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This paper presents power analysis tools for multiple regression. The first takes input of 
correlations between variables and sample size and outputs power for multiple predictors. 
The second addresses power to detect significant effects for all of the predictors in the 
model. Both employ user-friendly SPSS Custom Dialogs. 
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Introduction 

Power analysis came to prominence with Jacob Cohen's seminal work on the 

topic (e.g., Cohen, 1988). Since that time, an extensive literature and several 

software packages and other resources focused on power (e.g., PASS, nQuery, 

Sample Power, G*Power, PiFace) emerged. Despite these advances, surveys 

across fields such as abnormal psychology (e.g., Sedlemeier & Gigerenzer, 1989), 

consulting, clinical, and social psychology (Rossi, 1990), and neuroscience 

(Button et al., 2013) suggest that low power remains common in published 

literature. 

One explanation for the persistence of underpowered studies, suggested by 

Cohen is that "researchers find too complicated … reference material for power 

analysis (1992, p. 156)." The development of software approaches for power 

analysis allows researchers to move beyond some of the difficulties in 

understanding power analysis for many designs. With regard to power analyses 

for multiple regression designs, many approaches exist for estimating adequate 
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power for multiple R2 (often termed R2 model) based on considerations such as 

the number of predictors and sample size (see Algina & Olejnik, 2003; Dunlap, 

Xin, & Myers, 2004; Krishnamoorthy & Xia, 2008; Mendoza & Stafford, 2001; 

Murphy & Myors, 2004; Shieh & Kung, 2007). 

Although many tools exist for power analyses focused on R2 model, power 

analyses focused on multiple regression coefficients remains challenging. 

Existing resources for detecting power for coefficients are of limited utility, as 

most require input of complicated statistical values. For example, G*Power (Faul, 

Erdfelder, Buchner, & Lang, 2009) provides protocols to address power for an 

individual predictor. This approach is accurate but requires that users input either 

partial R2 or its components. The partial R2 is a function of the proportion of 

variance uniquely explained by the predictor (squared semi-partial correlation) 

and the variance explained in the dependent measure by the other predictors in the 

model. This value is not particularly intuitive, nor is it commonly provided by 

most commercial packages. Similarly, the PiFace regression applet (Lenth, 2006-

9) also provides a complex approach that requires entry of the variance inflation 

factor (VIF) and several other values. The VIF is an index of overlap between 

predictors. Although common to most statistical packages, the VIF statistic, 

reflecting one divided by the residual variance from an analysis regressing the 

predictor of interest on the other predictors, is also not intuitive to most 

researchers. Additionally, both approaches require separate estimates for each 

predictor of interest. That is, to get accurate power estimates, users must repeat a 

complex set of calculations for each predictor. It is my impression that most 

researchers find it difficult to estimate values such as partial R2 and VIF 

accurately for power analysis. These tools are well designed and accurate; 

however, the complexity of the required inputs limits their usability. 

The estimates required by these protocols are "endpoint” values. Endpoint 

values are statistical values that require extensive computation for accurate 

estimation. Endpoint values such as the partial R2 and VIF are a function of the 

correlation between the predictors and the dependent variable and the strength of 

correlations between the predictor of interest and other predictors in the model 

(i.e., a correlation matrix). Although partial R2 and VIF are difficult to estimate, 

the zero-order correlations that produce these values are not. A researcher basing 

power analyses on previous work on the variables of interest is far more likely to 

find presentation of zero-order correlations between variables than VIF or partial 

R2 statistics. For this reason, the protocols introduced in this paper focus on input 

of correlations as the primary statistical values for power analysis.  
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Another explanation for low power in designs with multiple predictors is a 

lack of attention to power for detecting a set of outcomes. Researchers using 

multiple regression models with three predictors commonly want to detect 

significant coefficients for all of the predictors. However, applications of power 

analyses for designs with multiple predictors typically yield an estimate of power 

for each predictor (e.g., Aberson, 2010), but not power to detect all of them in the 

same study. Problematically, power to detect multiple effects differs considerably 

from power for individual effects. In most research situations, power to detect 

multiple effects is considerably lower than the power for individual effects. The 

lack of attention to this form of power is a likely source underpowered research in 

the behavioral sciences (Maxwell, 2004).  

