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GENERAL INTRODUCTION 

 

As cancer patients continue to age and accumulate comorbidities they are less able to 

tolerate aggressive therapies, such as invasive surgery and chemotherapy. Advanced or 

metastatic cancer also may prohibit surgical resection due to location or extensive invasion. 

Alternatively, cryoablation, which utilizes freezing temperatures to destroy diseased tissue, has 

gained increased recognition as an efficient, minimally invasive method of treating solid tumors. 

The procedure induces necrosis directly by damaging cell membranes and organelles via the 

formation of ice crystals, and indirectly through osmotic stress and ischemia, resulting from 

thrombosis of microvasculature (1-4). Cryoablation is an alternative to surgical resection in the 

treatment of cancers of the breast, prostate, kidney, liver, bone, lung, brain, and skin (5-7). 

Compared to surgical resection, cryoablation is less damaging to surrounding structures, places 

less stress on the body, allows for quicker recovery periods, provides improved patient comfort, 

and is more affordable (8). Importantly, cryoablation allows some patients who are not eligible 

for traditional surgery, to achieve similar clinical results as surgical resection (8-12). 

Furthermore, cryoablation promotes the release of tumor-associated antigens from the ablated 

tumor which have the potential to induce protective tumor-specific immunity (13). 

 

Clinical responses to cryoablation 

Systemic anti-tumor effects produced by cryoablation were initially observed in the clinic 

by Ablin et al when they noted spontaneous regression of metastatic lesions following 

cryoablation of primary prostate tumors in several patients (14, 15). However, this was a rare 

finding, with only 2 out of 75 treated patients displaying regression of metastatic foci. Based on 

this finding, Ablin hypothesized that ablation of the tumor resulted in tumor-specific immunity, 

which was mediated by immune uptake and clearance of the ablated tumor (15). Further 

support for the concept of  ‘cryoimmunology’ was reported by Blackwood et al who performed 
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palliative cryoablation in patients with advanced cancers and discovered elevated levels of 

antibodies against DNA, RNA, and tumor cells (16). However, they did not observe any 

regression of untreated lesions or increased tumor protection. More recently Si et al investigated 

tumor immunity following cryoablation of prostate cancer in 20 patients (17). They observed 

elevated inflammatory cytokines in sera and increased interferon gamma (IFNγ) secretion in 

response to stimulation with autologous tumor lysate 4 weeks after cryoablataion, but found the 

response was transient and unable to prevent disease relapse. Similarly, other cryoablation 

trials have found a lack of protective immunity (7, 9, 10, 18-26). Although these results have led 

to increased interest in the immunostimulatory potential of cryoablation, factors leading to 

clinically beneficial immunity have yet to be elucidated.  

Current clinical evidence has supported the use of immune promoting adjuvants with 

cryoablation to invoke greater tumor-specific immunity. Thakur et al evaluated tumor immunity 

from 6 patients with metastatic renal cell carcinoma (RCC) (27). All patients had lung 

metastases which were treated with cryoablation in combination with aerosolized granulocyte 

macrophage colony stimulating factor (GM-CSF), an adjuvant capable of stimulating and 

expanding leukocytes. T-cell and antibody responses specific to allogeneic RCC lines RC-2 and 

KCI-18 were elevated in 4 of 6 patients, although the magnitude of increase was not significant. 

Patients with persistent immune responses were noted to have improved clinical outcomes, 

however, this referred to the treated metastases only. Growth inhibition or regression of distant 

tumor foci was not observed, suggesting an ineffective or weak systemic response. Adjuvant 

modulation of cryoablation induced immunity was also performed by Osada et al with the 

adjuvant krestin (PSK), which is a protein-bound polysaccharide use to promote secretion of 

tumor necrosis factor alpha (TNFα) (28, 29).  Approximately half of patients treated with 

combination therapy of cryoablation and PSK exhibited an elevated cytokine profile, however no 

mention of correlating clinical responses were reported. Additionally, pre-clinical studies by 

Adema and colleagues have used CpG oligodeoxynucleotides (CpG) and saponin based 
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adjuvants in coordination with cryoablation to dramatically improve magnitude and efficacy of 

the resulting tumor-specific immune response (30-34). 

Although the concept of cryoimmuology is attractive, there has been no clinical benefit 

consistently observed. Many patients treated with tumor cryoablation suffer from advanced or 

metastatic cancer, which often leads to compromised host immunity. It may not be feasible for 

cryoablation treatment alone to induce adequate tumor-specific immunity and overcome 

immunosuppressive barriers. Additional therapies targeting immunosuppressive effectors, such 

as T-regulatory cells (Tregs), may be necessary for more consistent immune induction in 

patients and have shown some activity in pre-clinical studies (31, 35, 36). Although cryoablation 

may have greater success in treating localized disease, surgical resection will likely remain the 

initial treatment option until cryoablation produces similar recurrence rates (23, 24, 26, 37, 38). 

Currently, cryoablation is used primarily in the palliative setting for tumor debulking (i.e. salvage 

therapy) and pain management, however there is an increasing role for cryoablation in treating 

single renal masses (39). For palliative care, multiple studies have shown is an effective 

treatment with a very low complication rate, which improves overall survival and quality of life 

relative to systemic interventions alone (7, 18, 19, 22, 40). 

As technology continues to advance, cryoablation will most likely be utilized for 

additional treatment applications due to its benefit over other ablation technologies. Unlike other 

ablation therapies, the ice ball formed during cryoablation is visible on computed tomography, 

creating a definitive treatment zone that can be manipulated by the operator (41). Other ablation 

therapies dependent on electrical current (i.e. radiofrequency ablation) are affected by tissue 

resistance which prevents them from being used in regions with high resistance (i.e. bone and 

lung), whereas cryoablation has no such limitation (42). Furthermore, patients treated with 

cryoablation have decreased levels of pain peri- and post-operatively, unlike other ablation 

therapies that generate intense amounts of heat (18). Additionally, cryoablation is safe to use 

near major vasculature, preserves the collagenous architecture of the ablated tissues, and 
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causes less scaring (42). It has also been reported that cryoablation induces significantly 

greater tumor-specific immunity relative to radiofrequency ablation (RF) in pre-clinical models 

(31), which may be due denaturation of antigens by RF (43). 

 

Mechanisms of Cryoablation Induced Immunity 

Local tissue damage caused by pathogen invasion usually induces the production of 

pro-inflammatory cytokines from stroma and resident macrophages, which act to upregulate 

chemotactic and vascular adhesion factors. These factors recruit leukocytes out of circulation to 

the inflamed region to initiate the innate immune cascade. Granulocytes, monocytes, and 

natural killer (NK) cells are the first responders and act directly on invading pathogens or 

perceived threats. Once activated they can produce additional cytokines to further modulate the 

inflammatory response and recruit additional effectors. Eventually antigen presenting cells 

(APCs), such as dendritic cells (DCs) and macrophages infiltrate the region to acquire antigen 

through phagocytosis. APCs initiate adaptive immunity by processing and presenting antigen to 

T-cells, which account for antigen specific responses. Adaptive immunity can be divided into two 

major branches, the humoral and cell-mediated responses. Humoral immunity consists of the 

generation of antigen specific antibody (Ab) or immunoglobulin (Ig) produced by fully 

differentiated B-cells (plasma cells). Ab acts both directly and indirectly to neutralize and 

eliminate pathogens and other targets. Cell-mediated responses involve T-cell activation and 

function. The two main subsets of T-cells include T helper cells (Th / CD4+), which are 

predominantly responsible for controlling the effector functions of adaptive immunity via cytokine 

secretion, and cytotoxic T-cells (CTL / CD8+), which directly kill target cells by lysis (i.e. virally 

infected cells or tumor cells). Another subset of T-cells known as T-regulatory cells (Tregs) can 

also become activated to serve as a negative regulator. Tregs act to inhibit antigen specific T-

cell activity to help maintain a degree of immunologic homeostasis and prevent the development 

of autoimmunity (44). 



5 

 

 

 Naïve CD4+ T helper cells can be polarized by DCs into two major classes of activated 

T helper cells, Th1 or Th2, characterized on the basis of their cytokine profiles (45). IFNγ 

secreting Th1 cells are effective in controlling intracellular bacteria, viruses, and certain tumors 

by promoting the cytotoxic effector functions of CTLs, NK cells, and macrophages (46-48). Th1 

cells also enhance antibody-dependent cell-mediated cytotoxicity (ADCC) through production of 

IgG2a and IgG1 in mice and humans respectively. Whereas Th2 cells, which secrete interleukin 

(IL)-4, IL-5 and IL-13, promote humoral immunity via production of IgG1 and IgE in mice and 

IgG4 and IgE in humans (46). Th2 cells also drive eosinophil mediated elimination of pathogens 

(i.e. helminthes) and are responsible for the majority of environmental allergies (49). 

Importantly, Th1 and Th2 cytokines exert reciprocal, inhibitory effects on each other (i.e. IL-12 / 

IFNγ inhibit IL-4 / IL-13 and vice versa) (50). With regard to cancer immunotherapy, it has been 

found that Th1 responses are superior in mediating tumoricidal effects relative to Th2 

responses, which can even enhance tumor progression (46, 51-54). 

DCs activate naïve T helper cells with antigenic and co-stimulatory signals, known as 

signal 1 (T-cell receptor and MHC II interaction) and 2 (CD28 and B7 interaction) respectively. 

An additional polarizing signal from the DC is also provided to differentially regulate Th1 and 

Th2 induction. Induction of Th1 or Th2 biased responses result from two primary mechanisms: 

pre-commitment of DC toward Th1/Th2 lineages or modulation of DC activation and function to 

favor one bias over the other (55). DCs and other sentinels of the innate immune system (i.e. 

macrophages) monitor the surrounding environment using a series of receptors for pathogen-

associated molecular patterns (PAMPs) and damaged cell-associated molecular patterns 

(DAMPs). Signaling through these receptors in combination with other inflammatory mediators, 

such as cytokines and chemokines, induce variations in DC activation status and functionality, 

which ultimately determine the DCs propensity to induce type 1 or 2 immune responses (i.e. 

Th1 or Th2 biased). This model originates from the observation that DCs can change their 

Th1/Th2 polarizing capabilities in response to different stimuli and environments (56, 57). TNFα, 
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type 1 interferons (IFNα and IFNβ), and IFNγ are potent inducers of type 1 responses, whereas 

IL-10, prostaglandin E2, histamine, and thymic stromal lymphopoietin (TSLP) induce type 2 

responses (58). Activated DCs under type 1 conditions produce IL-12 to promote Th1 

responses. In contrast, type 2 conditions inhibit IL-12 production and promote IL-10 synthesis, 

thus favoring a Th2 biased induction (59). If immature DCs acquire antigen but never receive 

stimuli to mature and express increased co-stimulatory receptors, they take on suppressive 

characteristics, secreting IL-10 and transforming growth factor beta (TGFβ), which can be 

directly immunosuppressive and further promote type 2 responses (60). The majority of 

malignancies induce type 2 promoting conditions in the tumor microenvironment, which can 

extend to a systemic condition resulting in a Th2 response that supports tumor survival and 

progression (46). Consequently, one of the paramount challenges in cancer immunotherapy is 

overcoming tumor-induced immune suppression and creating an environment in which tumor-

specific immunotherapy has the greatest probability of success. 

Tumor cryoablation produces an inflammatory environment intimately associated with 

tumor debris, which has the potential to act as an in situ tumor-specific vaccine. The resulting 

immune response induced by tumor cryoablation is determined by several key factors in the 

microenvironment including the cytokine profile elicited by cryoablation, the amount of antigen 

released from the tumor, the activation / polarization status of DCs available to acquire antigen, 

and the recruitment of immune regulatory cells, such as Tregs and myeloid derived suppressor 

cells (MDSC), which can override immune effector activity (13). The balance of these factors 

can result in an array of responses, ranging from induction of adaptive anti-tumor immunity to 

immune suppression. It is also important to consider the degree of necrosis and apoptosis that 

occurs within the region of cryoablation. Necrotic cells cause an inflammatory response, known 

as ‘sterile inflammation’, due to the release of ‘danger signals’ which are capable of activating 

DCs through DAMPs (61, 62). Examples of common endogenous danger signals include heat 

shock proteins, high mobility group box 1 (HMGB1) DNA, RNA, hyaluronan, IL-1α, and ATP (62, 
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63). Recent evidence has also implicated actin exposure as the ligand for Clec9A, a DAMP 

receptor on CD8α+ DCs (mouse Th1 promoting DC) known for potent cross-presentation and 

antibody responses (64). Although DC activation via Clec9A has not specifically been shown 

with cryoablation, freeze-thawed cells bind Clec9A (65). While necrotic cells release their 

contents into the environment, apoptotic cells do not. Several studies have shown that apoptotic 

cells usually fail to stimulate immune recognition, and may even induce anergic suppression 

(66, 67), although recent evidence suggests apoptotic cells can be immunostimulatory under 

certain conditions (68). Therefore, it is important to consider how cell death occurs and what 

affect it may have on resulting immunity. 

 

Disparity in Cryoimmunology  

Although enhanced immune priming after cryoablation has been widely characterized in 

the pre-clinical setting (31, 32, 34, 69-73), there have been an equivalent number of studies 

indicating that cryoablation does not elicit any change in tumor-specific immunity (74-76), or 

worse, induces immune suppression and tumor progression (28, 77-85). Blackwood and Cooper 

performed cryoablation on immunogenic sarcomas in rats that induced tumor-specific immunity 

capable of eliminating a second tumor at a distant location. However, they noted regression of 

the second tumor was very slow or nonexistent if the whole ablated tumor remained in situ. 

Alternatively, if the majority of the ablated tumor was resected and only a small portion 

remained, regression of the second tumor was faster and absolute (82). Urano et al reported 

similar findings in BALB/c mice when treating metastatic colon-26 liver nodules generated from 

a primary tumor in the spleen (28). They found that ablation of a single nodule led to a 

significant decrease in the number of metastatic nodules present 2 weeks post-operatively. In 

contrast, ablation of three nodules resulted in an increased number of nodules relative to 

untreated mice. These results support the notion of an antigenic threshold for inducing 
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beneficial tumor-specific immunity, with excess antigen inhibiting efficacy of the response, a 

phenomenon known as high-zone tolerance. 

It has also been suggested that cryoablation generates a substantial population of 

inducible Tregs that inhibit anti-tumor immunity (13, 31, 35, 86-88). In several studies, depletion 

or inactivation of Tregs in combination with cryoablation led to immune priming and increased 

tumor protection relative to cryoablation alone, however, a portion of mice remained 

unprotected, suggesting the presence of additional suppressive factors (31, 35, 36, 86). The 

inconsistencies in tumor-specific immunity and rejection of distant tumors reflect an inadequate 

understanding of the mechanisms of immune priming and suppression associated with 

cryoablation. The discrepancy in findings is, at least in part, due to the wide range of tumor 

models assessed and their endogenous immunogenicity in respective hosts.  

Since cryoablation is an established tool in the clinic, it is important to completely 

understand the resulting immune response and design strategies to enhance effector 

mechanisms for controlling tumor recurrences and distant foci. In this project I evaluated 

cryoablation induced immunity in tumors with known antigens and immunogenicity to test the 

hypothesis that cryoablation elicits variable levels of tumor protection based on the 

immunogenicity of the tumor. Both cell-mediated and humoral arms of the immune system were 

investigated as well as the propensity for Th1 or Th2 biased responses. I also hypothesized that 

cryoablation induced Th2 biased immunity due to massive levels of tissue inflammation, which 

can be shifted towards more effective anti-tumor immunity using Th1 promoting adjuvant 

therapy. The ultimate goal of this project is to elucidate the mechanisms responsible for 

cryoablation induced immunity, and how they can be therapeutically targeted to produce 

improved tumor-specific immunity capable of tumor protection. 
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MATERIALS AND METHODS 

 

Cell culture:  All cell lines were maintained in vitro in Dulbecco’s modified Eagle’s medium 

(DMEM) supplemented with 5% heat-inactivated cosmic calf serum (Hyclone, Logan, UT), 5% 

heat-inactivated fetal calf serum (Sigma, St. Louis, MO), 10% NCTC 109 medium (Invitrogen, 

Carlsbad, CA), 2 mM L-glutamine, 0.1 mM MEM non-essential amino acids, 100 units/ml 

penicillin, and 100 μg/ml streptomycin. All tissue culture reagents were purchased from 

Invitrogen (Gaithersburg, MD) unless otherwise specified. 

 

Mice:  All animal procedures were performed in accordance with the regulation of Wayne State 

University, Division of Laboratory Animal Resources, following the protocols approved by the 

Animal Investigation Committee. Six to eight week old BALB/c female mice were purchased 

from Charles River Laboratory (Frederick, MD). C57BL/6 pIL-1β-DsRed transgenic mice were 

provided by Akira Takashima (University of Toledo, Toledo, OH). BALB/c pIL-1β-DsRed mice 

were generated by back-crossing B6 DsRed males with wild-type BALB/c mice. DsRed mice 

were fed low fluorescent chow to prevent high background levels of fluorescence. Heterozygous 

BALB/NeuT mice, which express a transforming rat neu under the control of the mouse 

mammary tumor virus promoter, were maintained by breeding with BALB/c mice (89, 90). NeuT 

females have evidence of atypical ductular hyperplasia in all mammary glands beginning at 3 

weeks of age. This hyperplasia progresses to carcinoma in situ between 13 and 15 weeks and 

becomes a palpable tumor between 16 and 18 weeks of age (89-91). Transgene positive mice 

were identified by PCR. 

