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1

CHAPTER 1: INTRODUCTION

Numerous real-life data, e.g., protein-protein interaction networks, social networks, and the world

wide web can conveniently be represented by graphs. The size and complexity of these graphs in

terms of the number of entities and their relationships is formidable. The database community has

had a long-standing interest in querying graph databases [52, 87, 104, 108, 110, 111] since it can

facilitate inferring knowledge from a myriad of data sources. Among the many graph database

queries that are useful, graph matching has proven to be a powerful tool for knowledge extrac-

tion. Previous approaches have mostly been carried out within the context of exact graph data,

and have concentrated on precise graph or subgraph matching queries. However, many actual

graph data sets are noisy and inherently incomplete. For example, it is well known that high-

throughput protein-protein interaction (PPI) data contain numerous false positives. Moreover,

the interactions identified represent only a fraction of the actual network [43, 98]. As a result,

exact graph or subgraph matching more often than not fails to produce any useful outcome.

Approximate or inexact graph or subgraph matching methods can play a crucial role in ap-

plications where exact graph matching is not useful or possible. Many recent graph applications

demand approximate matching results as they are more intuitive and can provide more informa-

tion such as predicting spurious and missing entities. Additionally, most existing graph matching

methods can be applied to databases that contain graphs with small sizes. Moreover, the query

graphs allowed in these methods are also small in size. In many new applications, however, the

sizes of both the query graph and the data graph can be prohibitively large for existing match-

ing methods. Each graph can contain hundreds to thousands of nodes and edges. For example,

PPI networks for individual species are often matched to determine similarities and differences

across species. Each PPI network is large, and typically contains hundreds to thousands of nodes

and edges in each graph. With the exponential growth of social networks (e.g., LinkedIn, Face-

book, etc.) and significantly increased influx of experimentally generated data (e.g., microarray,

protein-protein interaction network, etc.), the need for storage, management and querying of
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large graphs has increased significantly. Graphs naturally help model many complex objects and

applications of high importance in social science, engineering and life sciences. Although the

computational complexity of graph matching algorithms are generally very high, traditional al-

gorithms such as Ullmann [96] and VFLib [29] remained state of the art in many libraries such

as R [77] for databases with relatively very small graphs (e.g., chemical structures, image data,

pattern recognition applications, etc.). The emergence of modern, highly connected, complex,

large and internet scale graph data generated significant interests toward developing better and

faster algorithms to meet the challenges they posed. The sheer volume of social networks, in-

ternet scale graphs, inherent inaccuracies in experimentally generated data, and high frequency

of queries in public databases in life sciences also make traditional graph processing techniques

obsolete.

Among many graph based queries, graph and subgraph matching have been proven to have

a significant role on knowledge extraction. However, it is generally believed that approximation

algorithms help tame the computational hardness of subgraph isomorphic queries by avoiding

the so called “permutation trap” in graphs with highly symmetric labels and edge structures, and

high number of candidate matches [27]. Naturally, while a large majority of research concen-

trated on identifying exact matches, inexact and approximate queries are becoming increasingly

more useful since they can inherently cater to inaccuracies in the input graph, and identification

of similar rather than exact modules from the source data graph. Since it is well known that

protein-protein interaction networks determined by high-throughput methods contain numerous

false positives and the identified interactions merely represent a minute fraction of the actual

network [93], exact graph or subgraph matching techniques more often then not fail to produce

any useful outcome. Instead, approximate or inexact graph matching plays a crucial role in such

applications. Many modern applications also prefer approximate matching over precise matching

as they are more intuitive and can provide more insight about spurious and missing entities.

From an application standpoint in social networks [33, 34, 49], biological networks [31, 64,

114], image databases [58, 66], and even geographical and remote sensing information sys-

tems [51, 94], approximate graph matching as a tool for graph analysis has seen substantial
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renewed interests. Social network applications that require modeling using large graphs, and

involve complex descriptive attributes, approximate matching has been successfully used to iden-

tify expert communities [68], drug trafficking network [34], etc. Approximate graph matching

has also been instrumental in life sciences to predict drug interactions [64], cancer detection [24],

and phylogenetics [47], in software engineering [13, 81], and in patent enforcement and plagia-

rism detection [67,79], among many others. In all such applications, scalability becomes a major

concern due to the size of the graphs involved, e.g., LinkedIn, currently has more than 250 mil-

lion users in its social graph, and traditional approaches to query these network are prohibitively

expensive.

1.1 Motivation and Application

The motivation for developing an efficient approximate sub-graph matching technique can be at-

tributed to numerous applications in the biological domain. Biological processes are controlled

by genetic regulatory networks that consist of interacting groups of genes and gene products (i.e.,

RNAs and proteins). Protein-protein interaction networks serve as a good example of the impor-

tance of biological networks and the challenges associated with analyzing them. Protein-protein

interactions play a role in most cellular processes, from synthesizing cellular components and

determining cell structure to controlling cell behavior and the response to extracellular signals.

Defining the PPIs that take place in a cell, therefore, can provide significant insights into the

workings of a cell under normal conditions, and in disease states. Recent developments in ex-

perimental biotechnology and computational approaches are resulting in the generation of large

datasets of PPIs [30, 95]. Tens of thousands of PPIs have been identified for human proteins and

similar numbers have been identified for several model organisms. A useful way to represent and

analyze this data is by network analysis approaches, where proteins are represented as the nodes

and interactions are represented as the edges of a graph.

Biological networks such as PPI networks have several properties that present challenges for

network analysis. First, the networks tend to be large, which necessitates the development of
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efficient analysis algorithms. One compiled database for humans, for example, has over 37,000

PPIs involving over 10,000 proteins [16]. Another database specific for the model organism

Drosophila has over 160,000 interactions among ∼10,000 proteins, which includes over 70% of

the proteins from that organism [72]. The data in these and similar databases is likely to continue

growing as new technologies are developed to identify or predict additional interactions. Second,

protein networks are incomplete. Current experimental technologies miss many interactions (i.e.,

result in false negatives) due to the practical difficulties associated with sampling all pair-wise

combinations of large sets of proteins and the technical differences between the way proteins be-

have in the assays and in normal cells. Third, a related problem is that PPI data contain significant

numbers of false positives, interactions that were detected by some assay or prediction algorithm

but that do not actually occur in biology.

One way that protein network data can be used is to find proteins that are involved in spe-

cific biological processes or diseases. A protein with an unknown function, for example, can

be predicted to play a role in the same process or disease as the proteins with which it inter-

acts [40, 65, 80, 83]. Many variations of this so-called guilt-by-association (GBA) approach have

been used to predict functions for a fraction of the huge number of proteins that have unknown or

poorly characterized roles in biology. Several powerful variations of GBA utilize the structure or

topology of protein networks to help predict function [99]. For example, it is often useful to con-

sider not only the properties of a protein’s direct interactors but also the properties of members

of a local subnetwork around the protein [46].

The topological structures of protein networks also correlate with their biological functions.

Tightly interconnected clusters of proteins, for example, are often indicative of groups of pro-

teins that function together in a cell to mediate a specific process [12, 19, 20, 44, 88, 97]. The

local network topology around a protein can also be used to impute properties of the protein

such as its general importance in the cell or its role in disease pathways [25, 50, 55, 57, 62, 75].

Protein pathways that transduce information in cells also have characteristic topological proper-

ties [84,89]. These and other functional implications of network structure have resulted in a need

for computational tools that compare structures or that search through networks to find specific
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structures [85]. One example is the need to compare protein networks from different organisms in

order to identify evolutionarily conserved functional modules [18,59,86,102,106]. Comparisons

of network structures could also reveal missing nodes or edges and reveal new pathways. Thus,

the need to compare and quantify the similarities between the structures of biological networks

has brought the subgraph isomorphism problem to biology. Further details of specific applica-

tions of similar graph matching may be found in [35, 60, 71, 76, 114]. Table 1.1 lists different

application domains and the related research.

Table 1.1: Application of Approximate Sub-graph Matching.
Application Domain References

Protein-Protein interaction network [6, 7, 10]
Social network [33, 34, 49]
Image database [36, 58, 66]

Geographical and remote sensing information systems [51, 94]
Expert communities identification [68]

Drug trafficking network [34]
Life sciences [24, 47]

Software engineering [13, 81]
Plagiarism detection [67, 79]

1.2 Goal of this dissertation

In this dissertation, we present a novel, scalable, efficient and approximate sub-graph match-

ing technique that provides a flexible platform to augment topological information with domain

knowledge to reduce search space and obtain context sensitive result. The problem that we ad-

dress in this dissertation is approximate subgraph matching of a query graphs from a large data

graph. Hence, given a graph database containing a single graph with numerous nodes and edges

and a query graphs, the task here is to find all similar sub-structures from the data-graph matching

the query graph.

In order to facilitate processing of larger graph, we introduce a. database driven processing

with in memory cache to support memory resident post-processing b. Summarization of large
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data graph to cluster semantically meaningful nodes together, which in turn expedites processing.

Since, many network data-sets inherently contain annotated information pertaining to each node,

the algorithm makes use of this information to unveil the latent semantic information in each

sub-network. We have conducted rigorous experiments and have proposed future directions to

harness the power of map-reduce framework to make the algorithm scale out even further.

1.3 Organization of the dissertation

The rest of this thesis is organized as following. In chapter 2 we explore the literature and discuss

the state of the art. We then identify the areas of improvement in the domain of approximate graph

matching and underscore the motivation behind our thesis. In chapter 3, we formally define the

problem. We build off of basic graph concept and informally define the problem of approximate

graph matching. In chapter 4, we discuss our first approach to solving the problem. We build

upon the the concepts presented in chapter 4 and discuss our second approach in chapter 5. In the

next two chapters we present the findings of our experimental results comparing and contrasting

our approach with the state of the art. Finally in chapter 7, we propose our future work and draw

conclusion based on our research.
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CHAPTER 2: RELATED WORK

Querying graph databases has been an important research area in the database community for

a long time. However, although most of the previous works have concentrated on exact graph

or subgraph matching, the applicability of inexact or approximate graph matching is undeniably

crucial in numerous application domains such as bioinformatics, social network analysis and

so on. Since subgraph isomorphism was proven to be NP complete [39], the application of

approximate subgraph matching has attained immense research attention due to its reduced time

requirement. The subgraph isomorphism technique proposed by Ullman [96] is proved to be

prohibitively expensive due to its exponential time complexity. To reduce search space, indexing

methods were developed to expedite the process [87, 108]. Most index-based methods that have

been proposed for approximate graph matching, e.g. the methods proposed in [110] and [111]

are mostly applicable to small graphs.

A method proposed in [104] is only applicable to graphs with limited sizes since it iteratively

enumerates and indexes all the subgraphs in the database. GString [52] takes into account se-

quence based matching technique to extract answers to graph queries, but it is only useful when

the graph contains a small set of basic substructures. C-Tree [45] utilizes an R-tree like index

structure and is more generic in terms of answering graph queries. SAGA [92], employs a flex-

ible graph similarity model but is computationally expensive when applied to large graphs. A

recent method in [78] proposes a novel technique of embedding graphs in vector space by means

of prototype selection. Subsequently, the vector representation of the graphs are used in edit

distance calculation to calculate the distance between two graphs. However, selecting represen-

tative prototypes still remains a challenging task. The Cytoscape plugin tYNA [112] can carry

out a query for extraction of four common motifs, whereas MAVisto [82] and FANMOD [103]

identify over-represented and frequent motifs in a network specified by the user. However, in

none of these approaches can a user structurally synthesize the sub-structure to be queried. There

has been a flurry of research on approximate graph matching and graph pattern matching. A
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bulk of research has been done on matching solely based on structures, without considering the

attributes, while others have concentrated on exact matching. Many of the existing work focus

primarily on matching against a database of small graphs rather than matching within a single

large data graph. while the latter setting is more generic and can be tailored to accommodate

graph-transactional setting, the converse is not true [61]. A survey of graph pattern matching

algorithm can be found in [38] and a discussion on emerging graph queries can be found in [56].

Although a lot of work can be found in the literature on inexact graph matching [42, 70], at-

tributed graph matching [26] and matching in the single graph setting [5,26,70], the combination

of these trifecta has been rarely explored [28]. Additionally, a plethora of analogous work is

done in the domain of database and data-mining research encompassing the area of frequent pat-

tern identification to inexact query of databases. An efficient method for indexing and mining

graph databases, computed based of existence of frequent graph structures has been proposed

in [107, 109]. Moreover in [53], the concept of topological minor has been used to discover fre-

quent large scale patterns. In order to process large graphs having thousands or even millions of

nodes and edges, the concept of graph summarization has been studied. Most of the work employ

simple graph statistics to describe graph characteristics [22, 23, 73]. These statistical measures

may include degree distribution, clustering coefficients etc. Methods employed in mining graphs

for frequent patterns [48, 100, 101] are also employed to unveil the properties of large graphs.

These methods may generate an overwhelming number of results defying the purpose of sum-

marization. Apart from that graph partitioning algorithms [74, 90, 105] have been employed in

the literature to identify latent communities in large networks. This approach, however, does not

take into account the node attributes and hence may limit the usefulness of the approach.

The methods proposed in this dissertation has the following salient features:

• Seamless integration of node attributes and topology in the matching process

• Database driven efficient and scalable method for processing large graphs to identify ap-

proximate matches. The data graph is maintained and the pre-calculations are executed in
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the back-end database.This method segments the data graph into local neighborhoods and

filters out the segments that are less likely to produce viable matches. Moreover, the global

topological attribute associated with the nodes that we take into account in our method, cor-

roborated by the dynamic matching algorithm is much faster in terms of processing and is

not limited to graphs with limited sizes. Since a significant amount of processing is pushed

to the database side along with memory resident processing of the segmented subsections

of the data-graph, the graph database can essentially be as large as the current database

technology will allow.

• Graph summarization driven processing, enabling identification of semantically significant

matches. This method is extendible to map-reduce frame-work making it scalable and

efficient.
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CHAPTER 3: PROBLEM

DESCRIPTION

3.1 Basic terminology

A primitive graph can be defined by G = (V,E) consisting of vertices and edges. V denotes the

set of vertices and E ⊆V ×V denotes the set of edges of G. The number of edges and number of

vertices in a graph are often denoted by |V | and |E| respectively.

Definition 3.1.1 [Graph] A graph G is defined as G = (V,E), where V is the set of vertices, and

E ⊆V ×V is a set of vertex pairs that defines the edges of the graph.

We use graphs to model networks such as protein interaction, social network, world wide

web, etc. The nodes of the graph can be attributed i.e. the nodes can have labels associated with

them and they may also have attributes delineating their inherent properties.

Definition 3.1.2 [Labeled Graph] A labeled graph G is a four-tuple G = (V,E,µ,τ), where

• V is the finite set of nodes,

• E ⊆V xV is the set of edges,

• µ : V → L is the node labeling function, and

• τ : E → L is the edge labeling function.

This definition allows us to handle arbitrary graphs with unconstrained labeling functions.

For example, the labels can be given by the set of integers, the vector space Rn etc. Moreover,

unlabeled graphs are obtained as a special case by assigning the same label to all nodes and edges.

The problem of graph matching can be viewed from two dimensions i.e. exact and inexact

matching. To delineate exact graph matching problem we introduce the following definitions.
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Figure 3.1: Classification of Graph Matching

Definition 3.1.3 [Sub-Graph] A graph H = (VH ,EH) is called a subgraph of G = (V,E), if VH ⊆

V and EH ⊆ E.

Definition 3.1.4 [Graph Isomorphism] Assume that we have two graphs Q = (V1,E1) and G =

(V2,E2). Graph Q is isomorphic to graph G, if and only if there exists at least one bijective

function f : V1 →V2 such that for any edge (u,v) ∈ E1, there is an edge ( f (u), f (v)) ∈ E2.

Definition 3.1.5 [Sub-graph Isomorphism] Assume that we have two graphs Q(V1,E1) and G(V2,E2).

If there exists at least one sub-graph X in graph G, graph Q is isomorphic to X under the bijective

function f , graph Q is sub-graph isomorphic to graph G.

However, there exists cases where it is not possible to find exact matches. This may stem

from the fact that the input graphs might be noisy, the query graph might be generated from a

template in mind, hence instead of exact graph matches, we adhere to approximate matches or

graph similarities. We define the term graph similarity in more detail in the following chapters to

elucidate the problem. We can use the term “similarity” loosely at this point to denote a spectrum

of graph matches starting from exact matches to inexact matches. The flexibility inherent in

approximate graph matching can be attributed to the noise tolerance of the matching process. The
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matching process allows missing nodes, edges as well as extra nodes and edges in the matched

graphs. Since the graphs can have attributes, in other words, the nodes and edges can have

labels or feature vectors associated with them, a central part in the domain of approximate graph

matching has been in the direction of how to embed this rich set of information into vanilla

topological matching system. In this dissertation, Given a large data graph D and a query graph

Q, we explore ways to identify and extract top-k approximate matches from D conforming to the

node attribute and topology of the query graph.

Definition 3.1.6 [Top-k graph matching] Given a data graph D and a query graph Q, the objective

here is to identify k sub-graphs Si from D such that the similarity between Q and each Si, 1≤ i≤ k,

are the maximum among all possible subgraphs of D and higher than a threshold λ .

In this dissertation, we concentrate on attributed subgraph matching problem. The attribute

pertaining to nodes are captured using a domain dependent similarity function, called the σ -

similarity, defined as σ : Vd ×Vq → [0,1], where Vd ∈ D and Vq ∈ Q which we assume as given

as an input. We identify ways to use this domain value to guide us with matching process to

identify candidate matches that are topologically similar as well. The heart of our approach

lies in factoring the notion of domain similarity and topological similarity into calculation and

seamlessly integrating these two dimensions.

3.2 Similarity matching and Exact matching

Similarity matching, commonly known as graph matching, problems are distinct from traditional

graph isomorphism problems where not only do the structure of the graphs play a role, their labels

do as well. To illustrate the difference, consider the graphs in figure 3.2 below in which the colors

of nodes represent labels and the text next to them represent unique vertex IDs, i.e., query graph

q in figure 3.2(a), node v1 has black, v2 has salmon and v3 has cyan labels. Though the three data

graphs d1 through d3 in figures 3.2(b) through 3.2(d) respectively contain similar shapes, they do

not have the same labels. In these figures, the query graph q is subgraph isomorphic to graphs d1
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Figure 3.2: Graph matching versus subgraph isomorphism.

and d2 (as they both contain structurally identical shapes – triangles), while it is isomorphic to

graph d3 (if we ignore the labels). If we consider the labels too, these relationships will not hold

as no data graph or its subgraph matches the query graph q.

On the other hand, an approximate match is always possible even if we consider the labels,

i.e., given two graphs, they are always similar. The real question is to what degree? For example,

if we consider black and white labels to be completely dissimilar, then subgraph 1 with nodes

w2, w3 and w4 in figure 3.2(c) may be the most similar graph to query graph q even though it is

not a triangle compared to other subgraphs including graph 5 in figure 3.2(d). This is because

the labels are almost identical (except a lighter shade of black in node w3). It is also possible to

consider graph 2 with nodes u2, u3 and u4 in figure 3.2(b) to be similar, if the label teal in node u3

is considered truly similar to cyan. If we prefer to preserve the shape more than label similarity

(unlike before, we rank graph 2 higher than graph 1 as it is structurally more similar). From this

standpoint, it is perhaps possible to order the matching in decreasing similarity shown as graphs

1 through 5 in figure 3.2.

