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CHAPTER 1 

INTRODUCTION 

The classical systems of colloidal particles, polymeric solutions and melts, 

amphiphiles, and liquid crystals that have been studied since years are categorized as soft 

matter.
1 

In this chapter, I have outlined the common characteristics of soft matter systems 

followed by properties of polymeric systems. It will also cover the importance of my 

research and the organization of this thesis. 

1.1 SOFT MATTER 

The materials corresponding to the states of matter that cannot be classified as 

either simple liquids or crystalline solids are termed as soft matter. Some examples of 

soft matter that we are familiar with from everyday life are glue, tomato ketchup, paste, 

soap etc. Human body also consists of soft matter such as proteins, polysaccharides and 

nucleic acid. Soft matter systems exhibit many unique properties. They have a tendency 

to self assemble in order to minimize the free energy, but unlike other materials, the 

lowest free energy equilibrium state corresponding to these materials is not of dull 

uniformity. Various complex structures arise owing to the rich phase behavior caused by 

subtle balances of energy and entropy in these systems.
1
 

 These materials display a combination of time dependent elastic and viscous 

response which is classified as viscoelasticity. If a stress is applied at time t=0 and kept 

constant thereafter, the first response of a viscoelastic material will be elastic.  At time 

scale greater than τ, the relaxation time, a liquid like behavior is exhibited and the 

material starts to flow with the strain increasing linearly with time. The relaxation time 



2 
 

 

“τ” marks the ending of solid like behavior and beginning of liquid like behavior.
2
 A 

good example of viscoelastic material is “silly putty”, which if dropped on a hard surface, 

as a ball, bounces back elastically; whereas flows like a highly viscous liquid if stress is 

applied to it slowly.  

Soft matter systems possess mesoscopic dimensions
 
which correspond to length 

scales larger than atomic size (> 0.1 nm), but smaller than macroscopic objects (< 10 

µm). Despite of being greater than atomic sizes these are small enough to follow 

Brownian motion.
1, 2

 My research work in soft matter physics was mainly focused on the 

polymeric systems. 

1.2 POLYMERS 

 “Poly” means many and “mer” means part. Giant molecules, that are made up of 

many repeating units are called polymers. These repeating units are called monomers and 

are connected to each other by covalent bonds. The process by which monomers are 

bonded together to form a polymer is called polymerization.  

Polymers may exhibit different properties owing to their degree of 

polymerization, microstructure, and architecture. The number of monomers N, that forms 

a polymer molecule, is termed as the degree of polymerization. If Mmon is the mass of 

each monomer molecule, then the molecular weight Mw of the polymer will be the 

product of degree of polarization N and molar mass of monomer Mmon. 
3
 

                                                Mw = N Mmon                                                      1.2.1 

Polymer’s microstructure is determined by the organization of monomers along 

the fixed chain. Depending on the type of monomers, polymers can be classified as homo 



3 
 

 

or heteropolymers with homopolymers consisting of only one type of monomer, and 

heteropolymers with many different types of monomers. Copolymer is a heteropolymer 

with only two different types of monomers. Based on the sequence of monomers, 

copolymers exhibit different microstructures as shown in figure 1.2.1.
3 

 

-A-B-A-B-A-B-A-B-       -A-A-A-B-A-B-B-B-A            -A-A-A-B-B-B-                  
                  (a)                           (b)                                   (c)                                           (d) 

 

Figure 1.2.1: (a) alternating copolymers (b) random copolymers   (c) block copolymers    

(d) graft copolymers 

 

 

Polymer architecture depends on monomer structure, linear or branched, as well 

as the way the polymer was synthesized. Figure 1.2.2 represents different types of 

polymer architectures. It affects many of the physical properties of the polymeric system, 

like viscosity etc. Linear polymers, for example: high density polyethylene, can be 

completely characterized by their degree of polymerization N. Branched polymers 

possess side chains along with the main chain, and the branches affect the way in which 

  

                                                    
  
         (a)              (b)                  (c)                      (d)                        (e)                (f)                (g)                (h) 

 

  

Figure 1.2.2:  (a) linear, (b) ring, (c) star-branched, (d) H- branched, (e) comb, (f) ladder, 

(g) dendrimer (h) randomly branched
 

 



4 
 

 

molecules move relative to each other. If many branch points are introduced to a polymer 

system, a macroscopic volume network can be created. Vulcanized rubber is an example 

of one such macroscopic network.
1
  

Polymer chain dimensions as well as thermodynamics of dilute polymer solutions 

are altered by the quality of the solvent. This can be justified by considering that the 

presence of solvent molecules modifies the interactions between polymer chains.
2
 A 

solvent is considered to be good if the solvent-monomer interaction is favored over the 

monomer-monomer interaction. In this case, the chain expands in order to maximize its 

monomer-solvent contacts, and the polymer adopts a swollen coil conformation. On the 

other hand, a poor solvent is one in which monomer-monomer interaction is favored and 

the chain contracts in order to minimize its interactions with the solvent. Very often, in 

poor solvents, polymers precipitate to minimize solvent contact rather than adopting a 

highly compact conformation. To counterbalance the effect of becoming compact, the 

excluded volume effect comes to play. In the case where these two effects are perfectly 

balanced, the polymer chain adopts unperturbed dimensions, and the corresponding 

solvent is known as theta solvent.
2
 

The root mean square end-to-end distance in a good solvent, according to Flory is 

given as: 

                                                    
 

                                                         1.2.2 

where N is the degree of polymerization. The exponent υ in case of good solvent 

is υ = 3/5 since the chain expands, and in case of theta solvent, υ = ½. In the case of poor 

solvent, υ = 1/3 implying that the attractive polymer/solvent interactions dominated the 



5 
 

 

repulsive excluded volume effect and thus the chain collapsed and formed a compact 

globule.
1
 The exact value for Flory exponent in a good solvent is .588. Expansion factor 

α, which is the ratio between the perturbed and unperturbed dimensions for a good 

solvent is α > 1, for a poor solvent α < 1 whereas for a theta solvent α = 1.
2
 

One of the interesting properties of polymeric systems is glass transition. Glass is 

classified as a non-crystalline solid. Although it has short-range order, it possesses elastic 

properties that make it resemble with solids. It can be obtained by cooling the material, 

starting from a temperature above its melting point. There are two possibilities for the 

system to be in while it is being cooled, it can either crystallize or remain in a liquid state. 

Polymers being viscoelastic exhibit a super cooled metastable state, and in some cases the 

rearrangement of the structure of the super cooled state is unable to catch up with the 

cooling rate. This implies that the cooling rate is fast enough that it doesn’t give enough 

time to the liquid to crystallize. Under such conditions, the system is no longer in 

equilibrium and forms a glassy solid. This is called glass transition. The temperature 

range in which glass transition takes place depends on the heating/cooling conditions of 

the experiment, though most commonly it is marked by one particular temperature called 

glass transition temperature Tg.
1, 2

  

Tg is the temperature below which the state of the amorphous substance exhibits 

the properties of solid (glass phase) and above which it behaves like a viscous liquid. As 

the glass transition temperature is approached, the viscosity becomes too large. Due to 

this high viscosity, the movement of the molecules is restricted and they get interlocked. 
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As a result, no appreciable change in the structure is noticed for a long time and it 

appears as if the liquid has frozen at a temperature below Tg.  

The change from liquid to glass is marked by discontinuities in thermodynamic 

quantities that are dependent on free energy, being its second derivatives. Figure 1.2.3 

shows volume as a function of temperature, which shows a discontinuous change at the 

Tg, which is dependent on experimental conditions. In case the liquid forms a crystal, the 

path marked “crystal” will be followed by it, and at a melting temperature Tm there will 

be a discontinuous change in the volume attributing to the formation of crystal phase 

(first order). On the other hand, if the cooling rate is fast enough then the liquid will be 

cooled below its freezing point without crystallizing. It will follow path “Glass (1)”. A 

change in the slope of the graph can be noticed at some temperature below freezing point, 

which corresponds to Tg. If the cooling rate is a lower than that for glass (1), then the path 

“Glass (2)” will be followed. It appears to be similar to second order but that is not true 

thermodynamically since transition temperature depends on the rate at which experiment 

is performed.
1
 The dynamics of a system are greatly altered when measured near the Tg 

of the corresponding system. 

       

                           
 

Figure 1.2.3:  Volume vs. Temperature. Glass(1) and Glass (2) represent the two different 

paths followed by the polymeric system depending on the rate of cooling. 
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Polymeric systems include polymer solutions and polymer melt, where polymer 

melt corresponds to a state of liquid polymer (melted). My research work was focused on 

studying polymer solution dynamics using gold nanoparticles as probes. In the case of 

simple liquids, the translational diffusion coefficient (D) of isolated spherical particles is 

given by the well-known Stokes−Einstein (SE) relation,  

                                          D = kBT/6πηoRo,                                                       1.2.3 

where kB is the Boltzmann constant, T is the absolute temperature, Ro is the radius of the 

spherical particle, and ηo is the solvent viscosity. On the other hand in case of polymer 

solutions, where there are probe particles, polymer and solvent molecules, various length 

scales are involved and the applicability of this relation becomes complicated. This 

discussion will be revisited in the following chapters. 

1.3 SIGNIFICANCE OF RESEARCH 

Understanding the transport properties of nanoparticles in solutions of 

macromolecules is relevant for many interdisciplinary fields of study as well as important 

for many technological applications. For instance, nanoparticles have been used to 

enhance the lifetime of plastics, which was a major concern in the field of bioengineering 

and microelectronics. It has been demonstrated that when nanoparticles are dispersed in a 

polymer matrix, they tend to move towards the source of any crack. Such a response of 

nanoparticles results in development of more durable and self healing plastics.
4
 Thus, 

these studies are significant in the development of novel composite systems that contain 

nano sized inclusions. 
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Recently in the field of biophysics, gold nanoparticle are being used for cancer 

diagnostics as well as therapy owing to their unique optical properties.
5
 It is thus 

important to study their dynamics in physiological environments. Polymer solutions can 

mimic such crowded systems and provide insight for understanding nanoparticle motion 

in complex fluids and biological systems, figure 1.3.1.
6
 

 

                         

 

 

Figure 1.3.1: Scaled representation of mucin network. Understanding length scale 

dependent transport properties of nanoparticles in polymer solutions is relevant to dynamics 

of drug delivery carrier through these complex spatial structures (Cu 2009). 

 

 

In the field of soft matter physics and nanotechnology
7
, these studies play a vital 

role in confirming the accuracy of theories of particle dynamics and explaining the 

discrepancies between microrheology theory and experiments. 

1.4 THESIS DETAILS 

This thesis will investigate three important topics in soft condensed matter 

Physics.  First, we shall investigate how different length scales of a polymer solution 
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affect the dynamics of nanoparticles. Adsorption of nanoparticles at the surface of 

biopolymers like proteins will be the second component of this thesis. The final section 

of this thesis will be the study of the effect of macromolecular crowding on nanoparticle 

dynamics; here, attention will be paid to branched polymer systems and particulate 

solutions.  

This dissertation will be organized as follows. Chapter 2 will provide some 

background information with the previous work done in the fields relevant to my 

projects. Chapter 3 will comprise the experimental techniques used to study soft matter 

systems, more specifically fluorescence correlation spectroscopy (FCS) that I had 

employed for my experiments. Chapter 4-6 will be on the various experiments that I had 

performed along with the respective results. Specifically, Chapter 4 covers my 

investigation of the effect of length scales on the diffusion of nanoparticles in polymer 

solutions, Chapter 5 focuses on the interaction and diffusion of nanoparticles in protein 

solutions, Chapter 6 covers nanoparticle behavior in branched polymer solutions, and 

Chapter 7 will consist of conclusion and future research plan. The last section in the 

thesis will be an appendix covering the research work that I had performed in 

collaboration with Dr. Lawes' group, and some of the current research being performed in 

my group. 
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CHAPTER 2 

BACKGROUND 

2.1 POLYMERIC SYSTEMS 

The investigation of particle diffusion in polymeric systems started as early as 

1960s. During the subsequent twenty years, the important principles, that form the basis 

of modern polymer physics, were developed. As of today, a lot of theoretical as well as 

experimental work has been done to describe polymer melt and solution dynamics. 

A considerable discussion about dilute polymer solutions as well as polymer melt 

properties has been done in the literature.
8-10

 A rational reason for the same is that 

polymer melt properties have important industrial applications, for example, in processes 

like injection molding, film casting etc. Properties of the polymer melt are substantially 

determined by the polymer molecular weight. The techniques employed to determine 

polymer's molecular weight, for instance measuring intrinsic viscosity, work in dilute 

solution regime, thereby rendering study of these dilute solutions  important.  The focus 

of this thesis is on the probe diffusion in non dilute polymer solutions, that is the regime 

between dilute polymer solutions and polymer melts. A lot of work has been done so far 

on probe diffusion in polymeric systems, and it is not possible to list all of it. The 

following section of the chapter will cover the theoretical and experimental results that 

are most relevant to my research. Section 2.2 and 2.3 will provide background pertinent 

to chapter 4 and 6, where we have discussed probe diffusion in linear polymer,  slightly 

branched polymer and particulate solutions. Section 2.4 will provide background for 

chapter 5 corresponding to probe dynamics in biopolymer solutions. 
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2.2 PREVIOUS THEORETICAL WORK  

2.2.1 HYDRODYNAMIC THEORIES 

 According to the physical concepts applied, the  theories describing probe 

diffusion in polymeric systems can be divided into two broad classes.
11

 The first class of 

theories was based on hydrodynamic interactions between particles and polymers.
12, 13

 

For dilute polymer solutions, with probe size 2Ro greater than the chain size 2Rg (Rg 

denotes polymer radius of gyration), the chains were considered "hard spheres" with size 

equal to their hydrodynamic radii. Here, the diffusing probes experienced hydrodynamic 

interaction with these effective hard spheres. In case of semidilute polymer solutions, the 

polymers were modeled as fixed friction centers of monomer beads.
12

 The hydrodynamic 

drag experienced by the moving probe particles due to the fixed monomer beads was 

assumed to be screened at a length scale of the order of solution correlation length. In this 

class of theories,
12, 14-17

 the relaxation of polymer matrix was not taken into account and a 

stretched exponential dependence of terminal diffusion coefficient on polymer 

concentration and particle size was predicted.     

The second class of theories treated the polymer solutions as "porous" systems 

and was based on the concept of "obstruction effect".
18-22

 A distribution of distances from 

an arbitrary point in the system to the nearest polymer characterized the "pore size". A 

suspension of random rigid fibers was considered to obtain this distribution.
18

 It was 

assumed that the diffusion coefficient of the probe particles was linearly proportional to 

the fraction of relatively larger "pores" in polymer solutions. At higher concentrations, 

when polymers overlap, the probe particles could no longer diffuse through "pores" with 
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relatively smaller size, and the linear assumption failed. Polymers being flexible and coil 

like exhibited different dependence of "pore" size on concentration than that of solution 

of rigid fibers. Besides, particles with size larger than the distance between obstacles 

(correlation length), were not permanently hindered by obstacles as the polymer 

dynamics affected the spacing between the obstacles. 

The scaling theory for probe diffusion in polymeric systems was developed by 

Brochard-Wyart and de Gennes.
23

 Here, a concentrated polymer solution was considered 

as a transient statistical network of mesh length ξ (correlation length, average distance 

between monomer on one chain to the nearest monomer on another chain). A scaling 

form for the viscosity experienced by probes in polymer solutions was introduced. 

According to this theory, if probe size Ro < ξ, the viscosity should depend on probe size 

as η(Ro/ξ), and if probe size Ro >> ξ the particle should experience full solution viscosity.  

Thus, ξ was concluded to be the crossover length scale for the viscosity experienced by 

the nanoprobes. A lot of theoretical work was done to establish the functional form for 

viscosity dependence on probe size and concentration.
12, 23-25

 

 Phillies followed the hydrodynamic model to describe probe dynamics. He 

suggested a stretched exponential functional form for concentration dependence of 

particle diffusion in polymer solutions  

                                                    D = Do exp(-βφ
ν
)                                                        2.2.1 

here Do is particle diffusion in the limit of low concentration, and β and ν are scaling 

parameters.
24

 For a wide range of polymer molecular weights, it was observed that ν   

M
-1/4 

and β   M1
. This stretched exponential relation worked, within experimental error, 
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for all polymer concentrations and it was thus assumed that there is no significant change 

in the nature of polymer motion in dilute or semidilute concentration regime. This was 

contrary to the predictions of scaling models for polymer self diffusion, where polymer 

solutions were divided into various concentration regimes and polymer motion was 

assumed to vary from regime to regime. In case of dilute solutions, where distance 

between polymer chains is much larger compared to the polymer radius of gyration Rg, 

scaling theories predicted that single chains diffused as isolated hydrodynamic ellipsoids. 

In the semidilute regime, where polymer chains overlap, polymer dynamics were 

assumed to be controlled by chain "reptation", in which polymer chains move parallel to 

their own backbones.  Phillies model however did not consider reptation.  In his model, it 

was assumed that the hydrodynamic interactions are the dominant dynamic chain-chain 

interactions. A similar mechanism was considered to have been adopted by hard spheres 

as the one that the polymer chains would follow in order to enhance another chain's 

drag.The model was thus applicable to polymers and probes of different architectures. 

Hydrodynamic screening was also not included, and it was assumed that interaction 

between pair of polymer chains  was unaffected by the presence of intervening plymers. 

