Estimation of Multi Component Systems Reliability in Stress-Strength Models

Adil H. Khan
University of Kashmir, Srinagar, India, khanadil_192@yahoo.com

T R. Jan
University of Kashmir, Srinagar, India, drtrjan@gmail.com

Follow this and additional works at: http://digitalcommons.wayne.edu/jmasm
Part of the [Applied Statistics Commons](http://digitalcommons.wayne.edu/jmasm), [Social and Behavioral Sciences Commons](http://digitalcommons.wayne.edu/jmasm), and the [Statistical Theory Commons](http://digitalcommons.wayne.edu/jmasm)

Recommended Citation
Available at: http://digitalcommons.wayne.edu/jmasm/vol13/iss2/21

This Regular Article is brought to you for free and open access by the Open Access Journals at DigitalCommons@WayneState. It has been accepted for inclusion in Journal of Modern Applied Statistical Methods by an authorized administrator of DigitalCommons@WayneState.
Estimation of Multi Component Systems Reliability in Stress-Strength Models

Adil Hamid Khan
University of Kashmir
Srinagar, India

T.R. Jan
University of Kashmir
Srinagar, India

In a system with standby redundancy, there are a number of components only one of which works at a time and the other remain as standbys. When an impact of stress exceeds the strength of the active component, for the first time, it fails and another from standbys, if there is any, is activated and faces the impact of stresses, not necessarily identical as faced by the preceding component and the system fails when all the components have failed. Srivastav and Kakaty (1981) assumed that the components stress-strengths are similarly distributed. However, in general the stress distributions will be different from the strength distributions not only in parameter values but also in forms, because stresses are independent of strengths and the two are governed by different physical conditions. Assume the components in the system for both stress and strength are independent and follow different probability distributions viz. Exponential, Gamma, Lindley. Different conditions for stress and strength were considered. Under these assumptions the reliabilities of the system have been obtained with the help of the particular forms of density functions of n-standby system when all stress-strengths are random variables. The expressions for the marginal reliabilities R(1), R(2), R(3) etc. have been obtained based on its stress-strength models. Results obtained by J. Gogoi and M. Bohra are particular case presentations.

Keywords: Reliability, standby redundancy, exponential distribution, Lindley distribution.

Introduction

The reliability of a system is the probability that when operating under stated environmental conditions, the system will perform its intended function adequately. For stress-strength models both the strength of the system, X, and the stress, Y, imposed on it by its operating environments are considered to be random variables.
The reliability, R, of the system is the probability that the system is strong enough to overcome the stress imposed on it, that is to say $R = \Pr(X > Y)$.

In a standby system, that is, a system with standby redundancy, there are number of components only one of which works at a time and the other remains as standby. When an impact of stress exceeds the strength of the active component, for the first time, it fails and the another component from standbys, if there is any, is activated and faces the impact of stresses, not necessarily identical as faced by the preceding component. The system fails when all the components have failed. This problem has a long history starting with the pioneering work of Birnbaum (1956) and Birnbaum and McCarty (1958). The term stress-strength was first introduced by Church and Harris (1970). Since then significant amount of work has been done both from parametric and non-parametric point of view. A comprehensive treatment of the different stress-strength models till 2001 can be found in the excellent monograph by Kotz et al. (2003). Some of the recent work on the stress-strength model can be obtained in Kundu and Gupta (2005, 2006), Raqab and Kundu (2005), Krishnamoorthy et al. (2007). Gogoi, Borah and Srinivasast (2010) gave an interference model with number of stress a Poisson Process. Gogoi and Borah (2012) obtained the reliability expressions when the stress-strength of the components follow different distributions.

It has been assumed the components stress-strengths are similarly distributed but in general the stress distributions will be different from the strength distributions not only in parameter values but also in forms because stresses are independent of strengths and the two are governed by different physical conditions. It is assumed here that stress-strengths of all the components in the system are independent and obtained the stress-strength parameter $R = \Pr(X > Y)$, when X and Y are independent. Note that the stress-strength parameter plays an important role in the reliability analysis. For example if X is the strength of a system which is subjected to stress Y, then the parameter R measures the system performance and it is very common in the context of mechanical reliability of a system. Moreover, R provides the probability of a system failure, if the system fails whenever the applied stress is greater than its strength.