3.3 Our contribution

In this dissertation we systematically explore and integrate domain and topological information

of graphs and propose a quantifiable measure of graph similarity matching. With that end in view,

we propose two efficient algorithms to identify top-k sub-graphs that best match a query graph.
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In one approach, TraM [9,10], we identify promising neighborhoods from the data graph and ex-

plore it further to deem its candidacy to be a viable match with the query graph. In this approach,

we combine global topological properties of promising local neighborhood with domain knowl-

edge to come up with the best match. In our next approach, AtoM [8, 11], we focus our search

space into a summary graph that is constructed by using the query graph as a template. Here,

instead of exploring the region for viable matches, we extract a narrow search space composed

of feasible solutions and then ask “Is this a good-enough match for the query graph?”. Revers-

ing the processing direction improves efficiency and makes the approach a likely candidate for

Map-Reduce based processing.
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CHAPTER 4: TOP-K GRAPH

MATCHING USING TRAM

The first approach we explore to solve the approximate graph matching problem is (Top-k Graph

Matching) or TraM. Let us re-visit the definition of graph in the following section. We will build

off of this definition and formally introduce the notion of similairty.

4.1 Problem Definition

Let us first emphasize that we accept the traditional definition of labeled or attributed graphs

where graph G is a pair (Vg,Eg), where Vg is a set of vertices, and Eg is a set of edges such that

Eg ⊆Vg ×Vg, defined technically as follows.

Definition 4.1.1 [Labeled Graph] A labeled graph G is a quintuple G = (Vg,Eg,L,µ,τ), where

• Vg is the finite set of nodes, and L is a set of labels,

• Eg ⊆Vg ×Vg is the set of edges,

• µ : Vg → L is the node labeling function, and

• τ : Eg → L is the edge labeling function.

This definition allows handling arbitrary graphs with unconstrained labeling functions. For

example, the labels can be given by the set of integers, the vector space Rn etc. Moreover,

unlabeled graphs are obtained as a special case by assigning the same label to all nodes and

edges. For this approach, we recognize that the nodes may have an arbitrary number of attributes

but the edges are unlabeled. The basic problem we are addressing in this thesis is computing

similarity between two labeled graphs.
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The heart of our approach depends upon encapsulating the similarity of nodes along two axes

– (i) the conceptual likeness of nodes, and (ii) their similarity with respect to the topology they

are part of, and then finally combining these two similarities into one overall distance value.

The conceptual likeness of two sets of nodes V1 and V2 is captured using a domain dependent

similarity function, called the σ -similarity, defined as σ : Vq ×Vg → [0,1] which we assume as

given prior to the application of our algorithm. The method used to compute this function does

not impact our algorithm. For example, in a protein network, the similarity between proteins may

be based on their amino acid sequences, their expression pattern, or their function annotations.

In fact, the strength of our approach lies in the fact that multiple domain dependent similarity

scores (e.g., scores for individual proteins may come from expression data or sequence data) can

be incorporated into the overall similarity calculation of nodes. Multiple attribute values can be

converted into a vector, which can subsequently be applied to calculate pairwise similarity σ

using standard similarity calculation methods, e.g., cosine similarity.

4.1.1 Random Walk as a Global Graph Property

Similarity of nodes with respect to their topology is slightly more complex, but can be explained

intuitively using the notion of random walk score [21, 57], ωv values (formally characterized in

definition 4.1.2), of nodes. The random walk on graphs is defined as the repeated transition of

a walker from its current node to a randomly selected neighbor starting at a given set of source

nodes S. A derivative of the random walk, known as random walk with restart additionally

permits the restart of the walk in every time step at nodes in S with probability β to combat

spider traps. Formally, the random walk with restart is defined as

p(t+1) = (1−β )W p(t)+β p(0) (4.1)

where W is the column-normalized adjacency matrix of the graph and p(t) is a vector in which

the ith element holds the probability of being at node vi at time step t. In our application, the
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initial probability vector p(0) is constructed such that equal probabilities are assigned to all the

nodes.

This is equivalent to concurrently beginning the random walk process from each of the nodes

with equal probability. The nodes are eventually prioritized according to the values in the steady-

state probability vector p∞. Algorithm 1 describes the random walk procedure, which essentially

computes the random walk scores of all nodes in G.

Algorithm 1: Random Walk
Input: Graph G = (Vg,Eg) and Restart Probability β .
Output: Random Walk Score Ps(Vg).

1 Let rs(Vg) be the restart vector with all entries having value 1
|Vg| ;

2 Let A be the column normalized adjacency matrix defined by E;
3 Initialize Ps(Vg) = rs(Vg);
4 while Ps(Vg) has not converged do
5 Ps(Vg) = (1−β )∗A∗Ps(Vg)+β ∗ rs(Vg));

4.1.2 Structural Similarity of Nodes

Since random walk scores encompass the global topological properties of a node, from the stand-

point of graph matching, it can be used to compare topological orientation and relative importance

of nodes. These scores thus effectively capture structural cues shared among the nodes. Our goal

is to find a function f such that when a node v1 is structurally more similar to v2, given a choice

between v2 and v3, the relationship ∀v1∀v2∀v3( f (v1,v2)> f (v1,v3)⇒ |ωv1 −ωv2|< |ωv1 −ωv3|)

should hold, where f is computed using standard functions such as cosine similarity or 1-L2

norm. Fortunately, random walk with restart probability or damping factor, called the β values,

for every node v in a graph, computed n times captures the topological likeness of nodes to ap-

proximate this property. However, it is important to note that the converse is not always true,

i.e., two graphs may satisfy this property yet be structurally distinct as shown in figure 4.1 as a

counter example.
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Figure 4.1: Example of two different graphs with identical β -signature.

While an arbitrary choice of n does not impact this property, it can be selected based on the

sufficiency conditions discussed in [14,15]. In definition 4.1.2 below, the function ω is computed

by extracting the steady state probability vector p∞ using equation 4.1.

Definition 4.1.2 [β -signature] Let G = (Vg,Eg) be a graph and B be a set of β values. Random

walk score of a node is a function of the form ω : Vg ×B → [0,1]. An n-dimensional vector

(ω(v,β1),ω(v,β2), . . . ,ω(v,βn)) is called a β -signature of node v ∈Vg, denoted β⃗ (v) and the set

β (G) =
∪

v∈V β⃗ (v) is called the β -signature of G.

Definition 4.1.3 [Admissible β -signature] For a graph G, a set of β -signatures A, A⊆ β (G), is

called admissible, if ∀v,v′(v,v′ ∈Vg), ∃β⃗ (v)(β⃗ (v′)∈A) such that β⃗ (v)= (ω(v,β1),ω(v,β2), . . . ,ω(v,βn)),

β⃗ (v′) = (ω(v,β ′
1),ω(v,β ′

2), . . . ,ω(v,β ′
n)) and βi = β ′

i holds βi,β ′
i ∈ B, 1 ≤ i ≤ n, i.e., they are de-

fined over identical sequence of β values.

Intuitively, an admissible β (G) is a set of n-tuples, one for each node v in G, of random walk

scores ωv. In particular, this definition ensures that the random walk scores in a set for all the

nodes are defined over identical β values for a fair comparison. In the remainder of the approach,

when we refer to β -signatures of nodes and graphs, we mean admissible β -signatures. Once we

have β (G), we can now formally define graph similarity as follows.
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Definition 4.1.4 [β -similarity] Let G1 = (Vg1 ,Eg1) and G2 = (Vg2,Eg2) be two graphs and β (G1)

and β (G2) be their β -signatures. For any v1 ∈Vg1 and v2 ∈Vg2 , their structural or β -similarity, de-

noted β̂ (v1,v2), is defined by β̂ (v1,v2) = 1−
√

∑k
i=1 (ai −bi)

2, where β⃗ (v1) = (a1,a2, . . . ,ak) ∈

β (G1) and β⃗ (v2) = (b1,b2, . . . ,bk) ∈ β (G2).

4.1.3 Combined Graph Similarity

Graph similarity now can be defined using the combination of σ -similarity and β -similarity as

follows.

Definition 4.1.5 [Graph Similarity] Let G1 = (Vg1,Eg1) and G2 = (Vg2,Eg2) be two graphs and

ϕ be a mapping function. Then, the similarity γ between two graphs G1 and G2 under a mapping

function ϕ is

γ(G1,G2) = ∑
∀v1,v2(v1∈Vg1 ,ϕ(v2)∈Vg2)

σ(v1,ϕ(v2))× β̂ (v1,ϕ(v2)) (4.2)

Given a data graph D, a query graph Q, the objective of the top-k inexact graph matching

problem is to identify k sub-graphs of D such that the similarity between Q and each subgraph Si,

1 ≤ i ≤ k, is the maximum among all possible subgraphs of D and higher than a threshold λ .

For example, consider the data graph D having five and query graph Q with four nodes in

figure 4.2. The β -signatures β (D) and β (Q) as in definition 4.1.3 are shown in tables 4.2(c)

and 4.2(d) respectively for β values 0.8 and 0.6, one for each node as a set of 2-tuples. These

signatures were used to calculate pairwise node similarity β̂ as in definition 4.1.4 shown as the

similarity matrix in figure 4.2(e). The overall idea of graph matching is discussed next on intuitive

grounds.
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va vb

vc

vd

(a) Query graph Q

v0 v1 v2

v3

v4

(b) Data graph D

0.440465566 0.366457316
0.290490868 0.285043033
0.089681189 0.11616655
0.089681189 0.11616655
0.089681189 0.11616655

(c) β -signature of δ (v2,2) of D

0.145033072 0.174219384
0.564900785 0.477341849
0.145033072 0.174219384
0.145033072 0.174219384

(d) β -signature of query graph Q

0.647529 0.817134 0.919788 0.919788 0.919788
0.833328 0.664918 0.403107 0.403107 0.403107
0.647529 0.817134 0.919788 0.919788 0.919788
0.647529 0.817134 0.919788 0.919788 0.919788

(e) Similarity matrix

S d hop
v1 v0 1
v2 v0 2
v2 v1 1
v2 v3 1
v2 v4 1

(f) 2-hop reacha-
bility of D

Figure 4.2: β -signature, similarity generation for query and localized data graph.

4.2 Overview of TraM

Intuitively, we follow three distinct steps to compute k similar graphs of a query graph Q from

a data graph D. We expect the size of the data graph (number of nodes M) to be very large

compared to the number of nodes m in the query graph, i.e., m ≪ M. In practical applications

where protein networks are searched for specific known interaction patterns, or pathways are

matched with candidate networks, the query graphs usually contain a relatively small number of

nodes, typically in the range of 20-200. Since a subgraph of D that is similar to Q is expected to

have a comparable number of nodes to be useful, it is prudent to compare graphs of similar size,

and network topology on a need to compare basis. By doing so we reduce the cost substantially

and explore only potentially similar graphs. Thus, we introduce the concept of neighborhood

biased β -signature for the data graphs to limit the size of candidates as follows.

Definition 4.2.1 [δ -neighborhood of nodes] Let Q be a query graph, and r be its radius∗. Let

D = (Vd,Ed) be any graph, and v
j→ u represent j-hop reachability from node v to u. Then δ -

neighborhood of v is the set {u|v,u ∈Vd ∧ v
j→ u∧ j ≤ r} (including zero hop reachability, i.e., v

itself), denoted δ (r,v).
∗We use the standard definition of radius of a graph in graph theory which is the minimum eccentricity of any

vertex, where eccentricity represents the hop or edge distance between a node and the farthest node in the graph.
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Definition 4.2.2 [Induced subgraphs] Let G = (Vg,Eg) be any graph, and N ⊆Vg be an arbitrary

set of nodes. Then, G′ = (N,E ′) is called an induced subgraph, denoted χ(N) = G′ = (N,E ′),

such that whenever v,v′ ∈ N and e = (v,v′) ∈ Eg, e is also in E ′, and nothing else is in E ′, i.e., G′

is a subgraph of G, denoted G′ ⊑ G.

First, we compute the β -signature of the query graph Q = (Vq,Eq), β (Q), for a predetermined

set of β values n= |B|. Note that we thus have a set of n-dimensional β -signature vectors, one for

each node v ∈Vq. In the second step, we compute the neighborhood Nu of each node u ∈Vd as a

selection mechanism for generating D’s candidate subgraphs. We proceed to generate the induced

subgraph Gu from Nu only if the size of Q and Nu are comparable. The β -similarity β (Gu) is

then calculated. Using a dynamic programming method, we then match each vq ∈Vq with ud ∈Vd

such that the matching is maximized for all nodes, i.e., best possible similarity match. In the final

step, we compute the graph similarity γ(Q,Gu) of Q and Gu and insert the graph in a priority

queue according to its similarity score, and move on to the next node in the data graph and repeat

the process. At the end, we select the top k graphs from the queue completing the process.

The matching process can be explained using the examples in figure 4.2 and 4.3 intuitively

as follows. Figure 4.2 shows β -signatures of the query graph as well as the 2 hop reachability of

data graph nodes as 2-neighborhood set
∪
∀u(u∈Vd)

Nu. It is interesting to note that although the

radius r of the query graph is 1, choosing to extract 2-neighborhood from the data graph does not

break the algorithm. Although we now extract more nodes from the data graph and increase the

number of matching contenders, the algorithm is still well defined and robust. The β -signatures

β (Q) and β (D) for both graphs calculated respectively with damping values 0.8 and 0.6 are

shown just below the corresponding graphs. The pair-wise β -similarity of nodes from the query

graph and the graph G2 induced from N2 is shown. The overall matching process is shown in

figure 4.3.

Note that the 2 hop neighbors of node v2 ∈Vd includes all the nodes in Vd , i.e., {v1,v2,v3,v4}.

So, our goal is to match Q using the β -similarity values we have calculated above with the

induced subgraph G2, which incidentally happens to be the whole data graph in this example.

The idea is to find a sequence of matches such that each node in Q is matched with at most one
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node in G2, and the overall γ-similarity is the highest. The process of matching using a dynamic

programming method is shown in figure 4.3 where, the brown dotted lines show the match that

yielded the highest overall match, i.e., va → v1, vb → v2, vd → v3, and vc → v4. We defer a more

detailed and technical discussion on the matching process until later sections.

va

va

va

va

v1

v2

v3

v4

vb

vb

vb

vb

v1

v2

v3

v4

vd

vd

vd

vd

v1

v2

v3

v4

vc

vc

vc

vc

v1

v2

v3

v4

Figure 4.3: Extracting matching sub-graphs from the localized data graph.

4.3 Top-k Graph Matching using Neighborhood Signatures

Technically, the top-k graph matching between a query graph Q and data graph D requires a set B

of n β values, and a set of user supplied thresholds – a conceptual similarity threshold µv of nodes,

a structural similarity threshold µs, and an overall graph similarity threshold λ . We pre-calculate

the node reachability information of the data graph D, and store and index it in the database.

Since the query graph size is limited to at most m nodes, we retain node reachability information

for each individual node in the data graph up to r hops, where r represents the radius of the

query graph Q. Biological networks tend to exhibit small-world properties, where most nodes

can be reached from any other node by a small number of hops. To be specific, a small-world

network is defined to be a network where the typical distance between two randomly chosen

nodes grows proportionally to the logarithm of the number of nodes in the network. Thus, since

the radius of the query graph would be proportional to the logarithm of the number of nodes in

the query graph, the value of m for the reachability calculation is relatively small. Hence, we can
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accommodate inclusion of an arbitrarily large query graph as well. It is expected that the data

graph size can impose significant memory resident processing, and thus the whole reachability

calculation process is better done in the database [4].

4.3.1 TraM Matching Algorithm

The algorithm has three main components – (i) generating candidate subgraphs from data graph

D, (ii) selecting and pruning candidate subgraphs, and (iii) matching candidates with query graph.

Unless all matching are of interest regardless of their degree of likeness (conceptual or structural),

exploring all possible subgraph is wasteful because the number of potential matches are extremely

high. So, it is desirable to state what is an acceptable match, both in terms of conceptual (σ ) and

structural similarity (β ), and then in terms overall graph similarity (λ ). We use these thresholds

to admit only those candidates that are likely to be of interest, and then rank the top k candidates

as the answer. Algorithm 2 outlines this process.

Algorithm 2: GraphMatch
Input: Data graph D = (Vd,Ed) and query graph Q = (Vq,Eq). Thresholds k, µv, µs and λ .
Output: Top-k matches of Q.

1 Initialize priority queue PQ as empty;
2 Calculate β -signature β (Q) for Q;
3 Compute radius r of Q;
4 for ∀vd(vd ∈Vd) do
5 Compute δ (r,vd);
6 if |Filter(δ (r,vd),Q,µv,µs)|> |Vq| then
7 Top-k Match(Q, β (Q), D, β (χ(δ (r,vd))), λ , PQ);

8 return All top k graphs g ∈ PQ ;
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Candidate Subgraph Generation

We represent the data graph as a set of tuples, each containing source, destination and number

of hops information. We then create indices over all these attributes for fast extraction of neigh-

borhood information from the data graph. Once the radius r of the query graph is computed, the

δ -neighborhood for each node v ∈Vd is computed as needed using this index as follows.

For each node v in the data graph D, we compute the δ -neighborhood δ (r,v) of v as defined

in definition 4.2.1. From δ (r,v), we compute the candidate subgraph C as the induced graph

χ(δ (r,v)) as defined in definition 4.2.2. This candidate graph is then pruned to eliminate nodes

and edges not likely to match with the query graph before processing. We embed this pruned

graph in the vector space domain and calculate pair wise node similarity† between vg ∈ χ(δ (r,v))

and vq ∈ Q as β̂ (vq,vg).

Pruning Search Space

The induced subgraph χ(δ (r,v)) may be quite large depending on the density of the data graph

demanding too many comparisons with nodes that will not be part of a possible candidate. In

order to prune the search space in the data graph, we consider two specific criteria. The first

is that if the size of the δ -neighborhood is less than the number of nodes in the query graph,

we discard this subgraph because it is not considered a candidate “subgraph” of D‡. The other

criteria used to prune a candidate subgraph is to remove nodes in δ (r,vd) that will not contribute

to the matching as they are significantly below the matching thresholds µv or µs. To determine

admissibility, we check to see if there exists at least one node in the data graph for every node

in δ (r,vd) for which the σ and β similarities are above the thresholds µv or µs respectively. The

function Filter() in algorithm 4 captures this idea. Once δ (r,vd) is pruned, the induced subgraph

χ(δ (r,vd)) serves as a likely candidate for matching in the next step.

†As discussed in section 5.1, the vertices of the graphs may have several attributes. To compute conceptual
similarity of nodes as σ -similarity, we assume that we are given a domain and application dependent computable
function σ , that can compute the similarity between all pairs of vertices in the data graph and the query graph
respectively which is left as an orthogonal research.