Cukier 
12

 considered the effect of screening in his hydrodynamic model and suggested a 

functional form for Brownian motion of probes in semidilute concentration regime as 

                                               D = Do exp(-κRo)                                                            2.2.2 

where κ is the hydrodynamic screening length and depends on polymer concentration c 

(g/ml) as κ  c
1/2

. All the theories considering hydrodynamic interactions predicted a 

strong exponential (or stretched exponential) dependence of diffusion coefficient on 
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polymer concentration. However, a recent scaling theory developed by Cai et al.
11

 

considered coupling between particle motion and polymer dynamics, and suggested a 

power law dependence of diffusion coefficient. The theoretical arguments proposed by 

them have been outlined in section 2.2.2. 

Fan et al. provided an analytical solution to the hydrodynamic resistance 

experienced by spherical particles moving through a polymer solution.
16

 They suggested 

that owing to the loss of configurational entropy near the wall, the polymer segment 

density gradually increases from a negligible value at the particle surface to a bulk value  

far away from the particle. This corresponded to an effective depletion layer within which 

the viscosity was expected to have increased from solvent viscosity at the solid surface to 

bulk viscosity in polymer solution.  

2.2.2 SCALING THEORY  

Cai et al. 
11

 extended the scaling theory for particle mobility in polymer melts, 

developed by the Brochard-Wyart and de Gennes,
23

 in order to understand the dynamics 

of nanoparticles experiencing thermal motion in polymer solutions. As we used this 

theory in one of our papers (Macromolecules, 2012), I will discuss it in detail below. 

According to their theory,
11

 particle mobility in polymer liquids was dependent on 

particle size relative to two important length scales: correlation length ξ ant the tube 

diameter (entanglement length) a. Dilute solutions refers to the concentration where 

polymer chains are isolated and have no interactions, and semidilute marks the onset of 

the regime where chains start to penetrate though there is no effective entanglement. At 

the overlap concentration φ
*
, which marks the crossover from dilute to semidilute regime, 
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the correlation length ξ is on the order of polymer size. It decreases as a power of 

polymer concentration as 

                                                   ξ(φ)   bφ
-ν/(3ν-1)

                                                           2.2.3 

where b is the Kuhn monomer length and ν is the Flory exponent. This exponent depends 

on solvent quality. The correlation length scales as ξ(φ)  φ
-1

 (ν = 1/2) in the case of 

theta solvent, and as ξ(φ)  φ
-0.76

 (ν = 0.588) in the case of athermal solvent.  

The second important length scale was the tube diameter (entanglement length) a. 

In case of athermal or good solvent it was given by 

                                         a(φ)   a(1)φ
-ν/(3ν-1)   φ-0.76

   ξ                                              2.2.4 

where a(1) corresponds to the tube diameter in polymer melt and is approximately 5 nm. 

The entanglement length has a different concentration dependence in case of theta solvent 

given by                                          a(φ)   a(1)φ
-2/3                                                                                   

2.2.5 

Relative to these two length scales, the particles were divided into three different 

length regimes, small particles (2Ro < ξ) where particle diameter is smaller than the 

polymer correlation length, intermediate sized particles (ξ < 2Ro < a) where a is the tube 

diameter for entangled polymer liquids, and large sized particles (2Ro > a). Having 

divided the particles into three length regimes, they explained size dependence of the 

mean square displacement and particle diffusion coefficient. 

2.2.2.1 MEAN SQUARE DISPLACEMENT 

(a) Small Sized Particles: 

It was suggested by the theory, that for small sized particles (2Ro < ξ), regime I in 

figure 2.2.1(a), particle diffusion was similar to that in pure solvent and was not much 
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affected by polymers. The mean-square displacement in this case, as shown in figure 

2.2.1(b), was given by 

   

   

 

Figure 2.2.1: (a) Three regimes for mobility of probe particles with size d (2Ro in the 

text) in the polymer solution with volume fraction φ shown in the (φ,d) parameter space: 

regime I for small particles (2Ro < ξ), regime II for intermediate particles (ξ < 2Ro < a), 

and regime III for large particles (2Ro > a). Solid lines represent crossover boundaries 

between different regimes. Thick and medium lines correspond to the dependences of ξ 

and a on volume fraction φ in good solvent, while thin lines at top describes 

concentration dependence on polymer size R(φ) (Rg in text). Dashed lines represent 

concentrations - dilute regime 0 < φ < φ
*
 where φ

* 
represents polymer overlap 

concentration, semidilute unentangled solution regime φ
*
 < φ < φe where φe

 
 represents 

concentration at which polymer start to entangle, the semidilute entangled solution 

regime with φe < φ < φ
**
, and the concentrated entangled solution regime with φ

** 
< φ < 

1. (b) Time dependence of the product of mean-square displacement <Δr
2
(t)> and particle 

size d (2Ro in the text) for small, intermediate and large sized particles. Here, τo is the 

relaxation time for monomer, τξ is the relaxation time for correlation blob, τd relaxation 

time of polymer segment with size comparable to particle size(τx in text), τe relaxation 

time of entanglement strand and τrep the relaxation time of whole polymer chain 

(Reprinted with permission from Macromolecules 2011, 44, 7853-7863. Copyright 

(2011) American Chemical Society) 

 

                                              <Δr
2
(t)>   Dst, for t > τo                                                  2.2.6 

where τo is the monomer relaxation time and is given by τo   ηsb
3
/(kBT). The particle 

diffusion in this regime was inversely proportional to solvent viscosity ηs and particle 

size, and was given by 



17 
 

 

                                                  D   kBT/(ηsRo)                                                             2.2.7 

(b) Intermediate Sized Particles: 

For intermediate sized particles (ξ < 2Ro < a), regime II figure 2.2.1(a), particle 

motion was not affected by chain entanglements, but was affected by subsections of 

polymer chains. The mean square displacement of these particles was proposed to be time 

scale dependent, figure 2.2.1(b). At short times (t < ξ) particle motion was diffusive and 

the particle felt local solution viscosity which was similar to that of the solvent viscosity. 

This diffusive behavior continued up to the time scale ξ, which was the relaxation time 

of correlation blob with size ξ and was given by τξ   ηsξ
3
/(kBT)   τo (ξ/b)

3
. 

 
In the 

intermediate time scale, (ξ < t < x), the particle experienced subdiffusion and felt a time-

dependent viscosity coupled to fluctuation modes of polymer solution. The polymer 

mode with a relaxation time t corresponded to the motion of a section of chain containing 

(t/τξ)
1/2

 correlation blobs. The effective viscosity felt by the particle, for time scale ξ < t 

< x, corresponded to the viscosity of a solution with polymer size comparable to the 

chain section size ξ(t/τξ)
1/4

. It was greater than the solvent viscosity by a factor of number 

of correlation blobs in the respective chain section. 

                                                        ηeff(t) = ηs(t/τξ)
1/2

                                                    2.2.8 

The effective diffusion coefficient of these particles was given by 

                                          Deff   kBT/(ηeff(t)Ro)   Ds (t/τξ)
-1/2

                                      2.2.9 

and the corresponding mean square displacement for the particles would be 

                                 <Δr
2
(t)>   Deff t   Ds (tτξ)

1/2
, for ξ < t < x                                              2.2.10 
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The subdiffusive regime continued until the time scale τx   τξ (2Ro /ξ)
4 

which 

corresponded to the time at which the size of the chain section that determined the 

viscosity was of the order of particle size ξ(τx /τξ)
1/4

   2Ro.  

At longer times (t > x), the motion was diffusive again (<Δr
2
(t)>   Dt) with 

diffusion coefficient 

                                 D   kBT/(ηeff(x) Ro)   kBTξ
2
/(ηsRo

3
)                                         2.2.11 

the effective viscosity (eff) felt by the particle here was given by a polymer liquid 

consisting of chains comparable to the particle size 

                                                    eff ~ s(Ro/ξ)
2
                                                          2.2.12                            

Intermediate sized particles were relatively more interesting, thus in our 

experiments we focused on testing the predictions of the scaling theory in this particular 

length regime.  

(c) Large Sized Particles: 

Large sized particles (2Ro > a) got trapped in the entanglement mesh. The time 

scale at which the arrest of particle occurred was of the order of relaxation time of 

entanglement strand 

                                         τe   τξ (a/ξ)
4
   τo (ξ/b)

3
 (a/ξ)

4
                                              2.2.13 

At short time scale t < τe, large sized particles experienced the same time dependent 

motion as that of intermediate sized particles in the first two regimes. At time scale 

longer than τe, the motion of large particles could proceed by two mechanisms. The first 

one was related to the reptation of the surrounding polymers. It could lead to the release 
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of topological constraints at a time scale τrep, the reptation time, proportional to cube of 

number of entanglements per chain. 

                                                     τrep   τe (N/Ne)
3
                                                       2.2.14 

where Ne is the number of monomers per entanglement strand.  
 

The second mechanism involved the hopping of particles between neighboring 

entanglements due to fluctuations in entanglement mesh. Hopping mechanism was 

favored by particles with size comparable to tube diameter (2Ro a). Large particles got 

trapped by entanglements at time scale shorter than τrep and the mean square 

displacement, figure 2.2.1(b), of these particles was given by 
 

                                <Δr
2
(t)>   a

2
ξ/Ro, for τe < t < τrep                                                2.2.15 

At longer times (t > τrep), particle motion was Brownian resulting from chain reptation 

and was affected by bulk viscosity η of the polymer solution, which increased with 

degree of polymerization N and polymer concentration. The mean square displacement 

was given by 

                                <Δr
2
(t)>rep   (kBT/ηRo)t, for t > τrep                                            2.2.16 

The diffusion due to chain reptation as experienced by these particles was given by 

                                Drep   kBT/(ηRo)   a
2
ξ/(τrepRo), for 2Ro > a                                2.2.17 

2.2.2.2 DIFFUSION COEFFICIENT  

(a) Diffusion dependence on particle size 

As shown in figure 2.2.2(a), it was concluded from the scaling theory that the small sized 

particles follow SE relation and the diffusion was determined mainly by the solvent 

viscosity ηs. On the other hand, diffusion of intermediate sized particles showed a 
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Figure 2.2.2 : (a) Dependence of particle diffusion coefficient on particle size d (2Ro in 

text). (b) Concentration dependence of terminal diffusion Dt (D in text) normalized by 

their diffusion in pure solvent. d
ξ
 and d

a 
(represented by 

ξ
 and 

a 
in text respectively) 

correspond to crossover concentration at which correlation length ξ and tube diameter a 

are on the order of particle size (Reprinted with permission from Macromolecules 2011, 

44, 7853-7863. Copyright (2011) American Chemical Society). 

 

 

stronger size dependence as the effective viscosity ηφ, felt by these particles increased as 

the square of particle size (Ro)
2
. The diffusion coefficient of these intermediate sized 

particles was thus inversely proportional to the cube of the particle size, D(Ro)  Ro
 -3

. 

Large particles felt full solution viscosity η and the diffusion coefficient in this case was 

determined by chain reptation. The particles with size on the order of tube diameter 

experienced a sharp drop in the diffusion coefficient. The dotted line in figure 2.2.2(a), 

shows broadening of this crossover contributed by particle diffusion caused by hopping 

mechanism. As mentioned earlier, large particle mobility was affected by hopping as well 

as chain reptation. The particle needed to overcome an entropic energy barrier in order to 

hop from one entanglement cage to another. This energy barrier increased with the ratio 

of particle size to tube diameter. Thus as long as particle size was comparable to tube 

diameter, hopping mechanism controlled particle diffusion and D   exp (-Ro/a). An 
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important point here was that hopping dominated diffusion does not probe the bulk 

viscosity of the polymer solution. On the other hand, for 2Ro>>a the diffusion was 

dominated by chain reptation process and particles experienced the macroscopic viscosity 

of the polymer solution. 

(b) Diffusion dependence on polymer concentration: 

The theory also predicted the effect of polymer concentration on particle diffusion 

as shown in figure 2.2.2(b). There were two important concentration dependent length 

scales involved correlation length ξ(φ) and tube diameter a(φ).  Thus, two crossover 

concentrations should be considered. The first one was 
ξ 

at which the correlation length 

was comparable to particle size, ξ  2Ro. It was estimated by the expression, 

                              
ξ 
  

       
                                   

       
                              

                                   2.2.18 

The other important concentration was 
a
 at which tube diameter was on the order of 

particle size, a() 2Ro. In theta solvent a()  a(1)
-2/3

,
 
and in athermal solvent a()  

a(1)
-0.76

 The crossover concentration was estimated by making use of the expression 

                                
a 
 

          
                       

          
                   

                                              2.2.19 

Between 
ξ
 and 

a
, the particle size corresponded to the intermediate size regime. 

According to the theory, for volume fraction below 
ξ
 the particle diffusion probed 

solvent viscosity ηs and was independent of polymer concentration, equation 2.2.7. For 

volume fraction above 
ξ
, particle diffusion was affected by segmental motion of 

polymers and was given by  
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        D   kBTξ
2
/(ηsRo

3
)   

    
  

     
  
           ,   for 

ξ
 <  <1 and b < 2Ro < a(1)       2.2.20 

Thus, in case of intermediate sized particles, the particle diffusion should decrease with 

solution concentration as a power of -2 for theta solvent (ν = 1/2), and as a power of -1.52 

for athermal solvent (ν = 0.588). 

At a solution concentration above 
a
, the particles fall in large particle regime 2Ro 

> a and experienced full solution viscosity. The diffusion in this regime was controlled by 

chain reptation and followed 

                                          D   Drep   a
2
ξ/(τrepRo)                                                       2.2.21 

 Using the relation τe   τo (ξ/b)
3
 (a/ξ)

4
, and

 
τrep   τe (N/Ne(φ))

3
, the definition of ξ(φ) 

equation 2.2.3, a(φ) equation 2.2.4
 
 and the relation 

                                                

                     


                 

                                          2.2.22 

the expression for Drep, equation 2.2.17 was simplified to obtain its dependence on 

solution concentration  

            
    

      

     
 

   
                     

                  
        for 

a
 <  <1 and  2Ro > a(1)        2.2.23 

2.2.3 COMPUTATIONAL STUDIES 

Liu et al. did molecular dynamics (MD) simulation to investigate nanoparticle 

diffusion in polymer melt.
9
 They used standard bead-spring model proposed by Kremer 

and Grest
26

 to represent the polymer chain. Figure 2.2.3 represents the effect of 

nanoparticle size on its dynamics in the dilute limit. This particular simulation considered 

100 chains of length N = 60, with the radius of gyration Rg = 4.0σ, where σ is the size of 

the monomer. The diffusion, D, of the nanoparticles was obtained by various parallel 
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simulations with different initial configurations. The reduced viscosity value of η
*
   

42.5, was obtained from the literature corresponding to a polymer melt with monomer 

number density of 0.84.
27

 This value was used to calculate the diffusion coefficient of 

nanoparticles in polymer melt using SE relation, which is also shown in figure 2.2.3 for 

comparison with MD simulation. It was reported that SE diffusion coefficient gradually 

approximates the MD data with the increase in Ro/Rg, and becomes same as the ratio 

approaches unity. At lower Ro/Rg, SE prediction is an order of magnitude slower than that 

of MD simulation. 

      

                             

 

Figure 2.2.3: The diffusion coefficient D of nanoparticles as a function of R/Rg. R here 

corresponds to particle radius Ro. Open squares represent MD data; full dots represent SE 

prediction with slip boundary conditions (Reprinted with permission from J. Phys. Chem. 

C 112, 6653-6661. Copyright (2008) American Chemical Society) 

 

 

It was justified by considering that the SE formula takes into account the 

macroscopic viscosity of the polymer melt in order to calculate the diffusion, whereas 

particles with relatively small values of Ro/Rg, experience microscopic viscosity which 
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leads to underestimation of diffusion coefficient of these particles by SE. It was 

suggested that the small nanoparticles experienced nanoviscosity because when they 

diffused through the polymer melt, they did not necessarily have to wait for the polymer 

chains to relax, which is coupled to the polymer macroviscosity. As Ro/Rg increased, the 

solvent behaved as a continuum on the length scale of chain size Rg, causing the bigger 

particles to experience macroviscosity. 

They also studied the dependence of diffusion coefficient on the hydrodynamic 

radius of the particles in the regime Ro/Rg < 1. As shown in figure 2.2.4, it was observed 

that the diffusion coefficient of these small particles was inversely proportional to the  

 

                        
 

 

Figure 2.2.4: Ln(D) vs. Ln (σ12), where D is the diffusion coefficient of nanoparticles and 

σ12 is the hydrodynamic radius (Ro). The slope of the fitted line is about -3 suggesting 

that diffusion coefficient is inversely proportional to cube of hydrodynamic radius for 

particles in regime Ro/Rg < 1 (Reprinted with permission from J. Phys. Chem. C 112, 

6653-6661. Copyright (2008) American Chemical Society) 

 

 

cube of the hydrodynamic radius of these particles. This is contrary to SE relation where 

the diffusion coefficient is inversely proportional to the particle hydrodynamic radii. It 
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was suggested that the friction between particle and polymer, in case of these small 

particles, was caused by monomer rubbing the nanoparticle surface. The resulting friction 

will then be proportional to particle surface, making local viscosity scale as Ro
2
.  

Ganesan et al. also presented computer simulation results suggesting that the 

polymer radius of gyration Rg is the length scale controlling the transition from 

nanoviscosity to macroviscosity.
10

 They specifically considered the situation where probe 

size was greater than that of correlation length, but smaller or comparable to that of the 

polymer size. It was claimed that for smaller Ro/Rg ratios, the presence of entanglements 

was not necessary to observe reduction in viscosity, however, the entangled systems 

showed a much stronger effect.  