 

Cell lines:  The neu expressing TUBO mammary adenocarcinoma line was cloned from a 

spontaneous mammary tumor in a BALB/NeuT female (92). TUBO cells grow progressively in 

normal BALB/c mice and give rise to tumors which are histologically similar to spontaneous 
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mammary tumors in NeuT females (91). D2F2 is a mouse mammary tumor cell line derived from 

a spontaneous mammary tumor that arose in a BALB/c hyperplastic alveolar nodule line 

D2 (93). D2F2 cells were co-transfected with pRSV2/neo and pCMV/E2, which encodes wild-

type human Her2 (94). A stable clone of D2F2/E2 was established and maintained in medium 

containing 0.6 mg/ml G418 (Geneticin, Invitrogen). To ensure Her2 expression was maintained 

in vivo D2F2/E2 was inoculated subcutaneously into a BALB/c female and allowed to grow for 

21 days before the tumor was harvested, dissociated, and the expression of Her2 on the cell 

surface was verified by flow cytometry.  

 

3T3 Engineered APCs:  Antigen presenting cells (APC) 3T3/NKB and 3T3/EKB were 

generated as previously described (95). Briefly, BALB/c NIH 3T3 cells were transfected with Kd, 

B7.1, and Her-2 (EKB) or neu (NKB). Stable clones were selected, and maintained in 

supplemented DMEM (as above) with the addition of 0.6 mg/ml neomycin and 0.6 mg/ml zeocin.  

 

Tumor Inoculation:  Mice were inoculated with 2.5 x 105 tumor cells in 50 uL of serum free 

RPMI subcutaneously using a 1 mL syringe and 271/2 gauge needle over mammary gland #4 or 

#9 for primary and rechallenge inoculations respectively. Tumor growth was monitored by 

palpation and caliper measurement while mice were sedated. Tumor volume was calculated 

using length and width with the following equation v = (l x w2) / 2.  

 

DNA Vaccination:  DNA vaccination consisted of 50 µg of pGM-CSF and either 50 µg pNeu-

E2TM or pVax1 (blank control vector) in a total volume of 50 µL PBS (unless otherwise 

specified). Vaccination was performed intramuscularly in the left gastrocnemius using a 1mL 

syringe and 271/2 guage needle followed immediately by application of electrode gel and square 

wave electroporation using a BTX830 (BTX Harvard Apparatus) over the injection site 
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Surgerical Procedures:  Tumors were treated at ~4x7 mm in diameter. Cryoablation was 

performed using the argon-based CryoCare system with the 1.7mm diameter PERC-15 Percryo 

CryoProbe – round ice (Endocare). An incision was made along the lateral and medial margins 

of the tumor and an ellipse of skin was removed directly above the tumor. The tumor was 

dissected away from the hind limb and retracted from the peritoneal membrane and adjacent 

skin with a hemostat. The cryoprobe was inserted completely through the center of the tumor 

and freezing was initiated at 100% power. Each freeze cycle was administered for a full minute 

followed by the initiation of the thawing cycle, which lasted until the probe could be freed from 

the tumor (~1 minute). Both freezing and thawing cycles were repeated after the tumor was 

allowed to return to room temperature. After two freeze-thaw cycles the tumor was placed under 

the skin and the incision was closed using surgical staples and/or sutures. Sham surgery was 

identical to cryoablation with the exception of freezing and thawing. Surgical excision was 

performed using electrocautery, which removed the tumor along with the surrounding mammary 

tissue. 

 

CpG ODN  mu2395:  The murine specific class C CpG sequence:   

5’-T*C*G*A*C*G*T*T*T*T*C*G*G*C*G*C*G*C*G*C*C*G-3’ (Integrated DNA Technologies) was 

designed by substituting the human hexamer motif (5’-GTCGTT-3’) for the optimal mouse motif 

(5’-GACGTT-3’)  in the C-Class ODN 2395 (96). 100 μg of CpG was administered peritumorally 

over 3 injection sites: medial surface of adjacent musculature, caudual and rostral mammary 

tissue relative to tumor (10 μL/injection). 

 

Splenocyte preparation:  Spleens were aseptically harvested from mice in 10% FBS RPMI 

1640 medium and dissociated using irradiated frosted glass slides. RBCs were lysed using 

sterile deionized water and ~ 3 seconds of agitation followed by the addition of an equal volume 
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of 2x PBS. Splenocytes were cryopreserved in 90% FBS and 5% DMSO and stored at -150°C 

before ELISPOT or co-culture. 

 

PBMC isolation:  Retro-orbital bleeding was performed with heparinized capillary tubes to 

collect 150 uL of blood into tubes containing heparin (final concentration 0.2 mg/mL). 120 uL of 

heparinized blood was transferred into 15 mL tubes containing 9 mL DI water. Tubes were 

inverted several times before 1 mL of 10x PBS was added and mixed. Samples were 

centrifuged at 400xg for 10 minutes and resuspended in 10% FBS RPMI 1640 medium or flow 

buffer for further analysis. 

 

TDLN preparation:  Tumor draining lymph nodes were aseptically harvested from mice in 10% 

FBS RPMI 1640 medium and dissociated using two 23 gauge needles to produce a single cell 

suspension. 

 

Co-culture stimulation:  Lymphocyte / splenocyte samples were quantified and assessed for 

viability using the Cellometer Vision (Nexcelom) cell analysis platform. 3T3 EKB or KB 

engineered APCs were treated with irradiation or Mitomycin C before being plated in a 24-well 

plated (8x104 cells/well). Lymphocyte / splenocyte samples were later added for a final 

concentration of 1.6x106 cells/mL in a volume of 0.5mL (8x105 cells/well). Samples were 

incubated at 37°C 5% CO2 for 48 hours before supernatents were collected, cleared of debris, 

and stored at -80°C. 

 

Measurement of tumor specific antibody:  Her2 and neu specific IgG levels were quantified 

via a serum binding assay. Her2 expressing SKOV3 cells or neu-expressing NKB cells were 

incubated with 50-200x diluted mouse sera for 30 minutes, followed by PE-goat anti-mouse IgG, 

Fcγ fragment specific (Jackson ImmunoResearch) for 30 minutes. A standard curve for α-Her2 
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IgG levels was generated using serial dilutions (1000 – 2 ng/mL) of anti-c-ErbB2/c-neu (Ab5, 

TA-1; Calbiochem) which recognizes an epitope in the extracellular domain of Her2. A similar 

standard curve for α-neu IgG levels was generated using anti-c-ErbB2/c-neu (Ab4, 7.16.4; 

Calbiochem) which recognizes an epitope in the extracellular domain of neu. Normal mouse 

serum was used as a negative control. Flow cytometric analysis was performed with a BD 

FACSCanto II (Becton Dickinson). Median fluorescent intensity (MFI) for each sample was used 

to calculate an Ab5 or Ab4 equivalent for Her2 and neu respectively. 

 

Area under the curve analysis for antibody:  Area under the curve (AUC) for antibody levels 

was measured for each mouse using the equation ((Day Y) – (Day X)) x (Ab X + Ab Y) / 2 

between two time points where Day Y follows Day X. The sum of the values for all time points 

makes up the AUC. 

 

IFN γ ELISPOT:  Anti-mouse IFNγ (AN-18; eBioscience) 2.5 μg/mL was used to coat a 96-well 

HTS IP plate (Millipore) overnight at 4°C. Splenocyte samples were suspended in RPMI 1640 

medium with a total of 2x105 cells added to each well (final concentration 106 splenocytes/mL). 

To measure Her2 or neu specific responses, 2x104 engineered APCs, EKB, NKB, or KB were 

also added to the wells. Following incubation, cells were removed and biotinylated anti-mouse 

IFNγ (R4-6A2; eBioscience) 2 μg/mL was added. Biotinylated Ab was detected using 

UltraAvidin-HRPO (Leinco) 1 μg/mL. Spots were developed using the AEC substrate kit (BD 

Pharmingen) and enumerated with the ImmunoSpot analyzer (CTL). Results were expressed as 

number of cytokine producing cells per 106 cells. 

 

Flow cytometry analysis:  Approximately 2x106 PBMC or lymphocytes were incubated for 15 

min on ice in flow buffer (0.25% FBS in 1x PBS) with anti-mouse CD16/CD32 (2.4G2) (BD 

Pharmingen) to block Fc receptors. Cells were subsequently stained with the eFluor 780 viability 
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dye (eBioscience) and the following:  α-CD4 (GK1.5), α-CD8α (53-6.7), α-CD19 (1D3), α-CD25 

(PC61;Biolegend), α-TCRβ (H57-597), α-CD11c (N418), α-CD11b (M1/70), α-CD49b (DX5), 

and α-Ly6G (RB6-8C5). All antibodies from eBioscience unless otherwise indicated.  For 

intracellular staining of Foxp3, cells were surface labeled with α-CD4 and α-CD-25, fixed, 

permeabilized with Fixation/Permeabilization buffer (eBioscience), and washed with a 1X 

Permeabilzation buffer (eBioscience) before 30 minute incubation with α-Foxp3 (FJK-16s). All 

samples were washed 2x in flow buffer before analyzed using a BD FACSCanto II cytometer 

(Becton Dickinson) and FlowJo software (Tree Star). All populations enumerated as percentage 

of viable singlets. 

 

Protein Multiplexing:  Cell culture supernatant or serum/plasma samples were diluted 2 fold 

for quantification. The Cytokine Mouse Magnetic 10-Plex or 20-Plex kits (Life Technologies) 

were used with the Magpix platform (Luminex) to quantify the following proteins:  FGF basic, 

GM-CSF, IFNγ, IL-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-13, IL-12 (p40/p70), IL-17, IP-10, KC, 

MCP-1, MIG, MIP-1α, TNF-α, and VEGF. The assay was performed according to the 

manufacturer's instructions. 

 

TGFβ ELISA:  NUNC Maxisorp 96-well plates were coated with rat anti-mouse TGFβ (BD 

Pharmingen) (4 µg/mL) diluted in bicarbonate buffer and incubated at 4˚C overnight. The 

following day the plate was washed 5x with wash buffer (0.05% Tween-20 in 1x PBS) before 

blocking the plate using blocking buffer (0.5% BSA in wash) for 2 hours at room temperature. In 

a separate 96-well plate, 100 µL of sample was added to each well. To activate latent TGFβ to 

the immunoreactive form, samples must be acidified, and then neutralized. Briefly, 20 µL of 1N 

HCl was added to each well, followed 10 minutes later by 20 uL of 1N NaOH. 100 µL of each 

sample was transferred to the TGFβ coated plate and incubated at 4˚C overnight. The following 

day the plate was washed 5x before adding biotinylated rat anti-mouse TGFβ (BD Pharmingen) 
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(2 µg/mL) diluted in blocking buffer. The plate was incubated for 1 hour at room temperature 

and washed 5x. UltraAvidin-HRPO (Leinco) (1 µg/mL) diluted in blocking buffer was added to 

the plate and incubated for 30 minutes at room temperature. The plate was washed 6x before 

TMB substrate (BD OptEIA) was added for colorimetric development. Substrate development 

was stopped by adding an equal volume of 1M sulfuric acid. Absorbance was read on the 

Synergy 2 plate reader (BioTek) at 450 and 570 nm, with wavelength subtraction (450-570). 

 

Histology:  Tumor samples were collected and placed in 10% buffered formalin. Slide 

preparation and staining were performed by the histology core. Images were collected using the 

SCN400 slide scanner (Leica Microsystems). 

 

In vivo Imaging:  DsRed IL-1β mice were anesthetized and imaged in the In-Vivo MS FX PRO 

(Carestream). Fluorescent spectra were collected for 30 seconds, which were merged with 

white light images. 

 

RNA isolation: Total RNA was isolated from cells using TRIzol (Invitrogen) as recommended 

by the manufacturer.  Briefly, up to 107 cells were lysed in 1 mL TRIzol and incubated at room 

temperature for 5 minutes.  200 µL chloroform was added followed by vigorous shaking for 15 

seconds.  Samples were centrifuged for 15 minutes at 12 kRPM at 4oC and the aqueous layer 

was transferred to a new tube.  The RNA was precipitated by addition of 600 µL isopropanol, 

thorough mixing and incubation at room temperature for 10 minutes.  The RNA was pelleted by 

centrifugation at 12 kRPM at 4oC for 10 minutes followed by washing with 70% DEPC ethanol.  

Samples were resuspended in 15 µL DEPC water and heated to 55oC for 5 minutes prior to 

quantification by absorption at 260 and 280 nm. 
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First strand cDNA synthesis: Reverse transcription was performed with up to 4 µg total RNA 

using ProtoScript first stand cDNA synthesis kit (New England Biolabs).  Briefly, 1 µg of RNA 

was diluted to 3 µL with nuclease-free water and combined with 1 µL of oligo dT and incubated 

at 70oC for 5 min after which the samples were placed on ice. 5 µL of M-MuLV reaction mix was 

distributed to each sample, followed by 1 µL of M-MuLV enzyme mix. Samples were incubated 

at 42oC for 1 hour followed by 5 minutes at 70oC to deactivate the enzyme. The volume was 

then increased to 50 µL per µg RNA initially added and samples were stored at -20oC until use. 

 

Quantitative real-time PCR (qPCR): Quantitative PCR was performed with the equivalent of 

10 ng RNA per cDNA sample using iTaq Universal SYBR Green Supermix (BioRad) per 

manufacturer recommendations. Samples were run on a StepOnePlus real-time PCR system 

(Applied Biosystems). Primers were used at a final concentration of 500 nM and sequences are 

listed in Table I. Analysis for relative gene expression was performed using the 2-ΔΔCT method 

(97). The expression of each gene in each sample was performed in duplicates and the level 

was normalized relative to B2-microglobulin (B2M). 

 

Statistical analysis:  Statistical analyses were conducted using GraphPad Prism 6. Error bars 

shown represent SEM unless otherwise noted. Survival percentages were calculated using the 

Kaplan-Meier method (98). P values less than 0.05, 0.01, and 0.001 were noted as *, **, and ***, 

respectively. 
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Name Geme RefSeq# (Fwd / Rev) Primer (5'->3') 

β2 microglobulin  B2M 
F CCTGGTCTTTCTGGTGCTTG 
R TTCAGTATGTTCGGCTTCCC 

Monocyte 
chemotactic protein-

1  
CCL2 

NM_011333.3_F AGTAGGCTGGAGAGCTACAAGAGG 

NM_011333.3_R AAACTACAGCTTCTTTGGGACACC 

CCL5 (RANTES) CCL5 
NM_013653.3_F GCTCCAATCTTGCAGTCGTGTTTG 
NM_013653.3_R TCTCTGGGTTGGCACACACTTG 

Trans-acting T-cell-
specific transcription 

factor GATA-3 
GATA3 

F AGGATGTCCCTGCTCTCCTT 

R GCCTGCGGACTCTACCATAA 
Granulocyte colony-

stimulating factor 
Csf3 

NM_009971.1_F TGCAGCAGACACAGTGCCTAAG 
NM_009971.1_R GGTGGCAAAGTTGGCAACATCC 

Forkhead box P3 Foxp3 
F TCCAAGTCTCGTCTGAAGGC 
R GCGAAAGTGGCAGAGAGGTA 

histidine 
decarboxylase 

Hdc 
NM_008230.5_F AGCCACGGACTTCATGCATTGG 
NM_008230.5_R AGGACCGAATCACAAACCACAGC 

Interleukin 4 IL-4 
F CGAGCTCACTCTCTGTGGTG 
R TGAACGAGGTCACAGGAGAA 

Interleukin 5 IL5 
NM_010558.1_F GGTGAAAGAGACCTTGACACAGC 
NM_010558.1_R AGCCTCATCGTCTCATTGCTTG 

Interleukin 6 IL6 
NM_031168.1_F TCCTCTCTGCAAGAGACTTCCATC 
NM_031168.1_R TGGTTGTCACCAGCATCAGTCC 

Interleukin 10 IL10 
F CCCTGGGTGAGAAGCTGAAG 
R CACTGCCTTGCTCTTATTTTCACA 

Interleukin 13 IL13 
NM_008355.3_F AACGGCAGCATGGTATGGAGTG 
NM_008355.3_R AATCCAGGGCTACACAGAACCC 

Interleukin 17A IL17A 
NM_010552.3_F TCCAGGGAGAGCTTCATCTGTGTC 
NM_010552.3_R TTGGACACGCTGAGCTTTGAGG 

Interferon gamma INFγ 
F GCGTCATTGAATCACACCT 
R GAGCTCATTGAATGCTTGGC 

Interferon-induced 
17 kDa protein 

Isg15 
F AGCAATGGCCTGGGACCTAAAG 
R AGTCACGGACACCAGGAAATCG 

2'-5'-oligoadenylate 
synthetase 1 

OAS1 
NM_011852.2_F AGCCTTTGATGTCCTGGGTCATGG 
NM_011852.2_R AAGCAGGTAGAGAACTCGCCATCC 

2'-5'-oligoadenylate 
synthetase 2 

Oas2 
NM_145227.3_F TGAAAGTGTCGAGTTCGATGTCC 
NM_145227.3_R TCAGACCGCAGTTGACCTAGTG 

Prostaglandin E 
synthase 

Ptges 
NM_022415.3_F TCTCCTGGCTGCAAATCTGGAC 
NM_022415.3_R ACAGTGCTTTGCTCTGTGCTGTG 

RAR-related orphan 
receptor gamma T 

RORγT 
F CCGCTGAGAGGGCTTCAC 
R TGCAGGAGTAGGCCACATTACA 

T-box transcription 
factor 21 

Tbet 
F GTGAAGGACAGGAATGGGAA 
R GGTGTCTGGGAAGCTGAGAG 

Transforming 
Growth Factor beta 

Tgfb1 
NM_011577.1_F TGACGTCACTGGAGTTGTACGG 

NM_011577.1_R TCGAAAGCCCTGTATTCCGTCTC 
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Tumor necrosis factor 
alpha 

TNFα 
F ATGAGAGGGAGGCCATTTG 

R CAGCCTCTTCTCATTCCTGC 

OX40L Tnfsf4 
NM_009452.2_F GGCAAAGGACCCTCCAATCCAAAG 

NM_009452.2_R AGTTGCCCATCCTCACATCTGG 

Thymic stromal 
lymphopoietin 

TSLP 
NM_021367.2_F ATCGAGGACTGTGAGAGCAAGC 

NM_021367.2_R TCTCTTGTTCTCCGGGCAAATG 
 

Table I.  PCR Primer Sets 
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CHAPTER 1 

Inflammatory Response to Cryoablation 

 

ABSTRACT 

 

Cryoablation causes mechanical destruction and ischemia of the treated tumor which 

triggers mobilization of the innate immune system to clear the necrotic tissue. 

