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Modeling Probability of Causal and Random 
Impacts 

Stan Lipovetsky 
GfK Custom Research North America 

Minneapolis, MN 

Igor Mandel 
Telmar Group Inc. 

New York, NY  

 

 
The method of the estimation of the probability of an event occurring under the influence 
of the causal and random effects is considered. Epistemological differences from the 
traditional approaches to causality are discussed, and a new model of the statistical 
estimation of the parameters of each effect is proposed. The simple and effective 

algorithms of the model parameters estimation are presented, and numerical simulations 
are performed. A practical marketing example is analyzed. The results support the 
validity of the estimation procedure and open the perspective for the application of the 
method for various decision making problems, where different causes can yield the same 
outcome. 
 
Keywords: causal and random effects, categorical data, causal modeling 

 

Introduction 

Modern decision making actively uses statistical methods, but there is one 

paradoxical aspect in it. To apply the results of statistical modeling and 

forecasting in practice, a decision maker, or a manager should be sure that the 

decision is based on a causal relationship: for instance, a positive correlation 

between advertising and sales could mean that it makes sense to increase spending 

on advertising for getting higher revenue. However, most of the statistical 

methods do not produce “causal models”, they only agree that “correlation is not 

causation”. For instance, Leo Breiman (2001) emphasized the indifference of the 

statistical learning to causal problematics (see also Hastie, Tibsharani, & 

Friedman 2009). So, a positive relationship between advertising and sales may 

simply indicate that with bigger sales, a company has a higher profit and thus is 

able to spend more on advertising. More questions related to statistical and causal 

approaches in sociosystemics and mediaphysica are considered in (Kuznetsov & 

Mandel, 2007, Mandel, 2011). 

mailto:stan.lipovetsky@gfk.com
mailto:igor.mandel@gmail.com
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The past two decades have witnessed a burst of works on various causality 

problems and methods. Three main approaches intensively used in causality 

studies are: simultaneous structural equations founded by S. Wright (1921, 1960; 

more references within Kline, 2010); potential outcomes proposed by J. 

Splawa-Neyman (1990), and advanced by D. Rubin (1974, 2006), and the concept 

of do-operators and associated with them acyclic graphs developed by J. Pearl 

(2000, 2013). There are many other authors and proposals combining and 

modifying these ideas, although according to J. Pearl, almost all of these 

approaches in fact talk about the same things, using different terms and stressing 

different aspects of the problem. One thing is common for most of these works is 

that they consider a situation when many variables are interlinked, and the main 

aim of the causal analysis consists in disentangling of these influences and 

evaluating the pure impact of each cause on the effect. For instance, in the 

influential J. Pearl’s book (2000), all descriptions begin only when graphs have 

complex structures, with several arrows targeting each node, but it is not clear 

what to do, if there is only one outcome and many potential causes. 

While most applications of causal inference focus on a complex situation 

with multiple outcomes, the current paper revisits a seemingly simple case of a 

single binary outcome variable with multiple sources of causal and additional 

random effects. Randomness is understood here not as a “remaining part” of the 

unexplained variance, which is typical in statistics, but as the source of the 

unknown (not associated with any variables) causes, resulting in the same effect. 

This concept and a general model was proposed in (Mandel, 2013), where one can 

also find a discussion about the correct definition of causes and effects, the 

differences between individual and statistical causes, and other methodological 

issues, partly touched on here. This current paper considers the problems of the 

parameters estimation in such a model. 

 The Concept of the Causal Intrinsic Probabilities 

Consider a model of the direct impact of multiple causes onto the binary outcome 

Y with Y = 1 and Y = 0 meaning that the effect of the interest has occurred or has 

not, respectively. Consider a case of K attributes A1, A2,..., AK (where Ak = 1 and 

Ak = 0 denote the presence and the absence of a k-th attribute, with k = 1, 2,…, K). 

The attributes are represented by the categorical variables which may be binary, 

ordinal, or nominal variables. A vector of the realized values of such attributes 

can be denoted as a = (a1, a2, ..,aK), and this may represent levels of the same 

and/or different categorical variables, e.g., A1 = 1 means male, A2 = 1 means 
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female, A3 = 1 means kids, A4 = 1 means teenagers, A5 = 1 means adults, etc. Let 

us assume that the attribute Ak creates the causal effect Y = 1 with probability pk. 