2.3 PREVIOUS EXPERIMENTAL WORK 

Along with theoretical research, a lot of experimental work has also been done 

over the years to understand particle motion in polymer solutions. As mentioned earlier, 

only the most relevant work will be mentioned in this section. In late 1970's Langevin 

and Rondelez investigated sedimentation rates of various  nanoparticles with radii 2.5 - 

17.5 nm in aqueous poly(ethylene oxide) solutions.
28

 They found that the retardation 

factor s/so, where so is the sedimentation coefficient of the particle in neat solvent and s is 

that of the probe in the polymer solution, followed a scaling law: s/so = ψ(Ro/ξ) with ψ   

1 for Ro/ξ <<1  , and ψ was found to be of the form exp (-Ac
y
). The factor A was reported 

to be proportional to particle size, and value of the exponent y   0.62, as shown in figure 

2.3.1, for PEO solutions. This work followed de Gennes' theory where a dense polymer 

solution was considered to be a transient statistical network of mesh size ξ.
8, 23

 Although 
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it was reported that for probe size smaller than ξ, particles experienced the scaled 

viscosity, Langevin and Rondelez did not observe particle following macroviscosity at 

higher polymer concentrations.  

Won et al. performed dynamic light scattering experiments to investigate 

dynamics of 200 nm polystyrene (PS) spheres in dilute, semidilute and entangled solution 

 

 
 

 

Figure 2.3.1: Log so/s vs. log c where c is the polymer concentration. A, slope 

0.67; B, slope 0.65; C, 0.75; D, slope 0.75; E, slope 0.70.    , Ludox in PEO M 

=300000;    , Ludox in PEO M = 140000; x , EMV viruses PEO M = 300000; 

+, TBSV PEO M = 300000; *, BSA PEO M = 300000 (Langevin 1978). 

 

 

of poly(vinyl methyl ether) (PVME) with Mw = 1.3*10
6
.
29

 As shown in figure 2.3.2, they 

observed positive deviation from SE relation as the concentration approached overlap 

concentration, c
*
. It was qualitatively justified by considering that the fluid within a 

distance on the order of correlation length ξ, from the probe surface, had different 

composition than that of bulk solution. Thus, the diffusion of the probe over distance 

comparable to ξ did not experience bulk viscosity. The corresponding depletion zone in a 

dilute solution was expected to extend to a distance on the order of Rg  (c=c
*
 corresponds 

to ξ   Rg) . Whereas, in case of a semi dilute solutions, the extent of this depletion zone 
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was expected to decrease with the solution correlation length, ξ. Thus at significantly 

high concentrations, in the entangled regime, SE behavior should be recovered and it 

indeed was.  

Ye et al. also reported positive deviation from SE prediction, in their study of 

probe diffusion in non adsorbing poly(ethylenepropylene) (PEP) solutions, by conducting 

        

                     
 

 

Figure 2.3.2: The product of diffusion coefficient and solution viscosity normalized by 

corresponding values at infinite dilution as a function of matrix concentration. The 

dashed line represents SE prediction. c
*
, ce, and cc correspond to overlap, entanglement 

and critical concentration respectively, where cc   2 ce (Reprinted with permission from 

Macromolecules 27(25), 7389-7396. Copyright (1994) American Chemical Society) 

 

 

DLS and sedimentation experiments.
30

 They argued that it was caused by the reduction in 

the local viscosity experienced by the colloidal particles when their size was comparable 

to or smaller than correlation length of the polymer solution. Figure 2.3.3 shows the 

comparison between measured values to that predicted by SE relation. 
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Michelman et al. performed fluorescence correlation spectroscopy experiments to 

explore the regimes 2Ro ~ ξ and 2Ro >> ξ.
31

 Figure 2.3.4 is a schematic of three regimes 

of probe size relative to correlation length ξ in a polymer solution, representing 2Ro<<ξ, 

2Ro ξ, and 2Ro>>ξ in (a), (b), and (c) respectively. They measured the translational 

diffusion coefficients of various probes (Rhodamine6G, Alexa546, TAMRA, (R)-

phycoerythrin, rhodamine-labeled dextran, bovine serum albumin, polystyrene beads) in 

               

                   

                                                                       
 

 

Figure 2.3.3: Measured vc(Cp)ηp/ vc(0)η0 as a function of polymer concentration Cp, 

where vc corresponds to the sedimentation velocity and ηp and η0 represent the polymer 

solution viscosity and viscosity at infinite dilution respectively. Dashed line corresponds 

to SE prediction (Reprinted with permission from Macromolecules 31(17), 5785-5793. 

Copyright (1998) American Chemical Society) 

 

 

dilute and semidilute poly(vinyl) alcohol (PVA) solutions. It was observed that for 

particles much larger than correlation length, the scaled diffusion varied exponentially 

with concentration, 
 

  
          , with b=0.61. Also, for these large polystyrene 
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particles the decay in the diffusion coefficient was attributed  to the increase in the bulk 

viscosity of PVA solutions, thus following Stoke's Einstein relation. On the other hand, 

for particles on the order of correlation length the diffusion was reported to be well fit 

with stretched exponential function as , 
 

  
           . All the probes in this size 

regime exhibited similar exponent in the range 0.73-0.84 corresponding to a good 

solvent. It was suggested that the probes on the order of ξ experience some local 

dynamics.   

 

                                     
 

                           (a)                                             (b)                                         (c)           

 

Figure 2.3.4: Schematic diagram depicting three regimes of relative sizes of probes and 

correlation length, indicated by arrow, of polymer solution in which they are diffusing.  

In (a) probe is much smaller than correlation length, 2Ro<<ξ. In (b) probe is on the order 

of correlation length, 2Ro ξ. In (c) probe is much larger than correlation length, 2Ro>>ξ  

 

 

Holyst et. al. 
32

 conducted experiments to investigate the length scale dependent 

dynamics of nanoparticles using capillary electrophoresis and fluorescence correlation 

spectroscopy. Many different nanoscopic probes, like dye molecules and proteins, were 

used in their experiments and had diameters ranging from 1.7 to 114 nm. Poly(ethylene 

glycol) with molecular weight ranging from 6 to 20 kg/mol were used. It was observed 

that probes with diameter smaller than polymer radius of gyration experienced 
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nanoviscosity, which was orders of magnitude smaller than the macroviscosity of the 

polymer solution. They concluded from their experiments that contrary to the theoretical 

assumption, the crossover length scale is not related to the blob size ξ. It was rather given 

by the polymer radius of gyration, Rg as suggested by the MD simulations. They also 

suggested that de Gennes' scaling form, η(R/ξ) is applicable to all probe sizes provided R 

is identified as the gyration radius or probe diameter depending on the length regime the 

probe falls into.  

Although the relative particle to polymer size chosen for their experiments was 

such that sufficient data was collected in both R>Rg and R<Rg regime, the use of 

different probe molecules could have potentially affected the specific probe-polymer 

chemistry. In addition, the experimental probes used here, being protein molecules, were 

flexible and porous. This would have allowed the probes to adopt different conformation 

depending on solvent conditions. In order for them to attain a compact globular structure, 

the solvent used should have been a poor solvent. This in turn could have altered the 

probe polymer interaction causing a change in the polymer density distribution near the 

particle surface, thus affecting particle dynamics. 

All the conflicting results regarding the crossover length scale for nanoviscosity 

to macroviscosity, and the role of various parameters, such as mesh size, effect of 

entanglement, matrix dynamics, polymer probe interaction, etc. demand further 

investigation.
28-35

 But investigating nanoparticle dynamics in a systematic manner 

remains challenging. This discussion will be continued in chapter 4. 

2.4 PREVIOUS WORK ON BIOPOLYMERS 
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The information in this section is the background relevant to chapter 5, where I 

discuss probe interaction and diffusion in biopolymer solutions. Certain inorganic 

nanoparticle have diagnostic as well as therapeutic applications. Studies have shown that  

once introduced into plasma, these nanoparticles get coated with a number of 

biomolecules present in the medium.
36

 These biomolecules form a corona and in turn 

alter the surface properties of the nanoparticles.
37

 Thus, understanding the dynamics of 

these nanoparticles in biopolymers, like proteins, are important for their safe application 

in living organisms. 
38

 

Rocker et al.
38

 studied the interaction of human serum albumin with small 

polymer coated (10-20 nm) sized FePt nanoparticles and quantum dots. They analyzed  

                            (a)                                   (c) 

                            (b)          

                                   

 

Figure 2.4.1: Structure for HSA (a) Representation of polypeptide chain. (b) 

Approximated as an equilateral triangular prism. (c) Surface of polymer coated Fe-Pt 

nanoparticle (green) covered by a monolayer of about 20 HSA molecules (red triangular 

prisms) (Rocker 2009). 

 

 

the nanoparticle-protein interactions qualitatively as well as quantitatively. Figure 2.4.1, 

shows the structure of human serum albumin (HSA) which can be approximated to be an 

equilateral triangular prism with side 8   nm and height   3 nm.
39

 A change in particle 
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radius ΔR =3.3 nm was reported, and it was concluded that human serum albumin forms 

a monolayer at the surface of carboxyfunctionalized nanoparticles.  

Casals et al.
37

 reported a time dependent conjugation of blood serum proteins to 

the nanoparticle, by exposing gold nanoparticles to cell culture medium with 10% fetal 

bovine serum. They observed that the coating process was slower for lower serum 

concentrations. It was also concluded that there was an evolution from a loosely bound to 

an irreversible attached protein layer over time. Mass spectrometry was used to confirm 

that albumin was the most abundant component of the protein corona. Earlier studies 

have also suggested that bovine serum albumin binds spontaneously at the surface of 

citrate stabilized gold nanoparticles.
40

  

Two possible mechanisms have been sugested in the literature for the spontaneous 

adsorption of BSA on citrate caped AuNPs. BSA is a globular protein consisting 583 

amino acids, with 60 lysine residues, 17 disulphide bridges, a single tritophan, and a free 

thiol (cysteine-34).
41

 It can either follow an electrostatic attraction mechanism,
37, 40

 

caused by attraction between negatively charged citrate capped AuNPs with the 

positively charged lysine residues, or via a thiol ligand displacement reaction
42

 through 

the unpaired cysteine. Casal et al. observed that the formation of protein corona was 

slower for the relatively smaller negatively charged AuNPs.
37

 This was inconsistent with 

the ligand replacement mechanism as the smaller particles should have better access to 

the free thiol and result in rapid corona formation. Thus, they interpreted the BSA 

adsorption on citrate capped AuNP  to have followed an electrostatic attraction 

mechanism.  
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Systematic study of interaction of BSA with nanometer-sized AuNPs and 

investigation of their interaction mechanism would be potentially useful in the areas  

ranging from Biophysics to drug delivery. This discussion will be revisited in chapter 5. 

 The following chapter will cover the experimental technique - Fluorescence 

correlation spectroscopy, that was employed for this thesis work. It will include the 

experimental set up as well as the underlying theory. 
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CHAPTER 3 

FLUORESCENCE CORRELATION SPECTROSCOPY 

3.1 INTRODUCTION 

         Fluorescence correlation spectroscopy (FCS) is a fluctuation correlation 

method that is capable of measuring the dynamics of molecular processes by observing 

spontaneous microscopic fluctuations in molecular positions and number density.
43

 In 

most spectroscopic techniques, the average intensity is the quantity of interest. However, 

in FCS, the quantity of interest is the fluctuation in fluorescence intensity from the 

average, figure 3.1.1. Madge, Elson and Webb were the first to develop FCS in early 70's 

to measure the dynamics of DNA-drug interactions.
44

 FCS has now become a desirable 

measurement technique for various processes, and has a variety of applications in the 

field of biophysics, analytical chemistry and cell biology.
45

 Some recent applications of 

FCS include investigation of biological systems, studying processes such as enzymatic 

reactions within living cell etc.
46

 

                 
 

Figure 3.1.1: Fluctuation of fluorescence due to molecular dynamics 

 

 

FCS monitors tiny fluctuations of fluorescent molecules as they diffuse in and out 

of the laser focus. These fluctuations may be due to Brownian motion, externally induced 
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flow, chemical reactions or some other such processes.
44, 47

 The fluorescence signal can 

be analyzed through temporal autocorrelation. The autocorrelation function (ACF), 

equation 3.1.1, quantifies these fluctuations. It measures the similarity of the function 

with itself after a time lag.  

                                      
               

       
                                                    (3.1.1) 

where τ is the time lag,  is time-average, F(t) is the observed fluorescence intensity and 

δF(t) is the fluctuation in the fluorescent intensity. The ACF has been normalized by 

diving it by the square of the average intensity. Figure 3.1.2 represents the development 

of an autocorrelation curve. The analysis of the ACF has been discussed in detail under 

the FCS theory section.   

        

                    
  

 

Figure 3.1.2: The development of an autocorrelation curve.  The ACF calculates the self-

similarity of a fluctuation as a function of time lag.  By fitting the curve to a particular 

model, the diffusion coefficient and concentration of fluorescent dyes may be calculated  

 

 

FCS and dynamic light scattering (DLS) can be considered to be similar, but there 

are a few major differences. FCS involves fluorescence emission which is inherently 
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inelastic, whereas DLS involves elastic or quasi-elastic scattering. FCS exhibits single 

molecule sensitivity and thus requires very low, nano-molar, sample concentration. DLS 

experiments require much higher sample concentration. The small focal volume of FCS 

allows a very local study of cellular samples. Such features render FCS to be relatively 

more desirable spectroscopic technique. 

The photon emission rate of FCS is directly proportional to average number of 

fluorescent molecules N in the sampling volume. Therefore, larger the N (higher 

concentration of molecules) smaller will be the statistical noise. On the contrary, the 

amplitude of correlation function is inversely proportional to N, therefore N should 

not be too large either. It was found that above-mentioned two effects canceled each 

other exactly in a wide range of concentrations.
45

 In order to obtain a successful 

autocorrelation curve N should vary between 0.1 and 1000; which corresponds to a 

fluorescent dye concentration of 10
-6

 to 10
-10

 M, focal volume being about 1fL(10
-15

L).  

It is often possible that the system under investigation does not exhibit 

fluorescence. In such a case, the system is labeled with a fluorescent dye. Fluorescein and 

laser dyes were the very first fluorescent dyes used for FCS; these were also being used 

for other forms of microscopy.
48

 Since these dyes were unable to withstand high laser 

powers, these became unsuitable for FCS. A fluorescent dye can get irreversibly photo 

bleached after emitting a limited number of photons. The dyes more suitable for FCS 

applications should have low photo bleaching, high extinction coefficient and high 

fluorescence quantum yield.
 
Some dyes with these properties that are being used for 

labeling purposes are derivatives of Rhodamine: tetramethylrhodamine (TMR) and 
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carboxyrhodamine (Rh6G).
45

 The introduction of these relatively more photostable dyes 

allows an FCS experiment to run for longer time span. The following sections present the 

theory and experimental set up for FCS. 

3.2 FCS THEORY 

FCS is used to investigate molecular dynamics by analyzing the fluctuations in 

the fluorescence emission. The laser beam is tightly focused to excite a small volume 

(  femtoliter) in the sample solution. When the fluorescent molecules move into the 

focus volume, they absorb the energy from excitation light and emit fluorescent light 

which is collected by the PMT. The dynamics of the system under investigation is 

determined by auto-correlating the fluctuations of the fluorescent intensity. The 

autocorrelation function (ACF), equation 3.1.1, quantifies these fluctuations. The 

fluctuation in the fluorescent intensity δF(t) is given by  

                                    δF(t)   F(t) -  F(t)                                                      3.2.1 

If only one fluorescent species is present in the sampling volume, the detected 

fluorescence fluctuation is given as 

                                 F(t) =                  ,                                             3.2.2 

where k is a constant, Q is a product of absorptivity, fluorescence quantum efficiency, 

and the detection efficiency of the optical system, E(r) is the spatial intensity profile of 

the excitation light, and C(r,t) is the dye concentration at a particular position and time. 

We will consider an experimental situation where change in intensity is caused by only 

concentration fluctuations. These might occur due to diffusion, mass transport or 

chemical reaction. Under thermal equilibrium, these concentration fluctuations are caused 
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solely by diffusion (thermal motion). In this case, change in fluorescent particle 

concentration (δC(r, t) = C(r, t)-    ) is related to the diffusion coefficient D by 

Fick's law given by 

                                                      

                                           
        

  
                                                                      3.2.3 

A solution to eqn 3.2.3 is given by 

                                                   
   

     
     

  

   
                                                         

Following relation holds for translational motion in two dimensions, assuming the sample 

is stationary, 

                                        
   

    
     

       

   
                                       

Substituting 3.2.1 and 3.2.2 in 3.1.1, we can get 

                                
                                    

             
                              3.2.6 

Using eqn 3.2.6 along with 3D Gaussian model with two photon excitation, where 

                                            
        

  
 

 
   

   
                                          

where wo is the beam waist and zo is the beam height, an expression for autocorrelation 

can be obtained 
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The average number of molecules within excitation volume and concentration can be 

calculated as follows 

                       
 

       
                        

   

     
       

                                 

Thus from FCS measurements we can estimate diffusion coefficient as well as 

concentration values. Equation 3.2.8 gives the autocorrelation function for 3D diffusion  

 

 

(a) 

 

 

 

 

 (b) 

 

Figure 3.2.1: (a, b): Model autocorrelation curves for different kinds of particle motion: 

free diffusion in three dimensions (red), free diffusion in two dimensions, e.g., for 

membrane-bound molecules (yellow) and directed flow (Cyan) (Haustein 2007)
 

 

 

for two-photon excitation. Suitable models for ACF have been developed considering the 

dimensionality of the system under investigation, the properties of laser set up, and the 
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means by which fluorophores move. Figure 3.2.1 represents model autocorrelation curves 

for different processes.
49

 

3.3 EXPERIMENTAL SET UP FOR FCS 

All FCS setups measure the fluctuations in the fluorescence emission; however, 

construction of a particular FCS set up varies in accordance to the experiments of 

interest. The most important component of a typical FCS set up is the laser, which serves 

as the excitation source for the fluorophores. This laser light source can be either 

continuous (one-photon excitation) or pulsed (two-photon). A schematic of two-photon 

FCS set up, employed in this thesis work, is displayed in figure 3.3.1.  