Polymorphonucleocytes (PMNs) are one of the first cells to arrive and infiltrate the necrotic 

tumor, followed by macrophages and lymphocytes replacing them several days thereafter.  

Because cryoablation causes necrosis primarily by membrane disruption, dying cells spill a 

portion of their intracellular contents into the surrounding environment. Some of these 

components are danger signals which elicit additional immune activation and have the potential 

to induce adaptive immunity. Here we analyze the progression of the innate immune cascade in 

response to tumor cryoablation. 

Histological examination of ablated tumors found PMNs infiltrating the tissue by 1 day 

post-operatively, which dissipated by day 3. New leukocytic infiltration at the peripheral margins 

of the tumor was also observed at this time. Macrophages and fibroblasts were seen throughout 

the entirety of tumor by day 9, with increasing numbers seen as the tissue continued to heal. To 

observe inflammatory infiltrates in vivo, fluorescent imaging monitoring the activity of the IL-1β 

promoter was analyzed in pIL-1β-DsRed transgenic mice. DsRed fluorescence was observed at 

the surgical incision, indicative of IL-1β activation during wound healing, but could not be 

detected within sham or cryoablated treated tumors in vivo. However, when tumors were 

harvested from mice and imaged ex vivo, DsRed fluorescence was found to be significantly 

increased in mice treated with cryoablation relative to sham surgery, indicating infiltration of IL-

1β producing inflammatory leukocytes. 
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In preparation for adding adjuvant stimulation during cryoablation, the activity of human 

and mouse specific class B and C CpG oligodeoxynucleotides (CpG) were evaluated in vitro 

with murine splenocytes. Surface expression of MHCII, CD80, and CD54 were elevated with all 

CpG treatments. Additionally, quantitative transcript analysis found elevated levels of interferon 

induced transcripts (i.e. Isg15, Oas1, and Oas2) with human and mouse specific CpGs, 

suggesting both CpGs have similar stimulatory capacity in mice. In vivo, treatment with CpG 

elevated levels of IL-1β, IL-2, IL-6, IL-12, IFNγ, and TNFα in tumor draining lymph nodes 

(TDLN) and plasma 2 days post-operatively, indicative of Th1 biased responses. Dendritic cell 

(DC) and natural killer (NK) cell populations were also significantly increased by CpG treatment, 

further demonstrating the immune stimulatory activity of CpG. 
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INTRODUCTION 

 

Following cryoablation, the tissue can be divided into two approximate zones, a central 

and peripheral zone. The central zone comprises the core of the frozen tissue and results in 

complete coagulative necrosis, while the peripheral zone contains both necrotic and apoptotic 

cells (99). The formation of intracellular ice crystals results in mechanical trauma to cellular 

structures, whereas extracellular ice formation draws water away from pericellular spaces, 

effectively creating an osmotic gradient that further stresses membranes and organelles (100, 

101). The formation of extracellular crystals also causes additional mechanical trauma which 

becomes pronounced with increased freezing. After freezing has been completed, thawing of 

frozen tissues leads to reduced extracellular osmolarity via melting ice, promoting lysis of 

already fragile cells (102). Additionally, repeated freeze-thaw cycles dramatically increase 

cellular death leading to more complete ablation. The subsequent damage to the endothelium in 

the vasculature feeding the ablated area results in thrombus formation resulting in increased 

ischemia, leading to further cell death (101). After thawing is complete, reactive hypereamia and 

increased vascular permeability lead to tissue congestion and edema. The process of wound 

repair begins at the margins of the treated area where neutrophils initially invade (102-104). 

Over the following months the necrotic tissue is eventually cleared by macrophages and 

replaced with fibroblasts and newly formed collagen (101). 

Cytokines in the interleukin (IL)-1 family function as powerful mediators and regulators of 

inflammatory responses to pathogens and tissue injury. Of the eleven members in this family, 

IL-1β is the most well characterized. On exposure to pathological stimuli, IL-1β is produced by 

activated leukocytes such as neutrophils, monocytes, macrophages, and dendritic cells (DCs), 

leading to induction and promotion of additional inflammatory responses (105). Thus IL-1β 

promoter activity can be used as an indicator of inflammatory infiltrates and their migration into 

tissues (106). 
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Sentinels of the innate immune system, such as DCs and macrophages, can be 

activated by pathogen-associated molecular patterns (PAMPs) which are expressed and 

produced by a variety of infectious agents. The activated innate effectors function to limit 

proliferation and spread of infectious organisms until the host can mount an adaptive immune 

response against the pathogen. Recognition of PAMPs is accomplished by members of the Toll-

like family of receptors (TLRs), which form homo- or hetero-dimers (107). Signaling through 

most members of the TLR family results in activation of multiple transcription factors (i.e. NF-κB, 

AP1, CEBP, and CREB), which directly upregulate inflammatory cytokine and chemokine gene 

expression (108). A major PAMP recognized by the immune system is bacterial DNA. 

Differences in the methylation status of cytosine – guanine dinucleotides (CpG) results in a 

much greater frequency of unmethylated CpG motifs in prokaryote DNA relative to eukaryote 

DNA (108). The innate immune system can discriminate against these differences and detect 

unmethylated CpG motifs using TLR9, which is expressed intracellularly, within the endosomal 

compartment (109). TLR9 molecules between species have diverged from one another as each 

species has dealt with its own complement of pathogens. Thus, the optimal sequence motifs for 

stimulating immune activation in one species (e.g. mice) may differ from those that are optimal 

for another species (e.g. humans) (110). The optimal human hexamer motif (5’-GTCGTT-3’) 

differs from the optimal mouse motif (5’-GACGTT-3’) by changing a thymine to an adenine near 

the 5’ end (96). Plasmacytoid dendritic cells and B-cells are the primary cell types that express 

TLR9, although mice have additional expression on monocytes, macrophages, and myeloid 

dendritic cells (108). Activation of these cells by CpG initiates stimulatory pathways that results 

in the indirect maturation, differentiation, and expansion of additional DCs, T-cells, NK cells, and 

macrophages (111-114). These cells subsequently secrete cytokines that generate a pro-

inflammatory (i.e. IL-1β, IL-6, IL-18, and TNFα) and strongly Th1 biased (IFNγ and IL-12) 

environment (114, 115). These type 1 immune promoting conditions enhance cytotoxic T-cell 
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responses and inhibit Th2 mediated suppression, which is associated with the most efficacious 

anti-tumor immunity (46). 

Synthetic oligodeoxynucleotides (ODNs) containing similar CpG motifs to those found in 

bacterial DNA bind to TLR9 and produce comparable immune activation (96, 116-118). 

However, synthetic ODN differ from bacterial DNA in that they have a partially or completely 

phosphorothioated backbone instead of a phosphodiester backbone, as well as a poly G tail at 

the 3' end, 5' end, or both. The phophorothioated modification protects the ODN from being 

degraded by nucleases in the body, while the poly G tail enhances cellular uptake (119). 

Sequences with variations in the number and location of CpG dimers, as well the base 

sequences flanking the CpG motif, have been shown to activate TLR9 to elicit variable immune 

stimulation (96). Three major classes of synthetic CpG ODNs have currently been described 

(A,B, and C) (108, 120). Class A CpG ODN utilize a mixed phosphodiester-phosphorothioate 

backbone and contain a single hexameric purine– pyrimidine–CG–purine–pyrimidine motif 

flanked by self-complementary bases, resulting in a palindromic sequence. Class A ODN 

primarily induce secretion of IFNα from plasmacytoid DCs, which supports maturation of other 

DCs (121). Class B CpG ODN use a fully phosphorothioated backbone and largely activate B-

cells but also stimulate DC maturation, although to a lesser extent than class A CpG ODN (122). 

Class C CpG ODN, like class B, also use a fully phosphorothioated backbone. A portion of the 

class C sequence also contains a palindrome, similar to the structure observed in class A 

ODNs. Appropriately, Class C ODN are capable of stimulating both plasmacytoid DCs and B-

cells equally well, making them the most versatile of the three classes (120).  

CpG ODNs have been used in more than 50 clinical trials, many of which are phase I 

studies designed to investigate safety and immunomulatory properties of CpG in combination 

with vaccines, monoclonal antibodies, or allergens (108). Multiple phase II studies are currently 

underway to evaluate CpG activity in the treatment of cancer, allergy and asthma, or as a 

vaccine adjuvant. Interestingly, a phase II trial using local irradiation in combination with 
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intratumoral CpG injection to treat B-cell lymphoma resulted in one complete response and 

three partial responses out of twenty patients, which was mediated by cytotoxic T-cell (123). 

These results suggest that in situ tumor vaccination achieved with local tumor ablation 

modalities can provide improved clinical outcomes when combined with CpG. 
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RESULTS 

 

Tumor cryoablation causes necrosis resulting in inflammatory infiltration and 

subsequent fibroblast expansion. To evaluate the innate immune response to cryoablation 

we examined hematoxylin and eosin (H&E) stained tumor sections post-operatively. The vast 

majority of ablated tumors underwent complete coagulative necrosis evident by the lack of 

nuclear staining (Figure1.1). Cryoablation also caused marked disruption in cellular architecture 

unlike other common causes of coagultive necrosis (e.g. ischemia), which provides evidence of 

the resulting mechanical damage due to ice formation.  One day after cryoablation, 

polymorphonucleocytes (PMNs) were observed largely in the peripheral regions of the tumor 

and perivascular areas (Figure1.1). Consistent with the classical wound healing cascade, the 

majority of PMNs were no longer present by the third day after cryoablation (124). By 6 days 

post-operatively a definitive band of infiltrates could be seen around the entire periphery of the 

tumor (Figure1.2). Deeper infiltrates were seen in the tumor at 9 days, which appeared to be 

predominantly macrophages and fibroblasts. Over the next 6 weeks fibroblasts continued to 

proliferate and produce collagen, eventually forming the majority of the remaining tissue. 

Accumulation of hemosiderin, an iron storage complex, was also observed in macrophages, 

suggestive of previous tissue hemorrhage and subsequent red blood cell phagocytosis 

(Figure1.2 arrow). 
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Figure 1.1. Tumor cryoablation causes necrosis resulting in polymorphonuclear leukocyte 
infiltration beginning 1 day post-operatively. BALB/c mice were inoculated with 2.5x10

5
 cells of 

TUBO mammary adenocarcinoma, which grew to ~4x7mm before undergoing treatment with 
cryoablation. Mice were euthanized 1 day post-operatively to harvest ablated tumors (n=2). Tissues 
were fixed, sectioned, and stained with H&E. Images collected at 3, 10, 40 and 100x magnification. 
Untreated (Untx) tumor was collected for reference (top). Cryoablation produced coagulative necrosis, 
with no evidence of viable tumor cells remaining. Numerous polymorphonucleocytes were observed 
infiltrating along regions of necrotic tumor (arrows).  

 

3x 10x 40x 100x

Untx

1d
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Figure 1.2. Fibroblasts and newly synthesized collagen replace necrotic tumor while 
macrophages clear residual debris. Mice were euthanized 3, 6, 9, 29, and 43 days post-operatively 
to harvest ablated tumors. Tissues were fixed, sectioned, and stained with H&E. Images collected at 3, 
10, 40 and 100x magnification. By day 3 the majority of Polymorphonuclear leukocytes were no longer 
present. By day 6 a definitive border of infiltrates was observed around the peripheral edge of the 
tumor with small numbers of cells penetrating further into the tissue. Large numbers of macrophages 
(arrows), fibroblasts (arrow heads), and other infiltrates could be seen throughout the entire tumor by 
day 9. Increased numbers of fibroblasts and new collagen deposition were observed between 29 and 
43 days. Hemosiderin accumulation in macrophages was also evident. Representative images for 
each time point are shown.  
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Cryoablation increases IL-1β promoter activity within the tumor. To evaluate 

infiltration of IL-1β producing inflammatory cells in vivo, fluorescent imaging monitoring the 

activity of the IL-1β promoter was analyzed in BALB/c pIL-1β-DsRed transgenic mice, which 

utilize the IL-1β promoter to drive expression of the fluorescent marker gene, DsRed. pIL-1β-

DsRed mice were inoculated with 2.5x105 cells of D2F2/E2 mammary adenocarcinoma, which 

grew to ~4x7mm before undergoing treatment with cryoablation or sham surgery. Mice were 

imaged pre-operatively and 4 hours post-operatively, with no detectable fluorescence observed. 

DsRed fluorescence was detected at the surgical incision site 20 hours post-operatively and 

remained elevated for 8 days (Figure1.3). By the twelfth day fluorescence was no longer 

detectable at any location. Surprisingly, no fluorescence specific to cryoablated or sham treated 

tumors was observed at any time point, suggesting DsRed fluorescence may not be detectable 

through intact skin. 

To confirm these suspicions, mice were imaged 15 days post-operatively and 

euthanized (Figure1.4A). Tumors from sham and cryoablation treated mice were harvested and 

cut into representative slices for imaging (Figure1.4B-C). A whole spleen from a cryoablation 

treated mouse was also collected to serve as a control. Ex vivo imaging revealed that 

cryoablation treated tumors had significantly greater DsRed fluorescence relative to sham 

treated tumors (Figure1.4D-E). This finding provides direct evidence of significant inflammatory 

infiltration into ablated tumors, consistent with the infiltration observed in histological analysis. 
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Figure 1.3. IL-1β promoter activity is detectable at the healing surgical incision but not the 
cryoablated tumor in vivo. BALB/c pIL-1β-DsRed transgenic mice were inoculated with 2.5x10

5 
cells 

of D2F2/E2 mammary adenocarcinoma, which grew to ~4x7mm before undergoing treatment with 
cryoablation or sham surgery (n=2). Mice were treated with (A) cryoablation, (B) sham surgery, or (C) 
left untreated. Mice were imaged post-operatively at indicated time points. Representative images 
shown. 
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Figure 1.4. Cryoablation increases IL-1β producing inflammatory infiltrates. (A) Fifteen days 
post-operatively mice were imaged for DsRed fluorescence and euthanized (approximate border of the 
tumor outlined in yellow). A mouse with an open incision at 20 hours post-operatively was used as a 
positive control. Tumors were harvested, representative portions cut to equivalent sizes (1 and 2), and 
imaged with the following channels (B) Color (C) Grey scale (D) inverted DsRed fluorescence. The 
spleen from the cryoablation treated mouse was used as a control tissue. (E) Average DsRed 
fluorescent intensity and standard deviation of each tumor slice quantified using ImageJ densitometry 
software. *P<0.05 Unpaired t-test using means of slices. 
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CpG ODN stimulation of murine splenocytes. Human and mouse specific class B and 

C CpG ODN were assessed for immunostimulatory activity with mouse splenocytes. A mouse 

specific CpG ODN (mu2395) was constructed by substituting the human hexamer motif (5’-

GTCGTT-3’) for the optimal mouse motif (5’-GACGTT-3’) in the class C ODN 2395 (96). We 

also evaluated human specific ODN 2006, which is a class B CpG, similar to the CpG ODNs 

currently used in clinical trials (125). Freshly isolated mouse splenocytes (2x106 cells/mL) were 

treated with 1μM of CpG ODN 2006, 2395 or mu2395 for 24 hours in 10% FBS RPMI. Surface 

expression of MHCII, CD80 (B7.1), and CD54 (ICAM-1) were quantified on viable cells using 

flow cytometry (Figure1.5A-B). The expression of these markers were similarly elevated with all 

CpG treatments, indicating equivalent efficacy with each CpG ODN. RNA was also isolated from 

CpG 2395 and mu2395 treated splenocytes for subsequent transcript analysis. Transcript levels 

of interferon inducible targets (Isg15, Oas1, and Oas2), TNFα and IL-6 were elevated to 

comparable levels relative to untreated splenocytes, suggesting both CpG ODNs have similar 

capability to stimulate DCs and B-cells in the mouse (Figure1.5C). These results indicate CpG 

ODN 2395 and mu2395 elicit similar immunostimulatory effects in murine splenocytes.  
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Figure 1.5. CpG ODN stimulation of murine splenocytes. Splenocytes (2x10
6
 cells/mL) were 

treated with 1μM of CpG ODN 2006, 2395 or mu2395 for 24 hours in 10% FBS RPMI. Cells were 
collected for (A) flow cytometry and (C) RNA isolation and subsequent transcript analysis via qPCR. 
Transcript levels expressed as quantity relative to untreated splenocytes (RQ). (B) Representative dot 
plots and gating strategy of untreated and CpG ODN mu2395 treated splenocytes for surface 
expression of MHC II, CD80, CD19, and CD54. 
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Analysis of immune populations by flow cytometry. Total PBMC or lymphocytes 

were acquired and gated on viable singlets. T-cells were initially gated on TCRβ+ CD11c- cells 

and subsequently gated on CD4 and CD8α (Figure1.6). Dendritic cells (DC) were identified as 

TCRβ- CD11c+ cells, and natural killer (NK) cells were identified CD49b+ TCRβ- cells. An 

additional population of TCRβ+ CD11c+ cells was also noted. 
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Figure 1.6. Flow Cytometry gating strategy. Total PBMCs or lymphocytes were acquired and gated 
on viable singlets. CD4

+
 and CD8

+
 T-cells were initially gated on TCRβ

+ 
CD11c

-
 cells. Dendritic cells 

were identified as TCRβ
-
 CD11c

+
 cells. Natural Killer (NK) cells were identified as CD49b

+
 TCRβ

-
 cells. 
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Cryoablation and CpG combination therapy rapidly elevate DC and NK populations in 

circulation. Fifteen days after inoculation, D2F2/E2 mammary adenocarcinomas (~4x7mm) 

were treated with cryoablation with or without peritumoral CpG, tumor excision, peritumoral CpG 

injection or sham surgery (n=6). Mice were euthanized 2 days post-operatively and PBMCs and 

TDLNs harvested, which were subsequently stained for TCRβ, CD4, CD8α, and CD11c for flow 

cytometry analysis (Figure1.7A). Tissues from naïve mice were also collected as a control 

(n=5). No significant differences between groups were observed in total TCRβ+, CD4 and CD8 

T-cell populations (data not shown). Treatments using CpG more than tripled populations of 

DCs and an unexpected population of TCR+ CD11c+ cells (Figure1.7B). Several reports suggest 

that CD11c+ T-cells represents a group of antigen experienced T-cells and may correlate with 

cytotoxic T-cell activity (126-131), however the functional relevance of these cells in this 

situation is unknown. Therefore, CpG treatment elevates the percentage of DCs in circulation 

and also increases the percentage of TCR+ CD11c+ cells, however the functional impact of the 

later population is unknown. 