The paper introduces tools to calculate simultaneous power estimates for 

two or more multiple regression coefficients (MRPower), power for detecting 

significant effects on all coefficients in a model (MRPower Simulate), and 

presents analyses using a series of SPSS Custom Dialogs based on the syntax 

found in Appendices A and B and available from 

http://users.humboldt.edu/chris.aberson/Index.html. All tools require entry of 

zero-order correlations with several additional optional values. 

Equations for power calculations 

Power for multiple regression coefficients is a function of the regression 

coefficient and its standard error with these values being a function of the 

correlations among variables in the model. The calculation of the standardized 

regression coefficient (Eq.1) involves both the correlations between the predictors 

(represented with numbers) and the criterion or dependent variable (represented 

with y). In this equation, ry1 is the correlation between the first predictor and the 

dv, ry2 is the correlation between the second predictor and the dv, and r12 is the 

correlation between the first predictor and the second predictor. 
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A simplified explanation of Equation 1 is that the coefficient is larger when 

correlations between the predictor and DV are large but becomes smaller when 

predictors correlate in the same direction as in the second 

predictor-dv relationship. In terms of the influence on power analysis, larger 

coefficients produce more power. 
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The standard error of the standardized regression coefficient (Eq. 2) is a 

function of the total variance explained by the two predictors in the analyses 

(often termed R2 model, represented as 
2

.12yR ) and the squared correlation of the 

two predictors ( 2

12r ). The standard error is smaller when the variables explain 

more variance, when the correlation between predictors is smaller, and when 

sample size (n) is larger. 
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Calculation of the standard error requires R2 for a model with all the 

predictors (Eq. 3). This value increases as correlations between predictors and the 

DV increase and gets smaller as correlations between predictors rise, provided that 

correlations all run in the same direction. 
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The ratio of coefficient to standard error produces the non-centrality 

parameter (δ). Larger δ values represent more power. This value allows for 

calculation of power. Power calculations require application of non-central 

distribution probability density functions that are beyond the scope of simple 

calculations. However, SPSS and other packages provide the calculation (see next 

section for application).  
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These formulae demonstrate several important concepts relevant to power 

analysis with multiple predictors. First, larger regression coefficients (i.e., larger 

effect size) promote more power. Larger coefficients result from stronger 

correlations between predictors and the DV. Correlation between predictors drives 

coefficient size downward and thus reduces power. Broadly this means that 

collinearity (or with three or more predictors, multicollinearity) reduces statistical 

power.   
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Power for two predictors 

This section presents calculations of power for a two predictor example and then 

introduces the MRPower SPSS program to perform power calculations. 

Calculation example 

This example predicts voting intentions relevant to a hypothetical proposition to 

continue or discontinue affirmative action (on a scale where 0 = Absolutely will 

vote to eliminate to 10 = Absolutely will vote to continue) from beliefs that AA is 

fair and rejection of the merit principal. For the predictors, higher scores mean 

more fairness and stronger perceptions that merit should not be the only 

consideration in hiring. Based on earlier work, the example uses for ry1 = .5 (the 

correlation between fairness and intention), ry2 = .4 (the correlation between merit 

and intention), and r12 = .3 (the correlation between fairness and merit). The 

section that follows demonstrates calculation of power for a sample of n = 50. 
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With alpha = .05, Power x1 = .90 (fairness) and Power x2 = .57 (merit). To 

obtain these values, provide SPSS with the following syntax for the first 

predictor: Compute Power = 1 - NCDF.T (2.012, 47, 3.309). The value 2.012 

represents the critical value of t for rejection of the null, using two-tailed α = .05. 

