EXPERIMENTAL: 
MS data file    : Jena ZG band 7.tmp.tmp 
Database        : SwissProt 2012_04 (535698 sequences; 190107059 residues) 
Taxonomy        : Mus musculus (house mouse) (16528 sequences) 
Timestamp       : 8 May 2012 at 18:09:58 GMT 
Protein hits    : 
 LIPP_MOUSE  Pancreatic triacylglycerol lipase OS=Mus musculus GN=Pnlip PE=1 SV=1

  K1C10_MOUSE  Keratin, type I cytoskeletal 10 OS=Mus musculus GN=Krt10 PE=1 SV=3 

  AMY1_MOUSE  Alpha-amylase 1 OS=Mus musculus GN=Amy1 PE=1 SV=2 

  VAT1_MOUSE  Synaptic vesicle membrane protein VAT-1 homolog OS=Mus musculus GN=Vat1 
PE=1 SV=3 

  AMYP_MOUSE  Pancreatic alpha-amylase OS=Mus musculus GN=Amy2 PE=1 SV=2 

  K2C1_MOUSE  Keratin, type II cytoskeletal 1 OS=Mus musculus GN=Krt1 PE=1 SV=4 

  SERC_MOUSE  Phosphoserine aminotransferase OS=Mus musculus GN=Psat1 PE=1 SV=1 

  CEL_MOUSE  Bile salt-activated lipase OS=Mus musculus GN=Cel PE=1 SV=1 

  K1C14_MOUSE  Keratin, type I cytoskeletal 14 OS=Mus musculus GN=Krt14 PE=1 SV=2 

  CBPA2_MOUSE  Carboxypeptidase A2 OS=Mus musculus GN=Cpa2 PE=2 SV=1 
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  CBPA1_MOUSE  Carboxypeptidase A1 OS=Mus musculus GN=Cpa1 PE=2 SV=1 

  K1C17_MOUSE  Keratin, type I cytoskeletal 17 OS=Mus musculus GN=Krt17 PE=1 SV=3 

  LIPR1_MOUSE  Pancreatic lipase-related protein 1 OS=Mus musculus GN=Pnliprp1 PE=2 
SV=2 

  ATPB_MOUSE  ATP synthase subunit beta, mitochondrial OS=Mus musculus GN=Atp5b PE=1 
SV=2 

  BCAT2_MOUSE  Branched-chain-amino-acid aminotransferase, mitochondrial OS=Mus 
musculus  GN=Bcat2 PE=2 SV=2 

  K22E_MOUSE  Keratin, type II cytoskeletal 2 epidermal OS=Mus musculus GN=Krt2 PE=1 
SV=1 