NK cells were approximately two-fold higher in mice treated with cryoablation (11±1.4%), 

excision (8±0.5%), CpG (10±0.5%), and sham surgery (8±0.4%) relative to naïve mice 

(4.7±0.5%). NK cells still further increased in mice treated with cryoablation and CpG 

combination therapy (17±0.6%). In TDLN no significant differences were observed in any 

populations with the exception of an increase in the TCR+ CD11c+ population with CpG 

treatment (Figure1.7C). No concurrent increase was observed with cryoablation and CpG 

combination therapy, suggesting trafficking to the TDLN may be delayed or impaired after 

cryoablation. These data further confirm CpG elevates the percentage of DCs and TCR+ 

CD11c+ cells in circulation. 
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Figure 1.7. Cryoablation and CpG combination therapy elevates DC, NK, and TCR
+
 CD11c

+
 

populations in circulation. (A) Experimental scheme outlining timing of tumor inoculation and 
treatments. Fifteen days after inoculation, D2F2/E2 mammary adenocarcinomas (~4x7mm) were 
treated with cryoablation ± CpG, tumor excision, peritumoral CpG injection or sham surgery (n= 6). 
Mice were euthanized 2 days post-operatively with (B) PBMCs and (C) TDLN harvested. Cells were 
stained for TCRβ, CD4, CD8α, CD11c, and CD49b for flow cytometry analysis. One-way ANOVA with 
Tukey’s test. ***P<0.001 ****P<0.0001 
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CpG treatment increases Th1 cytokines. TDLNs and plasma were collected from mice 

in the previous experiment 2 days post-operatively. Single cell suspensions were prepared from 

TDLN and stimulated for 48 hours with 3T3/EKB, which stably express Kd, B7.1, and Her2. 

Supernatents were collected and analyzed with magnetic-bead protein multiplexing to detect 

GM-CSF, IFNγ, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12 (p40/p70), and TNF-α, or TGFβ by 

ELISA.  Mice treated with cryoablation, tumor excision, and sham surgery produced comparable 

results for all cytokines measured, however, these groups had significantly higher levels of IL-

1β, IL-2, IL-4, and IL-6 relative to naïve mice, indicative of endogenous tumor induced immunity 

(Figure1.8A). CpG treatment, either alone or in combination with cryoablation, produced 

significantly higher levels of IL-1β, IL-2, IL-4, IL-6, IL-12, and TNFα, indicating activation of a 

Th1 biased response and subsequent macrophage activation (IL-1β and IL-6) (48). Interestingly, 

combination therapy of cryoablation and CpG produced much lower levels of IFNγ and IL-12 

relative to CpG treatment alone, suggesting cryoablation may partially suppress CpG induced 

responses.  

A similar pattern of cytokine levels was observed in the plasma between groups, 

however, IFNγ and IL-12 levels were now elevated to comparable levels in mice treated with 

CpG, with or without cryoablation (Figure1.8B). The discrepancy in IFNγ and IL-12 patterns 

between the TDLN and plasma suggest cryoablation may promote immunosuppressive 

mechanisms that dampen CpG induced responses. Alternatively, cryoablation may partially 

impede trafficking to the TDLN due to increased vascular permeability and edema, without 

having an effect on CpG’s ability to activate PBMCs, as was suggested in Figure 1.7. 
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A

Figure 1.8. CpG augments endogenous immunity. Mice were euthanized 2 days post-operatively 
for TDLN and plasma collection. (A) 8x10

5
 LN cells were co-cultured with 8x10

4
 3T3/EKB cells in a 

total volume of 0.5mL of 10% FBS RPMI at 10% CO2 37˚C for 48 hours. Supernatents were collected 
and analyzed with Magpix based multiplexing. (B) Magpix of plasma. *P<0.05 **P<0.01 ***P<0.001 
****P<0.0001 One-way ANOVA with Tukey’s post-test. Continued 
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Cryoablation and CpG combination therapy elevates DC and TCR+ CD11c+ populations in 

circulation. To investigate changes in T-cell and DC populations in CpG treated mice, BALB/c 

mice with TUBO adenocarcinomas (~4x7 mm) were treated with cryoablation and CpG, CpG 

alone, or left untreated. Heparinized blood was collected on day 7 and 12 post-operatively for 

collection of peripheral blood mononuclear cells (PBMC), which were subsequently stained for 

TCRβ, CD4, CD8α, and CD11c for flow cytometry analysis. No significant differences between 

groups were observed in total TCRβ+, CD4 and CD8 T-cell populations (data not shown). 

Cryoablation resulted in a significant elevation in DC populations relative to untreated mice at 

day 7, which could be further elevated with the addition of CpG (Figure1.9A). However, DCs 

returned to comparable levels of untreated mice by day 12. Similarly, CpG treatment, with or 

without cryoablation significantly increased TCR+ CD11c+ cells at day 7 which returned to 

comparable levels of untreated mice by day 12. 

 To test if this was a tumor-specific phenomenon, we also performed the same analysis 

in mice inoculated with D2F2/E2. Once tumors grew to ~4x7 mm, mice were treated with 

cryoablation ± peritumoral CpG, tumor excision, peritumoral CpG injection, or sham surgery 

(n=6-7). PBMCs were collected at day 7, 14, and 22 post-operatively for flow cytometry 

analysis. Similar to TUBO, treatments using CpG more than doubled percentages of DCs and 

quadrupled TCR+ CD11c+ percentages at day 7, which fell to comparable levels of all tumor 

experienced groups by day 14 (Figure1.9C-D), indicating DC expansion and activation via 

treatment with CpG. Furthermore, untreated tumor-bearing mice significantly elevated 

percentages of DCs relative to naïve mice at all time points, indicating tumor induced DC 

expansion. Immunity induced by D2F2/E2 will be further elaborated on in chapter 3. These data 

further confirm CpG elevates the percentage of DCs and TCR+ CD11c+ cells in circulation.
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Figure 1.9. Cryoablation + CpG elevates DC and TCR
+
 CD11c

+
 populations in circulation. Seven 

and twelve days after treatment of the TUBO mammary adenocarcinomas (~4x7mm) mice were bled 
and PBMC harvested (n=3-4). Cells were stained for TCRβ, CD4, CD8α, and CD11c for flow 
cytometry analysis. Viable singlets were gated on and selected for (A) TCRβ

-
 CD11c

+ 
cells or (B) 

TCRβ
+
 CD11c

+ 
cells. (C-D) The same analysis was performed 7, 14, and 22 days after treatment of 

D2F2/E2 mammary adenocarcinomas (~4x7mm) (n=6-7). *P<0.05 ** P<0.01 ***P<0.001 **** 
P<0.0001 One-way ANOVA with Tukey’s post-test.  
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DISCUSSION 

 

Following cryoablation tumor infiltration by polymorphonucleocytes was evident on day 

1, which subsided by day 3. Thereafter, macrophages, fibroblasts and other infiltrates invaded 

the peripheral edges of the tumor.  As the necrotic tumor was cleared by macrophages, 

activated fibroblasts filled the void and began the synthesis of new collagen. These findings are 

consistent with current knowledge about the progression of immune infiltration in cryoablation 

treated tumors. Additionally, we confirmed our tumors behave in a similar manner to other 

tissues undergoing cryoablation (102-104). Using pIL-1β-DsRed mice (106), we found elevated 

IL-1β promoter activity in freshly resected tumor, which was treated 15 days earlier with 

cryoablation relative to sham treated mice, further supporting our histological findings. 

Unfortunately, in vivo imaging was not able to detect these differences, prohibiting the possibility 

of characterizing movements and accumulation of inflammatory infiltrates within the tumor in 

individual mice. Modifications to the system to further improve fluorescent intensity or 

examination by intra-vital imaging improve may lead to effective in vivo imaging applications. 

In advanced disease, it may not be feasible for cryoablation treatment alone to induce 

tumor-specific immunity and overcome immunosuppressive barriers developed in the tumor 

microenvironment (13). The wound healing process following cryoablation may also induce 

multiple factors, such as prostaglandin E2 and thymic stromal lymphopoietin, that create a 

suppressive Th2 biased microenvironment (132, 133). Furthermore, the chronic inflammatory 

nature of the healing tissue promotes greater immunosuppression, in part mediated through 

increased TGFβ production by macrophages and fibroblasts (134). In anticipation of these 

suppressive effect, we choose to investigate adjuvant therapy using CpG ODN based on its 

ability to produce strongly polarized type 1 immunity and subsequent Th1 responses (111-114). 

A mouse specific class C ODN (mu2395) was designed because of the ability of class C ODNs 

to stimulate both plasmacytoid DCs and B-cells equally well. Despite the presence of the mouse 
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specific motif in mu2395, it performed equally well as the human specific ODN 2395 in 

stimulating murine splenocytes. Expression of MHC and co-stimulatory receptor CD80 (B7.1) 

more than doubled with either CpG treatment. Indirect stimulation of lymphocytes was also 

evident by upregulation of the intercellular adhesion molecule CD54 (ICAM-1) compared to 

unstimulated splenocytes. It is unknown if other variations in immunostimulatory properties 

between mouse and human specific CpGs exist in murine immune cells, therefore we decided 

to use mu2395 throughout our studies. 

In vivo, peritumoral treatment with CpG significantly elevated levels of IL-1β, IL-2, IL-6, 

IL-12, IFNγ, and TNFα in tumor draining lymph nodes (TDLN) and plasma 2 days post-

operatively, indicative of a Th1 biased response (48). In contrast, only low to undetectable 

responses resulted from treatment with cryoablation, tumor excision, or sham surgery. Although 

combination therapy of cryoablation and CpG produced significantly elevated levels of IFNγ and 

IL-12 in TDLN relative to cryoablation alone, levels were significantly lower relative to CpG 

treatment alone, suggesting cryoablation may dampen CpG induced responses. However, 

plasma levels of IFNγ and IL-12 were elevated to comparable levels in mice treated with CpG 

alone or in combination with cryoablation, indicating equivalent stimulation of PBMCs. This is 

further evident by the elevated levels of DC and NK populations seen in mice treated with 

cryoablation and CpG. Therefore, cryoablation does not affect CpG mediated stimulation of 

PBMCs, but may inhibit local responses, as observed in TDLN. Decreased IFNγ and IL-12 

responses in TDLN could be due to local immune suppression, in part mediated by TGFβ and 

IL-10, as a result of massive tissue inflammation produced by cryoablation (134-136). 

Alternatively, cryoablation may partially impede or slow DC trafficking to the TDLN due to 

increased vascular permeability, tissue congestion, and increased chemotactic factors present 

in the ablated region (137).  

These findings suggest extensive tissue damage resulting from cryoablation may induce 

local immune suppression. Although the immune stimulatory effect of CpG treatment is 
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dampened by cryoablation in TDLN, Th1 biased responses are still significantly increased 

relative to mice treated with cryoablation alone. Thus, adjuvant therapy, such as CpG, may be a 

necessary addition to cryoablation to elicit immune activation. 
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CHAPTER 2 

Cryoablation of neu-expressing TUBO Mammary Adenocarcinoma 

 

ABSTRACT 

 

Tumor cryoablation has previously been shown to elicit a variety of anti-tumor 

responses, ranging from stimulation to suppression, and may promote tumor growth in some 

situations (13, 31, 35, 86, 87). We hypothesize that anti-tumor immunity and overall outcome 

induced by cryoablation is determined, at least in part by the immunogenic nature of the tumor. 

Here we test cryoablation’s capacity to induce anti-tumor immunity against an antigenic BALB/c 

mouse mammary adenocarcinoma, TUBO, which expresses rat Her2/neu (neu). We show that 

TUBO is sensitive to α-neu antibody (Ab), which can mediate regression of established tumors 

in vivo. Thus, we sought to determine if cryoablation induces α-neu Ab to protect mice against 

subsequent tumor rechallenge, and if addition of the TLR9 agonist CpG to cryoablation further 

augments immunity. 

In BALB/c mice, cryoablation successfully treated TUBO with a recurrence rate of ~26% 

and protected ~65% of mice from subsequent tumor rechallenge on the contralateral side. 

Surgical excision of TUBO produced no recurrences, but did not provide increased protection 

upon rechallenge. Cryoablation also induced significantly elevated levels of α-neu Ab relative to 

tumor excision. Peri-tumoral injection of CpG immediately following cryoablation decreased the 

recurrence rate to 0% and protected nearly 100% of mice from subsequent tumor rechallenge. 

Combination therapy also significantly increased α-neu Ab above all other groups. When α-neu 

IgG1 and IgG2a subclasses were quantified cryoablation was found to primarily induce IgG1, 

suggestive of a Th2 biased response, which was skewed toward IgG2a with the addition of 

CpG. Additionally, analysis of transcripts in tumor draining lymph nodes (TDLN) found 

upregulated levels of factors favoring a Th2 biased environment. Therefore, cryoablation may 
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serve as an effective treatment modality to induce tumor immunity, although it may be a Th2 

biased response. Combination treatment with CpG further augmented anti-tumor immunity 

induced by cryoablation to promote Th1 responses and amplify protection. 

In neu tolerant BALB/NeuT (NeuT) mice, cryoablation of TUBO was insufficient to 

overcome self-tolerance to produce α-neu immunity. To initiate α-neu immunity, NeuT mice 

were vaccinated with Her2/neu DNA before cryoablation, tumor excision, or sham surgery. No 

exogenous tumor rechallenge was performed due to the development of spontaneous 

mammary tumors at approximately 16 to 18 weeks of age in NeuT females. Interestingly, 

cryoablation treated mice produced similar levels of α-neu Ab to sham treated mice, whereas 

mice treated with tumor excision had significantly higher levels of Ab. Additionally, tumor 

excision significantly delayed the onset of spontaneous mammary tumors relative to 

cryoablation and sham treated groups. When CpG was used in combination with cryoablation, 

no additional benefit was observed over cryoablation alone. These results suggest cryoablation 

of a very weakly or non-antigenic tumor, as in this case, is not capable of inducing tumor-

specific immunity. Furthermore, cryoablation in this scenario may actually result in an 

immunosuppressive environment, evident by decreased vaccine induced α-neu Ab and tumor 

protection relative to tumor excision. 
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INTRODUCTION 
 

 Her-2 is a tyrosine kinase growth factor receptor and a member of the epidermal growth 

factor receptor (EGFR/ErbB) family. When Her2 is overexpressed or mutated it increases signal 

transduction to mitogenic (i.e. MAPK) and survival (i.e. phosphatidylinositol 3-kinase/Akt) 

pathways. These changes ultimately contribute toward the initiation and progression of 

neoplastic transformation (138). Approximately 25% of human breast carcinomas overexpress 

Her2, making it one of the most plausible targets for therapeutic intervention (138-140). 

The rat homologue of human Her-2 is referred to as neu. A single point mutation at 

amino acid position 664 in the transmembrane domain transforms neu into a constitutively 

active transforming oncogene (89, 90, 92, 141). BALB/NeuT mice express the activated rat neu 

transgene (NeuT) driven by the mouse mammary tumor virus promoter. NeuT females develop 

atypical ductular hyperplasia in all mammary glands beginning at 21 days of age, which 

progresses to carcinoma in situ between 91 and 105 days, and ultimately into palpable tumors 

between 112 to 130 days (89-91). Endogenous expression of rat neu in NeuT mice eliminates 

neu-reactive lymphocytes via central tolerance. Thus, NeuT mice have a much higher degree of 

tolerance against rat neu than wild type BALB/c mice, which have no previous exposure to neu. 