The value 47 represents degrees of freedom and 3.309 is δ. 
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Two predictor power using MRPower 

The MRPower Two dialog provides a user-friendly interface that takes input of 

correlation values and sample size and returns power for each coefficient and R2 

model. The interface also allows users to enter labels for each variable, desired 

Type I error level for tests of the model and for coefficients, and the directory for 

files generated by the analyses. These values are optional. Figure 1 demonstrates 

entry of values into MRPower Two. Figure 2 presents the output from the dialog, 

yielding values consistent with calculations as well as an estimate for R2 model 

power. The output provides power for all coefficients simultaneously. To obtain a 

desired level of power, increase sample size until reaching the target value. 

Power ≥ .80 for both coefficients requires a sample of 83, whereas Power ≥ .90 

for both coefficients requires 110 participants.  
 
 

 
 
Figure 1. MRPower two interface demonstrating calculation of power for two individual 

predictors. 
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Figure 2. MRPower two output for the analysis specified in Figure 1 

 

Models with three predictors 

Calculations for two predictor models are relatively straightforward. Models with 

three or more predictors require approaches that are substantially more complex. 

For three or more predictions, calculations involve matrix inversion and other 

approaches that likely go beyond the backgrounds of most researchers (see Cohen, 

Cohen, West, & Aiken, 2003 for calculator approaches). The syntax and custom 

dialogs presented in this paper provide researchers with tools to obtain power 

estimates for multiple regression designs with three variables through a simple 

extension of the approach employed in the two predictor section. Although not 

demonstrated in this paper, dialogs for four through ten predictors (named 

MRPower Four, MRPower Five, etc.) are in development.  

Three predictors with MRPower 

The example that follows demonstrates use of MRPower to determine adequate 

sample size. This example takes results from Aberson (2007) and uses those 

values to determine power for a new study involving three predictors of general 

attitudes toward affirmative action. The predictors are diversity valuation, belief 

in the need for affirmative action, and personal experiences of discrimination with 

their expected population correlations shown in Table 1. 

Figure 3 demonstrates the MRPower Three interface. In this example, to 

obtain power of .80 or greater for each predictor requires a sample size of 129. 

Specifically, as shown in Figure 4, the analysis reports power of .94 for 

diversity, .82 for belief in need, and .80 for experience of discrimination. 
 
 
Table 1. Correlations between variables in three predictor example. 

 
 General Policy Diversity Belief in Need 

General    

Diversity  .45 (ry1)   

Belief in Need -.39 (ry2) -.42 (r12)  

Exp of Disc -.31 (ry3) -.22 (r13) .11 (r23) 
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Figure 3. MRPower Three interface demonstrating calculation of individual power for 

three predictors. 

 

 
 

 
 
Figure 4. MRPower Three output for the analysis specified in Figure 3. 

 

Power for detecting significant effects for all predictors in the model 

Often researchers using multiple regression want to detect significant effects for 

all of the predictors in a model. However, existing power analysis approaches 

only address power for individual predictors. This section details how power to 

detect effects for all of the predictors in a model differs from power to detect 

individual effects and present tools for addressing this form of power. The 
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primary issue relevant to detecting significant effects for multiple predictor 

variables is the role of Beta error inflation (or Familywise Beta error; see 

Maxwell, 2004 for a technical discussion). This issue is similar to inflation of α or 

Type I error. When conducting multiple significance tests, Type I error rates for 

the family of tests (a.k.a., familywise alpha) increase. Equation 5 provides an 

estimate of familywise α error for multiple comparisons and is the conceptual 

basis for development of tests such as the Bonferroni adjustment. According to 

the formula, with three tests using a pairwise alpha (αpw) of .05, familywise alpha 

(αfw) is .14.  

 

  1 1
c

fw pw      (5) 

 

The same process is at work with regard to the familywise probability of 

making a β or Type II error (Equation 6), a value referred as βfw throughout the 

paper. For example, take a study designed for β of .20 (called βind for Beta 

individual) for each of its three predictors (a.k.a., Power = .80 for each predictor). 

