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A process is stable only when parameters of the distribution of a process or product 
characteristic remain same over time. Only a stable process has the ability to perform in a 
predictable manner over time. Statistical analysis of process data usually assume that data 
are obtained from stable process. In the absence of control charts, the hypothesis of 
process stability is usually assessed by visual examination of the pattern in the run chart. 
In this paper appropriate statistical approaches have been adopted to detect instability in 
the process and compared their performance with the run chart of considerably shorter 
length for assessing its patterns and ensuring the process stability. 

 
Keywords: Process stability, run chart patterns, run test, unstable process 

 

Introduction 

The run chart is a most effective and widely used tool for monitoring the stability 

of a process by displaying the data to make process performance visible. As long 

as the series of points in time exhibit a random pattern, the process is assumed to 

have constant mean and standard deviation and no autocorrelation (i.e. stable). 

While run charts focus more on time pattern, a control chart focuses on acceptable 

limits of the process data. However, in many industrial situations, it becomes 

necessary to estimate process parameter whose stability cannot be monitored 

using control charts due to lack of data and time for establishing control limits. In 

the absence of properly established control charts, process stability can be 

evaluated with the help of run chart trend and its pattern, which can be detected 

by applying run rules and to conclude the assignable causes present in the process. 

In run chart, each observation of a sample have a time variable representing 

the time of each data point is measured when data have time related behavior, run 

charts are familiar tools to visualize the process behavior. Also Deming (1986) 

pointed that when processes ought to behave randomly overtime, run charts can 
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help to identify nonrandom behavior, which can unearth potential for 

improvement. Run charts can be used as one of the important tools for diagnosing 

and solving various industrial problems, nonrandom patterns are indicative of 

process instability. Depending on the causes of process instability the non-random 

patterns can be of different types. The SQC Handbook of Western Electric 

illustrated various types of unnatural or nonrandom patterns that may occur in the 

run chart (Western Electric, 1956). Among these, six types of non-random 

patterns of individual observations are upward shift, downward shift, increasing 

trend, decreasing trend, cyclic and systematic patterns. 

Various statistical tools, such as Regression analysis, ANOVA method, SR 

test, INSR test, and Levene’s test have been used to assess the process location 

and variation to detect statistical stability of the forging process. These tools have 

also been compared with run chart of considerably shorter length to assess the 

efficiency of the above statistical methods, and indicate the process stability. 

Methodology 

The methodology involves the following steps: 

 

1. Understanding the basic concepts and tools to detect process stability 

of a manufacturing process. 

2. Process data collection. 

3. Approaches used for assessing the statistical stability of the process 

are  

a. Regression Analysis, 

b. SR method, 

c. INSR method, 

d. Run test 

e. ANOVA method 

f. Levene’s test 

4. Construction of Run chart using statistical software MINITAB  

5. Compare the performance of the above approaches with Run chart. 

6. Conclusion about the performance of the above methods. 
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Data collection and analysis 

The data set pertaining to the critical quality characteristic i.e. inner diameter of 

piston rings for an automotive engine produced by forging process. The details of 

the operation and product specification are presented in Table 1. The required 

quality characteristic of 32 consecutive units are measured and presented in Table 

2. The basic sample statistics are calculated and presented in Table 3. 
 
 
Table 1. Product description 
 

Part Name Material Operation Specifications Measuring Device 

Piston ring Cast steel Forging  74.00 ± 0.05 Dial Gauge 

 

*All dimensions are in mm. 

 
 
Table 2. Measurements of Piston ring hole diameter in mm. 

 

Sl. no. Hole dia  Sl. no. Hole dia Sl. no. Hole dia Sl. no. Hole dia 

1 74.030 9 74.011 17 73.996 25 74.014 

2 74.002 10 74.004 18 73.993 26 74.009 

3 74.019 11 73.988 19 74.015 27 73.994 

4 73.992 12 74.024 20 74.009 28 73.997 

5 74.008 13 74.021 21 73.992 29 73.985 

6 73.995 14 74.005 22 74.007 30 73.993 

7 73.992 15 74.002 23 74.015 31 73.998 

8 74.001 16 74.002 24 73.989 32 73.990 

 
 
Table 3. Summary Statistics of the case study data. 

 

Sample size Mean Median Minimum Maximum Range Std. Deviation 

32 74.003 74.002 73.985 74.03 0.045 0.0115 

 

Statistical Approaches to Detect Instability 

Regression analysis 

One way to quantify the change in location is to fit a straight line to the data using 

an index variable as the independent in the regression. In this case, the observed 
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values are in the sequential run order and they are collected at equally spaced time 

intervals. In this study, index variable are X = 1, 2, 3,… N where N is the number 

of observations. If there is no significant drift in the location over time, the slope 

parameter would be zero. The scatter diagram of the data reveals a negative linear 

association. Therefore, it can be proceeded to find the equation of the regression 

line using MINITAB statistical software. 
 