This allows us to analyze a tumor expressing a true self-antigen. 

TUBO is a neu+ BALB/c mammary adenocarcinoma line established in vitro from a 

lobular carcinoma that arose spontaneously in a BALB/NeuT female. TUBO is considered an 

antigenic tumor due to cellular expression of transformed rat neu. Antigenic tumors have 

proteins the immune system can potentially recognize due to modifications from the tumor or 

surrounding microenvironment (i.e. mutation or glycosylation), although many tumors evade 

antigenic recognition by inhibiting effector responses (142, 143). While α-neu immunity is readily 

induced in BALB/c mice by active vaccination, inoculation with TUBO and subsequent tumor 

growth is not capable of producing such a response. Therefore, TUBO is representative of 
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tumors that express antigen(s) the immune system can potentially recognize but does not 

respond against without specific intervention. For example, aberrant tumor expression of Her2, 

MUC-1, melanoma-associated antigen 3 (MAGE-A3), or carcinoembryonic antigen (CEA) does 

not elicit host immunity, but targeted therapy against these molecules can induce tumor-specific 

immunity (144-152). 

We have previously shown that Her2/neu DNA vaccination can inhibit and protect mice 

against Her2/neu+ tumor growth (145, 153-157). The most effective constructs for inducing anti-

tumor immunity and overcoming tolerance in Her2 and NeuT transgenic mice were found to be 

hybrid DNA vaccines, which utilize heterologous (xenogenic) Her2/neu to improve 

immunogenicity through cross-reactive epitopes. These constructs encode fusion proteins of 

human Her2 and rat neu. The hybrid vaccine used in the following studies utilizes DNA 

encoding a chimeric NeuE2TM protein. This is a transmembrane neu-Her2 fusion protein with 

neu at the NH2 terminus and Her2 at the COOH terminus, and a truncated Her2 intracellular 

domain (155, 158). All vaccinations include pGM-CSF, which encodes for the adjuvant murine 

granulocyte macrophage colony-stimulating factor. 

We hypothesize that cryoablation can elicit anti-tumor immunity from an antigenic tumor 

through the liberation of tumor associated antigens and endogenous danger signals released by 

ablated cells. Additionally, we believe using the TLR9 ligand CpG to promote Th1 biased 

responses will improve cryoablation induced immunity and anti-tumor protection. Lastly, it 

seems reasonable tumor cryoablation may promote vaccine induced immunity through the 

release of additional tumor antigen which may subsequently bind to vaccine induced antibody. 

Uptake of the resulting immune complexes by dendritic cells would lead to cross-presentation 

and possibly a greater anti-tumor response. 
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RESULTS 

 

TUBO mammary adenocarcinoma is sensitive to α-neu Ab. Previous studies have 

shown that induction of α-neu Ab through DNA vaccination in BALB/c mice provided complete 

protection from challenge with TUBO mammary adenocarcinoma in a prophylactic setting (92, 

159). To test the therapeutic effect of vaccination, BALB/c mice with established TUBO tumors 

(~3x5 mm) were vaccined with an admix of pNeuE2 and pGM-CSF, which resulted in α-neu Ab 

levels up to 134±7 μg/mL, sufficient to cause complete tumor regression (Figure2.1A). Mice 

vaccinated with a control plasmid, empty pVax, and pGM-CSF produced very low levels of α-

neu Ab (0.5±0.5 μg/mL) 34 days after vaccination, until mice had to be euthanized due to 

excessive tumor burden (Figure2.1B). The lack of α-neu Ab induction demonstrates that a 

growing TUBO tumor does not induce endogenous α-neu immunity. Interestingly, α-neu Ab 

levels in vaccinated tumor-bearing mice began to decline after day 34, shortly after tumors had 

completely regressed, suggesting that immune-mediated death of TUBO contributes to α-neu 

responses. These observations were further validated in non-tumor bearing BALB/c mice 

similarly vaccinated with pNeuE2. Vaccinated BALB/c mice produced 19.5±4 μg/mL of α-neu Ab 

27 days after vaccination relative to 92.4±5 μg/mL in vaccinated tumor-bearing mice 

(Figure2.1C). This finding supports the notion that immune mediated death of neu+ TUBO 

amplifies vaccine induced α-neu immunity until the tumor has completely regressed, at which 

point α-neu Ab levels begin to decline.  

  



50 

 

 

A

B

C

Vaccination

 
 
 
 

Figure 2.1. TUBO mammary adenocarcinoma is sensitive to α-neu Ab. Thirteen days after 
inoculation with 2.5x10

5
 cells of TUBO mammary adenocarcinoma (~3x5 mm) BALB/c mice were 

vaccinated with an admix of 30 μg of pGM-CSF and (A) 30 μg pNeuE2 or (B) 30 μg of pVax on day 0 
and 2 (n=4). Sera and tumors measurements were collected at weekly intervals. TUBO volume (mm

3
) 

and α-neu IgG (Ab4 equivalent μg/mL) are plotted on the left and right y-axis respectively. (C) Non-
tumor bearing BALB/c mice were vaccinated with pGM-CSF and pNeuE2 as previously described 
(n=7). Data representative of three independent experiments. 
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 Cryoablation induces transcripts that favor a Th2 environment. To develop a better 

understanding of how cryoablation modulates immunity we evaluated a panel of immune-related 

transcripts in TDLNs 6 days after cryoablation using quantitative real-time PCR (qPCR). TDLNs 

were harvested 6 days post-operatively (Figure2.2A) to allow adequate time for trans-migration 

between the tumor and TDLN, as well as induction of immune populations (160). The panel of 

targets that was selected included cytokines, chemokines, transcription factors, and other 

factors known to contribute toward Th1 or Th2 biases. 

 Multiple transcripts were significantly elevated throughout the panel of targets, including 

both Th1 and Th2 contributing factors (Figure2.2B). Cytokines representative of a Th1 

response, such as IFNγ and TNFα, were upregulated after cryoablation, although the Th2 

cytokine IL-4 was also significantly increased. Other factors known to promote Th2 bias such as 

IL-10, prostaglandin E synthase (Ptges), thymic stromal lymphopoietin (TSLP), and OX40 

Ligand (Tnfsf4) were also significantly elevated (59, 161). TGFβ, which directly inhibits T-cell 

activity, was also significantly increased (162). Of the master transcription factors analyzed, only 

GATA3 (Th2) was significantly elevated, but not Tbet (Th1), Foxp3 (T regulatory cells) or 

RORγT (Th17). These findings support the notion of a dynamic post-cryoablation environment 

in the TDLN which could potentially promote or suppress an effective anti-tumor immune 

response, although the majority of the significantly elevated transcripts favor a Th2 biased 

response. 
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Figure 2.2. Cryoablation induces transcripts that favor a Th2 environment. (A) Thirteen days 
after inoculation with 2.5x10

5
 cells of TUBO mammary adenocarcinoma (~3x5 mm) BALB/c mice were 

treated with either cryoablation (n=7) or sham surgery (n=4). (B) Tumor draining lymph nodes (TDLN) 
were harvested 6d post-operatively and lymphocytes stimulated for 3 hr using 50 nM PMA / 1μM 
ionomycin. RNA was isolated for cDNA synthesis and subsequent qPCR analysis. Transcript levels 
measured are relative to the sham group (RQ). Brackets show Th1 and Th2 biased transcripts and 
master transcriptions factors (TF). *P<0.05 **P<0.01 Unpaired t-test. 
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 Peritumoral injection of CpG oligodeoxynucleotide (CpG) with cryoablation 

reduces recurrences. Cryoablation is an established procedure to eliminate and/or debulk 

solid tumors in the clinical setting, however, this seldom results in beneficial anti-tumor 

immunity. We tested the feasibility of promoting cryoablation induced immunity by adding CpG, 

a potent Th1 activator. CpG acts as a ligand for Toll-like receptor 9 (TLR9) which is present on 

dendritic cells (DCs), B-cells, monocytes/monocytes, and natural killer (NK) cells (163, 164). 

CpG mediated activation of plasmacytoid DCs stimulates synthesis and secretion of type I 

interferons, which subsequently induces production of IL-12 by conventional DCs, thus 

promoting Th1 activity (164). 

 Tumor recurrence data from mice treated with either cryoablation alone (n=28) or 

combination therapy of cryoablation and CpG (n=15) were compiled from 4 independent 

experiments. Mice from each experiment were treated when tumor dimensions reached 

approximately 4x7 mm in size, after which they were monitored for recurrence at the primary 

tumor location at least 30 days post-operatively and as long as 90 days (Figure2.3). 

Cryoablation had a recurrence rate of ~26%, with tumor recurrences detected between 34-60 

days post-operatively. Surgical excision of similar size tumors, along with adjacent mammary 

tissue, produced no observed recurrences (n=24) (data not shown). This discrepancy is likely 

because cryoablation in mice does not achieve the same degree of margins as excision does. 

The margins, or lethal isotherm, achievable in mice may not reach micro tumor foci not 

intimately associated with the primary tumor. However, when CpG was combined with 

cryoablation the recurrence rate fell to 0%. This finding argues the addition of CpG to 

cryoablation may elevate local anti-tumor immunity to prevent recurrences.  
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Figure 2.3. Cryoablation + CpG protects against tumor recurrences. Results pooled from 4 
independent experiments with all mice monitored at least 30 days post-operatively for recurrence – 
Cryo + CpG (n=15) Cryo (n=28). Symbols indicate censored subjects within an experiment due to 
experimental endpoint. *P<0.05 Log-rank test. 
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 Cryoablation induces systemic anti-tumor immunity which is enhanced with 

peritumoral CpG injection. BALB/c mice were inoculated with 2.5x105 TUBO cells which grew 

for twenty days to ~4x7 mm in diameter. Tumors were treated with cryoablation ± peritumoral 

CpG, surgical excision, peritumoral CpG injection, or left untreated (n=6-8) and monitored for 57 

days (Figure2.4A). All tumors treated with cryoablation ± peritumoral CpG or surgical excision 

completely regressed with the exception of two mice in the cryoablation group that developed 

recurrences at day 41 and 57. CpG treatment alone did not cause tumor regression but did slow 

tumor growth relative to untreated mice (Figure2.4B). Mice treated with CpG or left untreated 

were eventually euthanized due to progressive tumor burden or skin ulcerations.  

On day 57, all mice that cleared the primary tumor were rechallenged with 2.5x105 TUBO 

cells on the contralateral side. An additional group of naïve mice also received TUBO 

inoculation at the same time as a control (n=7). Mice were monitored for an additional 45 days 

after tumor rechallenge. All naïve mice and 5/6 of mice treated with surgical excision developed 

tumors from the second rechallenge, indicating tumor excision does not induce systemic anti-

tumor immunity capable of consistently protecting mice. Cryoablation protected 7/11 mice from 

rechallenge, whereas combination therapy of cryoablation and CpG further augmented anti-

tumor immunity, protecting 15/16 mice (Figure2.4C). Thus, cryoablation of an antigenic but non-

immunogenic tumor induced systemic anti-tumor immunity capable of protecting mice from 

tumor growth at a distant site, which was further enhanced with the use of CpG.  
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Figure 2.4. Tumor cryoablation increases protection against TUBO. (A) Experimental scheme 
outlining timing of tumor inoculation and treatment. Twenty days after inoculation TUBO mammary 
adenocarcinomas (~4x7mm) were treated with cryoablation ± peritumoral CpG, tumor excision, 
peritumoral CpG injection, or left untreated (n= 6-8). (B) Primary tumor growth of TUBO was monitored 
over time showing mice treated with CpG or left untreated continued to have progressive tumor 
growth. Untreated mice were euthanized at day 20 due to tumor burden. (C) Fifty-seven days later, 
tumor free mice were rechallenged with 2.5x10

5
 TUBO cells on the contralateral side. Tumor growth 

was monitored over the course of 45 days, with any palpable tumor growing considered a failure in 
tumor protection. Number of mice (cured/rechallenged/total) shown. Data pooled from two 
independent experiments. 
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 Cryoablation induces α-neu Ab which is further amplified by CpG. Since TUBO was 

shown to be sensitive to α-neu Ab (Figure2.1) we sought to determine if cryoablation or other 

treatments induced α-neu Ab to render tumor protection. Sera from the previous experiment 

were collected for α-neu Ab quantification (Figure2.5). Both untreated mice and mice treated 

with surgical excision produced very low α-neu IgG (1.5±0.7 and 1.5±0.03 μg/mL respectively). 

Mice treated with cryoablation produced increased levels of α-neu IgG beginning 14 days post-

operatively (16±7 μg/mL) which began to plateau at day 21 (10±3 μg/mL). Mice treated with 

peritumoral injection of CpG alone produced 22±7 μg/mL of α-neu IgG, which slowed tumor 

growth relative to untreated mice but was not able to cause regression (Figure2.4B). 

 When CpG was used in combination with cryoablation, α-neu IgG levels continually 

increased to 58±16 μg/mL at day 41, which plateaued thereafter and remained elevated to day 

70. As expected, this plateau correlated with clearance of the treated tumor. Area under the 

curve (AUC) analysis found significant differences occurring between cryoablation + CpG and 

cryoablation groups, as well as the cryoablation and excision groups. Additionally, α-neu IgG 

induced from cryoablation + CpG appeared to be greater than a simple additive response from 

cryoablation alone and CpG alone. These observations taken together with our previous 

findings in Figure2.1 are indicative of α-neu IgG playing a critical role in immune mediated tumor 

death of TUBO. Contrarily, α-neu IgG in mice treated with CpG alone was capable of slowing 

tumor growth but unable to mediate tumor regression, which implicates the presence of an 

immunosuppressive tumor microenvironment. 
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Figure 2.5. Tumor cryoablation induces α-neu Ab. Sera was collected throughout the experiment 
for α-neu IgG quantification. Area under the curve (AUC) analysis was performed for cryoablation 
groups at day 70. AUC analysis was also performed between cryoablation and excision groups at day 
41. *P<0.05 unpaired t-test with Welch's correction. Data representative of two independent 
experiments. 
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Cryoablation primarily induces α-neu IgG1 which can be skewed toward IgG2a 

with the addition of CpG. To further characterize α-neu Ab we assessed levels of IgG2a and 

IgG1, which are representative of Th1 and Th2 responses respectively (165). IFNγ (Th1) and IL-

4 (Th2) are the main factors regulating subclass switching to IgG2a and IgG1 respectively, with 

each response also antagonizing the other (166). Using AUC analysis, cryoablation + CpG 

treated mice produced significantly higher levels of IgG2a relative to cryoablation treated mice, 

with no such difference detected for IgG1 (Figure2.6A-B). Ab measurements at a representative 

time point (day 41) display variable IgG2a and IgG1 levels in either group treated with CpG, but 

a consistently increased IgG1 level relative to IgG2a within the cryoablation alone group 

(Figure2.6C). To help illustrate this point IgG1 and IgG2a percentages of total α-neu IgG were 

calculated. The percentage of IgG1 in cryoablation treated mice (76±5%) was consistently 

elevated relative to cryoablation + CpG (46±11%) or CpG (38±10%) treated groups 

(Figure2.6D). Whereas the percentage of IgG2a in cryoablation treated mice (12±4%) was 

significantly lower relative to cryoablation + CpG (38±8%) or CpG (38±6%) treated groups. 

These data suggest addition of CpG is capable of converting the IgG1 dominant response 

produced in cryoablation toward an IgG2 response.  
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Figure 2.6. Cryoablation primarily induces IgG1 which can be skewed toward IgG2a with the 
addition of CpG. Sera was collected throughout the experiment for α-neu IgG subclass quantification. 
Area under the curve analysis was performed for (A) IgG2a and (B) IgG1 levels at day 70. *P<0.02 
Mann Whitney test. (C) α-neu IgG quantification at day 41. *P<0.05 One-way ANOVA with Dunn’s 
post-test. (D) Percent total α-neu IgG was calculated for IgG2a and IgG1 subclasses. Data shown 
(day 21) is representative of Ab subclass profile through day 70. *P<0.05 One-way ANOVA with 
Tukey’s post-test.  
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Vaccination with Her2/neu DNA induces α-neu immunity but does not act 

synergistically with cryoablation. We next investigated if α-neu immunity induced from 

Her2/neu DNA vaccination can be augmented by tumor cryoablation. Thirteen days after 

inoculation with 2.5x105 cells of TUBO mammary adenocarcinoma (~3x5 mm) BALB/c mice 

were randomly divided into 6 groups and vaccinated with an admix of 30 μg of pGM-CSF and 

30 μg pNeuE2 or 30 μg of pVax on day 0 and 2 (n=5-7). Eight days after the first vaccination 

mice were treated with cryoablation, tumor excision, or sham surgery (Figure2.7A). Tumors 

regressed in all groups with the exception of pVax and sham treated. Three mice treated with 

pVax and cryoablation also had tumors recur at day 34 and 41(Figure2.7B).  

