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Chapter 1

Introduction

The concept of Lipschitzian full stability of local minimizers in general optimization problems

was introduced by Levy, Poliquin and Rockafellar [31] to single out those local solutions, which

exhibit "nice" stability properties under appropriate parameter perturbations. Roughly speak-

ing, the properties postulated in [31] require that the local minimizer in question does not lose

its uniqueness and evolves "proportionally" (in some Lipschitzian way) with respect to a cer-

tain class of two-parametric perturbations; see Chapter 3 for the precise formulations. The full

stability notion of [31] extended the previous one of tilt stability introduced by Poliquin and

Rockafellar [53], where such a behavior was considered with respect to one-parametric linear/tilt

perturbations. Both stability notions in [31, 53] were largely motivated by their roles in the

justification of numerical algorithms, particularly the stopping criteria, convergence properties,

and robustness.

The first second-order characterizations of tilt stability were obtained by Poliquin and Rock-

afellar [53] via the second-order subdifferential/generalized Hessian of Mordukhovich [36] in the

general framework of extended-real-valued prox-regular functions and by Bonnans and Shapiro

[5] via a certain uniform second-order growth condition in the framework of conic programs with

C2-smooth data. More recent developments on tilt stability for various classes of optimization

problems in both finite and infinite dimensions can be found in [13, 14, 17, 34, 42, 43, 45, 46, 47].

Much less has been done for full stability. In the pioneering work by Levy, Poliquin and Rock-

afellar [31] this notion was characterized in terms of a partial modification of the second-order
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subdifferential from [36] for a class of parametrically prox-regular functions in the unconstrained

format of optimization with extended-real-valued objectives. The calculus rules for this partial

second-order subdifferential developed by Mordukhovich and Rockafellar [47] allowed them in

the joint work with Sarabi [48] to derive constructive second-order characterizations of fully

stable minimizers for various classes of constrained optimization problems in finite dimensions

including those in nonlinear and extended nonlinear programming and mathematical programs

with polyhedral constraints, which plays an essential role in their works. In these two papers

some relationships of full stability to the classical Robinson’s strong regularity [58] has been

revealed in some special classes of optimization problem [47, 48]. It is important to empha-

size that Robinson’s strong regularity which relates to the local single-valuedness and Lipschitz

continuity of solution maps to generalized equations is the key tool in developing qualitative

and numerical results (e.g., Newton method) on variational inequalities and complementarity

problems [16, 18, 24, 25, 33, 37]. Since full stability is a weaker property than strong regularity

in constrained optimization (see our Section 5.5 for further details), studying this remarkable

stability gives us a realistic hope to improve many well-known results or even establish new

understanding on the aforementioned areas of optimization. This actually makes full stability

on the call!

Developing a systematic study to full stability in the general framework of optimization

problems and applying it to many significant classes of constrained optimization without poly-

hedricity assumption are two main purposes of the thesis. More specifically, we introduce a

new notion so-called Hölderian full stability weaker than its Lipschitzian counterpart [31] and

generate a geometric dual-space approach to both of them even in infinite-dimensional spaces. In

contrast to [31], our approach does not appeal to tangential approximations of sets and functions
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while operating instead with intrinsically nonconvex-valued normal and coderivative mappings,

which satisfy comprehensive calculus rules. This leads us to more direct and simple proofs with

a variety of quantitative and qualitative characterizations of full and tilt stability. Furthermore,

in this way we may relax the assumption of polyhedricity on the constraint sets [47, 48] in

studying full stability of mathematical programs with C2-smooth data (including those of conic

programming). It is worth mentioning that many remarkable classes such as semidefinite pro-

gramming [65] and second-order cone programming do not enjoy the aforementioned polyhedral

conditions.

Besides Chapter 2 which provides some preliminaries from variational analysis and general-

ized differentiations, the thesis contains two major parts. Part A is devoted to the recent devel-

opments in our joint papers [40, 44] on the theory of full stability in general infinite-dimensional

optimization problems. While Part B focuses on several applications of full stability to con-

strained optimization. Part A begins with Chapter 3, in which we formulate the basic notions of

Hölderian and Lipschitzian full stabilities and focus on second-order descriptions of these notions

for the general class of parametrically prox-regular extended-real-valued functions. The work

not only covers the original result [31] in finite-dimensional frameworks but also reveals many

convenient characterizations of both types of full stability. Particularly, these characterizations

are obtained in terms of a certain second-order growth condition as well as via second-order

subdifferential constructions with precise relationships between the corresponding moduli.

In Chapter 4 we present many implementations of full stability to parametric variational sys-

tems including generalized equations introduced by Robinson in his landmark paper [56]. Nowa-

days, the latter becomes a core notion in variational inequalities and complementary problems

[18], constrained optimization associated with Lagrange multipliers [5], etc. In [58] Robinson
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introduced another significant notation so-called strong regularity which ensures the existence

of a Lipschitz continuous single-valued localization of the solution mapping. Full characteriza-

tions of strong regularity over polyhedral convex sets have been established by Dontchev and

Rockafellar [15], in which Mordukhovich’s coderivative criterion for Lipschitz-like property and

second-order subdifferential are very essential. Whether their main result is still valid when

replacing the polyhedral convex sets by other vital ones such as the set of positive semidefinite

matrices or second-order/Lorent/ice-cream cones is still a big open question in the area. Partial

answers can be founded in [4, 54]. In this chapter we will provide some closer looks to that ques-

tion by developing a new approach to generalized equations via full stability and second-order

theory. More generally, we study parametric variational systems, which particularly covers the

so-called quasivariational inequalities [18] or even hemivariational inequalities [51] and establish

new sufficient conditions for Hölder and Lipschitz continuity of the solution mapping to these

systems in term of second-order subdifferentials.

Part B regarding applications to constrained optimization starts with Chapter 5 which ad-

dresses the conventional class of C2-smooth parametric optimization problems with constraints

written in the form g(x, p) ∈ Θ, where Θ is a closed and convex subset of a finite-dimensional

space. The model is indeed one of the most general problems in constrained optimization [5].

Imposing the classical Robinson constraint qualification [60], we show that the continuity of the

stationary mapping in Kojima’s strong stability [23] can be strengthened to Hölder continuity

with order 1
2 by using Hölderian full stability. If in addition the constraint are C2-reducible and

the optimal point is (partially) nondegenerate in the sense of [5], then we prove the equiva-

lence of Lipschitzian full stability to Robinson’s strong regularity of the associated variational

inequality on Lagrange multipliers. Furthermore, the complete characterizations of full stabil-
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ity in Chapter 3 allow us to establish new characterizations to strong stability and also strong

stability via verifiable conditions involving the second-order subdifferential (or the generalized

Hessian) ∂2δΘ of the indicator function δΘ of Θ. Also in this chapter these results are specified

for semidefinite programs and second-order cone programs, where Θ = Sm+ is the cone of all the

m×m symmetric positive semidefinite matrices. Furthermore, we show that without nondegen-

eration condition the aforementioned equivalences are not valid anymore. More specifically, in

the classical nonlinear programming when both Mangasarian-Fromovitz constraint qualification

and constant rank constraint qualification are satisfied at the minimizer point, full stability is

characterized by a new uniform second-order sufficient condition while both strong regularity

and strong stability may be not fulfill. This allows us to conclude that strong regularity is always

a stronger property than full stability in general. Chapter 6 ends part B with several applica-

tions to mathematical programs in infinite-dimensional spaces including polyhedric constrained

programs [20, 35] and optimal control of semilinear elliptic equation [2, 5].
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Chapter 2

Preliminary

2.1 Basic Notation

We begin with some standard notation in variational analysis and generalized differentiation;

cf. [8, 38, 62]. Let X be a Banach space. Recall that X is Asplund if each of its separable

subspaces has a separable dual. This subclass of Banach spaces is sufficiently large including,

in particular, every reflexive space; see, e.g., [38] for more details and references. As usual,

‖ · ‖ stands for the norm in X and 〈·, ·〉 indicates the canonical pairing between X and its

topological dual X∗ with w∗ signifying the weak∗ convergence in X∗ and cl∗ standing for the

weak∗ topological closure of a set. We denote by IB and IB∗ the closed unit ball in the space

in question and its dual space, respectively, with IBη(x) := x+ ηIB standing for the closed ball

centered at x with radius η > 0.

Given a set-valued mapping F : X ⇒ Y between two Banach spaces X and Y , the notion

Lim sup
x→x̄

F (x) :=
{
y ∈ Y

∣∣∣ ∃ sequences xk → x̄, yk → y such that

yk ∈ F (xk) for all k ∈ IN := {1, 2, . . .}
} (2.1)

signifies the sequential Painlevé-Kuratowski outer/upper limit of F (x) as x→ x̄. When Y = X∗,

we denote

w∗ − Lim sup
x→x̄

F (x) :=
{
x∗ ∈ X∗

∣∣∣ ∃ sequences xk → x̄, x∗k
w∗→ x∗ such that

x∗k ∈ F (xk) for all k ∈ IN := {1, 2, . . .}
} (2.2)
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2.2 Convex Analysis

Let f : X → IR be an extended-real-valued function, which is always assumed to be proper,

i.e., dom f := {x ∈ X| f(x) < ∞} 6= ∅. Recall first some constructions and facts from convex

analysis needed in the dissertation; see, e.g., [3, 62, 68]. If f is convex, its (Fenchel) conjugate

f∗ : X∗ → IR is defined by

f∗(x∗) := sup
x∈X

{
〈x∗, x〉 − f(x)

}
for all x∗ ∈ X∗, (2.3)

and its convex subdifferential (collection of subgradients) at x̄ ∈ dom f is given by

∂f(x̄) :=
{
x∗ ∈ X∗| f(x)− f(x̄) ≥ 〈x∗, x− x̄〉 for all x ∈ X

}
, (2.4)

which can be equivalently represented via the conjugate function by
{
x∗ ∈ X∗| 〈x∗, x̄〉− f(x̄) ≥

f∗(x∗)
}
.

The biconjugate f∗∗ : X → IR of f is the conjugate of f∗, i.e., (f∗)∗. The following result

[68] is useful for our subsequent considerations.

Lemma 2.1 (subdifferential duality). Let f : X → IR be a convex and l.s.c. function, and

let f∗ be its conjugate (2.3). Then we have the relationship

x∗ ∈ ∂f(x) if and only if x ∈ ∂f∗(x∗),

which implies that ∂f∗(x∗) = argminX{f(x)− 〈x∗, x〉} for any x∗ ∈ X∗.

It is well-known that f∗∗ coincides f when f is a proper lower semi-continuous (l.s.c.) convex

function. Furthermore, we have
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Lemma 2.2 (biconjugate inequality, [68, Theorem 2.3.4]). Let f : X → IR be a proper

function. Then we have the inequality f∗∗ ≤ f . Moreover, f∗∗ = f if and only if f is l.s.c. and

convex.

One of the most impressive results in convex analysis is the sum rule of convex subdifferen-

tials.

Lemma 2.3 (sum rule, [68, Theorem 2.8.7]). Let f, g : X → IR be two proper l.s.c. convex

functions. Suppose that there is some x0 ∈ dom f ∩dom g such that g is continuous at x0. Then

for any x̄ ∈ dom f ∩ dom g we have the relationship

∂(f + g)(x̄) = ∂f(x̄) + ∂g(x̄).

2.3 Basic Variational Geometry

Throughout this section, Ω is assumed to be a subset of a Banach space X. The notations coΩ,

spanΩ, cl Ω, bdΩ, int Ω signify the convex hull, span hull, closure, boundary, and interior of Ω

respectively. We write x Ω→ x̄ to express the convergence relative to Ω in the sense that x→ x̄

with x ∈ Ω.

The thesis mainly concerns about the dual approaches in variational analysis, where notions

of normal cones play essential roles in studying optimization problems with constraints. When

Ω is convex, the convex normal cone to Ω at a point x̄ ∈ Ω is given by

NΩ(x̄) =
{
x∗ ∈ X∗| 〈x∗, x− x̄〉 ≤ 0 for all x ∈ X

}
. (2.5)

This is indeed the convex subdifferental (2.4) at x̄ ∈ Ω to the indicator function δΩ(x), which is

equal to 0 if x ∈ Ω and to∞ otherwise. The polar cone of the convex normal cone is the convex
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tangent cone formulated by

TΩ(x̄) :=
[
NΩ(x̄)

]∗
= Lim sup

t↓0

Ω− x̄
t

, (2.6)

where the "Limsup" is taken from (2.1) and the notion A∗ :=
{
a ∈ X| 〈a∗, a〉 ≤ 0, a∗ ∈ A

}
means the polar cone of A ⊂ X∗.

When Ω is not convex, there are many appropriate generalized concepts of normal cones;

see, e.g., the monographs [8, 9, 38, 62] for further details and discussions. Following [38] we

define the ε-normals to Ω at x ∈ Ω by

N̂ε(x; Ω) :=

{
x∗ ∈ X∗

∣∣ lim sup
u

Ω→x

〈x∗, u− x〉
‖u− x‖

≤ ε

}
. (2.7)

When ε = 0, we simply denote N̂(x; Ω) for N̂0(x; Ω) and call this set regular normal cone (known

also as the Fréchet normal cone) to Ω at x. Then the limiting normal cone (known also as the

general or basic normal cones and as the Mordukhovich normal cone) to Ω at some x̄ ∈ Ω is

defined by

N(x; Ω) := w∗ − Lim sup
x

Ω→x̄
ε↓0

N̂ε(x; Ω). (2.8)

When X is an Asplund space, this formula can be simplified [38, Theorem 2.35] by

N(x; Ω) := w∗ − Lim sup
x

Ω→x̄

N̂(x; Ω).

It is easy to check that both N̂(x̄; Ω) and N(x̄; Ω) are cones in X∗. However, the set N̂(x̄; Ω)

is convex, while N(x̄; Ω) is not in general. Furthermore, when Ω is convex, these two notations
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reduce to the convex normal cone in (2.5). In the thesis we also write N̂Ω(x̄) and NΩ(x̄) to

represent N̂(x̄; Ω) and N(x̄; Ω), respectively.

One of the most meaningful properties of construction (2.8) is that it satisfies the intersection

rule: given Ω1 and Ω2 two closed subsets of a finite dimensional space X with x̄ ∈ Ω1∩Ω2, then

we have

N(x̄; Ω1 ∩ Ω2) ⊂ N(x̄; Ω1) +N(x̄; Ω2)

provided that N(x̄; Ω1) ∩ (−N(x̄; Ω2) = {0}. This result can be generalized to Asplund space

under an additional hypothesis that either Ω1 or Ω2 satisfies the so-called sequential normal

compactness at x̄, which is strictly weaker than the nonempty interior assumption, i.e., either

int Ω1 6= ∅ or int Ω2 6= ∅; see [38, Definition 1.20 and Corollary 3.37].

2.4 Subdifferential of Nonsmooth Functions and Coderivative

of Set-Valued Mappings

In this section we recall several subdifferential constructions for nonsmooth functions. Let us

start with first-order subdifferential for proper extended-real-valued functions f : X → IR on

Banach spaces assuming that f is lower semicontinuous (l.s.c.) around x̄ from the domain

dom f := {x ∈ X| f(x) <∞}. The regular subdifferential (known also as the presubdifferential

and as the Fréchet or viscosity subdifferential) of f at x̄ ∈ dom f can be defined via the regular

normal cone (2.7)

∂̂f(x̄) :=
{
x∗ ∈ X∗

∣∣∣(x∗,−1) ∈ N̂
(
(x̄, f(x̄)); epi f

)}
,
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where epi f :=
{

(x, r) ∈ X × IR| f(x) ≤ r
}
is the epigraph of f . Indeed, this construction can

be expressed by another equivalent "explicit" form

∂̂f(x̄) :=
{
x∗ ∈ X∗

∣∣∣ lim inf
x→x̄

f(x)− f(x̄)− 〈x∗, x− x̄〉
‖x− x̄‖

≥ 0
}
. (2.9)

The limiting subdifferential (known also as the general or basic subdifferential and as the Mor-

dukhovich subdifferential) of f at x̄ ∈ dom f is denoted similarly by

∂f(x̄) :=
{
x∗ ∈ X∗

∣∣∣(x∗,−1) ∈ N
(
(x̄, f(x̄)); epi f

)}
,

which can be also defined explicitly via the sequential outer limit (2.2) by

∂f(x̄) := w∗ − Lim sup

x
f→x̄

∂̂f(x) (2.10)

when X is an Asplund space, where the notation x
f→ x̄ stands for the convergence relative to

the function f , i.e., x→ x̄ and f(x)→ f(x̄).

Another construction important in our study is the horizontal subdifferential formulated by

∂∞f(x̄) :=
{
x∗ ∈ X∗

∣∣∣(x∗, 0) ∈ N
(
(x̄, f(x̄)); epi f

)}
. (2.11)

Note that for convex functions f both regular and limiting subdifferentials reduce to the sub-

differential of convex analysis (2.4) and that ∂∞f(x̄) = {0} if f is locally Lipschitzian around

x̄. Moreover, if the function f is Fréchet differentiable at x̄, then ∂̂f(x̄) = ∇f(x̄); while if the

function f is strictly Fréchet differentiable at x̄, then ∂f(x̄) = ∇f(x̄). In general the subgra-

dient sets in (2.10) are nonconvex while they and the corresponding normal and coderivative
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constructions for sets and mappings (see below) enjoy full calculi based on variational/extremal

principles of variational analysis; see [38, 62]. To illustrate, we state here the sum rule of this

setting used frequently in our study. The more general result can be found in [38, Theorem 3.36].

Lemma 2.4 (sum rule, [38, Theorem 3.36]). Let X be an Asplund space and let f, g :

X → IR be two proper extended-real-valued functions with x̄ ∈ dom f ∩ dom g. Suppose that g

is Lipschitz continuous around x̄. Then we have

∂(f + g)(x̄) ⊂ ∂f(x̄) + ∂g(x̄).

Before going to second-order subdifferential constructions, let us recall some useful notation

of coderivatives. Given a set-valued mapping F : X ⇒ Y between Asplund spaces with the

domain domF := {x ∈ X| F (x) 6= ∅} and the graph gphF := {(x, y) ∈ X × Y | y ∈ F (x)}

assumed to be locally closed around the points in question. The regular coderivative and the

mixed coderivative of F at (x̄, ȳ) ∈ gphF are defined, respectively, by

D̂∗F (x̄, ȳ)(y∗) :=
{
x∗ ∈ X∗

∣∣ (x∗,−y∗) ∈ N̂((x̄, ȳ); gphF )
}
, y∗ ∈ Y ∗, (2.12)

D∗MF (x̄, ȳ)(y∗) := w∗ − Lim sup

(x,y)
gphF→ (x̄,ȳ)
z∗→y∗

D̂∗F (x, y)(z∗), y∗ ∈ Y ∗, (2.13)

where the convergence z∗ → y∗ is strong in Y ∗ while the sequential outer limit in (2.13) is taken

by (2.2) in the weak∗ topology of X∗; cf. [38] for these and other coderivative constructions.

We omit the subscript “M” in (2.13) when X is finite-dimensional as well as the the indication

of ȳ = F (x̄) in (2.12) and (2.13) when F is single-valued. It has been well recognized that

the coderivatives (2.12) and (2.13) are appropriate tools for the study and characterizations of

well-posedness and sensitivity in variational analysis; see [38, Chapter 4] or Section 2.5 below
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for more details and references.

It is worth noting that if F : X → Y is a single-valued C1 mapping around (x̄, ȳ) ∈ gphF ,

then we have D̂∗F (x̄, ȳ)(y∗) = D∗MF (x̄, ȳ)(y∗) = ∇f(x̄)∗y∗ for y∗ ∈ Y ∗.

The following coderivative sum rule in Asplund spaces is significant.

Lemma 2.5 (coderivative sum rules, [38, Theorem 1.62]). Let X,Y be Asplund spaces,

let f : X → Y be Fréchet differentiable at x̄, and let F : X ⇒ Y be an arbitrary set-valued

mapping such that ȳ − f(x̄) ∈ F (x̄). The following hold:

(i) For all y∗ ∈ Y ∗ one has

D̂∗(f + F )(x̄, ȳ)(y∗) = ∇f(x̄)∗y∗ + D̂∗F (x̄, ȳ − f(x̄))(y∗).

(ii) If f is strictly differentiable at x̄, then for all y∗ ∈ Y ∗ one has

D∗(f + F )(x̄, ȳ)(y∗) = ∇f(x̄)∗y∗ +D∗F (x̄, ȳ − f(x̄))(y∗).

In this dissertation we widely employ second-order subdifferential constructions obtained by

the scheme initiated in [36]: take a coderivative of a first-order subdifferential mapping. The

major one used below was introduced in [42] as follows; cf. also [21] for the case of set indicator

functions. Given f : X → IR with x̄ ∈ dom f and x̄∗ ∈ ∂f(x̄), the combined second-order

subdifferential of f at x̄ relative to x̄∗ is the set-valued mapping ∂̆2f(x̄, x̄∗) : X∗∗ ⇒ X∗ with

the values

∂̆2f(x̄, x̄∗)(u) :=
(
D̂∗∂f

)
(x̄, x̄∗)(u), u ∈ X∗∗. (2.14)
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The mixed second-order subdifferential of f at x̄ relative to x̄∗ is the set-valued mapping

∂2
Mf(x̄, x̄∗) : X∗∗ ⇒ X∗ with the values

∂2
Mf(x̄, x̄∗)(u) :=

(
D∗M∂f

)
(x̄, x̄∗)(u) for all u ∈ X∗∗. (2.15)

Both constructions (2.14) and (2.15) reduce to that of [36] in finite dimensions. The mixed

second-order subdifferential is introduced in [38, Definition 1.118] (together with the normal one

not used in the paper) while the combined second-order subdifferential seems to be new in the

literature. Note however that its finite-dimensional version with the normal cone ∂f(·) = N(·; Ω)

in (2.15) has been recently used in [21, 22] for different purposes. The letter "M" in (2.15) is

omitted if X is a finite-dimensional space.

When f is C2 around x̄ with x̄∗ = ∇f(x̄), both ∂̆2f(x̄, x̄∗)(u) and ∂2
Mf(x̄, x̄∗)(u) reduce to

the classical single-valued Hessian operator:

∂̆2f(x̄, x̄∗)(u) = ∂2
Mf(x̄, x̄∗)(u) =

{
∇2f(x̄)∗u

}
for all u ∈ X∗∗,

where ∇2f(x̄)∗ = ∇2f(x̄) in the Hilbert space setting.

2.5 Stability of Set-Valued Mappings and Mordukhovich Crite-

rion

This section is devoted to characterizations of well-posedness and sensitivity analysis of set-

valued mappings (multifunctions) via coderivatives introduced in Section 2.4. Given F : X ⇒ Y

be a set-valued mapping between two Banach spaces. We say F is metrically regular with
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modulus K > 0 around (x̄, ȳ) ∈ gphF if there are neighborhoods U of x̄ and V of ȳ with

dist
(
x;F−1(y)

)
≤ K dist

(
y;F (x)

)
for all x ∈ U and y ∈ V, (2.16)

where dist(x; Ω) stands for the distance from x to Ω. The infimum of all the moduli K over

(K,U, V ) in (2.16), denoted by regF (x̄, ȳ), is called the exact regularity bound.

It has been well recognized that the concept of metric regularity is fundamental in nonlinear

analysis and optimization and is used not only in theoretical studies but also in numerical

methods. For the classical linear and smooth operators this properties go back to the Banach-

Schauder open mapping theorem and Lyusternik-Graves Theorem, respectively. For closed and

convex multifunctions (i.e., those with the closed and convex graph, this notion is characterized

by the Robinson-Ursescu theorem, which says that F is metrically regular around (x̄, ȳ) ∈ gphF

if and only if ȳ belongs to the interior of the range rgeF := {y ∈ Y | y ∈ F (x), x ∈ X}; see,

e.g., [57, 68].

A significant specification of (2.16) is studied in [15] under the name of "strong metric

regularity". Recall first that F̂ is a localization of F : X ⇒ Y around (x̄, ȳ) ∈ gphF if there

are neighborhoods U of x̄ and V of ȳ such that gph F̂ = gphF ∩ (U × V ). Then F is strongly

metrically regular around (x̄, ȳ) with modulus κ > 0 if the inverse mapping F−1 admits a single-

valued localization around (ȳ, x̄) that is Lipschitz continuous with modulus κ around ȳ. It is

easy to check that F is strongly metrically regular at (x̄, ȳ) if and only if F is metrically regular

around (x̄, ȳ) and F−1 has a single-valued Lipschitzian localization around (ȳ, x̄). Moreover,

the domain of such a single-valued localization must be a neighborhood of ȳ.

Another important property of F relating to the metric regularity of the inverse mapping

F−1 is the so-called Lipschitz-like (known also as pseudo-Lipschitz or Aubin) property. The mul-
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tifunction F is Lipschitz-like around (x̄, ȳ) ∈ gphF with modulus L if there are neighborhoods

U of x̄ and V of ȳ such that

F (x) ∩ V ⊂ F (u) + L‖x− u‖IB for all x, u ∈ U. (2.17)

It is worth mentioning that F is Lipschitz-like around (x̄, ȳ) ∈ gphF if and only if F−1 is

metrically regular with the same modulus around (ȳ, x̄) ∈ gphF−1.

Next we recall Mordukhovich’s criterion [62, Theorem 9.40], which is a characterization of

Lipschitz-like property in finite-dimensional spaces. The infinite-dimensional version of this

result can be found in [38, Theorem 4.10].

Lemma 2.6 (Mordukhovich criterion, [62, Theorem 9.40]). Suppose that dimX,dimY <

∞. Then F is Lipschitz-like around (x̄, ȳ) ∈ gphF if and only if D∗F (x̄, ȳ)(0) = 0.

Another stability important to our study is a parametric version of Lipschitz-like property.

Given F : X ×P ⇒ Y is a set-valued mapping, where (P, d) is a metric space. When (x̄, ȳ, p̄) ∈

gphF , we say F is Lipschitz-like around (x̄, ȳ) with compatible parameterization by p around

p̄ with modulus L if there are neighborhoods U of x̄, V of p̄, and W of ȳ such that

F (x, p) ∩W ⊂ F (u, p) + L‖x− u‖IB for all x, u ∈ U, p ∈ V. (2.18)

The last result of this section provides a quantitative characterization of the above parametric

Lipschitz-like property of set-valued mappings with a precise modulus in infinite-dimensional

spaces. The proof modifies a similar result in our recent paper [49].

Lemma 2.7 (quantitative coderivative characterization of parametric Lipschitz-like

property with prescribed modulus). Let X,Y be two Asplund spaces while (P, d) is a
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metric space. Given a set-valued mapping F : X × P ⇒ Y with (x̄, p̄, ȳ) ∈ gphF . Suppose

that the graph gphF be locally closed around (x̄, p̄, ȳ). Then F is Lipschitz-like around (x̄, ȳ)

with compatible parameterization by p around p̄ with modulus µ > 0 if and only if there is some

η > 0 such that

‖x∗‖ ≤ µ‖y∗‖ whenever x∗ ∈ D̂∗Fp(x, y)(y∗), (x, p, y) ∈ gphF ∩ IBη(x̄, p̄, ȳ), (2.19)

where Fp(x, y) := F (x, p, y).

Proof. If F is Lipschitz-like around (x̄, ȳ) with compatible parameterization by p around p̄

with modulus µ > 0, then there are neighborhoods U of x̄, V of p̄, and W of ȳ such that

F (x, p) ∩W ⊂ F (u, p) + µ‖x− u‖IB for all x, u ∈ U, p ∈ V. (2.20)

Choose any η > 0 such that IB2η(x̄, p̄, ȳ) ⊂ U×V ×W and pick any (x, p, y) ∈ gphF∩IBη(x̄, p̄, ȳ).

For any x∗ ∈ D̂∗Fp(x, y)(y∗) and ε > 0, it follows from (2.12) that there is some δ ∈ (0, η) such

that

〈x∗, u− x〉 − 〈y∗, v − y〉 ≤ ε(‖u− x‖+ ‖v − y‖) for all (u, v) ∈ gphFp ∩ IBδ(x, y). (2.21)

By (2.20) with any u ∈ IBγ(x) with γ := min{δ, δ(µ)−1} > 0 we may find some v ∈ F (u, p) such

that ‖v − y‖ ≤ µ‖x− u‖ ≤ µγ ≤ δ. This together with (2.21) gives us that

〈x∗, u− x〉 ≤ 〈y∗, v − y〉+ ε(‖u− x‖+ ‖v − y‖) ≤ µ‖y∗‖ · ‖u− x‖+ ε(‖u− x‖+ µ‖u− x‖),

which clearly implies ‖x∗‖ ≤ µ‖y∗‖+ ε(1 + µ), since u is chosen arbitrarily on IBγ(x). Letting
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ε ↓ 0 gives us ‖x∗‖ ≤ µ‖y∗‖ and thus ensures (2.19).

It remains to prove the converse implication. Without loss of generality assume that gphF

is closed on X × P × Y and (2.19) holds for some η > 0 . It is easy to prove that if there is

some neighborhood U × V ×W of (x̄, p̄, ȳ) satisfying

dist (y;F (x, p)) ≤ µdist (x, F−1
p (y)) for all (x, p, y) ∈ U × V ×W, (2.22)

then F is Lipschitz-like around (x̄, ȳ) with compatible parameterization by p around p̄ with

modulus µ. Indeed, suppose that (2.22) holds and take any (x, p, y) ∈ U × V ×W and u ∈ U ,

we obtain from (2.22) that

dist (y;F (u, p)) ≤ µdist (u, F−1
p (y)) ≤ µ‖u− x‖,

which implies the existence of some z ∈ F (u, p) with ‖y − z‖ ≤ µ‖u− x‖ and verifies (2.20).

Arguing by contradiction that (2.20) is not valid. The above claim tells us (2.22) is not

satisfied too. For any p ∈ intIBη(p̄) the latter allows us to find (x̂, ŷ) ∈ int IB η
8
(x̄, ȳ) satisfying

dist (ŷ;F (x̂, p)) > µdist (x̂;F−1
p (ŷ)) and such that (2µ+ 1)ε < η

4 , where ε := dist (x̂;F−1
p (ŷ)) >

0. To proceed, pick any ν ∈ (µ, 2µ) with

dist
(
ŷ;F (x̂, p)

)
> νε > µ dist

(
x̂;F−1

p (ŷ)
)

and for any α > 0 find some x̃ ∈ F−1
p (ŷ) satisfying

‖x̃− x̂‖ ≤ dist
(
x̂;F−1

p (ŷ)
)

+ α = ε+ α. (2.23)
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For the l.s.c. and bounded from below function ϕ(x, y) := ‖x − x̂‖ + δ((x, y); gphFp) on the

Asplund space X × Y we have that

inf
(x,y)∈X×Y

ϕ(x, y) + ε+ α ≥ ϕ(x̃, ŷ).

Applying the seminal Ekeland variational principle (see, e.g., [38, Theorem 2.26]) to the function

ϕ with the new norm ‖(x, y)‖ξ := ξ‖x‖+‖y‖, ξ > 0 onX×Y gives us (x0, y0) ∈ gphFp satisfying



ξ‖x0 − x̃‖+ ‖y0 − ŷ‖ ≤ νε,

‖x0 − x̂‖ = ϕ(x0, y0) ≤ ϕ(x̃, ŷ) = ‖x̃− x̂‖,

inf
(x,y)∈X×Y

ϕ(x, y) +
ε+ α

νε
(ξ‖x− x0‖+ ‖y − y0‖) ≥ ϕ(x0, y0) = ‖x0 − x̂‖.

(2.24)

It follows that

‖y0 − ŷ‖ ≤ νε < dist (ŷ;F (x̂, p)),

which yields y0 /∈ F (x̂, p) and thus x0 6= x̂. Consider the l.s.c. functions on X × Y defined by

ϕ1(x, y) := ‖x− x̂‖, ϕ2(x, y) := δ((x, y); gphFp), and ϕ3(x, y) :=
α+ ε

νε
(ξ‖x−x0‖+‖y−y0‖),

where two of them are Lipschitz continuous. Then for any 0 < β < dist (ŷ;F (x̂, p)) − νε we

employ [38, Lemma 2.32] (the basic fuzzy sum rule or subgradient description of the extremal

principle) to the optimization problem in (2.24) and thus find (xi, yi) ∈ IBβ(x0, y0) with 0 <

β < ‖x0 − x̂‖ as i = 1, 2, 3 such that (x2, y2) ∈ gphFp and that

0 ∈ ∂̂ϕ1(x1, y1) + ∂̂ϕ2(x2, y2) + ∂̂ϕ3(x3, y3) + ξIBX∗ ×
β

νε
IBY ∗

⊂ ∂̂‖ · −x̂‖(x1)× {0}+ N̂
(
(x2, y2); gphFp

)
+

(ν + 1)ε+ α

νε
ξIBX∗ ×

ε+ α+ β

νε
IBY ∗ .

(2.25)
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Note further that ‖x1− x̂‖ ≥ ‖x0− x̂‖−‖x1−x0‖ ≥ ‖x0− x̂‖−β > 0 which means x1 6= x̂. This

together (2.25) allows us to find some x∗1 ∈ X∗ with ‖x∗1‖ = 1 and (x∗3, y
∗
3) ∈ (ν+1)ε+α

νε ξIBX∗ ×

ε+α+β
νε IBY ∗ such that (x∗1 − x∗3,−y∗3) ∈ N̂((x2, y2); gphFp), i.e., x∗1 − x∗3 ∈ D̂∗Fp(x2, y2)(y∗3).