        

            
 

Figure 3.3.1: Two photon FCS set up for translational diffusion measurements 

 

 

When the laser is pulsed at a very high frequency, the fluorophores in the 

excitation volume are able to absorb two photons. The absorption of both photons occurs 
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within 10
-16

 seconds. The photon pair possesses the energy required for excitation, 

simplest case being the one with the wavelength of each photon being approximately 

twice that of the actual transition. This is in contrast to confocal FCS set up that utilizes 

one-photon excitation. Since the probability of two-photon excitation is proportional to 

the square of excitation energy, we need to use high–peak-power laser sources with 

pulses of femtoseconds to picoseconds which will provide high instantaneous photon flux 

at the sample. In addition, light intensity decreases quadratically with increase in distance 

from focal plane. Both these factors together allow the laser to excite a very small volume 

around the focus. Thus in case of two-photon, unlike one-photon, smaller excitation 

volume is attained without the use of pinholes. In addition to this, localizing the 

fluorescent excitations will confine the photo damage, if any, to a very small volume. 

This makes two-photon set up more desirable for biological samples that are relatively 

sensitive to photo damage. Another advantage of a two-photon FCS over its one-photon 

counterpart arises from the fact that the wavelength of excitation and emission light will 

be considerably different. For example, an 800 nm photon will be used to excite 

transitions at 400 nm and emitted light will be around 500 nm. Since the emitted photons 

have lower wavelength relative to the incident photons, the emission will be well 

separated from scattered light which can be easily filtered out.
50, 51

 

Following figure 3.3.1, the energy required to excite the fluorophores is provided 

by a femtosecond Ti-sapphire laser (Mai Tai, Spectra-Physics) that generates 100 fs 

width laser pulses of wavelength 800nm at a frequency of 80MHz. Neutral density filters 

(NDF) were used to change the power of the laser beam.  A Zeiss inverted microscope 
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(Axiovert S200TV, Carl Zeiss) served as the optical platform for the experiments. The 

laser beam was focused on the sample through a high numerical aperture (N.A.= 1.25, 

100X) objective. In order to achieve better focusing the objective needed to be back-filled 

with an expanded beam. The laser beam being small (~ 2 mm), needed to be expanded. 

This was attained by placing a beam expander, which is a pair of two achromatic lenses 

separated by a distance equal to the sum of their focal lengths, in the laser path before it 

entered the microscope. The beam is then reflected off a dichroic mirror. It is a special 

mirror formed of multilayer dielectric coating that reflects wavelength above a certain 

value (transition wavelength) and transmits all below it. The transition wavelength of the 

dichroic mirror should be relevant to the fluorophore, and should fall between the 

excitation and emission wavelength of the fluorophore. The so chosen dichroic mirror 

separates the path of light by reflecting the excitation light (coming from laser) into the 

objective and transmitting the fluorescence emission light (coming from sample) into the 

detector.  

The beam reflected from the dichroic mirror is collected by a high numerical 

aperture microscope objective through which it is focused on the sample.  The objective 

excites a very small volume (~ femtoliter), within the sample solution, with the aid of 

pulsed laser. On passing through the laser focus, fluorophore absorbs two and emits one 

photon. Since wavelength of emitted light is shorter than excitation wavelength, it 

transmits through the dichroic mirror. This emitted light is collected by the 

photomultiplier tube (PMT) having single photon sensitivity. There is another 
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wavelength selective element, a short pass filter that is placed between the dichroic 

mirror and PMT so as to stop any leakage or scattered light from entering the PMT.  

An integrated data acquisition system (ISS, IL) was used to record and analyze 

the output from the photo multiplier tubes (PMT). The data acquisition card records the 

fluctuations of fluorescent intensity. A software package calculates the auto correlation 

function (ACF). This ACF can be used to extract important information about dynamics 

of sample under study.       

The technique described in this chapter was employed to do the experiments 

covered in this thesis. Chapter 4-6 will cover the research work that I performed as a 

graduate student at Wayne State University. 
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CHAPTER 4 

GOLD NANOPARTICLE DYNAMICS IN SYNTHETIC POLYMER 

SOLUTIONS 

4.1 DIFFUSION OF NANOPARTICLES IN SEMIDILUTE POLYMER 

SOLUTIONS: THE EFFECT OF DIFFERENT LENGTH SCALES 

The Following material was originally published in Macromolecules (2012)
52

 

Understanding the transport properties of nanoparticles (NPs) in solutions of 

macromolecules is important for several interdisciplinary fields of studies as well as 

relevant for many technological applications. For example, in colloidal physics, the 

diffusion and sedimentation of particles play a vital role for the dispersion stability, 

analytical separation and chromatography
53

. In biophysics, there is growing interest to 

understand how biopolymers such as proteins move through crowded cytoplasmic 

environments
6
. The dynamics in this situation can affect cellular functions, such as 

kinetics of enzymatic reactions, the formation of DNA or protein complexes, and self-

assembly of various supramolecular structures, like fibrillar aggregates
46

. In the areas of 

soft matter physics and nanotechnology, these studies are important for proper 

interpretation of microrheology experiments
7
 and development of novel composite 

systems that contained nanosized inclusions
54

.  

For these reasons, diffusion of NPs in polymer solutions has received a lot of 

attention theoretically
10, 12, 17, 24, 28, 55

 as well as experimentally
28, 32-34, 55-57

. In simple 

liquids, the translational diffusion coefficient (D) of isolated spherical particles is given 

by the well-known Stokes−Einstein (SE) relation, D = kBT/6πηoRo, where kB is the 
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Boltzmann constant, T is the absolute temperature, and ηo is the solvent viscosity. It is 

assumed in this relation that the radius of the particle (Ro) is much greater than solvent 

molecules
33

. But in a ternary mixture containing polymer, solvent and the particle, there 

are several length-scales involved and application of SE relation becomes complicated in 

certain regimes. In semidilute solutions, where the polymer concentration is above the 

overlap volume fraction (*), the matrix forms a transient network of overlapping chains 

characterized by an average mesh size called the correlation length (ξ)
3, 8

. It is a 

decreasing function of polymer volume fraction (), ξ  
-0.76

 for uncharged polymers in 

good solvent and is independent of the polymer molecular weight (Mw). The correlation 

length introduces a new length scale in addition to particle radius and the radius of 

gyration of the polymer chain (Rg). Theoretical approaches by de Gennes and his 

coworkers have identified three regimes depending on the relative size ratio, Ro/ξ
8, 23

. If 

Ro/ξ << 1, the particles can slip easily through the mesh and they detect only the neat 

solvent viscosity (ηo). In the opposite limit, the diffusion is governed by the macroscopic 

viscosity (ηm) of the solution, which is commonly measured in a rheometer.  In the 

transition regime, Ro/ξ  1, the local viscosity (η) experienced by the particle depends 

upon the length scales at which it is probed, and generally ηo < η < m. In this scenario, ξ 

can be considered as the ‘cross-over length scale’ and  depends upon , but 

independent of Mw. A scaling relation of the form Do/D = η/ηo  F(Ro/ξ) has been 

suggested, where Do is the diffusion coefficient of the particle in the neat solvent
28

. Some 

theoretical models have suggested a functional form, F(Ro/ξ)~ exp(Ro/ξ). But there are 

conflicting reports in the literature regarding the validity of these predictions
28-31, 33-35, 56

. 
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A competing model of probe diffusion was developed by Phillies
24

. He argued that 

hydrodynamic interactions dominate over topological constraints on probe diffusion and 

proposed an equation of the form D/Do ~ exp(-

)

24, 25, 58
. Though regarded mostly as an 

empirical equation, it fits a wide range of concentration from dilute to concentrate as well 

as probes and polymers with different architectures (linear, branched, globular, star-

shaped, etc.)
55

. Phillies noted that  depends upon Mw, but is independent of Ro, and  

depends upon solvent quality ranging from 0.5 to 1. Hydrodynamic screening theory by 

Cukier predicts a similar form, D/Do~exp(-Ro/ξ), which yields the exponent =0.76
7
. 

Recent theoretical approaches have considered the effect of depletion layer for neutral 

polymer-probe interaction
16
. Such a layer has a thickness of the order of ξ, where the 

segmental density of the chain increases from zero to the bulk value
16

. Assuming that the 

local viscosity is a function of monomer concentration, it gradually increases from the 

solvent viscosity (ηo) close to the probe surface to macro-viscosity (ηm) in the bulk
59

. The 

analysis also showed a stretched exponential function for F(Ro/ξ) in semidilute solution
17

. 

None of these theories consider explicitly the dynamical characteristics of the polymer 

matrix. A recent scaling theory by Cai et. al. have considered the effect of chain 

relaxation on the mobility of particles
60

. They have derived the power law dependencies 

of polymer concentration and particle size on diffusion coefficient. In parallel to the 

theoretical approaches, there have been molecular dynamics simulations as well, which 

found that the cross-over length scale between nano- and macroviscosity is not ξ, but Rg
9, 

10, 61
. For unentangled melts, in regime Ro < Rg, local viscosity (η) is dominated by 

monomer units rubbing the nanoparticle surface, making it proportional to the particle 
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area (Ro
2
), which yields D  1/Ro

3
 and independent of chain length. In the large particle 

limit, hydrodynamic contribution dominates giving D  1/Ro and its numeric value is 

given by SE relation of diffusion coefficient (DSE)
9, 61

.  

Experimentally, dynamic light scattering (DLS)
30, 57, 59, 62

, fluctuation correlation 

spectroscopy (FCS)
31, 32, 56, 63

, fluorescence recovery after photobleaching (FRAP)
33

, and 

sedimentation
28, 30, 35, 57

 are most popular in this area of research. A recent review of 

experiments could be found in Ref. [32] and some of the earlier works were well 

summarized in Ref. [29]. We will briefly mention only few results, which will help 

readers to put our work in perspective. DLS experiments by Lodge group
29

 have found 

that for polystyrene spheres (Ro200 nm) in solutions of poly(viny1 methyl ether) with 

Rg  54 nm, the ratio D/DSE increases with the polymer concentration and reaches the 

maximum value of 3 near 
*
. But sufficiently above the entanglement concentration, e ( 

3
*
), the SE behavior was recovered. DLS experiments measured the diffusion at a short 

length scale compared to Ro, which is perturbed significantly by the depletion layer and 

may not record the average bulk behavior
16, 29, 30, 57, 59

. Sedimentation and FCS 

experiments, in contrast, probe the long-time and large-scale motion of the particles
28, 57

. 

Sedimentation experiments have found that the particles experience the single-chain 

viscosity rather than the solvent viscosity when Ro< ξ
30

. In the intermediate region, Do/D 

does not have the simple scaling form F(Ro/ξ) and depends upon Mw
35

. As the polymer 

concentration is increased and the limit, Ro >> ξ is reached, the particle feels the 

macroscopic viscosity as suggested by de Gennes theory. In these experiments, particle 

size (Ro= 4-5 nm) was smaller than the radius of gyration, (Rg = 8 nm) of the chain. But a 
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significant number of other experiments have reported deviation from SE equation when 

Ro < Rg. Hoyst group has performed FCS experiments with poly(ethylene glycol) (PEG) 

in water using probes as molecules with different sizes, such as fluorescent dyes, 

proteins, and silica spheres
32

. They concluded that for 2Ro < Rg, the measured 

nanoviscosity was orders of magnitude smaller than macroviscosity, however, 

macroviscosity governs the probe dynamics if 2Ro > Rg. In the crossover regime (2Ro ~ 

Rg), they observed a scale-dependent diffusion, which they explained in terms of non-

uniform viscosity within the depletion layer
59

. The SE relation for larger probes in 

polyvinyl (PVA) solution was also verified in another FCS experiments by Michelman–

Ribeiro et al
31

.   

All the conflicting results regarding the crossover length scale and the roles of 

various parameters, such as mesh size, matrix dynamics, effect of entanglement, 

polymer-probe interaction, etc. demand further investigations. But it remains a challenge 

to study nanoparticle dynamics in a systematic manner, more specifically in the length 

regime ξ  ≤  Ro < Rg. One of the reasons is the paucity of suitable probes in the size range 

of 5-20 nm
33

. For smallest sized probes (Ro~1-2 nm) different dyes (e.g., rhodamine, 

alexa), for intermediate sizes (Ro ~ 3-5 nm) fluorescently labeled molecules (e.g., dextran, 

lysozyme, bovine serum albumin), and for larger sizes (Ro~ 5-100 nm) quantum dots, 

silica and polystyrene spheres were used in previous experiments
31-33, 58, 59, 62

. For the 

intermediate size, which is the focus of this study, the probes used so far were flexible 

and porous
33

. They can change their size depending upon the solvent condition or as the 

polymer concentration is varied. The solvent needs to be the poor solvent for the probe 
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molecules, so that they adopt a compact globular structure. The use of different 

molecules can change the specific probe-polymer chemistry. As a result the polymer 

density distribution near the particle surface may be altered and the properties of the 

depletion layer can be modified
7, 16, 30

. This can alter the viscous drag experienced by the 

particle and change the particles’ diffusivity. There is evidence in computer simulation 

that diffusion coefficient could decrease with increasing interaction strength
61

.  

In contrast to experiments by other groups, we have used rigid and impenetrable 

probes (gold spheres) with radius between 2.5 nm to 10 nm. The solvent (water) is a good 

solvent for the polymer at the room temperature and the probe particles can also be 

readily dispersed into it. The use of the same probe but with different sizes eliminates the 

possibility of specific probe-polymer interaction that could change diffusion. Another 

distinguishing aspect of this research is the use of fluctuation correlation spectroscopy 

(FCS), which has the advantage of using extremely low particle concentrations (~few 

nM). This is about 4-5 orders of magnitude smaller compared to other methods such as 

DLS or FRAP. The average particle-particle separation is much higher, so that the mutual 

interactions between the particles can be neglected and only true self-diffusion was 

measured. The low concentration of particles also reduces the possibility of polymer-

induced probe aggregation from depletion interaction. Because of the specificity of this 

technique, scattering from the matrix polymer does not significantly complicate the 

experiment or its interpretation. This is an issue in DLS experiments, where for smaller 

particles (Ro < Rg) and low concentration of particles, the autocorrelation function could 

be dominated by the dynamics of the polymer network.  
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In this paper we have used FCS to understand the nanoparticle dynamics in 

semidilute poly(ethylene glycol) (PEG) water solutions. The use of very small sized 

spherical probes well within the range ξ ≤ Ro < Rg made this study unique. Our results 

will be important to test theories of polymer dynamics and understand the relationship 

between micro- and macroscopic viscosities of complex fluid systems. They will also 

have implications in other fields, where there is complex coupling between two or more 

characteristic length scales that govern their dynamics. 

4.2 EXPERIMENTAL SECTION 

PEG samples of two different molecular weights 5 kg/mol (Mw/Mn = 1.08) and 35 

kg/mol (Mw/Mn = 1.15) were purchased from Polymer Sources, Inc. Gold nanoparticles 

(Au NPs) of radius 2.5, 5 and 10 nm were purchased commercially from Corpuscular, 

Inc. Au NPs were particularly useful for our experiments as they do not photo-bleach like 

fluorescent dyes or blink like semiconductor quantum dots and their size can be tuned as 

desired.  The scattering signal from small NPs is typically very low, but they have high 

luminescence efficiency upon multi-photon excitation
32

. The polydispersity of these 

nanoparticles is about 10% as was verified by transmission electron microscopy (TEM) 

experiments (Figure 4.5.1). The choice of the polymer molecular weights and particle 

sizes allow us to investigate the size regime that we are interested and also the transition 

process for the particles experiencing the nanoviscosity to macroviscosity. Many 

different concentrations of PEG (=0-0.37) in water-Au NPs mixture as solvent were 

prepared using a digital balance with resolution of 1 mg. PEG has the advantage over 

other polymers such as polystyrene, which needs to be dissolved in organic solvents. 
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These sometimes give a lot of background fluorescence and thus reduces signal-to-noise 

ratio. Control experiments indicated no strong interactions (e.g., ionic, covalent, etc.) 

between gold particles and PEG are present, which would have led to adsorption of 

polymers onto surfaces. 