Model

Consider an n-standby system in which, initially, there are n components, out of which only one is working under impact of stresses and the remaining ($n-1$) are standby. Whenever the working component fails, one from the standby takes its place and is subjected to impact of stresses and the system works. The system fails when the entire component fails.
Let \(X_1, X_2, \ldots, X_n \) be a set of \(n \) independent random variables, representing the strengths of \(n \) components arranged in order of activation in the system and let \(Y_1, Y_2, \ldots, Y_n \), be another set of independent random variables representing the stresses on the \(n \) components respectively, then the system reliability \(R_n \) of the system is given by

\[
R_n = R(1) + R(2) + \ldots + R(n)
\]

(1)

where the marginal reliability \(R(r) \) is the contribution to the reliability of the system by the \(r \)th component and is defined as

\[
R(r) = \Pr\left[X_1 < Y_1, X_2 < Y_2, \ldots, X_{r-1} < Y_{r-1} \geq Y_r \right]
\]

and if \(f_i(x) \) and \(h_i(y) \) are the probability density functions of \(X_i \) and \(Y_i, i = 1, 2, 3, \ldots, n \) respectively then

\[
R(r) = \left[\int_{-\infty}^{\infty} F_i(y) h_i(y) dy \right] \left[\int_{-\infty}^{\infty} F_j(y) h_j(y) dy \right] \ldots \left[\int_{-\infty}^{\infty} F_k(y) h_k(y) dy \right] \]

(2)

where \(F_i(y) \) is the commutative distribution function of \(X_i \) and

\[
\bar{F}_i(y) = 1 - F(x)
\]

(3)

Assume that strength and stress follow different distributions, the following cases are considered.

(I) One parameter exponential strength and three parameter exponential stress.

(II) Two parameter Lindley strength and one parameter gamma stress.

(III) Two parameter Lindley strength and two parameter gamma stress.
One parameter exponential strength and three parameter exponential stress

Let \(f_i(x) \) be the one parameter exponential strength with parameter \(\lambda_i \) and \(h_i(x) \) be the three parameter exponential stress with parameters \(\alpha_i, \beta_i, \mu_i; i = 1, 2, \ldots, n \), then

\[
f_i(x, \lambda) = \begin{cases}
\lambda_i e^{-\lambda_i x}; & x \geq 0, \lambda_i \geq 0 \\
0; & \text{otherwise}
\end{cases}
\]

(4)

and

\[
h_i(y, \alpha, \beta, \mu) = \begin{cases}
\frac{\alpha_i}{\beta_i} \left(1 - e^{-(y_i - \mu_i)/\beta_i}\right); & y_i > \mu_i, \alpha_i > 0, \beta_i > 0 \\
0; & \text{otherwise}
\end{cases}
\]

(5)

Then from equation (2)

\[
R(1) = \int_{\mu_i}^{\infty} F_1(y) h_1(y) dy = \frac{\alpha_i e^{-\lambda_i \mu} \Gamma(\alpha_i) \Gamma(\lambda_i \beta_i + 1)}{\Gamma(\alpha_i + \lambda_i \beta_i + 1)}
\]

\[
R(2) = \int_{\mu_i}^{\infty} F_1(y) h_1(y) dy \int_{\mu_i}^{\infty} F_2(y) h_2(y) dy
\]

\[
= \left[1 - \frac{\alpha_i e^{-\lambda_i \mu} \Gamma(\alpha_i) \Gamma(\lambda_i \beta_i + 1)}{\Gamma(\alpha_i + \lambda_i \beta_i + 1)}\right] \left[1 - \frac{\alpha_2 e^{-\lambda_i \mu} \Gamma(\alpha_2) \Gamma(\lambda_2 \beta_2 + 1)}{\Gamma(\alpha_2 + \lambda_2 \beta_2 + 1)}\right]
\]