The likelihood of making a single β error among those three tests is substantially 

higher than the error rate of .20 for the individual tests. Just as with α error, 

multiple tests inflate the chances to make a single β error among a set of 

significance tests. The βfw value easily converts to power to detect all of the 

effects in the design by taking 1 - βfw. Throughout the paper, this value is referred 

to as Power(All).  

 

  1 1
c

fw ind      (6) 

 
 

Table 2. Familywise Type II error (Beta) rates for predictors using βpw = .20 (Power = .80) 

 

Number of Predictors  βfw Power(All) 

2 .360 .640 
3 .488 .512 
4 .590 .410 
5 .672 .328 
6 .738 .262 
7 .790 .210 
8 .832 .168 
9 .866 .134 

10 .893 .107 
 

* Note. All predictors uncorrelated. This table is not accurate for correlated predictors.  
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Table 2 shows βfw and Power(All) for two through 10 predictors. One clear 

result here is that in models with four predictors or more, if the researcher designs 

for Power = .80 for each individual predictor, the study will more likely than not 

fail to find significance on at least one of the predictors. This table is useful for a 

conceptual understanding of βfw, however these results (and Eq. 6) are only 

accurate for calculations where all tests have the same power and predictors are 

uncorrelated. 

Power(All) for designs with correlated predictors 

Calculation of βpw and Power(All) is straightforward for situations where 

predictors are uncorrelated. However, in most multiple regression applications 

predictors do correlate. How this influences Power(All) is a function of the 

strength and direction of correlations between predictors. Broadly, when 

predictors correlate positively with each other, Power(All) decreases. If predictors 

negatively correlate, Power(All) increases.  

Calculations of Power(All) given correlated predictors are best handled by 

simulation. Simulations draw a large number of independent samples (e.g., 

10,000) from a population with parameters used in the power analysis (defined by 

a correlation matrix). From those samples, count how many allow rejection of null 

hypotheses relevant to all of the predictors in the study. The proportion of samples 

producing results allowing for rejection of all hypotheses reflects Power(All).  

Table 3 demonstrates the impact of predictor correlations on Power(All) for 

a two predictor model. Power for each predictor is constant across each situation 

at .80 (the correlation between the predictors and DV changes to create this level 

of power) and the sample size is 50. The Reject All column reflects Power(All) 

estimates derived by simulation of 10,000 samples drawn from a population with 

the given correlations. Since this approach is empirical, there is some deviation 

from theoretical probabilities. For example, Power(All) for two predictors with 

Power = .80 and no correlation between predictors is theoretically .64. The 

simulation provides a value of .6348. Although not exact with 10,000 replications, 

the simulated values provide a clear demonstration of the patterns of expected 

results. The range of values for Power(All) is roughly .59 to .72 with more power 

generated as correlations between predictors move from strongly positive to 

strongly negative.  

These values suggest that negative correlations between predictors are 

advantageous. However, is important to recognize that it is unlikely to find 
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predictors that correlate strongly in the negative direction when both predictors 

have a consistent (i.e., all positive or all negative) relationships with the DV. 
 
 
Table 3. Power(All) for two predictors with power = .80 and varying levels of correlation. 

 
Correlation between 

predictors 
Required x-y 
correlations 

Reject 
None 

Reject 
One 

Reject 
All 

-.80 .1274 .1294 .1492 .7214 
-.60 .1891 .1074 .2029 .6897 
-.40 .2445 .0816 .2458 .6726 
-.20 .2999 .0564 .2912 .6524 
 .00 .3594 .0463 .3189 .6348 
 .20 .4266 .0279 .3518 .6203 
 .40 .5070 .0190 .3708 .6102 
 .60 .6102 .0102 .3864 .6034 
 .80 .7561 .0033 .4107 .5860 

 

* Note. Required x-y correlation is the correlation between each predictor and the dv to produce Power = .80 
with n = 50. 