 

 
Figure 1. Output of regression analysis table for case study data. 

 

 
 

The regression equation is Dia. of Hole = 74.0 - 0.000421 × (X) 

 
Analysis of Variance 

Source DF SS MS F P 
Regression 1 0.0004831 0.0004831 4.03 0.054 

Residual Error 30 0.0035964 0.0001199   
Total 31 0.0040795    

 

In the output of the regression analysis table for the case study data, the 

F-statistic is 4.03. The table value is 4.17 for F (0.05, 1, 30). Since Fcalculated is less 

than Ftable value, and the p-value is greater than 0.05. It may be concluded that 

there is evidence that slope is almost equal to zero and ensure the process is stable 

over time. 
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SR method (standard deviation ratio method) 

The SR test is derived from the square of the ratio of the standard deviation 

estimated using all the observations and the standard deviation estimated using 

sub group ranges/standard deviations/individual moving ranges. The basis of the 

SR test is that if the process is stable, all the approaches would yield similar 

estimates for the process standard deviation. In this case statistic, SR is computed 

as the ratio of the estimate of the long term variance and the estimate of the short 

term variance. The estimated sample variance based on the N observations will 

indicate the long term variance and the estimated variance based on the moving 

range (MR) method will reveal the short term variance. 

Thus, 
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Ramirez and Runger (2006) assumed that an approximate F-distribution for 

SR, where the effective degree of freedom associated with the numerator and 

denominator are considered as (N-1) and 0.62 × (N-1) respectively and 

accordingly, it is recommended as an approximate F-test for SR. 
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Table 4. Calculation of Moving Range for the case study data. 

 

Sl. no. Hole dia (yi )  1i iMR y y   Sl. no. Hole dia (yi)  1i iMR y y   

1 74.030 - 17 73.996 0.006 

2 74.002 0.028 18 73.993 0.003 

3 74.019 0.017 19 74.015 0.022 

4 73.992 0.027 20 74.009 0.006 

5 74.008 0.016 21 73.992 0.017 

6 73.995 0.013 22 74.007 0.015 

7 73.992 0.003 23 74.015 0.008 

8 74.001 0.009 24 73.989 0.016 

9 74.011 0.010 25 74.014 0.025 

10 74.004 0.007 26 74.009 0.005 

11 73.988 0.016 27 73.994 0.015 

12 74.024 0.036 28 73.997 0.003 

13 74.021 0.003 29 73.985 0.007 

14 74.005 0.016 30 73.993 0.008 

15 74.002 0.003 31 73.998 0.005 

16 74.002 0.000 32 73.990 0.008 
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 d2 = 1.128, Statistical constant for n = 2 (Montgomery, 2009, p.702) 
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Because SR = 0.012, i.e., (F calculated), F (calculated) < F (table). Hence, it is 

concluded that the process is said to be stable. 

Instability ratio test (INSR) 

The instability ratio is defined as the ratio of the number of data points that have 

one or more violation of the Western Electric (1956) rules to the total number of 

data points plotted in the process behavior chart for the time period under 

assessment. The motivation for the INSR test is that if the process is stable, then it 

operates with common cause variation only and over time the observations move 

randomly about the central line and typically remain within the upper and lower 

control limits. The pattern exhibited in the run chart is called a random pattern. 

Appearance of a nonrandom pattern, which can be detected by applying run 

rules, is indicative that there is either an assignable cause present in the process or 

the process output’s variation has increased. Ramirez and Runger (2006) 

considered that the four most popular Western Electric (1956) rules for 

application of INSR method. Rules are as follows: 

 

 1 point out side of 3σ limits, 

 8 points in a row on one side of the central line, 

 2 of 3 points 2σ and beyond on the same side of the central line, 

 4 of 5 points 1σ and beyond on the same side of the central line. 

 

Then the test statistic, INSR, is noted as follows 

 

 
Total number of violations with respect to the four rules in the chart

100
Total number of observations plotted in the chart

INSR    (5) 
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Table 5. Calculation of Moving Range for the case study data. 

