
Criticism
Volume 53
Issue 3 Open Source Article 7

2011

Open Process Software
James J. Brown Jr.
University of Wisconsin, Madison, brownjr@wisc.edu

Follow this and additional works at: http://digitalcommons.wayne.edu/criticism

Recommended Citation
Brown, James J. Jr. (2011) "Open Process Software," Criticism: Vol. 53: Iss. 3, Article 7.
Available at: http://digitalcommons.wayne.edu/criticism/vol53/iss3/7

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Fcriticism%2Fvol53%2Fiss3%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Fcriticism%2Fvol53%2Fiss3%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/criticism?utm_source=digitalcommons.wayne.edu%2Fcriticism%2Fvol53%2Fiss3%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/criticism/vol53?utm_source=digitalcommons.wayne.edu%2Fcriticism%2Fvol53%2Fiss3%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/criticism/vol53/iss3?utm_source=digitalcommons.wayne.edu%2Fcriticism%2Fvol53%2Fiss3%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/criticism/vol53/iss3/7?utm_source=digitalcommons.wayne.edu%2Fcriticism%2Fvol53%2Fiss3%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/criticism?utm_source=digitalcommons.wayne.edu%2Fcriticism%2Fvol53%2Fiss3%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/criticism/vol53/iss3/7?utm_source=digitalcommons.wayne.edu%2Fcriticism%2Fvol53%2Fiss3%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages

 481Criticism Summer 2011, Vol. 53, No. 3, pp. 481–487. ISSN 0011-1589.
© 2011 by Wayne State University Press, Detroit, Michigan 48201-1309

Open Process
Software
James J. Brown Jr.

Expressive Processing: Digital
Fictions, Computer Games,
and Software Studies by Noah
Wardrip-Fruin. Software Studies
Series. Cambridge, MA: MIT
Press, 2009. Pp 480. $35.00 cloth.

In Program or Be Programmed
(2010), Douglas Rushkoff argues
that we’ve ceded questions of
software to a high priesthood of
programmers:

Our enthusiasm for digital
technology about which
we have little understand-
ing and over which we have
little control leads us not
toward greater agency, but
toward less . . . [W]e have
surrendered the unfolding
of a new technological age
to a small elite who have
seized the capability on offer.
But while Renaissance kings
maintained their monopoly
over the printing presses by
force, today’s elite is depend-
ing on little more than our
own disinterest. We are too
busy wading through our
overflowing inboxes to con-
sider how they got this way,
and whether there’s a better
or less frantic way to stay in-
formed and in touch.1

Although Rushkoff ’s text moves
a bit too quickly through compli-
cated terrain, his larger argument
holds water.2 Most users of tech-
nology have remained just that—
users. We have taken little interest
in building our own tools or, at
the very least, understanding how
our tools are constructed. Despite
the goals of engineers and design-
ers such as Alan Kay and Douglas

482	james J. brown jr.

Engelbart, who hoped to create a
situation in which all users would
have the tools and know-how to
write code, the role of user and de-
signer have remained separate.

Humanistic scholarship pro-
vides a possible opportunity for
those of us interested in address-
ing this problem. Attuned to ques-
tions of language and expression,
humanists have begun to examine
some of the ins and outs of pro-
gramming. Scholarship in various
disciplines has begun to take up the
questions of the digital in earnest.
But regardless of recent pushes to
promote the digital humanities,
these efforts have not been as wide-
spread as some might hope. One
can imagine some ambitious pro-
grams. For instance, computer pro-
gramming could be taught broadly
at the K-12 level and could be in-
tegrated into higher education be-
yond computer science programs.
But in the meantime, we might
look to smaller, incremental steps,
such as the development of critical
tools for better understanding how
software works.

Noah Wardrip-Fruin’s Expres-
sive Processing provides some of
those tools. Wardrip-Fruin’s notion
of “expressive processing” evokes
two ideas at once. First, the term
suggests that software is a signifi-
cant and unique expressive medium
that calls for users to pay careful at-
tention to how processes have been
authored. Second, the term allows
Wardrip-Fruin to discuss “what

processes express through their de-
signs and histories” (5). Software
bears traces of its design history,
and Wardrip-Fruin hopes that his
work can give us ways to recover
that history. In addition to this titu-
lar term, Wardrip-Fruin develops
a number of other critical concepts
in the interest of providing game
designers, artists, writers, new
media scholars, gamers, and users
new ways of considering the inner
workings of software. Balancing so
many different audiences is a dif-
ficult task. Indeed, Wardrip-Fruin
suggests that two books are con-
tained within Expressive Processing,
one that argues that we “pay more
attention to the processes of digital
media” and another that provides
a historical account of digital fic-
tion and game design strategies
(18). The text succeeds in balancing
these tasks and audiences by pro-
viding detailed explanations of the
theoretical apparatus, by putting
that apparatus to work, and exam-
ining numerous examples.