  K2C8_MOUSE  Keratin, type II cytoskeletal 8 OS=Mus musculus GN=Krt8 PE=1 SV=4 

  K1C13_MOUSE  Keratin, type I cytoskeletal 13 OS=Mus musculus GN=Krt13 PE=1 SV=2 

  ALDOB_MOUSE  Fructose-bisphosphate aldolase B OS=Mus musculus GN=Aldob PE=1 SV=3 

  PCBP1_MOUSE  Poly(rC)-binding protein 1 OS=Mus musculus GN=Pcbp1 PE=1 SV=1 

  K2C5_MOUSE  Keratin, type II cytoskeletal 5 OS=Mus musculus GN=Krt5 PE=1 SV=1 

  SPI2_MOUSE  Serpin I2 OS=Mus musculus GN=Serpini2 PE=1 SV=1 

  ACTB_MOUSE  Actin, cytoplasmic 1 OS=Mus musculus GN=Actb PE=1 SV=1 

  K1C15_MOUSE  Keratin, type I cytoskeletal 15 OS=Mus musculus GN=Krt15 PE=1 SV=2 

  CGL_MOUSE  Cystathionine gamma-lyase OS=Mus musculus GN=Cth PE=1 SV=1 

  K2C73_MOUSE  Keratin, type II cytoskeletal 73 OS=Mus musculus GN=Krt73 PE=1 SV=1 

  PCBP2_MOUSE  Poly(rC)-binding protein 2 OS=Mus musculus GN=Pcbp2 PE=1 SV=1 

  EF1A1_MOUSE  Elongation factor 1-alpha 1 OS=Mus musculus GN=Eef1a1 PE=1 SV=3 

  K2C1B_MOUSE  Keratin, type II cytoskeletal 1b OS=Mus musculus GN=Krt77 PE=1 SV=1 

  K1C42_MOUSE  Keratin, type I cytoskeletal 42 OS=Mus musculus GN=Krt42 PE=1 SV=1 

  AK1A1_MOUSE  Alcohol dehydrogenase [NADP(+)] OS=Mus musculus GN=Akr1a1 PE=1 SV=3 

  AATM_MOUSE  Aspartate aminotransferase, mitochondrial OS=Mus musculus GN=Got2 PE=1 
SV=1 

  CLUS_MOUSE  Clusterin OS=Mus musculus GN=Clu PE=1 SV=1 

  K1C16_MOUSE  Keratin, type I cytoskeletal 16 OS=Mus musculus GN=Krt16 PE=1 SV=3 

  PSD7_MOUSE  26S proteasome non-ATPase regulatory subunit 7 OS=Mus musculus GN=Psmd7 
PE=1 SV=2 

  ROAA_MOUSE  Heterogeneous nuclear ribonucleoprotein A/B OS=Mus musculus GN=Hnrnpab 
 PE=1 SV=1 

  K2C79_MOUSE  Keratin, type II cytoskeletal 79 OS=Mus musculus GN=Krt79 PE=1 SV=2 

  K1C19_MOUSE  Keratin, type I cytoskeletal 19 OS=Mus musculus GN=Krt19 PE=1 SV=1 

  EIF3I_MOUSE  Eukaryotic translation initiation factor 3 subunit I OS=Mus musculus  
 GN=Eif3i PE=1 SV=1 

  PCBP3_MOUSE  Poly(rC)-binding protein 3 OS=Mus musculus GN=Pcbp3 PE=2 SV=3 

  RL6_MOUSE  60S ribosomal protein L6 OS=Mus musculus GN=Rpl6 PE=1 SV=3 

  K2C6A_MOUSE  Keratin, type II cytoskeletal 6A OS=Mus musculus GN=Krt6a PE=2 SV=3 

  K2C4_MOUSE  Keratin, type II cytoskeletal 4 OS=Mus musculus GN=Krt4 PE=1 SV=2 

  KRT84_MOUSE  Keratin, type II cuticular Hb4 OS=Mus musculus GN=Krt84 PE=2 SV=2 

  K1H2_MOUSE   

  GLRX3_MOUSE  Glutaredoxin-3 OS=Mus musculus GN=Glrx3 PE=1 SV=1 

  DJB11_MOUSE  DnaJ homolog subfamily B member 11 OS=Mus musculus GN=Dnajb11 PE=1 SV=1 

  CTRB1_MOUSE  Chymotrypsinogen B OS=Mus musculus GN=Ctrb1 PE=2 SV=1 

  PDIA1_MOUSE  Protein disulfide-isomerase OS=Mus musculus GN=P4hb PE=1 SV=2 

  FPPS_MOUSE  Farnesyl pyrophosphate synthase OS=Mus musculus GN=Fdps PE=2 SV=1 

  HNRPD_MOUSE  Heterogeneous nuclear ribonucleoprotein D0 OS=Mus musculus GN=Hnrnpd 
PE=1 SV=2 

  F16P1_MOUSE  Fructose-1,6-bisphosphatase 1 OS=Mus musculus GN=Fbp1 PE=2 SV=3 
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  LIPR2_MOUSE  Pancreatic lipase-related protein 2 OS=Mus musculus GN=Pnliprp2 PE=2 
SV=1 