‡However, should we like to consider such graphs as candidates, this condition may be eliminated or adjusted to
admit certain size of subgraphs of D smaller than Q.
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Matching Candidate Subgraphs

Since the computation of maximum graph similarity is an optimization problem, the overall

matching process is implemented using a dynamic programming algorithm to avoid redundant

computation. In this formulation, we maximize the function sim defined in terms of pairwise σ

and β -similarity of query and data graph nodes. Our goal is to find a sequence of matches be-

tween nodes in query graph Q and candidate data graph χ(δ (r,v)),v ∈Vd such that the matching

score is maximum. We then accept the matching score at the final step as the graph similarity

γ(χ(δ (r,v)),Q) and include it as one of the possible solutions. The final decision is made once

all the candidates are matched for maximum matching scores, and we then select only the top k

solutions based on these matching scores. In the expressions below, i and j represent nodes in the

graphs, sim(i,S(i,t))(t) denotes the max score at time stamp t ending at node i for the set of nodes

S(i,t). Algorithm 3 essentially implements equation 4.3, which is used by algorithm 2 to match

graphs.

sim(i,S(i,t))(t) = max{sim( j,S( j,t−1))(t−1)+σ( j, i)× β̂ ( j, i)} when t even

sim(i,S(i,t))(t) = sim(i,S(i,t−1))(t−1) when t odd (4.3)

At each odd time stamp, we have all the nodes representing a single node from the query graph;

at each even time stamp, we have all the nodes from δ (r,vd). Figure 4.3 depicts the process.

Nodes in the odd time stamps have the same labels. These nodes in the same column represent

one single node from the query graph. It is noticeable from the figure that at time stamp 1 we

have node va, time stamp 3 node vb, time stamp 5 node vd and so on. At each odd time stamp,

the assignment of a specific node label is done by calculating the breadth first search (BFS) node

order starting from an arbitrary node of the query graph. This order guarantees that the next node

to be matched is at most, one hop away from at least one node of the already visited node set.

S( j,t−1) represents all the nodes that have already been visited along this path. For all nodes j in

level t −1, we calculate this value for all the nodes i in level t such that i ̸∈ S( j,t−1) and distance

between i and at least one node in S( j,t−1) is 1 (if t is even). The notion of best match is identified



26

by the maximum value that function γ can assume at any given time-stamp which in turn depends

on σ and β̂ values. Each column in the figure represents either a single node or a set of nodes. In

the former case, the single node comes from the set of nodes in the query graph and in the latter

case are all the nodes from the extracted neighborhood of the data graph. Each column represents

a time-stamp (t) i.e. the first column represents time-stamp 1 and so on.

4.3.2 Caching Local Neighborhood

Since the data graph is stored in the database, accessing each node and generating its δ -neighborhood

requires multiple database accesses. Moreover, while calculating the Top-k Match, we query the

database to assert whether the node in question has a path of length one from any node from

the previous time-stamp. This is a repetitive task that takes place for all pairs of nodes from the

query graph and the δ -neighborhood of the data graph 2×|Q| times, where Q is the query graph.

Hence, at each iteration of the algorithm, caching the relevant δ -neighborhood would expedite

the process by 2×|Q| times.

However, we can minimize the number of cache invalidate operations by imposing an order

on the nodes of the data graph and executing the GraphMatch algorithm according to that order. If

the next candidate node in the iteration (Line 2 GraphMatch algorithm) has the highest number of

shared neighbors with current node, the extent of cache invalidate operations would be minimal.

The structure of the cache is a two dimensional matrix containing information regarding whether

there is an edge between node i and node j, where i, j ∈ δ (r,c), where c is the current node. The

first node to be expanded is one with the highest clustering coefficient in the network. The order

is pre-computed and stored for convenience. Algorithm 5 delineates the whole process where the

function Shared Neighbor(i, j) returns the number of shared neighbors between node i and j.

4.3.3 TraM Properties

Several interesting properties of TraM can be stated formally to highlight its strengths in a defini-

tive manner. While an orthogonal research to determine how well TraM identifies biologically
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significant networks is interesting, these properties and run time performance help TraM stand

out in sharp contrast to major contemporary matching tools.

Theorem 4.3.1 The algorithm Top-k Match() returns connected sub-graph in response to a con-

nected query graph.

Proof: Let us assume that the algorithm extracts disconnected sub-graph from the data graph

as a response to a connected query graph. Thus as shown in equation 4.3, at some time stamp t,

the algorithm chooses a new node i that is at least two hops away from all the nodes in S( j,t−1).

However, i is chosen such that i /∈ S( j,t−1) and ∃k(k ∈ S( j,t−1) ∧ distance(i,k) = 1), where the

function distance(i,k) returns the number of hops needed to reach from i to k. Thus at time

stamp t, the chosen i cannot be at least two hops away from all the members of S( j,t−1). Thus the

algorithm cannot return disconnected subgraph in response to a connected query graph. �

Theorem 4.3.2 Top-k Match() algorithm returns the maximum scoring connected components in

the final time-stamp.

Proof: The fact that Top-k Match() returns connected subgraph in response to a connected

query graph follows from the previous theorem. Let us assume that the algorithm Top-k Match()

extracts set of nodes with sub-optimal matching scores. We can assume that the set of nodes

that Top-k Match() returns at the final time stamp is {n1,n2, . . . ,ni,ni+1, . . . ,nt}. We can safely

assume the ni is the first node that was a suboptimal choice. And ni′ is the optimal choice at time

stamp i. It is evident that while calculating sim(ni+1,S(ni+1,i+1))(i+1), we chose sim(ni,S(ni,i))(i)+

σ(ni,ni+1)× β̂ (ni,ni+1) if i+1 is even, sim(ni,S(ni,i))(i) otherwise. However, from equation 4.3

at every even time step, we choose

max{sim(ni,S(ni+1,i))(i)+σ(i+1, i)× β̂ (i+1, i)}when t is even

Hence, if ni′ maximized the sim score, the equation would have chosen ni′ instead of ni. Since

sim(ni,S(ni,i))(i)+σ(ni,ni+1)× β̂ (ni,ni+1)< sim(ni′ ,S(ni′ ,i
′))(i

′)+σ(ni′,ni+1)× β̂ (ni′,ni+1) if t is
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even and since the odd time stamp is used only to select a new query node to match, it does not

affect the quality of the match. Thus, the process could not have chosen ni, since it would have

resulted in a suboptimal score and would not have maximized the sim score at time stamp i. Thus

it is evident that top-k Match() procedure returns the maximum scoring connected components in

the final time-stamp. �

Theorem 4.3.3 Identical random walk scores for multiple subgraphs do not imply subgraph iso-

morphism.

Proof: Let G = (Vg,Eg) be an undirected graph where Vg = {n1,n2, . . . ,nk} are the vertices of

the graph. Let S = {ni,n j,nm,np} be the set of vertices that induces the subgraph of interest.

Moreover, {(ni,n j),(n j,nm),(nm,np),(np,ni)} ∈ E. Let us assume that the random walk scores

of the members of S are {r1,r2,r1,r2} respectively. Let nx and ny be two nodes such that nx /∈ S

and ny /∈ S and (nx,ny)∈E, and none of the nodes in S has edges with nx or ny. Further we assume

that the random walk score of nx and ny is r1 and r2 respectively. Now we can reconstruct G by

redistributing the edges in a way such that the random walk scores of the members of S do not

change. This can be done by removing edge (nm,np) and (nx,ny) and adding edges (nm,ny) and

(np,nx). Since the structure of the graph from S has changed yet the random walk scores of its

members have not, it is evident that the same set of random walk scores for multiple subgraphs

does not necessarily infer subgraph isomorphism. �
In figure 4.5, we see an example matching scenario where one of the nodes from the query

graph does not appear in the data graph. Here the similarity value among the nodes is a function

of the node labels i.e. ∀i, j(σ(i, j) = 1), if label of i and label of j is same; 0 otherwise. Since

we take into account both topological and entity similarity, when we compute the approximate

matching subgraphs from the data graph, the entire neighborhood of the candidate subgraph is

explored for a potential match. In the example, although node y is missing from the data graph,

a similar node x, with σ(x,y) = 0 and β (x,y) ≈ 1 is present. Thus, the approach systematically

explores the neighborhood of the data graph to come up with the best pairwise match for the

query graph nodes. Figure 4.5(e) depicts the matching subgraphs, where the first subgraph has
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Figure 4.4: Example of matching with weighted edge.

three matching nodes and the highest score and the subsequent matches have a lower score as

they have two matching nodes augmented by topological matches.

4.4 Edge-labeled Graphs

The applicability of the method can be extended for labeled edges as well. Protein-protein in-

teraction networks, for example, can have numeric values associated with edges delineating the

confidence score of the interactions. To account for such cases, we extended the first dynamic

equation of our method as follows:

sim(i,S(i,t))(t) = max{sim( j,S( j,t−1))(t−1)+σ( j, i)× β̂ ( j, i)+θc ×
1

((Eqsel)− (Edsel))
2 + ε

}

The terms Eqsel and Edsel refer to the attribute values associated with selected edges from the query

and the data graph respectively. Since the set S( j,t−1) contains all the mapping between nodes in

the data and the query graph and since, the expansion in the data graph guarantees connected

subgraph according to theorem 1, we can always compute the equation above. The term θc is a



30

weight factor that assigns importance to the overall edge attribute portion of the equation. The ε

parameter is a very small value that ensures that the value of the denominator does not assume

zero.

Figure 4.4, for example, shows a scenario where matching with weighted edge may alter the

ranking of the obtained result. On the left hand side of the image, a data and a query graph

with edge weight are delineated. For the sake of simplicity, we consider that similarity among

any pair of nodes is equal. It can be seen that there are theoretically six matches with the same

matching score if the edge weight is not considered in the process. If the edge-weight is taken into

consideration, as shown in the top-right part of the image, the top ranked match from the data-

graph contains nodes v0, v2 and v3. To show how incorporating edge-weight into the calculation

can significantly alter the outcome, we chose a subset of 400 nodes and 3326 edges from PPI

network data set [113] containing confidence scores for the edges.

We chose a query graph with five distinct nodes as shown in figure 4.6. We run the query

using both methods and observe that since there exists one isomorphic subgraph in the interaction

network, it appears as the top result for both the original and the extended method. For the other

approximate matches, however, the ranking changes due to inclusion of edge weight. The result

is shown in Table 4.1.
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Algorithm 3: Top-k Match
Input: Query graph Q = (Vq,Eq), β (Q), candidate graph C = (Vc,Ec), β (C), threshold λ .

Queue PQ
Output: Updated priority queue PQ.

1 for i = 1 to Number of Nodes in time-stamp 1 do
2 initialize S(i,1) = /0 and sim(i,S(i,1))(1) = 0;

3 for t = 2 to 2×|Vq| do
4 for r = 1 to Number of Nodes in time-stamp t do
5 if t is Even then
6 for p = 1 to Number of Nodes in time-stamp t −1 do
7 if (r ̸∈ S(p,t−1)) and ((∃i(i ∈ S(p,t−1) and r 1→ i and i ∈Vc))) and

(sim(p,S(p,t−1))(t−1)+σ(p,r)× β̂ (p,r))≥ MAX) then
8 MAX = sim(p,S(p,t−1))(t−1)+σ(p,r)× β̂ (p,r);
9 k = p;

10 newMAX = true;

11 if newMAX = true then
12 S(r,t) = S(k,t−1)∪{r};
13 sim(r,S(r,t))(t) = MAX ;

14 if t is Odd or newMAX = f alse then
15 S(r,t) = S(r,t−1);
16 sim(r,S(r,t))(t) = sim(r,S(r,t−1))(t−1);

17 if t = 2×|Vq| and last r then
18 γ(Q,C) = sim(r,S(r,t))(t);

19 if γ(Q,C)≥ λ then
20 Add ⟨C,γ(Q,C)⟩ to queue PQ;

21 return PQ
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Algorithm 4: Filter
Input: Set of nodes δ (r,vd) and Graph Q = (Vq,Eq). Thresholds µv and µs.
Output: Pruned δ (r,vd).

1 if |δ (r,vd)|> |Vq| then
2 for every vn ∈ δ (r,vd) do
3 Compute candidate subgraph as χ(δ (r,vd));
4 Compute β -signature β (χ(δ (r,vd))) for χ(δ (r,vd));
5 if ∀vq(vq ∈Vq(max{σ(vn,vq)}< µv or
6 max{β̂ (vn,vq)}< µs)) then
7 remove vN from δ (r,vd);

8 return δ (r,vd);

Algorithm 5: Node Order
1 i = argmax∀ j( j∈D){ClusteringCoe f f icient( j)};
2 visited(i) = true;
3 counter = 1;
4 while counter <= |D| do
5 Generate δ (d, i);
6 AssignOrder(i) = counter;
7 i = argmax∀ j∈D{Shared Neighbor(i, j)} such that visited(i) = f alse;
8 Increment counter;

Table 4.1: Inclusion of edge weight in PPI network
Rank(Extended Method) Rank(Original Method) Matching Nodes

1 1 {ENSG00000119203, ENSG00000181222, ENSG00000186298, ENSG00000172531, ENSG00000161654}
2 9 {ENSG00000184900, ENSG00000100167, ENSG00000149617, ENSG00000168385}
3 5 {ENSG00000184900, ENSG00000100167, ENSG00000149617, ENSG00000070669}
4 8 {ENSG00000184900, ENSG00000100167, ENSG00000149617, ENSG00000160271}
5 10 {ENSG00000184900, ENSG00000100167, ENSG00000149617, ENSG00000160271}
6 11 {ENSG00000184900, ENSG00000100167, ENSG00000149617, ENSG00000183878}
7 7 {ENSG00000184900, ENSG00000100167, ENSG00000149617, ENSG00000143466}
8 2 {ENSG00000184900, ENSG00000100167, ENSG00000149617, ENSG00000147439}
9 4 {ENSG00000184900, ENSG00000100167, ENSG00000149617}

10 6 {ENSG00000184900, ENSG00000100167, ENSG00000149617, ENSG00000164022}
11 3 {ENSG00000184900, ENSG00000100167, ENSG00000149617, ENSG00000149617}
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Figure 4.5:
Sub-graph matching with missing nodes: (a) Data graph, (b) Query graph,
(c) β -signature of data graph, (d) β -signature of query graph, and (e) Match-
ing.
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Figure 4.6: Protein-protein interaction query graph.
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CHAPTER 5: TOP-K GRAPH

MATCHING USING ATOM

We adapt the network query example from [68] to illustrate the basic idea behind AtoM on in-

tuitive grounds. In this example, consider an application in which an administrator is trying to

identify a team of people related to each other in a social network such as LinkedIn or Facebook

each of which possesses some skills set. The relationship among them could be that they know

each other as friends, or they had already worked in a team, and the objective is for the administra-

tor to find the best possible team for a cluster hire to shore up an ambitious software development

project∗. Her requirement for the best possible team she has in mind includes a Project Manager

(PM), a Business Analyst (BA), a Software Architect (SA), a User Interface Designer (UD), a

Software Developer (SD), and a number of Software Testers (ST). The organizational relation-

ship among the team members she has in mind is shown as the query Q in figure 5.1(a) where a

direct arrow (serves as an edge annotation) from a node A to B functionally means B reports to

A, i.e., the Business Analyst reports directly to the Project Manager, and the requirement of the

set of Software Testers is shown as the node ST∗. The required skills for each of these positions

are shown in the table in figure 5.1(c), whereas the skills of each member in the social network is

shown in the table in figure 5.1(d).

To find structures similar to Q in D, we will have to consider the similarity of the nodes

in terms of their skills set, and their structural relationships. Figure 5.2(a) shows the node and

possible structural similarity by grouping node types together according to similarity of skills

where darker shades of data graph nodes depict stronger similarity with the corresponding query

∗An equally interesting social query may involve an Editor’s attempt to decide whether or not to send a paper
for review to an expert in an area of research. To find such an expert, he might want to find an expert who has the
needed expertise and does not have a conflict of interest. A conflict of interest is assumed to exist if a member of
a social group involving co-authors, advisors, and colleagues has authored the paper under consideration and the
expert also belongs to the same social group, and thus cannot review the paper. The structure of the social group
may be expressed a graph query with a pattern similar to the query in figure 5.1(a).
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ST∗
#

PM#

BA#

UD#

SA#

SD#

(a) Query pattern Q.

SD3

ST3SA3

PM3

PM2

UD2

SA2

ST2SD2ST4

SD4

SD1

PM1BA1

SA1

BA2

(b) Data graph D.

Position Skills
PM# Project de-

velopment,
business strat-
egy, mobile

BA# Project man-
agement, busi-
ness analysis,
requirement
gathering,
sharepoint

SA# Data modeling,
ETL, software
design

SD# MapReduce,
Pig, Java

ST# Test automa-
tion

(c) Required skills set for
Q.

Position Skills
PM1 Project devel-

opment
PM2, PM3 Project devel-

opment, busi-
ness strategy,
mobile

BA1 Business anal-
ysis

BA2 Project man-
agement,
business
analysis, re-
quirement
gathering,
sharepoint

SA1, SA3 Software
design

SA2 Data mod-
eling, ETL,
software
design

SD1, SD2, SD3, SD4 MapReduce,
Pig, Java

ST2, ST3, ST4 Test automa-
tion

(d) Available skills set in D.

Figure 5.1: Querying a social network database.

node. For example, the lighter colored node in PM category, i.e., PM1, has a low similarity with

the PM# node in the query graph (due to the low degree of overlapping skills set). Our goal is

to filter out such low quality matches and generate the candidate structure in figure 5.2(b) as a
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possible match. Note that even though the node SA3 has low similarity with SA#, the overall

structure is similar enough to be retained as a possible match. From figure 5.2(b), we extract the

three matches shown in figure 5.2(c) as our query response in which we account for the query

constraint ST∗
# by selecting two alternatives.

Intuitively, we initially group data graph nodes together using one of the nodes from the

query graph as the grouping guide. Thus, for each node in the query graph†, multiple nodes in

the data graph are grouped together. For example, in order to group together all the nodes that

are similar to PM#, PM2 and PM3 are grouped together. Hence, once the grouping process is

completed, we are guaranteed to have a set of nodes with high similarity values with those of the

query graph. Subsequently, the topology of this reduced search space is explored in form of a

“look-up operation” to identify similar sub-graphs as discussed above in example 5.1, and help

us significantly reduce computational overhead in AtoM.

To appreciate this advantage, let us compare AtoM’s matching process with TraM [10] that

has been shown to outperform SAGA [92] and C-Tree [45]. To match Q with D, TraM would

have systematically explored the neighborhood of each node to apply filtration criteria and as-

sess their potential of being a valid match. This could, however, generate highly overlapping

neighborhoods multiple times. A neighborhood once selected undergoes a matching process in

TraM to identify top-k matches. AtoM, on the other hand, saves time by significantly pruning

search space followed by efficient validation of the the sub-graphs in the reduced search space

to identify top-k matches. The summarization step by grouping similar nodes in AtoM as shown

in figure 5.2(a) is critical to this drastically reduced search time. To illustrate this, let us assume

that we had one more node in the data graph named AR (stands for artist with painting expertise).