In the simplest case k = 2, the probability that Y = 1 would follow the rule of the 

union of the independent events: S = p1 + p2 - p1 * p2. In essence, it just reflects 

the fact that the coincidence of two causes does not produce anything more than 

one effect. Respectively, the probability of not having the causal effect would be 

presented as 1 – S = (1 - p1)(1 - p2). 

For any K, the causal effect of outcome Y = 1 is defined as an intrinsic 

(latent) probability Scausal(a), where a is a vector of the realized set of attributes, so 

that the probability of not-occurring of the event is: 

 

    
 : 1

1 1
k

causal k

k a

S a p


     (1) 

 

where p1, p2,.., pK are parameters which represent the causal strength associated 

with the presence of each attribute Ak. Note that the absence of an attribute may 

imply the presence of the opposite attribute (e.g., the absence of the “male” 

attribute A1 contributes to the presence of the “female” attribute, A2). In other 

situations it could vary: for instance, a road accident may happen due to fog (A1), 

reckless driving (A2), ice conditions (A3), and other non-mutually exclusive causes.  

There is also an irreducible latent probabilistic "random cause" that 

represents other factors that are not explicitly accounted for by the set of attributes. 

It is assumed that this random effect is: a) independent of other attributes; b) its 

outcome (denoted as r in the sequel) is constant across all configuration of 

attributes that may be present for a particular individual. These assumptions yield 

the expected probability at the population level as the union of the causal and 

random sources, S(a) = Scausal(a) + Srandom – Scausal(a)∙Srandom, or in the explicit 

form: 
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The aim of the proposed causal model is the estimation of K + 1 parameters, 

p1,..,pK, and r, on the basis of the sample of the realized outcomes Yi(a) = {1, 0} 

and the associated attribute vectors. 
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Concerning the motivation for the model, we can see the following 

arguments. Our setup acknowledges the asymmetric nature of causality, and the 

model (1)-(2) for intrinsic (causal) probability assumes that a single cause is 

sufficient for an event to happen ("fire"), whereas for an event not to occur, all 

potential causes should be ineffectual. It can be seen in a diagram with parallel 

pathways, where at least one of them would fire the event. It contrasts with a 

common binary logistic regression, where all the attributes contribute additively 

to the probability of the event occurring, or not occurring. Also, the model 

assumes that a random cause is irreducible and is presented within the sample 

probabilities S(a). Finally, in the considered model, the main role is played by the 

presence of attributes, rather than by the changing levels of the factors in classical 

methods based on the concept of regression, potential outcomes, and other models. 

Thus, each cause works as an independent entity and is associated not with 

the whole variable (like a binary “gender”), but with the separated levels (grades) 

of the variable (like two variables of “males” and “females”). It is different from 

the traditional statistical way of making models: one should look at these “grades 

related yields” rather than at the coefficients of general association (or regression), 

linking the whole “gender” to the outcome. Each level of the potentially causal 

variable produces an outcome with its own intrinsic probability. And if there are 

some causes, which cannot be associated with any measured variables, but still 

produce the outcome, then we relate them to the random cause. A typical example 

of such random causes is as follows: customers can buy a product regardless of 

advertising or promotions (a “baseline” which is hard to estimate). The purpose of 

the causal analysis is to evaluate the intrinsic probabilities, or the parameters of 

the outcome Y = 1 generated by different causes, including the random ones, with 

the observed data. 

Causal Analysis and Parameters Estimation 

The causes and the effect are associated with the usual statistical variables. 

Consider a data set containing variables X – the attribute causes of the outcome 

variable Y. With categorical causal variables, each grade of a causal X variable 

has its probability of generating the occurrence of the event, or the value Y = 1 in 

the outcome. A categorical variable with n grades can be presented as a set of n 

binary variables x1, x2, …, xn, or the so-called Gifi-system (Gifi, 1990; Lipovetsky, 

2012), where each j-th of these binary variables has 1s in the positions of j-th 

grade, and 0s in other positions. It allows the estimation of the causal effect only 

for values 1 for each variable, and the random cause can also have the impact 
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inducting the appearance of the event Y = 1. So, the outcome Y = 1 occurs as a 

union of the independent events coming from two different sources – those 

associated with the measured variables and random noise (2). 