  MTNA_MOUSE  Methylthioribose-1-phosphate isomerase OS=Mus musculus GN=Mri1 PE=2 
SV=1 

  CATR_MOUSE  Cathepsin R OS=Mus musculus GN=Ctsr PE=2 SV=1 

  EIF3M_MOUSE  Eukaryotic translation initiation factor 3 subunit M OS=Mus musculus 
GN=Eif3m PE=2 SV=1 

  PURA_MOUSE  Transcriptional activator protein Pur-alpha OS=Mus musculus GN=Pura 
PE=1 SV=1 

  SPTB1_MOUSE  Spectrin beta chain, erythrocyte OS=Mus musculus GN=Sptb PE=1 SV=4 

  COT1_MOUSE  COUP transcription factor 1 OS=Mus musculus GN=Nr2f1 PE=2 SV=2 

  PO2F1_MOUSE   

  PSD13_MOUSE  26S proteasome non-ATPase regulatory subunit 13 OS=Mus musculus 
GN=Psmd13 PE=1 SV=1 

  ACTBL_MOUSE  Beta-actin-like protein 2 OS=Mus musculus GN=Actbl2 PE=1 SV=1 

  ATN1_MOUSE  Atrophin-1 OS=Mus musculus GN=Atn1 PE=1 SV=1 

  PURB_MOUSE  Transcriptional activator protein Pur-beta OS=Mus musculus GN=Purb PE=1 
SV=3 

  HYCCI_MOUSE  Hyccin OS=Mus musculus GN=Fam126a PE=1 SV=2 

  DNJC3_MOUSE   

  MTHFS_MOUSE  5-formyltetrahydrofolate cyclo-ligase OS=Mus musculus GN=Mthfs PE=2 
SV=2 

  DUS3_MOUSE  Dual specificity protein phosphatase 3 OS=Mus musculus GN=Dusp3 PE=1 
SV=1 

  GNA13_MOUSE  Guanine nucleotide-binding protein subunit alpha-13 OS=Mus musculus 
GN=Gna13 PE=1 SV=1 

  GNAL_MOUSE  Guanine nucleotide-binding protein G(olf) subunit alpha OS=Mus musculus 
GN=Gnal PE=1 SV=1 

  GNAT1_MOUSE  Guanine nucleotide-binding protein G(t) subunit alpha-1 OS=Mus musculus 
GN=Gnat1 PE=1 SV=3 

  GNA12_MOUSE  Guanine nucleotide-binding protein subunit alpha-12 OS=Mus musculus 
GN=Gna12 PE=1 SV=3 

 

Mascot Score Histogram 
Ions score is -10*Log(P), where P is the probability that the observed match is a random event. 
Individual ions scores > 28 indicate identity or extensive homology (p<0.05). 
Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.  

 

BAND 4 2h EXPERIMENTAL: 
MS data file    : Jena ZG band 8.tmp.tmp 
Database        : SwissProt 2012_04 (535698 sequences; 190107059 residues) 
Taxonomy        : Mus musculus (house mouse) (16528 sequences) 
Timestamp       : 8 May 2012 at 18:11:32 GMT 
Protein hits    : 
 K1C10_MOUSE  Keratin, type I cytoskeletal 10 OS=Mus musculus GN=Krt10 PE=1 SV=3
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  LIPP_MOUSE  Pancreatic triacylglycerol lipase OS=Mus musculus GN=Pnlip PE=1 SV=1 