\[
R(3) = \int_{\mu_i}^{\infty} F_1(y) h_1(y) dy \int_{\mu_i}^{\infty} F_2(y) h_2(y) dy \int_{\mu_i}^{\infty} F_3(y) h_3(y) dy
\]

\[
= \left[1 - \frac{\alpha_i e^{-\lambda_i \mu} \Gamma(\alpha_i) \Gamma(\lambda_i \beta_i + 1)}{\Gamma(\alpha_i + \lambda_i \beta_i + 1)}\right] \left[1 - \frac{\alpha_2 e^{-\lambda_i \mu} \Gamma(\alpha_2) \Gamma(\lambda_2 \beta_2 + 1)}{\Gamma(\alpha_2 + \lambda_2 \beta_2 + 1)}\right] \times \frac{\alpha_3 e^{-\lambda_i \mu} \Gamma(\alpha_3) \Gamma(\lambda_3 \beta_3 + 1)}{\Gamma(\alpha_3 + \lambda_3 \beta_3 + 1)}
\]
In general,

\[
R(r) = \left[1 - \frac{e^{-\lambda_1 \beta_1}}{\Gamma(\alpha_1 + \lambda_1 \beta_1)} \right] \cdots \left[1 - \frac{e^{-\lambda_r \beta_r}}{\Gamma(\alpha_r + \lambda_r \beta_r)} \right] .
\]

\[
\times \left[1 - \frac{e^{-\lambda_{r+1} \beta_{r+1}}}{\Gamma(\alpha_{r+1} + \lambda_{r+1} \beta_{r+1})} \right] .
\]

(6)

Particular Case

When in (4) \(\alpha_i = 1 \), the three parameter exponential distribution becomes two parameter exponential distribution. Then the expression \(R(r) \) for one parameter exponential strength and two parameter exponential stress is obtained from (6) by putting \(\alpha_i = 1; i = 1, 2, \ldots, r \) and is given by

\[
R(r) = \left[1 - \frac{e^{-\lambda_1 \beta_1}}{\lambda_1 \beta_1} \right] \cdots \left[1 - \frac{e^{-\lambda_r \beta_r}}{\lambda_r \beta_r} \right] .
\]

(7)

The result in (7) is obtained by Gogoi and Borah (2012)

Two parameter Lindley strength and one parameter gamma stress

Let \(f_i(x) \) be the two parameter Lindley strength with parameters \(\theta_i \) and \(\alpha_i \) and \(h_i(x) \) be the one parameter gamma stress with parameter \(m_i, i = 1, 2, \ldots, n \), the

\[
f_i(x, \theta, \alpha) = \left\{ \begin{array}{l}
\frac{\theta_i^2}{\theta_i + \alpha_i} (1 + \theta_i x_i) e^{-\theta_i x_i}, x_i \geq 0, \theta_i > 0, \alpha_i > -\theta_i \\
0; \text{ otherwise}
\end{array} \right.
\]

(8)

and

\[
h_i(y, m) = \left\{ \begin{array}{l}
\frac{1}{\Gamma(m_i)} e^{-\gamma_i y_i^m}, y_i \geq 0, m_i \geq 1 \\
0; \text{ otherwise}
\end{array} \right.
\]