This node would not have been picked by AtoM and placed in any of the groups since AR is

not similar to any of the query graph nodes. Therefore, the topology that AR assumes with its

neighbors would not have been explored by AtoM, but TraM and other contemporary algorithms

such as GADDI [115], TALE [93], VFLib [29] and C-Tree [45] would.
†In general, multiple nodes from the query graph can be used to group nodes from the data graph, as we will

discuss shortly when we formally explain the matching process using example 5.3.
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(a) Similarity grouping.

BA2

UD2

PM3
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SA1

SA3

SA2

SD1

SD3

SD4

SD2

ST3

ST4

ST2

(b) Filtering low similarity nodes.

UD2

BA2

PM2 SA2 SD2

ST2

ST4

UD2

BA2

SA2 SD2PM2 ST4

SA3 SD3PM3 ST3

(c) Extraction of results.

Figure 5.2: Steps involved in the matching process.
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5.1 Problem Definition and the Semantics of Matching

Let us revisit the definition of graph to reiterate the importance of attributed graphs. A graph

G is a mathematical pair (V,E), where V is a set of vertices, and E is a set of edges such that

E ⊆V ×V . The nodes and edges of graphs can have labels and other attributes to describe them

further. Therefore, a graph is formally defined as follows:

Definition 5.1.1 A labeled graph G is a quintuple G = (V,E,L, µ,τ), where

• V is a finite set of nodes, and L is a set of labels,

• E ⊆V ×V is a set of edges,

• µ : V → L is a node labeling function, and

• τ : E → L is an edge labeling function.

This definition allows us to handle arbitrary graphs with unconstrained labeling functions. For

example, the labels can be given by the set of integers, the vector space Rn etc. Moreover,

unlabeled graphs are obtained as a special case by assigning the same label to all nodes and edges.

For this dissertation, we consider that the nodes may have an arbitrary number of attributes but

the edges are unlabeled. In the discussion to follow, when we refer to a graph G = (V,E), we

actually mean it as a shorthand for a labeled graph G = (V,E,L,µ,τ) unless otherwise stated

where the remaining components are assumed.

The ability to cast overall similarity in terms of the nodes and edges of graphs has generally

been the main vehicle for graph matching. However, the way these similarities are computed and

composed to construct the overall similarity contributes largely to the high computational costs of

graph matching. A notable distinction was the approach inspired by random walk with restart [21]

where node similarity is made dependant on the structural likeness of the neighborhoods they

are part of [10, 41, 63] and thus embed the edge similarity directly into node similarity in a

quantifiable manner. Although it was shown that such approaches improved precision, recall,

efficiency and overall scalability of graph matching compared to leading algorithms such as C-

Tree, and SAGA, the recent random walk based algorithm TraM was still spending too much time
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to compute similarity scores. Depending on the user supplied similarity threshold, TraM is likely

destined to spend a significant amount of time without impacting the precision in an appreciable

way because to ensure structural similarity component of a node is high, it will need to explore

an increasingly larger space of the networks to compute the random walk scores.

In this dissertation, we explore an alternative to random walk based similarity score compu-

tation for graph matching without sacrificing efficiency, and precision and recall. In this new

approach, we use a simple pairwise node similarity computation along the lines of traditional

approaches in C-Tree, SAGA and TALE, but boost performance by a novel method in which we

avoid computing a large number of candidate graphs and rejecting the ones not meeting the ex-

pected threshold. Generally, as the number of top matched graphs k and the similarity threshold ε

are made smaller to respectively select only a handful of quality matches from a possible exhaus-

tive set of graph pairs, the degree of wasted computation increases‡. In our current approach, we

are able to allow arbitrarily lower threshold yet select the most promising matches using a low k

at a cost lower than TraM, and thus by extension at a cost lower than most leading algorithms we

are able to compare with.

The conceptual likeness of two graphs in AtoM is captured as a function of the similarity

of two sets of nodes V1 and V2 using a domain dependent similarity function over the set of

associated labels L1 and L2 respectively, called the σ -similarity and defined as σ : (V1 → L1 ×

V2 → L2)→ [0,1], and an expected structural dissimilarity threshold λ , both of which we assume

as given prior to the application of our algorithm. The k selected graphs will also have a σ -

similarity above a threshold (1− ε) among the nodes with the query graph. The intent is to

control the match degradation through the two thresholds ε and λ , and admit only a select few

that meet the product of these two thresholds through the parameter k. Higher ε admits more

dissimilar nodes, while higher λ will admit graphs that are potentially less structurally dissimilar.

But lower dissimilarity thresholds will entail higher computational costs yielding more accurate

‡Higher threshold with lower k potentially miss valid matches of interest. So, there is a need to allow lower
similarity thresholds but only select the best possible matches.
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match. Therefore, user has control over the cost and the graphs admitted by making judicious

choices of these parameters based on application needs.

5.1.1 Graph Similarity

Similarity between two graph can be defined in terms of σ -similarity and the structural properties

of the input graphs. The structural property may also be defined in terms of topological similarity

and then both can be woven into a higher level similarity function to compute overall graph

similarity. In this dissertation, we quantify the quality of the overall similarity in terms of the

similarity of the matched nodes and the matched edges as follows.

Definition 5.1.2 [Graph Similarity] Let G = (Vg,Eg) and H = (Vh,Eh) be two graphs, ε is min-

imum similarity threshold, σ is a domain dependent node similarity function of the form σ :

(V → L×V → L)→ [0,1], ε and λ respectively are node and structural dissimilarity tolerances,

and ϕ is a vertex selection function of the form ϕ : Vg →Vh such that ∀vg(vg ∈Vg(ϕ(vg) = vh ⇒

σ(µ(vg),µ(ϕ(vg))) ≥ (1− ε)))§. Then, the conceptual similarity γ between two graphs G and

H is defined as the product of their aggregate node similarity γσ and structural closeness γe as

follows

γ(G,H) = n× γσ (G,H)× γe(G,H)

where

γσ (G,H) = ∑
∀vg(vg∈Vg), σ(µ(vg),µ(ϕ(vg)))≥(1−ε)

σ(µ(vg),µ(ϕ(vg)))

|Vg|
,

γe(G,H) = ∑
∀v1,v2(v1,v2∈Vg, edge(v1,v2)∈Eg)

I(edge(ϕ(v1),ϕ(v2)))

|Eg|

and γe(G,H)≥ (1−λ ) holds.

In the above definition, I : Eh → {0,1} is an indicator function which assumes 1 if the pa-

rameter edge(ϕ(v1),ϕ(v2)) ∈ Eh, assumes 0 otherwise. Functionally, I verifies if an edge in H

§Also let ϕ−1 : Vh →Vg be the dual of the function ϕ such that ϕ−1(ϕ(v)) = v. Furthermore, ϕ(vh) = vh whenever
Vh =Vg.
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corresponds to an edge in G under ϕ . Furthermore, n is the number of matched nodes in H. Incor-

porating n in the definition enables extending the notion of similarity for pattern queries, where

the number of matched nodes (e.g., Kleene closure) has a significant role in the overall matching

process. In the remainder of the presentation, we follow the convention of labeling nodes with

identical alphabetical prefixes if they have high σ -similarity, data graph nodes are labeled with

lower case letters and query graph nodes are labeled with capital letter prefixes.

Intuitively, if we ignore the influence of the selection function ϕ in the above definition for the

moment, the graph similarity amounts to the product of the similarity of randomly selected nodes

and the fraction of the edges they form in the target graph. The lack of a guidance on the node

selection forces an algorithm to search a large space of possible networks for subgraphs similar

enough in the target graph, and then select the highest k similar subgraphs at a huge expense.

However, the introduction of the functions ϕ , and I, and the structural dissimilarity tolerance

λ in definition 5.1.2 acts as a smart node selection guide and help us prune the search space

significantly with the help of the indexing function χ (in definition 5.2.1) and the randomization

function ρ (in definition 5.2.2). The tolerance λ controls the degree of missing edges we allow

based on the notion of gate nodes (in definition 5.2.4) that ensures connectivity.

5.2 Top-k Graph Matching in AtoM

In this section, we introduce our algorithm AtoM consisting of three distinct steps using the

example in figure 5.3, for expository purposes. We develop the required concepts formally as we

build up to discuss the algorithm.

5.2.1 Step One: Summarization

The first step in the matching process involves summarizing the data graph in the context of the

query graph. The implication is that for every query graph, the summarized data graph will be

different. The summarization process involves two steps. In the first step, we collapse identical

types of nodes into a single node, called a bucket, and redraw the graph ignoring their underlying
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Figure 5.3: Example showing matching process of AtoM.

edge relationships. The collapsed graph corresponding to the query graph in figure 5.3(a) and

data graph in figure 5.3(b) is shown in figure 5.3(c). Formally, we define the summarization as

follows.
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Definition 5.2.1 [Buckets] Let σ be a similarity function, and G = (V,E) be any graph. Then

χ is an indexing function of the form χ : L → N such that ∀l1, l2 ∈ L, χ(l1) = χ(l2), whenever

µ(v1) = l1 and µ(v2) = l2 and σ(µ(v1),µ(v2)) ≥ (1 − ε), and χ−1 is its inverse, called the

clustering function, i.e., χ−1(n) ∈ 2L such that ∀n1,n2 ∈ N,χ−1(n1)∩ χ−1(n) = /0, and ∀l, l′ ∈

χ−1(n), µ(v) = l,µ(v′) = l′, σ(µ(v),µ(v′)) ≥ (1− ε). When disambiguation is needed, we

subscript functions χ and χ−1 with V to indicate that they are over the labels corresponding to

the vertices V , i.e., χV and χ−1
V respectively.

The mapping χ(l) is called a bucket, index or type of node v with which it is associated, i.e.,

µ(v) = l. Since similar nodes map to identical buckets, and the buckets do not overlap, χ acts

as a partitioning function, and each such partition is given by χ−1, i.e., for every l ∈ χ−1(n),

χ(l) = n holds. In figure 5.3(c), the node {a1,a2,a3} is one such bucket, say bucket 1. Without

loss of any generality, we can represent all the nodes in bucket 1 as ai, and its type or bucket

index as A for ease of reference.

Once the summary graph is created, we draw an edge between two buckets in figure 5.3(c) if

two nodes in the underlying data graph have an edge between them as well which are members of

these buckets. For example, since there is an edge between c1 and b3 in the data graph in figure

5.3(b), we have and edge between buckets labeled {c1,c2} and {b1,b2,b3}. We then remove the

nodes from each of the buckets that does not meet a given similarity threshold. In other words,

the nodes in the filtered collapsed graph will have high domain similarity, i.e., σ -similarity. Since

the bucket {d1,d2} is not similar to any of the query graph nodes (i.e., Ai, B j or Ck), we remove

this node and all incident edges from the collapsed graph, as shown in figure 5.3(d).

In the next step of summarization process, we try to recreate the query graph from the filtered

collapsed graph as follows. In this step, our goal is to create exactly the same number of nodes in

the query graph¶ by picking nodes from each of the buckets in figure 5.3(d). One of the candidate

summary graphs is shown in figure 5.3(e). In this figure, we have five nodes labeled {a1,a2}, a3,

{b2,b3}, b1, and {c1,c2} corresponding to query graph nodes A1, A2, B1, B2 and C1 respectively.
¶If the query graph had a set of nodes of type E, for example, that did not have corresponding e nodes in data

graph, we will not have a node corresponding to E in the collapsed graph. In that case, we will proceed with the
summarization with less than identical number of query graph nodes.
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We create this graph by random partitioning of the buckets and by maintaining the same edge

retention convention we have adopted before, i.e., an edge between two nodes is included in the

graph if two members in the underlying data graph have an edge. In this figure, we partitioned

{a1,a2,a3} into {a1,a2}, and a3, and {b1,b2,b3} into {b2,b3} and b1 since we needed two A and

two B type nodes. We do not partition {c1,c2} as we need only one C type node. Formally,

Definition 5.2.2 [Randomized Summary Graphs] Let σ be a node similarity function, and Q =

(U,Eq) and D = (W,Ed) respectively be the query and data graphs. Then ρ is a randomization

function of the form ρ :U → 2W such that for every u∈U , (i) ∀w∈ ρ(u),χ(µ(u))= χ(µ(w)), (ii)

∀u′ ∈U,u ̸= u′,ρ(u)∩ρ(u′)= /0, (iii) ρ(u) possibly empty, and (iv) ρ(u)⊆ χ−1
W (χU(µ(u))), hold.

A randomized graph R with respect to Q and D is a graph of the form (X,Er) such that for every

X ∈ X,X = ρ(u), and for every e = ⟨X1,X2⟩ ∈ Er ⇔∃w1,w2(w1 ∈ X1∧w2 ∈ X2∧⟨w1,w2⟩ ∈ Ed).

Intuitively, ρ associates with each node in the query graph Q a subset of the nodes in a data

graph bucket of the same type and nothing else, i.e., Ais will be matched with only subsets of

a js. Notice that once ρ partitions the buckets and generates a possible skeleton of the candidate

subgraph, we have reduced the search space to be explored to a very small set of data nodes

corresponding to each query node that are already known to be similar enough. At this stage

the choice of data nodes for the function ϕ in definition 5.1.2 is localized to each partitioned

buckets and help us ignore matching all other nodes that are not in the bucket ρ(u) resulting in

a significant saving, i.e., ϕ(u) ∈ ρ(u). In figure 5.3(e), ρ(A1) = {a1,a2} ⊂ χ−1
W (χU(µ(A1))),

whereas in figure 5.4, ρ(A1) = {a1} ⊂ χ−1
W (χU(µ(A1))), giving us the possible node selections

ϕ(A1) = a1 and ϕ(A1) = a2 for the former, and only ϕ(A1) = a1 for the latter case respectively.

Pruning Aids

It is interesting to note that several useful properties hold in the AtoM algorithm described thus

far. For example, it should be evident that the generated summary graphs are potential candidates

for further exploration. However, the candidate summary graphs are subjected to early and fre-

quent filter operation in order to reduce the number of “explore-worthy” summary graphs. The
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Figure 5.4: An alternate summary and matched graph.

following theorem characterizes the filtration criterion which suggests that if a summary graph

fails to meet the minimum structural similarity requirement, none of its project graphs would.

Hence, we could discard the candidate summary graph and exclude it from further exploration.

Theorem 5.2.3 Let Q = (U,Eq), D = (W,Ed) and R = (X,Er) be the query graph, data graph

and the randomized summary graph respectively. Also let G ∈ π(R) be any projection graph of

R. Then ∀G,G ∈ π(R),

γe(R,Q)≤ (1−λ )⇒ γe(G,Q)≤ (1−λ )

Proof: We use Reductio ad absurdum to establish this theorem. We know

γe(R,Q) = ∑
∀x1,x2∈X, edge(x1,x2)∈Er

I(edge(ϕ(x1),ϕ(x2)))

|Eq|
(5.1)

where ϕ(x1),ϕ(x2) ∈ Vq. From the definition of R = (X,Er), we know that it is formed by the

following criteria

For x1 ∈ X and x2 ∈ X, e = ⟨x1,x2⟩ ∈ Er ⇔ ∃w1,w2(w1 ∈ x1 ∧w2 ∈ x2 ∧⟨w1,w2⟩ ∈

Ed).

Let us assume that ∃G such that γe(G,Q) ≥ λ but γe(R,Q) ≤ λ holds. We can restate this as

γe(G,Q) ≥ γe(R,Q). If the two terms are equal, it does not violate the theorem. Let the set
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X = {X1,X2, . . . , Xn}, where each Xi = {wi1,wi2, . . . wim} ⊆W for some n and m. Let us assume

that γe(G,Q)> γe(R,Q). This essentially means that ∃wi,w j(wi,w j ∈W ) such that edge ⟨wi,w j⟩

exists but edge ⟨Xi,X j⟩ is non-existent, where wi ∈ Xi,wi ∈ X2. This is impossible because, For

X1 ∈ X and X2 ∈ X, e = ⟨X1,X2⟩ ∈ Er ⇔ ∃w1,w2(w1 ∈ X1 ∧w2 ∈ X2 ∧⟨w1,w2⟩ ∈ Ed) holds. In

other words, since the edges of the summary graph are formed by the combined contribution of

the actual nodes contained in the summary graph nodes, if the number of edges in R that match

with Q is less than the threshold λ , there cannot be any combination of the nodes contained in G

with higher number of matches. �

Summarization Algorithm

Using the definitions of σ -similarity, bucket and clustering functions, we are in a position to

present two algorithms that form the core of AtoM. The first algorithm, algorithm 6, generates

the relevant summary graph from a query graph and a data graph, given the similarity values

between the labels L, either as a set of triples of the form ⟨l1, l2,s⟩ where l1 and l2 are labels and

s is the similarity between 0 and 1, or as a computable function.

Once the summary graph is constructed, we can then iteratively construct the randomized

summary graphs as needed using algorithm 7. It should be clear that a randomized graph will

not always contain the edge pattern or structure in the query graph. Therefore, it is necessary to

iterate and randomize the summary graph several times. The exact number of iteration depends

upon with how much certainty we would like to compute our matching. Higher the certainty,

more likely it is that AtoM will return the best possible matches, but also higher will be the

cost of matching. We will discuss this connection in section 5.2.2 and quantify the number of

iterations needed as a function of certainty in theorem 5.2.6.

5.2.2 Step Two: Validation

While the random partitioning helps reconstruct the skeleton of the query graph on the data graph

at the summary level, it is agnostic to the edge structure of the query graph and thus cannot ensure
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Algorithm 6: Summary Graph
Input: Data graph D = (W,Ed), query graph Q = (U,Eq), and dissimilarity threshold ε
Output: Summary graph S = (X,Es)

1 Let X = /0, and Es = /0;
2 for ∀u ∈U do
3 if bucket X = χ(µ(u)) does not exist then
4 create bucket X ;
5 X = X∪{X};

6 for ∀w ∈W do
7 if ∃u ∈U such that σ(µ(u),µ(w))≥ (1− ε) then
8 include w in bucket X = χ(µ(u))

9 for ∀wi,w j ∈W do
10 if ⟨wi,w j⟩ ∈ Ed , ∃ui,u j, such that wi ∈ χ(µ(ui)) = Xi, w j ∈ χ(µ(u j)) = X j and

Xi ̸= X j then
11 include ⟨Xi,X j⟩ ∈ Es;

12 return S = (X,Es);

correspondence of the edge structures of the query and data graphs. From a randomized graph, a

node in a summary graph cannot contribute to the overall structure of a query graph if it cannot

participate in an anticipated edge in the query graph (after mapping). For example, the node

a1 in summary node ρ(A1) in figure 5.3(e) is such a node because it does not connect with any

node in ρ(B1) or ρ(A2). But, the node a2 potentially can contribute to two edges ⟨A1,B1⟩ ∈ Eq

and ⟨A1,A2⟩ ∈ Eq respectively as data edges ⟨a2,b2⟩ ∈ Ed and ⟨a2,a3⟩ ∈ Ed . The potentially

contributor node a2 is called a gate node as formalized below. In the matching process, we are

then able to eliminate non-gate nodes such as a1, to further reduce the choices for the function ϕ .