  EF2_MOUSE  Elongation factor 2 OS=Mus musculus GN=Eef2 PE=1 SV=2 

  K2C1_MOUSE  Keratin, type II cytoskeletal 1 OS=Mus musculus GN=Krt1 PE=1 SV=4 

  CEL_MOUSE  Bile salt-activated lipase OS=Mus musculus GN=Cel PE=1 SV=1 

  SERC_MOUSE  Phosphoserine aminotransferase OS=Mus musculus GN=Psat1 PE=1 SV=1 

  K1C14_MOUSE  Keratin, type I cytoskeletal 14 OS=Mus musculus GN=Krt14 PE=1 SV=2 

  K1C17_MOUSE  Keratin, type I cytoskeletal 17 OS=Mus musculus GN=Krt17 PE=1 SV=3 

  ALBU_MOUSE  Serum albumin OS=Mus musculus GN=Alb PE=1 SV=3 

  AMY1_MOUSE  Alpha-amylase 1 OS=Mus musculus GN=Amy1 PE=1 SV=2 

  TALDO_MOUSE  Transaldolase OS=Mus musculus GN=Taldo1 PE=1 SV=2 

  K22E_MOUSE  Keratin, type II cytoskeletal 2 epidermal OS=Mus musculus GN=Krt2 PE=1 
SV=1 

  CBPA1_MOUSE  Carboxypeptidase A1 OS=Mus musculus GN=Cpa1 PE=2 SV=1 

  AMYP_MOUSE  Pancreatic alpha-amylase OS=Mus musculus GN=Amy2 PE=1 SV=2 

  K1C13_MOUSE  Keratin, type I cytoskeletal 13 OS=Mus musculus GN=Krt13 PE=1 SV=2 

  ATPB_MOUSE  ATP synthase subunit beta, mitochondrial OS=Mus musculus GN=Atp5b PE=1 
SV=2 

  K1C15_MOUSE  Keratin, type I cytoskeletal 15 OS=Mus musculus GN=Krt15 PE=1 SV=2 

  K1C42_MOUSE  Keratin, type I cytoskeletal 42 OS=Mus musculus GN=Krt42 PE=1 SV=1 

  ALDOB_MOUSE  Fructose-bisphosphate aldolase B OS=Mus musculus GN=Aldob PE=1 SV=3 

  LIPR1_MOUSE  Pancreatic lipase-related protein 1 OS=Mus musculus GN=Pnliprp1 PE=2 
SV=2 

  K2C5_MOUSE  Keratin, type II cytoskeletal 5 OS=Mus musculus GN=Krt5 PE=1 SV=1 

  ERP44_MOUSE  Endoplasmic reticulum resident protein 44 OS=Mus musculus GN=Erp44 PE=1 
SV=1 

  K2C71_MOUSE  Keratin, type II cytoskeletal 71 OS=Mus musculus GN=Krt71 PE=1 SV=1 

  K2C74_MOUSE  Keratin, type II cytoskeletal 74 OS=Mus musculus GN=Krt74 PE=2 SV=1 

  K2C1B_MOUSE  Keratin, type II cytoskeletal 1b OS=Mus musculus GN=Krt77 PE=1 SV=1 

  K1C16_MOUSE  Keratin, type I cytoskeletal 16 OS=Mus musculus GN=Krt16 PE=1 SV=3 

  ROAA_MOUSE  Heterogeneous nuclear ribonucleoprotein A/B OS=Mus musculus GN=Hnrnpab  
 PE=1 SV=1 

  BCAT2_MOUSE  Branched-chain-amino-acid aminotransferase, mitochondrial OS=Mus 
musculus  GN=Bcat2 PE=2 SV=2 

  VAT1_MOUSE  Synaptic vesicle membrane protein VAT-1 homolog OS=Mus musculus GN=Vat1 
PE=1 SV=3 

  RL6_MOUSE  60S ribosomal protein L6 OS=Mus musculus GN=Rpl6 PE=1 SV=3 

  CLUS_MOUSE  Clusterin OS=Mus musculus GN=Clu PE=1 SV=1 

  K2C8_MOUSE  Keratin, type II cytoskeletal 8 OS=Mus musculus GN=Krt8 PE=1 SV=4 

  K2C79_MOUSE  Keratin, type II cytoskeletal 79 OS=Mus musculus GN=Krt79 PE=1 SV=2 

  K1C27_MOUSE  Keratin, type I cytoskeletal 27 OS=Mus musculus GN=Krt27 PE=1 SV=1 

  RSSA_MOUSE  40S ribosomal protein SA OS=Mus musculus GN=Rpsa PE=1 SV=4 

  AATM_MOUSE  Aspartate aminotransferase, mitochondrial OS=Mus musculus GN=Got2 PE=1 
SV=1 