A Zeiss inverted microscope served as the experimental platform. Near infrared 

light from an 800 nm, 80 MHz, femtosecond Ti: Sapphire laser (Mai Tai, spectra physics) 

was focused on the sample through a high numerical aperture (N.A.= 1.25, 100X) 

objective. Emitted light was collected through the same objective and detected by two 

single photon counting modules (Hamamatsu). An integrated data acquisition system 

(ISS, IL) was used to record and analyze the output. As NPs diffuse in and out of the 

laser focus, the number of these particles fluctuates. This fluctuation (F) is quantitatively 

studied through the autocorrelation function (ACF) G(τ) given by, 
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If the cause of the fluctuation is Brownian diffusion, the diffusion coefficient (D) 

can be calculated from the ACF by using, 
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In the above equation, G(0) is the magnitude of ACF at short time which is 

inversely proportional to the number of particles within the laser focus, ωo  is the half-

width, and zo is the half-height of the laser focus. We determined by a calibration 

experiment that ωo 0.25 m and zo 1 m.  
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4.3 RESULTS AND DISCUSSION 

Before presenting the results, calculations of the important length scales of the 

system would be useful. The radius of gyration, Rg of the PEG in water as a function of 

Mw is given by Rg = 0.02 Mw
0.58

 (nm)
64

, which corresponds to Rg=2.8 nm and 8.6 nm for 

5K and 35K PEG. Since Ro ranges from 2.5 to 10 nm, Ro/Rg was varied from 0.9 to 4 for 

5K and 0.3 to 1.2 for 35K PEG samples. The overlap volume fraction, 
*
 which marks 

the onset of semidilute regime was determined by using the relation, 
*
= 

3Mw/(4πNARg
3
), where  is the polymer density and NA is the Avogadro’s number

8
. We 

estimated that 
*
=0.08 for PEG 5K and 

*
=0.02 for PEG 35K. Our measurements were 

carried out in the range of =0.09-0.37, all of which were in the semidilute regime. The 

correlation length (ξ) as a function of polymer concentration was calculated by using the 

relationship, ξRg(/*)
-0.76

. It indicates that 
* 

depends upon Mw, but ξ is nearly 

independent of it. ξ ranged from 0.95 nm to 2.6 nm. In all measurements Ro   ξ and the 

ratio Ro/ξ varied from 1 to 11. Sufficiently above 
*
, the chain entanglement becomes 

significant and a transition to reptation-like behavior is predicted to occur. The critical 

concentration for entanglement is given by, e  (Me/Mw)
0.75

, where Me is the molecular 

weight between entanglement in melt. Me  2 kg/mol so that PEG 5K is too short and 

there would not be enough number of entanglements per chain
29

. For 35K PEG, e is 

about 0.12. In the entangled regime another length scale, tube diameter ‘a()’ needs to be 

considered, a() a(1)
-0.76

, where a(1) is the tube diameter in the melt
3
. For PEG a(1)4 

nm and a() ranges between 10-20 nm. Fig. 4.3.1 showed schematically the relative size 

regimes covered in our experiments (also see Table 4.5.1).  
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Figure 4.3.1 Schematic of different length-scales covered in the experiments. (Reprinted 

with permission from Macromolecules 45 (15), 6143-6149. Copyright (2012) American 

Chemical Society) 

 

In Fig. 4.3.2, we have showed some representative autocorrelation functions 

collected by FCS and plotted versus logarithmic time lag. Each autocorrelation function  
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Figure 4.3.2. Normalized autocorrelation curves for Au NP (Ro = 2.5 nm) diffusion in 

PEG 35K solution at various polymer volume fractions. The curves are shifted to longer 

time-scale as PEG concentration increases indicating that diffusion coefficient decreases.  

The solid lines are fit of the curves. (Reprinted with permission from Macromolecules 45 

(15), 6143-6149. Copyright (2012) American Chemical Society) 
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was collected for about 15 minutes. The temperature was kept at room temperature (23 

o
C). To minimize the photothermal conversion from the excitation of the gold 

nanoparticles, the laser power was kept below 1 mW. Our estimation showed that the 

raise of the local temperature to be less than 0.1 
o
C, so the thermal effect did not have any 

significant impact on the diffusive behavior of particles. The FCS auto correlation data of 

Au NPs in PEG was fitted using the equation mentioned earlier.  

 

                

 

 

 

Figure 4.3.3. Diffusion coefficients as a function of polymer volume fraction. The solid 

lines show fits according to Phillies' equation. The caption indicates particle radii and the 

polymer molecular weight. The error bars are smaller than the size of the symbols. The 

fitting parameters are given in Table 4.5.3. (Reprinted with permission from 

Macromolecules 45 (15), 6143-6149. Copyright (2012) American Chemical Society) 

 

The diffusion coefficients (D) of Au NPs were calculated from the fit. Many different  
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FCS trials were done for a given nanoparticle size for each polymer concentration on 

many different days with different samples. Trials were repeated for both molecular 

weights of PEG.  Fig. 4.3.3 shows the plot of D as a function of  for three different 

nanoparticle sizes (see also Table 4.5.2). Each datum in the graph is the average and the 

error bars are the standard deviation measured in more than 10 experiments.  

First we will compare the scaled diffusion coefficient (D/Do) data with Phillies 

equation of stretched exponential function: D/Do ~ exp (-

) with ‘’ and ‘’ as 

adjustable parameters (Figure 4.3.3 and Table 4.5.3)
24

. The fitting deviates from the data 

at higher concentrations. For PEG 35K at  =0.26 and Ro=10 nm, the measured D is 

about an order of magnitude faster compared to the fit. At this concentration,  > e and 

2Ro > a().  We speculate that effect on the particle motion due to network dynamics 

originating from chain reptation, which is not considered in Phillies model becomes 

significant at concentrations above e. Consistent with some other reports
24, 31

, we found 

that the exponent  lies between 0.56 to 1, but it does not have any clear dependence on 

the physical properties of the system, such as molecular weight of the polymer or the 

particle size. The parameter ‘’ is an increasing function of Ro. But it is to be noted here 

that the actual significance of these scaling exponents still lacks sound theoretical 

justification.  

Next, we compare the measured diffusion coefficient with SE prediction using the 

bulk solution viscosity (m). The macroscopic viscosity information of PEG-water 

solutions at various concentrations have been obtained from rheology data
32, 59

. The ratio 

of measured D to calculated DSE is plotted as a function of PEG concentration (Fig. 
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4.3.4). For 5K PEG, Ro/Rg  1 for all particle sizes and we observed D/DSE 1 and is 

independent of polymer concentration. For 35K PEG, the ratio shows positive deviation 

from unity and the deviation becomes stronger with increasing  and with the ratio Ro/Rg 

becoming smaller.  

    

           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3.4. The ratio D/DSE is plotted as a function of polymer volume fraction. SE 

behavior corresponds to the horizontal dashed line. As the ratio Ro/Rg becomes larger the 

ratio approaches unity. Three particular concentrations are denoted. (Reprinted with 

permission from Macromolecules 45 (15), 6143-6149. Copyright (2012) American 

Chemical Society) 

 

 

For the lowest Ro/Rg as probed in our experiments (~0.3), the NPs diffused two to 

three orders of magnitude faster compared to SE-prediction. If ξ was the crossover length 
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scale from nano to macroviscosity, all the particles would have experienced the solution 

viscosity and SE relation would have correctly predicted the diffusion because Ro ≥ ξ for 

all cases investigated here. Thus our results cannot be explained with some previous 

theories which concluded that ξ is the crossover length scale and D/DSE should be 

independent of concentration when Ro > ξ
8, 28

. But it is in accord with results from 

computer simulations which characterizes Rg as the crossover length scale
9, 61

. Similar 

conclusion was also drawn in experiments by Hoyst et. al. using various dye and protein 

molecules but identifying ‘Ro’ as the probe diameter instead of the radius. Our results do 

not necessarily contradict experiments by Lodge’s group, where a return to SE behavior 

were obtained with increasing polymer concentration, as those were in the regime of Ro > 

Rg
29

. For Ro ≤ Rg
59

, the relative diffusion coefficients experienced by the particles was 

scaled as  

                                    ))
ξ

R
((exp

D

o
D

o 
                                           4.3.1 

and for Ro ≥ Rg as    

                                    ))
ξ

R
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D

o
D

g 
                                           4.3.2 

with  = 1.63±0.04 and = 0.89±0.02. Again our results are consistent with Holyst et al., 

besides the fact that Ro represents particle radius whereas they identified Ro as the 

particle diameter
32, 59

. The scaled diffusion in these two equations makes SE relation 

applicable to particles of all sizes as is evident in Fig. 4.3.5. 
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Figure 4.3.5. The normalized plot of Do/D vs. R/ξ, where R=Rg for Ro  Rg and R=Ro for 

Rg > Ro. All data points fall on a single curve.  (Reprinted with permission from 

Macromolecules 45 (15), 6143-6149. Copyright (2012) American Chemical Society) 

 

 

It is known that the presence of a depletion layer can reduce hydrodynamic 

resistance force compared to what is expected from the bulk viscosity as the particle 

moves through a medium of non-adsorbing polymer
16, 17

. In the semidilute regime, the 

thickness of the depletion zone correlates with ξ, hence it is expected that its’ impact will 

be most significant for motion at the length scale of ξ, which is about 1-3 nm in our 

experiments. But FCS probes the diffusion set by the length scale of laser focus size (0.5 

m). Assuming a depletion layer thickness of ℓ ~ 2 nm and a particle (Ro=2.5 nm) within 

the layer experience the neat solvent viscosity, the crossover time can be estimated as the 
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 ℓ
2
/6Do ~ 10 ns, which is inaccessible in FCS experiments

59, 65
. The non-uniform 

viscosity within the depletion layer could also induce slip and reduce the drag by a factor 

of 2/3
9, 23, 61

. But the deviation from SE prediction that we observed is much stronger.    

To explain the observed deviation from SE-predicted diffusion for particle radii, 

Ro < Rg, we consider the role played by the structural relaxation of the polymer matrix
66, 

67
.  For 35K PEG, the polymer concentrations used in our experiments was about 5-10 

times the overlap concentration and they fall in the semidilute entangled regime. The 

transport properties of the particle could be dominated by the reptation of the chains 

surrounding the particle
66

. Let us consider a particle with Ro= 2.5 nm radii in 35K PEG 

solution (Ro/Rg=0.3) at a polymer volume fraction of   0.2. We calculated the 

characteristic diffusion time of the particle, dRo
2
/D, which is  1 s (D 6 m

2
/s). The 

characteristic time of polymer mesh relaxation by “constraint release”, also called the 

“tube renewal time” can be estimated by using the relation: r 3/GN
0

, where  is the 

viscosity, and GN
0 

is the plateau modulus of the polymer solution
33

. We have estimated 

that at   0.2, GN
0
7.5 X 10

4
 Pa. Taking the viscosity ~1.6 Pa.s, r ~ 0.1 ms. Therefore, 

d << r and mesh is static in the time scale of particle motion and the probe diffusion is 

not coupled to matrix relaxation
33

. The probe does not experience the macroscopic 

viscosity of the solution and therefore, D/DSE  100. For such situation, hydrodynamic 

models work relatively well to explain the particle diffusion. In the opposite limit, for a 

particle with radius, Ro=10 nm in the same polymer solution (Ro/Rg 1), d  7 ms with 

D=0.0141 m
2
/s. Therefore d >> r and the motion of the particle is coupled with the 

matrix relaxation and D/DSE  1 is obtained. The matrix relaxation must be taken into 
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account to describe probe diffusion in these cases. We have not seen the return to SE 

behavior in the concentration regime that we explored. A future goal is to extend these 

measurements at a higher concentration to verify whether SE relation is eventually 

recovered. 

Finally, we compare our data with the recent scaling theory of Cai et. al
60

. The 

choice of the experimental system allowed us to compare two regimes: intermediate size 

particles (ξ < 2Ro< a) and large particles (2Ro > a). The theory predicts that the 

intermediate size particles are affected by the segmental motion of the chains. At short 

times (t < ξ) particle motion is diffusive and the particle feels the solvent viscosity. In the 

intermediate time scale, (ξ < t < x), the motion is subdiffusive and the particle feels a 

time-dependent viscosity. At longer times (t > x), the motion is diffusive again and the 

effective viscosity (eff) felt by the particle is given by a polymer liquid consisting of 

chains comparable to the particle size, eff ~ s(Ro/ξ)
2
. The time scales x and ξ 

correspond to the relaxation time of a polymer segment with size comparable to particle 

size 2Ro and ξ, respectively. We have estimated that, ξ < 1 ns and x < 0.1 ms, so our 

experiments measured the long-time diffusion. As ξ  
-0.76

, D() ~ 
-1.52 

according to this 

theory for polymers in good solvent condition. Since both ξ() and a() are concentration 

dependent it is important to consider two crossover concentrations. This first one is 
ξ 

at 

which ξ  2Ro. For an athermal solvent it can be estimated by the expression, 
ξ 
 


*
(Rg/2Ro)

1.32
. The other important concentration is 

a
 at which a() 2Ro. It can be 

estimated by making use of the expression: 
a 
 (2Ro/a(1))

-1.32
. Between 

ξ
 and 

a
, the 

particle size corresponds to the intermediate size regime. Accordingly, the 2.5 nm radius 
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Au NPs can be classified as intermediate sized between volume fraction 0.04 to 0.74 

(details available in section 4.5. Table 4.5.1). Volume fraction in our experiments was 

varied from 0.09 to 0.37. It was observed that these particles follow a power law 

dependence of the measured diffusion on the volume fraction: D()  
-1.450.09

 (Fig. 

4.3.6). Our results are in good agreement with the scaling model according to which the 

particle diffusion coefficient decreases with solution volume fraction as power -1.52 for 

athermal solvent
60

. D is expected to be independent of Mw in this regime as long as the 

tube diameter or polymer size is larger than Ro. For particle with Ro=2.5 nm in 5K PEG 

solution, Ro Rg, so the above condition is approximately satisfied, but we still have 

observed near-independence of polymer Mw on particle diffusion. In the  
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Figure 4.3.6. Power-law dependence of diffusion coefficients on volume fraction. The 

data for particles with radii, 5 nm and 10 nm in 5K PEG were not included as in these 

situations, Ro > Rg. The figure also showed the hydrodynamic fit, which gives a stretched 

exponential dependence on polymer volume-fraction with exponent =0.76. Table 4.5.3 

lists all the fitting parameters used in this figure. (Reprinted with permission from 

Macromolecules 45 (15), 6143-6149. Copyright (2012) American Chemical Society) 
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intermediate size regime, the effective viscosity is proportional to the particle surface 

area, hence D is proportional to Ro
-3

. To test this prediction, we needed particles of 

different sizes at a fixed concentration of a particular molecular weight polymer. At 

volume fraction of =.089 the 5 nm radii particles fall well in intermediate sized regime. 

Analyzing the intermediate sized 2.5 nm and 5 nm particles at this concentration for 35 K 

PEG gives: D(Ro) ~ Ro
-3.36

. Since 5 nm radii particles get into the transition of 

intermediate to large sized particles with the increase in volume fraction we could not test 

this scaling relation for other concentrations. These particles (Ro=5 nm) showed a slightly 

different behavior than that predicted in the literature
60

. It can be attributed to the fact that 

in the concentration range studied, these particles are at the transition of intermediate and 

large sized particles. The diffusion still followed a power law dependence on the volume 

fraction though with a slightly different power: D()  
-2.280.1

 (Fig. 4.3.6). 

The volume fractions equal or above 
a
 correspond to large particle regime, 2Ro > 

a().  The diffusion for large particles can occur through the reptation of the surrounding 

polymer chains and from the temporal fluctuation of the local matrix. The motion due to 

chain reptation is diffusive at long times and is determined by the bulk viscosity (m) of 

entangled liquid. 5K PEG solutions are not entangled at any concentrations, for 35K PEG 

solution, this regime is obtained above a threshold concentration, 
a
  0.12 for Ro=10 nm. 

Our data showed D decreases strongly with increasing concentration above 
a
. The 

decrease is well-fitted by the power law, D() ~ 
-4.070.19

 compared to the theoretical 

prediction of the exponent -3.93 in athermal solvent. The diffusion coefficient is expected 

to be inversely proportional to the nanoparticle radius as in SE relation. Since we only 
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had 10 nm particles in large particle regime, we did not have sufficient data to test this 

relation. But as our measured diffusion values for the particle show a return to SE 

behavior, it implies that for even larger particles, this relation would have followed. In 

Fig. 4.3.6 we have also shown the prediction from hydrodynamic theory
7
 which gives the 

functional form D/Do ~ exp(-Ro/ξ), treating  as the only adjustable parameter. In this 

situation, the power law fits better, particularly in the large particle regime. This indicated 

that polymer motion plays an important role and treating the matrix as fixed in time is 

inadequate to describe the nanoparticle dynamics in macromolecular solution.  

4.4 CONCLUSION 

We measured the diffusion of gold nanoparticles of radii 2.5 nm to 10 nm in 

semidilute poly (ethylene glycol) (PEG)-water solution by using fluctuation correlation 

spectroscopy. For particles with radii Ro > Rg, measured diffusion was similar to that 

expected by SE relation whereas for particles with radii Ro ≤ Rg, the diffusion is faster 

than that estimated from SE relation. The ratio D/DSE increases with polymer 

concentration and as Ro/Rg becomes smaller. The results were rationalized by comparing 

the characteristic time of probe diffusion with the time scale of constraint release 

dynamics for entangled polymer. We compared our results with theories, which are 

currently available. A reasonably good agreement was found with the recent scaling 

theory, which takes into account polymer dynamics. Our results will be important for 

understanding intracellular transport of globular molecules
46

 and for the development of 

novel therapeutic treatments, which rely upon delivery of nanoparticles through complex 

spatial structures, such as mucin network
6
.   
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4.5 SUPPORTING INFORMATION 

Supporting information is available in this section. It consists of one figure and 

three tables, including the TEM image of gold nanoparticles with histogram analysis, 

tables for important length scales and other parameters, data for diffusion coefficients as 

a function of polymer volume fraction and fitting parameters used in analyzing the 

figures. 
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Figure 4.5.1. (a) TEM image of AuNPs deposited on carbon film magnified 800 

000×.JEOL-2010 FasTEM Transmission Electron Microscope (TEM) with a LaB6 

filament working at 200 kV was employed for imaging. (b) A histogram obtained from 

measuring the diameters of AuNPs. The average diameter measured is 4.7 ± 0.6 nm. 