As an explicit example, consider data with three x, so in total there are eight 

cells of all combinations of their values, and in each cell we find the proportions 

Si of the outcome variable S(a), so the proportion of Y = 1 in the base size of each 

cell. The cells and corresponding proportions Si are presented in Table 1. Of 

course, in a particular real data set, some cells can be empty. The variables in 

Table 1 are orthogonal (see in Appendix A), so they are statistically independent. 
 
 
Table 1. Example of data set with three binary variables. 

 

i x1 x2 x3 Si 

1 0 0 0 0.09141 
2 1 0 0 0.73409 
3 0 1 0 0.25630 
4 1 1 0 0.80300 
5 0 0 1 0.57608 
6 1 0 1 0.86570 
7 0 1 1 0.63409 
8 1 1 1 0.89563 

 
 

In a general case of many variables, each presented via the Gifi-system of 

binaries with their total number of K variables, model (2) can be presented in a 

generalized form: 

 

    
1

1 1 1
ik

K
x

i k

k

S r p


      (3) 

 

where k = 1, 2, …, K is a number of variable xik identifying the k-th parameter of 

the probability in the i-th cell (i = 1, 2, …, N). The values of xik are 1 or 0 when 

the variable is presented or not, respectively, as in Table 1. So, for the i-th value Si, 

with values xik = 1, the term 1-pk enters the product in (3), and for values xik = 0 

the term 1- pk is absent in the i-th row of the data. The cells as the new units are 

denoted by the current index i = 1, 2, …, N. The relations (3) show that if any 

probability pk or r is close to 1, the total probability of event occurrence Si is close 

to 1 as well. This system corresponds to the feature of the independence of the 

variables’ levels when the value of union Si is defined by the criterion of “at least” 

one variable impacting on the event appearance. It is important to note that due to 
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the definition (3), any additional cause with the term (1-pk) can only increase Si, 

as can be expected. 

Consider how to estimate parameters of the model (3) by data like those 

given it Table 1. Regrouping and taking logarithm of equation (3), and using 

notations 

 

      0ln 1 , ln 1 , ln 1i i k ky S b r b p        (4) 

 

we represent (3) in the linearized form: 

 

 0 1 1 ...i i K iKy b b x b x      (5) 

 

So, the problem of estimation of the parameters bk is reduced to the ordinary 

least squares (OLS) linear regression, with the known solution  

 

  
1

b X X X y


    (6) 

 

where y (4) is a vector of N-th order, X is the design matrix of xik values 

(completed by the additional column of all 1s, which corresponds to the intercept 

b0 in the model), b is the vector of all K + 1 parameters in (5). If there are not 

enough observations, the matrix of the second moments X’X in (6) could be close 

to singular, and its inversion is impossible, or it yields too inflated coefficients. In 

such a case, we can use a regularization imposed onto the parameters which 

produces the so-called ridge-regression: 

 

  
1

b X X qI X y


     (7) 

 

When the profile parameter of the ridge regression q is close to zero, the 

solution (7) reduces to OLS (6). More complicated ridge-regressions with a high 

quality of fit see in (Lipovetsky, 2010). 

By the estimated coefficients b (6)-(7), each original parameter of 

probability can be obtained from the relations (4) by transformation: 

 

    01 exp , 1 expk kr b p b      (8) 
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The relations (8) show that the parameters b should be negative which can 

be achieved by their special parameterization (for instance, each b is substituted 

by another unknown parameter c in the relation b = -c2, and a nonlinear estimation 

is performed for the free parameters c). But usually the solutions (6)-(7) are 

feasible for the meaningful values (8). 

To illustrate this approach, return to Table 1, take yi = ln(1 - Si) as the 

dependent variable (4), and construct the model (6). Its coefficients are presented 

in the first column of Table 2. These coefficients are transformed by (8) to the 

probabilities r of the random impact and pi of the causes, which are given in the 

second numerical column in Table 2. In the next column, Table 2 also presents the 

original values of cause probabilities used in this simulated data. Comparison of 

the estimated and the original values shows a pretty good quality of the estimation 

with the relative errors of several percent or less shown in the last column of 

Table 2. The coefficient of multiple determination in this model (6) equals 0.998, 

and its value adjusted by degrees of freedom equals 0.995, so the quality of the 

model is indeed very high. 
 