  CGL_MOUSE  Cystathionine gamma-lyase OS=Mus musculus GN=Cth PE=1 SV=1 

  SPI2_MOUSE  Serpin I2 OS=Mus musculus GN=Serpini2 PE=1 SV=1 

  EIF3M_MOUSE  Eukaryotic translation initiation factor 3 subunit M OS=Mus musculus  
 GN=Eif3m PE=2 SV=1 

  DJB11_MOUSE  DnaJ homolog subfamily B member 11 OS=Mus musculus GN=Dnajb11 PE=1 SV=1 

  ACTB_MOUSE  Actin, cytoplasmic 1 OS=Mus musculus GN=Actb PE=1 SV=1 

  CBPA2_MOUSE  Carboxypeptidase A2 OS=Mus musculus GN=Cpa2 PE=2 SV=1 

  MTNA_MOUSE  Methylthioribose-1-phosphate isomerase OS=Mus musculus GN=Mri1 PE=2 SV=1
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  AK1A1_MOUSE  Alcohol dehydrogenase [NADP(+)] OS=Mus musculus GN=Akr1a1 PE=1 SV=3 

  EIF3I_MOUSE  Eukaryotic translation initiation factor 3 subunit I OS=Mus musculus  
 GN=Eif3i PE=1 SV=1 

  MAT2B_MOUSE  Methionine adenosyltransferase 2 subunit beta OS=Mus musculus GN=Mat2b 
PE=2  SV=1 

  K1H2_MOUSE  Keratin, type I cuticular Ha2 OS=Mus musculus GN=Krt32 PE=2 SV=2 

  K1C24_MOUSE   

  SRPR_MOUSE  Signal recognition particle receptor subunit alpha OS=Mus musculus 
GN=Srpr  PE=1 SV=1 

  EF1A1_MOUSE  Elongation factor 1-alpha 1 OS=Mus musculus GN=Eef1a1 PE=1 SV=3 

  PURA_MOUSE  Transcriptional activator protein Pur-alpha OS=Mus musculus GN=Pura PE=1 
 SV=1 

  LIPR2_MOUSE  Pancreatic lipase-related protein 2 OS=Mus musculus GN=Pnliprp2 PE=2 
SV=1 

  GMPPB_MOUSE  Mannose-1-phosphate guanyltransferase beta OS=Mus musculus GN=Gmppb PE=2 
 SV=1 

  FPPS_MOUSE  Farnesyl pyrophosphate synthase OS=Mus musculus GN=Fdps PE=2 SV=1 

  K2C6A_MOUSE  Keratin, type II cytoskeletal 6A OS=Mus musculus GN=Krt6a PE=2 SV=3 

  K2C4_MOUSE  Keratin, type II cytoskeletal 4 OS=Mus musculus GN=Krt4 PE=1 SV=2 

  K2C72_MOUSE   

  K2C7_MOUSE   

  RS27A_MOUSE  Ubiquitin-40S ribosomal protein S27a OS=Mus musculus GN=Rps27a PE=1 SV=2

  UBC_MOUSE  Polyubiquitin-C OS=Mus musculus GN=Ubc PE=1 SV=2 

  EIF3H_MOUSE  Eukaryotic translation initiation factor 3 subunit H OS=Mus musculus  
 GN=Eif3h PE=1 SV=1 

  PURB_MOUSE  Transcriptional activator protein Pur-beta OS=Mus musculus GN=Purb PE=1 
SV=3 

  CTRB1_MOUSE  Chymotrypsinogen B OS=Mus musculus GN=Ctrb1 PE=2 SV=1 

  F16P1_MOUSE  Fructose-1,6-bisphosphatase 1 OS=Mus musculus GN=Fbp1 PE=2 SV=3 

  AKCL2_MOUSE  1,5-anhydro-D-fructose reductase OS=Mus musculus GN=Akr1e2 PE=1 SV=1 