Mice vaccinated with pVax and treated with excision or sham surgery produced very low 

levels of α-neu IgG (1.5±0.7 and 0.7±0.03 μg/mL respectively) (Figure2.7C). Mice treated with 

pVax and cryoablation produced detectable levels of α-neu IgG beginning 8 days post-

operatively (7±3 μg/mL), which increased to 13±6 μg/mL at day 15  and eventually plateaued at 

day 22 (11±5 μg/mL). Vaccination with pNeuE2 induced significantly higher levels of α-neu Ab 

in all groups relative to vaccination with pVax. Interestingly, mice treated with pNeuE2 and sham 

surgery produced higher levels of α-neu Ab (123±6 μg/mL) than mice treated with pNeuE2 and 

cryoablation (80±15 μg/mL) or pNeuE2 and excision (56±14 μg/mL). Increased Ab levels in 

pNeuE2 and sham treated mice can be attributed to vaccine mediated immunogenic death of 

TUBO, which is no longer possible once tumors have been treated with cryoablation or surgical 

excision. Area under the curve analysis found no significant differences between pNeuE2 

vaccinated mice treated with cryoablation or surgical excision, suggesting cryoablation does not 

further enhance vaccine induced immunity, as originally hypothesized. 
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Figure 2.7. Vaccination with Her2/neu DNA improves α-neu immunity but does not act 
synergistically with cryoablation. (A) Thirteen days after inoculation with 2.5x10

5
 cells of TUBO 

mammary adenocarcinoma (~3x5 mm) BALB/c mice were randomly divided into 6 groups and 
vaccinated with an admix of 30 μg of pGM-CSF and either 30 μg pNeuE2 or 30 μg of pVax on day 0 
and 2 (n=5-7). Eight days after the first vaccination mice were treated with cryoablation, tumor 
excision, or sham surgery. (B) Tumor growth of TUBO was monitored over time showing all groups 
caused tumor regression with the exception of mice treated with pVax and sham surgery, which were 
euthanized at day 34 due to tumor burden. (C) Sera was collected throughout the experiment for α-
neu IgG quantification. Area under the curve analysis was performed at day 41. *P<0.05 **P<0.01 
***P<0.001 One-way ANOVA with Tukey’s post-test. Data representative of two independent 
experiments.  
 
 
 



63 

 

 

Cryoablation does not induce α-neu immunity in NeuT mice. To study cryoablation 

induced immunity against a tumor associated self-antigen we used tolerant BALB/NeuT female 

mice. Female NeuT mice were separated into four groups (n=6-10) and vaccinated with an 

admix of 50 μg of pGM-CSF and 50 μg of pNeuE2 or 50 μg of pVax at 77, 87, and 105 days of 

age. Mammary pads 4 and 5, which endogenously develop recognizable carcinoma in situ, 

were treated with cryoablation or sham surgery at 91 days of age (Figure2.8A). Growth of 

spontaneous tumors were monitored for an additional 100 days or until mice had to be 

euthanized due to tumor burden (Figure2.8B). As expected, mice vaccinated with pNeuE2 

exhibited delayed outgrowth of spontaneous mammary tumors compared to mice vaccinated 

with pVax, which was independent of cryoablation. 

Mice vaccinated with pVax and treated with cryoablation or sham surgery produced no 

measurable α-neu Ab, verifying cryoablation alone is not capable of producing α-neu immunity 

against a fully tolerant antigen (Figure2.8C).  Both groups vaccinated with pNeuE2 produced 

similar levels of α-neu Ab (5-10 μg/mL), which began to decline after peaking at 120 days. No 

significant differences between cryoablation and sham surgery treated groups were found, 

suggesting cryoablation does not contribute toward vaccine induced immunity in NeuT mice. 
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Figure 2.8. Cryoablation does not induce α-neu immunity in NeuT mice. (A) 77 day old female 
BALB/NeuT mice were placed into four groups (n=6-10) and vaccinated with an admix of 50 μg of 
pGM-CSF and 50 μg of pNeuE2 or 50 μg of pVax at 77, 87, and 105 days of age. Mammary pads 4 
and 5 were treated with cryoablation or sham surgery at 91 days of age. (B) Spontaneous tumor 
growth was monitored over time. (C) Sera was collected for α-neu IgG quantification. Only mice 
vaccinated with pNeuE2 produced α-neu IgG. Levels between cryoablation and sham treated mice 
were not significantly different.  
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Cryoablation creates a non-conducive environment for vaccine induced immunity 

in NeuT mice. To further test the effects of cryoablation on α-neu immunity in NeuT mice we 

inoculated fifty-eight day old female NeuT mice with 2.5x105 TUBO. Mice were randomly divided 

into three groups (n=8-9) and vaccinated with an admix of 50 μg of pGM-CSF and 50 μg of 

pNeuE2 at 70 and 80 days of age. Primary tumors (~4x6mm) were treated with cryoablation, 

excision, or sham surgery 4 days after the second vaccination (Figure2.9A). Tumor growth was 

monitored until mice reached 200 days of age or until mice were euthanized due to excessive 

tumor burden (Figure2.9B). Unlike BALB/c mice, no regression of primary tumors was evident in 

sham treated mice, indicating vaccination alone is not sufficient to treat NeuT mice in a 

therapeutic setting. 

 Cryoablation and sham treated mice produced similar levels of α-neu Ab (5±1.5 μg/mL) 

peaking at 97 days and declining thereafter (Figure2.9C). Unexpectedly, excision treated mice 

produced significantly higher levels of α-neu Ab (13±3μg/mL) peaking at 112 days, which 

remained elevated longer than other groups. Furthermore, excision significantly delayed the 

development of spontaneous tumors relative to cryoablation treated mice, even protecting 

several mice out to 200 days (Figure2.9D). These results, taken together with our previous 

NeuT findings, argue that cryoablation exerts a negative impact on vaccine induced immunity, 

similar to an untreated tumor.   
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Figure 2.9. Cryoablation creates a non-conducive environment for vaccine induced immunity in 
NeuT mice. (A) Fifty-eight day old female BALB/NeuT mice were randomly divided into three groups 
(n=8-9) and inoculated with 2.5x10

5
 TUBO. All mice were vaccinated with an admix of 50 μg of pGM-

CSF and 50 μg of pNeuE2 at 70 and 80 days of age. Primary tumors (~4x6mm) were treated with 
cryoablation, excision, or sham surgery 4 days after the second vaccination. (B) Tumor growth was 
monitored over time. (C) Sera was collected for α-neu IgG quantification and area under the curve 
analysis. *P<0.05 One-way ANOVA with Tukey’s post-test. (D) Mice were monitored for development 
of spontaneous tumor formation in all ten mammary glands, with any palpable tumor growing 
considered a failure in spontaneous tumor free survival. **P<0.01 Log-rank test.  
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Cryoablation and CpG combination therapy does not enhance α-neu immunity in 

NeuT mice. In NeuT mice, cryoablation appears to support an immunosuppressive environment 

that blunts efficacy of vaccine induced immunity. In attempt to reverse this effect, we used CpG 

in combination therapy with cryoablation. Additionally, NeuT mice were vaccinated on an 

accelerated schedule over two days in attempt to bolster vaccine induced immunity. Seventy-

five day old female NeuT mice were randomly divided into two groups (n=7/group) and 

inoculated with 2.5x105 TUBO. All mice were vaccinated with an admix of 60 μg of pGM-CSF 

and 60 μg of pNeuE2 at 76 and 78 days of age. Primary tumors (~4x7mm) were treated with 

cryoablation ± CpG at 96 days of age. (Figure2.10A). Tumor growth was monitored until mice 

reached 180 days of age or until mice were euthanized due to excessive tumor burden 

(Figure2.10B). 

Cryoablation with or without CpG produced similar levels of α-neu Ab (13±4 μg/mL), 

which peaked at 127 days and declined thereafter (Figure2.10C). Similar protection from 

spontaneous tumor development was also observed in both groups (Figure2.10D). Two mice in 

the cryoablation treated group had substantially elevated α-neu Ab levels beginning at 127 days 

relative to all other mice, which correlated to prolonged protection from spontaneous tumor 

development. No reason for an increased response in these two mice was found. The addition 

of CpG to cryoablation in NeuT mice was not able to enhance α-neu Ab or tumor protection 

relative to cryoablation alone. 
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Figure 2.10. CpG does not enhance α-neu immunity in BALB/NeuT mice. (A) Seventy-five day old 
female BALB/NeuT mice were randomly divided into two groups (n=7/group) and inoculated with 
2.5x10

5
 TUBO. All mice were vaccinated with an admix of 60 μg of pGM-CSF and 60 μg of pNeuE2 at 

76 and 78 days of age. Primary tumors (~4x7mm) were treated with cryoablation ± CpG at 96 days of 
age. (B) Tumor growth was monitored over time. (C) Sera was collected for α-neu IgG quantification. 
Levels between groups were not significantly different. Unpaired t-test. (D) Mice were monitored for 
development of spontaneous tumor formation in all ten mammary glands, with any palpable tumor 
growing considered a failure in spontaneous tumor free survival. No significant differences detected - 
Log-rank test.  
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DISCUSSION 

 

We found that TUBO, an antigenic tumor, was sensitive to α-neu Ab, which caused 

regression of established tumors in vivo. In BALB/c mice, cryoablation of TUBO induced α-neu 

Ab, which was capable of protecting over half of mice from subsequent tumor rechallenge, 

whereas tumor excision did not provide increased tumor protection. The addition of the TLR9 

agonist CpG to cryoablation augmented induction of α-neu Ab and protected nearly 100% of 

mice from tumor rechallenge. Cryoablation upregulated transcripts indicative of a Th2 biased 

response, which consequently resulted in an IgG1 dominant Ab response. Addition of CpG to 

cryoablation skewed Ab responses toward IgG2a, suggestive of a Th2 to Th1 shift. Importantly, 

retrospective analysis of 4 independent experiments found cryoablation of TUBO had resulted in 

a 26% recurrence rate, which fell to 0% when CpG was used in combination therapy, providing 

further support for concurrent CpG treatment with cryoablation. 

Growth of TUBO in BALB/c mice did not induce α-neu immunity despite high levels of rat 

neu. Thus, TUBO may resemble human cancers with viral etiology or gene mutations that result 

in expression of neo-antigens the immune system can recognize but does not without 

exogenous manipulation (47). The mechanisms of immune escape TUBO utilizes are not fully 

understood, but our previous studies have found depletion of Tregs was sufficient to mediate 

tumor regression, suggesting Tregs contribute toward tumor induced immune suppression (95). 

It is possible immune escape of TUBO is, in part, mediated by tumor STAT3 activity, which is 

known to be critically involved in tumor mediated expansion and activation of 

immunosuppressive Tregs, tumors associated macrophages, and myeloid derived suppressor 

cells (MDSC) (167, 168). In support of this, we have found high transcript levels of granulocyte-

colony stimulating factor (G-CSF) in TUBO, which is highly dependent on STAT3 signaling 

(169), and concomitant increases of MDSC in the spleen (Supplemental Figure1-2). 

Additionally, an attempt to knock-down STAT3 expression by shRNA silencing in TUBO was 
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unsuccessful in mediating any decrease in STAT3, indicating its importance to TUBO survival 

(170). Although TUBO is able to evade immune recognition when left untreated, the physical 

damage caused by cryoablation results in the release and presentation of neu to induce tumor-

specific immunity. 

Although cryoablation induced immunity was able to protect ~65% of mice from 

subsequent tumor rechallenge, it resulted in a Th2 biased response as evident by a dominant 

IgG1 Ab response. This bias may result from the induction of immunosuppressive factors, such 

as prostaglandin E2, thymic stromal lymphopoietin, OX40 ligand, TGFβ and IL-10, as present in 

Figure 2.2. Upregulation of these factors is not unexpected considering the degree of tissue 

inflammation and subsequent wound healing that is associated with cryoablation (51, 58, 134-

136). Cryoablation induced tumor protection was significantly improved with the addition of 

CpG, which not only elevated α-neu Ab but also skewed the response toward IgG2a, indicative 

of Th1 biased immunity. These findings are further corroborated by Nierkens and den Brok, who 

reported similar Th1 induction with CpG treatment (30-34).  

Additionally, CpG used in combination with cryoablation decreased recurrences from 

26% to 0%, which does not appear to be entirely mediated by systemic α-neu immunity based 

on cases of mice without tumor recurrence developing new tumor growth at the rechallenge site 

(Figure2.4C). Therefore, CpG may act to eliminate recurrences by elevating local immune 

activation in coordination with cryoablation. This process is likely mediated by increased Th1 

responses, as seen in chapter 1, which promote cytotoxic activities of effectors, such as 

cytotoxic lymphocytes, NK cells, and macrophages (46, 47). For example, Kawarada et al 

reported that repeated peritumoral injection of CpG resulted in inhibition of tumor growth in IE7 

fibrosarcoma, B16 melanoma, and 3LL lung carcinoma lines, which was mediated by both NK 

and tumor-specific CD8+ T cells (171). Furthermore, Haabeth et al found Th1 derived 

IFNγ rendered macrophages directly cytotoxic to cancer cells and induced them to secrete the 
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angiostatic chemokines CXCL9 and CXCL10 (48). Taken together, these findings strongly 

support the incorporation of CpG treatment in cryoablation. 

To further evaluate cryoablation’s immunostimulatory capacity we treated tumor-bearing 

tolerant BALB/NeuT females. Cryoablation, with or without CpG, was incapable of inducing α-

neu immunity, which was expected considering NeuT mice develop central tolerance against 

neu. This finding illustrates the necessity of a tumor associated neo-antigen for cryoablation to 

induce tumor-specific immunity. 

Although cryoablation did not induce α-neu immunity in NeuT mice, we hypothesized it 

may be able to modulate Her2/neu vaccine induced responses due to the release of neu from 

the treated tumor. Cryoablation did not boost vaccine induced immunity relative to sham treated 

mice, however, treatment with surgical excision increased Ab levels, which delayed the onset of 

spontaneous mammary tumors. The disparity between cryoablation and surgical excision 

treated mice suggest cryoablation exerts a negative impact on vaccine induced responses. If 

cryoablation did not impact vaccine induced immunity we would expect similar results between 

cryoablation and excision groups based on the lack of immune induction previously observed 

with excision (Figure2.4-5). However, it appears tumor excision eliminates a suppressive 

environment created by the tumor, whereas cryoablation leaves necrotic tumor in situ that may 

promote immunosuppression via upregulation of factors favoring a Th2 biased environment (51, 

58, 135, 136). Addition of CpG to cryoablation was unable to improve responses over 

cryoablation alone, which warrants further efforts to counteract immune suppression induced by 

cryoablation. Additional therapies targeting Tregs (i.e. α-CTLA-4, α-CD25, and 

cyclophosphamide) in combination with cryoablation have also shown increased responses in 

pre-clinical models (31, 35, 36). Thus, treatments targeting both stimulatory and suppressive 

components of cryoablation may lead to greater tumor protection still. 
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CHAPTER 3 

Cryoablation of Her2-expressing D2F2/E2 Mammary Adenocarcinoma 

 

ABSTRACT 

 

The impact of cryoablation was further tested in the mouse mammary adenocarcinoma 

D2F2/E2, which was transfected to express wild type human Her2. In contrast to TUBO, 

D2F2/E2 does not rely on Her2/neu signaling for survival.  We show that tumor growth of 

D2F2/E2 in BALB/c mice, without any manipulation, induces α-Her2 humoral and cell-mediated 

responses, which fail to slow tumor growth. Thus, we sought to determine if cryoablation affects 

this endogenous α-Her2 immunity and tumor protection. 

In BALB/c mice, cryoablation eliminated D2/F2/E2 tumors with a recurrence rate of 

~29%, which could be decreased to 0% if CpG was used in combination therapy. Cryoablation 

protected approximately 10% and 65% of mice from tumor rechallenge on the contralateral side 

at 13 and 41 days post-operatively respectively. Combination treatment with cryoablation and 

CpG protected 33% and 86% of mice respectively. Discrepancy in tumor protection between 

short and long rechallenge time points is suggestive of transient immunosuppression that 

dissipates once ablated tumors have been cleared from the host. Systemic α-Her2 cell-

mediated responses were not augmented by any treatment. However, Her2 specific Th1 

responses (IL-2, IL-12, and IFNγ) were amplified in tumor draining lymph nodes (TDLNs) in 

mice treated with cryoablation and CpG. Additionally, treatment with cryoablation and CpG 

skewed α-Her2 antibody (Ab) towards IgG2a when compared with cryoablation alone. Analysis 

of transcripts in tumor draining lymph nodes after cryoablation showed upregulation of immune 

regulatory molecules that favor an immunosuppressive environment, which could be reversed 

with the addition of CpG.  
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Therefore, an immunogenic D2F2/E2 tumor that is not controlled by the endogenous 

Her2 specific immunity can be completely ablated with the addition of CpG to cryoablation. 

Although levels of systemic α-Her2 immunity were not significantly altered, elevated α-Her2 Th1 

responses emerged in TDLNs along with IgG2a skewed α-Her2 Ab. Furthermore, an immune 

suppressive profile in contralateral TDLNs following cryoablation could be reversed with the 

addition of CpG.  These findings warrant the inclusion of CpG or other Th1 promoting adjuvants 

in combination with cryoablation. 