(9)
Then from equation (2)

\[
R(1) = \int_{0}^{\infty} F_1(y) h_1(y) \, dy = \frac{(\theta + \alpha_1)(\theta + 1) + \alpha_1 \theta m_1}{(\theta + \alpha_1)(\theta + 1)^{m_1+1}}
\]

\[
R(2) = \left[\int_{0}^{\infty} F_1(y) h_1(y) \, dy \right] \left[\int_{0}^{\infty} F_2(y) h_2(y) \, dy \right] = \left[1 - \frac{(\theta + \alpha_1)(\theta + 1) + \alpha_1 \theta m_1}{(\theta + \alpha_1)(\theta + 1)^{m_1+1}} \right] \left[1 - \frac{(\theta + \alpha_2)(\theta + 1) + \alpha_2 \theta m_2}{(\theta + \alpha_2)(\theta + 1)^{m_2+1}} \right]
\]

\[
R(3) = \left[\int_{0}^{\infty} F_1(y) h_1(y) \, dy \right] \left[\int_{0}^{\infty} F_2(y) h_2(y) \, dy \right] \left[\int_{0}^{\infty} F_3(y) h_3(y) \, dy \right] = \left[1 - \frac{(\theta + \alpha_1)(\theta + 1) + \alpha_1 \theta m_1}{(\theta + \alpha_1)(\theta + 1)^{m_1+1}} \right] \left[1 - \frac{(\theta + \alpha_2)(\theta + 1) + \alpha_2 \theta m_2}{(\theta + \alpha_2)(\theta + 1)^{m_2+1}} \right] \times \left[1 - \frac{(\theta + \alpha_3)(\theta + 1) + \alpha_3 \theta m_3}{(\theta + \alpha_3)(\theta + 1)^{m_3+1}} \right]
\]

In general

\[
R(r) = \left[1 - \frac{(\theta + \alpha_1)(\theta + 1) + \alpha_1 \theta m_1}{(\theta + \alpha_1)(\theta + 1)^{m_1+1}} \right] \left[1 - \frac{(\theta + \alpha_2)(\theta + 1) + \alpha_2 \theta m_2}{(\theta + \alpha_2)(\theta + 1)^{m_2+1}} \right] \ldots \left[1 - \frac{(\theta + \alpha_r)(\theta + 1) + \alpha_r \theta m_r}{(\theta + \alpha_r)(\theta + 1)^{m_r+1}} \right]
\]

(10)

Particular case

1) When \(\alpha_i = 1 \) in (8) two parameter Lindley distribution becomes one parameter Lindley distribution. Then the expression \(R(r) \) for one parameter Lindley strength and one parameter gamma stress is obtained from (10) by putting \(\alpha_i = 1; i = 1, 2, \ldots, r \) and is given by
\begin{align}
R(r) &= \left[1 - \frac{(\theta_i + 1)(\theta_i + 1) + \theta_i m_i}{(\theta_i + 1)_{i+1}^{m+1}} \right] \left[1 - \frac{(\theta_j + 1)(\theta_j + 1) + \theta_j m_j}{(\theta_j + 1)_{j+1}^{m+1}} \right] \\
& \quad \cdots \left[1 - \frac{(\theta_r + 1)(\theta_r + 1) + \theta_r m_r}{(\theta_r + 1)_{r+1}^{m+1}} \right] \tag{11}
\end{align}

(The result in (11) is obtained by Gogoi and Borah (2012))

2) When \(\alpha_i = 0 \) in (8) two parameter Lindley distribution becomes one parameter exponential distribution. Then the expression \(R(r) \) for one parameter exponential strength and one parameter gamma stress is obtained from (10) by putting \(\alpha_i = 1; i = 1, 2, \ldots, r \) and is given by

\begin{align}
R(r) &= \left[1 - \frac{1}{(\theta_i + 1)^{m_i}} \right] \left[1 - \frac{1}{(\theta_j + 1)^{m_j}} \right] \cdots \left[1 - \frac{1}{(\theta_r + 1)^{m_r}} \right] \left[\frac{1}{(\theta_r + 1)^{m_r}} \right] \tag{12}
\end{align}