  HNRPD_MOUSE  Heterogeneous nuclear ribonucleoprotein D0 OS=Mus musculus GN=Hnrnpd 
PE=1 SV=2 

  PDIA1_MOUSE  Protein disulfide-isomerase OS=Mus musculus GN=P4hb PE=1 SV=2 

  LRC8E_MOUSE  Leucine-rich repeat-containing protein 8E OS=Mus musculus GN=Lrrc8e PE=2 
 SV=2 

  SYNC_MOUSE  Asparagine--tRNA ligase, cytoplasmic OS=Mus musculus GN=Nars PE=1 SV=2 

  K1C20_MOUSE   

  PSD7_MOUSE  26S proteasome non-ATPase regulatory subunit 7 OS=Mus musculus GN=Psmd7 
PE=1 SV=2 

  DUS3_MOUSE  Dual specificity protein phosphatase 3 OS=Mus musculus GN=Dusp3 PE=1 
SV=1 

  CATR_MOUSE  Cathepsin R OS=Mus musculus GN=Ctsr PE=2 SV=1 

  SPTB1_MOUSE  Spectrin beta chain, erythrocyte OS=Mus musculus GN=Sptb PE=1 SV=4 

  ASAP2_MOUSE  Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein 2  
 OS=Mus musculus GN=Asap2 PE=1 SV=3 

  PTPA_MOUSE 
 Serine/threonine-protein phosphatase 2A activator OS=Mus musculus 
GN=Ppp2r4  
 PE=1 SV=1 

  PO2F1_MOUSE   

  NO66_MOUSE   

  PRDX1_MOUSE  Peroxiredoxin-1 OS=Mus musculus GN=Prdx1 PE=1 SV=1 

  PRDX4_MOUSE  Peroxiredoxin-4 OS=Mus musculus GN=Prdx4 PE=1 SV=1 

  ATN1_MOUSE  Atrophin-1 OS=Mus musculus GN=Atn1 PE=1 SV=1 

  ABCA4_MOUSE  Retinal-specific ATP-binding cassette transporter OS=Mus musculus 
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GN=Abca4 PE=2 SV=1 

  APOA4_MOUSE  Apolipoprotein A-IV OS=Mus musculus GN=Apoa4 PE=2 SV=3 

  SYHC_MOUSE  Histidine--tRNA ligase, cytoplasmic OS=Mus musculus GN=Hars PE=2 SV=2 

Mascot Score Histogram 
Ions score is -10*Log(P), where P is the probability that the observed match is a random event. 
Individual ions scores > 28 indicate identity or extensive homology (p<0.05). 
Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.  
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In healthy physiology, pancreatic digestive enzymes secreted following a meal are stored 

as inactive zymogens within membrane-bound secretory vesicles called Zymogen Granules 

(ZG), and activated extracellularly.  In acute pancreatitis however, the digestive enzymes are 

prematurely activated within the cell, resulting in autodigestion of the tissue.  Pancreatitis is 

gastrointestinal disorder in which there are over 200,000 hospitalizations per year with a 5% 

mortality rate.   It has been demonstrated that in acute pancreatitis the digestive enzymes are 

blocked from being secreted and are activated within the cell leading to acinar cell and 

surrounding pancreatic tissue death.  Little is known about the specific mechanism and the 

proteins and lipids that might participate in this process. Here it is reported that in acute 

pancreatitis, there are specific changes to both the proteome and lipidome of the ZG, contributing 

to altered ZG morphology and function.  Using EM and AFM it is demonstrated that there is an 

increase in ZG size as early as 2h following induction of acute pancreatitis.  LC-MS-based lipid 

and protein profiling and immunochemistry, collectively demonstrate altered ZG volume and 

activity regulating proteins and lipids, in acute pancreatitis.   
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