(Kohli 2012) 
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TABLE 4.5.1: Important parameters  

 

Au NPs radius Ro 

(nm) 

1.32

o

g*ξ

2R

R











   

-1.32

oa

a(1)

2R








  

2.5 0.037 0.74 

5 0.015 0.3 

10 0.006 0.12 

PEG Molecular weight,  Mw 5 kg/mol 35 kg/mol 

Radius of Gyration 

Rg = 0.02 Mw 
0.58

 (nm) 
2.8 8.64 

Volume fraction  range 0.089 - 0.37 0.089 – 0.3 

Overlap volume fraction 


*
 =  Mw /(4/3* ρ *π*Rg

3
*NA) 

( ρPEG = 1.126 g/ml); 

 

.08 .02 

Entanglement concentration 

e = Me/Mw (Me = 2 kg/mol for 

PEG) 
1 

N.A. 0.12 

Correlation Length 

ξ() ≈ Rg (/*)
 -0.76 

(nm) 

 

0.9 – 2.6 1.1 – 2.6 

Tube diameter 

a() ≈ a(1)  
-0.76

 ( nm) 

a(1) = 4 nm
1 

 

N. A. 10.6 – 19.3 
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1. Rubinstein, M. and R. H. Colby (2003). Polymer Physics. Oxford ; New York, 

Oxford University Press 

TABLE 4.5.2. Measured Diffusion coefficient values.  

(a) Diffusion coefficients (D)  of Au NPs (in µm
2
/s) at different volume 

fractions of PEG 5 kg/mol 

 Ro = 2.5 nm Ro = 5 nm Ro = 10 nm 

0 87 39 21 

0.089 18.6 8.3 4.1 

0.182 7.1 3.0 1.5 

0.276 3.2 1.24 0.56 

0.372 1.5 0.61 0.28   

 

(b) Diffusion coefficients (D) of Au NPs (in µm
2
/s) at different volume 

fractions of PEG 35 kg/mol 

 Ro= 2.5 nm Ro = 5 nm Ro = 10 nm 

0.089 17.5 1.7  D 

0.135 11.8 - .089 .45 

0.191 5.8 0.35 0.13 .07 

0.228 4.1 0.18 0.191 .014 

0.257 3.1 0.13 0.225 .008 

0.3 2.6 0.07   
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TABLE 4.5.3. Fitting parameters 

Phillies fit in Figure 4.3.3: D = D0 exp (-b
ν
) 

Ro (nm), PEG Mw (kg/mol) b Ν 

2.5, 5 7.5 0.65 

5, 5 8.47 0.70 

10, 5 8.58 0.69 

2.5, 35 8.07 0.67 

5, 35 12.0 0.56 

10, 35 44.8 1.01 

 

Power Law Fit in Figure 4.3.6: D = Dp 
α
 

R0 (nm) Dp Α 

2.5 0.55 -1.45 

5 0.0068 -2.28 

10 0.00002 -4.07 

 

Hydrodynamic Fit in Figure 4.3.6: D = D0 exp (-κRo/ξ ) 

Ro (nm) Κ 

2.5 1.66 

5 1.76 

10 1.2 
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CHAPTER 5 

               NANOPARTICLES DYNAMICS IN BIOPOLYMER SOLUTIONS 

5.1 INTERACTION AND DIFFUSION OF GOLD NANOPARTICLES IN 

BOVINE SERUM ALBUMIN SOLUTIONS. 

The Following material was originally published in Applied Physics Letters (2013)68 

Very recently, gold nanoparticles (AuNPs) have gained a lot of attention for their 

diagnostic and therapeutic applications.
69-5

 These NPs possess numerous unique and 

attractive properties, such as non-toxicity, size-dependent properties, and their ability to 

be functionalized.
70

 These properties make them a favorable platform for drug delivery. It 

has been proved experimentally that spontaneous accumulation of protein on AuNPs 

occurs when these NPs are exposed to protein or serum plasma resulting in a protein 

layer coating.
36

 This in turn alters the size of the drug delivery carrier as seen by the cell, 

as it will no longer be the size of the NP core but that of the core with the bound proteins, 

resulting in modified transport properties.
71

 Thus understanding the adsorption process 

and protein-covered NP dynamics when exposed to physiological environments are 

important.
37, 72, 73

 

It has been suggested that the NP size, shape and surface chemistry determines the 

affinity of a certain protein to bind to its surface.
74,75

 This implies that the interaction of 

protein would not only be different for different types of NPs, but also be different for 

different sizes and shapes of the same kind of NPs. As a model protein we have selected 

bovine serum albumin (BSA). So far research has been done to study the interaction of 

BSA with variety of NPs including small sized (10-20 nm) FePt NPs and quantum dots
38

, 
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medium and large sized AuNPs (20-250 nm)
41

. However, systematic study of interaction 

of BSA with nanometer-sized AuNPs with radius 2.5-10 nm remains scarce, but would 

be potentially useful in the areas ranging from Biophysics to drug delivery.
5, 72

 

Here, we studied the interactions of these small AuNPs with BSA using 

fluctuation correlation spectroscopy (FCS) technique. The Brownian diffusion of the NPs 

was altered by the protein adsorption. This adsorption was studied as a function of NP 

size and protein concentration. Measured diffusion was compared to Phillies equation of 

stretched exponential function. A quantitative analysis of the protein binding was also 

performed.  

5.2 EXPERIMENTAL SECTION  

Albumin from bovine serum (BSA), fraction v ≥ 96% was purchased from Sigma. 

Tannic acid stabilized gold nanoparticles of radius 2.5, 5 and 10 nm were purchased 

commercially from Ted Pella, Inc. The polydispersity of these AuNPs was about 10%, 

determined by using transmission electron microscopy (TEM). Using a digital balance 

with resolution of 1 mg, many different concentrations of BSA (0.1 µM to 10 mM), in a 

phosphate buffer-AuNPs mixture (Ph 7.0) as a solvent, were prepared. The choice of the 

buffer with this Ph has been justified later in the paper. 

Experimental platform was a Zeiss inverted microscope.
76

 Near infrared light 

(wavelength 800 nm) from a femtosecond Ti: Sapphire laser (Mai Tai, Spectra Physics), 

was focused on the sample through a high numerical aperture (N.A.) objective. Light 

emitted from the sample was collected through the same objective and passes through a 

dichroic mirror that transmits light of wavelength below 600 nm. This emitted light was 
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detected by two single-photon counting modules (Hamamatsu). The output was recorded 

and analyzed using an integrated data acquisition system (ISS, IL). The number of NPs 

fluctuates as they diffuse in and out of the laser focus. This fluctuation (F) is 

quantitatively studied through the autocorrelation function (ACF), G(τ) given by Eq. 

5.2.1. If  Brownian diffusion is the cause of these fluctuations, the diffusion coefficient 

(D) can be calculated from the ACF by using Eq. 5.2.2, where G(0) is the magnitude of 

ACF at short time which is inversely proportional to the number of particles within the 

laser focus, ωo is the half-width, and zo is the half-height of the laser focus. Calibration 

experiments were performed by correlating luminescence signal from the 2.5 nm radius 

AuNPs in order to determine the dimensions of the focal point. The size of these NPs was 

confirmed by conducting TEM measurements. Using SE relation corresponding to the 

measured size, the calculated diffusion coefficient, D of 87 µm
2
/s was used to determine 

that ωo 0.25 m and zo 1 m.  
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 As mentioned previously, AuNPs were specifically chosen for our 

experiments owing to their increased therapeutical applications. Some experiments have 

suggested that these NPs have high photo stability and do not suffer blinking.
69, 76, 77

 The 

size of these NPs can also be tuned as desired, without any change of shape and chemical 

interaction with the matrix. Although the scattering signal from small NPs is typically 
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very low, they have high luminescence efficiency upon multi-photon excitation.
76

 In all 

experiments, the laser power was kept below 1 mW to avoid photothermal conversion, 

which can induce local heating of NPs. 

5.3 RESULTS AND DISCUSSION 

 In Fig. 5.3.1, we have shown some representative autocorrelation 

functions (ACF), plotted versus logarithmic time lag, collected by FCS. A number of 

FCS trials were performed for each NP size for each protein concentration. All the data 

was collected at room temperature 23 
o
C. Each ACF was collected for about 10 minutes.  

                          

                           

 

Figure 5.3.1. (Color Online) Normalized autocorrelation curves for AuNP (R= 2.5 nm) 

diffusing in BSA solution in phosphate buffer at various protein concentrations. Solid 

lines are fit to the curves using Eq. 5.2.2. Arrow shows direction of increasing 

concentration. 

 

 

The data was fitted using Eq. 5.2.2 and the translational diffusion coefficient, D 

was obtained from the fit. Figure 5.3.2 shows D as a function of protein concentration. 
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The NPs diffusion coefficient decreases with the increase in BSA concentration as 

expected. A quantitative analysis was then performed with the obtained data. First, the 

hydrodynamic radius of the NPs was calculated from the measured diffusion coefficient 

D, before and after protein adsorption, using Stoke Einstein's (SE) equation. In order to 

accurately interpret the FCS data we measured the viscosity of the BSA solutions in 

phosphate buffer with pH 7.0 using a falling ball viscometer. Measured viscosity as a 

function of protein concentration is also shown in Fig. 5.3.2. 

                        

 

Figure 5.3.2. (Color Online) Diffusion coefficient of R = 2.5 nm AuNPs as a function of 

protein concentration. The inset shows the measured diffusion for 5 and 10 nm AuNPs at 

higher concentrations of BSA. Also shown (stars) viscosity as a function of BSA 

concentration. 

 

BSA exhibits pH dependent conformations with its native (N) state found 

between pH 4 and 8.
78

  The pH 7.0 of the phosphate buffer thus used corresponds to the 
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N state which can be approximated as an equilateral triangular prism with sides 8 nm and 

height 3 nm.
39

 Table 5.3.1 consists of translational diffusion coefficient, D obtained by 

autocorrelation analysis, and hydrodynamic radius, Rh calculated using SE relation in the 

absence and presence of BSA, data shown is for 0.9 mM concentration of BSA. The 

average change in NP hydrodynamic radius for all concentrations studied comes out to be 

ΔR = 3.8 ± 0.5 nm which corresponds to a BSA monolayer formation. No multi-layer 

formation was observed even at significantly higher protein concentration. For radius 5 

and 10 nm AuNPs, we studied only the higher concentrations (0.8 mM - 10 mM) in order 

to check for any multi layer formation. But, the formation of just a monolayer on the 

surface of these NPs indicated that for small sized AuNPs the BSA adsorption is size 

independent.                        

AuNP 

Radius(nm) 

DAuNP 

(µm
2
/s) 

DAuNP+BSA 

(µm
2
/s) 

Rh AuNP 

(nm) 

RhAuNP+BSA  

(nm) 

2.5 87±3.5 26.0±0.8 2.51±0.1 5.59±0.2 

5 39±1.8 16.86±1.1 5.5±0.3 8.63±0.5 

10 21±0.6 10.4±0.5 10.4±0.3 13.9±0.7 

 

Table 5.3.1. Translational diffusion coefficient (D) of AuNPs obtained by autocorrelation 

analysis, and hydrodynamic radius (Rh) calculated using SE relation in absence and 

presence of BSA 

 

The diffusion data in Fig. 5.3.2 is fitted with Phillies equation of stretched 

exponential function: D/D0 = exp (-βc
ν
), where D0 is the diffusion coefficient of the 
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AuNP in the limit of low protein concentration, β and ν are adjustable parameters. A 

reasonably good fit was obtained by using the D0 value corresponding to the AuNP 

coated with protein monolayer rather than that of bare AuNP. The exponent ν was in 

marginal agreement with value close to 1 as reported in the literature.
79-29

  In all these 

experiments the size of NPs including the monolayer is greater than the average size of 

the BSA molecules. The NP diffusion was observed to follow the prediction from Stokes-

Einstein relation using the bulk viscosity provided the monolayer thickness was taken 

into account.
11

 This is in agreement with some earlier works, where it has been shown 

that the macromolecular size (Rg) is the cross-over length scale for NPs experiencing 

macroviscosity or nanoviscosity.
52,80

 Those experiments were preformed for linear 

polymers, which can entangle in the solution. Together our results imply that the 

crossover length scale is independent of the shape of the molecules.  

 Following the concept of Rocker et. al.,
38

 the Langmuir model can be 

modified and the dependence of NP radii on protein concentration can be explained as 

follows: 

                            If                 
 

  
  

 
                                                        5.3.1 

is the hydrodynamic radii of the NP with volume V0 and it is assumed that N 

protein (BSA) molecules adsorbed at the surface of the NP, each with volume VBSA, then  

        
 

  
          

 
)       =            

 
  , where c = VBSA/V0          5.3.2 

Modeling N as, 

                                                
     

   
  

     
 
                                                               5.3.3 
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the hydrodynamic radii of NP as a function of protein concentration can be 

expressed as follows 

                                  Rh  BSA  =Rh 0    1 
c Nmax

1  
KD

 BSA 
 
n

3
                                       5.3.4 

where Nmax is the maximum number of proteins bound to the NP, KD is the 

dissociation coefficient quantifying the NP-protein interaction, and n is the Hill 

coefficient. Figure 5.3.3 represents the calculated hydrodynamic radii of 2.5 nm AuNPs 

plotted as a function of BSA concentration.  The data is fitted using Eq. 5.3.4. The best fit 

yields a dissociation coefficient of KD = 78.6 ± 9.5 µM and a Hill coefficient of n = 0.63 

± 0.03, which being below 1 indicates anticooperative binding. This is also evident from 

the absence of multilayer formation. Comparison to Langmuir binding isotherm (n=1) is 

also shown in Fig. 5.3.3. The dissociation coefficient for Langmuir fit is KD = 14.6 ± 4.3. 

The inset in Fig. 5.3.3 shows KD, obtained by the anticooperative binding model, as a 

function of the NP    hydrodynamic radius. 

 The dissociation coefficient KD for the 2.5 nm radii NPs being smaller than that 

obtained by Medina et. al.
41

, shown as last point in the inset, for the 26 nm radii NPs 

implies stronger interaction between smaller NPs and BSA. This would indicate the 

adsorption to be caused by ligand exchange reaction as also suggested by Tsai et. al.
42 

rather than electrostatic attraction mechanism suggested by other groups
81,82

. The 

maximum number of protein molecules adsorbed per 2.5 nm radius AuNP as obtained 

from the fit is Nmax = 8.4 ± 1.  The theoretically calculated Nmax would be about 3 

calculated by dividing the surface area of AuNP ( 4π*2.5
2
 nm

2
) by the area of the 
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triangular base ( 
  

 
          of BSA in its N state. This is in reasonably good 

agreement with the value obtained from the fit.  

 

                          
 

Figure 5.3.3. (Color Online) Hydrodynamic radii of NPs plotted as a function of BSA 

concentration. Red solid line represents fit of anti cooperative binding model, and blue 

dashed line shows comparison to Langmuir binding isotherm fitted to first and last 30 

percent of data points. The conversion of concentration units is as follows [BSA]g/ml = 

[BSA]µM *Mw*10
-9

, where Mw is the molecular weight of BSA and is equal to 66,430 

g/mol. The inset shows KD as a function of the hydrodynamic radius Rh. 

 

 

 

5.4 CONCLUSION  

We demonstrated by performing FCS experiments that BSA forms a protein 

monolayer on the small sized AuNPs. This monolayer was observed to have attained 

saturation at a BSA concentration of approximately 0.8 mM. Multi-layer formation was 
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not observed even at significantly higher BSA concentrations. Average change in NP 

hydrodynamic radius measured before and after protein adsorption is 3.8 nm. Thickness 

of the adsorbed layer is independent of NP radius ranging from 2.5 - 10 nm. The NP 

diffusion followed Stokes-Einstein prediction provided the thickness of the adsorbed 

layer was accounted for. The adsorption was best described by anticooperative binding 

model. The estimated Nmax, was in fairly good agreement with the Nmax obtained from the 

fit. Our results will be important in understanding the nanoparticle motion in complex 

fluids, which is relevant in the areas of bio diagnostics as well as targeted drug delivery.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



78 
 

 

CHAPTER 6 

GOLD NANOPARTICLE DIFFUSION IN BRANCHED POLYMER AND 

PARTICULATE SOLUTIONS 

6.1 CONTRASTING NANOPARTICLE DIFFUSION IN BRANCHED POLYMER 

AND PARTICULATE SOLUTIONS: MORE THAN JUST VOLUME FRACTION 

The Following material has been accepted for publication by Soft Matter. 

It is well established that the cell cytoplasm is a crowded aqueous medium with a 

significant volume fraction occupied by various macromolecules
83

. More insight of the 

biochemical and biophysical processes should therefore be obtained by carrying out 

experiments at concentration of macromolecules similar to cellular environment
46

. 

Diffusion is the most important passive transport mechanism controlled solely by 

temperature and does not require any external field. Together with active transport 

processes, it controls various biological processes such as intracellular transport, reaction 

rates, signaling process, cellular pattern formation, protein assembly, etc
84-90

. Generally 

as the size of the diffusing species decreases their mobility increases and as the volume 

fraction of the crowding agents increases their mobility decreases
52

. The crowding agents 

affect the collisional frequency of the probe particle as well as the hydrodynamic 

interaction and together they influence the dynamics of the probe. The century-old 

Stokes-Einstein (SE) relation gives a simple equation to calculate the translational 

diffusion coefficient (DSE) by using DSE= kBT/fmR0, where kB is the Boltzmann’s 

constant, T is the absolute temperature, m is the viscosity of the medium, R0 is the radius 



79 
 

 

of the diffusing entity, and the constant f is determined by the boundary condition for 

flow at the particle surface; f=6 or 4 depending upon “stick” or “slip” boundary 

conditions.  