 
Table 2. Regression coefficients and probability estimates. 
 

Coefficients of 
regression 

Estimates of cause 
probability 

Original values used 
in simulation 

Relative error, % to 
original values 

b0 -0.102722 r 0.09762 0.10 2.38 
b1 -1.240261 p1 0.71069 0.70 1.53 
b2 -0.224870 p2 0.20138 0.20 0.69 
b3 -0.697456 p3 0.50215 0.50 0.43 

 
 

Note that a design matrix like in Table 1 is orthogonal, so the x-variables 

have zero correlations. In such situation, coefficients of multiple linear regression 

equal the coefficients in the pair regression of y on each x separately, which 

makes calculations even simpler, as shown in Appendix A. If a cell of certain 

variables’ combination is empty, the number of rows in the design table can be 

reduced. But even in such a case, it is possible to hold the whole design matrix 

substituting zero by a small proportion value, say, S = 0.005.  

In application, the interest may be in estimating an additive share of 

influence of each cause in the effect. In order to achieve this, use the formula: 

 

 
 

 

ln 1

ln 1

ikx

k

ik i

i

p
S S

S





  (9) 
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where the total of the causes (including the random one corresponding to the 

index k = 0) in each cell equals the predicted proportion: 

 

 
0

K

i ik

k

S S


   (10) 

 

The derivation and other properties of the relations (9)-(10) are presented 

in Appendix B. 

Methodology 

Numerical simulations 

To test validity of the proposed estimation procedure, a series of 

experiments on the generated data were performed. The varied parameters are 

described in Table 3. Not all combinations of these parameters (there are about 

1700 scenarios) were estimated, some of them are simply impossible. For each 

combination of factors, several random runs (from one to forty) were performed. 

In each case, the assignment of value 1 to Y was done, if any of X variables was 

equal 1. For correlations in Table 3, both signs were used; correlation -1 means 

that two variables represent in fact one binary variable. 
 
 
Table 3. Different parameters of simulation and estimation 

 

 Parameters Value 1 Value 2 Value 3 Value 4 

1 
Number of observations 

in a data set 
100 500 10,000  

2 
Number of causal 

variables 
1 2 3 8 

3 
Correlations between 

certain X variables 
Low (0-0.3) Middle (0.3-0.7) High (> 0.7) -1 

4 
Random causal 

coefficients 
0.1 0.5 0.8 Any 

5 
Causal coefficients for X 

variables 
Equal Different   

 
 

After the modeling, the estimated in (6)-(8) parameters of the causal yields 

were compared with the original values used in data generation. The estimated 

and the original parameters for models with one, two, or three causal variables on 

ten datasets, together with the relative errors, are presented in Table 4. 
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Table 4. Probability estimates for datasets with 1, 2, or 3 variables, by 10,000 

observations. 
 

  
Estimated parameters Original parameters Relative error, % 

Data 

set 
Model r p1 p2 p3 r p1 p2 p3 r p1 p2 p3 

1 OLS 0.571 0.773 
  

0.5 0.77 
  

14.3 0.5 
  

2 OLS 0.107 0.269 
  

0.1 0.31 
  

7.1 14.0 
  

3 OLS 0.857 0.514 
  

0.8 0.71 
  

7.1 27.4 
  

4a OLS 0.893 -0.426 
  

0.8 0 
  

11.6  
  

4b Ridge 0.847 0.001 
  

0.8 0 
  

5.9  
  

5 OLS 0.104 0.026 0.716 
 

0.1 0.03 0.72 
 

4.4 8.2 0.4 
 

6 OLS 0.803 0.527 0.041 
 

0.8 0.48 0.15 
 

0.4 10.1 72.1 
 

7 OLS 0.095 0.837 0.911 
 

0.1 0.87 0.87 
 

4.8 4.2 4.3 
 

8 OLS 0.527 0.883 0.887 
 

0.5 0.87 0.87 
 

5.5 1.1 1.6 
 

9 OLS 0.489 0.677 0.393 0.677 0.5 0.53 0.53 0.97 2.2 28.8 25.2 30.5 

10 OLS 0.099 0.498 0.559 0.613 0.1 0.53 0.53 0.65 0.7 5.2 6.2 5.5 

 
 

In most cases, the OLS regression (6) works well, producing probabilities 

close to the original values used for the data simulation. In one dataset #4, the 

OLS yields the negative probability value (row 4a), so we run the ridge regression 

(7), which yields all positive probabilities (row 4b). It is interesting to note that 

the original p1 in this case equals zero. The relative errors of the estimated 

probabilities to their original values show a reasonable precision mostly of several 

percent, but sometimes more (it often corresponds to close to zero or one original 

values). 