Definition 5.2.4 [Gate Nodes] Let Q = (U,Eq), D = (W,Ed) and R = (X,Er) respectively be a

query graph, data graph and one of their randomized graphs. A node x ∈ X ∈ X is called a gate

node if x ∈ ρ(u),u ∈U , and there exists distinct x′,u′ such that x′ ∈ X ′ ∈ X, x′ ∈ ρ(u′),u′ ∈U and

⟨u,u′⟩ ∈ Eq ⇒ ⟨x,x′⟩ ∈ Ed .
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Algorithm 7: Randomized Graph
Input: Query graph Q = (U,Eq), data graph D = (W,Ed) and summary graph S = (X,Es)
Output: Randomized summary graph R = (Y,Er)

1 Let Y = /0, and Er = /0;
2 for ∀u ∈U do
3 create bucket Yu;
4 Y = Y∪{Yu};

5 for ∀X ∈ X do
6 randomly split X into non-empty subsets sis such that 1 ≤ i ≤ |χ−1

U (χ(µ(x)))| and x is
any member of X ;

7 include each si in distinct Yu such that χ(µ(u)) = χ(µ(x)) and x ∈ si;

8 for ∀x,y(x,y ∈W,x ̸= y) do
9 if ⟨x,y⟩ ∈ Ed , ∃w,z(Yw ∈ Y,Yz ∈ Y,w ̸= z), such that x ∈ Yw and y ∈ Yz then

10 include ⟨Yw,Yz⟩ ∈ Er;
11 if ⟨ϕ−1(x),ϕ−1(y)⟩ ∈ Eq then
12 increment number of valid incident edges ψ(ϕ−1(x),x) and ψ(ϕ−1(y),y)
13 if ψ(ϕ−1(x),x)× (1−η)≥ ψ(ϕ−1(x),ϕ−1(x)) then
14 mark x as sufficiently connected gate node.

15 if ψ(ϕ−1(y),y)× (1−η)≥ ψ(ϕ−1(y),ϕ−1(y)) then
16 mark y as sufficiently connected gate node.

17 return R = (Y,Er);

The above definition identifies nodes b1,b2,b3,a2,a3 and c1 as gate nodes (i.e., a1 and c2 as

non-gate nodes) in figure 5.3(e). But in figure 5.4, only nodes a3 and c2 are non-gate nodes.

Note that choosing a gate node does not guarantee a perfect match. For example, choosing to

match B1 with b3, i.e., ϕ(B1) = b3, only results in selecting the matching edge ⟨b3,c1⟩ as we are

unable to match other edges corresponding to ⟨B1,B2⟩, ⟨B1,A1⟩ and ⟨A1,A2⟩, resulting in only

25% matching, i.e., γe(Q,D) = .25. If λ = 25%, we are required to admit only matches equal to

or above 75% and hence the matched graph ({b3,c1},{⟨b3,c1⟩}) will be rejected. But the match

({b1,b2,a1,a2},{⟨b1,b2⟩,⟨b1,a1⟩,⟨a1,a2⟩}) will meet the edge matching threshold of 75% and

will be selected.

However, we can be more selective and admit a subset of the gate nodes yet meet the (1−λ )

threshold for the edge similarity γe in definition 5.1.2 without compromising the set of top-k
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matches we intend to compute. We can do so by pushing down the threshold to the gate node

level, and require that each gate node be part of (1−λ )% of edges to its query graph counterpart.

In fact, this selection condition can be made part of yet another user supplied parameter that

would range between zero and λ forcing respectively for us to find only matches that allow no

structural deviation to λ% structural deviation (missing edges) from the query graph. We thus

introduce the concept of sufficiently connected gate nodes as follows.

Definition 5.2.5 [Sufficiently Connected Gate Nodes] Let Q = (U,Eq) be a query graph, R =

(X,Er) be its randomized summary graph, x ∈ X ∈ X be a gate node, and u ∈ U be its cor-

responding query graph node, i.e., x ∈ ρ(u). Also let η be an admissible connectivity error

tolerance such that 0 ≤ η ≤ λ , and n be the number of edges in Eq involving node u. Then, x is

sufficiently connected if Er contains at least n× (1−η) edges of the form ⟨x,x′⟩ ∈ Er.

While the parameter η does not impact the ranking of the matched graphs in our top-k selection,

it potentially can prevent some of the low scoring matches to be included in the selection as η

approaches zero, i.e., we require 100% structural match. Thus, choosing a lower η helps prune

matches early that will eventually be low scoring, and thus speed up the response time.

In other words, definitions 5.1.2 and 5.2.5 allow the control of structural similarity at two

different levels. For any data graph D = (W,Ed), query graph Q = (U,Eq), a data graph node

w ∈W in a summary graph node, its relationship to η is quite simple. Given w, the corresponding

query graph node is ϕ−1(w) = u ∈U , and n = |Eu ⊆ Eq| when for every edge in Eu is of the form

⟨u,y⟩ for some y ∈U . Given that ϕ is not a total function and may only map a subset of nodes in

U to W , it is likely that a subset of edges in Eu will have mappings of the form ⟨ϕ(u) = w,ϕ(y)⟩,

and equivalently ⟨ϕ−1(w) = u,ϕ−1(v)⟩ for some v ∈ W . The subset of edges in Eu, Ēu, having

a mapping in Ew thus constitutes the fraction |Ēu|
n = η , the structural error tolerance, i.e., the

smaller the η , larger is the error. We define a function ψ such that any two graphs G1 = (V1,E1)

and G2 = (V2,E2) and a mapping function ϕ , and two nodes v1 ∈ V1 and v2 ∈ V2, it returns the

number of edges of the form ⟨ϕ(v1),ϕ(v)⟩= ⟨v2,ϕ(v)⟩ these two nodes share under the mapping

function ϕ from the element of V1 to V2. Alternately, for a query node u and data node w,
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ψ(u,w) = |Ēu|= n×η . A caveat is that for u = w, i.e., both u and w come from the same query

or data graph, ψ(u,u) = |Eu| = n×η , since u will share all its edges with u under ϕ . Hence, ϕ

acts as an identity function for same types of nodes.

Cost of Matching versus Accuracy

The grouping of similarly labeled nodes into summary graphs, and their subsequent randomiza-

tion is aimed at reducing candidate generation and testing for match of the whole graph with the

knowledge that randomized partitioning is stochastically is a structure preserving operation. In

some sense, we are trying to generate a method that allows partition components are compose

the filtered them as much as possible to reconstruct a match that is sufficiently similar above a

threshold. By identifying sufficiently connected gate nodes as we randomize a summary node,

we have now reduced the matching into a look up operation. All we have to do now is maximally

pick one such node from each summary node in R corresponding to the query graph edges.

But inherent in the random partitioning is the possibility that the data graph edge structure

embedded in the partitioned graph may not retain a structure sufficiently similar to the query

graph. Therefore, it is necessary that that partition the summary graph in all possible ways to

find all possible structures. Unfortunately, the number of such randomized graphs and possible

candidates is the product of a large number of possibilities, i.e., ∏|U |
i=1

ni!
(ni−mi)!

where each ni is the

number of data graph labels in each bucket and mi is the number of query graph labels for the

same bucket in the randomized graph.

Theorem 5.2.6 Let Q = (U,Eq), D = (W,Ed) and S = (X,Er) be the query graph, data graph

and the summary graph respectively. Also, for every node ui ∈ U and w j ∈ W, let the num-

ber of query and data nodes mapped to each bucket j be n j = |χ−1
W (χU(µ(ui))| and m j =

|χ−1
U (χU(µ(ui))| respectively. Then, if a matching topology of Q exists in D and the total number

of buckets in S is k, the probability p of the summary graph S retaining this match is given by
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p =

∏
1≤i≤k

ni!
(ni−mi)!

∏
1≤i≤k

mini
(5.2)

Proof: If the query graph Q exists in the data graph D then there are mi vertices in D correspond-

ing to nodes with label li in Q. These vertices need to be in different buckets in the summary graph

S. The probability that these nodes will be in different groups is given by

mi

mi
× mi −1

mi
× . . .× mi −ni +1

mi
=

ni!
(ni−mi)!

mini

Calculating for all k = |∪u∈U χ−1
U (χU(µ(ui))| labels we get

p =

n1!
(n1−m1)!

× n2!
(n2−m2)!

× . . .× nk!
(nk−mk)!

m1n1 ×m2n2 × . . .×mk
nk

=

∏
1≤i≤k

ni!
(ni−mi)!

∏
1≤i≤k

mini

�
It is possible to establish a link between the number of times we need to randomize a summary

graph increase the probability of including a matching pattern in the randomized graph, and thus

reduce the chance of not finding a match that exists due to improper partitioning. Conversely,

iterating less will increase the chance of missing a valid match. From theorem 5.2.6 it follows

that the probability that the query structure (if exists in the data graph) is not retained in the

summary graph is 1− p. Hence, if we perform the randomized summarization process t times

the probability that the structure is missed in all t iterations is (1 − p)t . Thus, to bound the

acceptable error ε̂ where ε̂ = (1− p)t , the number of iteration required is loge ε̂
log(1−p) . However,

since we are interested in approximate matches, the number above serves as an the upper bound

on the number of iterations.

t ≤ loge ε̂
log(1− p)

(5.3)
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The summarization process is invoked t times, we notice that the summarization process only

affects nodes xi ∈ X , such that χ(µ(xi)) = χ(µ(u j)), where ∀u j ∈ U , χ(µ(u j)) is the same and

∀u j|{u j}|> 1.

Hence after the first iteration the execution of the method can be expedited in the subsequent

iteration by only concentrating on nodes xi. Similarly, gate node calculation and filtering out

non-gate nodes can be expedited since the role of gate node can change for nodes with the same

property.

Validation Algorithm

The way we have designed the randomized summary graph construction algorithm, we are able

to embed the validation step into the randomization process. For example, at step 16 in algorithm

7, we count for each node with how many anticipated edges it is connected and identify the node

as sufficiently connected gate node, if it is. By doing so, we aid identification of valid edges as a

lookup operation during the extraction phase, and avoid a separate algorithm for validation phase.

5.2.3 Step Three: Extraction

Since the ultimate goal is to find the best possible k matches, or top-k similar graphs, it is useful

to gather all the graphs that meet the intended similarity threshold anticipated in the query that

can be extracted from the summary graph. Once they are collected, we rank them in a dynamic

fashion to only return the most similar k graphs. The set of graphs meeting or exceeding the

similarity threshold is called the projection graphs captured formally in the definition below.

Definition 5.2.7 [Projection Graph] Let Q = (U,Eq), and D = (W,Ed) be a query and a data

graph respectively, and R = (X,Er) be one of their randomized graphs, i.e., ∀X ∈ X,∃u ∈ U ,

X = ρ(u)⊆W holds∥. Then, the projection graphs P of R, denoted P = π(R) =
∪

i{(Yi,Epi)}, is

the set of all graphs such that for every i, (i) |Yi| ≤ |U |, (ii) ∀y1,y2(y1,y2 ∈ Yi ∧ y1 ∈ ρ(u1)∧ y2 ∈
∥Note that X is a set of set of nodes and Er are edges involving two such sets, and ρ(u) ⊂ χ−1

W (χU (u)) holds
where χ−1

W (χU (u))⊆W .
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ρ(u2) ⇒ y1 = y2) whenever u1 = u2, (iii) for every edge ⟨x,y⟩ ∈ Epi , ∃u1,u2(u1,u2 ∈ U ∧ x ∈

ρ(u1)∧ y ∈ ρ(u2)∧ ⟨u1,u2⟩ ∈ Eq) ∧ u1 ̸= u2 , (iv) both Yi and Epi are maximal, and (v) all

vertices in Yi are sufficiently connected gate nodes.

Speedup without Matching Quality Loss

The definition 5.2.7 above characterizes the individual “similar-graph” candidates and how they

are extracted from the summary graph. In the example in figure 5.3(h), two such projected sub-

graphs are depicted. In other words, projection graphs P contain all the matched subgraphs of D

with sufficient node and structural similarity with Q contained in the randomized summary graph

R of D. The degree of structural similarity of the projected graphs and the connectivity tolerance

follows the relationship captured in the theorem 5.2.8 below which we leverage to prune candi-

date graphs that ensures that discarding all projection graphs involving gate nodes with less than

η = λ connectivity does not impact the set of similar graphs chosen by AtoM. Conversely, we

could potentially set η lower to restrict generating projections that will not make it to the top-k

set even though they will meet the λ threshold. Note that the filtering using λ is after the pro-

jection graphs are generated incurring processing costs, while filtering using η saves validation

costs. So, η can be used to select only a few k candidates that will make the top-k matches and

save time and serve as an additional pruning device. We use the relationship between η and ψ

discussed in section 5.2.2 to formalize the effectiveness of pruning using sufficiently connected

gate nodes in theorem 5.2.8.

Theorem 5.2.8 Let Q= (U,Eq), D= (W,Ed), R= (X,Er), and P= π(R) respectively be a query

graph, a data graph, their randomized summary graph, and all projection graphs of R. Also let

λ be structural dissimilarity tolerance. Then for each node x ∈ X ∈ X and ū = ϕ−1(x), we can

filter out node x as non-gate node if

ψ(ū,x)< 2×|Eq|(1−λ )− ∑
∀u∈(U\{ū})

ψ(u,ϕ(u)) (5.4)
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Proof: From the definition of λ , a subgraph is deemed valid for further exploration if the total

number of matched edges is greater or equal to |Eq|(1− λ ). In other words, it is discarded if

the total number of matched edges is less than |Eq|(1−λ ). In the best case the total number of

matched edges equals to |Eq|. Therefore, the total number of matched edges

M = ∑
∀u∈U

ψ(u,ϕ(u))−N

≥ ψ(ū,x)+ ∑
∀u∈(U\{ū})

ψ(u,ϕ(u))−N

=

ψ(ū,x)+ ∑
∀u∈(U\{ū})

ψ(u,ϕ(u))

2

where, N is the number of shared edges. From hand-shaking lemma in graph theory, we know

every edge contributes to the degree count of two distinct nodes and since an edge is shared

between two nodes it is counted twice in ∑
∀u∈(U\{ū})

ψ(u,ϕ(u)). We have,

ψ(ū,x)+ ∑
∀u∈(U\{ū})

ψ(u,ϕ(u))

2
≤ |Eq|(1−λ )

ψ(ū,x)≤ 2×|Eq|(1−λ )− ∑
∀u∈(U\{ū})

ψ(u,ϕ(u)))

�

Extraction and Ranking Algorithm

In the final step of our algorithm, we explore this summary graph to extract possible matching

contenders. In this Figure 5.3(g), we see that the gray node can be filtered out as it does not

contribute to the matching criteria. This is due to the fact that the gray node participates in

edges that are not present in the query graph and they do not participate in nodes that are present

in the query graph. For example in 5.3(g), one such matching is depicted, where the dark nodes

represent the matched nodes. Figure 5.4 depicts a different randomized summarization of the data
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Algorithm 8: Projection Graphs
Input: Randomized summary graph R = (Y,Er), Q = (U,Eq)
Output: Projection graph P = π(R)

1 Let P = /0;
2 while true do
3 Extract graph G = (Yi,Epi) where |Yi| ≤ |U | such that

1. ∀y1 ∈ Yi, y1 is a sufficiently connected gate node,
2. ∀y1,y2(y1,y2 ∈ Yi ∧ y1 ∈ ρ(u1)∧ y2 ∈ ρ(u2)⇒ y1 = y2) whenever u1 = u2,
3. for every edge ⟨x,y⟩ ∈ Epi , ∃u1,u2(u1,u2 ∈U ∧

x ∈ ρ(u1)∧ y ∈ ρ(u2)∧⟨u1,u2⟩ ∈ Eq), and
4. both Yi and Epi are maximal.

P = P
∪

G;
4 return P;

graph. From an intuitive standpoint, once a matching summary graph is chosen, it is possible to

explore the summary graph nodes following the edges emanating from the query graph to select

one node from each bucket at a time. There could be a number of possible sets of nodes that could

potentially be extracted. These extracted components are subsequently evaluated according to

definition 5.1.2 to extract the best possible matches.

Since definition 5.1.2 allows matching two graphs in many different ways, multiple matching

scores and matches can be generated iteratively. A useful exercise is to rank the matches and

accept only the best k matches, called top-k matches. We define a function η of the form η :

2E →N that given a set of edges, returns the number of unique nodes that contributes to the

matched edges toward formally capturing the concept of top-k similar graph matching as follows.

Intuitively, for data graph D and a query graph Q, our objective is to identify k sub-graphs S from

D such that the similarity between Q and each si ∈ S, 1 ≤ i ≤ k, are the maximum among all

possible subgraphs of D and higher than a threshold λ , as stated in definition 5.2.9.

Definition 5.2.9 [Top-k similar graphs] Let D = (W,Ed) and Q = (U,Eq) respectively be the

data and query graphs. Let S be the set of all possible subgraphs of D. Then for a given k and
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similarity threshold λ , top-k matching of Q with D is the set of graphs K such that K⊆ S, |K| ≤ k

and ∀g(g ∈K,∀s(s ∈ (S\K)(γ(g,Q)> γ(s,Q)∧(γe(g,Q)≥ λ ∧γσ (g,Q)≥ η(EQ)×(1−ε))))).

Table 5.1: Example Similarity Matrix
a1 a2 a3 b1 b2 b3 c1 c2

A1 1.0 0.9 0.8 0.1 0.09 0.08 0.1 0.09
A2 0.9 1.0 0.9 0.09 0.1 0.09 0.09 0.1
B1 0.1 0.09 0.08 1.0 0.9 0.8 0.1 0.09
B2 0.09 0.1 0.08 0.9 1.0 0.8 .09 0.1
C1 0.1 0.09 0.08 0.1 0.09 0.08 1.0 0.9

For example, for Figures 5.3(a) and 5.3(b), given the above similarity table, the top 2 sub-

graphs chosen by AtoM consists of nodes {ϕ(A1)= a2,ϕ(A2)= a3,ϕ(B2)= b1,ϕ(B1)= b2,ϕ(C1)=

c1} and {ϕ(A1) = a2,ϕ(A2) = a1,ϕ(B2) = b1,ϕ(B1) = b2,ϕ(C1) = c1} with a score of 4.6. Sim-

ilarly the set consisting of nodes {ϕ(A1) = a1,ϕ(A2) = a2,ϕ(B1) = b1,ϕ(B2) = b2,ϕ(C1) = c1}

has a score of 3.75 and would be ranked lower than the above two. If k = 1, according to def-

inition 5.2.9, AtoM will still return the first two matches as both have score 4.6, i.e., there are

two graphs with a single score. This is because we made a design choice to not choose between

matches with identical scores. But for k = 2, we still have the first two because in this case we

will not have to make a choice yet, we can return 2 matches. To include the last match with a

score of 3.75, we will need to set k = 3.