 
 

Table 4 demonstrates Power(All) for models with three predictors. In each 

situation, Power = .80 for each predictor and the sample size is 100. One striking 

finding here is that Power(All) can be as low as .44 for a model with strongly 

correlated predictors, despite the relatively high level of power for individual 

predictors. As with the two predictor model, Power(All) rises as correlations 

among predictors move from positive to negative. However, Power(All) tends to 

be smaller with more predictors. For two predictors, Power(All) ranges from .59 

to .72 whereas with three predictors, Power(All) goes from .44 to .64. 
 
 
Table 4. Power(All) for three predictors with power = .80 and varying levels of correlation. 

 
Correlation 

between 
predictors 

Required x-y 

correlations 
Reject None Reject One Reject Two Reject All 

-.80 n/a     
-.60 n/a     
-.40 .0804 .0793 .1030 .1800 .6377 
-.20 .1692 .0268 .1129 .3046 .5557 
.00 .2583 .0091 .1005 .3678 .5226 
.20 .3569 .0033 .0892 .4251 .4824 

.4 .4703 .0008 .0678 .4681 .4633 

.6 .6057 .0001 .0506 .5000 .4493 

.8 .7747 .0000 .0435 .5211 .4354 
 

* Note. Required x-y correlation is the correlation between each predictor and the dv to produce Power = .80 

with n = 100. 
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Also of note is that some values in Table 4, represented as n/a, are not 

possible. For example, there is no predictor-DV correlation where it is possible to 

have correlations of -.60 or -.80 between the predictors (given n = 100). 

Additionally, models with substantial positive correlations among multiple 

predictors likely violate regression assumptions regarding multicollinearity.  

MRPower Simulate dialogs 

The previous section demonstrated how correlations between predictors impact 

Power(All). However, the values presented in those tables are limited as they 

reflect situations wherein correlations between predictors and power for 

individual predictors are constant. Practically predictors might show different 

levels of power and varying levels of correlation. The MRPower Simulate dialogs 

allow for such input and address Power(All) for designs with two to ten predictors.  

In the example from the previous section, power exceeded .80 for three 

predictors with a sample of 129. However, power for detecting significant effects 

for all three predictors in the same sample [termed Power(All)] is likely 

substantially smaller. The MRPower Simulate dialog creates a population based 

on user-supplied correlations. Next, the program takes a sample of size n from the 

population (n is specified by the user) and generates an analysis predicting the DV 

from the set of IVs for that sample. The results of the analysis are output to a 

datafile (stored in the directory c:\temp as a default). The program repeats this 

process 10,000 times. Finally, the program compiles rejection rates and provides 

output representing power for individual coefficients (total times rejecting null 

divided by total number of replications) and power for rejecting zero to all 

coefficients. 

The number of replications and population size are modifiable. Although 

population is theoretically infinite, a finite population of 100,000 is, for most 

purposes, large enough to produce an accurate result. In testing the dialog, there 

was little difference between the default settings and simulations using larger 

populations (e.g., 10 million) and more replications (e.g., 100,000). However, 

more replications substantially increased processing time. If sample sizes begin to 

approach even a small percentage of population size, it would likely be beneficial 

to increase the population size. For quick analyses (e.g., trying to determine 

whether the sample size for Power(All) = .80 is closer to 300 than 400), 

replications might be reduced initially then increased in subsequent runs for a 

precise result. 
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MRPower Simulate example. 

Figure 5 demonstrates the MRPower Simulate dialog using a sample of 129 and 

the correlations from Table 1. As shown in Figure 6, this analysis generates 

Power(All) = .6056 to detect all three effects in the same model. The output also 

indicates the number of samples rejecting null hypotheses for zero, one, or two 

coefficients. On a positive note, the likelihood of finding no significant effects 

is .0001. 
 
 

 
 
Figure 5. MRPower Simulate three interface for calculation of Power(All). 