Two parameter Lindley strength and two parameter gamma stress

Let \(f_i(x) \) be the two parameter Lindley strength with parameters \(\theta_i \) and \(\alpha_i \) and \(h_i(y) \) be the two parameter gamma stress with parameter \(m_i \) and \(\mu_i, i = 1, 2, \ldots, n \). then

\begin{align}
f_i(x, \theta, \alpha) &= \begin{cases}
\frac{\theta_i}{\theta_i + \alpha_i} (1 + \theta_i x) e^{-\theta_i x} ; & x \geq 0, \theta_i > 0, \alpha_i > 0 \\
0; & \text{otherwise}
\end{cases}
\tag{13}
\end{align}

\begin{align}
h_i(y, m, \mu) &= \begin{cases}
\frac{1}{\mu_i^m \Gamma(m_i)} y_i^{m_i-1} e^{-\mu_i y_i} ; & y_i, m_i, \mu_i > 0 \\
0; & \text{otherwise}
\end{cases}
\tag{14}
\end{align}
ESTIMATION OF MULTI COMPONENT SYSTEMS RELIABILITY

Then from equation (2)

\[R(1) = \int_0^\infty F_1(y) h_1(y) \, dy = \frac{(\theta + \alpha_1)(\theta \mu_i + 1) + \alpha_i \theta m_i \mu_i}{(\theta + \alpha_1)(\theta \mu_i + 1)^{m_i + 1}} \]

\[R(2) = \left[\int_0^\infty F_1(y) h_1(y) \, dy \right] \left[\int_0^\infty F_2(y) h_2(y) \, dy \right] = \left[1 - \frac{(\theta + \alpha_1)(\theta \mu_i + 1) + \alpha_i \theta m_i \mu_i}{(\theta + \alpha_1)(\theta \mu_i + 1)^{m_i + 1}} \right] \left[1 - \frac{(\theta_2 + \alpha_2)(\theta_2 \mu_2 + 1) + \alpha_2 \theta_2 m_2 \mu_2}{(\theta_2 + \alpha_2)(\theta_2 \mu_2 + 1)^{m_2 + 1}} \right] \]

\[R(3) = \left[\int_0^\infty F_1(y) h_1(y) \, dy \right] \left[\int_0^\infty F_2(y) h_2(y) \, dy \right] \left[\int_0^\infty F_3(y) h_3(y) \, dy \right] = \left[1 - \frac{(\theta + \alpha_1)(\theta \mu_i + 1) + \alpha_i \theta m_i \mu_i}{(\theta + \alpha_1)(\theta \mu_i + 1)^{m_i + 1}} \right] \left[1 - \frac{(\theta_2 + \alpha_2)(\theta_2 \mu_2 + 1) + \alpha_2 \theta_2 m_2 \mu_2}{(\theta_2 + \alpha_2)(\theta_2 \mu_2 + 1)^{m_2 + 1}} \right] \times \left[\frac{(\theta_3 + \alpha_3)(\theta_3 \mu_3 + 1) + \alpha_3 \theta_3 m_3 \mu_3}{(\theta_3 + \alpha_3)(\theta_3 \mu_3 + 1)^{m_3 + 1}} \right] \]

In general,

\[R(r) = \left[1 - \frac{(\theta + \alpha_1)(\theta \mu_i + 1) + \alpha_i \theta m_i \mu_i}{(\theta + \alpha_1)(\theta \mu_i + 1)^{m_i + 1}} \right] \left[1 - \frac{(\theta_2 + \alpha_2)(\theta_2 \mu_2 + 1) + \alpha_2 \theta_2 m_2 \mu_2}{(\theta_2 + \alpha_2)(\theta_2 \mu_2 + 1)^{m_2 + 1}} \right] \ldots \]

\[\left[1 - \frac{(\theta_{r-1} + \alpha_{r-1})(\theta_{r-1} \mu_{r-1} + 1) + \alpha_{r-1} \theta_{r-1} m_{r-1} \mu_{r-1}}{(\theta_{r-1} + \alpha_{r-1})(\theta_{r-1} \mu_{r-1} + 1)^{m_{r-1} + 1}} \right] \]