5.2.4 The overall algorithm

The main AtoM procedure in 9 accepts three error tolerance thresholds λ , η and ε in addition

to the label similarity function σ , size of the number of top matches k and of course the data

graph D and query graph Q. For exact label matches, we require that σ(li, l j) ∈ {0,1}, and for

approximate matches, σ(li, l j) ∈ [0,1]. Note that if exact edge matching is required, we can

set both λ and η equal to zero, and force AtoM to behave like a subgraph isomorph matching

algorithm. Once supplied with the above parameters, using the query graph as the template, we

morph the data graph into a condensed graph that assumes the structure of the query graph and

proceed to find the matches in three distinct phases as shown in algorithm 9 with the help of three
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component procedures that implement the three steps as outlined in section 5.1 to capture the

semantics of matching in AtoM.

Algorithm 9: AtoM
Input: D = (W,Ed), Q = (U,Eq), similarity function σ , structural dissimilarity threshold

λ , number of best matches k, label matching error tolerance ε , and structure
matching error tolerance η ;

Output: Top k matched graphs of D;
1 Initialize priority queue Q̄ as empty;
2 Compute iteration limit t using equation 5.3;
3 Compute summary graph S = Summary Graph(D,Q,ε);
4 for i = 1 to t do
5 Compute randomized summary graph R = Randomized Graph(D,Q,S,η);
6 Compute projection graph P = Projection Graph(R);
7 for every graph G ∈ P do
8 if γe(G,Q)≥ (1−λ ) then
9 Insert G in priority queue Q̄;

10 Collect topmost k graphs in queue Q̄ into set M;
11 return M;

In this algorithm, Q̄ is a priority queue that stores the set of edges of subgraphs of the data

graph D in decreasing γ order from which the top k subgraphs is read off into M. The randomized

summary graphs according to definition 5.2.2 are generated iteratively by calling the Randomize

Graph procedure in line 5. The summary graph needed is computed once with a call to the

Summary Graph procedure in line 3. The extraction phase is divided into two steps. First, all

the valid matches are collected as projection graphs in line 6. If the projection graphs meet the

structural similarity threshold, then they are pushed into the priority queue Q̄ so that they are

ranked according to the similarity function γ . In the final step in line 10, the top most k matches

are read off of the queue Q̄, completing the matching process.
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5.3 Accounting for Edge Similarity

The notion of the graph similarity can be extended and tailored to cater for weighted edges as

well. Protein-protein interaction networks, for example, can have numeric values associated with

edges representing the confidence score of the interactions. We have extended the definition of

graph similarity by introducing the notion of ϒ function. We have replaced the identity function

with this new function which essentially represents the edge similarity between the chosen data

graph edge and the corresponding query graph edge. The denominator term κ is a normalization

factor to cap the value of γe within [0,1].

Definition 5.3.1 [Graph Similarity with Edge Labels] Let G1 = (Vg1,Eg1) and G2 = (Vg2,Eg2) be

two graphs and ϕ be a mapping function. Then, the similarity γ between two graphs G1 and G2

under a mapping function ϕ is

γ(G1,G2) = n× γσ (G1,G2)× γe(G1,G2)

where

γσ (G1,G2) = ∑
∀v1∈Vg1 ,∀ϕ(v1)∈Vg2

σ(v1,ϕ(v1))

|Vg1|

γe(G1,G2) = ∑
∀v1,v2∈Vg1s.t.{v1,V2}∈Eg1

ϒ({ϕ(v1),ϕ(v2)})
κ

5.4 Pattern Querying

A Query graph Q = (Vq,Eq) is called a pattern graph if Q represents a set of graphs Q̂ loosely

conforming to the topological structure of Q and containing zero or more instances of certain

nodes from Q, referred to as repeat-nodes.

For example, in Figure 5.1, the node ST refers to a repeat-node for the query graph. Thus

in the extracted result multiple instances of ST is permitted to appear. AtoM can be morphed

to handle pattern queries as well. To extend AtoM to handle query patterns, the repeat nodes in



60

the same summary nodes and having a common neighbor from a different summary nodes are

augmented with a pseudo-edge to connect with each other. The definition of projection graph is

modified such that condition (iii) becomes: for every edge ⟨x,y⟩ ∈ Epi , ∃u1,u2(u1,u2 ∈ U ∧ x ∈

ρ(u1)∧ y ∈ ρ(u2)∧⟨u1,u2⟩ ∈ Eq)

The rest of the process remains same. Since the result obtained from pattern search may

return a variable number of nodes, the similarity measure needs to be adjusted as well. We use a

gaussian function to cater to the variable number of expected nodes in the matched graph.

γ(G1,G2,θ1,θ2) =
1

θ1 × 2
√

2π
× e

−1
2 ×(

(n−θ2)
θ1

)2
× γσ (G1,G2)× γe(G1,G2) (5.5)

Here θ2 represents the expected number of nodes from the matching process, and θ1 represents

the decay parameter that penalizes matches with more of less number of nodes. For example, we

can refer to arnetminer data set [91]. We ran AtoM to look for a team of atmost 4 researchers

who have published together and have published either in VLDB and KDD or only KDD. We

obtained the following set of researchers in the top results:

Table 5.2: Partial Matching result on DBLP data set
Martin Ester Jiawei Han Heikki Mannila Marcel Holsheimer

Micheline Kamber Jiawei Han Heikki Mannila Marcel Holsheimer
Charu Aggarwal Jiawei Han Heikki Mannila Marcel Holsheimer

Martin Ester Jiawei Han Heikki Mannila Usama Fayyad
Micheline Kamber Jiawei Han Heikki Mannila Usama Fayyad
Charu Aggarwal Jiawei Han Heikki Mannila Usama Fayyad
Usama Fayyad Heikki Mannila Jiawei Han Micheline Kamber

5.5 AtoM in Map-Reduce Framework

Map-Reduce is a programming model catering to large data sets in a parallel and distributed man-

ner on a cluster. Map-Reduce (or MR in short) framework is a two step procedure commencing

with “Map” that generally is applied to filter or sort data and followed by “Reduce” step to per-

form summary or aggregation on a group of data. The infra-structure provides distributed data
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management including marshalling, parallelizing, communication and fault tolerance leaving the

Map-Reduce framework free from the intricate details of the distributed system. The model is

inspired by functional programming language model.

“Map” step: In the map step the input is divided into smaller sub-problems and distributed in

processor nodes by the master node. The smaller problem is processed in the processor

nodes and results are sent back to the master node.

“Reduce” step: The master node accumulates partial results from all the sum-problem and pro-

cesses them in a batch.

In Map-Reduce frame-work each mapping operation is independent of the others and all maps

can be executed in parallel. Analogously, a set of reducers can be executed in parallel provided

that all outputs of the map operation that share the same key are presented to the same reducer at

the same time, or that the reduction function is associative.

The algorithm can be easily extended and ported for Map-reduce implementation. The al-

gorithm proceeds by segmenting the data graph into a set of mutually set of exclusive sections.

This segmentation process is directed by the nodes of the query graph. AtoM algorithm lends it-

self to be seamlessly converted in to map-reduce framework. The summarization phase is driven

by grouping the set of data graph nodes in multiple disjoint sets. These sets represent grouping

of semantically similar nodes centered around one of the query graph nodes. Hence in the MR

framework, data-graph nodes are compared with the query graph nodes and grouped together

with the most similar one. This process is followed by a two-step map-reduce process to generate

tuples of the form ⟨w1,w2,x1,x2⟩ where w1 and w2 are data-graph nodes and x1 and x2 are the

query graph nodes that they are mapped to. Note that here summary graph nodes are essentially

semantic mapping of the query graph nodes for the data graph nodes, hence, we can refer to x1

and x2 as summary graph nodes without loss of generality. Finally the ProjectionGraph algorithm

is a natural candidates for MR framework and has a direct MR connotation.
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CHAPTER 6: EXPERIMENTAL

RESULTS

6.1 Experimental Results: TraM

The system has been implemented in Java. As the back-end database we used MySQL. In or-

der to facilitate storage of graph database as well as the query graph and their labels, we used a

number of database tables. Internally, the algorithm converts the labels of the nodes into positive

integers. Thus in order to retain the mapping between the labels of the original graph and the

translated labels, we keep two database tables datanode(id, label) and querynode(id, label). Sub-

sequently the entire graph is stored as pairs of ordered nodes representing the edges. In the tables

datagraph(source, destination, hop) and querygraph(source, destination, hop), the source and the

destination fields are foreign keys referring to the id fields of the datanode and querynode tables

respectively. The hop field keeps track of the reachability information between pairs of nodes.

In order to incorporate σ -Similarity between pairs of nodes, we retain similarity information in

Sim(node1, node2, score) table. We executed our method with λ=0.50, β ∈ {0.80,0.60}, µ1 = 0

and µ2 = 0. For σ -similarity we chose to perform exact labeled search i.e. σ(i, j) = 1 if i = j, it

is 0 otherwise.

To evaluate the performance of our method, we thoroughly tested the algorithm on 4 standard

data sets each having their own properties. The data sets range from artificially generated graphs

and their isomorphic subgraphs to real pathways, interaction networks and literature mined doc-

ument networks. On one hand, the interaction network contains numerous nodes and edges

resulting in a large data graph. On the other hand, the average number of nodes and edges in the

literature mined network is relatively small. We chose these data sets to portray the efficacy and

scalability of our system from different perspectives. While matching between smaller data sets

are easy to visualize, huge data sets convey the scalability threshold of the system.



63

(a) Data graph size 60 (b) Data graph size 70

(c) Data graph size 80 (d) Data graph size 90

(e) Data graph size 110 (f) Data graph size 120

Figure 6.1: Performance Evaluation on various data graph sizes.

We have extensively tested the performance of our algorithm on graph benchmark database

[37]. The database provides tools to generate several types of graphs and their associated iso-

morphic subgraphs. We have compared the performance of VFLib [29], closure-tree [45] and the

proposed algorithm, TraM on 153 data sets of different sizes. Figure 6.1 depicts the results. We

varied the data size from 60 nodes to 120 nodes and subsequently varied the number of nodes



64

in the query graph for each type of data graph. It is evident from the result that the proposed

method outperforms VFLib and closure-tree in terms of query time. The pre-processing time

entails calculating of reachability information at the database end. The rest of the functions are

encompassed in the query time. It can be seen that the performance of the closure-tree and our

approach is comparable and the performance of VFLib sometimes oscillates significantly. This

is due to the fact that in some of the cases, the number of isomorphic sub-graphs may be too

large and since VFLib enumerates all of them, it takes more time. Although VFLib computes ex-

act sub-graph isomorphism whereas we enumerate approximate matches, we decided to include

VFLib in our comparison since it serves as a benchmark for query performance.

6.1.1 Precision and Recall

We generated numerous graphs and randomly extracted subgraphs from them [37]. We annotated

the super graph as the positive class and all the other randomly generated graphs as negative

classes. To introduce approximation, we rewired 1%-2% of the edges from the isomorphic sub

graphs. If the result of our graph similarity value attained more than the specified threshold

value we predicted the data graph as belonging to the positive class and vice versa. Hence, we

calculated the precision and recall measure of the algorithm as shown in figure 6.6(a). Precision

and Recall can be defined as follows:

Precision =
T P

T P+FP
(6.1)

Recall =
T P

T P+FN
(6.2)

where T P, FP and T N represent true positive, false positive and true negative respectively. It can

be observed from the figure that we obtained an area under curve of about 83%. This can be ex-

plained by the fact that since we are interested in approximate matches, many graphs, artificially

identified as belonging to the random class, may have high similarity values as well. We have

compared the performance with C-tree 6.6(b) which achieves an area under ROC of 78%.
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a b

Figure 6.2: Precision-Recall Curves for (a) TraM and (b) C-Tree.

6.1.2 Scalability

To measure the scalability of the approach for large data graphs, we also experimented with PPI

network data [113]. We considered high confidence interactions with scores higher than 0.95 or

0.50. There are 23598 interactions among 2345 entities for the first case and 5811 entities and

38064 interactions in the second case. We created query graphs of different sizes from the inter-

action network and measured processing time as shown in figure 6.3. Multiple query graphs of

the same size were generated and average extraction time was calculated for the experiment. For

query graph generation, a seed node was selected randomly which was then expanded for possi-

ble inclusion of its one hop neighbors. A neighbor is included with a probability value iteratively

varying from 0.50 to 0.90. This expansion process is continued until a sufficient number of nodes

has been added to the extracted query graph. Subsequently, we randomly deleted 5% and 10% of

the edges to create the final query graph.

The difference in the matching time can be explained by two parameters: the radius of the

query graph and the extent to which individual nodes in the data graph can be filtered. In cases

where most of the nodes can be filtered from the data graph due to their neighbors topology,

the processing is much faster. Similarly the radius of the query graph determines the number of

nodes in GNi , which in turn can affect the processing time. Figure 6.3 shows that for the larger

data graph (confidence score: 0.5), the matching time is relatively higher than the data graph with

confidence score 0.95. However, the matching time in any specific group does not monotonically
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Figure 6.3: Performance Evaluation on PPI Data.

increase with the number of nodes in the query graph. This is due to the fact that the structural

and semantic attributes of the query graph play an important role in orchestrating the matching

functions.

6.1.3 Effectiveness Analysis

We also explore the efficacy of the method on KEGG [54] and biological literature mined data-

set as used by SAGA [92]. SAGA is a flexible matching tool. From the perspective of structural

matching the TraM performs functions parallel to SAGA. However, our approach is capable of

handling large graphs since it is database driven and performs neighborhood biased computation.

Moreover, we have enhanced the flexibility of our approach by leveraging biological information

by means of σ -similarity. σ -similarity enables us to include multiple domain information into

the calculations to help direct the matching process. The pathway database contains 173 path-

ways. We iteratively matched each of the pathways to all other pathways in the database and

enumerated the time required for the matching process. For SAGA, we chose the default param-

eters. Figure 6.4 shows the comparative time requirement between our approach and SAGA for

the first 100 pathways. With SAGA, we observe spikes in case of a number of query graphs. This

is related to the number of matching pathways that SAGA was able to unveil. In our case, the
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Figure 6.4: Performance Evaluation on KEGG.

time requirement is independent of the number of matches. As in SAGA, we compared disease-

associated pathways with the rest of the pathways in KEGG. We found that Type II diabetes

mellitus - Homo sapiens pathway (hsa04930) has close association with both the Insulin signal-

ing pathway (hsa04910) and the Adipocytokine signaling pathway(hsa04920). This association

has been identified in SAGA as well. Moreover, Maturity onset diabetes of the young(hsa04950)

has a high association with the insulin signaling pathway. We also identified that the pathways

for insulin signaling, GnRH signaling, melanogenesis, and adipocytokine signaling possess high

association among the group, as might be expected since each of these pathways involves the

endocrine system. We also observed the well-established relationship between endocytosis path-

way (hsa05040) and the insulin signaling pathway (e.g., [17]). We found a number of other ex-

pected associations, including those among carbohydrate metabolism pathways (e.g., hsa00040,

hsa00052, hsa00500, and hsa00520), insulin signaling (hsa04910) and glycolysis/gluconeogen-

esis (hsa00010) pathways, and galactose metabolism (hsa00052) and sphingolipid metabolism

(hsa00600). Combined these results demonstrate that TraM can be useful for finding biologically

meaningful relationship among pathways.

SAGA applied its algorithm on literature mined graph data-set in an information retrieval

setting to identify similarities among documents. It extracted graphs from the literature and
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performed graph matching techniques to identify semantic similarity among the documents.

PubMed documents are represented by a graph where nodes indicate genes studied in that doc-

ument. An edge is drawn between two genes if they appear in the same sentence, a potential

indication of association between the genes. As in SAGA, we query the graph representations

of documents to identify those that study the same research topics. The data set contains 48,445

documents and on average, there are 5.0 nodes and 18.76 edges per graph. After executing our

method on the literature mined data-set, we were able to extract all the relevant documents as

identified by SAGA. Since a pair of query and data documents can potentially contain multiple

alignments in multiple spatial regions, we can essentially derive a closer match between docu-

ments in such cases (see Appendix 7.1 for details).

6.2 Experimental Results: AtoM

To evaluate the performance of AtoM, we thoroughly tested the algorithm on standard data sets

each having their own properties. The data sets range from artificially generated graphs and their

isomorphic subgraphs to real interaction networks.

As with TraM, we have extensively tested the performance of our algorithm on graph bench-

mark database [37]. We used randomly connected graphs, regular meshes and modified mesh

graphs from benchmark database of graph isomorphism and sub-graph isomorphism. We also

generated different types of graph using Barabasi-Albert and random models (Erdos-Renyi) us-

ing a range of parameters. For the Barabasi-Albert model we varied the number of nodes from

50 - 120, and preferential attachment variable from 1 to 4. We have compared the performance

of VFLib, GADDI, closure-tree, TraM and AtoM on 153 data sets of different sizes. Figure 6.5

depicts the results. We varied the data size from 60 nodes to 120 nodes and subsequently varied

the number of nodes in the query graph for each type of data graph. It is evident from the result

that the proposed method outperforms the state of the art in terms of query time. It can be seen

that the performance of the closure-tree and gaddi is comparable. However, the time requirement

for AtoM is relatively smaller. The performance of VFLib sometimes oscillates significantly.
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(a) Data graph size 60 (b) Data graph size 90

(c) Data graph size 120 (d) Query graph size 15

(e) Query graph size 35 (f) Query graph size 55

Figure 6.5: Performance evaluation on various data and query graph sizes.

This is due to the fact that in some of the cases, the number of isomorphic sub-graphs may be too

large and since VFLib enumerates all of them, it takes more time. Results from VFLib has been

added in the comparison as a baseline.
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6.2.1 Precision and Recall

We generated numerous graphs and randomly extracted subgraphs from them [37]. We annotated

the super graph as the positive class and all the other randomly generated graphs as negative

classes. To introduce approximation, we rewired 1%-2% of the edges from the isomorphic sub

graphs. If the result of our graph similarity value attained more than the specified threshold

value we predicted the data graph as belonging to the positive class and vice versa. Hence, we

calculated the precision and recall measure of the algorithm. It can be observed from the figure

that we obtained an area under curve of about 83.59%. This can be explained by the fact that

since we are interested in approximate matches, the notion of true positive, false positive, true

negative and false negatives are somewhat fuzzy in the randomly generated graphs.Many graphs,

artificially identified as belonging to the random class, may have high similarity values as well.

We have compared the performance with TraM 6.6(b) which achieves a similar area under ROC

of 83%.

Figure 6.6: Precision-Recall Curves for (a) AtoM and (b) TraM

6.2.2 Scalability

To measure the scalability of the approach for large data graphs, we also experimented with PPI

network data [113]. We considered high confidence interactions with scores higher than 0.95

or 0.50. There are 23598 interactions among 2345 entities for the first case and 5811 entities
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and 38064 interactions in the second case. We created query graphs of different sizes from the

interaction network and measured processing time as shown in figure 6.3.

Figure 6.7: Comparing AtoM with TraM on large PPI data set.