 

Sl. no.  iy   1i iMR y y   Sl. no.  iy   1i iMR y y   

1 74.030 - 17 0.006 0.006 

2 74.002 0.028 18 0.003 0.003 

3 74.019 0.017 19 0.022 0.022 

4 73.992 0.027 20 0.006 0.006 

5 74.008 0.016 21 0.017 0.017 

6 73.995 0.013 22 0.015 0.015 

7 73.992 0.003 23 0.008 0.008 

8 74.001 0.009 24 0.016 0.016 

9 74.011 0.010 25 0.025 0.025 

10 74.004 0.007 26 0.005 0.005 

11 73.988 0.016 27 0.015 0.015 

12 74.024 0.036 28 0.003 0.003 

13 74.021 0.003 29 0.007 0.007 

14 74.005 0.016 30 0.008 0.008 

15 74.002 0.003 31 0.005 0.005 

16 74.002 0.000 32 0.008 0.008 

 
 

 
Figure 2. Run chart with 1σ, 2σ and 3σ control limits. 
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Process mean (µ) that represents the central line and the standard deviation 

(σ) that determines the distances of the control limits from the central line are 

usually unknown, and so these may be estimated from the N observations. The 

process means (µ) and standard deviation (σ) are estimated using arithmetic mean 

and moving ranges respectively. 

 

Interpretation 

 

a) 1 point out side of 3σ limits, (in Figure 2 no points violate this rule). 

b) 8 points in a row on one side of the central line, (in Figure 2 no 

points violate this rule). 

c) 2 of 3 points 2σ and beyond on the same side of the central line, (in 

Figure 2 no points violate this rule). 

d) 4 of 5 points 1σ and beyond on the same side of the central line, (in 

Figure 2 no points violate this rule). 

e) As no points violating the above 4 rules, INSR = 0.00, cutoff value 

for Run chart length (N = 32) is 3.125% [8], so the process is said to 

be stable. 

Variation 

To detect a change in variation in the process, Levene’s test has been used it is 

based on the median rather than the mean. It assesses the assumptions that 

variance of the population from which different samples are drawn are equal. It 

tests the null hypothesis that the population variances are equal. If the resulting 

p-value of Levene’s test is less than critical value (0.05), the obtained differences 

in the sample variances are unlikely to have occurred based on random sampling 

from a population with equal variances thus the null hypothesis of equal variances 

is rejected and it is concluded that there is a difference between the variances in 

the population. It also tests whether two sub samples in a given population have 

equal or different variances based on p-values. 

Hypothesis Testing: Null hypothesis H0 ; σ1 = σ2 = σ3 = σ4 (There is no 

change in variance) 

Alternate hypothesis, H0 ; σ1 ≠ σ2 ≠ σ3 ≠ σ4 (There is change in variance) 

Levine’s Test has been carried out using the MINITAB software. Since the 

p-value is greater than 0.05, the null hypothesis is accepted and hence that there is 

no change in variance among the 4 sets in the sample data of 32 consecutive units. 
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ANOVA 

This approach is to compare within subgroup variation to between subgroup 

variation to detect a difference in subgroup means and aimed at detecting changes 

in the process mean only. In this case study, N=32 individual observations are 

collected and the ANOVA method is applied by forming subgroups of size 2 

using consecutive observations, i.e. there will be N/2 subgroups. Then the test 

statistic F is computed as the ratio of the mean sum of squares of subgroups (MS 

subgroup) and the mean sum of squares of errors (MS error). 
 
 
Table 6. Analysis of Variance 

 

Sl. no. 
1

x  
2

x  
i

x  x   
2

i
x x   

2

ji i
x x   

2

ji
x x  

1 74.030 74.002 74.016 73.996 0.0004 0.000392 0.001192 

2 74.019 73.992 74.0055 73.996 9.03E-05 0.000365 0.000545 

3 74.008 73.995 74.0015 73.996 3.02E-05 8.45E-05 0.000145 

4 73.992 74.001 73.9965 73.996 3.00E-07 4.05E-05 0.000041 

5 74.011 74.004 74.0075 73.996 0.000132 2.45E-05 0.000289 

6 73.988 74.024 74.006 73.996 0.0001 0.000648 0.000848 

7 74.021 74.005 74.013 73.996 0.000289 0.000128 0.000706 

8 74.002 74.002 74.002 73.996 0.000036 0.000000 0.000072 

9 73.996 73.993 73.9945 73.996 2.30E-06 4.50E-06 0.000009 

10 74.015 74.009 74.012 73.996 0.000256 0.000018 0.00053 

11 73.992 74.007 73.9995 73.996 1.23E-05 0.000113 0.000137 

12 74.015 73.989 74.002 73.996 0.000036 0.000338 0.00041 

13 74.014 74.009 74.0115 73.996 0.00024 1.25E-05 0.000493 

14 73.994 73.997 73.9955 73.996 3.00E-07 4.50E-06 0.000005 

15 73.985 73.993 73.989 73.996 0.000049 0.000032 0.00013 

16 73.901 73.87 73.8855 73.996 0.01221 0.000481 0.024901 

 
 
Table 7. Resulted values from the ANOVA Analysis. 