Furthermore, it follows from (2.23), (2.24), and the choice of ν that

‖x2 − x̄‖+ ‖y2 − ȳ‖ ≤ ‖x2 − x0‖+ ‖x0 − x̂‖+ ‖x̂− x̄‖+ ‖y2 − y0‖+ ‖y0 − ŷ‖+ ‖ŷ − ȳ‖

≤ (‖x2 − x0‖+ ‖y2 − y0‖) + (‖x̂− x̄‖+ ‖ŷ − ȳ‖) + ‖x0 − x̂‖+ νε

≤ β +
η

4
+ ‖x̃− x̂‖+ νε ≤ β +

η

4
+ ε+ α+ νε

≤ η

4
+ (2µ+ 1)ε+ α+ β ≤ η

2
+ α+ β

With α, β > 0 sufficiently small we have (x2, y2) ∈ Bη(x̄, ȳ) ∩ gphFp. Thanks to (2.19) we get

that

µ
ε+ α+ β

νε
≥ µ‖y∗3‖ ≥ ‖x∗1 − x∗3‖ ≥ 1− (ν + 1)ε+ α

νε
ξ

Letting α, β, ξ ↓ 0 gives us that µ ≥ ν, which contradicts the choice of ν and completes the

proof of the lemma. �

2.6 Prox-regular Functions and Monotone Operators

Finally in this chapter we recall significant concepts of prox-regularity and subdifferential conti-

nuity of extended-real-valued functions taken from [31], where they are comprehensively studied

in finite dimensions; cf. also the nonparametric versions in [52, 62]. A l.s.c. function f : X → IR

is prox-regular at x̄ ∈ dom f for x̄∗ ∈ ∂f(x̄) if there are constants r > 0 and ε > 0 such that for

all x, u ∈ IBε(x̄) with |f(u)− f(x̄)| ≤ ε we have

f(x) ≥ f(u) + 〈u∗, x− u〉 − r

2
‖x− u‖2 whenever u∗ ∈ ∂f(u) ∩ IBε(x̄∗). (2.26)
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Further, f is subdifferentially continuous at x̄ ∈ dom f for x̄∗ ∈ ∂f(x̄) if the function (x, x∗) 7→

f(x) is continuous relative to the subdifferential graph gph ∂f at (x̄, x̄∗).

These notions have been also studied in the frameworks of Hilbert and more general Banach

spaces; see, e.g., [6, 7]. When f is both prox-regular and subdifferentially continuous at x̄ for

x̄∗ ∈ ∂f(x̄), it is easy to observe that the condition "|f(u) − f(x̄)| ≤ ε" can be omitted in the

definition of prox-regularity. The class of prox-regular and subdifferentially continuous functions

is rather broad including, in particular, strongly amenable functions in finite dimensions, l.s.c.

convex functions in Banach spaces, etc.; see [7, 52, 62] for further details.

Moreover, in the general Banach space X it is easy to check that the graph of ∂f is closed

near (x̄, x̄∗) in the norm×norm topology of X×X∗ when f is prox-regular and subdifferentially

continuous at x̄ for x̄∗.

Next we formulate a parametric version of prox-regularity introduced by Levy, Poliquin, and

Rockafellar [31]. Given f : X ×P → IR finite at (x̄, p̄) (P is a metric space) and given a partial

limiting subgradient x̄∗ ∈ ∂xf(x̄, p̄) of f(·, p̄) at x̄, we say that f is prox-regular in x at x̄ for x̄∗

with compatible parameterization by p at p̄ if there are neighborhoods U of x̄, U∗ of x̄∗, and V

of p̄ along with numbers ε > 0 and r > 0 such that

f(x, p) ≥ f(u, p) + 〈u∗, x− u〉 − r
2‖x− u‖

2 for all x ∈ U,

when u∗ ∈ ∂xf(u, p) ∩ U∗, u ∈ U, and f(u, p) ≤ f(x̄, p̄) + ε.

(2.27)

Further, f is subdifferentially continuous in x at x̄ for x̄∗ with compatible parameterization by

p at p̄ if the function (x, p, x∗) 7→ f(x, p) is continuous relative to gph ∂xf at (x̄, p̄, x̄∗). In this

case the constraint f(u, p) ≤ f(x̄, p̄) + ε in (2.27) can be ignored. If the function f is both

prox-regular and subdifferentially continuous in x at x̄ for x̄∗ with compatible parameterization
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by p at p̄, we say for brevity that it is parametrically continuously prox-regular at (x̄, p̄) for x̄∗.

In this case the graph of ∂xf is not automatically closed near (x̄, p̄, x̄∗) in the norm topology of

X × P ×X∗ anymore. However, it is closed under an additional condition; see our Section 3.2

below.

The following result established by Levy, Poliquin, and Rockafellar [31] is the key tool in

employing prox-regularity to constrained optimization.

Proposition 2.8 (prox-regularity from amenability, [31, Proposition 2.2]). Suppose

that dimX, dimP < ∞ and that f : X × P → IR is strongly amenable in x at x̄ with

compatible parameterization by p at p̄, in the sense that on some neighborhood of (x̄, p̄) there

is a composite representation f(x, p) = g(F (x, p)) in which F : X × P → Y is a C2 mapping

to a finite-dimensional space Y and g : Y → IR is a convex, proper, l.s.c. function for which

F (x̄, p̄) ∈ D := dom g and

y∗ ∈ N(F (x̄, p̄);D), ∇xF (x̄, p̄)∗y∗ = 0 =⇒ y∗ = 0.

Then for any x̄∗ ∈ ∂xf(x̄, p̄), we have f is parametrically continuously prox-regular at (x̄, p̄) for

x̄∗. Furthermore, we also have

(0, p∗) ∈ ∂∞f(x̄, p̄) =⇒ p∗ = 0.

In applications we usually use g = δD as the indicator function to a convex set D and thus f

is the indicator function to Ω :=
{

(x, p) ∈ X × P | F (x, p) ∈ D
}
; see Part B of the dissertation.

As demonstrated in [7, 31, 52, 62], the limiting subdifferential of prox-regular functions

is strongly connected to monotonicity. Recall that a set-valued mapping T : X ⇒ X∗ (or
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sometimes T : X∗ ⇒ X) is monotone if it satisfies the relationship

〈x∗ − u∗, x− u〉 ≥ 0 for all (x, x∗), (u, u∗) ∈ gphT.

In addition the mapping T : X ⇒ X∗ is said to bemaximal monotone if T = Q for any monotone

mapping Q : X ⇒ X∗ with gphT ⊂ gphQ. It is well-known in convex analysis that the convex

subdifferential of a convex function is a maximal monotone.

The mapping T is locally monotone around (x̄, x̄∗) ∈ gphT if it admits a monotone local-

ization around this point. Moreover, T is locally maximal monotone around (x̄, x̄∗) ∈ gphT if

there are neighborhoods U of x̄ and U∗ of x̄∗ such that for any monotone mapping S : X ⇒ X∗

with gphT ∩ (U × U∗) ⊂ gphS we have the equality gphT ∩ (U × U∗) = gphS ∩ (U × U∗).

The next result ensures the "positive-semidefinite" property of coderivatives of maximal

monotone operators. It extends that of [53, Theorem 2.1] to the Hilbert space setting. In fact,

the proof of [53, Theorem 2.1] can be easily modified for this case; see, e.g., [10, Lemma 5.2].

Here we present a new and simple proof in Hilbert space.

Lemma 2.9 (coderivatives of maximal monotone operators). Let X be a Hilbert space,

and T : X ⇒ X be a maximal monotone operator. Then for any pair (x̄, x̄∗) ∈ gphT we have

that

〈u∗, u〉 ≥ 0 whenever u∗ ∈ D̂∗T (x̄, x̄∗)(u). (2.28)

Consequently, 〈u∗, u〉 ≥ 0 whenever u∗ ∈ D∗MT (x̄, x̄∗)(u).

Proof. It is well known that for any λ > 0 the resolvent Rλ = (I + λT )−1 is nonex-

pansive with domRλ = H by the classical Minty theorem. Pick an arbitrary pair (u, u∗) ∈
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gph D̂∗T (x̄, x̄∗) and deduce from Lemma 2.5 that

−λ−1u ∈ D̂∗Rλ(x̄+ λx̄∗, x̄)(−u∗ − λ−1u).

Since Rλ is nonexpansive, it follows from [38, Theorem 1.43] that ‖ − λ−1u‖ ≤ ‖− u∗ − λ−1u‖,

which clearly implies that

λ−2‖u‖2 ≤ ‖ − u∗ − λ−1u‖2 = ‖u∗‖2 + 2λ−1〈u∗, u〉+ λ−2‖u‖2

and yields in turn that 0 ≤ λ‖u∗‖2 + 2〈u∗, u〉 for all λ > 0. Letting λ ↓ 0 gives us that

〈u∗, u〉 ≥ 0, which is the claimed relationship (2.28). Similarly, by replacing (x̄, x̄∗) with any

point (x, x∗) ∈ gphT , we also have

〈u∗, u〉 ≥ 0 whenever u∗ ∈ D̂∗T (x, x∗)(u).

This fact easily implies the second conclusion of the lemma by passing to the limit as (x, x∗)→

(x̄, x̄∗) and using definition (2.13) of the mixed coderivative. �
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Part A: Theory

Chapter 3

Full Stability in Unconstrained

Optimization

3.1 Overview

This chapter is devoted to studying the notion of full Lipschitzian stability introduced by Levy,

Poliquin and Rockafellar [31] in the general extended-real-valued framework of parametric op-

timization and its new Hölderian counterpart. Differently from the finite-dimensional setting

of [31], we consider here full stability in infinite-dimensional optimization, which allows us to

cover, in particular, problems of optimal control in Chapter 6. On the other hand, most of the

results obtained below are new even for Lipschitzian full stability in finite-dimensions.

Let us introduce some notions used broadly in the chapter. Given an extended-real-valued

function f : X × P → IR := IR ∪ {∞} between an Asplund decision space X and a metric

parameter space (P, d) with the nominal parameter value p̄ ∈ P , consider the optimization

problem

P minimize f(x, p̄) over x ∈ X (3.1)
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and its two-parameter perturbations constructed as

P(x∗, p) minimize f(x, p)− 〈x∗, x〉 over x ∈ X (3.2)

with the basic parameter perturbations p ∈ P and the tilt ones x∗ ∈ X∗. For (x̄, p̄) ∈ dom f

and γ > 0, associate with these data the following objects:

mγ(x∗, p) := inf
{
f(x, p)− 〈x∗, x〉

∣∣ ‖x− x̄‖ ≤ γ},
Mγ(x∗, p) := argmin

{
f(x, p)− 〈x∗, x〉

∣∣ ‖x− x̄‖ ≤ γ},
S(x∗, p) :=

{
x ∈ X

∣∣ x∗ ∈ ∂xf(x, p)
}
,

(3.3)

where ∂xf stands for the partial limiting subdifferential (2.10) of f with respect to x.

Now we formulate the two main stability properties discussed above. The first (Lipschitzian)

was introduced in [31] in finite-dimensional spaces with the modulus modification given in [42]

while its Hölderian counterpart has been recently introduced in [40, 44].

Definition 3.1 (Lipschitzian and Hölderian full stability). Given f : X × P → IR and a

point (x̄, p̄) ∈ dom f in (3.1) with some nominal basic parameter p̄ ∈ P , we say that:

(i) The point x̄ is a Lipschitzian fully stable local minimizer of P(x̄∗, p̄) in (3.2)

corresponding to p̄ and some tilt parameter x̄∗ ∈ X∗ with a modulus pair (κ, `) ∈ IR2
> := {(a, b) ∈

IR2| a > 0, b > 0} if there are a number γ > 0 and a neighborhood U∗ × V of (x̄∗, p̄) such that

the mapping (x∗, p) 7→ Mγ(x∗, p) is single-valued on U∗ × V with Mγ(x̄∗, p̄) = x̄ satisfying the

Lipschitz condition

‖Mγ(x∗1, p1)−Mγ(x∗2, p1)‖ ≤ κ‖x∗1 − x∗2‖+ `d(p1, p2) for all x∗1, x
∗
2 ∈ U∗, p1, p2 ∈ V (3.4)
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and that the function (x∗, p) 7→ mγ(x∗, p) is also Lipschitz continuous around (v̄, p̄).

(ii) The point x̄ is a Hölderian fully stable local minimizer of problem P(x̄∗, p̄) with

a modulus pair (κ, `) ∈ IR2
> if there is a number γ > 0 such that the mapping Mγ is single-valued

on some neighborhood U∗ × V of (x̄∗, p̄) with Mγ(x̄∗, p̄) = x̄ and

‖Mγ(x∗1, p1)−Mγ(x∗2, p2)‖ ≤ κ‖x∗1 − x∗2‖+ `d(p1, p2)
1
2 for all x∗1, x

∗
2 ∈ U∗, p1, p2 ∈ V. (3.5)

If the parameter p is ignored, both properties in Definitions 3.1 reduce to tilt stability

introduced by Poliquin and Rockafellar in [53]. However, in the parameter-dependent case

for f full Hölderian stability is strictly weaker than its Lipschitzian counterpart; moreover,

the exponent r = 1
2 in (3.1) is the largest possible exponent of Hölder continuity for Mγ . To

demonstrate it, we borrow the following example by Robinson [57] designed for a different

purpose.

Example 3.2 (Hölderian full stability is strictly weaker than Lipschitzian one). Con-

sider the following parametric nonlinear program in IR2:

P(p) minimize


f0(x, p) :=

1

2
‖x‖2, x ∈ IR2, subject to

g(x, p) := −(A+ p1I)x+
1

2
(2 + p1)a+ p2b ∈ IR2

−

(3.6)

with the parameter p = (p1, p2) ∈ IR2 and the data A, I, a, and b defined by

A :=

 1 1

1 1

 , I :=

 1 0

0 1

 , a :=

 1

1

 , b :=

 1

−1

 .

It is shown in [57] that for any p around p̄ = (0, 0) the unique local minimizer x(p) of problem
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P(p) is continuous but not Lipschitz continuous around x̄ = (1
2 ,

1
2). This implies that Kojima’s

strong stability [23] cannot be strengthened to Robinson’s strong regularity [58]. Note that

Kojima’s strong stability is equivalent to the uniform second-order growth condition in the sense

of [5, Definition 5.16]; see [5, Proposition 5.37]. The latter verifies our USOGC in Definition 3.4

at (x̄, p̄, x̄∗) with x̄∗ = (0, 0) for the function f(x, p) := f0(x, p) + δΩ(x, p), where Ω denotes the

feasible solution set in (3.6). It follows from Proposition 2.8 that BCQ (3.7) (or (3.8)) holds at

(x̄, p̄). We get from Theorem 3.5 and Theorem 3.6 below that Hölderian full stability is valid

for function f . Furthermore, it can be observed from the calculations in [57] thatMγ(x̄∗, p̄) = x̄

and Mγ(x̄∗, p) = 1
2a + p1

9 b with p =
(
p1,

p2
1
9

)
when p1 > 0 is sufficiently small, where Mγ is

taken from (3.3) with some γ > 0. This demonstrates the failure of Lipschitzian full stability

and also shows that the Hölderian exponent 1
2 in (5.10) cannot be improved.

To this end we mention the beautiful result by Gfrerer [19] showing that strong stability can

be strengthened to Hölder continuity of local minimizers with the best possible exponent r = 1
2

for a general class of parametric nonlinear programs with smooth data.

3.2 Second-order Characterizations of Hölderian Full Stability

We say that the basic constraint qualification (BCQ) holds at (x̄, p̄) if the epigraphical mapping

F : p 7→ epi f(·, p) is Lipschitz-like around
(
p̄, x̄, f(x̄, p̄)

)
(3.7)

in the sense of (2.17). As discussed in Section (2.5), in the case of Asplund parameter spaces

P the introduced BCQ (3.7) can be characterized via the mixed coderivative (2.13) of F at

the reference point (p̄, x̄, f(x̄, p̄)). If both X and P are finite-dimensional, this gives from the

Mordukhovich’s criterion (2.6) us the equivalent form of the basic constraint qualification (3.7)
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formulated in [31] as [
(0, p∗) ∈ ∂∞f(x̄, p̄)

]
=⇒ p∗ = 0. (3.8)

The following result provides a necessary condition for the basic constraint qualification

(3.7).

Proposition 3.3 (consequence of BCQ). The validity of BCQ (3.7) ensures the existence

of neighborhoods U of x̄ and V of p̄ along with a number ε > 0 such that

x1 ∈ U, p1, p2 ∈ V

f(x1, p1) ≤ f(x̄, p̄) + ε

 =⇒ ∃x2 with


‖x1 − x2‖ ≤ cd(p1, p2),

f(x2, p2) ≤ f(x1, p1) + cd(p1, p2),

(3.9)

where c > 0 is a modulus of the Lipschitz-like property in (3.7).

Furthermore, if f is parametrically subdifferentially continuous at (x̄, p̄) for some x̄∗ ∈

∂xf(x̄, p̄), then the graph gph ∂f is closed around (x̄, p̄, x̄∗).

Proof. Can be distilled from [31, Proposition 3.1 and 3.2] given in finite dimensions under

(3.8). �

Now we define our basic uniform second-order growth condition for f in (3.1), which is a

general version of that for C2 conic programs with respect to the C2-smooth parametrization

introduced in [5, Definition 5.16] and reduces to [48, Definition 3.6] in finite dimensions.

Definition 3.4 (uniform second-order growth condition). Taking x̄∗ ∈ ∂xf(x̄, p̄), we say

the uniform second-order growth condition (USOGC) holds at (x̄, p̄, x̄∗) with modulus

κ > 0 there are neighborhoods U of x̄, U∗ of x̄∗, and V of p̄ such that

f(x, p) ≥ f(u, p) + 〈x∗, x− u〉+
1

2κ
‖x− u‖2 for all x ∈ U (3.10)
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whenever (x∗, p, u) ∈ gphS ∩ (U∗ × V × U) with the mapping S defined in (3.3).

The next theorem shows that USOGC (3.10) characterizes the Hölder continuity of the map-

ping S(x∗, p) with respect to p and its Lipschitzian continuity with respect to x∗, proving also a

precise relationship between the corresponding constants crucial for characterizing full stability

in Section 4. When ignoring the parameter p this results reduces to [42, Theorem 3.2] and [13,

Theorem 3.3] in finite dimensions. Note that a version of implication (iii)=⇒(i) below ensuring

the Hölder continuity with respect to both parameters (x∗, p) follows from [5, Theorem 5.17] for

C2 conic programs in Banach spaces.

Theorem 3.5 (Hölder continuity of the inverse subgradient mapping via USOGC).

Let X be an Asplund space and let x̄∗ ∈ ∂xf(x̄, p̄). Assume that BCQ (3.7) holds at (x̄, p̄) ∈

dom f . Then the following assertions are equivalent:

(i) We have x̄ ∈ Mγ(x̄∗, p̄) for some γ > 0, and there is a neighborhood U∗ × V × U of

(x̄∗, p̄, x̄) such that the mapping S from (3.3) admits a single-valued localization ϑ with respect

to U∗ × V × U satisfying the Hölder continuity condition

‖ϑ(x∗1, p1)− ϑ(x∗2, p2)‖ ≤ κ‖x∗1 − x∗2‖+ `d(p1, p2)
1
2 (3.11)

for all x∗1, x
∗
2 ∈ U∗ and p1, p2 ∈ V , where κ and ` are positive constants.

(ii) We have x̄ ∈ Mγ(x̄∗, p̄) for some γ > 0, and there exist a neighborhood U∗ × V × U

of (x̄∗, p̄, x̄) and a constant κ > 0 the same as in (3.11) such that the mapping S admits a

single-valued localization ϑ with respect to U∗ × V × U , which is Lipschitz continuous in x∗

uniformly in p, i.e.,

‖ϑ(x∗1, p)− ϑ(x∗2, p)‖ ≤ κ‖x∗1 − x∗2‖ for all x∗1, x
∗
2 ∈ U∗ and p ∈ V. (3.12)
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(iii) USOGC (3.10) holds at (x̄, p̄, x̄∗) with modulus κ taken from (3.11) and (3.12).

Proof. Implication (i)=⇒(ii) is trivial. To verify (ii)=⇒(iii), find by (ii) a number κ > 0

and a localization ϑ of S with respect to U∗×V ×U and then split the proof into the following

claims.

Claim 1: There exist numbers α, ν > 0 satisfying

f(x, p̄) ≥ f(x̄, p̄) + 〈x̄∗, x− x̄〉+ α‖x− x̄‖2 for all x ∈ IB2ν(x̄). (3.13)

Arguing by contradiction, suppose that such α, ν do not exist and find xk → x̄ and αk ↓ 0 with

f(xk, p̄) < f(x̄, p̄) + 〈x̄∗, xk − x̄〉+ αk‖xk − x̄‖2, k ∈ IN.

By x̄ ∈Mγ(x̄∗, p̄) we get from here with εk := αk‖xk − x̄‖2 ↓ 0 as k →∞ that

inf
x∈IBγ(x̄)

{
f(x, p̄)− 〈x̄∗, x− x̄〉

}
= f(x̄, p̄) > f(xk, p̄)− 〈x̄∗, xk − x̄〉 − εk,

Then Ekeland’s variational principle gives us a sequence {uk} such that ‖uk − xk‖ ≤
√
εk and

inf
x∈IBγ(x̄)

{
f(x, p̄)− 〈x̄∗, x− x̄〉+

√
εk‖x− uk‖

}
= f(uk)− 〈x̄∗, uk − x̄〉,

where uk → x̄ as k →∞. Applying the generalized Fermat rule to the local minimizer uk of the

above optimization problem and using the sum rule in Lemma 2.4 for limiting subdifferential

provide the inclusion

0 ∈ ∂xf(uk, p̄)− x̄∗ +
√
εkIBX∗ .
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Thus there exists x∗k ∈ ∂xf(uk, p̄) with ‖x∗k − x̄∗‖ ≤ √εk implying that uk = ϑ(x∗k, p̄) for

sufficiently large k ∈ IN . It follows from (3.12) that

κ
√
εk ≥ κ‖x∗k − x̄∗‖ ≥ ‖uk − x̄‖ ≥ ‖xk − x̄‖ − ‖uk − x̄‖ ≥

√
εk
αk
−
√
εk,

and so
√
αk ≥ (κ+ 1)−1, which contradicts the assumption on αk ↓ 0 and thus justifies (3.13).

Claim 2: With ν from (3.13) and δ > 0 sufficiently small, for any (x∗, p) ∈ IBδ(x̄
∗) ×

IBδ(p̄) ⊂ U∗ × V the element u := S(x∗, p) belongs to IBν(x̄) and is a unique minimizer of the

problem:

minimize f(x, p)− 〈x∗, x〉 subject to x ∈ IBν(x̄). (3.14)

By (3.9) we find constants c, ε > 0 such that

x1 ∈ IB2ν(x̄), p1, p2 ∈ IBν(p̄)

f(x1, p1) ≤ f(x̄, p̄) + ε

 =⇒ ∃x2 with


‖x1 − x2‖ ≤ cd(p1, p2),

f(x2, p2) ≤ f(x1, p1) + cd(p1, p2).

(3.15)

Suppose further that 0 < δ < (3c)−1ν. Then fix p ∈ IBδ(p̄) and show that f(·, p) is bounded

from below on IBν(x̄). Observe first that this assertion holds if f(x, p) is uniformly bounded

from below for any x ∈ IBν(x̄) satisfying f(x, p) ≤ f(x̄, p̄) + ε. Indeed, for such x we get from

(3.15) that there is some v ∈ X such that ‖x − v‖ ≤ cd(p, p̄) and f(x, p) ≥ f(v, p̄) − cd(p, p̄),

which implies that ‖v − x̄‖ ≤ ‖x − v‖ + ‖x − x̄‖ ≤ cδ + ν < 2ν and verifies by (3.13) the

boundedness from below:

f(x, p) ≥ f(v, p̄)− cd(p, p̄) ≥ f(x̄, p̄)− 〈x̄∗, v − x̄〉 − cδ ≥ f(x̄, p̄)− ‖x̄∗‖2ν − cδ.
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Hence there exists a sequence {vk} ⊂ IBν(x̄) with

inf
x∈IBν(x̄)

{
f(x, p)− 〈x∗, x〉

}
+ k−2 ≥ f(vk, p)− 〈x∗, vk〉.

By Ekeland’s variational principle, for k ∈ IN find wk ∈ IBν(x̄) such that ‖wk − vk‖ ≤ k−1 and

inf
x∈IBν(x̄)

{
f(x, p)− 〈x∗, x〉+ k−1‖x− wk‖

}
≥ f(wk, p)− 〈x∗, wk〉. (3.16)

By (3.15) there is some w ∈ X with ‖w−x̄‖ ≤ cd(p, p̄) ≤ cδ < ν and f(x̄, p̄) ≥ f(w, p)−cd(p, p̄) ≥

f(w, p)− cδ. It follows from (3.16) that

f(x̄, p̄) + cδ ≥ f(w, p) ≥ f(wk, p) + 〈x∗, w − wk〉 − k−1‖w − wk‖

≥ f(wk, p)− (‖x̄∗‖+ δ)2ν − k−12ν,

(3.17)

which allows us to have f(wk, p) ≤ f(x̄, p̄) + ε when ν is small. Then by (3.15) there is zk such

that ‖zk − wk‖ ≤ cd(p, p̄) ≤ cδ and f(wk, p) ≥ f(zk, p̄)− cd(p, p̄) ≥ f(zk, p̄)− cδ. This gives us

‖zk − x̄‖ ≤ cδ + ‖wk − x̄‖ < 2ν, which being combined with (3.13) and (3.17) implies that

f(x̄, p̄) + cδ ≥ f(zk, p̄)− cδ + 〈x∗, w − wk〉 − k−1‖w − wk‖ ≥ f(x̄, p̄)

+〈x̄∗, zk − x̄〉+ α‖zk − x̄‖2 − cδ + 〈x∗, w − wk〉 − k−12ν and

2cδ + k−12ν ≥ α‖zk − x̄‖2 + 〈x̄∗ − x∗, zk − x̄〉+ 〈x∗, zk − x̄+ w − wk〉

≥ α‖zk − x̄‖2 − ‖x̄∗ − x∗‖ · ‖zk − x̄‖ − ‖x∗‖(‖zk − wk‖+ ‖w − x̄‖)

≥ α‖zk − x̄‖2 − δ‖zk − x̄‖ − (‖x̄∗‖+ δ)(cd(p, p̄) + cd(p, p̄))

≥ α‖zk − x̄‖2 − δ‖zk − x̄‖ − (‖x̄∗‖+ δ)2cδ,
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where α is taken from (3.13). For small δ the above inequalities yield ‖zk − x̄‖ ≤ 2ν
3 and so

‖wk − x̄‖ ≤ ‖zk − x̄‖+ ‖wk − zk‖ ≤
2ν

3
+ cδ < ν for large k.

Applying the generalized Fermat rule to problem (3.16) at wk ∈ int IBν(x̄) and then using the

sum rule for limiting subdifferential give us that

0 ∈ ∂xf(wk, p)− x∗ + k−1IB,

which allows us to find w∗k ∈ ∂xf(wk, p) such that ‖w∗k − x∗‖ ≤ k−1. Thus we get ‖w∗k − x̄∗‖ ≤

‖x∗ − x̄∗‖ + ‖w∗k − x∗‖ ≤ δ + k−1 and so w∗k ∈ U∗ when k is sufficiently large while δ is small.

It follows from the assumptions of (ii) that wk = ϑ(w∗k, p)→ u. Hence the passage to the limit

in (3.16) shows that u = ϑ(x∗, p) ∈ IBν(x̄) is a unique minimizer of (3.14), which verifies the

claim.

Claim 3: USOGC (3.10) holds at (x̄, p̄, x̄∗) with modulus κ. To justify it, define

gp(x
∗) := (fp + δIBν(x̄))

∗(x∗) = sup
x∈IBν(x̄)

{
〈x∗, x〉 − fp(x)

}
for x∗ ∈ X∗, (3.18)

where δ, ν are taken from Claim 2. It is well known from convex analysis that (3.18) with

p ∈ IBδ(x̄) and fp := f(·, p) is the (proper and convex) Fenchel conjugate of fp+ δIBν(x̄). Denote

ϑp := ϑ(·, p) and get from (3.14) that gp(x∗) = 〈x∗, ϑp(x∗)〉 − fp(ϑp(x∗)) if x∗ ∈ IBδ(x̄∗) and

p ∈ IBδ(x̄). Then

gp(v
∗)− gp(x∗) ≥

[
〈v∗, ϑp(x∗)〉 − fp(ϑp(x∗))

]
−
[
〈x∗, ϑp(x∗)〉 − fp(ϑp(x∗))

]
= 〈v∗ − x∗, ϑp(x∗)〉
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whenever v∗ ∈ X∗, which implies that ϑp(x∗) ∈ ∂gp(x
∗). Moreover, it is easy to check from

(3.14) that ϑp is monotone on IBδ(x̄
∗) × IBν(x̄). The Lipschitz continuity of ϑp ensures its

maximal monotone on this set and, by the monotonicity of the convex subdifferential, implies

that

gphϑp ∩
(
IBδ(x̄

∗)× IBν(x̄)
)

= gph ∂gp ∩
(
IBδ(x̄

∗)× IBν(x̄)
)
.

Thus the subgradient mapping ∂gp is single-valued and Lipschitz continuous on IBδ(x̄∗), which

can be true only when gp is Fréchet differentiable on int IBδ(x̄
∗) with ∂gp(·) = {∇gp(·)} on this

set.

Choose β > 0 with κβ < ν and 3β < δ. Define Ũ := IBκβ(x̄) ⊂ IBν(x̄), U∗ := IBβ(x̄∗) and

observe that ∇gp(Ũ∗) ⊂ Ũ . Picking (u∗, u) ∈ gphϑp ∩
(
Ũ∗× Ũ

)
= gph∇gp ∩

(
Ũ∗× Ũ

)
gives us

gp(v
∗)− gp(u∗)− 〈u, v∗ − u∗〉 =

∫ 1

0
〈∇gp(u∗ + t(v∗ − u∗))−∇gp(u∗), v∗ − u∗〉dt

=

∫ 1

0
tκ‖v∗ − u∗‖ · ‖v∗ − u∗‖dt =

κ

2
‖v∗ − u∗‖2, v∗ ∈ IBδ(x̄∗).

Since gp(u∗) = 〈u∗, u〉 − fp(u) by (3.14), the above inequality implies that

gp(v
∗) ≤ −fp(u) +

κ

2
‖v∗ − u∗‖+ 〈v∗, u〉+ δIBδ(x̄∗)(v

∗) for all v∗ ∈ X∗.

This gives us by the biconjugate inequality from [68, Theorem 2.3.1] that

fp(x) = fp(x) + δIBν(x̄)(x) ≥ (fp + δIBν(x̄))
∗∗(x) = g∗p(x)

≥ sup
v∗∈IBδ(x̄∗)

{
〈v∗, x〉 − κ

2
‖v∗ − u∗‖ − 〈v∗, u〉

}
+ fp(u)

≥ sup
v∗∈IBδ(x̄∗)

{
〈v∗ − u∗, x− u〉 − κ

2
‖v∗ − u∗‖

}
+ 〈u∗, x− u〉+ fp(u), x ∈ Ũ .

(3.19)
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Now we consider the duality mapping J(v) := 1
2∂(‖ · ‖)2(v) for v ∈ X and recall that

J(v) =
{
v∗ ∈ X∗| 〈v∗, v〉 = ‖v‖2 = ‖v∗‖2

}
6= 0 whenever v ∈ X. (3.20)

Select further w∗ ∈ J
(

1
κ(x− u)

)
and get from (3.20) that

〈w∗, x− u〉 − κ

2
‖w∗‖2 =

1

κ
‖x− u‖2 − 1

2κ
‖x− u‖2 =

1

2κ
‖x− u‖2. (3.21)

Moreover, it follows from (3.21) due to u∗ ∈ Ũ∗ that

‖w∗ + u∗ − x̄∗‖ ≤ ‖w∗‖+ ‖u∗ − x̄∗‖ ≤ 1

κ
‖x− u‖+ β ≤ 1

κ
2κβ + β = 3β

and thus w∗ + u∗ ∈ IBδ(x̄∗) by the choice of β. Combining this with (3.21) and (3.19) ensures

that

fp(x) ≥ fp(u) + 〈u∗, x− u〉+
1

2κ
‖x− u‖2 for all x ∈ Ũ

whenever (u∗, p, u) ∈ gphϑ ∩
(
Ũ∗ × IBδ(p̄) × Ũ

)
= gphS ∩

(
Ũ∗ × IBδ(p̄) × Ũ

)
. This verifies

Claim 3 and completes the proof of implication (ii)=⇒(iii).