 

 
 

Figure 6 also presents power for each individual predictor. This value is the 

number of times rejecting the null for the predictor over total number of 

replications. These values provide a useful check against the results of the 

MRPower Three dialog. In this case, power for Diversity (.9387 vs. .9444), Power 

for Belief in Need (.8154 vs. .8194), and Power for Personal Experience 

(.8039 vs. .8005) are all consistent with the MRPower estimates. If these values 
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are not consistent, it suggests incorrect specification of the parameters of the 

model (i.e., something not entered correctly in the dialog).  
 

 
Figure 6. MRPower Simulate three output for Power(All) and individual predictors given 

specification from Figure 5. 

 

 

A final question is how large a sample is necessary for Power(All) of a 

specific value (e.g., .80). Using the simulation tool, Power(All) hits .80 with 

n = 171. For n = 171, power for the individual predictors are .98, .91, and .90 

respectively. This represents an increase of roughly one-third of the original 

sample size estimate. 
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Appendix A 

MRPower Three Syntax 

 

*Values noted with %% are user supplied values from the dialog. For example if n 

= 60 is entered *in the dialog, the %%n%% is replaced by 60 for analyses.  

 

*OMS command suppresses output 

OMS SELECT ALL 

 /DESTINATION VIEWER=NO. 

 

*Creates correlation matrix for analysis 

*Means are set at 1, 2, 3, and 4 to facilitate SPSS processing.  

*0s sometimes cause SPSS to terminate 

MATRIX DATA VARIABLES = ROWTYPE_  y x1 x2 x3. 

BEGIN DATA 

Mean 1 2 3 4 

STDEV 1 1 1 1 

N %%n%% %%n%% %%n%%  %%n%%  

Corr 1 

Corr %%ry1%% 1  

Corr %%ry2%% %%r12%%  1 

Corr %%ry3%% %%r13%%  %%r23%% 1 

END DATA.   

DATASET CLOSE %%dir%%\resultsC.sav.  

 

*Captures coefficient and R2 values for power calculations 

OMS SELECT TABLES  

 /destination format = sav numbered = "Table_Number" outfile = 

"%%dir%%\resultsC.sav"  

 /if commands = ['regression'] subtypes = ['Coefficients']  

 /tag = "reg".  

OMS SELECT TABLES 

 /destination format = sav numbered = "Table_Number" outfile = 

"%%dir%%\resultsC.sav"  

 /if commands = ['regression'] subtypes = ['ANOVA']  

 /tag = "regF". 
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*Runs regression to obtain non-centrality parameter values (equivalent to F and 

t) 

REGRESSION 

  /MATRIX=IN(*) 

  /STATISTICS COEFF OUTS R ANOVA 

  /CRITERIA=PIN(.05) POUT(.10) 

  /NOORIGIN 

  /DEPENDENT y 

  /METHOD=ENTER x1 x2 x3 . 

OMSEND. 

OMS SELECT ALL 

 /DESTINATION VIEWER=NO. 

GET FILE "%%dir%%\resultsC.sav". 

 

*Extracts test statistic 

FILTER OFF. 

USE ALL. 

SELECT IF ( ~ NMISS(Sig)). 

EXECUTE. 

IF (nmiss(t)) lambdaF=F. 

IF  (nmiss(F)) lambdaC=t*t. 

EXECUTE. 

 

*Computer power from non-centrality parameter, df, and alpha 

COMPUTE pred = 3. 

COMPUTE dfe=%%n%%-pred-1.  

COMPUTE sample = %%n%%.  

COMPUTE F_critM = IDF.F(1-%%alphaR%%,pred, dfe) . 

COMPUTE F_critC = IDF.F(1-%%alphaC%%,1, dfe) . 

COMPUTE PowerF = 1-NCDF.F(F_critM,pred, dfe, lambdaF) . 

COMPUTE PowerC = 1-NCDF.F(F_critC,1, dfe, lambdaC) . 