 

SSFactor = 0.0277684 MSFactor = 0.001 

SSE = 0.0026845 MSE = 0.002 

SST = 0.03045 Fo = 0.98 
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From Ftable, Fcritical = 2.39 and Fcalculated = 0.98. Since Fcal. < F0.05,15,16, the 

process position in time relating to a hole diameter data is not subjected to 

significant changes. 

Run test for randomness in the sequence. 

It tests the runs up and down or the runs above and below the mean by comparing 

the actual values to expect values. The statistic for comparison is the chi-square 

test [6]. All observations in the sample larger than the median value are given a 

positive sign and those below the median are given negative sign. A succession of 

values with the same sign is called a run and the number of runs ‘a’ in the 

sequence of data points is found and it from the test statistic. For n > 30, this test 

statistic can be compared with a normal distribution with mean and the variance, 

the test is two-tailed. Data: Sample size: 32 observations, Median: 74.002 
 
 
Table 8. Values above and below the median. 

 

74.030 74.002 74.019 73.992 74.008 73.995 73.992 74.001 
- + - + - - + + 

74.011 74.004 73.988 74.024 74.021 74.005 74.002 74.002 
- + + - - - - - 

73.996 73.993 74.015 74.009 73.992 74.007 74.015 73.989 
- + - - + + - + 

74.014 74.009 73.994 73.997 73.985 73.993 73.998 73.990 
- - + - + + + - 

 
 

H0: The sequence is produced in a random manner. 

H1: The sequence is not produced in a random manner. 

Number of observations, N = 32, Number of runs, a = 18 

 

 
2 1

3
a

N



   (6) 

 

 2 16 29

90
a

N



   (7) 
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 2

2 32 1
21

3

16 32 29
5.37

90

a

a






 


 

  

 

For N > 20, the distribution of ‘a’ (number of runs) is reasonably 

approximated by a normal distribution,  2,a aN   . This approximation can be 

used to test the independence of the observations. In this case the standardized 

normal test statistic is developed by subtracting the mean from the observed 

number of runs ‘a’ and dividing by the standard deviation. 

The test statistic is as follows. 

 

 
0

a

a

a
Z






   (8) 

 

 0

18 21
1.30

2.32
Z


     

 

Test statistic: Z0 = -1.30, Significance level: α = 0.05 

Critical value: Z1-α/2 = 1.96, Reject H0, if |Z| > 1.96.  

 

In this case, the test statistic (-1.30) is inside the critical region, the null 

hypothesis cannot be rejected and hence it is concluded that the data is random. 

The critical value Z0.025 = 1.96. Because |Z0| < Z0.025, the independence 

(randomness) of the sequence of the observations cannot be rejected. 

Run chart analysis 

A run chart is a line graph of data plotted over time. By collecting and charting 

data over time, trends or patterns in the process can be revealed. As run charts do 

not use control limits, they cannot exhibit if a process is stable. However, they can 

show that how the process is running. The run chart can be a valuable tool at the 

beginning of a manufacturing process, as it reveals important information about a 

process before collecting the enough data to create reliable control limits. Figure 3 

shows the Run chart for the case study data constructed using statistical software 

MINITAB to assess the stability of the process. 
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Figure 3. Construction of run chart using MINITAB-Statistical software. 

 

 
 

The two tests (actual number of runs about median and number of runs up 

and down) have been conducted to check the randomness. In both the tests i.e., 

actual number of runs about median and number of runs up and down are close to 

the expected number of runs. It implies that the data come from random 

distribution. Clusters are groups of points in one area of the charts, cluster 

indicate variation due to special causes such as measurement problem. In this case, 

approximate p-value is 0.39205, it is greater than 0.05, hence it may be concluded 

that there is no clustering in the data. Process stability can be assured by 

observing the oscillation of data above and below the center line rapidly. In this 

case, Approximate p-value is 0.80602, it is greater than 0.05, so it may be 

conclude that there is no oscillating pattern in the data. 