Next we justify the converse implication (iii)=⇒(ii). By (iii) find the neighborhood U ×V ×

U∗ of (x̄, p̄, x̄∗) for which (3.10) holds. It is clear that x̄ ∈ Mγ(x̄∗, p̄) with any γ > 0 satisfying

IBγ(x̄) ⊂ U . Define ϑ : U∗× V ⇒ U by gphϑ := gphS ∩ (U∗× V ×U) and observe from (3.10)

that ϑ is a single-valued and that for any (x∗1, p), (x
∗
2, p) ∈ domϑ we have


f(u2, p) ≥ f(u1, p) + 〈x∗1, u2 − u1〉+ 1

2κ‖u2 − u1‖2,

f(u1, p) ≥ f(u2, p) + 〈x∗2, u1 − u2〉+ 1
2κ‖u1 − u2‖2
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with u1 := ϑ(x∗1, p) and u2 := ϑ(x∗2, p). Adding these two inequalities gives us the estimates

1
κ‖u2 − u1‖2 ≤ 〈x∗2 − x∗1, u2 − u1〉 ≤ ‖x∗2 − x∗1‖ · ‖u2 − u1‖, which imply in turn that

‖ϑ(x∗1, p)− ϑ(x∗2, p)‖ ≤ κ‖x∗1 − x∗2‖ for all (x∗1, p), (x
∗
2, p) ∈ domS ∩ (U∗ × V ). (3.22)

To verify (ii), it suffices to show the existence of δ > 0 such that

IBδ(x̄
∗)× IBδ(p̄) ⊂ domϑ. (3.23)

We proceed similarly to the proof of (ii)=⇒(iii) observing first that the counterpart of Claim 1 is

trivial in this case. As for Claim 2, the usage of (3.22) instead of (3.12) allows us to find δ, ν > 0

such that for any (x∗, p) ∈ IBδ(x̄∗)× IBδ(p̄) ⊂ U∗ × V there are sequences (wk, w
∗
k) ∈ IBν(x̄)×

IBδ(x̄
∗) with w∗k ∈ ∂xf(wk, p), i.e., wk = ϑ(x∗k, p) and w

∗
k → x̄∗. It follows from (3.22) that {wk}

is a Cauchy sequence and thus converges to some w ∈ IBν(x̄). Since (w∗k, p, wk) ∈ gphϑ, we get

from (3.10) that f(x, p) ≥ f(wk, p) + 〈w∗k, x − wk〉 + 1
2κ‖x − wk‖

2 for all x ∈ U , which implies

by letting k →∞ that

f(x, p) ≥ f(w, p) + 〈x∗, x− w〉+
1

2κ
‖x− w‖2 whenever x ∈ U.

It yields x∗ ∈ ∂xf(w, p) by the Fermat rule and thus justifies (3.23).

To complete the proof of the theorem, it remains to show that (iii)=⇒(i) by continuing the

proof (iii)=⇒(ii) above. Pick (x∗i , pi, ui) ∈ gphϑ∩
(
IBδ(x̄

∗)× IBδ(p̄)× IBν(x̄)
)
and deduce from

(3.15) that there are xi such that ‖xi − x̄‖ ≤ cδ < ν and f(x̄, p̄) ≥ f(xi, pi)− cd(pi, p̄), i = 1, 2.
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This together with (3.10) gives us that

f(x̄, p̄) + cδ ≥ f(xi, pi) ≥ f(ui, pi) + 〈x∗i , xi − ui〉+
1

2κ
‖xi − ui‖2

≥ f(ui, pi)− ‖x∗i ‖ · ‖xi − ui‖ ≥ f(ui, pi)− (‖x̄∗‖+ δ)2δ.

Thus we get f(ui, pi) ≤ f(x̄, p̄) + ε when δ > 0 is small. By (3.15) there are v1, v2 such that


‖u2 − v1‖ ≤ cd(p1, p2), ‖u1 − v2‖ ≤ cd(p1, p2),

f(v1, p1) ≤ f(u2, p2) + cd(p1, p2), f(v2, p2) ≤ f(u1, p1) + cd(p1, p2).

(3.24)

It follows that ‖v1− x̄‖ ≤ ‖u2−v1‖+‖u2− x̄‖ ≤ 2cδ+ν < 2ν, which yields v1 ∈ U and similarly

v2 ∈ U when ν is sufficiently small. Hence we obtain from (3.10) that


f(v1, p1) ≥ f(u1, p1) + 〈x∗1, v1 − u1〉+ 1

2κ‖v1 − u1‖2,

f(v2, p2) ≥ f(u2, p2) + 〈x∗2, v2 − u2〉+ 1
2κ‖v2 − u2‖2.

Summing up these two inequalities and combining it with (3.24) give us that

2cd(p1, p2) ≥ 〈x∗1, v1 − u1〉+
1

2κ
‖v1 − u1‖2 + 〈x∗2, v2 − u2〉+

1

2κ
‖v2 − u2‖2

≥ 〈x∗1 − x∗2, u2 − u1〉+ 〈x∗1, v1 − u2〉+ 〈x∗2, v2 − u1〉+
1

2κ
(‖v1 − u2‖ − ‖u1 − u2‖)2

+
1

2κ
(‖v2 − u1‖ − ‖u1 − u2‖)2

≥ −‖x∗1 − x∗2‖ · ‖u1 − u2‖ − (‖x̄∗‖+ δ)‖v1 − u2‖ − (‖x̄∗‖+ δ)‖v2 − u1‖

−1

κ
(‖v1 − u2‖+ ‖v2 − u1‖)‖u1 − u2‖+

1

κ
‖u1 − u2‖2

≥ −
(
‖x∗1 − x∗2‖+

2c

κ
d(p1, p2)

)
‖u1 − u2‖ −

1

κ
(‖x̄∗‖+ δ)d(p1, p2) +

1

κ
‖u1 − u2‖2,
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which ensures the validity of the estimate

1

κ
‖u1 − u2‖2 −

(
‖x∗1 − x∗2‖+

2c

κ
d(p1, p2)

)
‖u1 − u2‖ − 2c(‖x̄∗‖+ δ + 1)d(p1, p2) ≤ 0.

Therefore we arrive at the relationships

‖u1 − u2‖ ≤
κ

2

[
‖x∗1 − x∗2‖+

2c

κ
d(p1, p2)+√(

‖x∗1 − x∗2‖+
2c

κ
d(p1, p2)

)2
+

8c

κ
(‖x̄∗‖+ δ + 1)d(p1, p2)

]

≤ κ‖x∗1 − x∗2‖+ 2cd(p1, p2) +
√

2cκ(‖x̄∗‖+ δ + 1)d(p1, p2)
1
2

≤ κ‖x∗1 − x∗2‖+ 2c
√

2δd(p1, p2)
1
2 +

√
2cκ(‖x̄∗‖+ δ + 1)d(p1, p2)

1
2

≤ κ‖x∗1 − x∗2‖+
(
2c
√

2δ +
√

2cκ(‖x̄∗‖+ δ + 1)
)
d(p1, p2)

1
2 .

This together with (3.23) justifies (3.11) and thus completes the proof. �

The next theorem characterizes Hölderian full stability in (3.2) in term of USOGC when X

is a Hilbert space.

Theorem 3.6 (characterizing Hölderian full stability via USOGC). Let X be a Hilbert

space. Assume that BCQ (3.7) is satisfied at (x̄, p̄) ∈ dom f and that f is parametrically

subdifferentially continuous at (x̄, p̄) for x̄∗ ∈ ∂xf(x̄, p̄). The following are equivalent:

(i) The point x̄ is a Hölderian fully stable local minimizer of problem P(x̄∗, p̄) with a modulus

pair (κ, `) ∈ IR2
> and the function f is prox-regular in x at x̄ for x̄∗ with compatible parameter-

ization by p at p̄.

(ii) USOGC (3.10) holds at (x̄, p̄, x̄∗) with modulus κ > 0.

Proof. To justify (ii)=⇒(i), take neighborhoods U,U∗, V from Definition 3.4 and suppose

without loss of generality that IBγ(x̄) = U . It follows from (3.10) that f is parametrically prox-
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regular as claimed in (i) and that Mγ(x∗, p) = S(x∗, p) for all x∗ ∈ U∗ and p ∈ V . Applying

now Theorem 3.5 ensures (i).

To prove the converse implication (i)=⇒(ii), we get from (5.10) that

‖Mγ(x∗, p)− x̄‖ = ‖Mγ(x∗, p)−Mγ(x̄∗, p̄)‖ ≤ κ‖x∗ − x̄∗‖+ `d(p, p̄)
1
2 if (x∗, p) ∈ U∗ × V

for the neighborhoods U∗ and V from Definition 3.1(ii) and choose a neighborhood U of x̄ so

that U ⊂ int IBγ(x̄) and Mγ(x∗, p) ⊂ U for all (x∗, p) ∈ U∗ × V . This gives us Mγ(x∗, p) ⊂

S(x∗, p)∩U . Suppose without loss of generality that the neighborhoods U,U∗, V agree with those

in (2.27), where the inequality f(u, p) ≤ f(x̄, p̄) + ε is omitted by the parametric subdifferential

continuity of f . Denoting by T be a localization of ∂xf relative to U×V ×U∗ and then defining

Tp(·) := T (·, p) for p ∈ V , we conclude from (2.27) that Tp + sI is strongly monotone in the

Hilbert space X with the identity operator I. Thus (Tp + sI)−1 is single-valued in its domain.

It is easy to observe from (3.3) that M(·) := Mγ(·, p) is also monotone for any p ∈ V . Since

M is Hölder continuous on U∗ and M(U∗) ⊂ U , it is maximal monotone relative to U∗ × U .

Invoking [3, Theorem 20.21], consider the maximal monotone extension Ξ of M and get that

gphΞ−1 ∩ (U × U∗) = gphM−1 ∩ (U × U∗) ⊂ gphTp ∩ (U × U∗). (3.25)

Define further J : X × X → X × X by J(x, y) := (y + sx, x) for (x, y) ∈ X × X and then

Z := J(U × U∗). The classical open mapping theorem tells us that Z is a neighborhood of

(x̄∗ + sx̄, x̄). Observe by (3.25) that

gph (Ξ−1 + rI)−1 ∩ Z = gph (M−1 + sI)−1 ∩ Z ⊂ gph (Tp + sI)−1 ∩ Z. (3.26)
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Picking (u, u∗) ∈ gphTp, we have u = (Tp + sI)−1(u∗ + su) by the single-valuedness of the

mapping (Tp + sI)−1. The seminal Minty’s theorem tells us the mapping (Ξ−1 + sI)−1 is of

full domain. Combining this with (3.26) yields u = (Ξ−1 + sI)−1(u∗ + su) by (u∗ + su, u) ∈ Z.

Hence we get (u∗, u) ∈ gphΞ∩ (U∗×U) = gphM ∩ (U∗×U). Since M(u∗) ∈ ∂f−1
p (u∗)∩U for

all u∗ ∈ U∗, it implies that M(u∗) = T−1
p (u∗) and thus

gphM−1 ∩ (U × U∗) = gphTp = gph ∂fp ∩ (U × U∗).

This implies by Theorem 3.5 that Hölder continuity of Mγ in (3.3) yields USOGC, which thus

completes the proof of the theorem. �

Now we are ready to derive the main result of this section, which gives a characterization

of Hölderian full stability in term of the combined second-order subdifferential (2.14). The tilt

stability (p-independent) version of this result has been recently established in [42, Theorem 4.3].

Theorem 3.7 (second-order subdifferential characterization of Hölderian full stabil-

ity). Let X be Hilbert while P is metric. Suppose that BCQ (3.7) holds at (x̄, p̄) ∈ dom f and

that f is parametrically continuously prox-regular at (x̄, p̄) for x̄∗ ∈ ∂xf(x̄, p̄). The following are

equivalent:

(i) The point x̄ is a Hölderian fully stable local minimizer of problem P(x̄∗, p̄) in (3.2) with

a modulus pair (κ, `) ∈ IR2
>.

(ii) There are η > 0 such that for all (x, p, x∗) ∈ gph ∂xf ∩ IBη(x̄, p̄, x̄∗) we have

〈u∗, u〉 ≥ 1

κ
‖u‖2 whenever u∗ ∈ ∂̆2fp(x, x

∗)(u), u ∈ X. (3.27)

Proof. Assuming (i) and using Theorem 3.6, find a neighborhood U × U∗ × V of (x̄, x̄∗, p̄)
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such that (3.10) holds. Define a single-valued mapping ϑ by gphϑ := gphS ∩ (U∗ × V × U)

with S from (3.3) and have by (3.10) that

〈x∗ − u∗, ϑ(x∗, p)− ϑ(u∗, p)〉 ≥ κ−1‖ϑ(x∗, p)− ϑ(u∗, p)‖2 for all x∗, u∗ ∈ U∗, p ∈ V.

This implies that the mappings ϑp := ϑ(·, p) and ϑ−1
p − κ−1I are monotone for any p ∈ V . In

fact they are maximal monotone together with ϑ−1
p due to the assumed Hölder continuity of ϑ.

Denoting by Ξp the maximal monotone extension of ϑ−1
p − κ−1I as in [3, Theorem 20.21], we

get that Ξp + κ−1I is also a maximal monotone with gphϑ−1
p ⊂ gph (Ξp + κ−1I) ∩ (U × U∗).

Since ϑ−1
p is maximal monotone relative to U and U∗, it follows that

gph ∂fp ∩ (U × U∗) = gphϑ−1
p = gph (Ξp + κ−1I) ∩ (U × U∗).

Find further η > 0 satisfying IB2η(x̄, x̄
∗) ⊂ U × U∗ and get from (2.14) and Lemma 2.5 that

∂̆2fp(x, x
∗) = D̂∗∂fp(x, x

∗) = D̂∗S−1
p (x, x∗) = D̂∗Ξp(x, x

∗−κ−1x)+κ−1I, (x, x∗) ∈ IBη(x̄, x̄∗).

This gives us by Lemma 2.9 that 〈u∗− κ−1u, u〉 ≥ 0 for any u∗ ∈ ∂̆2fp(x, x
∗)(u), which justifies

(3.27) and thus implication (i)=⇒(ii).

Conversely, assuming (ii) and employing the parametric continuous prox-regularity of f at

(x̄, p̄) for x̄∗ ∈ ∂xf(x̄, p̄) give us numbers ε, r > 0 such that for any p ∈ IBε(p̄) we have

fp(x) ≥ fp(u) + 〈u∗, x− u〉 − r

2
‖x− u‖2 for all u∗ ∈ ∂fp(u) ∩ IBε(x̄∗), x, u ∈ IBε(x̄). (3.28)

Define g(x, p) := f(x, p) + s
2‖x − x̄‖

2 and gp(x) := g(x, p) for x ∈ X and p ∈ P . Employing



43

the limiting subdifferential sum rule Lemma 2.4 gives for any fix p ∈ IBε(p̄) gives us ∂gp =

∂fp + s(I − x̄). Define further W := J(IBε(x̄, p̄, x̄
∗)) with J(x, p, x∗) := (x, p, x∗+ s(x− x̄)) and

note from the classical open mapping theorem that W contains a neighborhood of (x̄, p̄, x̄∗).

Picking any (u, p, u∗) ∈ gph ∂xg ∩W , it follows from u∗ − s(u− x̄) ∈ ∂fp(u) and (3.28) that for

any x ∈ IBε(x̄) we have

gp(x) = fp(x) +
s

2
‖x− x̄‖2 ≥ fp(u) + 〈u∗ − s(u− x̄), x− u〉 − r

2
‖x− u‖2 +

s

2
‖x− x̄‖2

= gp(u) + 〈u∗, x− u〉+
s

2
‖x− u‖2.

(3.29)

Let us check that BCQ (3.7) holds for g at (x̄, p̄, g(x̄, p̄)). Indeed, since the set-valued mapping

F : p 7→ epi f(·, p) is Lipschitz-like around (p̄, x̄, f(x̄, p̄)), there are constants c, η > 0 such that

F (p1) ∩ IBη
(
(x̄, f(x̄, p̄))

)
⊂ F (p2) + cd(p1, p2)IBX×IR for all p1, p2 ∈ IBη(p̄). (3.30)

Define F1 : p 7→ epi g(·, p) and choose a neighborhood Z of (x̄, g(x̄, p̄)) with (x, s− r
2‖x− x̄‖

2) ∈

IBη((x̄, f(x̄, p̄)) as (x, s) ∈ Z. Picking any p1, p2 ∈ IBη(p̄) and (x1, s1) ∈ F1(p1) ∩ Z, observe

that (x1, s1 − r
2‖x1 − x̄‖2) ∈ F (p1) ∩ IBη((x̄, f(x̄, p̄))), and thus we have by (3.30) that

‖x2 − x1‖+
∥∥r2 − s1 + r

2‖x1 − x̄‖2
∥∥ ≤ cd(p1, p2) for some (x2, r2) ∈ F (p2). (3.31)

Denoting s2 := r2 + r
2‖x2 − x̄‖2 yields (x2, r2) ∈ F1(p2) and gives us together with (3.31) that

‖x2 − x1‖+ ‖s2 − s1‖ ≤ ‖x2 − x1‖+
∥∥r2 − s1 + r

2‖x1 − x̄‖2
∥∥+

∥∥ r
2‖x2 − x̄‖2 − r

2‖x1 − x̄‖2
∥∥

≤ cd(p1, p2) + r
2‖x2 − x1‖

(
‖x2 − x̄‖+ ‖x1 − x̄‖

)
≤ cd(p1, p2) + r

2cd(p1, p2)2η = c(1 + rη)d(p1, p2), and so



44

F1(p1) ∩ Z ⊂ F1(p2) + c(1 + rη)d(p1, p2)IBX×R for all p1, p2 ∈ IBη(p̄),

which thus verifies BCQ (3.7) for the function g around (p̄, x̄, g(x̄, p̄)).

To proceed further, pick any v∗ ∈ ∂̆2gp(x, x
∗)(v) with v ∈ X and (x, x∗) ∈ W and get

from Lemma 2.5 that v∗ − sv ∈ ∂̆2fp(x, x
∗
r(x− x̄))(v). Since (x, x∗ − s(x− x̄)) = J−1(x, x∗) ∈

IBε(x̄)× IBε(x̄∗), it follows from (3.28) that 〈v∗ − sv, v〉 ≥ κ−1‖v‖2, which yields

(s+ κ−1)‖v‖2 ≤ 〈v∗, v〉 ≤ ‖v∗‖ · ‖v‖

and hence (s + κ−1)‖v‖ ≤ ‖v∗‖. This together with Lemma 2.7 shows us that the map-

ping Sg(x∗, p) :=
{
x ∈ X| x∗ ∈ ∂xg(x, p)

}
is Lipschitz-like with modulus (s + κ−1)−1 around

(x̄∗, x̄) with compatible parameterization in p around p̄. Moreover, since g satisfies the uniform

second-order growth condition (3.29), we get from Theorem 3.5 that Sg contains a single-valued

localization ϑg around (x̄∗, p̄, x̄). Thus there is some δ > 0 such that

‖ϑg(x∗1, p)− ϑg(x∗2, p)‖ ≤ (s+ κ−1)−1‖x∗1 − x∗2‖ for all x∗1, x
∗
2 ∈ IBδ(x̄∗, p̄).

Thanks to Theorem 3.5 and (3.29), g satisfies the uniform second-order growth condition (3.10)

at (x̄, p̄ x̄∗) with modulus (s+ κ−1)−1, i.e., there are a neighborhood (U × V × U∗) of (x̄, p̄, x̄∗)

such that

gp(x) ≥ gp(u)+〈u∗, x−u〉+ s+ κ−1

2
‖x−u‖2 for all x ∈ U, (u, p, u∗) ∈ gph ∂gx∩(U×V ×U∗).
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Since gp(x) = fp(x) + s
2‖x− x̄‖

2, we easily deduce that

fp(x) ≥ fp(u) + 〈u∗, x− u〉+
1

2κ
‖x− u‖2 for all x ∈ U, (u, p, u∗) ∈ gph ∂gx ∩ Z,

where Z := J−1(U×V ×U∗), which is also a neighborhood of (x̄, p̄, x̄∗). Thanks to Theorem 3.6,

the point x̄ is a Hölderian fully stable local minimizer of problem P(x̄∗, p̄). This completes the

proof of the theorem. �

3.3 Second-order Characterizations of Lipschitzian Full Stabil-

ity

The following proposition shows that the Lipschitz continuity of mγ is automatic under BCQ

(3.7). In finite dimensions it is derived by a different way in the proof of [31, Proposition 3.5]

under an additional assumption that Mγ(x̄∗, p̄) = x̄ for some γ > 0.

Proposition 3.8 (Lipschitz continuity of the infimum function under BCQ.) Let x̄

be a local minimizer of P(x̄∗, p̄) in (3.2), and let BCQ (3.7) hold at (x̄, p̄). Then the infimum

function mγ in (3.3) is Lipschitz continuous around (x̄∗, p̄) for all γ > 0 sufficiently small.

Proof. Take the neighborhoods U, V and the constants c, ε from Proposition 3.3 as a

consequence of BCQ, and let δ, γ > 0 be such that (2c + 1)δ ≤ γ < ε, IBγ(x̄) ⊂ U , and

IBγ(p̄) ⊂ V . Pick arbitrary pairs (x∗1, p1), (x∗2, p2) ∈ IBδ(x̄∗)× IBδ(p̄) and for any ν ∈ (0, ε− cδ)

take x1 ∈ IBγ(x̄) such that f(x1, p1) − 〈x∗1, x1〉 ≤ mγ(x∗1, p1) + ν. By (3.9) find u ∈ X with

f(u, p1) ≤ f(x̄, p̄) + cd(p1, p̄) and ‖u− x̄‖ ≤ cd(p1, p̄) ≤ cδ ≤ γ. Then we get subsequently

f(x1, p1)− 〈x∗1, x1〉 − ν ≤ mγ(x∗1, p1) ≤ f(u, p1)− 〈x∗1, u〉 ≤ f(x̄, p̄) + cd(p1, p̄)− 〈x∗1, u〉 and
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f(x1, p1) ≤ f(x̄, p̄) + cd(p1, p̄) + 〈x∗1, x1 − u〉+ ν ≤ f(x̄, p̄) + cδ + (‖x̄∗‖+ δ)2γ + ν < f(x̄, p̄) + ε

for δ, γ, ν > 0 sufficiently small. By Proposition 3.3 again we find x2 ∈ X such that ‖x2−x1‖ ≤

cd(p1, p2) ≤ 2cδ and f(x2, p2) ≤ f(x1, p1) + cd(p1, p2). Hence ‖x2 − x̄‖ ≤ ‖x1 − x̄‖ + 2cδ ≤

δ + 2cδ ≤ γ, which yields x2 ∈ IBγ(x̄) and thus implies the inequalities

mγ(x∗2, p2)−mγ(x∗1, p1) ≤ f(x2, p2)− 〈x∗2, x2〉 − [f(x1, p1)− 〈x∗1, x1〉 − ν]

≤ cd(p1, p2)− 〈x∗2 − x∗1, x2〉+ 〈x∗1, x1 − x2〉+ ν

≤ cd(p1, p2) + ‖x∗2 − x∗1‖(‖x̄‖+ δ) + (‖x̄∗‖+ δ)‖x1 − x2‖+ ν

≤ cd(p1, p2) + ‖x∗2 − x∗1‖(‖x̄‖+ δ) + (‖x̄∗‖+ δ)cd(p1, p2) + ν.

Changing the role of (x∗2, p2) and (x∗1, p1) in the above expressions gives us that

‖mγ(x∗1, p1)−mγ(x∗2, p2)‖ ≤ cd(p1, p2) + ‖x∗2 − x∗1‖(‖x̄‖+ δ) + (‖x̄∗‖+ δ)cd(p1, p2) + ν

for small ν > 0. Thus omitting ν justifies the Lipschitz continuity of mγ on IBδ(x̄∗)× IBδ(p̄). �

The next result shows that the Lipschitz continuity of ϑ(x∗, p) from Theorem 3.5 with respect

to both variables (x∗, p) can be equivalently described in via USOGC (3.10) and an additional

Lipschitz-like condition, which is essential even for simple problems in IR2; see Example 3.2.

Theorem 3.9 (Lipschitz continuity of the inverse subgradient mapping). Let x̄∗ ∈

∂xf(x̄, p̄), and let BCQ (3.7) hold at (x̄, p̄). Then the following assertions are equivalent:

(i) We have x̄ ∈ Mγ(x̄∗, p̄) for some γ > 0, and there exist a neighborhood U∗ × V × U of

(x̄∗, p̄, x̄) and a constant pair (κ, `) ∈ IR2
> such that the mapping S from (3.7) admits a single-



47

valued localization ϑ with respect to U∗ × V × U satisfying the Lipschitz continuity condition

‖ϑ(x∗1, p1)− ϑ(x∗2, p2)‖ ≤ κ‖x∗1 − x∗2‖+ `d(p1, p2) as x∗1, x
∗
2 ∈ U∗, p1, p2 ∈ V. (3.32)

(ii) USOGC from Definition 3.4 holds at (x̄, p̄, x̄∗) with modulus κ and the graphical mapping

G : p 7→ gph ∂xf(·, p) is Lipschitz-like around (p̄, x̄, x̄∗). (3.33)

Proof. It follows from Theorem 3.5 that the conditions in (i) ensures the validity of USOGC.

To verify (i)=⇒(ii), it remains to show that these conditions imply (3.33) as well. We claim

that

G(p1) ∩ (U × U∗) ⊂ G(p2) + `d(p1, p2)IBX×X∗ for all p1, p2 ∈ V (3.34)

with U,U∗, V , and ` taken from (i), which gives us the Lipschitz-like property by (2.17). To

proceed, pick (x1, x
∗
1) ∈ G(p1) ∩ (U × U∗) and choose x2 := ϑ(x∗1, p2) ∈ U ; so (x2, x

∗
1) ∈ G(p2).

It follows from (3.32) that ‖x1−x2‖ ≤ κd(p1, p2), which therefore justifies the validity of (3.34).

Now let us verify the converse implication (ii)=⇒(i). Theorem 3.5 tells us that S has a single-

valued localization around (x̄∗, p̄, x̄) satisfying (3.11). By (3.33) there exist a neighborhood

V1 × U1 × U∗1 ⊂ V × U × U∗ of (p̄, x̄, x̄∗) and a number c > 0 such that

G(p1) ∩ (U1 × U∗1 ) ⊂ G(p2) + cd(p1, p2)IBX×X∗ for all p1, p2 ∈ V1, (3.35)

where V,U, U∗ are taken from Definition 3.4. Picking (x∗1, p1, u1), (x∗2, p2, u2) ∈ gphS ∩ (U∗1 ×
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V1 × U1), we find from (3.35) a pair (u, x∗) ∈ G(p2) such that

‖u1 − u‖+ ‖x∗1 − x∗‖ ≤ cd(p1, p2). (3.36)

By shrinking U∗1 × V1 × U1 if necessary, suppose that (x∗, p2, u) ∈ gphS ∩ (U∗ × V × U). Then

the assumed USOGC (3.10) provides the estimates

f(u, p2) ≥ f(u2, p2) + 〈x∗2, u− u2〉+
1

2κ
‖u− u2‖2,

f(u2, p2) ≥ f(u, p2) + 〈x∗, u2 − u〉+
1

2κ
‖u2 − u‖2,

which ensure in turn that

‖x∗ − x∗2‖ · ‖u− u2‖ ≥ 〈x∗ − x∗2, u− u2〉 ≥ κ−1‖u− u2‖2

and thus yield ‖x∗ − x∗2‖ ≥ κ−1‖u− u2‖. Combining this with (3.36) gives us that

‖u1 − u2‖ ≤ ‖u1 − u‖+ ‖u− u2‖ ≤ cd(p1, p2) + κ‖x∗ − x∗2‖

≤ cd(p1, p2) + κ‖x∗ − x∗1‖+ κ‖x∗1 − x∗2‖

≤ cd(p1, p2) + κcd(p1, p2) + κ‖x∗1 − x∗2‖

= κ‖x∗1 − x∗2‖+ c(κ+ 1)d(p1, p2),

i.e., (3.32) holds, and so we complete the proof of the theorem. �

Note that condition (3.32) can be equivalently described via

(0, p∗) ∈
(
D∗∂xf

)
(x̄, p̄, x̄∗)(0) =⇒ p∗ = 0 (3.37)
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by the coderivative criterion Lemma 2.6 for the Lipschitz-like property discussed in Section 2

when X,P are both finite-dimensional spaces. It is also worth mentioning that the existence

of a Lipschitzian single-valued localization of the inverse partial subgradient mapping S in

(i) of Theorem 3.9 is known as the partial strong metric regularity (PSMR) of ∂xf ; see [48,

Definition 3.4]. This is an appropriate version of the so-called “strong metric regularity" [16] for

∂xf , which in turn is an abstract version of Robinson’s strong regularity [58]. In this way the

property considered in (i) of Theorem 3.5 can be viewed as a Hölderian counterpart of PSMR.

Note that the Hölderian effect disappears and Theorems 3.5 and 3.9 are identical when f does

not depend on p, i.e., we have only tilt perturbations in (3.2). In this case some versions of the

obtained equivalence can be found in [13] in finite dimensions and in [14, 42] in Asplund spaces.

In a similar way we arrive at the following characterization of Lipschitzian full stability in

(3.2).

Theorem 3.10 (characterizing Lipschitzian full stability via USOGC). Let X be Hilbert

while P is metric. Assume that BCQ (3.7) is satisfied at (x̄, p̄) ∈ dom f and that f is paramet-

rically subdifferentially continuous at (x̄, p̄) for x̄∗ ∈ ∂xf(x̄, p̄). The following are equivalent:

(i) The point x̄ is a Lipschitzian fully stable local minimizer of problem P(x̄∗, p̄) in (3.2) with

a modulus pair (κ, `) ∈ IR2
> and the function f is prox-regular in x at x̄ for x̄∗ with compatible

parameterization by p at p̄.

(ii) USOGC (3.10) holds at (x̄, p̄, x̄∗) with modulus κ together with the Lipschitz-like condi-

tion in (3.33).

Proof. It follows the proof of Theorem 3.6 with using Theorem 3.9 instead of Theorem 3.5.�

When both X and P are finite-dimensional, Theorem 3.10 reduces to the recent result of

[48, Theorem 3.8], where the Lipschitz-like property in (ii) is replaced by a more restrictive
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condition.

As a consequence of Theorem 3.6 and other results above, we get the following characteriza-

tion of Lipschitzian full stability for (3.2) in terms of the combined second-order subdifferential

(2.14).

Corollary 3.11 (second-order subdifferential characterization of Lipschitzian full

stability). Let X be Hilbert while P is metric. Suppose that BCQ (3.7) holds at (x̄, p̄) and

that f is parametrically continuously prox-regular at (x̄, p̄) for x̄∗ ∈ ∂xf(x̄, p̄). The following are

equivalent:

(i) The point x̄ is a Lipschitzian fully stable local minimizer of problem P(x̄∗, p̄) in (3.2).

(ii) Conditions (3.33) and (3.27) hold with some κ, η > 0.

Proof. If x̄ is a Lipschitzian fully stable local minimizer of P(x̄∗, p̄), then condition (3.33)

holds by Theorem 3.10. The validity of (3.27) is proved in Theorem 3.7, and so we get (ii).

Conversely, (ii) implies by Theorem 3.7 that x̄ is a Hölderian fully stable local minimizer of

P(x̄∗, p̄). Employing Theorem 3.6 ensures that USOGC (3.10) holds at (x̄, p̄, x̄∗). Thus we get

from Theorem 3.10 that x̄ is a Lipschitzian fully stable local minimizer of P(x̄∗, p̄) and complete

the proof. �

If P is Asplund, we have yet another second-order subdifferential characterization of Lips-

chitzian full stability in (3.2) implicitly involving subdifferentiation in p as well.

Theorem 3.12 (Lipschitzian full stability with Asplund parameter spaces). Let X be

Hilbert while P is Asplund. Suppose that BCQ (3.7) holds at (x̄, p̄) and that f is parametrically

continuously prox-regular at (x̄, p̄) for x̄∗ ∈ ∂xf(x̄, p̄). The following are equivalent:

(i) The point x̄ is a Lipschitzian fully stable local minimizer of problem P(x̄∗, p̄) with a

modulus pair (κ, `) ∈ IR2
>.
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(ii) Condition (3.33) holds and there are positive constants κ and η such that for all u ∈ X∗∗

and (x, p, x∗) ∈ gph ∂xf ∩ IBη(x̄, p̄, x̄∗) we have

〈u∗, u〉 ≥ 1

κ
‖u‖2 whenever (u∗, p∗) ∈ D̂∗∂xf(x, p, x∗)(u). (3.38)

Proof. To justify (i)=⇒(ii), it suffices to prove by Corollary 3.11 that (3.27) implies (3.38).

To proceed, pick (u∗, p∗) ∈ D̂∗(∂xf)(x, p, x∗)(u) with u ∈ X∗∗ and (x, p, x∗) ∈ gph ∂xf ∩

IBη(x̄, p̄, x̄
∗), where η > 0 is taken from (3.27). This yields by definition (2.12) that

lim sup

(x1,p1,x∗1)
gph ∂xf→ (x,p,x∗)

〈u∗, x1 − x〉+ 〈p∗, p1 − p〉 − 〈u, x∗1 − x∗〉
‖x1 − x‖+ ‖p1 − p‖+ ‖x∗1 − x∗‖

≤ 0.

Choosing p1 = p in the latter gives us u∗ ∈ ∂̆2fp(x, x
∗)(u) and thus ensures (3.38) by (3.27).