\[\left[1 - \frac{(\theta + \alpha_r)(\theta \mu_i + 1) + \alpha_r \theta m_i \mu_i}{(\theta + \alpha_r)(\theta \mu_i + 1)^{m_i + 1}} \right] \left[1 - \frac{(\theta_2 + \alpha_2)(\theta_2 \mu_2 + 1) + \alpha_2 \theta_2 m_2 \mu_2}{(\theta_2 + \alpha_2)(\theta_2 \mu_2 + 1)^{m_2 + 1}} \right] \ldots \]

\[\left[1 - \frac{(\theta_{r-1} + \alpha_{r-1})(\theta_{r-1} \mu_{r-1} + 1) + \alpha_{r-1} \theta_{r-1} m_{r-1} \mu_{r-1}}{(\theta_{r-1} + \alpha_{r-1})(\theta_{r-1} \mu_{r-1} + 1)^{m_{r-1} + 1}} \right] \]

\[\left[1 - \frac{(\theta + \alpha_r)(\theta \mu_i + 1) + \alpha_r \theta m_i \mu_i}{(\theta + \alpha_r)(\theta \mu_i + 1)^{m_i + 1}} \right] \left[1 - \frac{(\theta_2 + \alpha_2)(\theta_2 \mu_2 + 1) + \alpha_2 \theta_2 m_2 \mu_2}{(\theta_2 + \alpha_2)(\theta_2 \mu_2 + 1)^{m_2 + 1}} \right] \ldots \]

\[\left[1 - \frac{(\theta_{r-1} + \alpha_{r-1})(\theta_{r-1} \mu_{r-1} + 1) + \alpha_{r-1} \theta_{r-1} m_{r-1} \mu_{r-1}}{(\theta_{r-1} + \alpha_{r-1})(\theta_{r-1} \mu_{r-1} + 1)^{m_{r-1} + 1}} \right] \]

Particular Case

1) When \(\alpha_i = 1 \) in (13) two parameter Lindley distribution becomes one parameter Lindley distribution. Then the expression \(R(r) \) for one parameter Lindley strength and two parameter gamma stress is obtained from (15) by putting \(\alpha_i = 1; i = 1, 2, \ldots, r \) and is given by
\[R(r) = \left[1 - \frac{(\theta_i + 1)(\theta_i \mu_i + 1 + \theta_i m_i \mu_i)}{\left(\theta_i + 1 \right) \left(\theta_i \mu_i + 1 \right)^{m_i + 1}} \right] \left[1 - \frac{(\theta_{i-1} + 1)(\theta_{i-1} \mu_{i-1} + 1 + \theta_{i-1} m_{i-1} \mu_{i-1})}{\left(\theta_{i-1} + 1 \right) \left(\theta_{i-1} \mu_{i-1} + 1 \right)^{m_{i-1} + 1}} \right] \cdots \] (16)

2) When \(\alpha_i = 0 \) in (13) two parameter Lindley distribution becomes one parameter exponential distribution. Then the expression \(R(r) \) for one parameter exponential strength and two parameter gamma stress is obtained from (15) by putting \(\alpha_i = 1; i = 1, 2, \ldots, r \) and is given by

\[R(r) = \left[1 - \frac{1}{\left(\theta_i \mu_i + 1 \right)^{m_i}} \right] \left[1 - \frac{1}{\left(\theta_{i-1} \mu_{i-1} + 1 \right)^{m_{i-1}}} \right] \cdots \left[1 - \frac{1}{\left(\theta_{i-r} \mu_{i-r} + 1 \right)^{m_{i-r}}} \right] \left[\frac{1}{\left(\theta_r \mu_r + 1 \right)^{m_r}} \right] \] (17)

The results in (16) and (17) were obtained by Gogoi and Borah (2012)

References

Birnbaum, Z. W. (1956). On a use of the Mann-Whitney Statistics,

Church, J. D., & Harris, B. (1970). The estimation of reliability from stress-strength relationships. Technometrics, 12, 49-54.

Gogoi, J., Borah, M., & Sriwastav, G. L. (2010). An interference model with number of stresses a Poisson process. IAPQR Transactions, 34(2), 139-152.