A mixture is characterized by an absence of points near the center line. It 

often indicates combined data from two populations or two processes operating at 

different levels. In this case, approximate p-value is 0.60795, it is greater than 

0.05, hence it may be conclude that the data does not come from different process. 
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Trends are sustained and systematic sources of variation characterized by a 

group of points that drifts either up or down. Trends may warn that a process is 

about to go out of control and may be due to worn tools. In this case, approximate 

p-values is 0.19398, it is greater than 0.05, hence it is concluded that there is no 

trend in the data. The tests for non-random pattern are significant at the 0.05 level. 

All p-values for all the tests are greater than 0.05 (α) which suggests that the data 

come from a random distribution and process is stable. 

Discussion 

The data set pertaining to the quality characteristic i.e. inner diameter of piston 

rings for an automotive engine produced by forging process. Measurements for 

inner diameter of 32 consecutive units are measured and recorded. The various 

approaches have been used on the data in order to assess the stability of the 

forging process. Tests with respect to location, variation, randomness and 

sequence of data has been done through Regression analysis, ANOVA test, Run 

test, Levene’s test, SR test, INSR test. The scatter plot reveals a least magnitude 

of negative linear association (almost zero). 

In Regression analysis, R2 value is 11.8%; it is can be stated that 11.8% of 

the total variation in the hole diameter occurs because of the variation in the 

observations sequence and remaining 88.2% is due to randomness and other 

causes of variation and also reveals that the relationship between the variables i.e. 

hole diameter and time is not significant. Also the F-test indicates that there is no 

considerable slope in the line. 

In Levene’s test, P-valve is greater than 0.05, so the null hypothesis cannot 

be rejected that there is no change in variance among the 4 sets in the sample data 

of 32 consecutive units. 

In case of Instability ratio test, Calculated Instability Ratio (INSR) = 0.00, 

cutoff value for Run chart length (N = 32) is 3.125% [8], as instability ratio value 

is less than cutoff value, the process is said to be stable. In SR method, the test 

statistic SR is computed and compared with the F (table) value. F-Test for SR, 

conclude that the process is stable as SR = 0.012 i.e. (F calculated) is less than 

F (0.05, 31, 19.22) = 1.93 i.e., (F table). In case of ANOVA method, N = 32 

individual observations, it is applied by forming subgroups of size 2 using 

consecutive observations, i.e. there will be N/2 subgroups. 

Then the test statistic F is computed as the ratio of the mean sum of squares 

of subgroups (MS subgroup) and the mean sum of squares of errors (MS error). 

From Ftable, Fcritical = 2.39 and Fcalculated = 0.98. Since Fcalculated < F0.05,15,16, the 
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process position in time relating to a hole diameter is not subjected to significant 

changes. Run Test for randomness of the sequence is concluded that the data is 

random. The Table 9 presents the summary of results of the various statistical 

methods. 
 
 
Table 9. Summary results of the statistical method. 

 
 

Alternative approaches were presented to assess the stability of the process 

and compared with the run chart. Process stability has been detected using the 

approaches such as Regression analysis, SR method, INSR method, Levene’s test, 

ANOVA method. Even though all the approaches yield the same result (i.e., 

process is stable), above mentioned approaches have their own advantages and 

limitations. As the exact distribution of SR is not known and assumed an 

approximate F-distribution for SR, it can be applied only when the number of 

observations is larger than or equal to 32. The advantage of ANOVA approach is 

that the F-test conducted using the ‘between’ and ‘within’ sums of squares is well 

defined and it is applicable even when the available number of observations is 

small but it requires practitioner’s to have background in statistics. Run test 

indicated that the data points are independent and random, hence it is concluded 

that there is no shift in location. INSR Test is more effective test as it uses rules 

similar to run chart and it works well for large number of samples. For small 

number of samples like 32-100 subgroups it leads to a Type-I error (i.e. 

probability of declaring a stable process as unstable) as high as 0.35. Ramirez and 

Runger recommended taking the 95th percentile point of the distribution of INSR 

as the cutoff value. With aim to increase the effectiveness, it has been 

recommended using the ANOV and the INSR tests. All the statistical methods 

indicates the presence of statistical stability in the case study data but run chart 

using the statistical software MINITAB gives more effective and accurate result 

compared to the other methods for assessing stability of the process. 

Sl. no. Statistical method Result Stable/Unstable 
1 Regression F(calculated) < F(table), p > 0.05 Stable 
2 SR-method F(calculated) < F(table) Stable 
3 Instability Ratio method Instability ratio < cutoff value, Stable 
4 Levene’s Test p > 0.05 Stable 
5 ANOVA method F(calculated) < F(table), Stable 
6 Run Test Z0(calculated) < Z1-α/2(table), Stable 
7 Run Chart p > 0.05,All cases Stable 
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