This equation works remarkably well to describe the diffusion of probe molecules 

in simple liquids and even self-diffusion in neat liquids. But it is well known in polymer 

science community that small probe molecule can diffuse orders of magnitude faster in a 

semidilute or concentrated polymer solution compared to the expectation from SE 

relation
25, 28, 32, 52, 76

. A good model system to understand the probe diffusion is to use 

spherical, rigid nanoparticles as probe and homopolymer molecule with varying 

concentration as crowding agent. Three size regimes for probe diffusion in such systems 

are well documented
8, 10, 28, 29

. They are generally given as the ratio R0/ξ, where R0 is the 

radius of the probe particle and ξ is the correlation length measured as the average 

distance of a monomer in one chain to the nearest monomer of the other chains. If R0/ξ < 

1, the probe can easily slip through the polymer mesh and it only feels the solvent 

viscosity (0). In the opposite limit, the probe motion is intimately connected to the 

polymer matrix so that it feels the macroscopic viscosity (m) as measured by a 

rheometer. In the intermediate regime, R0/ξ  1, the probe experiences a local viscosity 

(), which is between the solvent and bulk viscosity. In this scenario, the crossover 

length scale (lc) from 0 to m is the correlation length. There are several experiments 

conducted in the past few years to determine lc. Though some of the earlier studies were 

consistent with the picture of lc≈ ξ
29, 35

, more recent work using particles with different 

sizes indicates that the radius of gyration (Rg) is the crossover length scale
32, 52

, which is 
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typically much larger than ξ. Recent computer simulations also predict Rg as the 

crossover length scale
9, 10, 59

.  

A scaling function of the form F(R0/ξ) has been proposed for the local viscosity 

(), which depends only upon the ratio R0/ξ
8, 28

. As ξ depends upon the volume fraction 

of the polymer in solution (), but independent of polymer molecular weight (Mw)
8
, the 

scaling function depends only upon  and R0. Models based upon hydrodynamic 

interaction between the polymer mesh and particle predict a stretched exponential 

function, F(R0/ξ) ~ exp [-(R0/ξ)

]

12, 28, 31
. This functional form assumes that the diffusion 

of particles occurs through a statistical pore of size, ξ and involves an activation energy 

associated with the deformation of the network
8
. Similar stretched exponential function 

was also obtained in models, which considers the effect of depletion layer around the 

particle in a non-adsorbing polymer solution
16

. All these models do not explicitly 

consider the polymer dynamics. Recently, a scaling theory has been used, which took into 

account the roles of polymer segmental motion and the effect of entanglement dynamics 

on the particle motion. It predicts power law dependence of scaling function instead of 

much stronger stretched exponential dependence
60

. In a recent work we have shown that 

the scaling theory works slightly better especially in the large particle size, when the 

effects of entanglement and reptation become important
52

. Most of these previous studies 

have focused on linear polymers.  

In this paper, we investigated how the nanoparticle diffusion is affected if a slight 

branching is introduced in the polymer. We performed experiments using dextran 

solutions of varying concentrations, a model system, which had been widely used to 
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study the effect of crowding on diffusion, association rate, etc
88-92

. However, there are 

several important aspects, which distinguish our work from some earlier studies. First, we 

compare our results of NP diffusion with the expectation based from SE relation using 

the bulk viscosity (m), which we measured. The results showed strikingly different 

behavior than linear polymers. Second, we studied the diffusion of NPs in a non-

polymeric colloidal system having similar size of dextran and volume fractions, which 

farther showed the role played by the molecular structure of the crowding agent. Third, 

our results showed anomalous sub-diffusion of smaller sized (R0=2.5 nm) nanoparticles 

in dextran solution but not in any other systems. This implied that the anomalous 

exponent cannot be used generally as a measure of crowding
91, 93

. Taken together, our 

results will be important to understand how nanometer-sized particles or macromolecules 

move within structured fluid and biological systems, which usually consists of molecules 

of many different size, shape and architecture.  

6.2 EXPERIMENTAL SECTION 

6.2.1 MATERIALS 

We used dextran 70 with an average molecular weight of 70 kDa (Sigma-

Aldrich). Ludox TM-50 colloidal silica, 50 wt.% suspension in water was purchased from 

Sigma-Aldrich. Tannic acid stabilized gold nanoparticles (AuNPs) of radius 2.5 and 10 

nm were purchased from Ted Pella, Inc and used as probes. TEM measurements indicate 

a 10% polydispersity of these NPs. Distilled deionized water (resistivity= 18.2 M.cm) 

was used as solvent.   
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6.2.2 METHODS 

A digital balance with a resolution of 1 mg was used to prepare different 

concentrations of dextran in water-AuNP mixture as solvent. Freshly prepared samples 

were used in all experiments to avoid any aging effect. A falling ball viscometer (Fish-

Schurman Corp, N.Y.) was used to measure the viscosity of dextran and particulate 

solutions. The translational diffusion coefficient (D) of the gold NPs were determined by 

using the method of fluctuation correlation spectroscopy (FCS) also known as 

fluorescence correlation spectroscopy
52, 76

. Briefly the near infrared light (wavelength 800 

nm) from a pulsed laser was focused into the sample through a high N.A. objective. The 

fluctuation in photon counts as the gold NPs move into or out of the laser focus is 

collected through two single-photon counting modules (Hamamatsu). The data is cross-

correlated and from the resulting autocorrelation function, G() diffusion coefficient D 

was calculated by using the equation: 
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Here, G(0) is the magnitude of the autocorrelation function at short time (  0) 

which is inversely proportional to the number of particles within the laser focus, ωo is the 

half-width, and zo is the half-height of the laser focus. By performing a calibration 

experiment, we determined that ωo0.33 m and zo2 m. The laser power was kept 

below 1 mW to reduce local photothermal effect
76

.   
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6.3 RESULTS AND DISCUSSION 

The crowded medium was mimicked by using dextran solutions of various 

volume fractions up to 30% (≈40 wt%), which is close to the volume occupied by various 

macromolecules inside a cell cytoplasm
83

. Dextran is a flexible, slightly branched 

polysaccharide consisting of glucose subunits. It assumes an almost random coil 

conformation in dilute solutions above a molecular weight, Mw≈2 kDa
94

. Experiments 

have shown about 1 branch in every 25 subunits with most of the branches few residues 

long
92, 95

. Dextran has been proven to be biocompatible and clinically safe. We have 

chosen dextran 70, because parenterally administered dextran uses solutions of Mw 

between 40 kDa and 70 kDa. These molecular weight dextrans are also ideal for coating 

iron oxide or gadolinium particles used as a contrast agent in MRI. We compare the 

probe particle diffusion in dextran with another crowded system composed of unlabelled 

Ludox particles of radius, Rp ≈10 nm. It is comparable to the radius of gyration, Rg≈8 nm 

of the dextran molecules used
92

. But in contrast to Ludox particles, which are rigid and 

impenetrable spheres, dextran molecules are soft and structured. This is reflected in 

differences in the probe diffusive behavior and the rheological properties of the solution 

as will be discussed later. We used gold NPs as a probe because these are increasingly 

being used for their diagnostic and therapeutic applications, such as a drug delivery 

agent. They are non-toxic and can be functionalized routinely using thiol chemistry. Their 

other useful properties, especially relevant for our experiments, are high luminous 

efficiency and no photobleaching or blinking, which are common problems associated 

with fluorescent dyes and semiconductor quantum dots. Gold nanoparticle concentration 
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was always kept at 100 nM to achieve single-molecule sensitivity for FCS experiments. 

Two different sizes (R0=2.5 nm and 10 nm) of these NPs were chosen to investigate the 

most interesting size regimes from polymer science perspective, i.e., for smaller sized 

AuNPs, Rg > R0 ≈ ξ and for larger sized NPs, Rg ≈ R0 > ξ. These two size regimes 

allowed us to determine the crossover length scale for branched polymers and compare 

our results with probe diffusive behavior in linear polymer solutions. Control experiments 

indicated no specific interactions between gold NPs and the crowding agents (dextran and 

ludox particles) used, which would have lead to irreversible adsorption on NP surface. 

 

Figure 6.3.1. Autocorrelation function of 2.5 nm radii gold nanoparticles diffusing in 

dextran 70 solution at various volume fractions as indicated. Data was collected for 15 

minutes. The arrow points towards higher concentration. The solid lines are fitting of the 

data with normal diffusion (Eq. 1). The fitting deviates at two highest volume fractions 

(=0.21 and 0.29), which is more prominent at longer time scales. (Inset) Residual of 

fitting for volume fraction, =0.21 and  >0.01 s is shown. 
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Figure 6.3.1 displays representative normalized autocorrelation functions (ACF) 

for smaller AuNPs (R0=2.5 nm) in dextran solutions of volume fraction  = 0.06 to 0.29. 

It is evident from the figure that the mean decay time (d) of the ACF increases with an 

increase in the polymer concentration indicating slower diffusion coefficient. This is a 

result of the increase of the viscosity of the solution. The ACF are fitted using Eq. 6.2.1 

to obtain the translational diffusion D. The fitting deviates for two higher concentrations 

(=0.21 and 0.29) as shown in the residual plot (Fig. 6.3.1 inset). The data points are not 

distributed randomly about the fitting, especially at longer time scales. It has been 

observed previously that in crowded macromolecular environment, the diffusion can 

deviate from simple model as was used in Eq. 6.2.1
76, 91, 92

. In such situations, the data 

needs to be fitted with anomalous sub-diffusion model, where the mean-square-

displacement (MSD) shows a fractional power law dependence, r
2
(t)~t


 ( <1) rather 

than linear dependence on time (t). The anomalous exponent () can be used as a 

measure of subdiffusion. The linear dependence (=1) correspond to normal diffusion. 

The autocorrelation function for anomalous diffusion is fitted with the equation
91-93

: 

                              

 
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0 z
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aa 

 .                                  6.3.1 

The diffusion in this situation cannot be described by a single diffusion 

coefficient. But we can define an apparent diffusion coefficient (Da), which describes the 

diffusion at the length scale of the laser focus (~o) and at time scale of mean decay time 

(~d). For the two lowest concentrations, =0.06 and 0.14 the fitting of the data with 

anomalous model is not different from using a fixed =1. In Fig. 6.3.2 we have shown 
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the fitting of ACF for =0.21 using Eq. 6.3.1 and the residual is shown in the inset. The 

reduced 
2
 becomes 30% less and the distribution of residuals at longer times becomes 

more random compared to normal fitting (Eq. 6.2.1). Similar analysis of autocorrelation 

functions were performed with other systems (Figure 6.5.1). 

       

 

Figure 6.3.2. Anomalous (red line) and two-component (blue line) fits for the data of Fig. 

6.3.1 with =0.21. The anomalous fitting gives =0.75 and D=1.1 m
2
/s. The two 

component fitting gives a fast and slow component with values, Dfast=1.42 m
2
/s and 

Dslow=0.027 m
2
/s. (Insets) Corresponding residuals are shown for  > 0.01 s.  
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diffusion of bound complex
89

. The fitting quality of data with this model for R0=2.5 nm 

in dextran solution of =0.21 is similar to the anomalous model (Fig. 6.3.2). However, 

we will not consider the two-component model farther because we do not except any 

strong interaction between gold and dextran. In addition, we did not observe anomalous 

diffusion for bigger AuNPs, which has the same surface chemistry as the smaller ones.  

         

 

 

 

 

 

 

 

 

 

 

Figure 6.3.3. Anomalous exponent () as a function of volume fraction for dextran (open 

symbols) and Ludox (filled symbols). The exponents were obtained by fitting with 

Eq.6.3.1 (main text). The error bars were calculated from the average of five 

measurements.  
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diffusive behavior with ≈1. Because of the statistical noise, only for  < 0.85 we can 

confidently claim anomalous diffusion. The data in Fig. 6.3.3 indicates clearly of 

subdiffusion for smaller AuNP particles in dextran at high volume fractions. However, 

given the experimental uncertainty, we were unable to observe any systematic 

dependence of anomalous exponent with concentration. The bigger NPs in dextran 

showed normal or slightly anomalous behavior.  

           

 

 

 

 

 

 

 

 

 

Figure 6.3.4. Diffusion coefficient (D) of two different sized AuNPs plotted as a function 

of various volume fraction of dextran (main figure) and Ludox (inset) solutions. The solid 

lines are stretched exponential fit as given by Phillies equation. The values of the fitting 

parameters are listed in Table 6.5.1.   
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solvent (water), β and ν are adjustable parameters. A reasonably good fit was obtained in 

all systems even for higher concentrations. The smaller NPs in dextran at the highest 

concentration showed some deviation from the fitting, which has been explained later. 

The exponent ν in dextran solution (ν≈0.45) has been observed to be smaller compared to 

Ludox solution (ν≈1). For probe diffusion in linear polymer in good solvent ν≈0.75 

expected
31

, but for dextran  values between 0.5 to 1.5 have been reported
92

. Some 

experiments have observed  increases with probe size
31

, but we observed no clear trend 

for dextran 70. The physical significance of parameters in Phillies equation is still not 

clear. The values of β and ν for all fittings were given in Table 6.5.1. The stretched 

exponential fitting considers the hydrodynamic interaction, but ignores the fluctuation of 

polymer mesh size because of polymer motion. In case of probe diffusion in linear 

polymer (polyethylene glycol) solutions, it has been observed that the mobility could be 

an order of magnitude faster compared to prediction from stretched exponential fitting
52

. 

This can be explained by taking into account polymer motion, which opens up additional 

mechanism for particle diffusion
60

. In dextran solutions, our data indicates polymer 

dynamics do not play significant role in probe mobility in the concentration and the size 

regime studied. As both Ludox and dextran data can be fitted equally well with the 

stretched exponential fitting, this points towards similar mechanism for probe diffusion in 

both solutions. We will argue later that probe particles view the matrix in dextran 

solution as consisting of soft colloids. This point will be strengthened farther in 

explaining the adherence to the SE relation. 
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The bulk viscosity (m) of the dextran and Ludox solutions was measured using a 

falling ball viscometer. The measured viscosity as a function of concentration for dextran 

is shown in Fig. 6.3.5 inset. The viscosity of the dextran solution is consistently higher 

compared to Ludox because of higher pervaded volume by the polymer (Figure 6.5.2). 

For both dextran and ludox particles, the viscosity data can be fitted with stretched 

exponential function.  Above the overlap volume fraction (*), which marks the onset of 

semidilute regime, the chains begin to overlap and viscosity starts to rise rapidly. Thus * 

can be estimated from the change in slope of the viscosity vs concentration in log-log plot 

(Fig. 6.3.5 inset), which for dextran yields *≈0.033.  From * we calculated the intrinsic 

viscosity, []~1/c*≈0.22 dl/g, where c* represents the overlap concentration. [] is 

related to the polymer molecular weight (Mw) by Mark-Houwink-Sakurada (MHS) 

relationship []=KMn

, where for dextran in water K=8.525x10

-4
 dl/g and =0.522 are 

constants
96

. This gives the number average molecular weight, (Mn)  47 kDa. Viscosity 

measurement allowed us to compare the diffusion coefficient of the AuNPs with the 

Stokes-Einstein (SE) prediction. Our results indicate that the diffusing NPs obey the SE 

relation for both systems at all concentrations, as evident from Fig. 6.3.5.  

To interpret this result and to estimate the crossover length scale from 

nanoviscosity to macroviscosity, we need to calculate the important length scales of the 

system. As 
*
≈0.033, all the measurements (=0.06-0.29) were carried out in the 

semidilute regime. The average radius of gyration Rg of the dextran 70 in water 

corresponds to Rg≈8.2 nm
94

. Thus, R0/Rg ratios were between 0.3 and 1.2 corresponding 

to the R0 values of 2.5 and 10 nm. The correlation length (ξ) as a function of polymer 
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concentration was calculated by using the relationship
8
, ξ  Rg(/*)

-0.76
. ξ() ranged 

from 1.6 nm to 5.2 nm. Thus the measurements covered the regime R0 ≈ ξ as well as R0 >  

ξ as the ratio R0/ξ varied from 0.5 to 6. The chain entanglement becomes significant  

 

 

 

 

 

 

 

 

 

Figure 6.3.5. (Inset) Viscosity of dextran 70 solution vs. volume fraction in log-log plot. 

The vertical axis is normalized with respect to the solvent viscosity. The intersection of 

the two straight lines gives the overlap volume fraction (*) ≈0.033. (Main figure) The 

ratio D/DSE plotted as a function of volume fraction; 2.5 nm AuNPs in dextran 

(R0/Rg=0.3, open square) and in Ludox (R0/Rp=0.25, filled square); 10 nm AuNPs in 

dextran (R0/Rg=1.2, open circle) and in Ludox (R0/Rp=1, filled circle). Also shown for 

comparison D/DSE for 2.5 nm AuNP in a linear polymer polyethylene glycol (PEG) of 

Mw= 35 kg/mol (R0/Rg=0.3, open triangle)
10

. PEG data has been adapted with permission 

from Macromolecules 2012, 45, 6143-6149. Copyright (2012) American Chemical 

Society 
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used in our experiments does not possess enough number of entanglements. Therefore, 

entanglement dynamics does not play significant role in particle diffusion. The crowded 

nonpolymeric nanoparticle system was so chosen to have the radius (Rp) of 

approximately 10 nm, which gives similar R0/Rp ratios as for the dextran system. Since it 

is a solution consisting of only unlabelled spherical particles, presence of entanglements 

is completely ruled out.  