  



74 

 

 

INTRODUCTION 
 

D2F2 is a tumor line derived from a spontaneous mammary tumor that arose in a 

prolactin induced BALB/c hyperplastic alveolar nodule line D2 (93). D2F2 cells were 

subsequently transfected with pCMV/E2 encoding wild type human Her2, to produce the 

D2F2/E2 line (94). Because there is no selective pressure to maintain expression of Her2 in 

vivo, it may potentially be lost. Therefore, a D2F2/E2 subline with stable Her2 expression was 

selected by passaging D2F2/E2 in BALB/c. We have previously reported that a parallel tumor 

line, D2F2/neu, which was transfected to express mutant neu, was relatively insensitive to α-neu 

antibody (Ab) (157). Similarly, we show D2F2/E2 is uninhibited by α-Her Ab, and inoculation of 

BALB/c mice with D2F2/E2 results in induction of α-Her2 antibody (Ab). Furthermore, 

splenocytes from D2F2/E2 bearing mice have low basal levels of α-Her2 IFNγ activity relative to 

naïve mice. Although D2F2/E2 induces endogenous α-Her2 immunity in BALB/c mice, it is not 

sufficient to inhibit tumor growth. We hypothesized that cryoablation augments endogenous α-

Her2 immunity to provide increased tumor protection. 
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RESULTS 

 

D2F2/E2 mammary adenocarcinoma induces α-Her2 immunity endogenously 

without exogenous manipulation. To test if D2F2/E2 induced Her-2 specific immune 

responses, BALB/c mice were inoculated with 2.5x105 cells of D2F2/E2 cells which were 

allowed to grow for thirteen days before initial sera and tumor measurements were collected 

(day 0). Additional sera and tumor measurements were collected at day 8, 17, 24, and 30 

(Figure3.1A). Tumor growth correlated with a parallel increase in α-Her2 Ab, which reached 

102±9 μg/mL on day 30, but did not inhibit tumor progression (Figure3.1B). Since D2F2/E2 cells 

are likely resistant to Ab, similar to D2F2/neu, we tested for the presence of α-Her2 cell-

mediated immunity. Spleens from 3 mice were collected at day 17 for α-Her2 IFNγ ELISPOT 

analysis. Spleens from naïve BALB/c mice were also collected as a negative control. 

Splenocytes were isolated and stimulated for 48 hours with either 3T3/EKB, which stably 

express Kd, B7.1, and Her2 (EKB only), or control 3T3/KB cells. Tumor-bearing mice had a 

significantly elevated IFNγ response relative to naïve mice when stimulated with 3T3/EKB cells 

(Figure3.1C). Together these data indicate that D2F2/E2 induces endogenous α-Her2 humoral 

and cell-mediated immunity in BALB/c mice, but failed to control tumor growth.   
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Figure 3.1. Growth of D2F2/E2 mammary adenocarcinoma induces α-Her2 immunity 
endogenously. (A) BALB/c mice were inoculated with 2.5x10

5
 cells of D2F2/E2 mammary 

adenocarcinoma which were allowed to grow for thirteen days (~4x7 mm) before initial sera and tumor 
measurements were collected (day 0). Additional sera and tumor measurements were collected on 
days 0, 8, 17, 24, and 30 (n=9). (B) α-Her2 IgG levels were quantified and correlated with tumor 
volume. D2F2/E2 volume (mm

3
) and α-Her2 IgG (Ab5 equivalent μg/mL) are plotted on the left and 

right y-axis respectively. (C) Both naïve mice and tumor-bearing mice were euthanized at day 17 to 
collect spleens for IFNγ ELISPOT (n=3/group). Splenocytes were isolated and stimulated with 
either 3T3/EKB or 3T3/KB for 48hr. Results expressed as spot forming units (SFU). **P<0.01 
Unpaired t-test. 
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Peritumoral injection of CpG oligodeoxynucleotide (CpG) with cryoablation 

reduces recurrences. Similar to cryoablation of TUBO, a portion of cryoablated D2F2/E2 

tumors recurred. Since CpG in combination with cryoablation resulted in no recurrences, the 

same was tested in D2F2/E2. Tumor recurrence data from mice treated with either cryoablation 

alone (n=24) or combination therapy of cryoablation and CpG (n=25) were compiled from 4 

independent experiments. Mice from each experiment were treated when tumor dimensions 

reached approximately 4x7 mm in size, after which they were monitored for recurrence at the 

treated location at least 30 days post-operatively and as long as 60 days (Figure3.2). 

Comparable to TUBO, cryoablation resulted in an overall recurrence rate of ~29%, with tumor 

recurrences detected between 24-58 days post-operatively. Surgical excision of similar size 

tumors, along with adjacent mammary tissue, produced no observed recurrences (n=23) (data 

not shown). Cryoablation and CpG combination therapy reduced the recurrence rate to 0%, 

indicating that CpG elevates localized anti-tumor immunity or modifies the tumor 

microenvironment to prevent recurrences, further supporting the role of CpG in combination 

therapy with cryoablation.  
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Figure 3.2. Cryoablation + CpG protects against primary recurrences. Results pooled from 4 
independent experiments with all mice monitored at least 30 days after cryoablation for primary 
recurrence – Cryo + CpG (n=24) Cryo (n=25). Symbols indicate censored subjects due to 
experimental endpoint. *P<0.05 Log-rank test.  
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Systemic tumor protection does not occur before resolution of cryoablated 

tumors. BALB/c mice were inoculated with 2.5x105 D2F2/E2 cells which were allowed to grow 

until the tumor measured ~4x7 mm in diameter. Tumors were treated with cryoablation ± 

peritumoral CpG, surgical excision, peritumoral CpG injection, or left untreated (n=6-9) and 

monitored for 30 days (Figure3.3A). All tumors treated with cryoablation ± peritumoral CpG or 

surgical excision completely regressed by day 30 with the exception of two mice in the 

cryoablation group that developed recurrent growth at day 24. CpG treatment alone did not 

significantly change tumor growth relative to untreated mice (Figure3.3B). To test if cryoablation 

resulted in protective immunity, mice were rechallenged with 2.5x105 D2F2/E2 cells on the 

contralateral side 13 days post-operatively, while the ablated tumor was undergoing clearance. 

An additional group of naïve mice also received D2F2/E2 inoculation as a control (n=10). Mice 

were monitored for an additional 17 days after the rechallenge for tumor growth. 

Naïve mice, as well as tumor-bearing mice in CpG and untreated groups, developed 

tumors at the rechallenge site, indicating that endogenous α-Her2 immunity induced in 

D2F2/E2-bearing mice is insufficient to reject tumor challenge at a distant site (Figure3.3C). 

However, rechallenge tumor growth  was significantly delayed in untreated tumor bearing mice 

relative to naïve mice, suggesting that tumor induced α-Her2 immunity has a partial inhibitory 

effect (Figure3.3D-E). When primary tumors were treated with cryoablation or excision, 1/9 and 

3/7 mice were protected respectively. However, when CpG was used in combination with 

cryoablation 8/17 mice were protected, although the increase was not significant (p=0.09). 

Rechallenge tumors that did grow in cryoablation ± CpG treated mice grew at comparable rates 

to untreated mice, while tumors in the excision group grew significantly slower than other groups 

(Figure3.3C). These results suggest tumor induced α-Her2 immunity may be too weak to elicit 

tumor regression due to concurrent tumor related immunosuppression. Procedures that debulk 

the primary tumor appear to be beneficial in relieving tumor induced immunosuppression, thus 

supporting endogenous anti-tumor immunity and promoting greater tumor protection. However, 
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tissue inflammation resulting from cryoablation may also contribute to increased immune 

suppression as evident by increased growth in rechallenge tumors relative to excision treated 

mice. The addition of CpG to cryoablation may partially abrogate immune suppression as 

discussed in chapter 1 and 2. 

  



81 

 

 

A

B

   

Figure 3.3. Systemic tumor protection does not occur before resolution of cryoablated tumors. 
(A) Experimental scheme outlining timing of tumor inoculation and treatment. Thirteen days after 
inoculation D2F2/E2 mammary adenocarcinomas (~4x7mm) were treated with cryoablation ± 
peritumoral CpG, tumor excision, peritumoral CpG injection, or left untreated (n= 6-9). (B) Primary 
tumor growth of D2F2/E2 was monitored over time showing untreated mice and CpG treated mice with 
progressive tumor growth. Continued 
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Figure 3.3. Systemic tumor protection does not occur before resolution of cryoablated tumors. 
(C) Thirteen days later, mice were rechallenged with 2.5x10

5
 D2F2/E2 on the contralateral side. Mice 

were monitored for tumor growth over the course of 17 days, with any palpable tumor growing 
considered a failure in tumor protection. Number of mice (cured/rechallenged) shown. (D) Percent of 
mice rejecting tumor rechallenge. ***P<0.001 Log-rank test. (E) Mean rechallenge tumor volume. 
*P<0.05 ***P<0.001 One-way ANOVA with Sidak’s multiple comparisons test. Data pooled from two 
independent experiments. 
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Protective tumor immunity is present after complete resolution of the primary 

tumor. Because cryoablation did not enhance protective α-Her2 immunity before ablated 

tumors had been cleared from mice (Figure3.3), we sought to determine if protection changed 

once treated tumors had fully resolved. BALB/c mice were inoculated with 2.5x105 cells of 

D2F2/E2 cells which were allowed to grow until they measured ~4x7 mm in diameter. Tumors 

were treated with cryoablation ± peritumoral CpG, tumor excision, peritumoral CpG injection, or 

sham surgery (n=6-7) and monitored for 41 days (Figure3.4A). All tumors treated with 

cryoablation ± peritumoral CpG or surgical excision completely regressed by day 41 with the 

exception of one mouse in the cryoablation group that developed a recurrence appearing at day 

29. CpG treatment alone did not significantly change tumor growth relative to untreated mice 

(Figure3.4B). Forty-one days post-operatively all tumor free mice were rechallenged with 

2.5x105 D2F2/E2 cells on the contralateral side. An additional group of naïve mice also received 

D2F2/E2 inoculation as a control (n=8). Mice were monitored for an additional 18 days after the 

rechallenge for tumor growth. 

As expected, all naïve mice developed palpable tumors 5-8 days after inoculation. 

Tumor excision (5/7), cryoablation (4/5), and cryoablation with CpG (6/7) treatments protected 

similar percentages of mice, which was significantly higher than naïve mice (Figure3.4C-D). 

Rechallenge tumors that did grow in treated groups had significantly delayed growth relative to 

naïve mice, and grew at comparable rates to one another with the exception of a rapid growing 

tumor in the excision group and a small stable tumor in the cryoablation + CpG group. These 

results indicate that D2F2/E2 induced immunity renders systemic protection once the primary 

tumor is cryoablated, but the effect is evident only after the necrotic tumor has completely 

resolved. Tumor excision produces comparable protection to cryoablation in this case as well. 

The discrepancy in tumor protection before and after resolution of the ablated tumor suggests 

cryoablation may cause transient immunosuppression (Figure3.3), which subsides once the 

tumor is cleared. Thus, to develop treatment strategies that compliment cryoablation in patients, 
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we examined the immune activation or suppressive mechanisms induced by cryoablation of 

D2F2/E2 tumors.    

 

 
 
 



85 

 

 

A

B

  

Figure 3.4. Cryoablation renders systemic protection after resolution of the treated tumor. (A) 
Experimental scheme outlining timing of tumor inoculation and treatments. Thirteen days after 
inoculation, D2F2/E2 mammary adenocarcinomas (~4x7mm) were treated with cryoablation with or 
without peritumoral CpG, tumor excision, peritumoral CpG injection, or sham surgery (n= 6-7). (B) 
Primary tumor growth of D2F2/E2 was monitored over time showing that mice treated with CpG or left 
untreated continued to have progressive tumor growth. Continued  
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Figure 3.4. Tumor removal provides long term tumor protection. (C) Once cryoablated tumors 
had fully resolved (41 days), all tumor free mice were rechallenged with D2F2/E2 on the contralateral 
side. Mice were monitored for tumor growth over the course of 18 days, with any palpable tumor 
growing considered a failure in tumor protection. Number of mice protected shown. (D) Percent of 
mice rejecting tumor rechallenge. ***P<0.001 Log-rank test.  
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Endogenous α-Her2 cell-mediated responses remain elevated after tumor removal. 

TDLNs from the rechallenged region were collected from mice in the previous experiment 59 

days post-operatively. Single cell suspensions were prepared from TDLN and stimulated for 48 

hours with 3T3/EKB. Supernatents were collected and analyzed with magnetic-bead protein 

multiplexing to detect GM-CSF, IFNγ, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12 (p40/p70), and 

TNF-α, or TGFβ by ELISA. Mice treated with cryoablation ± CpG or tumor excision produced 

comparable results for all cytokines measured, however, these groups had significantly higher 

levels of IL-1β, IL-2, IL-4, IL-6, IL-10, IFNγ, TNFα, and GM-CSF relative to naïve mice, 

indicative of elevated endogenous α-Her2 immunity (Figure3.5). Together, these data indicate 

cryoablation or tumor excision promote systemic tumor immunity and protection, which is 

mediated by removal of the primary tumor. 
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Figure 3.5. Endogenous α-Her2 immunity remains elevated after tumor removal. All mice 
rechallenged with tumor were euthanized 59 days post-operatively to collect TDLN from the tumor 
rechallenge region. TDLN from naïve mice were also collected as a negative control. 8x10

5
 LN cells 

were co-cultured with 8x10
4
 3T3/EKB cells in a total volume of 0.5mL of 10% FBS RPMI at 10% CO2 

37˚C for 48 hours. Supernatents were collected and analyzed with Magpix based multiplexing. 
*P<0.05 **P<0.01 ***P<0.001 ****P<0.0001 One-way ANOVA with Tukey’s post-test. 
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Cryoablation does not diminish systemic α-Her2 immunity induced by D2F2/E2. To 

determine if cryoablation affects α-Her2 cell-mediated responses induced by the tumor, mice 

from Figure 3.3 were euthanized at day 30 to harvest spleens. Splenocytes were isolated and 

stimulated for 48 hours with either 3T3/EKB or 3T3/KB to assess IFNγ production by ELISPOT. 

All treatments produced a similar response, which was significantly higher than naïve mice (50-

200 SFU) (Figure3.6A). All tumor-bearing mice had with a low level of α-Her2 Ab at the time of 

treatment when tumors were ~4x7 mm. In mice treated with excision, α-Her2 Ab levels 

plateaued (16±4 μg/mL) beginning 8 days post-operatively, whereas Ab continued to rise in 

mice treated with cryoablation (32±8 μg/mL) or cryoablation + CpG (45±7 μg/mL) until day 24 

(Figure3.4B). Mice with untreated tumors had continuous induction of α-Her2 Ab (102±9 μg/mL) 

that correlated with tumor growth (Figure3.1B). Area under the curve (AUC) analysis found a 

significant difference between cryoablation + CpG and excision groups, with no difference 

between cryoablation and excision groups. IgG2a and IgG1 subclasses were also assessed 

using AUC analysis to assess Th1 or Th2 imbalance. Combination therapy of cryoablation and 

CpG significantly elevated IgG2a levels above cryoablation alone but did not impact IgG1 levels 

(Figure3.6C-D). Cryoablation did not significantly modulate α-Her2 cell-mediated responses 

relative to other groups, but α-Her2 IgG2a was significantly elevated when CpG was included in 

the regimen. These results indicate cryoablation did not compromise systemic tumor induced α-

Her2 immunity, and with CpG, promotes a Th1 response. 
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  Figure 3.6. Cryoablatio does not diminish systemic α-Her2 immunity induced by D2F2/E2. (A) 
Spleens were harvested 30 days after cryoablation for IFNγ ELISPOT. Splenocytes were isolated and 
stimulated with either EKB or KB 3T3 lines for 48hr in an IFNγ ELISPOT. Results quantified in spot 
forming units (SFU) with KB subtracted from EKB. (B) Sera was collected throughout the experiment 
for α-Her2 IgG quantification. (C) IgG2a and (D) IgG1 levels at day 30. *P <0.05 **P <0.01 One-way 
ANOVA with Tukey’s post-test. 
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Cryoablation induces transcripts that favor a Th2 environment. To further 

characterize differences in systemic immunity induced by cryoablation with or without CpG we 

evaluated a panel of immune-related transcripts in tumor draining lymph nodes (TDLN) from 

mice in Figure 3.3 at day 30. Cryoablation alone upregulated TNFα, TGFβ, Foxp3, and IL-10 

transcripts above all other treatments (Figure3.7). Interestingly, the addition of CpG to 

cryoablation reversed these changes, while increasing the chemokine CCL2 (monocyte 

chemotactic protein-1), which recruits monocytes, activated memory T-cells, and DCs (172, 

173). Additionally, IFNγ levels were decreased in mice treated with cryoablation + CpG relative 

to untreated mice, which may be the result of transcriptional negative feedback due to high 

protein levels. Levels of Th2 promoting factors IL-4, IL-13, and Ptges (prostaglandin E synthase) 

were higher in mice without tumor debulking. These findings suggest that untreated tumors 

promote Th2 biased endogenous immunity, which can partially be abrogated by cryoablation 

and tumor exision. However, cryoablation alone increased levels of immunosuppressive 

cytokines (IL-10 and TGFβ) which were reversed with the addition of CpG, further supporting 

the role of CpG in promoting Th1 responses. 
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Figure 3.7. Addition of CpG to cryoablation reduces transcript levels of key suppressive 
factors. Tumor draining lymph nodes (TDLN) from the treated tumor were harvested 30 days 
post-operatively and lymphocytes stimulated for 3 hr using PMA / ionomycin. RNA was isolated 
for cDNA synthesis and subsequent qPCR analysis. Expression of each gene was normalized to 
B2M and is expressed as fold increase (2

-ΔCT
) (n=6-9). (A) 2

-ΔCT
 axis range 0 - 0.10 (B) axis 

range 0 - 0.006. *P<0.05 **P<0.01 ****P<0.0001 One-way ANOVA with Tukey’s post-test. 
 