Expressive Processing also works
through some of the key questions
posed by those of us interested in a
bigger tent for computer program-
ming. While scholars of new media
will no doubt find Wardrip-Fruin’s
discussion useful, one goal of the
text is to reach beyond the relatively
small conversations of software
studies (an emerging strand of new
media scholarship) and digital fic-
tions. Within this broader proj-
ect, we might locate a promising

	on wardrip-Fruin’s expressive processing	 483

expansion of the various political
projects of open source and free
software. For while free and open
source software certainly allow
for “more eyeballs” and “shallow
bugs,” they do not necessarily ac-
count for the development of soft-
ware literacies; that is, the code
itself may be open, but the aver-
age user has a limited set of tools
for understanding how that code
operates. Expressive Processing sug-
gests some ways in which we might
begin to theorize open process soft-
ware—software that exposes its
inner logics not by opening its code
but via elegant designs. These open
process designs would enable users
to begin to parse and interpret the
various logics at work below the
surface.

Wardrip-Fruin’s aim is to help
both the general public and new
media scholars develop a critical
lens for software studies, and he
contributes to this project by de-
veloping a number of concepts,
including “operational logics,” “the
Eliza effect,” “the Tale-Spin ef-
fect,” and “the SimCity effect.”
Operational logics are patterns in
the interplay among data, process,
surface, interaction, author, and
audience. Creators of digital media
author data (the content of a story
or quest) and processes (the various
ways in which that data is arranged
and delivered to the audience). Au-
diences interact with digital media
at a surface level, and that inter-
action can change the state of the

software’s data and process while
also revealing important details
about how data and process inter-
act. Wardrip-Fruin’s three effects
provide various ways by which we
might understand this relationship
between internal operations and
surface effects.

The Eliza effect, named after
Joseph Weizenbaum’s famous nat-
ural language processing system,
describes a situation in which com-
plexity at the surface of a digital
system leads users to assume inter-
nal complexity. Although the term
is not Wardrip-Fruin’s, Expressive
Processing provides a rethinking of
the concept. In the mid-1960s, Wei-
zenbaum created Eliza, a precur-
sor to today’s chatbots that enabled
users to “talk” with a therapist, and
users began to assume that the pro-
gram was able to carry on a com-
plex conversation. This illusion
often collapsed as users attempted
to sustain longer conversations with
Eliza, and they soon discovered
that the system was merely manip-
ulating user-entered strings of text
in rather simplistic ways. Nonethe-
less, the breakdowns that happen as
users interact with Eliza provide a
useful way of understanding the re-
lationship between user experience
and internal processes. Wardrip-
Fruin suggests that the Eliza effect
has led many designers of interac-
tive fiction and games to avoid the
problem altogether. That is, rather
than run the risk of an Eliza-like
breakdown, designers have begun

484	james J. brown jr.

to make it clear at the outset that
they’re not attempting to create
artificial intelligence (AI) that ap-
proximates human behavior. In-
deed, one of Wardrip-Fruin’s key
insights is that many designers and
authors are not typically interested
in creating accurate models of the
world. Rather, their main goal is
to create models with which users
interact. The goal is not to recreate
the “real” world but rather to create
a world.

Wardrip-Fruin’s second in-
tervention is the Tale-Spin effect,
named after James Meehan’s at-
tempt to write a metanovel. Tale-
Spin, Meehan’s story-generation
machine, generated simplistic,
nonsensical, confusing narratives,
which has led most scholars in the
humanities to dismiss the system.
However, most computer sci-
ence discussions of the software
“tend to treat the system as wor-
thy of serious engagement” (121).
Wardrip-Fruin’s analysis bridges
this gap by bringing the expertise
of a software designer to bear on
the concerns of humanistic schol-
arship. He does this by explaining
his Tale-Spin effect: “The Eliza
effect creates a surface illusion of
system complexity—which play
(if allowed) dispels. The Tale-Spin
effect, on the other hand, creates a
surface illusion of system simplic-
ity—which the available options
for play (if any) can’t alter” (146).
Meehan’s system spun nonsensical,
simplistic stories, but the simple

output of the system was by no
means the result of simplistic de-
sign. Tale-Spin actually employed
a fairly complex planboxing tech-
nique in an attempt to generate
stories. As Wardrip-Fruin’s pains-
taking analysis of Tale-Spin’s op-
erational logics attests, this system
has a great deal to tell us about the
authoring of digital media as well
as the relationship between user
experience and internal processes.
Tale-Spin may have failed to gen-
erate compelling stories, but it was
a complex system. We can fully
understand that complexity only if
we look beyond surface effects.