Conversely, assume by (ii) that the mapping G in (3.33) is Lipschitz-like around (p̄, x̄, x̄∗)

with modulus ` > 0 and that inequality (3.38) is satisfied with some κ, η > 0. To get (i),

we only need to verify by Corollary 3.11 that (3.27) holds. Pick any u ∈ X∗∗ and u∗ ∈

∂̆2fp(x, x
∗)(u) with (x, p, x∗) ∈ gph ∂xf ∩ IBη1(x̄, p̄, x̄∗) for some η1 ∈ (0, η). There is nothing

to do if u = 0. Since the combined second-order subdifferential ∂̆2 is homogeneous, suppose

without loss of generality that ‖u∗‖ + ‖u‖ ≤ (2`)−1 and u 6= 0. Defining Ω1 := gphG and

Ω2 := {p} ×X ×X we get by (2.14) that (0, u∗,−u) ∈ N̂((p, x, x∗); Ω1 ∩ Ω2). It follows from

the fuzzy intersection rule in [38, Lemma 3.1] that for any 0 < ε < min
{
η − η1,

1
4(`+1)

}
there

are λ ≥ 0, (pi, xi, x
∗
i ) ∈ Ωi ∩ IBε(p, x, x∗), and (p∗i , u

∗
i , ui) ∈ P ∗ ×X ×X as i = 1, 2 satisfying

(p∗i , u
∗
i ,−ui) ∈ N̂((pi, xi, x

∗
i ); Ωi) + εIBP ∗×X×X with

λ(0, u∗,−u) = (p∗1, u
∗
1,−u1) + (p∗2, u

∗
2,−u2) and max

{
λ, ‖(p∗2, u∗2,−u2)‖

}
= 1. (3.39)
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By the construction of Ω2 we get N̂((p2, x2, x
∗
2); Ω2) ⊂ P ∗ × {0} × {0} and so ‖u∗2‖+ ‖u2‖ ≤ ε.

Furthermore, there is (p̄∗1, ū
∗
1,−ū1) ∈ N̂((p1, x1, x

∗
1); Ω1) with ‖p∗1−p̄∗1‖+‖u∗1−ū∗1‖+‖u1−ū1‖ ≤ ε.

Then the Lipschitz-like property of G implies by [38, Theorem 1.43] that ‖p̄∗1‖ ≤ `(‖ū∗1‖+‖ū1‖).

This together with (3.39) ensures the relationships

‖p∗2‖ = ‖p∗1‖ ≤ ‖p̄∗1‖+ ε ≤ `(‖ū∗1‖+ ‖ū1‖) + ε ≤ `(‖u∗1‖+ ‖u1‖+ ε) + ε

≤ `(λ‖u∗‖+ ‖u∗2‖+ λ‖u‖+ ‖u2‖+ ε) + ε ≤ `(‖u∗‖+ ‖u‖+ 2ε) + ε ≤ 1

2
+ ε(2`+ 1),

and hence ‖(p∗2, u∗2,−u2)‖ ≤ 1
2 + ε(2`+ 1) + ε < 1. Combining it with (3.39) gives us λ = 1 and

(0, u∗,−u) = (p∗1, u
∗
1,−u1) + (p∗2, u

∗
2,−u2). (3.40)

Noting that (x1, p1, x
∗
1) ∈ IBε+η1(x̄, p̄, x̄∗) ⊂ IBη(x̄, p̄, x̄

∗), we get from (3.38) and the inclusion

(ū∗1, p̄
∗
1) ∈ (D̂∗∂xf)(x1, p1, x

∗
1)(ū1) that 〈ū∗1, ū1〉 ≥ κ‖ū1‖2. This together with (3.40) yields that

〈u∗, u〉 = 〈u∗, u1 + u2〉 ≥ 〈u∗1, u1〉 − ‖u2‖ · ‖u∗‖ ≥ 〈ū∗1, u1〉+ 〈u∗1 − ū∗1 + u∗2, u1〉 − ε‖u∗‖

≥ 〈ū∗1, u1〉 − (‖u∗1 − ū∗1‖+ ‖u∗2‖)‖u1‖ − ε‖u∗‖

≥ 〈ū∗1, ū1〉 − ‖ū1 − u1‖ · ‖ū∗1‖ − 2ε‖u1‖ − ε‖u∗‖

≥ κ−1‖ū1‖2 − ε(‖u∗‖+ ‖u∗ − ū∗1‖)− 2ε(‖u‖+ ‖u− u1‖)− ε‖u∗‖

≥ κ−1‖ū1‖2 − ε‖u∗‖ − ε2 − 2ε‖u‖ − 2ε2 − ε‖u∗‖

≥ κ−1(‖u‖ − ‖u− ū1‖)2 − 2ε(‖u∗‖+ ‖u‖)− 3ε2

≥ κ−1‖u‖2 − 2κ‖u− ū1‖‖u‖ − 2ε(‖u∗‖+ ‖u‖)− 3ε2

≥ κ−1‖u‖2 − 4κε‖u‖ − 2ε(‖u∗‖+ ‖u‖)− 2ε2.
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Letting ε ↓ 0 gives us that 〈u∗, u〉 ≥ κ−1‖u‖2 and thus verifies (3.27). The proof is complete. �

As mentioned above, the Lipschitz-like condition (3.33) can be expressed via the coderivative

criterion (3.37) if P is Asplund. Furthermore, passing to the limit in (3.38) allows us to obtain

the pointwise consequence of this condition via the mixed coderivative of ∂xf at (x̄, p̄, x̄∗).

The next approximation lemma is helpful in the proof of the pointwise characterizations of

Lipschitzian full stability established in finite-dimensional spaces.

Lemma 3.13 (coderivative approximation). Let X,P be two finite-dimensional spaces.

Assume that condition (3.33) and the following inequality

‖u∗‖ ≥ µ‖u‖ whenever (u∗, p∗) ∈ D∗∂xf(x̄, p̄, v̄)(u) (3.41)

hold with some µ > 0. Then for any δ ∈ (0, µ) there is η > 0 such that

‖u∗‖ ≥ (µ− δ)‖w‖ if u∗ ∈ D̂∗∂fp(x, x∗)(u) with (x, p, x∗) ∈ gph ∂xf ∩ IBη(x̄, p̄, x̄∗). (3.42)

Proof. Assuming (3.41), we first show that for any δ ∈ (0, µ) there is ν > 0 satisfying

‖u∗‖ ≥ (µ− δ)‖u‖ if (u∗, p∗) ∈ D̂∗∂xf(x, p, x∗)(u) with (x, p, x∗) ∈ gph ∂xf ∩ IBν(x̄, p̄, x̄∗).(3.43)

By contradiction, find sequences (xk, pk, x
∗
k)

gph ∂xf−→ (x̄, p̄, x̄∗) and (u∗k, p
∗
k) ∈ D̂∗∂xf(xk, pk, x

∗
k)(uk)

such that ‖u∗k‖ < (µ − δ)‖uk‖, which clearly implies that uk 6= 0. Denoting ū∗k := u∗k‖uk‖−1,

p̄∗k := p∗k‖uk‖−1, and ūk := uk‖uk‖−1 gives us (ū∗k, p̄
∗
k) ∈ D̂∗∂xf(xk, pk, x

∗
k)(ūk) as k ∈ IN . Since

(3.33) holds, the mapping G : p 7→ gph ∂xf(·, p) is Lipschitz-like with some modulus ` > 0.

Then the result of [38, Theorem 1.43] tells us that ‖p̄∗k‖ ≤ `(‖ū∗k‖ + ‖ūk‖) for all k. It follows
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that ‖ūk‖ = 1, ‖ū∗k‖ ≤ µ−δ, and ‖p̄∗k‖ ≤ `(µ−δ+1). By passing to a subsequence, suppose that

(ū∗k, p̄
∗
k, ūk) converges to (ū∗, p̄∗, ū) as k → ∞. Hence ‖ū‖ = 1 and (ū∗, p̄∗) ∈ D∗∂xf(x̄, p̄, v̄)(ū)

with ‖ū∗‖ ≤ (µ− δ), which contradicts (3.41) and thus verifies condition (3.43).

To justify further (3.42), take any u∗ ∈ D̂∗∂fp(x, x∗)(u) with (x, p, x∗) ∈ gph ∂xf∩IBη(x̄, p̄, v̄)

for some η ∈ (0, ν). Due to the homogeneity of D̂∗ we may assume that ‖u∗‖ + ‖u‖ ≤ 1
2` .

Defining Ω1 := gphG and Ω2 := {p}×X ×X, observe that (0, u∗,−u) ∈ N̂((p, x, x∗); Ω1 ∩Ω2).

It follows from the fuzzy intersection rule in [38, Lemma 3.1] that for any ε > 0 there are λ ≥ 0,

(pi, xi, x
∗
i ) ∈ Ωi ∩ IBε(p, x, x∗), and (p∗i , u

∗
i ,−ui) ∈ N̂

(
(pi, xi, x

∗
i ); Ωi

)
+ εIB as i = 1, 2 such that

λ(0, u∗,−u) = (p∗1, u
∗
1,−u1) + (p∗2, u

∗
2,−u2) and max

{
λ, ‖(p∗2, u∗2,−u2)‖

}
= 1. (3.44)

The construction of Ω2 yields N̂((p2, x2, x
∗
2); Ω2) ⊂ IRd × {0} × {0} and thus ‖u∗2‖+ ‖u2‖ ≤ ε.

Moreover, there is (p̄∗1, ū
∗
1,−ū1) ∈ N̂((p1, x1, x

∗
1); Ω1) satisfying ‖p∗1 − p̄∗1‖ + ‖u∗1 − ū∗1‖ + ‖u1 −

ū1‖ ≤ ε. The Lipschitz-like property of G with modulus ` ensures by [38, Theorem 1.43] that

‖p̄∗1‖ ≤ `(‖ū∗1‖+ ‖ū1‖). This together with (3.44) gives us the relationships

‖p∗2‖ = ‖p∗1‖ ≤ ‖p̄∗1‖+ ε ≤ ε+ `(‖ū∗1‖+ ‖ū1‖) ≤ ε+ `(‖u∗1‖+ ‖u1‖+ ε)

≤ `(‖λu∗ − u∗2‖+ ‖λu− u2‖) + (`+ 1)ε ≤ `(λ‖u∗‖+ ‖u∗2‖+ λ‖u‖+ ‖u2‖) + (`+ 1)ε

≤ `
(
λ(‖u∗‖+ ‖u‖) + ε

)
+ (`+ 1)ε ≤ `(‖u∗‖+ ‖u‖) + (2`+ 1)ε <

1

2
+ (2`+ 1)ε.

When ε > 0 is sufficiently small, we have ‖p∗2‖ < 1 − ε and so ‖(p∗2, u∗2,−u2)‖ < 1. It follows

from (3.44) that λ = 1. Combining this with (3.43) and (3.44) implies that

‖u∗‖ = ‖u∗1 + u∗2‖ ≥ ‖ū∗1‖ − ‖ū∗1 − ū∗1‖ − ‖ū∗2‖ ≥ (µ− δ)‖ū1‖ − ε− ε

≥ (µ− δ)(‖u‖ − ‖u1 − ū1‖ − ‖u2‖)− 2ε ≥ (µ− δ)‖u‖ − 2ε(µ− δ)− 2ε.
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Letting finally ε ↓ 0 shows that ‖u∗‖ ≥ (µ− δ)‖u‖ and thus ends the proof of the lemma.

We conclude this section by showing that, when both X and P are finite-dimensional, our re-

sults imply the characterization of Lipschitzian full stability closely related to [31, Theorem 2.3]

established in a more involved approach. Note to this end that the full stability characterization

of Corollary 3.11 via the combined second-order subdifferential of f with respect to the decision

variable only, valid in the general infinite-dimensional setting, is new even in finite dimensions.

Theorem 3.14 (pointwise characterization of Lipschitzian fully stable minimizers

via the limiting coderivative of the subdifferential). Let X,P be two finite-dimensional

spaces. Suppose that BCQ (3.7) holds at (x̄, p̄) ∈ dom f and that f is parametrically continuously

prox-regular at (x̄, p̄) for x̄∗ ∈ ∂xf(x̄, p̄). Consider the following statements:

(i) The point x̄ is a Lipschitzian fully stable local minimizer of problem P(x̄∗, p̄) with a

modulus pair (κ, `) ∈ IR2
>.

(ii) Condition (3.33) is satisfied and there is some µ > 0 such that

inf
{
〈u∗, u〉

∣∣ (u∗, p∗) ∈ D∗∂xf(x̄, p̄, x̄∗)(u)
}
≥ µ‖u‖2, u ∈ X. (3.45)

Then implication (i) =⇒ (ii) holds with µ = κ−1 while implication (ii) =⇒ (i) is satisfied with

any κ > µ−1. Furthermore, the validity of (i) with some modulus pair (κ, `) ∈ IR2
> is equivalent

to the fulfillment of condition (3.33) together with the positive-definiteness condition

inf
{
〈u∗, u〉

∣∣ (u∗, p∗) ∈ D∗∂xf(x̄, p̄, x̄∗)(u)
}
> 0, u ∈ X,u 6= 0. (3.46)

Proof. Assuming (i) implies by Theorem 3.12 that both conditions (3.33) and (3.38) hold.

By a limiting process, we arrive at (3.45) with µ = κ−1, which verifies (ii).
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To justify the converse implication (ii)=⇒(i), we proceed similarly to the proof of (ii)=⇒(i)

in Theorem 3.7 with some modifications. Since f parametrically continuously prox-regular at

(x̄, p̄, v̄), inequality (3.28) holds for some r, ε > 0. Defining g(x, p) := f(x, p) + s
2‖x − x̄‖

2 for

x ∈ X, p ∈ P with some fixed s > r, we have ∂xg(x, p) = ∂xf(x, p) + s(x − x̄). Moreover, the

quadratic growth condition (3.29) is satisfied for gp(x) := g(x, p). Note further that ∂∞f(x̄, p̄) =

∂∞g(x̄, p̄) and that D∗∂xg(x̄, p̄, v̄)(w) = D∗∂xf(x̄, p̄, v̄)(w) + (sw, 0) by [38, Theorem 1.62(ii)].

Since BCQ and condition (3.33) hold for the function f , both these conditions hold at the same

point for the function g as well. By Theorem 3.9 condition (3.33) ensures that x̄ is a Lipschitzian

fully stable local minimizer of problem P(x̄∗, p̄) with replacing f by g.

It follows from [38, Theorem 1.62(ii)] that the inclusion (u∗, p∗) ∈ D∗∂xg(x̄, p̄, x̄∗)(u) yields

(u∗ − su, p∗) ∈ D∗∂xf(x̄, p̄, v̄)(u). Furthermore, by (3.45) we have 〈u∗ − su, u〉 ≥ µ‖u‖2, which

implies that

‖u∗‖ · ‖u‖ ≥ 〈u∗, u〉 ≥ (s+ µ)‖u‖2.

By Lemma 3.13 above, for any λ ∈ (0, s+ µ) we find some η > 0 such that

‖u∗‖ ≥ (s+ µ− λ)‖u‖ whenever u∗ ∈ D̂∗∂gp(x, x∗)(u) with (x, p, x∗) ∈ gph ∂xg ∩ IBη(x̄, p̄, x̄∗).

Following the last part in the proof of Theorem 3.7 we find some α > 0 such that for any

x ∈ IBα(x̄) the following inequality holds

fp(x) ≥ fp(u) + 〈u∗, x− u〉+
µ− λ

2
‖x− u‖2 if (u, p, u∗) ∈ gph ∂xf ∩ IBα(x̄, p̄, x̄∗). (3.47)

This together with Theorem 3.9 tells us that x̄ is a Lipschitzian fully stable local minimizer of
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P (x̄∗, p̄) with modulus pair ((µ− λ)−1, `) for some ` > 0. This verifies implication (ii)=⇒(i).

Next we prove the equivalence between (i) with some modulus pair (κ, `) ∈ IR2
> and the

validity of (3.46) together with (3.33). Note that (i) readily yields both conditions (3.33) and

(3.46) by implication (i)=⇒(ii) proved above. To justify the converse, observe first that the

validity of (3.46) and (3.33) (or (3.37)) ensures the condition

(0, p∗) ∈ D∗∂xf(x̄, p̄, x̄∗)(u) =⇒ (p∗, u) = 0,

which shows that D∗S(x̄∗, p̄, x̄)(0) = (0, 0) for the mapping S from (3.3). By the Mordukhovich

criterion (2.6) this tells that S is Lipschitz-like around (x̄∗, p̄, x̄) with some modulus ` > 0.

Moreover, arguing as in the proof of (ii)=⇒(i) above when µ = 0 shows that for each λ ∈

(0,min{(5`)−1, s}) there is some α > 0 such that condition (3.47) holds with µ = 0. Define

h(x, p) := f(x, p)+λ‖x− x̄‖2 with ∂h(x, p) = ∂f(x, p)+2λ(x− x̄). This together with condition

(3.47) with µ = 0 implies the existence of δ > 0 so small that the quadratic growth condition

h(x, p) ≥ h(u, p) + 〈v, x− u〉+
λ

2
‖x− u‖2 if x ∈ IBδ(x̄), (u, p, v) ∈ gph ∂xh ∩ IBδ(x̄, p̄, v̄)(3.48)

is satisfied for h. Observe further that for any (u∗, p∗) ∈ D∗∂xh(x̄, p̄, x̄∗)(u) we get from [38,

Theorem 1.62(ii)] that (u∗ − 2λu, q) ∈ D∗∂xf(x̄, p̄, x̄∗)(u) whenever u ∈ X, which reads as

(−u, p∗) ∈ D̂∗S(x̄∗, p̄, x̄)(−u∗+ 2λu). Since the mapping S is Lipschitz-like around (x̄∗, x̄) with

modulus ` > 0, we deduce from [38, Theorem 1.44] that `‖u∗−2λu‖ ≥ ‖u‖+‖p∗‖. This ensures

the fulfillment of the inequalities

`‖u∗‖ ≥ `‖u∗ − 2λu‖ − 2`λ‖u‖ ≥ ‖u‖+ ‖p∗‖ − 2`λ‖u‖ ≥ (1− 2`λ)(‖u‖+ ‖p∗‖),
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which in turn allow us to arrive at the estimate

‖u∗‖ ≥ 1− 2`λ

`
‖u‖ for all (u∗, p∗) ∈ D∗∂xh(x̄, p̄, x̄∗)(u).

Employing this inequality together with Lemma 3.13 gives us a number η > 0 such that

‖u∗‖ ≥ 1− 3`λ

`
‖u‖ whenever u∗ ∈ D̂∗∂hp(x, x∗)(u) and (x, p, x∗) ∈ gph ∂xh ∩ IBη(x̄, p̄, x̄∗).

Following the last part in the proof of Theorem 3.7 again gives us the existence of some β > 0

such that

hp(x) ≥ hp(u)+〈x∗, x−u〉+1− 3`λ

2`
‖x−u‖2 for all x ∈ IBβ(x̄), (u, p, x∗) ∈ gph ∂xh∩IBβ(x̄, p̄, x̄∗).

Since f(x, p) = h(x, p) − λ‖x − x̄‖2 and ∂xf(x, p) = ∂xh(x, p) − 2λ(x − x̄), this easily implies

that

f(x, p) ≥ f(u, p) + 〈u∗, x− u〉+ 1− 5`λ

2`
‖x− u‖2 for all x ∈ IBβ(x̄), (u, p, u∗) ∈ gph ∂xf ∩W2,

where W2 := J−1
λ (IBβ(x̄, p̄, x̄∗) and Jλ(x, p, x∗) := (u, p, x∗ + 2λ(x − x̄)) for all (x, p, x∗) ∈

X × P × X. Applying finally Theorem 3.9 with taking into account the choice of λ < (5`)−1

verifies that x̄ is the Lipschitzian fully stable local minimizer of P(v̄, p̄), which completes the

proof of the theorem. �

The following consequence of Theorem 3.14 is useful for our applications in Section 6.

Corollary 3.15 (another form of the pointwise characterization of Lipschitzian full

stability). In the setting of Theorem 3.14 we have the equivalent statements:
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(i) The point x̄ is a Lipschitzian fully stable local minimizer of problem P(x̄∗, p̄).

(ii) Condition (3.33) is satisfied together with the inequality

inf
{
〈u∗, u〉

∣∣ (u∗, p∗) ∈ D∗∂xf(x̄, p̄, x̄∗)(u)
}
> 0 for all u 6= 0, (3.49)

where we use the convention that inf ∅ :=∞.

Proof. It is proved in Theorem 3.14 that (i) implies the existence of some µ > 0 for which

we have condition (3.45) that immediately implies (3.49). Conversely, the validity of (3.49)

readily yields (3.46). Together with (3.33) it gives (i) by Theorem 3.14 and thus completes the

proof of this corollary. �
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Chapter 4

Sensitivity Analysis of Parametric

Variational Systems

4.1 Overview

In this chapter we consider the so-called generalized equations in term of a inclusion

0 ∈ F (x) + T (x), (4.1)

where F : IRn → IRn is a single-valued mapping and T : IRn ⇒ IRn is a set-valued mapping.

The crucial notion of generalized equation above was introduced by Robinson in [56, 57] with

an additional assumption that T is a monotone operator. In the case that the set-valued map-

ping T disappears, this inclusion reduces to the standard equation "F (x) = 0". Furthermore,

"equation" (4.1) also includes the classical variational inequality introduced by Stamphacchia

[63]

0 ∈ F (x) +NK(x), or equivalently, 〈F (x), u− x〉 ≥ 0 for all u ∈ K (4.2)

when T in (4.1) is the convex normal cone to a convex set K ⊂ IRn, which is monotone

operator. Variational inequalities (4.2) are well defined on infinite-dimensional spaces and have

been known as one of the most powerful tools in deriving the existence of solutions to partial

differential equations; see further details and discussions in [26]. Recent remarkable applications
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of variational inequalities to optimization can be found in the monograph [18].

In the landmark paper [58] Robinson introduced the notion of strong regularity for variational

inequalities (4.2), which concerns about the Lipschitz continuous single-valued localization for

solution maps to the linearization of (4.2). This allows one to obtain the similar properties for

solution maps to the following parametric generalized equations

0 ∈ F (x, p) +NK(x), (4.3)

where F : IRn × IRd → IRn and K ⊂ IRn is still a convex set. It is important to emphasize that

full characterizations including Lipschitz-like property of the solution map to the linearization

of (4.2) to strong stability are obtained by Dontchev and Rockafellar provided that K is a

polyhedral. Their work indeed reveals the essential of using second-order subdifferentials via a

so-called critical face condition to study strong regularity. Without the polyhedricity assumption

on K, which (second-order) condition can characterize strong stability of variational inequality

(4.2) is still unknown. In Section 4.4 we provide a new sufficient condition for this property

in terms of positive definiteness and second-order subdifferentials of the indicator δK for the

nonpolyhedral convex set K.

In many practical models, e.g., [12, 18, 32, 66, 67] the parameter p appears in both the

function F and the convex normal cone NK , which can be formulated by another generalized

equation

0 ∈ F (x, p) +NK(p)(x), (4.4)

where K(p) is a convex subset of IRn depending on the parameter p. It seems that Robinson’s
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strong regularity is not useful anymore, since the linearization of (4.4) can not remove p out

of this generalized equation. It is worth noting that the assumption on convexity of the set

K(p) for (4.4) is broken in many significant frameworks of optimization [5, 24, 25, 29, 30], e.g.,

in parametric constrained problems the set K(p) is usually known as
{
x ∈ IRn| g(x, p) ∈ Θ

}
,

which is not convex in general; see our Chapter 5 for further details. The convex normal cone

in (4.4) has to be replaced by other nonconvex constructions. This motivates us to a study of

(4.4) with the limiting normal cone (2.8). Indeed, we formulate a more general problem

0 ∈ F (x, p, q) + ∂xf(x, p), (4.5)

where F : X×P×Q→ X and f : X×P → IR, and where X is a Hilbert space while (P, d1) and

(Q, d2) are two metric spaces. Note that problem (4.5) reduces to (4.4) when f(x, p) := δK(p)(x)

and F does not depend on parameter q. Moreover, if the parameter p is ignored in F , our model

(4.5) covers many ones in [30, 32, 38, 66, 67] and strictly relates to the so-called hemivariational

inequalities introduced by Panagiotopoulos [51]. Following [38], from now on we label (4.5) as

parametric variational systems. The main purpose of the chapter is to study the stability of the

solution mapping S : P ×Q⇒ X defined by

S(p, q) :=
{
x ∈ X| 0 ∈ F (x, p, q) + ∂xf(x, p)

}
. (4.6)

A great source for Lipschitz-like properties of this mapping can be found in the monograph [38,

Chapter 4]. Here we focus our study on the single-valued Hölder/Lipschitz continuity on the

mapping S. Most of results in this chapter are new when reducing the parametric variational

systems (4.5) to (4.4) or even (4.3); see our Section 4.4 for further discussions.
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Otherwise stated, the natural standing assumptions in this chapter are:

Standing assumption: Let (x̄, p̄, q̄) ∈ X × P × Q satisfy x̄ ∈ S(p̄, q̄). We always assume

that

(A1) X is a Hilbert space while P and Q are two metric spaces with metrics d1 an d2

respectively.

(A2) F is Lipschitz continuous around (x̄, p̄, q̄) uniformly in x around x, i.e., there exist a

neighborhood U×V×W of (x̄, p̄, q̄) and some constant L such that for all (x1, p1, q1), (x2, p2, q2) ∈

U × V ×W we have

‖F (x1, p1, q1)− F (x2, p2, q2)‖ ≤ L
[
‖x1 − x2‖+ d1(p1, p2) + d2(q1, q2)

]
. (4.7)

(A3) The function f satisfies the basic constraint qualification (3.7) at (x̄, p̄).

4.2 Parametric Variational Systems with Differentiability

In addition to the standing assumption in Section 4.1, we assume in this section that

(A4) F is differentiable with respect to x and the Jacobian matrix ∇xF (x, p, q) is continuous

at (x̄, p̄, q̄).

4.2.1 Hölder continuity of parametric variational systems

Let us start with a definition used broadly in this section.

Definition 4.1 (Hölder/Lipschitz continuous single-valued localization). Let S : P ×

Q⇒ X be a set-valued mapping with (p̄, q̄, x̄) ∈ gphS. We say that S has a Hölder continuous

single-valued localization with an order pair (α, β) ∈ IR2
> and a modulus pair (κ, `) ∈ IR2

> around

(p̄, q̄) for x̄ if there is a neighborhood U×V ×W ⊂ X×P×Q of (x̄, p̄, q̄) such that the localization
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ϑ of S relative to (V ×W × U) is single-valued and that

‖ϑ(p1, q1)− ϑ(p2, q2)‖ ≤ κd1(p1, p2)α + `d2(q1, q2)β for all (p1, q1), (p2, q2) ∈ V ×W. (4.8)

If in addition S is a single-valued mapping, it is simply said that S is Hölder continuous with

order pair (α, β) and modulus pair (κ, `) around (p̄, q̄).

When inequality (4.8) holds with α = β = 1, we say S has a Lipschitz continuous single-

valued localization with the modulus pair (κ, `) around (p̄, q̄) for x̄. If S is a single-valued

mapping, we just say S is Lipschitz continuous with modulus pair (κ, `) around (p̄, q̄).

The major result of this section is to obtain Hölder continuity of the solution mapping S in

(4.6).

Theorem 4.2 (Hölder continuity of solution maps). Let (x̄, p̄, q̄) ∈ X × P × Q satisfy

x̄ ∈ S(p̄, q̄). Suppose that f is parametrically continuously prox-regular at (x̄, p̄) for x̄∗ :=

−F (x̄, p̄, q̄). Assume further that there are some κ, δ > 0 such that for all (x, p, x∗) ∈ gph ∂xf ∩

IBδ(x̄, p̄, x̄
∗), we have

〈∇xF (x̄, p̄, q̄)u, u〉+ inf
{
〈u∗, u〉

∣∣ u∗ ∈ D̂∗∂fp(x, x∗)(u)
}
≥ 1

κ
‖u‖2 for all u ∈ X. (4.9)

Then the solution mapping S in (4.6) has a Hölder continuous single-valued localization with

order pair (1
2 , 1) around (p̄, q̄) for x̄.

The proof of this theorem is based on several lemmas constructed below. The first lemma

follows the key idea of Robinson in [58] in order to establish the relationship between the

parametric variational system (4.5) to its linearization.
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Lemma 4.3 Let x̄ ∈ X satisfy x̄ ∈ S(p̄, q̄). Define G : X × P ⇒ X by G(x∗, p) the solution

mapping of the linearized system

x∗ ∈ F (x̄, p̄, q̄) +A(x− x̄) + ∂xf(x, p) with A := ∇xF (x̄, p̄, q̄), (4.10)

i.e., G(x∗, p) :=
{
x ∈ X| x∗ ∈ F (x̄, p̄, q̄) + A(x − x̄) + ∂xf(x, p)

}
for all (x∗, p) ∈ X × P . If

G has a Hölder continuous single-valued localization with order pair (1, 1
2) around (0, p̄) for x̄,

then the map S in (4.6) also admits a Hölder continuous single-valued localization with order

pair (1
2 , 1) around (x̄∗, p̄) for x̄.

Proof. Suppose that G has a Hölder continuous single-valued localization ϑ with the order

(1, 1
2) around (0, p̄) for x̄. Then we find neighborhood U × V ×U∗ of (x̄, p̄, 0) and some κ, ` > 0

such that gphG ∩ (U∗ × V × U) = gphϑ and that

‖ϑ(x∗1, p1)− ϑ(x∗2, p2)‖ ≤ κ‖x∗1 − x∗2‖+ `d1(p1, p2)
1
2 for all x∗1, x

∗
2 ∈ U∗, p1, p2 ∈ V. (4.11)

Let us define r(x, p, q) := F (x̄, p̄, q̄) +A(x− x̄)−F (x, p, q) for all (x, p, q) ∈ X×P ×Q. Note

that x ∈ S(p, q) if and only if x ∈ G(r(x, p, q), p). Due to assumption (A4) for any ε ∈ (0, κ−1),

we may find ρ, η > 0 with IBρ(x̄)×IBη(p̄)×IBη(q̄) ⊂ U×V ×Q such that the remainder r(x, p, q)

belongs to U∗ for all (x, p, q) ∈ IBρ(x̄)× IBη(p̄)× IBη(q̄) and that

‖F (x1, p, q)− F (x2, p, q)−A(x1 − x2)‖ ≤ ε‖x1 − x2‖ and

κ
[
‖F (x̄, p̄, q̄)− F (x̄, p, q)‖+ `d1(p, p̄)

1
2

]
≤ (1− κε)ρ

(4.12)

whenever (x1, p, q), (x2, p, q) ∈ IBρ(x̄)×IBη(p̄)×IBη(q̄). Thus the map Φ(p,q)(x) := ϑ(r(x, p, q), p)

is well-defined on IBρ(x̄) for (p, q) ∈ IBη(p̄)× IBη(q̄) fixed.
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Now take any x1, x2 ∈ IBρ(x̄), it follows from (4.8) and (4.12) that

‖Φ(p,q)(x1)− Φ(p,q)(x2)‖ ≤ κ‖r(x1, p, q)− r(x2, p, q)‖

= κ‖F (x1, p, q)− F (x2, p, q)−A(x1 − x2)‖ ≤ κε‖x1 − x2‖,
(4.13)

which means that Φ(p,q)(·) satisfies the contraction condition. Moreover, we get from (4.11) that

‖Φ(p,q)(x̄)− x̄‖ = ‖ϑ(r(x̄, p, q), p)− ϑ(0, p̄)‖ ≤ κ
[
‖r(x̄, p, q), q)‖+ `d1(p, p̄)

1
2

]
≤ κ

[
‖F (x̄, p̄, q̄)− F (x̄, p, q)‖+ `d1(p− p̄)

1
2

]
≤ (1− κε)ρ,

which implies that for any x ∈ IBρ(x̄)

‖Φ(p,q)(x)− x̄‖ ≤ ‖Φ(p,q)(x)− Φ(p,q)(x̄)‖+ ‖Φ(p,q)(x̄)− x̄‖ ≤ κε‖x− x̄‖+ (1− κε)ρ ≤ ρ.

This together with (4.13) shows that there is a unique fixed point x(p, q) of Φ(p,q) due to the

well-known contraction principle. Observe that x(p, q) = ϑ(r(x(p, q), p, q), q) is indeed a single-

valued localization of S with respect to IBη(p̄)× IBη(q̄)× IBρ(x̄). It suffices to check the Hölder

continuity of x(p, q). Pick any (p1, q1), (p2, q2) ∈ IBη(p̄) × IBη(q̄), with x1 := x(p1, q1) and

x2 := x(p2, q2) we obtain from (4.7), (4.11), and (4.13) that

‖x1 − x2‖ = ‖ϑ(r(x1, p1, q1), p1)− ϑ(r(x2, p2, q2), p2)‖

≤ κ‖r(x1, p1, q1)− r(x2, p2, q2)‖+ `d1(p1, p2)
1
2

≤ κ‖r(x1, p1, q1)− r(x2, p1, q1)‖+ κ‖r(x2, p1, q1)− r(x2, p2, q2)‖+ `d1(p1, p2)
1
2

≤ κε‖x1 − x2‖+ κ‖F (x2, p1, q1)− F (x2, p2, q2)‖+ `d1(p1, p2)
1
2

≤ κε‖x1 − x2‖+ κLd1(p1, p2) + κLd2(q1, q2) + `d1(p1, p2)
1
2

≤ κε‖x1 − x2‖+
[
κL
√

2η + `
]
d1(p1, p2)

1
2 + κLd2(q1, q2),
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which readily yields that

‖x1 − x2‖ ≤
κL
√

2η + `

1− κε
d1(p1, p2)

1
2 +

κL

1− κε
d2(q1, q2).