What is especially important here, when the causes are dominantly random 

(like in rows 3, 4, and 6, when r = 0.8), the estimation procedure still yields very 

good results, separating causal related events with low intensity from this very 

high level (80%) of “noise”. In fact, even the biggest deviation (72%) in row 6 for 

the estimate 0.04 vs. 0.15 doesn’t seem bad with this high random influence. The 

other important feature: the procedure works even when coefficients are equal to 

each other, like in rows 7 and 8, with different level of randomness. It is 

remarkable because in traditional statistics, if two values (i.e., males and females) 

produce the same marginal frequency, the gender is considered having no causal 

interpretation. Actually, we can say that each cause works with the same intensity, 

and they both differ from the random cause. 

In another experiment with eight variables, the original coefficients might 

take any values (not controlled). This situation matches the typical data sets in 

many applied research. The results of 40 simulations are shown in Table 5, where 
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the average correlation of original Y with Xs is 0.05, and the maximum correlation 

equals 0.15. 
 
 
Table 5. Quality of the parameters estimation. 

 

 p1 p2 p3 p4 p5 p6 p7 p8 r 

Correlations between 
original and 

estimated values 
among 40 runs 

0.69 0.87 0.78 0.81 0.83 0.86 0.74 0.80 0.64 

Median error, % 
to original value 

35 20 23 32 27 33 21 21 40 

 
 

The first row in Table 5 shows that correlations between original and 

estimated values are quite big, so the procedure definitely captures the main 

features of the data. It is especially important because the original datasets 

(10,000 observations) have practically no correlations among Y and X variables, 

so in this situation the traditional statistical methods fail. The second row in Table 

5 shows that median error is about 20-30% of the original values, similar to those 

in row 9 in Table 4. Of course, it is not an ideal but a good enough result in a 

situation where original data are uncorrelated. Other experiments showed that the 

estimations only slightly depend on the level of the mutual correlations between X 

variables, so the problem of multicollinearity is not so troubling in this approach 

as in common regression modeling. 

Example of estimation of advertising efficiency 

A typical phase in media planning is the analysis of mutual frequency distribution 

of the media vehicles (TV shows, magazines, websites, etc.) and of the particular 

brand consumption. The high brand frequency for some vehicle is considered as a 

good indicator, and this vehicle is included in the list of the candidates for making 

advertising via it. Table 6 in its left part presents cross-tabulation of five products 

and four media vehicles (all data are real and represent popular magazines and 

different important products; the number of the respondents is measured in tens of 

thousands). For example, in a cell Product 1 - Vehicle 2, or P1-V2 (Table 6, left 

half), 13.8% means that this fraction of the readers of V2 magazine have bought 

P1, so V2 is the most promising vehicle (not accounting for circulation, frequency 

of advertising, and other factors). 
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Five causal models were constructed using each product as a target – the 

resulting parameters are presented in Table 6, the right part, with estimates of the 

random causes in the last column. Comparing the two parts of Table 6 shows a 

rather dramatic difference. The most promising cell P1-V2 suggests that just about 

3.1% of buyers (instead of 13.8%) might have bought the product due to this 

magazine’s advertising, while the other customers could buy regardless of it. A 

similar diminishing we see in any cell, for instance, the Vehicle 1 is even not 

important at all, so all buyers have no relation to this magazine, they would buy 

the product anyway, without this advertising. This type of analysis shows 

completely different picture of the media performance, and the decisions about 

advertising distribution could be changed accordingly. 
 