Multiple query graphs of the same size were generated and average extraction time was calcu-

lated for the experiment. For query graph generation, a seed node was selected randomly which

was then expanded for possible inclusion of its one hop neighbors. A neighbor is included with

a probability value iteratively varying from 0.50 to 0.90. This expansion process is continued

until a sufficient number of nodes has been added to the extracted query graph. Subsequently, we

randomly deleted 5% and 10% of the edges to create the final query graph.

The difference in the matching time for TraM be explained by two parameters: the radius

of the query graph and the extent to which individual nodes in the data graph can be filtered. In

cases where most of the nodes can be filtered from the data graph due to their neighbors topology,

the processing is much faster. In figure 6.3, we can see that for the larger data graph (confidence

score: 0.5), the matching time is comparatively higher than the data graph with confidence score

0.95.
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CHAPTER 7: CONCLUSIONS AND

FUTURE WORK

The proposed method is a heuristic algorithm and hence, does not guarantee extraction of all

matches. However, the method is scalable for large numbers of nodes and edges since the our

first approach delegates a significant amount of processing to the database end and our second

approach relies on the domain knowledge to to focus on promising search spaces. In both cases

the early filtration helps prune the search space and makes the process highly efficient. In TraM,

The matching is done by means of assigning importance values, measured in terms of their topo-

logical behavior, to each node in the data graph in their local neighborhood and comparing them

with that of the query graph. AtoM harnesses the power of randomized summary graph gen-

eration followed by approximate node to node matching which makes the process efficient and

scalable for a large number of nodes and edges. The method we propose here is a general tool for

approximate subgraph matching queries, and can be easily customized to meet the requirement

of different applications. Our empirical evaluations demonstrate the improved effectiveness and

efficacy of the proposed method over existing methods.

One thing to note that the definition of node and graph similarity above empowers us to de-

sign a matching algorithm that is well suited for traditional single processor machines, as well

as a parallel version based on the Map-Reduce framework. In this dissertation, our focus is to

demonstrate single processor implementation of our method and their advantages over contem-

porary algorithms in terms of efficiency and scalability. We, however, present an outline of the

Map-Reduce version of AtoM and discuss how it can be implemented. To that end compatibil-

ity studies of Map-Reduce based graph analysis languages and engines [2, 3] and ATOM can be

explored. As a future direction an extensive study on AtoM’s map-reduce compatibility is war-

ranted. Moreover, application of our approaches to discover novel biological insights, as well as

in other applications, such as social networks and RDF graph datasets, would be interesting.



APPENDIX A

7.1 Comparison with SAGA

We thoroughly experimented with the documents mined from literature and compared them

with each other. Online SAGA tool http://saga.ncibi.org/ by default uses the query document

GR12196289 and matches it against other documents in the database. We performed the same

query and identified the same set of documents as well. However, since we enumerate a complete

alignment of graphs, a query graph and a data graph may contain multiple plausible alignments

which may denote a closer match between the documents. For example figures 7.1(e) and 7.1(f)

refer to two different alignments with the query graph as shown in figure 7.1(a) for the same data

graph. Analogously figures 7.1(b) and 7.1(c) denote alignments for the same document as well.

Table 7.1 shows the alignment score as well as the actual alignment of the query document with

other documents. Different sets of matching are separated by double lines in this table.

7.2 Result on KEGG Data set

Table 7.2 shows a subset of the pair-wise matching on the KEGG data set used in SAGA. The

complete result and additional details may be found at:

http://mapbase.nkn.uidaho.edu/TRAMTool/Kegg.txt.
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(a) (b) (c)

(d) (e) (f)

Figure 7.1:
(a) A snapshot of document matching for SAGA dataset for query doc-
ument GR12196289 and (b-c)Alignment for document GR9915769, (d)
Alignment for document GR12556487 and (e-f) Alignments for document
GR15584024.
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Table 7.1: Partial Matching result on literature mined data set
Document ID Score Matching
GR12556487 1.0 {0610007c21rik,cdkn2c,stmn1}
GR12556487 0.4319750944975411 {cd40,cdkn2c,cdk6}
GR12668976 1.0 {0610007c21rik,cdkn2c,stmn1}
GR12668976 0.4319750944975411 {cd40,cdkn2c,cdk6}
GR15584024 0.889901788709605 {0610007c21rik,cdkn2c,stmn1,cdkn1b,psmd9}
GR15584024 0.8147265498682156 {0610007c21rik,cdkn2c,stmn1,cdkn1b,trp53}
GR15584024 0.7823407854996212 {0610007c21rik,cdkn2c,stmn1,cdkn1b,dctn6}
GR15584024 0.6460079842147224 {cdkn1b,cdkn2c,stmn1,dctn6,trp53}
GR15584024 0.573265635057969 {cdkn1b,cdkn2c,stmn1,dctn6,psmd9}
GR15584024 0.3747124312437049 {cdkn2c,dctn6,stmn1,psmd9,trp53}
GR9915769 0.9364838167686333 {0610007c21rik,cdkn2c,stmn1,cac,tnni3}
GR9915769 0.8001283898817831 {0610007c21rik,cdkn2c,stmn1,cac,ube2i}
GR9915769 0.7749907541995343 {0610007c21rik,cdkn2c,stmn1,cac,mafk}
GR9915769 0.732507085798144 {cac,cdkn2c,stmn1,mafk,ube2i}
GR9915769 0.5640047743565308 {cac,cdkn2c,stmn1,mafk,tnni3}
GR9915769 0.3622860289816281 {cdkn2c,mafk,stmn1,tnni3,ube2i}
GR15591344 1.0 {ccne1,cdkn1b,dctn6,psmd9,tnfsf13b}
GR12062451 0.8717771798337681 {cdkn2a,cdkn2c,stmn1,cdkn2d,sp1}
GR12062451 0.7298091592620806 {cdkn2a,cdkn2c,stmn1,cdkn2d,il23a}
GR12062451 0.4991713844105058 {cdkn2c,cdkn2d,stmn1,il23a,sp1}
GR12941628 0.8192328566939717 {cdkn2a,cdkn2c,stmn1,cdkn2d,ss18l1}
GR12941628 0.7298091592620806 {cdkn2a,cdkn2c,stmn1,cdkn2d,msx1}
GR12941628 0.4991713844105058 {cdkn2c,cdkn2d,stmn1,msx1,ss18l1}
GR12077144 0.8046374044604117 {c2orf28,cdkn2c,stmn1,e2f2,znf197}
GR12077144 0.7165820438224613 {c2orf28,cdkn2c,stmn1,e2f2,sp1}
GR12077144 0.4683905390546311 {cdkn2c,e2f2,stmn1,sp1,znf197}
GR12761212 0.9215258537279282 {c2orf28,cdkn2c,stmn1,ns2,txndc12}
GR12761212 0.838154525673113 {c2orf28,cdkn2c,stmn1,ns2,znf197}
GR12761212 0.7191533589644806 {c2orf28,cdkn2c,stmn1,ns2,txn}
GR12761212 0.598291689050069 {cdkn2c,ns2,stmn1,txn,znf197}
GR12761212 0.4621649695919185 {cdkn2c,ns2,stmn1,txn,txndc12}
GR12761212 0.25 {ns2,stmn1,txn,txndc12,znf197}
GR11906209 0.9523771242651886 {cdk8,cdkn2c,stmn1,cdkn1b,dctn6}
GR11906209 0.9435893852930267 {cdkn1b,cdkn2c,stmn1,cdkn2a,psmd9}
GR11906209 0.9369125905052358 {cdkn2a,cdkn2c,stmn1,cdkn2d,psmd9}
GR11906209 0.8704375490196967 {cdkn1b,cdkn2c,stmn1,cdkn2a,dctn6}
GR11906209 0.7944553089980879 {cdk8,cdkn2c,stmn1,cdkn1b,cdkn2d}
GR11906209 0.7907730215885698 {cdk8,cdkn2c,stmn1,cdkn1b,psmd9}
GR11906209 0.7368563356558973 {cdkn1b,cdkn2c,stmn1,cdkn2a,cdkn2d}
GR11906209 0.7298091592620806 {cdkn2a,cdkn2c,stmn1,cdkn2d,dctn6}
GR11906209 0.7274343299488867 {cdk8,cdkn2c,stmn1,cdkn1b,cdkn2a}
GR11906209 0.4991713844105058 {cdkn2c,cdkn2d,stmn1,dctn6,psmd9}
GR14681224 0.9538143007274169 {c2orf28,cdkn2c,stmn1,cdkn1a,kras}
GR14681224 0.9175969984435695 {cdkn1a,cdkn2c,stmn1,d4s234e,znf197}
GR14681224 0.8737921425432178 {c2orf28,cdkn2c,stmn1,cdkn1a,tceal1}
GR14681224 0.8217136586428023 {cdkn1a,cdkn2c,stmn1,d4s234e,tceal1}
GR14681224 0.7745600144936264 {c2orf28,cdkn2c,stmn1,cdkn1a,znf197}
GR14681224 0.7322960155077387 {cdkn1a,cdkn2c,stmn1,d4s234e,kras}
GR14681224 0.730931928009264 {c2orf28,cdkn2c,stmn1,cdkn1a,d4s234e}
GR14681224 0.6918344198062379 {cdkn2c,d4s234e,stmn1,kras,znf197}
GR14681224 0.6373892844731164 {cdkn2c,d4s234e,stmn1,kras,tceal1}
GR15680327 0.9553030068601917 {c2orf28,cdkn2c,stmn1,mmab,tp53}
GR15680327 0.9349132365710915 {atm,cdkn2c,stmn1,atr,znf197}
GR15680327 0.9299509202310943 {antxr1,cdkn2c,stmn1,atm,mmab}
GR15680327 0.9255845753379568 {atr,cdkn2c,stmn1,c2orf28,znf197}
GR15680327 0.9182359573714657 {antxr1,cdkn2c,stmn1,atm,tp53}
GR15680327 0.9120445603290845 {c2orf28,cdkn2c,stmn1,mmab,znf197}
GR15680327 0.8993954530945191 {atm,cdkn2c,stmn1,atr,mmab}
GR15680327 0.8636123584523138 {atm,cdkn2c,stmn1,atr,serpina2}
GR15680327 0.827006785335414 {atr,cdkn2c,stmn1,c2orf28,tp53}
GR15680327 0.7819189700603164 {atm,cdkn2c,stmn1,atr,tp53}
GR15680327 0.7544552255091185 {antxr1,cdkn2c,stmn1,atm,serpina2}
GR15680327 0.7477414302275683 {atr,cdkn2c,stmn1,c2orf28,serpina2}
GR15680327 0.7353037709373866 {antxr1,cdkn2c,stmn1,atm,c2orf28}
GR15680327 0.7323031041508802 {antxr1,cdkn2c,stmn1,atm,znf197}
GR15680327 0.7307775903814041 {atr,cdkn2c,stmn1,c2orf28,mmab}
GR15680327 0.7292443500465866 {atm,cdkn2c,stmn1,atr,c2orf28}
GR15680327 0.7272378074962538 {antxr1,cdkn2c,stmn1,atm,atr}
GR15680327 0.7252145792197061 {c2orf28,cdkn2c,stmn1,mmab,serpina2}
GR15680327 0.689909706058663 {cdkn2c,mmab,stmn1,serpina2,znf197}
GR15680327 0.46989075455575446 {cdkn2c,mmab,stmn1,serpina2,tp53}
GR15680327 0.4528575362270351 {mmab,serpina2,stmn1,tp53,znf197}

PMID:11777974 0.9658972971856652 {atp8a1,cdkn2c,stmn1,c2orf28,tnfrsf10b}
PMID:11777974 0.7746615028211239 {atp8a1,cdkn2c,stmn1,c2orf28,mafk}
PMID:11777974 0.7441662342917272 {atp8a1,cdkn2c,stmn1,c2orf28}
PMID:11777974 0.7405985131369885 {atp8a1,cdkn2c,stmn1,c2orf28,spp1}
PMID:11777974 0.729675878311312 {atp8a1,cdkn2c,stmn1,c2orf28,ube2i}
PMID:11777974 0.7285369046447443 {atp8a1,cdkn2c,stmn1,c2orf28,csnk2a2}

GR15107822 0.9451409443317211 {cdkn1a,cdkn2c,stmn1,cdkn2a}
GR15107822 0.9354576218615624 {cdkn1a,cdkn2c,stmn1,cdkn2a,hdac6}
GR15107822 0.9232959901621369 {cdkn2a,cdkn2c,cdkn2c,cdkn2d}
GR15107822 0.9192927210145894 {cdkn1a,cdkn2c,stmn1,cdkn2a}
GR15107822 0.9083853122384856 {cdkn2a,cdkn2c,cdkn2c,cdkn2d,hdac4}
GR15107822 0.9069243986530706 {cdkn2a,cdkn2c,cdkn2c,cdkn2d,hdac6}
GR15107822 0.9004803719872181 {cdkn2a,cdkn2c,cdkn2c,cdkn2d}
GR15107822 0.8890767048335564 {cdkn2a,cdkn2c,cdkn2c,cdkn2d,il23a}
GR15107822 0.8588112628495589 {cdkn1a,cdkn2c,stmn1,cdkn2a}
GR15107822 0.8468422418663428 {cdkn2a,cdkn2c,cdkn2c,cdkn2d,hdac3}
GR15107822 0.8031485947892333 {cdkn2a,cdkn2c,cdkn2c,cdkn2d,hdac9}
GR15107822 0.7855876284650885 {cdkn2a,cdkn2c,cdkn2c,cdkn2d,kras}
GR15107822 0.7811788770690845 {cdkn2a,cdkn2c,cdkn2c,cdkn2d}
GR15107822 0.7636481690459593 {cdkn1a,cdkn2c,stmn1,cdkn2a,stmn1}
GR15107822 0.7560479524014393 {cdkn1a,cdkn2c,stmn1,cdkn2a,d4s234e}
GR15107822 0.7447576377423377 {cdkn1a,cdkn2c,stmn1,cdkn2a,hdac4}
GR15107822 0.7263984197973209 {cdkn2c,hdac9,cdkn2d,hdac4}
GR15107822 0.7223085679686758 {cdkn1a,cdkn2c,stmn1,cdkn2a,hdac9}
GR15107822 0.7183405942861486 {cdkn2d,hdac3,stmn1,d4s234e,hdac6}
GR15107822 0.7157859832021588 {d4s234e,hdac3,stmn1,hdac4}
GR15107822 0.7136014888710671 {cdkn1a,cdkn2c,stmn1,cdkn2a,hdac3}
GR15107822 0.7122071328178063 {d4s234e,hdac3,stmn1,hdac4,nsg1}
GR15107822 0.7100602632356102 {cdkn1a,cdkn2c,stmn1,cdkn2a}
GR15107822 0.7078909195134646 {cdkn2a,cdkn2c,cdkn2c,cdkn2d,d4s234e}
GR15107822 0.7047713061423854 {hdac4,hdac6,stmn1,hdac9,tceal1}
GR15107822 0.7040863344220352 {cdkn1a,cdkn2c,stmn1,cdkn2a,cdkn2d}
GR15107822 0.7028672447266058 {cdkn2d,hdac3,stmn1,d4s234e,nsg1}
GR15107822 0.6890221386687291 {cdkn2d,hdac3,stmn1,d4s234e,il23a}
GR15107822 0.6889358032074109 {hdac4,hdac6,stmn1,hdac9,nsg1}
GR15107822 0.6777268893784156 {hdac6,hdac9,stmn1,il23a,slc12a9}
GR15107822 0.66337747808447 {d4s234e,hdac3,stmn1,hdac4,slc12a9}
GR15107822 0.6626649936232969 {d4s234e,hdac3,stmn1,hdac4,il23a}
GR15107822 0.6610150933143135 {cdkn2d,hdac3,stmn1,d4s234e,hdac9}
GR15107822 0.6566398560913453 {hdac3,tceal1,stmn1,hdac4,slc12a9}
GR15107822 0.6459607287841115 {cdkn2c,hdac9,cdkn2d,kras}
GR15107822 0.6448077677051283 {hdac3,tceal1,stmn1,hdac4,nsg1}
GR15107822 0.6416111182674311 {hdac9,il23a,stmn1,kras,tceal1}
GR15107822 0.6397986247213692 {il23a,kras,stmn1,nsg1,tceal1}
GR15107822 0.6333859123886905 {cdkn2d,hdac3,stmn1,d4s234e}
GR15107822 0.6050632033407527 {hdac3,tceal1,stmn1,hdac4,kras}
GR15107822 0.6035260659041303 {hdac3,tceal1,stmn1,hdac4,hdac9}
GR15107822 0.5942298339273153 {hdac6,hdac9,stmn1,il23a,nsg1}
GR15107822 0.5939778646379406 {cdkn2d,hdac3,stmn1,d4s234e}
GR15107822 0.5861999410046075 {cdkn2c,hdac9,cdkn2d,hdac9}
GR15107822 0.5805781629562994 {hdac4,hdac6,stmn1,hdac9,kras}
GR15107822 0.5712028522101719 {hdac9,il23a,stmn1,kras,slc12a9}
GR15107822 0.563117705303187 {cdkn2c,hdac9,cdkn2d,hdac3}
GR15107822 0.5495593409629573 {d4s234e,hdac3,stmn1,hdac4,kras}
GR15107822 0.5444852914830443 {cdkn2c,hdac9,cdkn2d,il23a}
GR15107822 0.5411070731924542 {cdkn2c,hdac9,cdkn2d,hdac6}
GR15107822 0.5400452756889714 {cdkn2d,hdac3,stmn1,d4s234e,kras}
GR15107822 0.537584289864823 {hdac3,tceal1,stmn1,hdac4,il23a}
GR15107822 0.5272412397180306 {cdkn2c,hdac9,cdkn2d,nsg1}
GR15107822 0.5257917394383782 {d4s234e,hdac3,stmn1,hdac4,hdac9}
GR15107822 0.5208269966813158 {cdkn2c,hdac9,cdkn2d}
GR15107822 0.5167184738645229 {hdac6,hdac9,stmn1,il23a,tceal1}
GR15107822 0.5123728977954004 {hdac4,hdac6,stmn1,hdac9,slc12a9}
GR15107822 0.4984921128314069 {hdac4,hdac6,stmn1,hdac9,il23a}
GR15107822 0.4960781635411471 {hdac6,hdac9,stmn1,il23a,kras}
GR15107822 0.49552730352642704 {hdac3,tceal1,stmn1,hdac4,hdac6}
GR15107822 0.49282957356843493 {d4s234e,hdac3,stmn1,hdac4,hdac6}
GR15107822 0.49060692772771886 {cdkn2d,hdac3,stmn1,d4s234e,hdac4}
GR15107822 0.4901182098297584 {hdac9,il23a,stmn1,kras,nsg1}
GR15107822 0.48875827314777187 {cdkn2c,hdac9,cdkn2d,d4s234e}
GR15107822 0.48146683043255206 {il23a,kras,stmn1,nsg1,slc12a9}
GR15107822 0.4683905390546311 {kras,nsg1,stmn1,slc12a9,tceal1}
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Table 7.2: Partial matching result on KEGG database
Pathway1 Pathway2 Score
hsa00632 hsa00903 0.958520628926046
hsa00072 hsa00650 0.930198376212001
hsa00950 hsa00350 0.910028345212001
hsa00900 hsa00100 0.897810741538553
hsa00950 hsa00360 0.862087090505005
hsa00632 hsa00903 0.810986322010449
hsa00720 hsa00020 0.720702977208637
hsa00360 hsa00350 0.719724712596848
hsa00500 hsa00052 0.702605131613838
hsa00072 hsa00280 0.679590854336905
hsa00650 hsa00280 0.652030779642093
hsa00910 hsa00251 0.617720161458517
hsa00520 hsa00052 0.609904664972119
hsa00140 hsa00150 0.593958036561787
hsa00040 hsa00500 0.56113704026524
hsa00450 hsa00271 0.557943367134741
hsa00565 hsa00564 0.543503138561839
hsa00360 hsa00340 0.525147318462108
hsa00640 hsa00280 0.499566029209854
hsa00340 hsa00380 0.47514630295471
hsa00520 hsa00500 0.463230117573564
hsa00410 hsa00280 0.461580316269474
hsa00630 hsa00020 0.448229933427644
hsa00240 hsa00230 0.441421741177308
hsa00770 hsa00410 0.437200956742212
hsa04150 hsa04910 0.436125814407344
hsa04912 hsa04540 0.434924965012993
hsa00310 hsa00380 0.430961015977778
hsa04930 hsa04910 0.429746019875289
hsa00770 hsa00240 0.422438144452044
hsa00071 hsa00280 0.421432534807331
hsa00601 hsa00602 0.416535247445683
hsa00360 hsa00380 0.416056548913924
hsa00340 hsa00350 0.398277636433689
hsa00030 hsa00010 0.391414814331596
hsa00603 hsa00604 0.386821550819256
hsa00410 hsa00340 0.380442868258012
hsa04912 hsa04010 0.380268397650829
hsa00330 hsa00220 0.378366167515977
hsa00071 hsa00380 0.376726032641632
hsa00650 hsa00071 0.376259561611575
hsa04916 hsa04912 0.375841477828226
hsa04916 hsa04912 0.375841477828226
hsa00410 hsa00240 0.374267632605089
hsa00071 hsa03320 0.373284463978904
hsa00410 hsa00650 0.36671116861823
hsa00561 hsa00564 0.363567163281109
hsa04916 hsa04310 0.34849947297084
hsa04810 hsa04510 0.336310389392774
hsa04740 hsa04720 0.328239328354333
hsa04740 hsa04916 0.325763031437259
hsa00051 hsa00010 0.323478364458559
hsa00071 hsa00310 0.321602688767554
hsa00052 hsa00010 0.320103936816843
hsa04916 hsa04540 0.318028819459711
hsa00340 hsa00220 0.317250963658232
hsa04740 hsa04912 0.313781569992293
hsa00252 hsa00251 0.310819385859129
hsa00640 hsa00071 0.301876241948114