This ensures the Hölder continuity of x(·, ·) with an order pair (1
2 , 1) and thus completes the

proof of this lemma. �

Lemma 4.4 Suppose that (4.9) holds with some κ > 0 and that the map G in Lemma 4.3 has

a Hölder continuous single-valued localization ϑ with order pair (1, 1
2) around (0, p̄) for x̄. Then

there is some ` > 0 such that the localization ϑ is Hölder continuous with an order pair (1, 1
2)

and a modulus pair (κ, `) around (0, p̄).

Proof. To justify, suppose that gphϑ = gphG∩(U∗×V ×U), where U∗×V ×U ⊂ X×P×X

is a neighborhood of (0, p̄, x̄) and that

‖ϑ(x∗1, p1)− ϑ(x∗2, p2)‖ ≤ ν‖x∗1 − x∗2‖+ `d(q1, q2)
1
2 for all x∗1, x

∗
2 ∈ U∗ × P, (4.14)

where ν, ` are some positive constants. By shrinking U∗, V, U if necessary, due to assumption

(A4) we may assume that U ⊂ IBδ(x̄) and x∗ − A(x − x̄) ∈ IBδ(x̄∗) with x̄∗ := −F (x̄, p̄, q̄) for

all x∗ ∈ U∗ and x ∈ U , where δ is found in (4.9). Fix any p ∈ V and define ϑp(·) := ϑ(·, p). For

any (x∗, x) ∈ gphϑp and u ∈ D̂∗ϑp(x∗, x)(u∗) we get from (4.10) and

−u∗ ∈ D̂∗ϑ−1
p (x, x∗)(−u) = D̂∗G−1

p (x, x∗)(−u) = −A∗u+ D̂∗∂fp(x, x
∗ −A(x− x̄))(−u).

Due to the choice of U, V, U∗, note that (x, x∗ − A(x − x̄)) ∈ IBη(x̄, x̄∗). It follows from (4.9)
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and the above inclusion that

‖u∗‖ · ‖u‖ ≥ 〈−u∗,−u〉 ≥ 1

κ
‖ − u‖2 =

1

κ
‖u‖2,

which implies κ‖u∗‖ ≥ ‖u‖ for u∗ ∈ D̂∗ϑp(x∗, x)(u). By Lemma 2.7 and inequality (4.14), we

may find a new neighborhood U1×V1×U∗1 ⊂ U ×V ×U∗ of (x̄, p̄, 0) such that ϑ(U∗1 ×V1) ⊂ U1

and that

‖ϑ(x∗1, p)− ϑ(x∗2, p)‖ ≤ κ‖x∗1 − x∗2‖ for all x∗1, x
∗
2 ∈ U∗1 , p ∈ V1.

Hence for any (x∗1, p1), (x∗2, p2) ∈ U∗1 × V1 we deduce from the latter and (4.14) that

‖ϑ(x∗1, p1)− ϑ(x∗2, p2)‖ ≤ ‖ϑ(x∗1, p1)− ϑ(x∗2, p1)‖+ ‖ϑ(x∗2, p1)− ϑ(x∗2, p2)‖

≤ κ‖x∗1 − x∗2‖+ `d1(p1, p2)
1
2 ,

which completes the proof of the lemma. �

Lemma 4.5 Suppose that condition (4.9) is satisfied with some κ > 0. Define At := 1
2(A +

A∗) + tB with B := A−A∗ and

Gt(x
∗, p) :=

{
x ∈ IRn| x∗ ∈ F (x̄, p̄, q̄) +At(x− x̄) + ∂xf(x, p)

}
, t ∈ [0, 1]. (4.15)

Suppose further that there exists some τ ∈ [0, 1] such that Gτ has a Hölder continuous single-

valued localization with order pair (1, 1
2) around (0, p̄) for x̄. Then this localization is Hölder

continuous with the same order pair and a modulus pair (κ, `) for some ` > 0. Furthermore, Gt

also has a Hölder continuous single-valued localization with order pair (1, 1
2) and modulus pair

(κ, 2`) around (0, p̄) for x̄ whenever t ∈ [τ, τ + 1
2κ‖B‖) with the convention that 1/0 =∞.
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Proof. Observe first that

〈Aτ , u〉 =
1

2
〈(A+A∗)u, u〉+ τ〈Bu, u〉 = 〈Au, u〉,

since 〈Au, u〉 = 〈A∗u, u〉 for all u ∈ X. We deduce from (4.9) that

〈Aτu, u〉+ inf
{
〈u∗, u〉

∣∣ w∗ ∈ D∗∂fp(x, x∗)(u)
}
≥ 1

κ
‖u‖2 (4.16)

for all (x, p, x∗) ∈ gph ∂xf∩IBδ(x̄, p̄, x̄∗). Suppose that Gτ has a Hölder continuous single-valued

localization ϑτ with order pair (1, 1
2) around (0, p̄) for x̄. Applying Lemma 4.4 to Gτ allows

us to find some ` > 0 and a neighborhood U × V × U∗ ⊂ X × P × X of (x̄, p̄, 0) such that

ϑτ : U∗ × V → U is Hölder continuous with order pair (1, 1
2) and modulus pair (κ, `).

Pick any t ∈ [τ, τ + 1
2κ‖B‖) and choose some r > 0 sufficiently small such that IBrκ(x̄) ×

IBr(0)×IB r2κ2

`2
(p̄) ⊂ U×U∗×V . It is obvious that ε := r

(
1−κ(t−τ)‖B‖

)
∈ (0, r]. Furthermore,

for any fixed x∗ ∈ IB ε
2
(0) ⊂ U∗ and p ∈ IB ε2κ2

4`2
(p̄) we denote

T (x) := ϑτ (x∗ − (t− τ)B(x− x̄), p) for all x ∈ IBrκ(ϑτ (0, p)).

This mapping is well-defined. Indeed, for all x ∈ IBrκ(x̄) ⊂ U we have

‖x∗ − (t− τ)B(x− x̄)‖ ≤ ‖x∗‖+ (t− τ)‖B‖ · ‖x− x̄‖ < ε+ (t− τ)‖B‖rκ = r.

Moreover, we obtain from the Hölder continuity of ϑτ that

‖T (x̄)− x̄‖ = ‖ϑτ (x∗, p)− ϑτ (0, p̄)‖ ≤ κ‖x∗‖+ `d1(p, p̄)
1
2 ≤ rκ

[
1− (t− τ)κ‖B‖

]
. (4.17)
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Note further that the mapping T : IBrκ(x̄) → IBrκ(x̄) is Lipschitz continuous with modulus

κ(t − τ)‖B‖. To justify this claim, take any x1, x2 ∈ IBrκ(x̄), we deduce from the Hölder

continuity of ϑτ that

‖T (x1)− T (x2)‖ = ‖ϑτ (x∗ − (t− τ)B(x1 − x̄), p)− ϑτ (x∗ − (t− τ)B(x2 − x̄), p)‖

≤ κ(t− τ)‖Bx1 −Bx2‖ ≤ κ(t− τ)‖B‖ · ‖x1 − x2‖.
(4.18)

For any x ∈ IBrκ(x̄), combining (4.17) and (4.18) gives us that

‖T (x)− x̄‖ ≤ ‖T (x)− T (x̄)‖+ ‖T (x̄)− x̄‖ ≤ κ(t− τ)‖B‖rκ+ rκ
[
1− (t− τ)κ‖B‖

]
= rκ.

Applying the contraction mapping principle allows us to find a unique fixed point u ∈ IBrκ(x̄)

of T , which means that u = ϑτ (x∗− (t− τ)B(u− x̄), p), or equivalently, u ∈ Gt(x∗, p)∩ IBrκ(x̄).

Thus there is a single-valued localization ϑt of Gt with respect to IB ε
2
(0)× IB ε2κ2

4`2
(p̄)× IBrκ(x̄).

For any (x∗1, p1), (x∗2, p2) ∈ IB ε
2
(z̄)× IB ε2κ2

4`2
(q̄) we have

‖ϑt(x∗1, p1)− ϑt(x∗2, p2)‖ = ‖T (ϑt(x
∗
1, p1))− T (ϑt(x

∗
2, p2))‖

= ‖ϑτ (x∗1 − (t− τ)B(ϑt(x
∗
1, p1)− x̄), p1)− ϑτ (x∗1 − (t− τ)B(ϑt(x

∗
1, p2)− x̄), p2)‖

≤ κ‖x∗1 − x∗2‖+ κ(t− τ)‖B‖ · ‖ϑt(x∗1, p1)− ϑt(x∗2, p2)‖+ `d1(p1, p2)
1
2 ,

which gives us that

‖ϑt(x∗1, p1)− ϑt(x∗2, p2)‖ ≤ κ

1− κ(t− τ)‖B‖
‖x∗1 − x∗2‖+

`

1− κ(t− τ)‖B‖
d1(p1, p2)

1
2

≤ 2κ‖x∗1 − x∗2‖+ 2`d1(p1, p2)
1
2 ,

(4.19)

where the last inequality holds due to the choice of t that 1
2 < 1− κ(t− τ)‖B‖ ≤ 1.
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Moreover, similarly to (4.16) we get from (4.9) that

〈Atu, u〉+ inf
{
〈u∗, u〉

∣∣ u∗ ∈ D∗∂fp(x, x∗)(u)
}
≥ 1

κ
‖u‖2

for all (x, p, x∗) ∈ gph ∂xf ∩ IBδ(x̄, p̄, 0). This together Lemma 4.4 and Hölder condition (4.19)

gives us that the localization ϑt of Gt is Hölder continuous with order pair (1, 1
2) and modulus

pair (κ, 2`). The proof of the lemma is complete. �

Proof of Theorem 4.2. By using the notation A, At and Gt as in the statement of

Lemma 4.5, we first observe that A0 = 1
2(A+A∗) and that F (x̄, p̄, q̄) +A0(x− x̄) + ∂xf(x, p) =

∂xh(x, p) with

h(x, p) := 〈F (x̄, p̄, q̄), (x− x̄)〉+ 〈A(x− x̄), x− x̄〉+ f(x, p) for all (x, p) ∈ X × P.

Since f is parametrically continuously prox-regular at (x̄, p̄) for x̄∗ := −F (x̄, p̄, q̄), h is also

parametrically continuously prox-regular at (x̄, p̄) for 0. Moreover, by Lemma 2.5 we have

D̂∗∂hp(x
∗, x∗)(u) = A0u + D̂∗∂fp(x, x̂

∗)(w) with x̂∗ := x∗ − F (x̄, p̄, q̄) − A0(x − x̄) for all

(x, p, x∗) ∈ gph ∂xh. There is some η > 0 so small that (x, p, x̂∗) ∈ gph ∂xf ∩ IBδ(x̄, p̄, x̄∗)

whenever (x, p, x∗) ∈ gph ∂xh ∩ IBη(x̄, p̄, 0), where δ is found in (4.9). This together with (4.9)

implies that

inf
{
〈u∗, u〉

∣∣ u∗ ∈ D̂∗∂xhp(x, x∗)(u)
}

= 〈A0u, u〉+ inf
{
〈u∗, u〉

∣∣ u∗ ∈ D̂∗∂xfp(x, x̂∗)(u)
}

= 〈Au, u〉+ inf
{
〈u∗, u〉

∣∣ u∗ ∈ D̂∗∂xfp(x, x̂∗)(u)
}

≥ 1

κ
‖u‖2.
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By Theorem 3.5 and Theorem 3.7, we get from the latter that the map

(x∗, p) 7→
{
x ∈ X| x∗ ∈ ∂xh(x, p)

}
,

which is G0 admits a Hölder continuous single-valued localization with order pair (1, 1
2) and

modulus pair (κ, `) for some ` > 0 around (0, p̄) for x̄. Applying Lemma 4.5 a finite number

of times gives us that G1 = G has a Hölder continuous single-valued localization with order

pair (1, 1
2) and modulus pair (κ, 2n`) for some n ∈ IN around (0, p̄) for x̄. This together with

Lemma 4.3 completes the proof of the theorem. �

4.2.2 Lipschitz continuity of parametric generalized equations

Recall that Hölderian full stability becomes its Lipschitzian counterpart when condition (3.33)

is satisfied. The following result gives a similarity: the Hölder continuity in Theorem 4.2 turns

into the Lipschitzian one if condition (3.33) is fulfill.

Theorem 4.6 (Lipschitz continuity of parametric generalized equations). Let x̄ ∈ X

satisfy x̄ ∈ S(p̄, q̄). Assume that f is parametrically continuously prox-regular at (x̄, p̄) for

x̄∗ := −F (x̄, p̄, q̄). If both conditions (3.33) and (4.9) hold with some κ > 0, then the solution

mapping S in (4.6) admits a Lipschitz continuous single-valued localization around (p̄, q̄) for x̄.

Similarly to the proof of Theorem 4.2, we prove this theorem by constructing several lemmas

as follows.

Lemma 4.7 Let (x̄, p̄, q̄) ∈ X×P ×Q satisfy x̄ ∈ S(p̄, q̄) and let G : IRn× IRd ⇒ IRn be defined

as in Lemma 4.3. If G admits a Lipschitz continuous single-valued localization at (0, p̄) for x̄,

then the solution map S in (4.6) also has a Lipschitz continuous single-valued localization at

(p̄, q̄) for x̄.
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Proof. The proof of this lemma is quite similar to that of Lemma 4.3. Indeed, this is

expected due to [58, Theorem 2.1]. We omit the details. �

The next lemma follows the spirit of Lemma 4.4 for Lipschitzian stability.

Lemma 4.8 Let (x̄, p̄, q̄) ∈ X × P ×Q satisfy x̄ ∈ S(p̄, q̄). Suppose that both conditions (3.33)

and (4.9) hold with some κ > 0 and that the map G in Lemma 4.4 has a Lipschitz continuous

single-valued localization ϑ at (0, p̄) for x̄. Then ϑ is Lipschitz continuous around (0, p̄) with a

modulus pair (κ, `) for some ` > 0.

Proof. Suppose that ϑ are Lipschitz around (z̄, q̄). Hence there are µ, ` > 0 such that

‖ϑ(x∗1, p1)− ϑ(x∗2, p2)‖ ≤ `
[
‖x∗1 − x∗2‖+ d1(p1, p2)

]
for all (x∗1, p1), (x∗2, p2) ∈ IBµ(0, p̄).(4.20)

Moreover, it follows from Lemma 4.4 that the mapping ϑ is Hölder continuous around (0, q̄)

with order pair (1, 1
2) and the modulus pair (κ, `1) for some `1 > 0. Without loss of generality

we assume that

‖ϑ(x∗1, p1)− ϑ(x∗2, p2)‖ ≤ κ‖x∗1 − x∗2‖+ `1d1(p1, p2)
1
2 for all (x∗1, p1), (x∗2, p2) ∈ IBµ(z̄, q̄).

This together with (4.20) gives us that for any (z1, q1), (z2, q2) ∈ IBµ(z̄, q̄)

‖ϑ(x∗1, p1)− ϑ(x∗2, p2)‖ ≤ ‖ϑ(x∗1, p1)− ϑ(x∗2, p1)‖+ ‖ϑ(x∗2, p1)− ϑ(x∗2, p2)‖

≤ κ‖x∗1 − x∗2‖+ `d1(p1, p2),

which justifies that ϑ is Lipschitz continuous around (0, q̄) with modulus pair (κ, `). The proof

is complete. �

The following lemma is a counterpart of Lemma 4.5 for Lipschitzian stability.
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Lemma 4.9 Let (x̄, p̄, q̄) ∈ X × P ×Q satisfy x̄ ∈ S(p̄, q̄). Suppose that both conditions (3.33)

and (4.9) are satisfied with some κ > 0. Suppose further that Gτ defined in (4.15) admits a

Lipschitz continuous single-valued localization at (0, p̄) for x̄. Then this localization is Lipschitz

continuous with a modulus pair (κ, `) for some ` > 0. Furthermore, Gt in (4.15) also has a

Lipschitz continuous single-valued localization with modulus pair (κ, 2`) at (0, p̄) for x̄ whenever

t ∈ [τ, τ + 1
2κ‖B‖) with the convention that 1/0 =∞.

Proof. By employing Lemma 4.8 instead of Lemma 4.4, the proof of this lemma is very

similar to the one of Lemma 4.5. We omit the details. �

Proof of Theorem 4.6. Recall the function

h(x, p) := 〈F (x̄, p̄, q̄), x− x̄〉+
1

2
〈A(x− x̄), x− x̄〉+ f(x, p)

used in the proof of Theorem 4.2. By applying Theorem 3.9 and Corollary 3.11 to h, we obtain

that G0 in (4.15) admits a Lipschitz continuous single-valued localization around (0, q̄) for x̄

with a modulus pair (κ, `) for some ` > 0. Employing Lemma 4.9 for a finite consecutive

steps, we derive that G1 has a Lipschitz continuous single-valued localization around (0, p̄) for

x̄ with modulus pair (κ, 2n`) for some n ∈ IN . Combining this with Lemma 4.7 ensures that the

solution map S in (4.6) admits a Lipschitz continuous single-valued localization around (p̄, q̄)

for x̄. The proof is complete. �

When X,P,Q are finite-dimensional spaces, we derive a point-based sufficient condition to

the Lipschitz stability of a single-valued localization of the mapping S in (4.6).

Corollary 4.10 Let X,P,Q be finite-dimensional spaces and let x̄ ∈ X satisfy x̄ ∈ S(p̄, q̄).

Assume that the function f is parametrically continuously prox-regular at (x̄, p̄) for x̄∗ :=
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−F (x̄, p̄, q̄). Suppose further that condition (3.37) and the following inequality

〈∇xF (x̄, p̄, q̄)u, u〉+ inf
{
〈u∗, u〉

∣∣ (u∗, p∗) ∈ D∗∂xf(x̄, p̄, x̄∗)(u)
}
> 0 if u ∈ X \ {0}, (4.21)

hold. Then the solution mapping S in (4.6) admits a Lipschitz continuous single-valued local-

ization at (p̄, q̄) for x̄.

Proof. To justify, it suffices to show that inequality (4.21) ensures (4.9). Indeed, we use

again the function h in the proof of Theorem 4.6 above

h(x, p) := 〈F (x̄, p̄, q̄), x− x̄〉+
1

2
〈A(x− x̄), x− x̄〉+ f(x, p) for all (x, p) ∈ X × P.

Observe that ∂xh(x, p) = F (x̄, p̄, q̄)+ 1
2(A+A∗)(x−x̄)+∂xf(x, p). Note further from Lemma 2.5

that

D∗∂xh(x̄, p̄, 0)(u) =
1

2
(A+A∗)u+D∗∂xf(x̄, p̄, x̄∗)(u),

which clearly implies that the validity of (3.37) and (4.21) is equivalent to the following

(i) (0, p∗) ∈ D∗∂xh(x̄, p̄, x̄∗)(0) =⇒ p∗ = 0,

(ii) inf
{
〈u∗, u〉| u∗ ∈ D∗∂xh(x̄, p̄, 0)(u)

}
> 0

for any u ∈ X \0. Thanks to Theorem 3.14 and Corollary 3.11 that these two conditions ensure

the existence of some κ, δ > 0 such that

inf
{
〈u∗, u〉| u∗ ∈ D̂∗∂hp(x, x∗)(u)

}
≥ 1

κ
‖u‖2 for all (x, p, x∗) ∈ gph ∂xh ∩ IBδ(x̄, p̄, 0).
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By Lemma 2.5 the latter easily verifies (4.9) and thus completes the proof of the lemma. �

4.3 Parametric Variational Systems with Monotonicity

In this section we drop off the assumption (A4) on differentiability of F in Section 4.2.

4.3.1 Hölder continuity

Define the following the following mapping

Pλ(x∗, p) :=
{
x ∈ X| x∗ ∈ λ∂xf(x, p) + x

}
. (4.22)

The key tool used in this part is the next proposition.

Proposition 4.11 Let (x̄, p̄, q̄) ∈ X satisfy x̄ ∈ S(p̄, q̄). Assume that f is parametrically

continuously prox-regular at (x̄, p̄) for x̄∗ := −F (x̄, p̄, q̄) with respect to r > 0 in (2.27). Then

for any λ ∈ (0, r−1), the mapping Pλ admits a Hölder continuous single-valued localization Πλ

around (λx̄∗+ x̄, p̄) for x̄ with order pair (1, 1
2) and modulus pair

(
(1− rλ)−1, `

)
for some ` > 0.

Proof. Fix λ ∈ (0, r−1) and define k(x, p) := λf(x, p) + 1
2‖x‖

2 for all (x, p) ∈ X × P . Note

from Lemma 2.5 that ∂xk(x, p) = λ∂xf(x, p) + x for all (x, p) ∈ X × P . Due to the assumption

of parametric continuous prox-regularity of f at (x̄, p̄) for x̄∗ with respect to r > 0 in (2.27), we

find some neighborhood U × V × U∗ of (x̄, p̄, x̄∗) such that condition (2.27) is satisfied. Define

W := λU∗+U as a neighborhood of x̂∗ = λx̄∗+ x̄. For any (u, p, u∗) ∈ gph ∂xk ∩ (U ×V ×W ),

we may assume from (2.27) that

f(x, p) ≥ f(u, p) + 〈λ−1(u∗ − u), x− u〉 − r

2
‖x− u‖2 for all x ∈ U,
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which implies that

k(x, p) = λf(x, p) +
1

2
‖x‖2 ≥ λf(u, p) + 〈u∗ − u, x− u〉 − rλ

2
‖x− u‖2 +

1

2
‖x‖2

= k(u, p)− 1

2
‖u‖2 + 〈u∗, x− u〉 − 〈u, x− u〉 − rλ

2
‖x− u‖2 +

1

2
‖x‖2

= k(u, p) + 〈u∗, x− u〉+
1− rλ

2
‖x− u‖2.

(4.23)

This tells us that the function k satisfies the uniform second-order growth condition at (x̄, p̄, x̄∗)

in (3.10). Moreover, the basic constraint qualification (3.7) holds for the function k at (x̄, p̄),

i.e., the mapping p 7→ epi k(·, p) is Lipschitz-like around (p̄, (x̄, k(x̄, p̄)). The proof for this fact

is similar to the one after (3.30). Employing Theorem 3.5 to (4.23) shows us that the mapping

Pλ admits a Hölder continuous single-valued localization at (x̂∗, p̄) for x̄ with order pair (1, 1
2)

and modulus pair
(
(1− rλ)−1, `

)
for some ` > 0. This completes the proof of the proposition.

�

The following result generalizes [66, Theorem 2.1], which obtains Hölder continuity of solu-

tions to a specific model of (4.5) with f(x, p) = δK(p)(x) and a closed convex set-valued mapping

K : P ⇒ X. In the latter case note that the assumption that K is Lipschitz-like around (p̄, x̄)

in [66, Definition 1.1] turns into BCQ of the function f at (x̄, p̄) in (3.7). Here we derive a

similar result for the parametric variational system (4.5) without any assumption on convexity.

Theorem 4.12 Let (x̄, p̄, q̄) ∈ X satisfy x̄ ∈ S(p̄, q̄). Suppose that f is parametrically continu-

ously prox-regular at (x̄, p̄) for x̄∗ := −F (x̄, p̄, q̄) with respect to r > 0 in (2.27). Suppose further

that there exist κ > r and a neighborhood U × V ×W of (x̄, p̄, q̄) such that for any x1, x2 ∈ U

and (p, q) ∈ V ×W we have

〈F (x1, p, q)− F (x2, p, q), x1 − x2〉 ≥ κ‖x1 − x2‖2. (4.24)
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Then the solution mapping S in (4.6) admits a Hölder continuous single-valued localization at

(p̄, q̄) for x̄ with order pair (1
2 , 1).

Proof. Proposition 4.11 allows us to find a Hölder continuous single-valued localization Πλ

of the mapping Pλ at (λx̄∗ + x̄, p̄) for x̄ with order pair (1, 1
2) and modulus pair

(
(1− rλ)−1, `

)
for some ` > 0. Thus we may find a neighborhood (U1 × V1 × U∗1 ) ⊂ U × V ×X of (x̄, p̄, x̂∗)

with x̂∗ := λx̄∗ + x̄ such that gphΠλ = gphPλ ∩ (U∗1 × V1 × U1) and that

‖Πλ(x∗1, p1)−Πλ(x∗2, p2)‖ ≤ 1

1− rλ
‖x∗1 − x∗2‖+ `‖p1 − p2‖

1
2 (4.25)

for all (x∗1, p1), (x∗2, p2) ∈ U∗1 × V1. Moreover, it is worth noting that x ∈ S(p, q) if and only if

x− λF (x, p, q) ∈ λ∂xf(x, p) + x,

which equivalently means that x ∈ Pλ(x − λF (x, p, q), p). Due to the Lipschitz continuity

assumption (A2), we find a neighborhood (U2, V2,W2) ⊂ U × V × W of (x̄, p̄, q̄) such that

(x − λF (x, p, q), p) ∈ U∗1 × V1 for all (x, p, q) ∈ U2 × V2 ×W2. Thus x ∈ S(p, q) if and only if

x = Πλ(x− λF (x, p, q), p) := H(p,q)(x) for (x, p, q) ∈ U2 × V2 ×W2.

Fix (p, q) ∈ V2 × W2, we claim that H(p,q) satisfies the contraction condition for some

λ ∈ (0, r−1). Indeed, for any x1, x2 ∈ U2 we obtain from (4.25) that

‖H(p,q)(x1)−H(p,q)(x2)‖2 = ‖Πλ(x1 − λF (x1, p, q), p)−Πλ(x2 − λF (x2, p, q), p)‖2

≤ 1

(1− rλ)2
‖(x1 − x2)− λ(F (x1, p, q)− F (x2, p, q))‖2

=
1

(1− rλ)2

[
‖x1 − x2‖2 − 2λ〈F (x1, p, q)− F (x2, p, q), x1 − x2〉+ λ2‖F (x1, p, q)− F (x2, p, q)‖2

]
≤ 1

(1− rλ)2

[
1− 2λκ+ λ2L2

]
‖x1 − x2‖2 =

[
1−

λ
(
2(k − r)− λ(L2 − r2)

)
(1− rλ)2

]
‖x1 − x2‖2.
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Since κ > r, we can find some λ ∈ (0, r−1) sufficiently small such that 2(κ − r) > λ(L2 − r2).

By the above inequalities we have

‖H(p,q)(x1)−H(p,q)(x2)‖ ≤ α‖x1 − x2‖, (4.26)

where α :=
[1−2λκ+λ2L2]

1
2

1−rλ < 1. Moreover, due to the continuity of the maps Πλ and F we may

find some δ, η > 0 such that IBδ(x̄)× IBη(p̄)× IBη(q̄) ⊂ U2 × V2 ×Q2 and that

‖H(p,q)(x̄)− x̄‖ = ‖Πλ(x̄− λf(x̄, p, q), p)−Πλ(x̄− f(x̄, p̄, q̄), p̄)‖ ≤ δ(1− α)

for all (p, q) ∈ IBη(p̄) × IBη(q̄). This together with (4.26) shows that H(p,q) has a unique fixed

point in IBδ(x̄), which is called x(p, q). Note that gphx(·, ·) = gphS∩(IBη(p̄)×IBη(q̄)×IBδ(x̄)).

It remains to check the Hölder continuity of this map. Indeed, take any (p1, q1), (p2, q2) ∈

IBη(p̄, q̄), with x1 := x(p1, q1) and x2 := x(p2, q2) we obtain from (4.7), (4.25), and (4.26) that

‖x1 − x2‖ = ‖H(p1,q1)(x1)−H(p2,q2)(x2)‖

≤ ‖H(p1,q1)(x1)−H(p1,q1)(x2)‖+ ‖H(p1,q1)(x2)−H(p2,q2)(x2)‖

≤ α‖x1 − x2‖+ ‖Πλ(x2 − λF (x2, p1, q1), p1)−Πλ(x2 − λF (x2, p2, q2), p2)‖

≤ α‖x1 − x2‖+
1

1− rλ

[
‖λF (x2, p1, q1)− λF (x2, p2, q2)‖+ `‖p1 − q2‖

1
2

]
≤ α‖x1 − x2‖+

1

1− rλ

[
Ld1(p1, p2) + Ld2(q1, q2) + `d1(p1, p2)

1
2

]
≤ α‖x1 − x2‖+

1

1− rλ

[
(L
√

2η + `)d1(p1, p2)
1
2 + Ld2(q1, q2)

]
,

which clearly yields that

‖x1 − x2‖ ≤
1

(1− α)(1− rλ)

[
(L
√

2η + `)d1(p1, p2)
1
2 + Ld2(q1, q2)

]
.
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This verifies the Hölder continuity of x(·, ·) with the order pair (1
2 , 1) and thus completes the

proof of the theorem. �

Remark. The assumption κ > r is essential in the theorem. Indeed, if κ ≤ r choose

f(x, p) = δIR2
+

(x) − r
2‖x‖

2 and F (x, p, q) = κx + p + q for all (x, p, q) ∈ IR2 × IR2 × IR2. It is

clear that f is parametrically continuously prox-regular at (x̄, p̄) = (0, 0) ∈ IR2× IR2 for x̄∗ = 0

with respect to r in (2.27) and all conditions (A1), (A2), and (A3) are satisfied. Note further

that inequality (4.24) holds and that x ∈ S(p, q) if and only if (r−κ)x− p− q ∈ NIR2
+

(x) which

equivalently means (κ− r)x+ p+ q ∈ IR2
+ and x ∈ IR2

+. Since κ− r ≤ 0, we get from the latter

that p+ q ∈ IR2
+, which is not the case for all (p,q) around (0, 0) ∈ IR2 × IR2. Thus S does not

admit a Hölder continuous single-valued localization around (0, 0) ∈ IR2 × IR2 for x̄.

4.3.2 Lipschitz continuity

The following proposition is the counterpart of Proposition 4.11 for Lipschitz continuity.

Proposition 4.13 Let (x̄, p̄, q̄) ∈ X satisfy x̄ ∈ S(p̄, q̄). Assume that f is parametrically

continuously prox-regular at (x̄, p̄) for x̄∗ := −F (x̄, p̄, q̄) with respect to r > 0 in (2.27). Suppose

further that condition (3.33) holds for the function f . Then for any λ ∈ (0, r−1), the mapping

Pλ admits a Lipschitzian continuous single-valued localization Πλ around (λx̄∗+ x̄, p̄) for x̄ with

order pair (1, 1
2) and a modulus pair

(
(1− rλ)−1, `

)
for some ` > 0.

Proof. Following the proof of Proposition 4.11 ensures that the mapping k(x, p) = λg(x, p)+

1
2‖x‖

2 satisfies the uniform second-order growth condition (4.23) at (x̄, p̄, x̂∗) with (x̂∗ := λx̄∗+x̄

and also the basic constraint qualification at (x̄, p̄). Moreover, it is easy to check from condition

(3.33) that the mapping p 7→ gph ∂xk(·, p) is Lipschitz-like around (p̄, x̄, x̂∗).

By employing Theorem 3.9 to the function k at (x̄, p̄) for x̂∗ ∈ ∂xk(x̄, p̄), we obtain that the
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mapping Πλ admits a Lipschitz continuous single-valued localization at (v̄, q̄) for v̂ := λv̄ + x̄

with a modulus pair (1− rλ, `) for some ` > 0. �

The major theorem in this section is stated below. In the case of (4.4) with closed convex set-

valued mapping K : P ⇒ X, this result reduces to [12, Theorem 2.1] and to [67, Theorem 3.1]

when changing the parameter p in the function F from (4.4) by q.

Theorem 4.14 Let (x̄, p̄, q̄) ∈ X satisfy x̄ ∈ S(p̄, q̄). Suppose that f is parametrically con-

tinuously prox-regular at (x̄, p̄) for x̄∗ := −F (x̄, p̄, q̄) with respect to r > 0 in (2.27). Suppose

further that both conditions (3.33) and (4.24) are satisfied with some κ > r. Then the solution

mapping S admits a Lipschitz continuous single-valued localization at (p̄, q̄) for x̄.

Proof. The proof follows the lines in that of Theorem 4.12 by using Proposition 4.13 instead

of Proposition 4.11. We skip the details. �

4.4 Applications to Variational Inequalities

By dropping parameters p in (4.5) and considering f as an indicator of convex set K in X,

we narrow our work to the variational inequalities (4.2). The section is devoted to some new

sufficient conditions to strong regularity introduced by Robinson [58] as follows.

Definition 4.15 (strong regularity). Let K be a closed convex set in X and let F : X → X

be Fréchet differentiable at x̄ with 0 ∈ F (x̄) +NK(x̄). We say the variational inequalities

0 ∈ F (x) +NK(x)

is strongly regular at x̄ if the inverse mapping of T : X ⇒ X defined by

T (x) := F (x̄) +∇F (x̄)(x− x̄) +NK(x), x ∈ X (4.27)
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admits a Lipschitz continuous single-valued localization around (0, x̄).