 
Table 6. Modeling of the advertising efficiency 

 

 
Fraction of vehicle audience 

consuming particular product, % 
Estimated causal coefficients, % 

Product P/ 
Vehicles V V1 V2 V3 V4 Total V1 V2 V3 V4 

Random 
causes 

P1 7.2 13.8 9.2 11.8 8.5 0 3.1 1.9 6.5 8.3 

P2 2.9 5.1 3.9 5 3.2 0 4.8 2.6 0 3.1 

P3 0.3 1.2 1.8 0.5 0.5 0 1.1 1.5 0 0.5 

P4 6.8 12.6 10.3 10.6 7.5 0 4.3 0 0 7.1 

P5 2.2 3.4 5.9 3.8 2.9 0 0 0.7 1.9 3 

 
 

For each product, the total number of positive outcomes was decomposed by 

different magazines, according to (9), (10) and (23) from Appendix B. As 

expected, the found shares reflect the importance of the magazines, as shown in 

Table 6. For example, for the product P2 the vehicles V2, V3 and random effect 

contribute as much as 17%, 7% and 76%, respectively; the random causes 

dominate (up to 95%) for all the considered products. 

Conclusion 

A new approach to causal modeling was considered based on the direct 

accounting for the internal relationship between the causal impacts and the 

outcome effect. The proposed model is a significant departure from the regular 

regression, or statistical learning models, as well as from the traditional models of 

causal analysis. In the suggested model, each causal variable effects the outcome 

individually, not cumulatively with others, which contrasts with the traditional 
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statistics, where the outcome cumulates the combined effect of all the variables of 

influence, and adding variables improves the goodness of fit. Also, unlike in the 

traditional methods, the random cause is not considered as something to be 

“minimized”, but rather as a reflection of all causes which were not captured by 

the introduced variables. The proposed approach to the analysis and estimation of 

causal relations demonstrates several important features: 

 

 it offers a way to estimate the causal relationships, when many 

possible causes generate one effect – a situation very typical for 

numerous applications; 

 it allows to estimate the intensity of the causal relationships in the 

data, even if there is no correlation between Y and X variables, when 

causal variables are highly correlated among themselves, when 

coefficients of variables are equal to each other, when random 

component in the data is very high; all these features make it very 

different from the traditional statistical and causal approaches; 

 it works just with frequency tables (providing they exist for all or 

many combinations of the predictors), so there is no need for the 

original observational data sets, that may be very useful in many 

practical situations; 

 parameter estimation is simple and could be performed with any 

available software. 

 it works with data of high dimensionality, since the orthogonal 

design matrix allows to reduce estimation to paired regressions. 

 

Future generalization of the main problems of the parameter evaluation for 

causal and random impacts can be seen in using numerical Y and X variables, and 

in the framework of complex causal relationships (as in structural equations, or 

acyclic graphs with do-operators). 
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Appendix A: Closed-form OLS solution for the orthogonal 
design 

The OLS solution (6) for a multiple linear regression can be presented in 

analytical closed-form, if we have a total set of all possible cells, that is: for K 

variables there are N = 2K cells of all possible combinations of 0 and 1 values by 

each variable. For instance, if K = 3, there are eight cells as those presented in 

Table 1. For the orthogonal design matrix, each coefficient of regression can be 

estimated by the paired relation. For that we need covariance of y with each xj:  
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Covariance of two binary predictors is: 
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Then each coefficient of regression (6) equals: 
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where y’xj is the scalar product of the vector and vector xj. With all mean values 

of xs equal 0.5, the intercept in the model (5) equals: 

 

  0 1 1 10.5K K Kb y b x b x y b b          (A5) 

 

Using (14) in (15) yields: 
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The parameters of probability (8) are also related. Indeed, rewriting r using (A5) 

yields: 
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So, the relations (A5), or (A7) between the coefficients should be taken into 

account in simulations of the model parameters. 

Appendix B. Decomposition to the additive shares of 
influence of each cause in the effect. 

Consider (3) in a generalized form, where we denote r = p0 and xi0 = 1 identically: 
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with the aim to present Si as a total of the items, each related to one of the causes: 
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For the additive decomposition of Si we take shares proportional to the ratio of 

logarithms: 
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The total of (B3), due to (B1), coincides with Si itself: 
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If Si was defined as the quotient of the counts Si = ni / Ni, where ni is the counts of 

Y = 1 in the base size Ni of each cell. Then by using it in (B3), we obtain the 

estimation for the counts nik related to each k-th cause: 
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Total of (B5) by k, similarly to (B4) yields: 
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