APPENDIX B

7.3 EXTRACTING DISEASE SUB-NETWORK USING SEED

DISEASE GENES

Experimental methods are beginning to define the networks of interacting genes and proteins

that control most biological processes. There is significant interest in developing computational

approaches to identify subnetworks that control specific processes or that may be involved in

specific human diseases. Because genes associated with a particular disease (i.e., disease genes)

are likely to be well connected within the interaction network, the challenge is to identify the most

well-connected subnetworks from a large number of possible subnetworks. One way to do this

is to search through chromosomal loci, each of which has many candidate disease genes, to find

a subset of genes well connected in the interaction network. In order to identify a significantly

connected subnetwork, however, an efficient method of selecting candidate genes from each locus

needs to be addressed. In the current study, we describe a method to extract important candidate

subnetworks from a set of loci, each containing numerous genes. The method is scalable with the

size of the interaction networks. We have conducted simulations with our method and observed

promising performance.

7.3.1 Method and Implementation

The inputs to the algorithm are a set of genes (G ) to be assessed for a particular disease, loci

associated in the disease (L ), genes contained in those loci (li) and a set of known disease genes

(S ) involved in the disease. The method we propose in this paper proceeds in three stages. In

the first stage we iteratively employ a random walk method to extract from disease loci, genes

with the highest potential of being involved in a structurally significant subnetwork (Lines 4-11,

Algorithm 10). A random walk is a mathematical formalization of a trajectory that consists of
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Figure 7.2:
Execution of the method on a synthetic example: a) A synthetic network
where with three loci (color-coded) and three disease genes (highlighted),
b) Functional correlation analysis where nodes selected from the same lo-
cus are highlighted using same color and highlighted nodes and edges are
the highest probable path constructing the subnetwork, c) Final extracted
significant subnetwork, d)Random-walk probabilities for the nodes in the
network

taking successive random steps through an interaction network. The steps constitute a series of

transitions from the walker’s current node to a randomly selected neighbor starting at a given set

of seed nodes, S . The initial seed nodes are known disease genes for a particular disease (Line

3, Algorithm 10). At the end of each walk the genes from each locus associated with that disease

are prioritized based on the probability that the random walker will end up in that particular gene

(Lines 9-10, Algorithm 10). In the following iterations, the top priority genes from each locus

are used as new seed genes and this process is repeated until the set of seed genes do not change

(Lines 5-12, Algorithm 10). We also enumerate the number of times a specific edge is visited

(E ) during the random walk process. This edge measure delineates the probabilistic edge-visit

frequency associated with each edge which is used in the subsequent phases of the method. Once

we have extracted the consensus set of candidate genes from each locus, we choose top k (k is
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a user specified parameter) most visited genes according to the random walk scores (N ) and

extract the induced subgraph involving these genes from the interaction network (Lines 13-14,

Algorithm 10).

Algorithm 10: Algorithm Find-Candidate-SubNet
1 G = set of genes
2 L = {l1, l2, l3, . . . , lx}, li = {gi1,gi2,gi3, . . . ,gim}
3 S = seed gene set
4 N R = S
5 while N R converges do
6 (N ,E ) = random-walk(N R)
7 N R = S
8 For each li ∈ L , li ∩S = ϕ sort li according to descending values of N
9 N R = N R∪gi1

10 C G =
∪

li∈L gi1,gi2, . . . ,gik

11 (C G ,C E ) = Induced-Network(N ,E ,C G )
12 Nets = Find-M-Best-Network()
13 Subnets = ϕ
14 for each net ∈ Nets do
15 Subnets = Subnets ∪ Simple-Net(net)

16 return Subnets

Algorithm 11: Algorithm Simple-Net
1 Fix a positive relevance threshold θe
2 while net is disconnected do
3 Re f inedNet = net
4 net = Refined net after keeping edges with relative relevance above θe
5 Adjust threshold θe to guarantee connectedness

6 return Re f inedNet

In the second stage, we analyze the network by running the algorithm “Find-M-Best-Network”

that dynamically calculates the most probable path traversed by the random walk method involv-

ing the nodes identified in line 5–12 of Algorithm 10 and returns the top-M most likely biolog-

ically significant structures. In the final stage, we extract the subgraph involving all the nodes

from each of the top-M structures that may possibly contain other genes that are required to
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Algorithm 12: Algorithm Find-M-Best-Network
1 a = Normalized edge visit probabilities
2 b = Normalized node visit probabilities
3 N = Number of genes, T = Number of loci
4 p = 1 for seed genes, 0 otherwise
5 Initialization:
6 Mnet = ϕ
7 for i = 1 : N do
8 δ1(i) = pi ×bi
9 Φ1(i) = 0

10 S1(i) = ϕ
11 Recursion:
12 for t = 2 : T do
13 for j = 1 : N do
14 δt( j) =maxi≤N [δt−1(i)ai j]×b j| j /∈ St−1(i)∪{i}
15 ϕt( j) =argmaxi[δt−1(i)ai j]
16 St( j) = {i}∪St−1(i)

17 Termination: P∗ = M-maxi[δT (i)]
18 i∗T = M-argmaxi[δT (i)]
19 Reconstruction of the optimal path:
20 for each j = 1 : |P∗| do
21 for t = T : −1 : 2 do
22 i∗t−1 = Φt(i∗t ( j))

23 Mnet = Mnet∪ network induced by the path

24 return Mnet ;

ensure connectedness of the induced subgraph by using the Algorithm 11. The algorithm “Find-

M-Best-Network” works in the following way. Once we have computed the edge visit probability

and the random walk centrality measure associated with each network node, we can normalize

the node measures for the set of top-k nodes from each locus from the previous stage, so that they

sum up to 1. We also compute the transition probability matrix ai j that denotes the probability

of making a transition from nodei to node j via zero of more intermediate nodes inferred from

the edge-visit frequency measures computed from the random-walk procedure. The following

equations summarize the method:
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δt( j) = max1≤i≤N [δt−1(i)ai j]×b j| j /∈ St−1(i)∪{i}

ϕt( j) = argmaxi[δt−1(i)ai j]

St( j) = {i}∪St−1(i)

Here we define δt( j) as the probability of choosing a path ending at node j in locus t where

none of the predecessor nodes in the path visited any nodes in the set S. Thus we dynamically

compute this value for all the nodes in the network as well as the path they traversed and rank the

highest M number of paths for subsequent processing. The nodes pertaining to the most likely

visited path may not be sufficient to identify a connected sub-graph from the input interaction

network. Hence at the final stage of our algorithm we employ the “Simple-Net” algorithm for

each of the M most likely paths to obtain a final substructure that is subsequently tested for

significance. To extract a simple subgraph that best captures the relationships between a set

of given seed nodes in a large complex graph, we follow the approach described in [32]. In

this approach, edge relevances (calculated by Algorithm 10) are treated as proportional to the

expected edge passage times while randomly walking from one node of interest to the other(s).

This approach is precisely based on the expected number of times a given node or a given edge is

used along any random walk connecting the nodes of interest as described in Section 7.3.1. This

relative frequency is interpreted as its relevance to explain the relationships between the nodes

of interest. Discarding any edge the relevance of which falls below a threshold purges the input

graph to obtain the subgraph of interest through a filtration process. A more stringent threshold

would result in a smaller subgraph.

Figure 7.2 depicts the three stages of the algorithm “Find-Candidate-SubNet” with a synthetic

example. Assume that we have a scale-free interaction network (Figure 7.2-a, λ = 0.901 i.e. the

power coefficient in the power law) with three genomic loci. Locus 1, 2 and 3 contain genes

1-6, 7-10, and 11-14 respectively. Let us assume that genes 1, 11 and 8 are disease genes among

which only the disease association of gene 11 is known. So, we expect to find the module formed
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(a) (b)

(c) (d)

Figure 7.3:
(a) Before applying the “Simple-Net” algorithm (M = 5), (b) After applying
the “Simple-Net” algorithm (M = 5) (c) Before applying the “Simple-Net”
algorithm (M = 10), (d) After applying the “Simple-Net” algorithm (M =
10)

by these disease genes after the application of the algorithm. After running the first iteration of

the algorithm, based on the corresponding random-walk scores we select the top-ranked gene

from every loci for which no seed genes are given. This ensures the method’s biasness towards

selection of genes from every possible locus. After running the first stage of the algorithm, we

obtain the numeric ranks of the genes, with respect to the seed genes, which are shown adjacent

to the network in Figure 7.2-a. Subsequently, we extract the top k genes (k=2 for this example)

from each locus and create the network depicted in Figure 7.2-b. It is noticeable that we obtained

genes 1, 6, 8, 7, 11, 12 as the top genes from each locus. We run algorithm 12 on the induced

subgraph to extract the most likely path as shown with a dotted line in the figure consisting of

nodes 1, 11 and 8. When we run Algorithm 11 on the extracted path we obtain the most likely
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Figure 7.4: Robustness of the algorithm

structure as shown in Figure 7.2-c. Here the nodes 7 and 6 are included in the structure to ensure

connectivity and inclusion of other equally significant edges in the resulting structure.

7.3.2 Evaluation

In order to validate our method, we first selected a number of disease genes pertaining to a

specific disease from the OMIM Morbid map [69]. For each of the disease genes, similar to [57],

we created an artificial locus by defining a region containing fifty genes nearest to the disease

gene according to genomic distance measure. We obtain the protein-protein interaction network

from NCBI Entrez Gene FTP site [1]. Hence we varied the percentage of known disease genes

considering them as seed nodes and applied our approach to extract the other disease genes in the

extracted subgraphs.

We assessed the efficacy of the approach on two different sets of nodes i.e. the path nodes

identified from the “Find-M-Best-Network” function that returns the network consisting only of

the nodes participating in top-k loci gene set and then on the network nodes returned from the

“Simple-Net” function. Figure 7.3 depicts the performance of our approach. For a fixed value of

M = 5, in the x axis we varied the value of k ranging from 2 to 8 and in the y axis we projected the

percentage of the rest of the disease genes that we were able to extract through our experiments.
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From Figure 7.3, it is clear that, the accuracy of the algorithm is significantly high (≥ 60%

for all the cases). Figure 7.3(a) illustrates that though the accuracy is high, it is not monotonically

increasing with the increasing value of k. This is due to the fact that, the resulting nodes may not

enforce the extracted subgraph to be connected. Figure 7.3(b) demonstrates that, if we use the

“Simple-Net” algorithm further, it enforces the extracted subgraph to be connected with many

of the bottleneck candidate nodes resulting a monotonically increasing accuracy. Moreover, it is

noticeable that, the accuracy of the algorithm increases with the increase in the value of M. From

Figure 7.3(c) and Figure 7.3(d) we see that, as the number of prioritized genes from each locus

(denoted as k) that is incorporated in the ensuing network calculation is incremented, the perfor-

mance of the method improves as expected. Moreover, it is trivial to find better performance for

higher percentage of seed nodes as the seed node set guides the extraction process for the rest

of the candidate genes. Hence, the performance improves significantly when the “Simple-Net”

algorithm is applied since the “Simple-Net” algorithm extends the “Find-M-Best-Network” set

of genes to maintain connectivity of the subgraph. Thus, interaction proteins of the initial set of

genes and bottleneck proteins also get included in the network.

In order to assess the robustness of our algorithm, we randomly add and delete a very small

fraction of the edges of the input network and execute the algorithm. The corresponding graph

is shown in Figure 7.4. This validation is required since the actual protein protein interaction

network is noisy and incomplete, and so we need to demonstrate that our algorithm does not

break down due to the presence of noisy data in the form of erroneous edges. In the graph in

Figure 7.4, it can be observed that when we randomly modify the network by adding and deleting

1%, 3% and 5% of the edges, the performance of the algorithm still remains stable.

In this section we demonstrated a stochastic approach to identify relevant subgraphs from

an interaction network in order to prioritize candidate disease genes. Our experimental results

reveal that we are able to identify most of the relevant subgraphs in an interaction network. The

stochastic nature of our algorithm guarantees significantly improved turn-around time compared

to the brute-force approach. Thus the approach is likely to be scalable to any biological network
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data. Moreover, further study can be conducted on pathway prediction and validation that may

aid in the understanding of underlying biological functionality of genetic networks.



APPENDIX C

7.4 TRAM as a graph matching toolkit

The toolkit is written in Java and MySQL. The web interface is implemented using JSP servlets.

For graph visualization dracula graph drawing tool (http://www.graphdracula.net/) is used. The

TRAM toolkit is a web based tool that can take as input the data graph, query graph, similarity

matrix and a configuration file to tweak the matching algorithm and returns the top-k matched

sub-graphs. Figure 7.5 depicts the main page of the toolkit consisting of provisions to upload the

data, query, similarity matrix and the configuration files. The data graph and the query graph files

Figure 7.5: Main page of TRAM Tool

have the same structure; each file starts with an integer indicating the number of nodes. Each

following line is a pair of string indicating an edge belonging to the graph. The similarity values

are stated by similarity files, where each line is consists of three values separated by white space:

the data graph node label, the query graph node label and the similarity value. The configuration

file is an xml file having the following structure:

<?xml version="1.0"?>

86
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<config>

<attr><name>K</name><value>4</value></attr>

<attr><name>beta</name><value>0.15</value></attr>

<attr><name>beta</name><value>0.55</value></attr>

<attr><name>mu</name><value>0.1</value></attr>

<attr><name>radius</name><value>2</value></attr>

<attr><name>minsigma</name><value>0.5</value></attr>

</config>

In the structure above all the necessary parameters including the list β values to use to compute

β -signature can be added in the input. To depict an example of how the toolkit works, we have

included examples of real life data sets in the toolkit. The toolkit has embedded example on Kegg

and Droidb databases. Figure 7.6 shows the section that can spawn the execution of the example

section. Figures 7.8, 7.9, 7.10 depict the data graph from Driodb, and example query graph and

a matched graph respectively. Figure 7.7 shows the page that lists the top-k results.

Figure 7.6: Example section of the tool

This example section has preselected default parameter values and the input graph can be

chosen from either droid or kegg database. We have also included a predefined query graph for

the example purpose. The result page lists the top=k matches. Clicking on any of the links will

open the matched graph for further processing The stand-alone TraM library is also available to
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Figure 7.7: Result page of the tool

download and use as part of a larger project. The web toolkit and source code is available for

download at: http://dblab.nkn.uidaho.edu/TraM/, and

https://github.com/shafkatdu9212/TraMCode

Figure 7.11 shows a sub-set of classes from the class diagram for the TraM top-k tool.
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Figure 7.8: Data graph: DroiDB

Figure 7.9: Query Graph

Figure 7.10: Matched Result
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Figure 7.11: Class diagram for TraM
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Many emerging database applications entail sophisticated graph based query manipulation,

predominantly evident in large-scale scientific applications. To access the information embedded

in graphs, efficient graph matching tools and algorithms have become of prime importance. Al-

though the prohibitively expensive time complexity associated with exact sub-graph isomorphism

techniques has limited its efficacy in the application domain, approximate yet efficient graph

matching techniques have received much attention due to their pragmatic applicability. Since

public domain databases are noisy and incomplete in nature, inexact graph matching techniques

have proven to be more promising in terms of inferring knowledge from numerous structural

data repositories. Contemporary algorithms for approximate graph matching incur substantial

cost to generate candidates, and then test and rank them for possible match. Leading algorithms

balance processing time and overall resource consumption cost by leveraging sophisticated data

structures and graph properties to improve overall performance.

In this dissertation, we propose novel techniques for approximate graph matching based

on two different techniques called TraM (Top-k Graph Matching) and Approximate Network
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Matching or AtoM respectively. While TraM off-loads a significant amount of its processing

on to the database making the approach viable for large graphs, AtoM provides improved turn

around time by means of graph summarization prior to matching. The summarization process

is aided by domain sensitive similarity matrices, which in turn helps improve the matching per-

formance. The vector space embedding of the graphs and efficient filtration of the search space

enables computation of approximate graph similarity at a throw-away cost. We combine domain

similarity and topological similarity to obtain overall graph similarity and compare them with

neighborhood biased segments of the data-graph for proper matches. We show that our approach

can naturally support the emerging trend in graph pattern queries and discuss its suitability for

large networks as it can be seamlessly transformed to adhere to map-reduce framework. We have

conducted thorough experiments on several synthetic and real data sets, and have demonstrated

the effectiveness and efficiency of the proposed method.
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