Theorem 4.16 (sufficient condition to strong regularity of variational inequalities).

Let K be a closed convex set in X and let F : X → X be Fréchet differentiable at x̄ with

0 ∈ F (x̄) + NK(x̄). Then the variational inequality (4.2) is strongly regular at x̄ provided that

there exist some δ, κ > 0 such that for all (x, x∗) ∈ gphNK ∩ IBδ(x̄,−F (x̄)) we have

〈∇F (x̄)u, u〉+ inf
{
〈u∗, u〉

∣∣ u∗ ∈ ∂̆2δK(x, x∗)(u)
}
≥ 1

κ
‖u‖2 whenever u ∈ X.

If, in addition, X is a finite-dimensional space, then the above condition can be replaced by

〈∇F (x̄)u, u〉+ inf
{
〈u∗, u〉

∣∣ u∗ ∈ ∂2δK(x̄,−F (x̄))(u)
}
> 0 whenever u ∈ X \ {0}. (4.28)

Proof. Define F (x, q) := F (x̄) + ∇F (x̄)(x − x̄) − q for all (x, q) ∈ X × X. Applying

Theorem 4.2 to the case the parameter p is ignored in (4.4) and f = δK , we have that the

mapping

S(q) :=
{
x ∈ X| ∈ 0 ∈ F (x, q) +NK(x)

}
, q ∈ X

has a Lipschitz continuous single-valued localization around (0, x̄). Observe that S(q) = T−1(q),

the latter ensures that the variational inequality (4.2) is strongly regular at x̄.

When dimX < ∞, instead of using Theorem 4.2 we employ Corollary 4.10 in the same

situation and also obtain the strong regularity of the variational inequality (4.2) at x̄. The

proof is complete. �

The following result is a simple consequence of the above theorem, in which the second part

is similar to [5, Proposition 5.2] in finite-dimensional spaces.
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Corollary 4.17 Let X be a finite-dimensional space and F : X → X be differentiable at x̄ with

0 ∈ F (x̄) +NK(x̄). Suppose that

〈∇F (x̄)u, u〉 > 0 for all u ∈ dom ∂2δK(x̄,−F (x̄))(·), u 6= 0. (4.29)

Then the variational inequality (4.3) is strongly regular at x̄.

Consequently, the latter is also valid when replacing (4.29) by the following condition

〈∇F (x̄)u, u〉 > 0 for all u ∈ spanTK(x̄) ∩ F (x̄)⊥, u 6= 0.

Proof. Since NK is a maximal monotone operator, it follows from Lemma 2.9 that

inf
{
〈u∗, u〉

∣∣ u∗ ∈ ∂2δK(x̄,−F (x̄))(u)
}
> 0 for all u ∈ dom ∂2δK(x̄,−F (x̄))(·).

This shows that condition (4.29) is sufficient for (4.28) and thus verifies the strong regularity

of (4.3) by Theorem 4.16.

To justify the second claim of the corollary, it suffices to show that

dom ∂2δK(x̄,−F (x̄))(·) ⊂ spanTK(x̄) ∩ F (x̄)⊥. (4.30)

Indeed, pick any u ∈ dom ∂2δK(x̄,−F (x̄))(·), we find a sequence (uk, xk, vk) such that uk → u

and (xk, vk)
gphNK→ (x̄,−F (x̄)). Thanks to (6.5) in Chapter 6, we have uk ∈ −TK(xk) ∩ v⊥k .

Hence, for each k ∈ IN there exist sequences ynk → xk and tnk ↓ 0 such that ynk−xk
tnk

→ uk as

n → ∞. For each k ∈ IN we find zk ∈ {ynk} and αk ∈ {tnk} such that zk → x̄, αk ↓ 0 , and
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that zk−xk
αk
− uk → 0 as k →∞. It follows that

u = lim
k→∞

uk = lim
k→∞

zk − xk
αk

= lim
k→∞

(zk − x̄)− (xk − x̄)

αk
∈ cl

[
TK(x̄)−TK(x̄)

]
= cl

[
spanTK(x̄)

]

with a note that zk − x̄, xk − x̄ ∈ TK(x̄) for all k. Since spanTK(x̄) is a subspace of the

finite-dimensional space X, it is closed, i.e., cl
[
spanTK(x̄)

]
= spanTK(x̄). Furthermore, since

〈uk, vk〉 = 0, we derive 〈u, F (x̄)〉 = 0 when taking k → ∞. This together with the above

inclusion verifies (4.30) and thus completes the proof of the corollary. �

Next let us discuss two particular (nonpolyhedral) cases of K, which are of high interests in

optimization. The first case is for the set of symmetric positive matrices.

Corollary 4.18 Let X = Sn be the space of n × n symmetric matrices and let K = Sn+ be

the cone of n × n symmetric positive semidefinite matrices. Suppose that F : Sn → Sn is

differentiable at B with Sn+ 3 F (B) ⊥ B ∈ Sn+. Then the variational inequality (4.2), which is

equivalent to the complementarity problem

Sn+ 3 F (C) ⊥ C ∈ Sn+ (4.31)

is strongly regular at B provided that

〈∇F (B)U,U〉+ 2〈F (B), UB†U〉 > 0 for all U ∈ L(B), (4.32)

where A† is the Moore-Penrose pseudoinverse of B, and where L(B) is defined by

L(B) :=
{
U ∈ Sn| P ∗βUPγ = 0, P ∗UPγ = 0

}
,
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with the matrix P taken from the eigenvalue decomposition (5.24) for A = B − F (B).

Proof. Since Sn+ is a self-dual convex cone, it is well-known that variational inequality (4.2)

is equivalent to the complementarity problem (4.31). Moreover, it follows from Lemma 5.9 that

dom ∂2δSn+(B,−F (B)) = L(B) and that

inf
{
〈C,U〉

∣∣ C ∈ ∂2δSn+(B,−F (B))(U)
}

= 2〈F (B), UB†U〉 for all U ∈ dom ∂2δSn+(B,−F (B)).

This together with Theorem 4.16 ensures that the complementarity problem (4.31) is strongly

regular at B and thus completes the proof of the corollary. �

Let us complete the section by noting that full characterizations of strong regularity of the

variational inequalities for the above specific case have been established by Pang, Sun and Sun

[54, Theorem 17] in term of degree theory. Albeit our condition (4.32) is just sufficient for

strong regularity, it seems to be more verifiable.
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Part B: Applications

Chapter 5

Full Stability in Finite-Dimensional

Constrained Optimization

5.1 Overview

This chapter concerns the study of the corresponding counterparts of both Hölderian and Lip-

schitzian full stability of local solutions to the following large class of problems in constrained

optimization:

P̂


minimize ϕ(x, p̄) subject to x ∈ X,

g(x, p̄) ∈ Θ,

(5.1)

where the cost function ϕ : X × P → IR and the constrained mapping g : X × P → Y are C2-

smooth around the reference point (x̄, p̄), where X,Y, P are finite-dimensional Euclidean space,

and where Θ is a closed and convex subset of Y . Besides standard nonlinear programs (NLP),

model (5.1) encompasses various problems of conic programming [5, 41] when the set Θ is a

cone, mathematical programs with polyhedral constraints (MPPC) designated in [48] when Θ is

a polyhedral set, etc. It is worth noting that, despite describing (5.1) in the classical smooth

and convex terms, the progress in the study of full stability and related issues achieved in this

and the subsequent sections are based on the results and methods of nonsmooth variational
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analysis developed above.

The main purpose of this chapter is to study full stability for optimization problem (5.1) and

its correlations to other well-known concepts of stability such as Robinson’s strong regularity and

Kojima’s strong stability. In this way we provide a lot of new understanding for those stabilities

as well. In accordance with the the scheme of Section 3 the two-parameter perturbation of P̂

in (5.1) reads as

P̂(x∗, p)


minimize ϕ(x, p)− 〈x∗, x〉 subject to x ∈ X,

g(x, p) ∈ Θ

(5.2)

for any (x∗, p) ∈ X × P . It can be written in the equivalent unconstrained format

P̂(x∗, p) minimize f(x, p)− 〈x∗, x〉 with f(x, p) := ϕ(x, p) + δΘ

(
g(x, p)

)
, (x, p) ∈ X × P.(5.3)

5.2 Full Stability, Strong Regularity, and Strong Stability in

Constrained Optimization

To proceed with the study of full stability and related properties, recall that the Robinson

constraint qualification (RCQ) holds in P̂ at the point x̄ with g(x̄, p̄) ∈ Θ if

0 ∈ int
{
g(x̄, p̄) +∇xg(x̄, p̄)X −Θ

}
. (5.4)

As well known, RCQ (5.4) reduces to the classical Mangasarian-Fromovitz constraint qualifica-

tion (MFCQ) defined later in (5.37) for NLP problems. If x is a local minimizer of P̂ and RCQ

is satisfied at x, then x is the stationary point meaning that there is some Lagrange multiplier
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λ ∈ Y ∗, the dual space of Y , such that

0 ∈ ∇xL(x, p̄, λ) and λ ∈ NΘ(g(x, p̄)), (5.5)

where L(·, ·, ·) is the usual Lagrangian function defined by

L(x, p, λ) := ϕ(x, p) + 〈λ, g(x, p)〉 with (x, p) ∈ X × P and λ ∈ Y ∗. (5.6)

The system in (5.5) can be written as the form of Robinson’s generalized equation (GE) [58]:

0 ∈

 ∇xL(x, p̄, λ)

−g(x, p̄)

+

 0

N−1
Θ (λ)

 . (5.7)

Note that x is a stationary point of P̂(x∗, p) if and only if x∗ ∈ ∂xf(x, p) for (x, p) near (x̄, p̄) due

to the validity of RCQ (5.4). Since RCQ is always satisfied in all the results below concerning

the stability around (x̄, p̄), from now on we suppose without loss of generality that the latter

equivalence holds for all x.

Let Φ : X × Q → IR and G : X × Q → Y , where Q is also a finite-dimensional Euclidean

space. The pair (Φ(x, q), G(x, q)) provides a C2-smooth parameterization of (ϕ(x, p̄), g(x, p̄)) at

q̄ ∈ Q if both mappings Φ and G are twice continuously differentiable with Φ(x, q̄) = ϕ(x, p̄)

and G(x, q̄) = g(x, p̄). Consider the following parametric optimization problem:

P̃(q)


minimize Φ(x, q) subject to x ∈ X,

G(x, q) ∈ Θ.

(5.8)

Observe that problem P̂(x∗, p) in (5.2) is a special form of P̃(q) when Φ(x, q) = ϕ(x, p)−〈x∗, x〉
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and G(x, q) = g(x, p) for q = (x∗, p) ∈ X × P and q̄ = (0, p̄). The next definition is taken from

[5, Definition 5.16].

Definition 5.1 (uniform quadratic growth condition). Let x̄ be a stationary point of

problem P̂. The uniform quadratic growth condition (UQGC) holds at x̄ with respect

to a C2-smooth parameterization (Φ(x, q), G(x, q)) of (ϕ(x, p̄), g(x, p̄)) at some q̄ ∈ Q if there

exist ` > 0 and neighborhoods U of x̄ and W of q̄ such that for any q ∈ W and any stationary

x̄(q) ∈ U of problem P̃(q) we have

Φ(x, q) ≥ Φ
(
x̄(q), q

)
+ `‖x− x̄(q)‖2 for all x ∈ U, G(x, q) ∈ Θ. (5.9)

We say that UQGC (5.9) holds at x̄ if it holds for all C2-smooth parameterization of the pair

(ϕ(x, p̄), g(x, p̄)).

Our uniform second-order growth condition (3.10) for the function f(x, p) defined in (5.3) can

be viewed as the above UQGC at x̄ with respect to the C2-smooth parameterization (ϕ(x, p)−

〈x∗, p〉, g(x, p)). It is shown in [5, Theorem 5.24] that under RCQ (5.4) the defined UQGC

is equivalent to Kojima’s strong stability [23] formulated in the first parts of the following

definition taken from [5, Definition 5.33].

Definition 5.2 (strong stability). We say that a stationary point x̄ of problem P̂ is strongly

stable with respect to a C2-smooth parameterization (Φ(x, q), G(x, q)) of (ϕ(x, p̄), g(x, p̄)) at

some q̄ if there is a neighborhood U×Q of (x̄, q̄) such that for any q ∈ Q the parametric problem

P̃(q) has a unique stationary point x̄(q) ∈ U such that the mapping q 7→ x̄(q) is continuous

on Q. If this holds for any C2-smooth parameterization of (ϕ(x, p̄), g(x, p̄)), we say that x̄ is

strongly stable. In the conditions above the mapping q 7→ x̄(q) in Lipschitz continuous on Q, we
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speak about Lipschitzian strong stability of x̄.

Next we show that the continuity of the function x̄(q) in Definition 5.2 can be strengthened

to Hölderian continuity with degree 1
2 provided that x̄ is a local minimizer of problem P̂ under

the validity of RCQ (5.4) at x̄. This Hölder continuity can be treated as a natural counterpart of

Hölderian full stability in the problem under consideration. In the case of NLP (Θ = {0}×IRl−),

our result agrees with that by Gfrerer [19, Corollary 3.2] due to the fact that Kojima’s strong

stability is characterized by Robinson’s strong second-order sufficient condition (SSOSC) [58].

Note further that the Hölder exponent 1
2 is shown to the best possible for NLP; see Example 3.2.

Theorem 5.3 (strong stability and Hölder continuity). Let x̄ be a local minimizer of

problem P̂, and RCQ (5.4) holds at x̄. Then the point x̄ is strongly stable in the sense of Defini-

tion 5.2 if and only if for any C2-smooth parameterization (Φ(x, q), G(x, q)) of (ϕ(x, p̄), g(x, p̄))

at some q̄ ∈ IRk there exist a neighborhood U ×Q of (x̄, q̄) and a constant κ > 0 such that for

every q ∈ Q the parametric problem P̃(q) has a unique stationary point x̄(q) ∈ U satisfying the

Hölder continuity property

‖x̄(q1)− x̄(q2)‖ ≤ κ‖q1 − q2‖
1
2 whenever q1, q2 ∈ Q. (5.10)

Proof. It is obvious that x̄ is strongly stable if the function x̄(q) in Definition 5.2 satisfies

the Hölderian continuity property (5.10). Conversely, suppose that the stationary point x̄ is

strongly stable. Take any C2-smooth parameterization (Φ(x, q), G(x, q)) of (ϕ(x, p̄), g(x, p̄)) at

some q̄ ∈ Q with (x, q) ∈ X×Q. Define Ψ(x,w) := Φ(x, q)−〈x∗, x〉 and G(x, z) := G(x, p) with

z = (q, x∗) ∈ Q×X. Note that (Ψ,G) is also a C2-smooth parameterization of (ϕ(x, p̄), g(x, p̄))

at z̄ := (q̄, 0). Since x̄ is strongly stable, it follows from [5, Theorem 5.34] that UQGC (5.9)
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holds at x̄ with respect to the parameterization (Ψ,G). By Definition 5.1 there exist ` > 0 and

neighborhoods U of x̄ and Z = W × U∗ of z̄ = (q̄, 0) such that for any (q, x∗) ∈ W × U∗ and

any stationary point u ∈ U of the parametric problem P̃(z) we have

Φ(x, q)− 〈x∗, x〉 ≥ Φ(u, q)− 〈x∗, u〉+ `‖x− u‖2 whenever x ∈ X, G(x, q) ∈ Θ. (5.11)

Denoting F (x, q) := Φ(x, q) + δΘ(G(x, q)), observe from Proposition 2.8 that this function is

parametrically continuously prox-regular at (x̄, q̄) for v̄ = 0 ∈ ∂xF (x̄, p̄) and that BCQ (3.7) (or

(3.8)) holds for this function at (x̄, q̄) due to the validity of RCQ. Furthermore (5.11) tells us

that the uniform second-order growth condition in (3.10) is satisfied for the function F around

(x̄, p̄, 0) ∈ gph ∂xF . Applying Theorem 3.5 allows us to find (`1, `2) ∈ IR2
> and a neighborhood

U1×W1×U∗1 ⊂ U ×W ×U∗ of (x̄, q̄, 0) such that for any (ui, qi, u
∗
i ) ∈ gph ∂xF ∩ (U1×W1×U∗1 )

with i = 1, 2 we have

‖u1 − u2‖ ≤ `1‖u∗1 − u∗2‖+ `2‖q1 − q2‖
1
2 .

Put u∗1 = u∗2 = 0 and note that u1 = x̄(q1) and u2 = x̄(q2), which gives us the estimate

‖x̄(q1)− x̄(q2)‖ ≤ `2‖q1 − q2‖
1
2 for all q1, q2 ∈W1.

This ensures (5.10) and thus completes the proof of the theorem. �

Observe from the proof of Theorem 5.3 that when x̄ is a local minimizer of problem P̂,

Kojima’s strong stability of x̄ implies Hölderian full stability at the same point. However, the

converse implication is not valid even in the NLP setting. Indeed, it is shown by in Section 5.4

that, under MFCQ and the well-known constant rank constraint qualification for NLP problems,

Hölderian full stability and its Lipschitzian counterpart are the same due to the validity of
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(3.37) (see Proposition 5.14 below) and can be characterized by a condition strictly weaker

than SSOSC. Since SSOSC is equivalent to strong stability in this framework, we conclude that

Hölderian full stability can not generally imply strong stability.

Another significant notion of variational analysis is Robinson’s strong regularity for gener-

alized equations introduced by his landmark paper [58]. We formulate it for the generalized

equation (5.7) under consideration.

Definition 5.4 (strong regularity). Let (x̄, λ̄) be a solution to the generalized equation (5.7).

We say that (x̄, λ̄) is strongly regular if there exist neighborhoods U of 0 ∈ X × Y and V

of (x̄, λ̄) ∈ X × Y ∗ such that for every δ ∈ U the system

δ ∈

 0

−g(x̄, p̄)

+

 ∇2
xxL(x̄, p̄, λ̄)(x− x̄) +∇xg(x̄, p̄)∗(λ− λ̄)

−∇xg(x, p̄)(x− x̄)

+

 0

N−1
Θ (λ)

 (5.12)

has a unique solution in V denoted by ζ(δ) and that the mapping ζ : U → V is Lipschitz

continuous.

It can be deduced from [5, Theorem 5.24] that the strong stability of (x̄, λ̄) in (5.12) above

is equivalent to UQGC (5.9) under the following two assumptions:

(A1) The set Θ is C2-reducible to a closed convex set K at ȳ := g(x̄, p̄), and the reduction

is pointed. This means that there exist a neighborhood W of ȳ and a C2-smooth mapping

h : W → IRk such that ∇h(ȳ) is surjective, Θ∩W = {y ∈W | h(y) ∈ K}, and the tangent cone

TK(h(ȳ)) defined in (2.6) is pointed.

(A2) The point (x̄, p̄) is partially nondegenerate for g with respect to Θ, i.e.,

∇xg(x̄, p̄)X + lin
(
TΘ

(
g(x̄, p̄))

)
= Y, (5.13)
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where lin
(
TΘ(g(x̄, p̄))

)
is the largest linear subspace of the space Y that is contained in the

classical tangent cone TΘ(g(x̄, p̄)).

Note that the reducibility condition (A1) is satisfied for a great variety of convex sets Θ

arising in important classes of problems in constrained optimization. This includes polyhedral

sets [5, Example 3.139], the second-order (Lorentz, ice-cream) cone [4, Lemma 15], the cone of

positive semidefinite symmetric matrices [5, Example 3.140], etc. In contrast, the nondegener-

ation condition (A2) is rather restrictive. In particular, for NLP problems it reduces to the

classical linear independence constraint qualification (LICQ), in the case of MPPC problems

(when Θ is a convex polyhedral) it agrees with the polyhedral constraint qualification (PCQ)

introduced and studied in [48]; see also [5] for the versions of (A2) for other classes of problems

in conic programming. Observe that for the general class of problems P̂ in (5.1) the nondegen-

eration condition (A2) implies the Robinson constraint qualification (5.4) but clearly not vice

versa.

Before deriving the main result of this section we present the following lemma, which is

based on the second-order chain rule obtained recently in [39]. This lemma will allow us to

make a bridge between general characterizations of Lipschitzian full stability in Section 4 and

their applications to the class of constrained problem (5.1) with new links to strong stability

and strong regularity.

Lemma 5.5 (limiting coderivative of partial subgradient mappings). Let both condi-

tions (A1) and (A2) be satisfied at x̄, which is a stationary point of problem P̂ from (5.1) in

the sense that 0 ∈ ∂xf(x̄, p̄) the partial subgradient mapping of the function f in (5.3). Then for

all w ∈ X the limiting coderivative of the partial subgradient mapping ∂fx(x̄, p̄) is represented
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by

D∗∂xf(x̄, p̄, 0)(u) =
(
∇2
xxL(x̄, p̄, λ̄)u,∇2

xpL(x̄, p̄, λ̄)u
)

+∇g(x̄, p̄)∗D∗NΘ(ȳ, λ̄)
(
∇xg(x̄, p̄)u

)
(5.14)

with ȳ := g(x̄, p̄), where L is the Lagrangian (5.6), and where λ̄ ∈ Y ∗ is a unique solution of

the system

∇xg(x̄, p̄)∗λ = −∇xϕ(x̄, p̄) and λ ∈ NΘ(ȳ). (5.15)

Consequently, the coderivative condition (3.37) is satisfied for this function f with x̄∗ = 0.

Proof. Applying the simple subdifferential sum rule to the function f in (5.3), we get from

the stationary condition 0 ∈ ∂xf(x̄, p̄) that 0 ∈ ∇xϕ(x, p) + ∂xδΘ(g(x, p)). Furthermore, the

coderivative sum rule from Lemma 2.5 and the second-order subdifferential definition (2.15)

give us

D∗∂xf(x̄, p̄, 0)(u) =
(
∇2
xxϕ(x̄, p̄)u,∇2

xpϕ(x̄, p̄)u
)

+D∗∂x(δΘ ◦ g)
(
x̄, p̄,−∇xϕ(x̄, p̄)

)
(u) (5.16)

for all w ∈ X. The assumed conditions (A1) and (A2) allow us to apply the second-order chain

rule from [39, Theorem 3.6] to the composite function δΘ ◦ g and get in this way the equality

D∗∂x(δΘ ◦ g)
(
x̄, p̄,−∇xϕ(x̄, p̄)

)
(u) =

(
∇2
xx〈λ̄, g〉(x̄, p̄)u,∇2

xp〈λ̄, g〉(x̄, p̄)u
)

+∇g(x̄, p̄)∗D∗NΘ(ȳ, λ̄)
(
∇xg(x̄, p̄)u

)
for all u ∈ X, where λ̄ solves the KKT system (5.15). This together with (5.16) justifies (5.14).

It remains to verify the validity of (3.37) for the function f with x̄∗ = 0. To proceed, pick
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any vector p∗ with (0, p∗) ∈ D∗∂xf(x̄, p̄, 0)(0) and get from (5.14) a unique vector λ̄ ∈ Y ∗

satisfying (5.15) such that

(0, p∗) ∈ ∇g(x̄, p̄)∗D∗NΘ(ȳ, λ̄)(0).

This allows us to find z ∈ D∗NΘ(ȳ, λ̄)(0) satisfying 0 = ∇xg(x̄, p̄)∗z and p∗ = ∇pg(x̄, p̄)∗z. By

the inclusion gphNΘ ⊃ Θ× {0}, we get that z ∈ NΘ(ȳ) from z ∈ D∗NΘ(ȳ, λ̄)(0). Since Θ is a

closed convex set, it follows that 〈z, y〉 ≤ 0 for all y ∈ lin
(
TΘ(ȳ)

)
⊂ TΘ(ȳ). Due to (5.13) there

exist x ∈ X and y ∈ lin
(
TΘ(ȳ)

)
satisfying ∇xg(x̄, p̄)x+ y = z. It leads us to

‖z‖2 = 〈z,∇xg(x̄, p̄)x+ y〉 = 〈∇xg(x̄, p̄)∗z, x〉+ 〈z, y〉 ≤ 0 + 0 = 0,

which yields z = 0 and thus p∗ = 0. This justifies (3.37) and completes the proof of the lemma.

Now we are ready to characterize Lipschitzian full stability of local minimizers in P̂, which

we understand in the sense of Definition 3.1(i) for problem P̂(0, p̄) in (5.3) with the extended-

real-valued objective. The next major theorem not only provides a constructive second-order

characterization of Lipschitzian full stability in P̂ under assumptions (A1) and (A2) but also

establishes its equivalence in this setting to the above notions of strong regularity and Lips-

chitzian strong stability and thus characterizes these notions as well. Note that the equivalence

between assertions (iii) and (iv) of this theorem has been recently derived in [46, Theorem 6.10]

for the case of tilt stability in conic programming when the parameter p is ignored.

Theorem 5.6 (equivalence between strong regularity and Lipschitzian full and strong

stability for nondegenerate local minimizers and their second-order characteriza-

tion). Let x̄ be a stationary point of problem P̂ in (5.1) under the validity of RCQ (5.4), let
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λ̄ ∈ Y ∗ be the corresponding Lagrange multiplier from (5.5), and let ȳ := g(x̄, p̄). Assume that

the reducibility condition (A1) holds at x̄. Then the following assertions are equivalent:

(i) The pair (x̄, λ̄) is a strongly regular solution to GE (5.7), and x̄ is a local minimizer of

problem P̂.

(ii) The nondegeneration condition (A2) holds, and the point x̄ is a Lipschitzian strongly

stable local minimizer of problem P̂.

(iii) The nondegeneration condition (A2) holds, and the point x̄ is a Lipschitzian fully stable

local minimizer of problem P̂.

(iv) The nondegeneration condition (A2) holds together with the second-order subdifferential

condition

〈∇2
xxL(x̄, p̄, λ̄)u, u〉+ inf

{
〈u∗,∇xg(x̄, p̄)u〉

∣∣ u∗ ∈ D∗NΘ(ȳ, λ̄)
(
∇xg(x̄, p̄)u

)}
> 0, u 6= 0.(5.17)

Proof. Since x̄ is a stationary point of P̂ at which RCQ (5.4) holds, we deduce from

Proposition 2.8 that the function f in (5.3) is parametrically continuously prox-regular at (x̄, p̄)

for 0 ∈ ∂xf(x̄, p̄) and that BCQ (3.7) holds at (x̄, p̄). Observe that implication (ii)=⇒(i) follows

from [5, Theorem 5.35].

To verify next implication (i)=⇒(iii), suppose that the point (x̄, λ̄) is strongly regular for

the generalized equation (5.7) and get from [5, Theorem 5.24] that (A2) and UQGC (5.9) are

satisfied at x̄. Defining Φ(x, q) := ϕ(x, p) − 〈v, p〉 and G(x, q) := g(x, p) with q = (x∗, p), note

that (Φ(x, q), G(x, q)) is a C2-smooth parameterization of (ϕ(x, p̄), g(x, p̄)) at q̄ := (0, p̄). Then

this UQGC allows us to find ` > 0 as well as neighborhoods U∗ × V of q̄ = (0, p̄) and U of x̄

such that for any q = (v, p) ∈ U∗ × V there is a unique stationary point x̄(q) ∈ U of problem
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P̃(q) satisfying

Φ(x, q) ≥ Φ(x̄(q), q) + `‖x− x̄(q)‖2 for all x ∈ U, G(x, q) ∈ Θ. (5.18)

Picking any (u, p, u∗) ∈ gph ∂xf ∩ (U × V × U∗), we have u = x̄(q). It gives us by (5.18) that

ϕ(x, p)− 〈u∗, x〉 ≥ ϕ(u, p)− 〈u∗, u〉+ `‖x− u‖2 for all x ∈ U, g(x, p) ∈ Θ.

This clearly implies the inequality

f(x, p) ≥ f(u, p) + 〈u∗, x− u〉+ `‖x− u‖2 for all x ∈ U,

which ensures in turn the uniform second-order growth condition (3.10). Taking into account

that the coderivative condition (3.37) holds by Lemma 5.5 and then employing Theorem 3.10,

we arrive at (iii).

Let us now verify implication (iii)=⇒(iv). Assuming (iii), we deduce inequality (3.49) from

Corollary 3.15. This together with the second-order representation (5.14) from Lemma 5.5 gives

us that

0 < inf
{
〈u∗, u〉| u∗ ∈ ∇2

xxL(x̄, p̄, λ̄)u+∇xg(x̄, p̄)∗D∗NΘ(ȳ, λ̄)
(
∇xg(x̄, p̄)u

)}
= 〈∇2

xxL(x̄, p̄, λ̄)u, u〉+ inf
{
〈∇xg(x̄, p̄)∗u∗, u〉

∣∣ z ∈ D∗NΘ(ȳ, λ̄)
(
∇xg(x̄, p̄)u

)}
= 〈∇2

xxL(x̄, p̄, λ̄)u, u〉+ inf
{
〈u∗,∇xg(x̄, p̄)u〉

∣∣ u∗ ∈ D∗NΘ(ȳ, λ̄)
(
∇xg(x̄, p̄)u

)}

for any u 6= 0, which shows that condition (5.17) in (iv) holds.

To complete the proof of the theorem, it remains to verify implication (iv)=⇒(ii). To
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this end we suppose that condition (5.17) holds and take any C2-smooth parameterization

(Φ(x, q), G(x, q)) of (ϕ(x, p̄), g(x, p̄)) at some q̄ ∈ IRk. Observe that ∇xΦ(x̄, q̄) = ∇xϕ(x̄, p̄),

∇2
xxΦ(x̄, q̄) = ∇2

xxϕ(x̄, p̄), ∇xG(x̄, q̄) = ∇xg(x̄, p̄), and ∇2
xxG(x̄, q̄) = ∇2

xxg(x̄, p̄). By replacing

ϕ by Φ and g by G, we get both conditions (A1) and (A2) for the pair (Φ, G) at (x̄, q̄). Letting

F (x, q) := Φ(x, q) + δΘ(G(x, q)) and combining (5.17) with the second-order representation

(5.14) from Lemma 5.5 give us that (3.37) is fulfilled for F at (x̄, q̄, 0) and that

inf
{
〈u∗, u〉

∣∣ (u∗, q∗) ∈ D∗∂xF (x̄, q̄, 0)(u)
}
> 0 for all u 6= 0.

Unifying this with Corollary 3.15 and Theorem 3.9 allows us to find a neighborhood (U×W×U∗)

of (x̄, q̄, 0) and a constant κ > 0 such that the mapping S in (3.3), while replacing f by F therein,

admits a localization ϑ with respect to U∗×V ×U that satisfies the Lipschitz continuity condition

‖ϑ(x∗1, q1)− ϑ(x∗2, q2)‖ ≤ κ
(
‖x∗1 − x∗2‖+ ‖q1 − q2‖

)
for all x∗1, x

∗
2 ∈ U∗ and q1, q2 ∈W.(5.19)

Define x̄(q) := ϑ(0, q) for all q ∈ W and observe that x̄(q) is a unique stationary point of

problem P̃(q) in (5.8). Furthermore, for any q1, q2 ∈ Q we get from (5.19) that

‖x̄(q1)− x̄(q2)‖ ≤ κ‖q1 − q2‖,

which ensures the Lipschitz continuity of the function x̄(q) and thus verifies Lipschitzian strong

stability in Definition 5.2. This completes the proof of the theorem.

Observe that another characterization of strong regularity from Definition 5.4 for the class

of problems modeled as P̂ in (5.1) via a second-order condition different from (5.17) has been

obtained by Bonnans and Shapiro [5, Theorem 5.64] under a certain “strong extended poly-
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hedricity condition," which is not assumed here. Our results in Theorem 5.6 establish the

equivalence between all the properties considered there for the general class of problems P̂ with

new second-order characterization (5.17) involving the construction D∗NΘ for the underlying

convex set Θ. Calculating this second-order object for particular cases of Θ, we arrive at char-

acterizations of the listed properties entirely in terms of the initial data of the mathematical

programs. Let us discuss several remarkable classes in mathematical programming, important

from both viewpoints of optimization theory and applications, in comparison with known re-

sults in this direction. Note that all the classes discussed below we have the validity of the

reducibility condition (A1)

• Nonlinear programming with C2-smooth data (NLP). By using the Mordukhovich criterion

(2.6) and the calculation of the second-order construction D∗NΘ for the orthant Θ = {0}×IRl−,

Dontchev and Rockafellar [16] proved the equivalence of strong regularity to the simultaneous

fulfillment of the LICQ and SSOSC conditions; see also the discussions and references therein

on related results in this vein. It has been recently shown in [48] that condition (5.17) reduces

for NLPs to the classical SSOSC being equivalent under the validity of LICQ to Lipschitzian

full stability of local minimizers for nonlinear programs.

• Mathematical programs with polyhedral constraints (MPPC). Based on the second-order

calculus rules from [47] and the coderivative calculations from [16], Mordukhovich, Rockafellar

and Sarabi [48] established for this class of optimization problems (5.1) with a polyhedral set Θ a

complete characterization of Lipschitzian full stability via the polyhedral second-order optimality

condition (PSSOC) as well as its equivalence to strong regularity under the polyhedral constraint

qualification, which is an analog of (A2) in the MPPC setting. The aforementioned PSSOC is
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a MPCC counterpart of the classical SSOSC obtained in the scheme of (5.17).