If (nmiss(lambdaC)) Power = PowerF. 

If (nmiss(lambdaF)) Power = PowerC. 

COMPUTE ID=$CASENUM. 

EXECUTE. 

If (ID = 3) PowerX1=PowerC. 

If (ID = 4) PowerX2=PowerC. 

If (ID = 5) PowerX3=PowerC. 
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EXECUTE . 

OMSEND. 

 

*Creates output for power analysis 

CTABLES 

  /VLABELS VARIABLES=sample PowerF PowerX1 PowerX2 PowerX3 DISPLAY=NONE 

  /TABLE BY sample [MAXIMUM 'Sample Size' F40.0] + PowerF [S][MAXIMUM 'Power R-

squared' F40.4] + PowerX1 [S][MAXIMUM 'Power %%x1lab%%' F40.4]  

    + PowerX2 [S][MAXIMUM 'Power %%x2lab%%' F40.4] + PowerX3 [S][MAXIMUM 

'Power %%x3lab%%' F40.4]. 

 

*Deletes files created to run analysis 

OMS SELECT ALL 

  /DESTINATION VIEWER=NO. 

NEW FILE. 

ERASE FILE ='%%dir%%\resultsC.sav'. 

OMSEND. 
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Appendix B 

MRPower Simulate Three Syntax 

 

*Values noted with %% are user supplied values from the dialog.  

*This command suppresses output 

OMS SELECT ALL 

/DESTINATION VIEWER=NO. 

*The data generation approach used here modifies syntax presented in an IBM SPSS 

support  

*file at http://www-01.ibm.com/support/docview.wss?uid=swg21480900 . Based on 

personal *correspondence and references to edstat-l archives, I believe this 

approach was developed *by David Nichols. 

matrix data variables=v1 to v4 

/contents=corr. 

begin data. 

1 

%%ry1%% 1 

%%ry2%%  %%r12%%  1 

%%ry3%%  %%r13%%  %%r23%%  1 

end data. 

save outfile='%%dir%%\corrmat.sav' 

/keep=v1 to v4. 

 

*Generate raw data. Loop # generates desired population size. 

*Vector x() and #j reflect number of variables (1 dv, 3 predictors in this 

example) 

new file. 

input program. 

loop #i=1 to %%popsize%%. 

vector x(4). 

loop #j=1 to 4. 

compute x(#j)=rv.normal(0,1). 

end loop. 

end case. 

end loop. 

end file. 

end input program. 

http://www-01.ibm.com/support/docview.wss?uid=swg21480900
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execute. 

 

*FACTOR procedure generates principal components, which will be uncorrelated and 

have *mean 0 and standard deviation 1 for each variable.  

factor var=x1 to x4 

/criteria=factors(4) 

/save=reg(all z). 

 

matrix. 

get z /var=z1 to z4. 

get r /file='%%dir%%\corrmat.sav'. 

compute out=z*chol(r). 

save out /outfile='%%dir%%\giant_datafile.sav'. 

end matrix. 

 

*End data generation portion 

*Gets the generated data and test correlations.  

get file='%%dir%%\giant_datafile.sav'. 

 

*Rename variables 

RENAME variables col1 = y. 

RENAME variables (col2 to col4=x1 to x3). 

COMPUTE ID=$CASENUM . 

SAVE OUTFILE='%%dir%%\giant_datafile.sav' 

  /COMPRESSED. 

 

*This piece draws random samples of size n. Creates number of samples equal to 

reps. 

*Puts everything in one file then splits it by sample number 

INPUT PROGRAM . 

LOOP SAMP=1 to %%reps%%. 

LOOP V = 1 to %%n%%. 

COMPUTE ID=TRUNC(UNIFORM(%%popsize%%)) + 1. 

END CASE. 

LEAVE SAMP. 

END LOOP. 

END LOOP. 

END FILE. 
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END INPUT PROGRAM . 