 
 



93 

 

 

Cryoablation does not compromise cell-mediated α-Her2 immunity. To further 

analyze the impact of cryoablation on α-Her2 immunity we investigated whether cell-mediated 

responses in TDLN and spleen were affected 12 days post-operatively. BALB/c mice were 

inoculated with 2.5x105 cells of D2F2/E2 cells which were allowed to grow until they measured 

~4x7 mm in diameter. Tumors were treated with cryoablation ± peritumoral CpG, tumor 

excision, or sham surgery (n=6) (Figure3.8A). Splenocytes and LN cells were isolated and 

stimulated for 48 hours with 3T3/EKB. Supernatents were collected and analyzed with 

magnetic-bead protein multiplexing to detect GM-CSF, IFNγ, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, 

IL-13, IL-12 (p40/p70), IL-17, CXCL10, MIP-1α, and TNF-α, or TGFβ by ELISA. 

Splenocytes produced comparable responses between all groups, with the exception of 

small differences in IL-6 and GM-CSF between untreated and cryoablation + CpG treated mice 

(Figure3.8B). Conversely, within TDLNs, cryoablation in combination with CpG significantly 

elevated Her2 specific levels of IL-2, IL-12, IFNγ, CXCL10, MIP-1α, IL-4, and IL-13 

(Figure3.8C). Elevation of IL-2, IL-12, and IFNγ are indicative of an active response biased 

toward Th1 immunity, with chemokines CXCL10 and MIP-1α (CCL3) likely upregulated in 

response to increased levels of IFNγ or IFNα/β (174-176). IL-4 and IL-13 were also moderately 

elevated, implicating activation of multiple pathways. Serum cytokine levels were at low or 

undetectable levels for the majority of targets except for IL-12 and TNFα, which were 

significantly increased with cryoablation and CpG treatment (Figure3.8D). Together, these data 

indicate cryoablation alone does not alter tumor induced α-Her2 cell-mediated immunity within 

regional or distant lymphoid tissues, but with the addition of CpG promotes a Th1 biased 

response in the regional TDLN. 
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Figure 3.8. Cryoablation does not compromise cell-mediated α-Her2 immunity. (A) Experimental 
scheme outlining timing of tumor inoculation and treatments. Fifteen days after inoculation, D2F2/E2 
mammary adenocarcinomas (~4x7mm) were treated with cryoablation ± peritumoral CpG, tumor 
excision, or sham surgery (n=6/group). Mice were euthanized 12 days post-operatively for spleen, 
TDLN, and sera collection. (B) 8x10

5
 splenocytes were co-cultured with 8x10

4
 3T3/EKB cells in a total 

volume of 0.5mL of 10% FBS RPMI at 10% CO2 37˚C for 48 hours. Supernatents were collected and 
analyzed with Magpix based multiplexing. (C) TDLN co-culture – same setup as described above. (D) 
Magpix of 12d sera. *P<0.05 **P<0.01 ***P<0.001 One-way ANOVA with Tukey’s post-test. Continued 
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Cryoablation does not promote expansion of T-regulatory cells (Tregs) in 

circulation.  Peripheral blood mononuclear cells (PBMCs) were collected from the previous 

experiment at day 12 to measure Treg populations by flow cytometry analysis, which were 

identified as CD4+ CD25+ Foxp3+ cells. The percentage of Tregs present in total PBMCs 

(Figure3.9A) and total CD4+ cells (Figure3.9B) were not different between treatment groups, 

indicating cryoablation, with or without CpG, did not affect circulating Treg populations 12 days 

post-operatively. 
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Figure 3.9. Cryoablation does not increase circulating Tregs. Fifteen days after inoculation, 
D2F2/E2 mammary adenocarcinomas (~4x7mm) were treated with cryoablation ± peritumoral CpG, 
tumor excision, or sham surgery (n=6/group). Mice were euthanized 12 days post-operatively for 
PBMC collection. Cells were stained for CD4, CD25, and Foxp3 for flow cytometry analysis. Tregs 
were identified as CD4

+
 CD25

+
 Foxp3

+
 cells. (A) Percentage of Tregs in total PBMCs and (B) 

percentage among CD4
+
 cells.  
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DISCUSSION 

 

Similar to TUBO, D2F2/E2 expresses a tumor associated antigen the immune system 

can recognize. In contrast, D2F2/E2 is resistant to antigen specific Ab, and rejection, is in part 

dependent on cytotoxic T-cell activity (177). Additionally, D2F2/E2 does not rely on Her2/neu 

signaling for survival or growth, and only expresses Her2 due to stable transfection. Thus, 

D2F2/E2 may be representative of Her2+ tumors which become resistant to Herceptin 

(Trastuzumab) and generate alternative survival pathways (i.e. phosphatidylinositol 3-

kinase/Akt) (140). 

We show that tumor growth of D2F2/E2 in BALB/c mice, without any manipulation, 

induces α-Her2 humoral and cell-mediated responses, indicating Her2 is actively presented and 

processed by the immune system from a growing D2F2/E2 tumor. However, resulting α-Her2 

immunity was not sufficient to mediate regression of the primary tumor and also failed to protect 

mice from tumor challenge at a distant site 2 weeks post-treatment. Growth of tumors inoculated 

on the contralateral side were significantly delayed in tumor-bearing mice relative to naïve mice, 

indicating tumor induce α-Her2 immunity partially inhibits tumor growth (Figure3.3). This finding 

contends that tumor induced α-Her2 immunity is beneficial but may be too weak to mediate 

tumor regression due to concurrent tumor-specific immunosuppression. Furthermore, a portion 

of mice treated with cryoablation, with or without CpG, or excision were protected from tumor 

rechallenge, which suggests procedures that debulk the primary tumor may act to relieve tumor 

induced immunosuppression, thus supporting endogenous anti-tumor immunity and promoting 

greater tumor protection.  

Although cryoablation resulted in effective tumor debulking, α-Her2 immunity was not 

amplified relative to surgical excision. Unlike TUBO, D2F2/E2 induces α-Her2 immunity without 

exogenous manipulation, which does not appear to benefit from additional antigen release by 

cryoablation. Furthermore, the resulting tissue inflammation may have contributed to increased 
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immune suppression, as evident by increased growth in rechallenge tumors relative to excision 

treated mice (Figure3.3C). This suppression is likely mediated by local factors in vivo (i.e. 

ablated tumor), because ex vivo stimulation of lymph node cells and splenocytes found no 

difference in α-Her2 responses. Circulating levels of Tregs were not different between groups 12 

days post-treatment, although they could be increased within the tumor microenvironment as 

suggested by Waitz et al (36), which warrants additional investigation. The addition of CpG was 

able to partially abrogate cryoablated induced suppression as evident by the increased tumor 

protection observed (Figure3.3C). Our results suggest this effect was mediated by promoting 

Th1 responses, which reciprocally diminished transcripts favoring a Th2 biased environment 

(Figure3.7).  

To further evaluate these findings, a similar experiment was performed with tumor 

rechallenge occurring after tumors treated with cryoablation had 41 days to resolve. 

Cryoablation, with or without CpG, or excision treated mice had much improved protection 

relative to mice rechallenged 2 weeks post-operatively, which suggests endogenous α-Her2 

immunity is maintained, and potentially enhanced, after clearance of the primary tumor. α-Her2 

cell mediated responses in TDLN, such as IL-1β, IL-2, IL-4, IL-6, IFNγ, TNFα, and GM-CSF, 

were elevated to comparable levels between treated groups, which were significantly higher 

than naïve mice.  Additionally, IL-2, IFNγ, and GM-CSF levels were substantially higher in TDLN 

in mice 59 days post-operatively compared to 12 days, suggesting increased tumor protection 

resulted from elevation of α-Her2 cell-mediated responses (Figure3.5 and 3.8C). These findings 

provide additional evidence that D2F2/E2 tumor growth results in an immunosuppressive 

microenvironment which allows the tumor to escape immune effector responses. We also 

further validate that tumor debulking can reverse tumor induced immunosuppression to improve 

endogenous α-Her2 immunity resulting in increased tumor protection. 

Similar to TUBO, CpG used in combination with cryoablation decreased cryoablation 

recurrences from 29% to 0%. In contrast to TUBO, all tumor bearing mice had comparable 
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levels of systemic α-Her2 immunity independent of treatment, which indicates the discrepancy in 

recurrence rates is not mediated by systemic immunity, but by local activity of CpG as initially 

suspected. Addition of CpG to cryoablation significantly increased levels of Th1 cytokines in 

TDLN 2 days post-operatively (chapter 1). Additionally, levels of IL-2, IL-12, IFNγ, CXCL10, and 

MIP-1α in TDLN remained elevated 12 days post-operatively (Figure3.8C). The combination of 

these factors creates an environment favoring immune mediated destruction of tumor (46-48) 

previously described in chapter 2. Thus, local Th1 responses activated by CpG are effective in 

eliminating recurrent tumor growth associated with tumor cryoablation. 

  



101 

 

 

GENERAL CONCLUSIONS 

 

Although there are pre-clinical data supporting induction of protective tumor-specific 

immunity following cryoablation, similar responses have yet to be observed clinically. A lack of 

explanation and resolution for this discrepancy results from an incomplete understanding of how 

cryoablation directly and indirectly affects innate and adaptive immune responses. In an attempt 

to better understand these principles and identify areas for therapeutic intervention, we 

evaluated immune activation by cryoablation of two BALB/c mammary adenocarcinoma lines 

expressing Her2/neu antigen, TUBO and D2F2/E2. TUBO was originally induced by a 

constitutively activate rat neu and is sensitive to α-neu antibody, but growth of TUBO without 

intervention did not induce α-neu immunity. Thus, TUBO may resemble human cancers with 

viral etiology or gene mutations that result in expression of neo-antigens the immune system 

can recognize but does not without exogenous manipulation (47). D2F2/E2 expresses human 

Her2 by transfection and is resistant to α-Her2 antibody (Ab), but sensitive to T cells. Growth of 

D2F2/E2 induces both humoral and cellular immunity which are not sufficient to mediate 

regression of the primary tumor. Thus, D2F2/E2 may be representative of Her2+ tumors which 

become resistant to Herceptin (Trastuzumab) and generate alternative survival pathways (140). 

We found that cryoablation of TUBO resulted in protective immunity in a ~65% mice, but 

observed, in contrast to popular opinion (13), resulting immunity was not Th1 biased, but 

favored a Th2 response as evident by a dominant IgG1 Ab response. Cryoablation of D2F2/E2 

protected ~80% of mice if secondary inoculation was performed after the ablated tumor had 

been cleared (41 d). However, secondary inoculation 2 weeks after cryoablation resulted in 

accelerated growth relative to surgical incision, suggesting cryoablation may induce transient 

immune suppression until the tumor debris is fully resolved. In support of this, increased 

transcript levels of factors involved in wound healing, such as prostaglandin E2, thymic stromal 

lymphopoietin, OX40 ligand, TGFβ and IL-10, were observed in tumor draining lymph nodes 
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(TDLN). Importantly, these factors also favor Th2 biased responses. Furthermore, recurrences 

of the primary tumor occurred in 26 – 29% of treated mice, which suggests cryoablation did not 

induce sufficient immunity to eliminate residual tumor foci. 

In attempt to reverse Th2 biased immunity and subsequent immunosuppression, the Th1 

promoting TLR9 agonist CpG was used in combination with cryoablation. When TUBO was 

treated with combination therapy we saw a dramatic increase in tumor-specific immunity Ab 

production following Th1 skewed immunity relative to cryoablation alone, as evident by 

increased IgG2a Ab. A similar enhancement in Ab was observed with D2F2/E2 as well. This 

response protected nearly 100% of TUBO-bearing mice from tumor rechallenge and also 

improved protection in D2F2/E2-bearing mice. These findings are further corroborated by 

Nierkens and den Brok, who reported similar Th1 induction with CpG treatment (30-34).  

Importantly, tumor recurrences of both TUBO and D2F2/E2 significantly dropped to 0% in 

BALB/c mice, and to 12% in NeuT mice. The clearing of residual tumor foci may be mediated by 

local activation of innate immunity due to increased Th1 responses. Furthermore, upregulation 

of Th1 cytokines detected in TDLNs created a reciprocal decrease in transcripts favoring a Th2 

biased environment, thereby reducing cryoablation induced suppression. 

A portion of D2F2/E2 bearing mice treated with cryoablation, with or without CpG, or 

excision were protected from secondary inoculation 13 days after treatment, which suggests 

procedures that debulk the primary tumor may act to relieve tumor induced immunosuppression, 

thus supporting endogenous anti-tumor immunity and promoting greater tumor protection. 

Although cryoablation resulted in effective tumor debulking, α-Her2 immunity was not amplified 

relative to surgical excision. Unlike TUBO, D2F2/E2 induces α-Her2 immunity without 

exogenous manipulation, which does not appear to benefit from additional antigen release by 

cryoablation. Furthermore, the resulting tissue inflammation may have contributed to increased 

immune suppression, as evident by increased growth in rechallenge tumors relative to excision 

treated mice (Figure3.3C). This suppression is likely mediated by local factors in vivo (i.e. 



103 

 

 

ablated tumor), because ex vivo stimulation of lymphocytes and splenocytes found no difference 

in α-Her2 responses.  

These results, along with current CpG clinical trial data, highly support concurrent CpG 

treatment with cryoablation to improve local tumor control with the potential to induce or amplify 

systemic tumor-specific immunity. Although not tested in this study, the use of therapeutics 

directly targeting immunosuppressive cells, such as Tregs or myeloid derived suppressor cells, 

may provide further benefit to cryoablation and CpG treatment. Reducing tissue inflammation 

following cryoablation and the consequent immune suppression with a short course of anti-

inflammatory agents, such as steroids or COX2 inhibitors, may also improve outcomes with 

cryoablation. As new immunotherapeutic options emerge, it becomes increasingly important that 

we understand the mechanisms by which cryoablation affects the immune system so 

appropriate therapeutic intervention can be used to achieve the best outcome. 
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APPENDIX 
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Supplemental Figure 1. TUBO has high transcript levels of G-CSF. RNA was isolated from TUBO 
and D2F2/E2 growing in vitro and in vivo. RNA from splenocytes in a TUBO bearing mouse and naïve 
mouse were also collected. cDNA synthesis and subsequent qPCR analysis was performed. G-CSF 
transcript levels measured are relative to naïve splenocytes (RQ). 
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Supplemental Figure 2. TUBO growth induces expansion of myeloid derived suppressor cells 
(MDSC). A TUBO bearing mouse with tumor measuring ~8x15 mm was euthanized along with a naïve 
mouse. Splenocytes were isolated and stained for CD11b and Ly6G (GR-1). MDSC were identified by 
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Background and Objectives:  Percutaneous cryoablation is a minimally invasive procedure for 

tumor debulking, which has the potential to initiate or amplify tumor immunity through the 

release of tumor-associated antigens and endogenous danger signals. However, enhanced 

immunity is rarely observed in treated patients, suggesting the need for mechanistic analysis. 

The goal is to determine how cryoablation affects tumor specific immunity and if the response 

can be improved through exogenous TLR9 stimulation. 

Methodology:  We evaluated α-Her2/Neu immunity following cryoablation in wt BALB/c and 

tolerant NeuT mice inoculated with Neu or Her2 expressing mammary tumors TUBO and 

D2F2/E2 respectively. Mice were treated with cryoablation, tumor excision, sham surgery, 

and/or 100 μg peritumoral (p.t.) CpG ODN. NeuT mice received vaccination with plasmid DNA 

encoding Neu/Her2 and GM-CSF to induce an initial response. Specific IgG antibody (Ab) 

subclasses and T-cell responses were assessed using flow cytometry and IFNγ ELISPOT 

assays respectively. Inflammatory transcript and protein levels from stimulated tumor draining 

lymph nodes (TDLN) were quantified using qPCR and magnetic bead multiplexing respectively. 

Phenotyping of peripheral blood leukocytes and TDLN was performed using flow cytometry. 

Results:  Cryoablation of Ab-sensitive TUBO induced α-neu Ab that protected ~65% of wt mice 

from tumor re-challenge which increased to ~95% when p.t. CpG was used in combination 
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therapy. Cryoablation of D2F2/E2 protected ~80% of mice if rechallenge was performed after 

the ablated tumor had been cleared (41 d). However, rechallenge 2 weeks after cryoablation 

resulted in accelerated growth relative to surgical incision. In vaccinated tolerant NeuT mice, 

protection was not amplified after cryoablation, even with the addition of CpG. However, tumor 

excision provided significantly greater tumor protection. Cryoablation primarily induced α-Neu 

IgG1 relative to IgG2a, which was inversed with the addition of CpG. Cryoablation elevated 

many inflammatory transcripts, with the most significantly elevated transcripts indicative of a 

Th2 phenotype (Il10 and Il4) and suppression (Foxp3 and Tgfb). Recurrences of tumors treated 

with cryoablation occurred in 26-29% of wt mice which was significantly decreased to 0% with 

the addition of CpG.  

Conclusions:  These findings suggest cryoablation induces a Th2 dominant response, which 

may be detrimental if residual disease is present. To promote the shift to a Th1 phenotype, 

which is associated with greater anti-tumor activity, CpG was used in combination with 

cryoablation. This led to significantly elevated IgG2a/IgG1 relative to cryoablation alone and 

greater tumor protection in wt mice, suggesting Th1 activation. Furthermore, the addition of CpG 

elevated IFNγ responses above that of cryoablation alone, which appeared to primarily be 

localized to the treated region. Cryoablation can be an effective tool for both tumor debulking 

and immune priming if Th1-promoting adjuvants are used in combination therapy.  
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