• Extended nonlinear programming (ENLP). The same paper [48] presents a second-order

characterization of Lipschitzian full stability for the class of ENLP problems introduced by

Rockafellar [61] via a certain duality representation. The characterization is given in terms of

the extended strong second-order optimality condition, which is an ENLP counterpart of SSOSC

obtained in the scheme of (5.17).

• Second-order cone programming (SOCP). This subclass of conic programs corresponds

to (5.1), where Θ is a product of the Lorentz/ice-cream cones; see [1] for more details and

applications. A characterization of strong regularity of the associated GE (5.7) was given by

Bonnans and Ramírez [4] via a SOCP counterpart of SSOSC. By using the calculation of D∗NΘ

obtained by Outrata and Ramírez [50], it can be shown that this condition reduces to (5.17) in

the SOCP setting, which therefore provides by Theorem 5.6 a second-order characterization of

Lipschitzian full stability for SOCPs under the nondegeneracy condition (A2).

• Semidefinite programming (SDP). This major class of conic programs, corresponding to

(5.1) with Θ = Sm+ , has been highly recognized in optimization theory and applications; see, e.g.,

[64, 65] and the references therein. In [64] Sun obtained a characterization of strong regularity

of the GE (5.7) associated with SDPs via a counterpart of SSOSC in this setting under the

nondegeneracy condition (A2). In Section 6 we show that this SDP version of SSOSC is indeed

the same as our condition (5.17) and thus derive from Theorem 5.6 a constructive second-order

characterization of full (as well as strong) Lipschitzian stability of locally optimal solutions to

semidefinite programs entirely via the their initial data.

• Other classes of mathematical programs. Besides the classes of mathematical programs

listed above, the second-order construction D∗NΘ in (5.17) has been constructively calculated
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for the underlying sets Ω in (5.1), which are not in the discussed forms; see, e.g., [22, 40, 47]

and the references therein. These results can be incorporated in the framework of (5.17) and

thus allow us to provide via Theorem 5.6 complete characterizations of the equivalent stability

properties (i)–(iii) entirely in terms of initial data of the corresponding mathematical programs

under the nondegeneracy condition (A1).

We conclude this section with a convenient second-order condition ensuring the validity of

the equivalent stability properties in Theorem 5.6 and therefore their implementations for the

particular classes of mathematical programs discussed above. Note that a related result in this

vein for Robinson’s strong regularity can be extracted from [5, Theorem 5.27 and Corollary 5.29]

but under an additional assumption that Y ∗ has a “lattice structure" that is not the case here;

cf. [5, Example 3.57].

Corollary 5.7 (sufficient second-order condition for the equivalent stability proper-

ties in mathematical programming). Let x̄ be a stationary point of problem P̂ in (5.1), and

let the conditions (A1) and (A2) be satisfied. Assume in addition the second-order condition

〈∇2
xxL(x̄, p̄, λ̄)w,w〉 > 0 whenever ∇xg(x̄, p̄)w ∈ domD∗NΘ(g(x̄, p̄), λ̄), w 6= 0, (5.20)

where λ̄ ∈ Y ∗ solves the system in (5.15). Then all the properties (i)–(iii) of Theorem 5.6 hold.

Proof. When z ∈ D∗NΘ(g(x̄, p̄), λ̄)(∇xg(x̄, p̄)w), we have 〈z,∇xg(x̄, p̄)w〉 ≥ 0 by the max-

imal monotonicity of NΘ and [53, Theorem 2.1]. This together with (5.20) verifies (5.17) and

implies therefore that x̄ is a Lipschitzian fully stable local minimizer of problem P̂ due to The-

orem 5.6. The other stability/regularity properties of that theorem follows from the established

equivalence relationships.
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5.3 Full Stability in Semidefinite Programming

In this section we develop constructive and nontrivial implementations of the results of Theo-

rem 5.6 for problems of semidefinite programming formulated as follows:

P̆


minimize ϕ(x, p̄) subject to x ∈ X,

g(x, p̄) ∈ Θ := Sm+ ,

(5.21)

where ϕ : X × IRd → IR and g : X × IRd → Y := Sm are C2-smooth mappings, where Sm is

the space of m ×m symmetric matrices, and where Sm+ is the cone of all the m ×m positive

semidefinite matrices in Sm. Note that the cone Sm+ satisfies the reducibility assumption (A1)

in Section 5; see, e.g., [5, Example 3.140]. The Robinson constraint qualification (5.4) is written

for (5.21) as

0 ∈ int
{
g(x̄, p̄) +∇xg(x̄, p̄)X − Sm+

}
(5.22)

and the partial nondegeneracy condition (5.13) reduces to

∇xg(x̄, p̄)X + lin
(
TSm+ (g(x̄, p̄))

)
= Sm. (5.23)

The main goal of this section is to derive a complete characterization of Lipschitzian full stability

of local minimizers for (5.21) entirely in terms of the initial data (ϕ, g, Sm+ ) of this problem.

Let A,B ∈ Sm and λ1(A), . . . , λm(A) be m eigenvalues of the matrix A with λ1(A) ≥

λ2(A) ≥ . . . ≥ λm(A). Denote λ(A) := (λ1(A), . . . , λm(A)) ∈ IRm and by Λ(A) := diag (λ(A))

the diagonal matrix whose i-th diagonal entry is λi(A). Recall the eigenvalue decomposition of
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A is given by

A = P


Λα 0 0

0 Λβ 0

0 0 Λγ

P ∗ with P = [Pα Pβ Pγ ], (5.24)

where α := {i| λi(A) > 0}, β := {i| λi(A) = 0}, γ := {i| λi(A) < 0}, and where P is some

m×m orthogonal matrix. Furthermore, we use the Frobenius inner product between A and B:

〈A,B〉 := Tr (A∗B),

where “Tr" denotes the trace of a matrix; thus the norm of A ∈ Sm is ‖A‖ =
√

Tr (A∗A). With

these constructions it is well known that the dual space of Sm reduces to Sm.

The next condition is taken from Sun [64, Definition 3.2].

Definition 5.8 (strong second-order sufficient condition for SDPs.) Let x̄ be a station-

ary point of P̆, and let the partial nondegeneration condition (5.23) be satisfied. We say that

the SDP-strong second-order sufficient condition (SDP-SSOSC) holds at x̄ if

〈∇2
xxL(x̄, p̄, λ̄)w,w〉 − 2〈λ̄, d(w)g(x̄, p̄)†d(w)〉 > 0 for all w ∈ app (λ̄) \ {0}, (5.25)

where λ̄ is the corresponding unique Lagrange multiplier, d(w) := ∇xg(x̄, p̄)w, g(x̄, p̄)† is the

Moore-Penrose pseudoinverse of g(x̄, p̄), and where app (λ̄) is defined by

app (λ̄) :=
{
w ∈ X

∣∣ P ∗βd(w)Pγ = 0, P ∗γ d(w)Pγ = 0
}

(5.26)
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with the matrix P taken from (5.24) for A = g(x̄, p̄) + λ̄.

Since we use this condition simultaneously with the nondegeneration assumption (A2) in

Section 5, it makes sense to formulate the above condition under (A2).

As discussed in [64, p. 768], the choice of an orthogonal matrix P satisfying the decomposi-

tion (5.24) with A = g(x̄, p̄) + λ̄ does not affect the set app (λ̄) in (5.26).

The following calculation of the second-order construction D∗NSm+
is a reformulation of the

recent result from Ding, Sun and Ye [11, Theorem 3.1].

Lemma 5.9 (second-order subdifferential calculation for SDPs). For any (X,Y ) ∈

gphNSm+
consider the the eigenvalue decomposition (5.24) of the matrix A = X + Y . Then we

have Z ∈ D∗NSp+
(X,Y )(D) if and only if Z = PZ̃P ∗ and D = PD̃P ∗ with

(i) Z̃ =


0 0 Z̃αγ

0 Z̃ββ Z̃βγ

Z̃γα Z̃γβ Z̃γγ

 and D̃ =


D̃αα D̃αβ D̃αγ

D̃βα D̃ββ 0

D̃γα 0 0

 , (5.27)

(ii) Z̃ββ ∈ D∗NS
|β|
+

(0, 0)(D̃ββ) and Σαγ ◦ Z̃αγ − (Eαγ − Σαγ) ◦ D̃αγ = 0, (5.28)

where α, β, γ are taken from (5.24), |β| is the cardinality of the set β, E is a m × m matrix

whose all the unit entries, “◦" is the Hadamard product, and where the matrix Σ is defined by

Σij :=
max{λi(A), 0} −max{λj(A), 0}

λi(A)− λj(A)
, i, j = 1, . . . ,m, (5.29)

with the convention that 0/0 := 1.

Proof. Note that Z ∈ D∗NSp+
(X,Y )(D) if and only if (Z,−D) ∈ NgphN

S
p
+

(X,Y ). Em-

ploying [11, Theorem 3.1] verifies claimed representations in the lemma.
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The next result is new and plays a crucial role in deriving the main theorem of this section

presented below. This lemma provides a precise calculation of the second-order subdifferential

condition (5.17) from Theorem 5.6 for the SDP model and shows that it reduces to the SDP-

SSOSC condition from Definition 5.8.

Lemma 5.10 (second-order subdifferential condition for SDPs). Let x̄ be a stationary

point of problem (5.21), and let λ̄ is a unique Lagrange multiplier of the corresponding KKT

system (5.5) under the validity of the partial nondegeneration condition (5.23). Then we have

domD∗NSm+
(g(x̄, p̄), λ̄)(d(·)) = app (λ̄) and

inf
{
〈Z, d(w)〉

∣∣ Z ∈ D∗NSm+
(g(x̄, p̄), λ̄)(d(w))

}
= −2〈λ̄, d(w)g(x̄, p̄)†d(w)〉 if w ∈ app (λ̄)(5.30)

with d(w) := ∇xg(x̄, p̄)w. Consequently, the second-order subdifferential condition (5.17) from

Theorem 5.6 agrees with the SDP-SSOSC condition from Definition 5.8.

Proof. We split the proof of this lemma into following two main steps.

Step 1. We have that domD∗NSm+
(g(x̄, p̄), λ̄)(d(·)) ⊂ app (λ̄) and that the inequality “≥" holds

in (5.30).

To show it, pick any w ∈ domD∗NSm+
(g(x̄, p̄), λ̄)(d(·)) and find Z ∈ D∗NSm+

(g(x̄, p̄), λ̄)(d(w)).

Let A := g(x̄, p̄) + λ̄, and let P be an orthogonal matrix satisfying (5.24). With D := d(w) it

follows from Lemma 5.9 that Z = PZ̃P ∗ and D = PD̃P ∗, where Z̃, D̃ are taken from (5.27).

We get D̃ = P ∗DP and so

P ∗βDPγ = 0 and P ∗γDPγ = 0,

which verifies that w ∈ app (λ̄) due to its expression in (5.26). It gives us the inclusion

domD∗NSm+
(g(x̄, p̄), λ̄)(d(·)) ⊂ app (λ̄).
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Furthermore, observe from (5.27) that

〈Z,D〉 = Tr(PZ̃∗P∗PD̃P∗) = Tr(Z̃∗D̃P∗P) = Tr(Z̃∗D̃)

= Tr(Z̃∗γαD̃γα) + Tr(Z̃∗ββD̃ββ) + Tr(Z̃∗αγD̃αγ)

= Tr(Z̃∗ββD̃ββ) + 2Tr(Z̃∗αγD̃αγ).

(5.31)

By (5.29) for any i ∈ α and j ∈ γ, we have Σij = λi(A)
λi(A)−λj(A) , and thus (5.28) implies that

λi(A)

λi(A)− λj(A)
Z̃ij +

λj(A)

λi(A)− λj(A)
D̃ij = 0,

which ensures therefore the equalities

Tr(Z̃∗αγD̃αγ) =
∑

i∈α,j∈γ
Z̃ijD̃ij =

∑
i∈α,j∈γ

−λj(A)

λi(A)
D̃2

ij. (5.32)

By the spectral decomposition (5.24) and the fact that λ̄ ∈ NSm+
(g(x̄, p̄)), which actually means

that −λ̄ ∈ Sm+ and 〈λ̄, g(x̄, p̄)〉 = 0, we get the representations

g(x̄, p̄) = P


Λα 0 0

0 0 0

0 0 0

P ∗ and λ̄ = P


0 0 0

0 0 0

0 0 Λγ

P ∗. (5.33)

Hence the Moore-Penrose matrix g(x̄, p̄)† is formulated in this case as

g(x̄, p̄)† = P


Λ−1
α 0 0

0 0 0

0 0 0

P ∗.
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This together with (5.33) gives us that

〈λ, d(w)g(x̄, p̄)†d(w)〉 = Tr

P


0 0 0

0 0 0

0 0 Λγ

P∗DP


Λ−1
α 0 0

0 0 0

0 0 0

P∗D



= Tr

D̃


0 0 0

0 0 0

0 0 Λγ

 D̃


Λ−1
α 0 0

0 0 0

0 0 0





= Tr




0 0 D̃αγΛγ

0 0 D̃βγΛγ

0 0 D̃γγΛγ




D̃ααΛ−1

α 0 0

D̃βαΛ−1
α 0 0

D̃γαΛ−1
α 0 0




= Tr

[
D̃αγΛγD̃γαΛ−1

α

]
=

∑
i∈α,j∈γ

λj(A)

λi(A)
D̃2

ij.

We obtain from this representation as well as (5.31) and (5.32) that

〈Z,D〉 = 〈Z̃ββ , D̃ββ〉 − 2〈λ, d(w)g(x̄, p̄)†d(w)〉. (5.34)

Taking into account that the mapping N
S
|β|
+

is maximally monotone, it follows from (5.28) and

[53, Theorem 2.1] that 〈Z̃ββ , D̃ββ〉 ≥ 0. This together with (5.34) verifies the inequality “≥" in

(5.30) for any w ∈ domD∗NSm+
(g(x̄, p̄), λ̄)(d(·)) and thus completes the proof of Step 1.

Step 2. We have that app (λ̄) ⊂ domD∗NSm+
(g(x̄, p̄), λ̄)(d(·)) and that the inequality “≤" holds

in (5.30).

To verify this, pick w ∈ app (λ̄) and define D := d(w). It follows from (5.26) that D̃ :=

P ∗DP is of form (5.27). Observe from [11, Proposition 3.3], by choosing Ξ1 = E therein, that
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0 ∈ D∗N
S
|β|
+

(0, 0)(D̃ββ). By (5.28) find a matrix Z̃ of form (5.27) satisfying (5.28) and Z̃ββ = 0.

With Z := PZ̃P ∗ it follows from Lemma 5.9 that Z ∈ D∗NSm+
(g(x̄, p̄), λ̄)(D). Thus we have w ∈

domD∗NSm+
(g(x̄, p̄), λ)(d(·)) and deduce from (5.34) that 〈Z,D〉 = −2〈λ, d(w)g(x̄, p̄)†d(w)〉.

This also verifies the inequality “≤" in (5.30) and thus completes the verification of the assertions

claimed in Step 2.

Combining finally Step 1 and Step 2 allows us to obtain domD∗NSm+
(g(x̄, p̄), λ̄)(d(·)) =

app (λ̄) and justify equality (5.25). Hence the second-order subdifferential condition (5.17)

agrees with the SDP-SSOSC condition from Definition 5.8, which therefore completes the proof

of the lemma.

This lemma together with our major results in Theorem 5.6 allows us not only to recover

the equivalence between Robinson’s strong regularity and the SDP-SSOSC condition from [64,

Theorem 4.1] but also characterize Lipschitzian full stability and strong stability in the SDP.

Theorem 5.11 (second-order characterization of Lipschitzian full stability and equiv-

alent properties for SDPs). Let x̄ be a stationary point of problem P̆ in (5.21), and let λ̄

be the corresponding Lagrange multiplier from (5.5) under the validity of RCQ (5.22). The

following assertions are equivalent:

(i) The point (x̄, λ̄) is strongly regular for (5.12), and x̄ is a local minimizer of problem P̆.

(ii) The partial nondegeneration condition (5.23) holds, and the point x̄ is Lipschitzian

strongly stable local minimizer of problem P̆.

(iii) The partial nondegeneration condition (5.23) holds, and the point x̄ is a Lipschitzian

fully stable local minimizer of problem P̆.

(iv) Both conditions (5.23) and SDP-SSOSC from Definition 5.8 hold.

Proof. It follows directly by combining Theorem 5.6 and Lemma 5.10.
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5.4 Full Stability in Nonlinear Programming without LICQ

As demonstrated in Section 5.1, the partial nondegeneration condition (5.23) turns into the

classical linear independence constraint qualification (LICQ) in nonlinear programming (NLP).

In this case full stability has been characterized by SSOSC in the recent work [48]. Without

LICQ which second-order condition distinguishes full stability NLP is in question. In this

section we introduce a new condition so-called uniform second-order sufficient condition and

show that it is a complete characterization of full stability under both MFCQ and constant rank

constraint qualification (CRCQ). Note that the validity of both latter conditions are still weaker

than LICQ. In the view of Theorem 5.6, this also tells us that full stability is a strictly weaker

property than Robinson’s strong regularity in Definition 5.4. Moreover, in the late Example 5.17

we show that full stability is different from Kojima’s strong stability in Definition 5.2.

Consider the problem of nonlinear programming (NLP) given by:

P


minimize ϕ(x, p̄) subject to x ∈ X,

gi(x, p̄) ≤ 0 for i = 1, . . . ,m,

(5.35)

where X = IRn, P = IRd, and where all the functions ϕ, gi : X × P → IR, i = 1, . . . ,m, are C2

around the reference point (x̄, p̄) ∈ X × P . Define the set of feasible solutions

Ω :=
{

(x, p) ∈ X
∣∣ ϕ(x, p) ∈ IRm−

}
with g(x, p) :=

(
g1(x, p), . . . , gm(x, p)

)
. (5.36)

Recall the partial Mangasarian-Fromovitz constraint qualification (MFCQ) with respect to x

holds at (x̄, p̄) ∈ Ω if there is d ∈ X such that

〈∇xgi(x̄, p̄), d〉 < 0 for i ∈ I(x̄, p̄) :=
{
i ∈ {1, . . . ,m}

∣∣ gi(x̄, p̄) = 0
}
. (5.37)



110

Note that this condition is equivalent to RCQ for NLP. The Lagrange function (5.6) becomes

L(x, p, λ) = ϕ(x, p) +
m∑
i=1

λigi(x, p) with x ∈ IRn, p ∈ IRd, and λ ∈ IRm

and then define the set-valued mapping Ψ : IRn × IRd ⇒ IRn by

Ψ(x, p) :=
{
∇xL(x, p, λ)

∣∣ λ ∈ N(g(x, p); Θ
)}

with Θ := IRm− (5.38)

and g from (5.36). It is well known that ∂xf(x, p) = Ψ(x, p) for all (x, p) around (x̄, p̄) under

the validity of MFCQ (5.37), where f is defined in (5.3). Furthermore, every local minimizer x̄

of P(x̄∗, p̄) for x̄∗ ∈ ∂xf(x̄, p̄) satisfies the Karush-Kuhn-Tucker (KKT) system

x̄∗ ∈ ∇xϕ(x̄, p̄) +∇xg(x̄, p̄)∗λ = ∇xL(x̄, p̄, λ) with some λ ∈ N
(
g(x̄, p̄); Θ

)
, (5.39)

where the set of Lagrange multipliers is represented by

Λ(x̄, p̄, x̄∗) :=
{
λ ∈ IRm+

∣∣ x̄∗ ∈ ∇xL(x̄, p̄, λ), 〈λ, ϕ(x̄, p̄)〉 = 0
}
. (5.40)

It follows from Proposition 2.8 that the validity of MFCQ (5.37) implies that BCQ (3.8) holds

for the function f in (5.3) at (x̄, p̄).

Let us further recall the following partial counterpart of the classical strong second-order

sufficient condition (SSOSC) in nonlinear programming [58]: given (x̄, p̄) ∈ Ω and x̄∗ ∈ Ψ(x̄, p̄)

in (5.38), the partial SSOSC holds at (x̄, p̄, x̄∗) if for all λ ∈ Λ(x̄, p̄, x̄∗) we have

〈u,∇2
xxL(x̄, p̄, λ)u〉 > 0 whenever 〈∇xϕi(x̄, p̄), u〉 = 0 as i ∈ I+(x̄, p̄, λ), u 6= 0 (5.41)
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with the strict complementarity index set I+(x̄, p̄, λ) :=
{
i ∈ {1, . . . ,m}

∣∣ λi > 0
}
.

Next we formulate a partial version of the uniform second-order sufficient condition (USOSC)

to characterize tilt stability in nonlinear programming.

Definition 5.12 (uniform second-order sufficient condition) We say that the USOSC

with respect to x holds at (x̄, p̄) ∈ Ω with x̄∗ ∈ Ψ(x̄, p̄) if there are η, ` > 0 such that

〈∇2
xxL(x, p, λ)u, u〉 ≥ `‖u‖2 for all (x, p, x∗) ∈ gphΨ ∩ IBη(x̄, p̄, x̄∗), λ ∈ Λ(x, p, x∗),

〈∇xϕi(x, p), u〉 = 0 as i ∈ I+(x, p, λ) and 〈∇xgi(x, p), u〉 ≥ 0 as i ∈ I(x, p) \ I+(x, p, λ),

where the mapping Ψ and the set Λ(x, p, x∗) are defined in (5.38) and (5.40), respectively.

Next we show that, under the validity of the MFCQ (5.37), the partial SSOSC (5.41) implies

the partial USOSC from Definition 5.12 at (x̄, p̄) ∈ Ω with x̄∗ ∈ Ψ(x̄, p̄).

Proposition 5.13 (SSOSC implies USOSC under MFCQ). Let (x̄, p̄) ∈ Ω satisfy (5.39)

under the validity of MFCQ at (x̄, p̄). Assume also that SSOSC (5.41) holds w.r.t. x at this

point. Then USOSC from Definition 5.12 is satisfied w.r.t. x at (x̄, p̄).

Proof. Arguing by contradiction that the PUSOSC is not satisfied w.r.t. x at (x̄, p̄) gives

us the existence of sequences (xk, pk, x
∗
k)

gph Ψ→ (x̄, p̄, x̄∗), λk ∈ Λ(xk, pk, x
∗
k), and uk ∈ X with

〈∇2
xxL(xk, pk, λk)uk, uk〉 ≤ 1

k‖uk‖
2 whenever 〈∇xϕi(xk, pk), uk〉 = 0 for i ∈ I+(xk, pk, λk)

and 〈∇xϕi(xk, pk), uk〉 ≥ 0 for i ∈ I(xk, pk) \ I+(xk, pk, λk).

(5.42)

With no loss of generality assume that ‖uk‖ = 1 for all k ∈ IN . Since the MFCQ holds w.r.t. x

at (x̄, p̄), the Lagrange multipliers λk are bounded. By passing to subsequence, we may assume

further that uk → u with ‖u‖ = 1 and λk → λ with λ ∈ Λ(x̄, p̄, x̄∗). Moreover, observe that
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I+(xk, pk, λk) is a subset of I+(x̄, p̄, λ) for sufficiently large k. Taking k →∞ in (5.42) gives us

〈∇2
xxL(xk, pk, λk)u, u〉 ≤ 0 with 〈∇xϕi(x̄, p̄), u〉 = 0 for i ∈ I+(x̄, p̄, λ),

which contradicts to SSOSC (5.41). The proof of the proposition is completed. �

The last qualification condition needed in this section is the following partial version [55]

of the constant rank constraint qualification (CRCQ) for NLP (5.35): the partial CRCQ with

respect to x holds at (x̄, p̄) ∈ Ω if there is a neighborhood W of (x̄, p̄) such that for any subset

J of I(x̄, p̄) the gradient family
{
∇xgi(x, p)

∣∣ i ∈ J} has the same rank in W . It occurs that the

simultaneous fulfillment of the partial MFCQ and CRCQ ensures the Lipschitz-like property of

graphical mapping G in (3.33) crucial for the (Lipschitzian) full stability results in Section 4.

Proposition 5.14 (graphical Lipschitz-like property under partial MFCQ and CRCQ).

Assume that both partial MFCQ and partial CRCQ conditions at (x̄, p̄) ∈ Ω. Then, given any

x̄∗ from (5.39), the Lipschitz-like property (3.33) holds around (p̄, x̄, x̄∗).

Proof. Consider the parametric optimization problem

Q(x∗, p)


minimize 1

2‖x− x
∗‖2 subject to x ∈ IRn,

gi(x, p) ≤ 0 for i = 1, . . . ,m with some x∗ ∈ IRn

and observe that x̄ is the only minimizer of Q(x̄, p̄). It is easy to check that the partial SSOSC

(5.41) holds (x̄, p̄) for Q(x̄, p̄). By [55, Theorem 2] we find neighborhoods U,U∗ of x̄ and V

of p̄ together with a Lipschitzian mapping π : U∗ × V → U such that π(x∗, p) is the unique

minimizer of Q(x∗, p) for all (x∗, p) ∈ U∗ × V . Define S(p) := {x ∈ IRn| (x, p) ∈ Ω} = {x ∈

IRn| g(x, p) ∈ Θ} and observe that π(x∗, p) is the projection from x∗ to S(p).



113

By the structures of g and Θ we see that the set S(p) is fully amenable at any x ∈ S(p) in

the sense of [62, Definition 10.23] whenever p ∈ V . Invoking [29, Lemma 5], we obtain that

π(x∗, p) ∩ U =
(
I +N(·;S(p)

)−1
(x∗) ∩ U =

(
I + ∂xδΩ(·, p)

)−1
(x∗) ∩ U (5.43)

for all x∗ ∈ U∗ and p ∈ V . To verify (3.33) by the coderivative criterion in finite dimensions,

we need to check (3.37) for f from (5.3). To proceed, observe by Lemma 2.5 that

(
D∗∂xf

)
(x̄, p̄, x̄∗)(0) = D∗

(
∇xϕ+ ∂xδΩ

)
(x̄, p̄, x̄∗)(0) =

(
D∗∂xδΩ

)(
x̄, p̄, x̄∗ −∇xϕ(x̄, p̄)

)
(0)

=
(
D∗∂xδΩ

)(
x̄, p̄, α(x̄∗ −∇xϕ(x̄, p̄))

)
(0)

for all α > 0. Fix α > 0 with x̄∗α := α(x̄∗ − ∇xϕ(x̄, p̄)) + x̄ ∈ U∗ and observe by α(x̄∗ −

∇xϕ(x̄, p̄)) ∈ N(x̄;S(p̄)) and (5.43) that π(x̄∗α, p̄) = x̄. By Lemma 2.5 and (5.43) we have

(0, p∗) ∈
(
D∗∂xδΩ

)(
x̄, p̄, α(x̄∗ −∇xϕ0(x̄, p̄))

)
(0) =⇒ (0, p∗) ∈ D∗π(x̄∗α, p̄, x̄)(0).

Since π is Lipschitz continuous on U∗ × V , this ensures together with [38, Theorem 1.44] that

(3.37) holds, which thus completes the proof of the proposition. �

Our next result shows that the partial USOSC from Definition 5.12 completely characterizes

full stability in P(x∗, p) under the validity of partial MFCQ and CRCQ.

Theorem 5.15 (second-order characterization of full stability under partial MFCQ

and CRCQ). Let (x̄, p̄) ∈ Ω and x̄∗ ∈ Ψ(x̄, p̄) satisfy (5.39), and let both partial MFCQ and

CRCQ conditions hold at (x̄, p̄). Then the following assertions are equivalent:

(i) The point x̄ is a fully stable local minimizer of P(x̄∗, p̄).

(ii) The USOSC from Definition 5.12 holds at (x̄, p̄, x̄∗) .
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Proof. Due to robustness of MFCQ (5.37), suppose that it holds together with CRCQ for

all (x, p) ∈ IBη(x̄, p̄) with some small η > 0. Pick any u∗ ∈ ∂̆2fp(x, x
∗)(u) with (x, p, x∗) ∈

gph ∂xf ∩ IBη(x̄, p̄, x̄∗) and get from Lemma 2.5 that

∂̆2fp(x, x
∗)(u) = ∇2

xxϕ(x, p)u+ ∂̆2δS(p)

(
x, x∗ −∇xϕ(x, p)

)
(u) (5.44)

with S(p) = {x ∈ IRn| (x, p) ∈ Ω}. Employing this together with the exact calculation of

∂̆2δS(p)(x, x
∗ −∇xϕ(x, p))(u) given in [21, Theorem 6] ensures that

u∗ −∇2
xxL(x, p, λ)u ∈ K

(
x, x∗ −∇xϕ(x, p)

)∗ and − u ∈ K
(
x, x∗ −∇xϕ(x, p)

)
(5.45)

for any λ ∈ Λ(x, p, x∗), where K
(
x, x∗ −∇xϕ(x, p)

)
:= N̂

(
x;S(p)

)∗ ∩ {x∗ −∇xϕ(x, p)
}⊥ is the

corresponding critical cone. It follows from MFCQ (5.37) that

N̂
(
x;S(p)

)∗
=
{
w ∈ X

∣∣ 〈∇xgi(x, p), w〉 ≤ 0, i ∈ I(x, p)
}
.

By using this formula and the fact that x∗ − ∇xϕ0(x, p) =
∑m

i=1 λi∇xϕi(x, p) valid for any

λ ∈ Λ(x, p, x∗) by (5.39), we get the representation

−u ∈ K
(
x, x∗ −∇xϕ(x, p)

)
⇐⇒


〈∇xgi(x, p), u〉 = 0 if i ∈ I+(x, p, λ),

〈∇xgi(x, p), u〉 ≥ 0 if i ∈ I(x, p) \ I+(x, p, λ).

(5.46)

Assuming now (ii) and combining (5.44) with (5.45) and (5.46) gives us that

〈u∗, u〉 = 〈∇2
xxL(x, p, λ)u, u〉+ 〈u∗ −∇2

xxL(x, p, λ)u, u〉 ≥ 〈∇2
xxL(x, p, λ)u, u〉 ≥ `‖u‖2,
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where ` > 0 is from Definition 5.12. Then Corollary 3.11 and Proposition 5.14 ensure (i).

Conversely, assuming (i) implies by (5.44) and (5.45) that u∗0 := ∇2
xxL(x, p, λ)u + x∗ −

∇xϕ0(x, p) ∈ ∂̆2fp(x, x
∗)(u) if u satisfies (5.46). Since u ∈ {x∗ − ∇xϕ0(x, p)}⊥, we get from

Corollary 3.11 that

〈∇2
xxL(x, p, λ)u, u〉 = 〈u∗0, u〉 ≥ κ‖u‖2

with κ > 0 from (3.27). Thus we conclude by (5.46) that the partial USOSC from Definition 5.12

holds, which completes the proof of the theorem. �

When f does not depend on p, Theorem 5.15 recovers the characterization of tilt stability

obtained in [43, Theorem 4.3]. For full stability we improve the recent result of [48, Corol-

lary 6.8], where full stability in P(x∗, p̄) is characterized via SSOSC (5.41) under the validity of

the linear independence constraint qualification (LICQ), which implies both partial MFCQ and

CRCQ and ensures that the partial USOSC agrees with its SSOSC counterpart. It is worth

noting that Theorem 5.15 implies that SSOSC is a sufficient condition for full stability under

the validity of both MFCQ and CRCQ. In fact this result can be distilled from [55, Theorem 2].

Moreover, Theorem 5.15 allows us to derive a stronger result about the uniqueness and

Lipschitz continuity of local minimizers for P(x̄∗, p) with respect to the basic parameter p.

Corollary 5.16 (Lipschitz continuity of local minimizers with respect to the basic

parameter). Let (x̄, p̄) ∈ Ω and x̄∗ ∈ IRn satisfy (5.39). Assume that the partial MFCQ,

CRCQ, and USOSC hold at (x̄, p̄). Then there are neighborhoods U of x̄, V of p̄ and a Lipschitz

continuous mapping x(·) : V → U such that x(p) is a unique local solution to the problem

P(x̄∗, p).

Proof. By Theorem 5.15 the assumed partial MFCQ, CRCQ, and USOSC imply that x̄ is
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a fully stable local minimizer of P(x̄∗, p̄). Define the mapping x(p) := Mγ(x̄∗, p) for all p ∈ V

with U = IBγ(x̄), where Mγ and V are taken from Definition 3.1. Then we get that x(·) is

Lipschitz continuous on V and for each p ∈ V it is a unique local solution to P(x̄∗, p). �

We conclude this section by the following example showing that SSOSC is not a necessary

condition for full stability under MFCQ and CRCQ and also that Corollary 5.16 is a strict

improvement of [55, Theorem 2] obtained under SSOSC.