If the Eliza effect and the Tale-
Spin effect indicate the failures of a
system to negotiate the relationship
between surface effects and inter-
nal operations successfully, then the
SimCity effect describes software
that strikes a balance. In a game like
SimCity, the player is encouraged to
develop a deeper understanding of
the system’s internal processes. The
game does not attempt to present an
authentic model of artificial intelli-
gence, and it is quite clear to players
of SimCity that they are not inter-
acting with humans. However, the
game does succeed in clearly com-
municating its operational logics:
“[T]he elements presented on the
surface have analogues within the
internal processes and data. Suc-
cessful play requires understanding
how initial expectation differs from
system operation” (302). Thus,
players build a model of the system

	on wardrip-Fruin’s expressive processing	 485

through a process of trial-and-error,
and SimCity avoids the pitfalls of
games that attempt (and fail) to
model human behavior accurately.
Further, it provides an important
model for those of us seeking sys-
tems that can educate nonprogram-
mers about how software works.
As Wardrip-Fruin explains,

[T]he example of SimCity
is important to our culture
precisely because it demon-
strates a way of helping mil-
lions of people develop a type
of understanding of com-
plex software models. This
understanding, again, is not
detailed enough for reimple-
mentation—but rather like
the gardener’s understand-
ing of interacting plants, soil,
weather, weeding, and so on.
A gardener doesn’t need to
understand chemistry, and a
SimCity player doesn’t need
to understand programming
language code, yet both can
come to grasp the elements
and dynamics of complex
systems through observation
and interaction. (310)

In this case, gameplay offers users
a glimpse into the models built by
the SimCity designers. The game
models what we might call an open
process approach, one that signals a
hopeful direction for those hoping
to educate nonprogrammers about
how software works.

While the open source and free
software movements have meant
that we have access to more code,
it has not guaranteed a broad con-
versation about the cultural, ethi-
cal, and political effects of software
design. Further, as Wardrip-Fruin
argues, the examination of code
does not tell the whole story:

[I]f we think of software as
like a simulated machine,
interpreting the specific text
of code is like studying the
choice and properties of ma-
terials used for the parts of
the mechanism. Studying
processes, on the other hand,
focuses on the design and
operation of the parts of the
mechanism. (164–65)

Understanding software means
digging beyond surface effects.
Surfaces can tell us about inter-
nal processes, and we should un-
derstand ways of making such
connections. For Wardrip-Fruin,
this is a question of software lite
racy and not just a scholarly en-
deavor. Further, we should have
methods for digging beyond the
surface so that something like the
Tale-Spin effect can come into full
relief.

Wardrip-Fruin’s afterword is
devoted to explaining the blog-
based peer review of Expressive
Processing. In addition to feedback
from MIT Press reviewers, he so-
licited feedback from the readers

486	james J. brown jr.

of Grand Text Auto, an academic
blog. This approach is a promising
one for those interested in issues
of open access publishing, and the
afterword works through some of
the promises and complications
of a more open peer-review pro-
cess. However, to my mind, the
book’s most important contribu-
tion comes in its insistence that
scholars across various disciplines
can and should begin developing
ways for average users to think
more critically about software. As
Wardrip-Fruin explains, such a
project is not one confined to aca-
demic circles:

In our society we are sur-
rounded by software—from
everyday Google searches to
the high stakes of Diebold
voting machines. We need to
be prepared to engage soft-
ware critically, accustomed
to interpreting descriptions
of processes, able to under-
stand common pitfalls, and
aware of what observing
software’s output reveals
and conceals about its inner
workings. (422)

One does not need to write code
to be software literate. While writ-
ing code is certainly the best way
to gain a deep understanding of
how software works, we might also
consider paying closer attention
to the environments in which we

are called to work and play. And
though Wardrip-Fruin concedes
that understanding the operational
logics of software may not make
us all software designers, he sug-
gests that games like SimCity can
at the very least “produce a kind of
feeling for the algorithm, for pro-
cesses at work, for potentials and
limits” (395). This feeling for the
algorithm can happen if we begin
to think beyond open source soft-
ware and begin to consider what
open process software looks like.
The latter would call for design
strategies that reveal underlying
processes and for nonprogrammers
who learn to pay careful attention
to those processes. It would call for
a sustained conversation about how
software works and how it works
us over.

James J. Brown Jr. is an assistant professor
of English at the University of Wisconsin–
Madison. His research focuses on digital
media, rhetoric, and writing, and he teaches
in the Digital Studies program.

Notes

	 1.	 Douglas Rushkoff, Program or Be Pro-
grammed: Ten Commands for a Digital
Age (New York: OR Books, 2010),
140–41.

	 2.	 Although Rushkoff is no doubt writ-
ing for a popular audience, his ten-
dency toward punditry leads to some
specious arguments. For instance, he
argues that the difference between
an analog record and a digital CD is
that the record “is the artifact of a real
event that happened in a particular

	on wardrip-Fruin’s expressive processing	 487

time and place,” whereas a CD “is
not a physical artifact but a symbolic
representation” (46–47). While there
are indeed important differences
between vinyl recordings and digital

ones, Rushkoff’s argument ignores the
materiality of digital data that a num-
ber of scholars, including Matthew
Kirschenbaum, have gone to great
pains to demonstrate.

	Criticism
	2011

	Open Process Software
	James J. Brown Jr.
	Recommended Citation