SORT CASES BY ID . 

MATCH FILES / FILE * / TABLE  '%%dir%%\giant_datafile.SAV' / BY ID . 

SORT CASES BY SAMP. 

SPLIT FILE BY SAMP. 

DATASET CLOSE %%dir%%\boot1.sav.  

*Runs regression on each sample. Outfile command saves results in datafile 

called boot1.sav 

 

REGRESSION 

  /MISSING LISTWISE 

  /STATISTICS COEFF OUTS R ANOVA 

  /CRITERIA=PIN(.05) POUT(.10) 

  /NOORIGIN 

  /DEPENDENT y 

  /METHOD=ENTER x1 x2 x3 

  /OUTFILE=COVB('%%dir%%\boot1.sav'). 

 

USE ALL. 

GET 

  FILE='%%dir%%\boot1.sav'. 

DATASET NAME boot1 WINDOW=FRONT. 

 

**Takes the information saved in the outfile and does some analyses based on the 

sig of each test 

**After that, just count up how many results were significant out of 10,000 - 

that's the power 

USE ALL. 

COMPUTE filter_$=(ROWTYPE_="SIG"). 

VARIABLE LABEL filter_$ 'ROWTYPE_="SIG" (FILTER)'. 

VALUE LABELS filter_$  0 'Not Selected' 1 'Selected'. 

FORMAT filter_$ (f1.0). 

FILTER BY filter_$. 

EXECUTE . 

COMPUTE Sig_Coeff1 = 0 . 

EXECUTE . 

IF (x1<%%alpha%%) Sig_Coeff1 = 1 . 

EXECUTE . 
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COMPUTE Sig_Coeff2 = 0 . 

EXECUTE . 

IF (x2<%%alpha%%) Sig_Coeff2 = 1 . 

EXECUTE . 

COMPUTE Sig_Coeff3 = 0 . 

EXECUTE . 

IF (x3<%%alpha%%) Sig_Coeff3 = 1 . 

EXECUTE . 

COMPUTE Total_reject=Sig_Coeff1 + Sig_Coeff2 + Sig_Coeff3. 

EXECUTE. 

COMPUTE b1pct=(Sig_Coeff1 / %%reps%%)*100. 

COMPUTE b2pct=(Sig_Coeff2 / %%reps%%)*100. 

COMPUTE b3pct=(Sig_Coeff3 / %%reps%%)*100. 

VARIABLE LEVEL b1pct b2pct b3pct(SCALE).  

EXECUTE. 

 

OMSEND. 

 

*Custom Tables to produce individual power and Power(All) 

CTABLES 

  /VLABELS VARIABLES=b1pct b2pct b3pct DISPLAY=NONE 

  /TABLE BY b1pct [SUM 'Power %%x1lab%%' F40.2] + b2pct [SUM 'Power %%x2lab%%' 

F40.2] + b3pct [SUM 'Power %%x3lab%%' F40.2] 

  /TITLES 

    TITLE='Power for Individual Coefficients' 

    CAPTION='Power Represented As %. Sample size = %%n%%'. 

CTABLES 

  /VLABELS VARIABLES=Total_reject DISPLAY=NONE 

  /TABLE BY  Total_reject [C][ROWPCT.COUNT PCT40.2]  

  /SLABELS VISIBLE=NO 

  /CATEGORIES VARIABLES=Total_reject ORDER=A KEY=VALUE  

    EMPTY=EXCLUDE 

  /TITLES 

    TITLE='Number of Coefficients Rejected' 

    CAPTION='Power(All) is % for Three. Sample size = %%n%%'. 

 

*Delete all files created.  

OMS SELECT ALL 
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/DESTINATION VIEWER=NO. 

New File.  

DATASET CLOSE boot1.  

Erase File='%%dir%%\corrmat.sav'. 

Erase File='%%dir%%\giant_datafile.sav'. 

Erase File='%%dir%%\boot1.sav'. 

Omsend. 
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