Example 5.17 (SSOSC is not necessary for full stability under partial MFCQ and

CRCQ). Consider the two-parameter nonlinear problem in IR3 given by



minimize ϕ(x, p)− 〈x∗, x〉 subject to

g1(x, p) := x1 − x3 − p1 ≤ 0,

g2(x, p) := −x1 − x3 + p1 ≤ 0,

g3(x, p) := x2 − x3 − p2 ≤ 0,

g4(x, p) := −x2 − x3 + p2 ≤ 0,

x = (x1, x2, x3), x∗ = (x∗1, x
∗
2, x
∗
3) ∈ IR3, p = (p1, p2) ∈ IR2,

(5.47)

where ϕ(x, p) := x3 + (1
4 +p2)x1 +p1x2 +x2

3−x1x2. It is easy to check that both partial MFCQ

and CRCQ hold at (x̄, p̄) with x̄ = (0, 0, 0) and p̄ = (0, 0). Choosing x̄∗ := (0, 0, 0) ∈ Ψ(x̄, p̄)

and taking into account that ‖x∗‖ < 1
12 and the definition of f in (5.3), we get the relationships

f(x, p)− 〈x∗, x〉 = x3 +
1

4
x1 + x2

3 − (x1 − p1)(x2 − p2) + p1p2 − x∗1x1 − x∗2x2 − x∗3x3

≥ 1

3
x3 +

(1

4
− x∗1

)
x1 +

1

3
x3 − x∗2x2 +

(1

3
− x∗3

)
x3 + p1p2

≥
(1

4
− x∗1

)
(x3 + x1) +

1

3
|x2 − p2| − x∗2(x2 − p2)− x∗2p2 + p1p2

≥
(1

4
− x∗1

)
p1 − x∗2p2 + p1p2 for all (x, p) ∈ Ω.
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It follows from (3.3) that Mγ(x∗, p) = {(p1, p2, 0)} for all (x∗, p) around (x̄∗, p̄) and γ > 0. Due

to the validity of BCQ (3.8) under MFCQ and by Proposition 2.8 we have full stability at x̄

in (5.47). Theorem 5.15 ensures USOSC is fulfilled at (x̄, p̄, x̄∗) in this example. To show that

the partial SSOSC does not hold here, observe that λ = (3
8 ,

5
8 , 0, 0) ∈ Λ(x̄, p̄, x̄∗) and that the

nonzero vector u = (0, 1, 0) satisfies the equation

〈∇xgi(x̄, p̄), u〉 = 0 for i ∈ I+(x̄, p̄, λ).

Since 〈∇2
xxL(x̄, p̄, λ)u, u〉 = 0, the partial SSOSC fails at this point. Observe finally that the

Lipschitz continuous mapping x(p) = (p1, p2, 0) is a unique solution to (5.47), which confirms

the result of Corollary 5.16 despite the failure of the partial SSOSC.

Note that the generalized equation/KKT system associated with problem (5.7) is not strongly

regular in the sense of Definition 5.4 at the tilt-stable minimizer x̄ and the corresponding La-

grange multiplier in Example 5.17. Indeed, the converse assertion ensures LICQ and thus

contradicts [16, Theorem 6]. Observe also that we do not have strong stability in this exam-

ple. Indeed, it has been well recognized (see the original version in [23, Theorem 7.2] and the

improved one in [5, Proposition 5.37] with the references therein) that strong stability of NLP

can be characterized, under the validity of MFCQ, via a uniform quadratic growth condition

equivalent in this case to SSOSC. As shown in Example 5.17, SSOSC does not hold at the

tilt-stable minimizer x̄ in problem (5.47) while MFCQ is satisfied. Thus strong stability fails in

this setting.
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Chapter 6

Full Stability in Infinite-Dimensional

Constrained Optimization

6.1 Orverview

6.2 Full Stability in Polyhedric Programming

The main goal of this section is to study full stability of the following mathematical program:

P̌ minimize ϕ(x, p̄) subject to x ∈ K, (6.1)

where the cost function ϕ : X × P → IR is C2 around the reference point (x̄, p̄) ∈ domϕ, K is

a closed and convex subset of the Hilbert space X, and P is an Asplund space; these are our

standing assumptions in this section. The corresponding two-parametric perturbation of (6.1)

is defined by

P̌(x∗, p) minimize ϕ(x, p)− 〈x∗, x〉 subject to x ∈ K (6.2)

with the tilt parameter x∗ ∈ X∗ and the basic parameter p ∈ P . We say that x̄ ∈ K is a

fully stable local minimizer of problem P̃(x̄∗, p̄) if it is a fully stable local minimizer (in the

Lipschitzian sense of Definition 3.1) of problem P(x̄∗, p̄) in (3.2) with f(x, p) := ϕ(x, p)+δK(x).

When the parameter p is ignored, a second-order characterization of tilt stability for problem

(6.1) was established in [53, Theorem 4.5] in finite dimensions under the assumption that the
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constraint setK is polyhedral. Motivated by the application to optimal control given in Section 7

below, we derive here a new characterization of full (and hence tilt) stability in (6.2) for the case

of polyhedric sets K in Hilbert spaces, which is a more general setting in comparison with [53]

even in finite dimensions. Let us first recall the concept of polyhedricity introduced in [20, 35]

and then widely applied in optimal control; see, e.g., [2, 5, 27] and the references therein.

Definition 6.1 (polyhedric sets). Let K be a closed and convex subset of X. We say that

K is polyhedric at x̄ ∈ Ω for x̂∗ ∈ N(x̄;K) if we have the representation

K(x̄, x̂∗) := TK(x̄) ∩ {x̂∗}⊥ = cl
{
RK(x̄) ∩ {x̂∗}⊥

}
(6.3)

of the corresponding critical cone K(x̄, x̂∗), where

RK(x̄) :=
⋃
t>0

K − x̄
t

(6.4)

is the radial cone and TK(x̄) := cl∗RK(x̄) is the tangent cone to K at x̄. If K is polyhedric at

each x̄ ∈ K for any x̂∗ ∈ N(x̄;K), we say that K is polyhedric.

It is easy to check that any polyhedral and also generalized polyhedral sets from [5, Defi-

nition 2.95] are polyhedric. However, the converse is not true; see, e.g., the set K(a, b) in the

control setting (6.25) below, which is neither polyhedral nor generalized polyhedral. The next

theorem, important of its own sake, provides a precise calculation of the combined second-order

subdifferential (2.14) for the indicator functions of polyhedric sets in Hilbert spaces. Note that

calculations of this type but for the second-order subdifferential of [36] were done in [15] for

polyhedral sets in finite dimensions.

Theorem 6.2 (combined second-order subdifferential of polyhedric sets). For any
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x̄ ∈ K and x̂∗ ∈ N(x̄;K) we have the inclusion

dom ∂̆2δK(x̄, x̂∗) ⊂ −K(x̄, x̂∗) = −TK(x̄) ∩ {x̂∗}⊥. (6.5)

If in addition K is polyhedric at x̄ ∈ Ω for x̂∗, then

∂̆2δK(x̄, x̂∗)(u) = K(x̄, x̂∗)∗ whenever u ∈ −K(x̄, x̂∗). (6.6)

Proof. To justify (6.5) and the inclusion “⊂" in (6.6), pick any pair (u∗, u) ∈ X ×X with

u∗ ∈ ∂̆2δK(x̄, x̂∗)(u). It follows from definition (2.14) that

lim sup

(x,x∗)
gphN(·;K))−→ (x̄,x̂∗)

〈u∗, x− x̄〉 − 〈u, x∗ − x̂∗〉
‖x− x̄‖+ ‖x∗ − x̂∗‖

≤ 0. (6.7)

Letting x = x̄ in (6.7) gives us the inequality

lim sup

x∗
N(x̄;K)→ x̂∗

−〈u, x∗ − x̂∗〉
‖x∗ − x̂∗‖

≤ 0

from which we conclude, since N(x̄;K) is a convex cone, that

−u ∈ N(x̄;K)∗ ∩ {x̂∗}⊥ = TK(x̄) ∩ {x̂∗}⊥ = K(x̄, x̂∗)

and thus get (6.5). Suppose further that the set K is polyhedric at x̄ ∈ Ω for x̂∗ and pick any

0 6= v ∈ K(x̄, x̂∗}. It follows from (6.3) and (6.4) that there are sequences of tk > 0 and vk → v

such that xk := x̄ + tkvk ∈ K and 〈x̄∗, vk〉 = 0 for all k ∈ IN . Since K is convex and x̄ ∈ K,

we get αtkvk + x̄ = αxk + (1 − α)x̄ ∈ K for α ∈ [0, 1]. It allows us to assume without loss of
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generality that tk ↓ 0 as k →∞. Taking into account x̂∗ ∈ N(x̄;K) ensures that

〈x̂∗, x− xk〉 = 〈x̂∗, x− x̄〉 − tk〈x̂∗, vk〉 ≤ 0 for all x ∈ K,

which yields (xk, x̂
∗)

gphN(·;K)−→ (x̄, x̂∗). Replacing (x∗, x) in (6.7) by (xk, x̂
∗) gives us that

〈u∗, v〉 ≤ 0. Thus we have u∗ ∈ K(x̄, x̂∗)∗ and justify the inclusion “⊂" in (6.6).

It remains to prove the opposite inclusion “⊃" in (6.6) when K is polyhedric at x̄ for x̄∗.

The classical separation theorem tells us that

(
TK(x̄)∩{x̄∗}⊥

)∗
= cl∗

(
TK(x̄)∗+

{
{x̄∗}⊥

}∗)
= cl∗

(
N(x̄;K)+IR{x̄∗}

)
= cl∗

(
N(x̄;K)−IR+{x̄∗}

)
.

Since the regular normal cone is closed in norm topology, we only need to check that

N(x̄;K)− IR+{x̄∗} ⊂ ∂̆2δK(x̄, x̂∗)(u) for all u ∈ −K(x̄, x̂∗).

To proceed, pick any u∗ ∈ N(x̄;K), β ∈ IR+, and u ∈ −K(x̄, x̂∗) and observe that

〈u∗ − βx̂∗, x− x̄〉 ≤ −β〈x̂∗, x− x̄〉 ≤ −β〈x̂∗ − x∗, x− x̄〉 if (x, x∗) ∈ gphN(·;K). (6.8)

Since u ∈ −K(x̄, x̂∗), it follows from (6.3) and (6.4) that there are sequences tk ↓ 0 and uk → −u

satisfying x̄+ tkuk ∈ K and 〈x̂∗, uk〉 = 0 for all k ∈ IN . Taking (x, x∗) ∈ gphN(·;K), we get

〈−u, x∗ − x̂∗〉 ≤ ‖u+ uk‖ · ‖x∗ − x̂∗‖+ 〈uk, x∗ − x̂∗〉 = ‖u+ uk‖ · ‖x∗ − x̂∗‖+ 〈uk, x∗〉

≤ ‖u+ uk‖ · ‖x∗ − x̂∗‖+
〈x̄+ tkuk − x, x∗〉+ 〈x− x̄, x∗〉

tk

≤ ‖u+ uk‖ · ‖x∗ − x̂∗‖+
〈x− x̄, x∗〉

tk
≤ ‖u+ uk‖ · ‖x∗ − x̂∗‖+

〈x− x̄, x∗ − x̂∗〉
tk
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since 〈x̄+ tkuk − x, x∗〉 ≤ 0 and 〈x− x̄,−x̂∗〉 ≥ 0. This together with (6.8) implies that

〈u∗ − βx̂∗, x− x̄〉 − 〈u, x∗ − x̂∗〉 ≤ (β + t−1
k )‖x− x̄‖ · ‖x∗ − x̂∗‖+ ‖u+ uk‖ · ‖x∗ − x̂∗‖,

which in turn ensures the estimate

lim sup

(x,x∗)
gphN(·;K))−→ (x̄,x̂∗)

〈u∗ − βx̂∗, x− x̄〉 − 〈u, x∗ − x̂∗〉
‖x− x̄‖+ ‖x∗ − x̂∗‖

≤ ‖u+ uk‖ for all k ∈ IN.

Letting k →∞ gives us that u∗ − βx̄∗ ∈ ∂̆2δK(x̄, x̂∗)(u) and thus completes the proof. �

The next theorem is the main result of this section, which contains a complete second-order

characterization of full stability in polyhedric programming.

Theorem 6.3 (second-order characterization of full stability for polyhedric pro-

grams). Let x̄∗ ∈ ∇xϕ(x̄, p̄) + N(x̄;K) with x̄ ∈ K and p̄ ∈ P . Consider the following

statements:

(i) The point x̄ is a fully stable local minimizer for P̌(x̄∗, p̄) in (6.2).

(ii) There are η, κ > 0 such that for each (x, x∗) ∈ gphN(·;K) ∩ IBη(x̄, x̄∗ −∇xϕ(x̄, p̄)) we

have

〈∇2
xxϕ(x, p)u, u〉 ≥ κ‖u‖2 whenever u ∈ K(x, x∗) (6.9)

via the critical cone from (6.3). Then (ii) is a sufficient condition for (i). If in addition the set

K is polyhedric, then (ii) is also necessary for the validity of (i).

Proof. Note first that ∂xf(x, p) = ∇xϕ(x, p) + N(x;K) whenever (x, p) ∈ K × P for the

function f(x, p) = ϕ(x, p) + δK(x), which is parametrically continuously prox-regular at (x̄, p̄)
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for x̄∗ ∈ ∂xf(x̄, p̄). Let us now check that BCQ (3.7) as well as the graphical Lipschitz-like

condition (3.33) hold in this setting. To justify (3.7), take any p1, p2 ∈ IBδ(p̄) and (x1, r1) ∈

F (p1)∩IBδ(x̄, ϕ(x̄, p̄)) for small δ > 0, where F is defined in (3.7). Then we have (x1, r2) ∈ F (p2)

with r2 := r1 + `‖p1 − p2‖, where ` > 0 is a Lipschitz constant of ϕ around (x̄, p̄). It follows

that

(x1, r1) ∈ (x1, r2) + `‖p1 − p2‖IBX×P ,

which verifies BCQ (3.7). The Lipschitz-like property of G in (3.33) can be checked similarly.

To show next that (ii)=⇒(i), it suffices to verify condition (3.38) du to Theorem 3.12.

To proceed, pick any u∗ ∈ (D̂∗∂xf)(x, p, x∗)(u) with (x, p, x∗) ∈ gph ∂xf ∩ IBν(x̄, p̄, x̄∗) with

η
1+` > ν > 0 sufficiently small. Observe from Lemma 2.5 that

(
D̂∗∂xf

)
(x, p, x∗)(u) =

(
(D̂∗∇xϕ)(·, ·) +N(·;K)

)
(x, p, x∗)(u)

= ∇2
xxϕ(x, p)u+ ∂̆2δK

(
x, x∗ −∇xϕ(x, p)

)
(u).

This gives us that u∗−∇2
xxϕ(x, p)u ∈ ∂̆2δK(x, x∗−∇xϕ(x, p))(u), which in turn implies by (6.5)

that u ∈ −K(x, x∗ −∇xϕ(x, p)). Since N(·;K) is maximal monotone, we get from Lemma 2.9

that 〈u∗ −∇2
xxϕ(x, p)u, u〉 ≥ 0. Note further that x∗ −∇xϕ(x, p) ∈ N(x;K) and so

‖x∗ −∇xϕ(x, p)− x̄∗ +∇xϕ(x̄, p̄)‖ ≤ ‖x∗ − x̄∗‖+ `(‖x− x̄‖+ ‖p− p̄‖) ≤ ν + `ν < η.

It follows from (6.9) that 〈∇2
xxϕ(x, p)u, u〉 = 〈−∇2

xxϕ(x, p)u,−u〉 ≥ κ‖ − u‖2 = κ‖u‖2, which

yields

〈u∗, u〉 = 〈u∗ −∇2
xxϕ(x, p)u, u〉+ 〈∇2

xxϕ(x, p)u, u〉 ≥ κ‖u‖2.

This ensures condition (3.38) in Theorem 3.12 and hence justifies the first part of the theorem.
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To prove the second part, suppose now that K is polyhedric and that x̄ is a fully stable

local minimizer of P̃(x̄∗, p̄). Theorem 3.12 tells us that condition (3.38) holds for some κ, η > 0.

Picking any u ∈ K(x, x∗) with (x, x∗) ∈ gphN(·;K) ∩ IBν(x̄, x̄∗ −∇xϕ(x̄, p̄)) with some η
1+` >

ν > 0, we get that x∗ +∇xϕ(x, p) ∈ ∂xf(x, p) and that

‖x∗ +∇xϕ(x, p)− x̄∗‖ = ‖x∗ − x̄∗ +∇xϕ(x̄, p̄)‖+ ‖∇xϕ(x, p)−∇xϕ(x̄, p̄)‖ ≤ ν + `ν < η,

which justifies the inclusion (x, p, x∗+∇xϕ(x, p)) ∈ gph ∂xf∩IBη(x̄, p̄, x̄∗). Since x∗ ∈ K(x, x∗)∗,

it follows from (6.6) and Lemma 2.5 that

∇2
xxϕ(x, p)u+ x∗ ∈ −∇2

xxϕ(x, p)(−u) + ∂̆2δK(x, x∗)(−u) =
(
D̂∗∂xf

)(
x, p, x∗+∇xϕ(x, p)

)
(−u).

This together with (3.38) ensures that

〈∇2
xxϕ(x, p)u, u〉 = 〈−∇2

xxϕ(x, p)u+ x∗,−u〉 ≥ κ‖u‖2,

which verifies (6.9) and thus completes the proof of the theorem. �

6.3 Full Stability in Optimal Control of Semilinear Elliptic PDEs

This section is devoted to applications of the infinite-dimensional results obtained in Section 6

to characterizing (Lipschitzian) full stability in optimal control problems governed by elliptic

partial differential equations. More specifically, we consider the following control problem:

minimize


J(y, x) :=

1

2

∫
Ω

(
y(w)− p̄(w)

)2
dw +

M

2

∫
Ω
x(w)2dw

subject to x ∈ K,
(6.10)
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where Ω is an open bounded subset of IRn as n ≤ 3 with C2-smooth boundary bdΩ, the number

M > 0 is given, the target p̄ belongs to the Asplund space P := Lq(Ω) for q ∈ [2,∞), K is

a closed convex subset of the Hilbert control space X := L2(Ω), and y is the corresponding

solution to the Dirichlet problem for the semilinear elliptic equation


−∆y + φ(y) = x in Ω,

y = 0 on bdΩ

(6.11)

with the Laplacian ∆. We refer the reader to the books [5, 27, 28] for the equations of this

type, control problems for them, and various applications.

In what follows we assume that the function φ : IR→ IR in (6.11) is nondecreasing, Lipschitz

continuous, and C2 on IR. It follows from [5, Proposition 6.12] that for each x ∈ L2(Ω) equation

(6.11) has a unique solution yx ∈ H2(Ω) ∩ H1
0 (Ω), where H2(Ω) := W 2,2(Ω) and H1

0 (Ω) :=

W 1,2
0 (Ω) are the classical Sobolev spaces. Thus the functional J(y, x) can be understood as a

function of one variable x. Define next the function ϕ : X ×P → IR depending on x and p ∈ P

by

ϕ(x, p) :=
1

2

∫
Ω

(
yx(w)− p(w)

)2
dw +

M

2

∫
Ω
x(w)2dw for all x ∈ L2(Ω), p ∈ Lq(Ω) (6.12)

and observe that problem (6.10) can be treated as P̃ in (6.1) with the cost function (6.12). The

following result follows from [5, Proposition 6.13, Proposition 6.15, and Lemma 6.27].

Lemma 6.4 (well-posedness). Under the assumptions imposed above the mapping L2(Ω) 3

x 7→ yx ∈ H2(Ω) ∩H1
0 (Ω) is C2. Moreover, the function ϕ in (6.12) is also C2 with

〈∇2
xxϕ(x, p)u, u〉 =

∫
Ω

[
Mu(w)2 +

[
1− qx,p(w)φ′′

(
yx(w)

)]
zu(w)2

]
dw, (6.13)
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where qx,p ∈ H2(Ω) ∩H1
0 (Ω) is a unique solution of the adjoint equation


−∆q + φ′(yx)q = yx − p in Ω,

q = 0 on bdΩ

(6.14)

while zu ∈ H2(Ω) ∩H1
0 (Ω) is a unique solution of the homogeneous one


−∆z + φ′(yx)z = u in Ω,

z = 0 on bdΩ.

(6.15)

Considering the perturbed version P̌(x∗, p) of problem P̌ in (6.1), we derive in the next

theorem pointwise necessary and sufficient conditions for full stability of local minimizers in

this PDE setting.

Theorem 6.5 (full stability for elliptic PDEs). For the reference pair (x̄, p̄) ∈ X × P , fix

x̄∗ ∈ L2(Ω) satisfying x̄∗ ∈ qx̄,p̄ +Mx̄+N(x̄;K) and consider the following assertions:

(i) The point x̄ is a fully stable local minimizer of P̌(x̄∗, p̄).

(ii) With x̂∗ := x̄∗ − qx̄,p̄ −Mx̄ we have

〈∇2
xxϕ(x̄, p̄)u, u〉 > 0 for all u ∈ H(x̄, x̂∗) \ {0}, (6.16)

where H(x̄, x̂∗) is defined by the outer limit

H(x̄, x̂∗) := Lim sup

(x,x∗)
gphN(·;K)−→ (x̄,x̂∗)

K(x, x∗) (6.17)

of the critical cone (6.3). Then (ii) is a sufficient condition for (i). If in addition K is polyhedric,

then (ii) is also necessary for the validity of (i).
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Proof. It follows from [5, Lemma 6.18] that ∇xϕ(x̄, p̄) = qx̄,p̄ +Mx̄, and hence we have the

inclusion x̄∗ ∈ ∇xϕ(x̄, p̄) + N(x̄;K). By Theorem 6.3 it suffices to show that assertion (ii) is

equivalent to (ii) in Theorem 6.3. To proceed, suppose that (6.9) holds with some κ ∈ (0,M)

and η > 0. Picking any u ∈ H(x̄, x̂∗) \ {0}, find from (6.17) sequences (xk, x
∗
k) ∈ gphN(·;K),

uk ∈ K(xk, x
∗
k), and pk ∈ Lq(Ω) satisfying (xk, x

∗
k) → (x̄, x̂∗), uk

w→ u, and pk → p̄ as k → ∞.

Taking (6.9) and (6.13) into account, assume without loss of generality that

∫
Ω

[
Muk(w)2 +

[
1− qk(w)φ′′(yk(w))

]
zk(w)2

]
dw ≥ κ

∫
Ω
uk(w)2dw, (6.18)

where qk := qxk,pk , yk := yxk , and zk := zuk . Employing now (6.15), Poincaré’s inequality, and

the fact that φ′(v) ≥ 0 gives us the estimates

‖zk‖2H1
0 (Ω)

≤ C‖∇zk‖2L2(Ω) ≤ C
∫

Ω

(
‖∇zk(w)‖2 + φ′(yk(w))zk(w)2

)
dw

= C

∫
Ω
uk(w)zk(w)dw ≤ C‖uk‖L2(Ω)‖zk‖L2(Ω) ≤ C‖uk‖L2(Ω)‖zk‖H1

0 (Ω)

(6.19)

with some C > 0. Since uk
w→ u in L2(Ω), the sequence {‖uk‖L2(Ω)} is bounded. It follows from

(6.19) that {zk} is bounded in H1
0 (Ω). Hence there is a subsequence of {zk} satisfying

zk
w→ z in H1

0 (Ω) and zk → z in L2(Ω) as k →∞. (6.20)

It follows from [5, Proposition 6.13] that zk = ∇xyxkuk and that ∇xyxk → ∇xyx̄ due to

Lemma 6.4. We get from the latter, (6.20), and the convergence uk
w→ u that z = ∇xyx̄u,

which yields z = zu by [5, Proposition 6.13]. Similarly to the case of {zk}, the sequence {qk}

also contains a subsequence converging to qx̄,p̄ in L2(Ω). Moreover, the Sobolev embedding for

H2(Ω) ⊂ C(Ω) as n ≤ 3 (where Ω indicates the closure) tells us by [5, Lemma 6.14] and (6.20)
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that there is c > 0 such that

‖zk‖C(Ω) ≤ c‖zk‖H2(Ω) ≤ c2‖zk‖L2(Ω) ≤ c3.

Since yk → yx̄ in H2(Ω)∩H1
0 (Ω) by Lemma 6.4, we have yk → yx̄ in C(Ω) due to the aforemen-

tioned Sobolev embedding. It ensures that φ′′(yk)→ φ′′(yx̄) in C(Ω) as well, and thus

∣∣∣ ∫
Ω

(qk(w)− qx̄,p̄(w))φ′′(yk(w))zk(w)2 +

∫
Ω
qx̄,p̄(w)(φ′′(yk(w))− φ′′(yx̄(w))zk(w)2

∣∣∣
≤ c1‖qk − qx̄,p̄‖L2(Ω)‖φ′′(yk)‖C(Ω)‖zk‖

2
C(Ω)

+ ‖qx̄,p̄‖C(Ω)‖φ
′′(yk)− φ′′(yx̄)‖C(Ω)‖zk‖

2
C(Ω)

≤ c2
1c

3‖qk − qx̄,p̄‖L2(Ω) + c3‖qx̄,p̄‖C(Ω)‖φ
′′(yk)− φ′′(yx̄)‖C(Ω) −→ 0 as k →∞

(6.21)

with some c1 > 0. Furthermore, it follows from (6.20) that

∣∣∣ ∫
Ω
qx̄,p̄(w)φ′′(yx̄(w))(zk(w)2−zu(w)2)dw

∣∣∣ ≤ ‖qx̄,p̄‖C(Ω)‖φ
′′(yx̄)‖C(Ω)‖zk−zu‖L2(Ω)‖zk+zu‖L2(Ω),

which also converges to 0 as k →∞. This together with (6.18), (6.20), and (6.21) ensures that

∫
Ω

[
1− qx̄,p̄(w)φ′′(yx̄(w))

]
zu(w)2dw = lim

k→∞

∫
Ω

(1− qk(w)φ′′(yk(w))zk(w)2dw

≥ − lim inf
k→∞

(M − κ)‖uk‖2L2(Ω) ≥ −(M − κ)‖u‖2L2(Ω),

(6.22)

which implies that 〈∇2
xxϕ(x̄, p̄)u, u〉 ≥ κ‖u‖2 due to (6.13) and thus justifies (ii).

To prove the converse implication, suppose by contradiction that (6.16) holds while (6.9)

does not. This gives us sequences (xk, x
∗
k)

gph N(·;K)−→ (x̄, x̂∗), pk → p̄, and uk ∈ K(xk, x
∗
k) such

that

〈∇2
xxϕ(xk, pk)uk, uk〉 < k−1‖uk‖2L2(Ω) for all k ∈ IN. (6.23)
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Assume without loss of generality that ‖uk‖2L2(Ω) = 1 and find a subsequence of {uk} with

uk
w→ u ∈ L2(Ω) as k → ∞. It follows from (6.17) that u ∈ H(x̄, x̄∗). Defining qk := qxk,pk ,

yk := yxk , and zk := zuk and arguing similarly to (6.22) imply that

M +

∫
Ω

(
1− qx̄,p̄ϕ′′(yx̄)

)
zu(w)2dw = M + lim

k→∞

∫
Ω

(
1− qk(w)φ′′(yk(w)

)
zk(w)2dw ≤ 0, (6.24)

where the inequality follows from (6.13) and (6.23). If u = 0, then zu = 0 by (6.14), which is not

possible by (6.24) sinceM > 0. Hence u 6= 0, and by (6.24) and (6.13) we get 〈∇2
xxϕ(x̄, p̄)u, u〉 ≤

0. This contradicts (6.16) and thus completes the proof of the theorem. �

The next result provides an precise calculation of the outer limit in (6.17) for the critical

cones generated by the constraint set K from (6.10) given by

K = Ka,b :=
{
x ∈ L2(Ω)

∣∣ a ≤ x(w) ≤ b a.e. on Ω
}

(6.25)

with −∞ ≤ a < b ≤ ∞. It follows from [5, Proposition 6.33] that this set is polyhedric in L2(Ω),

which is not however polyhedral or generalized polyhedral. Note also that the pointwise magni-

tude control constraints of type (6.25) are typical in optimal control theory and its applications

while being among the most difficult (“hard") in PDE control; see, e.g., [5, 27, 28].

Proposition 6.6 (limits of critical cones for pointwise constraint). Let x̄ ∈ Ka,b, and

let x̂∗ ∈ N(x̄;K) with K defined in (6.25). Then the outer limit (6.17) is calculated by

H(x̄, x̂∗) =
{
u ∈ L2(Ω)

∣∣ u(w)x̂∗(w) = 0 a.e. on Ω
}
. (6.26)

Proof. To justify the inclusion "⊂" in (6.26), pick any u ∈ H(x, x̂∗) and find sequences
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uk
w→ u in L2(Ω) and (xk, x

∗
k)

gphN(·;K)−→ (x̄; x̂∗) as k →∞ with uk ∈ K(xk, x
∗
k) for all k ∈ IN . It

follows from the proof of [5, Proposition 6.33] that

K(xk, x
∗
k) =

{
v ∈ TK(xk)

∣∣ v(w)x∗k(w) = 0 a.e. on Ω
}
,

which implies that uk(w)x∗k(w) = 0 a.e. on Ω. For any measurable subset A ⊂ Ω with the

characteristic function χA, we get the relationships

∣∣∣ ∫
A
u(w)x̂∗(w)dw

∣∣∣ = lim
k→∞

∣∣∣ ∫
Ω
uk(w)x̂∗(w)χA(w)dw

∣∣∣
≤ lim sup

k→∞

∣∣∣ ∫
Ω
uk(w)x∗k(w)χA(w)dw

∣∣∣+
∣∣∣ ∫

Ω
uk(w)

(
x∗k(w)− x̂∗(w)

)
χA(w)dw

∣∣∣
= lim sup

k→∞

∣∣∣ ∫
Ω
uk(w)

(
x∗k(w)− x̂∗(w)

)
χA(w)dw

∣∣∣
≤ lim sup

k→∞
‖uk‖L2(Ω)‖x∗k − x̂∗‖L2(Ω) = 0,

where the last equality holds due to the convergence x∗k → x̂∗ in L2(Ω) and uk
w→ u; the latter

ensures the boundedness of {‖uk‖2L2(Ω)}. Since A ⊂ Ω was chosen arbitrarily, this implies that

u(w)x̂∗(w) = 0 a.e. on Ω and thus justifies the inclusion “⊂" in (6.26).

To prove the converse inclusion, pick any u from the right-hand side set in (6.26). Define

u1 :=



max{0,−u(w)} for w ∈ {x̄ = a},

min{0,−u(w)} for w ∈ {x̄ = b},

0 otherwise

with {x̄ = a} := {w ∈ Ω| x̄(w) = a}. Denoting u2 := u+ u1 and employing the formula

TK(x̄) =
{
v ∈ L2(Ω)

∣∣ v(w) ≥ 0 over {x̄ = a} and v(w) ≤ 0 over {x̄ = b}
}
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obtained in [5, Proposition 6.33], we get that u1, u2 ∈ TK(x̄). Note further that u1, u2 ∈ {x̂∗}⊥,

which gives us u2, u1 ∈ K(x̄, x̂∗). Since Ka,b is polyhedric, it follows from (6.3) that there are

sequences u1k → u1, u2k → u2 and t1k, t2k ↓ 0 such that x̄ + t1ku1k ∈ Ka,b, x̄ + t2ku2k ∈ Ka,b,

and u1k, u2k ∈ {x̂∗}⊥. Defining tk := min{t1k, t2k}, we get from the convexity of Ka,b that

xk := x̄+ tku1k ∈ Ka,b and yk := x̄+ tku2k ∈ Ka,b, which ensures by (6.4) that

u2k − u1k =
yk − xk
tk

∈ RK(xk) ∩ {x̂∗}⊥ ⊂ K(xk, x̂
∗).

Since u2k − u1k → u2 − u1 = u and xk → x̄ in L2(Ω) as k → ∞, we get from (6.17) that

u ∈ H(x̄, x̂∗) and thus complete the proof of the proposition. �

We conclude the section with the following straightforward consequence of the results above.

Corollary 6.7 (characterizing full stability for elliptic control problems with point-

wise constraints). Let K be given by (6.25) in the setting of Theorem 6.5. The following are

equivalent:

(i) The point x̄ is a fully stable local minimizer of P̌(x̄∗, p̄).

(ii) With x̂∗ := −x̄∗ − qx̄,p̄ +Mx̄ we have

〈∇2
xxϕ(x̄, p̄)u, u〉 > 0 for all u 6= 0 with u(w)x̂∗(w) = 0 a.e. w ∈ Ω. (6.27)

Proof. Follows directly from Theorem 6.5 and Proposition 6.6. �

Note that the obtained characterization (6.27) of full stability in Corollary 6.7 can be in-

terpreted as the positive definiteness of the cost function Hessian ∇2
xxϕ(x̄, p̄) on the subspace

pointwise orthogonal to the adjoint impulse x̂∗ generated by the reference local minimizer x̄ of

P̌(x̄∗, p̄).
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The dissertation concerns a systematic study of full stability in general optimization mod-

els including its conventional Lipschitzian version as well as the new Hölderian one. We de-

rive various characterizations of both Lipschitzian and Hölderian full stability in nonsmooth

optimization, which are new in finite-dimensional and infinite-dimensional frameworks. The

characterizations obtained are given in terms of second-order growth conditions and also via

second-order generalized differential constructions of variational analysis. We develop effective

applications of our general characterizations of full stability to parametric variational systems
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ships of full stability with the conventional notions of strong regularity and strong stability are
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inite programming, and to optimal control problems governed by semilinear elliptic PDEs are

also studied.
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