Our results in Fig. 6.3.5 indicated that in branched polymer and in Ludox particle 

systems, SE relation is followed in the size regime we investigated. This is contrary to 

our findings with the diffusion of these NPs for similar R0/Rg in linear polymers where 

we had observed a strong deviation. NPs in polyethylene glycol (PEG) solutions can 

diffuse orders of magnitude faster compared to the expectation based from SE relation 

using macroscopic viscosity and the ratio depends upon the volume fraction if R0/Rg < 

1
52

. But as R0/Rg ratio approaches 1, the SE prediction is also increasingly followed. 

Thus, it can be concluded that in case of branched polymers, Rg is not the crossover 

length scale for particles experiencing nanoviscosity or macroviscosity, but it has to be 

smaller then Rg. 

Therefore we need to explain two striking results, i.e., the difference in the 

crossover length scale for branched polymer compared to linear polymer and the 

observation of anomalous diffusion for 2.5 nm AuNP particles in dextran, but not in other 

systems. As the observation of heterogeneous dynamics is a hallmark of systems near the 

glass transition
97

, we have estimated the glass transition temperature (Tg) of the dextran 

solution using Fox equation
98

. For the highest volume fraction studied (0.29) we 
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determine that Tg -119 
0
C

99 
, which is much below the room temperature (23 

0
C) where 

the measurements were carried out. So alternate explanation need to be sought. We 

considered the detailed structure of the dextran molecules. It has been observed that even 

a small amount of branching can affect physical and dynamical properties of dextran 

molecules
92

. For example, rheologically dextran behaves as Newtonian fluid, i.e., the 

flow rate is independent of shear stress. We also point out that previous experiments 

concluded that a soft sphere model is a suitable description of the molecular structure of 

dextran in water
94, 95

. To be more specific, hydrodynamically dextran behaves as prolate 

ellipsoid of revolution and for dextran 70, the ratio of semimajor and semiminor axis is 

≈9
95

. As the molecular weight increases the ratio decreases and the molecule approaches 

closes to spherical symmetry. Some other group have determined the fractal dimension 

(df) of dextran as ~2.3 which is different from what is expected for ideal chain (df=2) or 

expanded coils in good solvent condition (df < 2)
33, 95

. This soft sphere model of dextran 

supports the essential results of Fig. 6.3.5, which showed similar D/DSE for both Ludox 

and dextran solutions. This can also explain why the stretched exponential fit of Fig. 

6.3.4, which ignores the polymer dynamics can explain dextran data reasonable well.  

As mentioned earlier, the correlation length (ξ) depends upon concentration and is 

 2 nm for high dextran volume fraction. Though this is comparable to AuNP particles of 

2.5 nm radii, we do not attribute anomalous dynamics to correlation length becoming 

comparable to the particle size. Plot of the exponent,  vs. Ro/ξ did not show any 

correlation (Figure not shown). In addition for a wide range of particle sizes, linear 

polymer solutions always exhibited normal diffusion (Chapter 4). We will argue, instead, 
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that the anomalous dynamics is due to the presence of branching. Even though the 

branching occurs randomly, on the average there are about 5% branching in dextran
95

. So 

there are approximately 20 residues of glucose unit between consecutive branches. 

Taking the size of a glucose molecule as ~1 nm, on the average the distance between 

branches is about 20 nm. As branching increases the local segmental density, the smaller 

AuNPs (R0=2.5 nm) can penetrate deep inside the chain but not the bigger NPs (R0=10 

nm). The effect of branches is then to create a trap for the smaller nanoparticles. The trap, 

however, is not fixed in time because of the local segmental motion. In some ways, this is 

analogous to glass forming colloidal systems, where the transient caging formed by the 

other particles can trap the tracer particle for a long time. Particle tracking experiments in 

such situations revealed subdiffusion above a certain volume fraction
100

. We can expect a 

similar behavior where the branching can trap the smaller particles and thus give rise to 

anomalous diffusive behavior. The larger sized particles cannot be trapped and feel on the 

average a homogeneous medium. Therefore, weak or no anomalous subdiffusion was 

observed for those (Fig. 6.3.3). Indeed previous experimental work observed that 

trapping of molecules for random periods of times inside dendritic spines can cause 

anomalous diffusion
101

.  Computer modeling predicts a larger degree of subdiffusion in 

spiny dendrites compared to smooth dendrites and the value of anomalous exponent 

correlates with spine density. We note that microrheology experiments have shown that 

coupling of the probe and segmental motion of the chains can also give a mean-square-

displacement (MSD), which follows the power law r
2
(t)~t

¾
 instead of t

1
 as for a freely 

diffusing Brownian particle
91

. This has been observed for particles embedded in 
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semiflexible polymer network such as actin gels
102

. Normal diffusive behavior in system 

with Ludox particles was observed because no caging effect is expected even for the 

maximum volume fraction studied (~0.3), which is much smaller than the glass forming 

volume fraction (g~0.58 for hard spheres).  

6.4 CONCLUSION 

The goal of this study was to investigate the role played by the molecular 

structure of the crowding agent in determining the diffusive behavior of probe particle or 

molecule. We selected dextran molecule which is coil like with randomly distributed 

branches. It can form a fluctuating polymer network with pore size that decreases with 

increasing volume fraction. The other crowding agent was silica spheres with similar size 

of dextran molecules but it should not form a network. We compared the diffusion of 

gold nanoparticles in these two systems. For both cases we observed that diffusion 

coefficient followed a stretched exponential function of concentration and can be 

predicted from Stokes-Einstein relation using the bulk viscosity, which are very different 

than linear polymer. This can be explained by assuming that hydrodynamically dextran 

behave as soft colloid. But the presence of branches in itself reveals important 

differences. The smaller nanoparticles can be transiently trapped within the branch giving 

rise to anomalous subdiffusion at high concentrations. But the bigger NPs do not show 

any such behavior and demonstrate normal diffusive behavior. This implies that 

anomalous behavior is not simply a function of volume fraction of the crowding agent. 

The detailed structure of the molecules needed to be taken into account and each type of 

macromolecule can affect the diffusive behavior in different manner. The results will be 
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important to understand the passive transport processes within complex media such as 

cellular matrix, mucus and in neurons possessing spiny dendrites. 

6.5 SUPPORTING INFORMATION 

Supporting information is available below.  

           

 

Figure 6.5.1. (Left) Diffusion of 10 nm AuNP particles in various volume fractions of 

dextran solutions. (Right) Diffusion of 2.5 nm AuNP particles in various volume 

fractions of Ludox particles. All fittings are with anomalous subdiffusion model. The 

fitting gives ≈1 in all cases.  

 

           

 

 

 

 

 

 

Figure 6.5.2. Viscosity as a function of volume fraction for dextran and Ludox solutions. 

The solid line is a stretched exponential fitting. = s exp(a
b
), where s is the solvent 

(water) viscosity, ‘a’ and ‘b’ are adjustable parameters. For Ludox solution, a=12.7 and 

b=1.2 and for dextran solutions a=20.2 and b=0.9. 
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Table 6.5.1. 

 

Phillies fit: D = D0 exp(-

) 

Dextran 

Particle radius, R0 (nm)   

2.5  8.5±1.3 0.47±0.06 

10  6.9±2.0 0.45±0.11 

 

Ludox 

Particle radius, R0 (nm)   

2.5  10.9±1.3 1.01±0.05 

10  11.2±2.9 1.08±0.12 
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CHAPTER 7 

CONCLUSION AND FUTURE RESEARCH 

The experiments comprising my dissertation have focused on nanoparticle 

dynamics in synthetic and bio-polymer solutions. As mentioned earlier in the thesis, 

understanding the transport properties of nanoparticles in macromolecular solutions is 

significant for several interdisciplinary fields of studies; colloidal physics, biophysics, 

microrheology etc.; as well as relevant for many technological applications. The optical 

measurements of FCS, conducted for these experiments, were performed by myself under 

the supervision of my advisor, Dr. Ashis Mukhopadhyay. Important observations of these 

experiments have been reported in chapters 4 through 6. In this concluding chapter, I will 

summarize the findings of these research projects as well as discuss the future research 

plans. 

Owing to their mesoscopic length scale, soft matter systems are susceptible to 

thermal fluctuations. The dynamics of these systems are driven by Brownian motion, but 

the inherent length scales associated with the diffusing medium can also alter the system 

dynamics significantly. The Stokes-Einstein (SE) relation was developed for dynamics of 

mesoscopic objects in a homogeneous environment of relatively smaller solvent 

molecules. Its applicability becomes complicated in case of concentrated polymer 

solutions where various length scales are involved. We had observed that the Ro = 2.5 nm 

AuNPs diffused two to three orders of magnitude faster than that predicted by SE relation 

in 35 kDa PEG solutions (Rg = 8.6 nm). The ratio D/DSE, in this linear polymer solution, 

showed positive deviation from unity with the deviation getting stronger with an increase 
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in concentration, and with a decrease in the ratio of Ro/Rg. The small sized AuNPs probed 

the nanoviscosity of the polymer solution rather than the overall bulk viscosity. The SE 

relation was observed to recover with particle size approaching the polymer size. It was 

concluded that the radius of gyration of the polymer is the crossover length scale for 

particles experiencing nanoviscosity or macroviscosity. The diffusion data was well fitted 

with the power law dependence on concentration as suggested by the recent scaling 

theory by Cai et al.  

AuNP diffusion in biopolymer bovine serum albumin (BSA) demonstrated that 

BSA adsorbs on the surface of small sized AuNPs. The average change in NP 

hydrodynamic radius measured before and after protein adsorption was approximately 

3.8 nm which corresponded to a BSA monolayer. Multi-layer formation was not observed 

even at significantly higher BSA concentrations. An anticooperative binding model best 

described the protein adsorption. The thickness of the adsorbed layer was independent of 

NP radius ranging from 2.5 - 10 nm. In addition, the NP diffusion was observed to have 

followed Stokes-Einstein prediction provided the thickness of the adsorbed layer was 

accounted for.  

We also compared the diffusion of gold nanoparticles in solutions of randomly 

branched dextran to a solution of silica spheres with size similar to dextran. For both 

these cases, we observed that diffusion coefficient followed a stretched exponential 

function of concentration and followed Stokes-Einstein relation using the bulk viscosity 

irrespective of Ro/Rg values. This behavior was contrary to that of linear polymers . It 

was justified by considering that hydrodynamically dextran behaved as soft colloid. 
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Small sized AuNPs exhibited anomalous subdiffusion at higher concentrations of dextran 

solutions caused by the transient trapping of these NPs within the branches, whereas the 

bigger NPs did not show any such behavior and demonstrate normal diffusive behavior. 

No such behavior was observed in Ludox solutions either. Thus, the molecular structure 

of the crowding agent played a significant role in determining the diffusive behavior of 

probe particle. 

My future goal will be to synthesize anisotropic nanoparticles and investigate 

their dynamics in complex solutions. Anisotropy in a particle can either be naturally 

inherited, like gold nanoparticles or induced by synthesizing Janus particles. These 

particles exhibit two faces in the sense that the properties of the two hemispheres are 

chemically different.
103

 There is no centrosymmetry in the architecture of these particle 

making their synthesis challenging although recently some progress has been made in 

their preparation.
104

 Many demanding problems involving production of dual 

functionalized devices in material science, biomedicine and other fields can be tackled 

with the advanced properties of these particles, thus making study of their dynamics 

significant. Particles will be prepared by half coating non-conducting cores such as silica 

or polystyrene with a metal. The FCS set up will be modified in order to measure 

rotational diffusion. A linear polarizer and a quarter-wave plate will be placed in the path 

of incident light to obtain circularly polarized light. A polarizing beam splitter will be 

used to provide polarized light to each of the photo multiplier tubes. In our experiments, 

we will investigate the dynamics of these anisotropic particles as a function of their size, 

polymer molecular weight, and temperature. 
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APPENDIX A: FCS WORK IN COLABORATION   

The following is the summary of the research publication, that I had co-authored, 

with the focus on my contribution towards the same.
105

 Magnetic oxide nanoparticles 

possess the potential to develop new biomedical applications including magnetic 

hyperthermia, magnetic resonance imaging contrast agents, targeted-drug delivery, 

among others.
106, 107

 Iron oxide nanoparticles exhibit a number of properties; such as 

biocompatibility, superparamagnetic response etc.; which make them attractive for such 

applications.
108, 109

 These magnetic nanoparticles are often required to be coated with 

suitable polymer to prevent agglomeration as well as to provide additional functionality 

to the system.
110

 Dextran coated magnetic nanoparticles have been used in a number of 

clinical trials, and have been shown to circulate for long times with no reported toxicity; 

thus, making them an apt choice for our experiments.
111, 112

 

The effective hydrodynamic diameter of the polymer coated nanoparticles is an 

important parameter in biomedical applications. It is generally determined by measuring 

the diffusion coefficient of the system in solution and using Stokes Einstein relation to 

determine the particle size. For this research project three different techniques, dynamical 

light scattering (DLS), fluorescence correlation spectroscopy (FCS), and magnetic 

susceptibility were particularly employed to determine the size of the dextran coated iron 

oxide nanoparticles. The core size of the Fe3O4 nanoparticles was determined by TEM 

measurements to be 12 ± 2 nm. My contribution was mainly towards the fluorescence 

correlation spectroscopy measurements to determine the size of polymer coated Fe3O4 

NPs.  
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Figure A-1.1: (a) Autocorrelation curves by DLS for 5 kDa dextran coated NPs. (b) AC 

magnetic susceptibility measurements for 60-90 kDa dextran coated NPs. (c) 

Representative ACF for FCS measurements of 15-20 kDa dextran coated NPs Inset 

shows size distribution of NPs with repeated FCS measurements (Regmi 2011). 

 

Fluorescence correlation spectroscopy measurements were conducted for iron 

oxide nanoparticles coated with 15-20 kDa dextran attached to the dye, FITC, with a 

solution volume fraction of .004%. A number of autocorrelations functions (ACF) were 
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collected. Figure A-1.1(c) shows a representative ACF collected by FCS and plotted 

versus logarithmic time lag. The ACF were fitted with the following model 
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2

0

2

0 z

DD

G
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
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

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                                                A-1.1 

where G(0) is the magnitude of the autocorrelation function at short time ( = 0), 

ωo is the half-width in the lateral direction, and zo is the half-height in the axial direction 

of the laser focus. By performing a calibration experiment with dye molecule rhodamine 

6G, we determined that ωo0.45 m and zo2 m. The diffusion coefficient as obtained 

from the fit was D = 7.7 µm
2
/s. Applying generalized Stokes-Einstein relation, the size of 

the dextran coated nanoparticles was estimated to be 57 nm. A statistical distribution of 

the nanoparticle size, shown as a histogram in the inset of figure A-1.1(c), was 

determined by repeating the FCS measurements on a number of different nanoparticles. 

The hydrodynamic diameter corresponding to a majority of the sample nanoparticles was 

estimated to lie in the range 55 ± 5 nm although the distribution obtained was not 

Gaussian.  

The results of FCS measurements were inconsistent with the size measurements 

obtained from the other techniques used, DLS and magnetic susceptibility as a function 

of frequency.
105

 The particle size, as determined by DLS, varied from 91 nm for 

nanoparticles coated with 5 kDa dextran to 132 nm for 670 kDa dextran. The magnetic 

susceptibility measurements reported the size to range from 105 nm for 5 kDa dextran to 

136 nm for 670 kDa sample.  
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The physically expected value for the diameter of the surfaced nanoparticles was 

estimated by assuming that the maximum size would correspond to that of the core 

diameter plus twice the length of stretched dextran chain. The chain length of 20 kDa 

dextan was obtained from the literature to be 22 nm. The average core diameter 

determined by analyzing TEM data was 12 nm, resulting in an estimated maximum 

coated particle size of 56 nm. Thus, compared to other techniques, there was better 

agreement between FCS measurements  and the expected hydrodynamic diameter. 

It was argued that FCS studies on properly prepared samples provided a relatively 

accurate size estimate compared to other measurement techniques which overestimated 

the size by a factor of two. 
105
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APPENDIX B: CURRENT WORK 

FCS experiments were performed to investigate temperature dependence of 

translational diffusion of gold nanoparticles in linear polymer solutions. First the 

diffusion of these gold nanoparticles in pure water was observed as a function of 

temperature. Following this, temperature scan of AuNP diffusion in one particular 

concentration of polymer solution was conducted. Similar experiments were performed 

for different concentrations (wt%) of polymer solutions as well as for different sized gold 

nanoparticles. Poly(ethylene glycol) of Mw 5 kDa and AuNPs of radius 2.5 and 10 nm 

were used. 

Since the diffusion was thermally activated, we calculated the corresponding 

activation energy, Eact, using       

                                                 D = Do exp (-Eact/kBT)                                                 B-1.1 

Figure B-1.1 (a), (b) and (c) shows temperature dependence of particle diffusion 

coefficient. The corresponding activation energy can be calculated from the slope of ln D 

vs 1/T curve, as represented in figure B-1.1(d).  

In the limited temperature range of our experiments, the ln D vs 1/T (k
-1

), was 

well fitted with a straight line. The estimated Eact values for all experiments ranged from 

0.1 to 0.6 eV/ molecule. For comparison we had also estimated the Eact for a dye molecule 

R6G which was approximately 0.04 eV/molecule. The Eact of dye molecule being smaller 

than that of AuNP implies that the energy barrier that the dye molecule should overcome 

to carry out a diffusion step is lower than that for AuNP. This can be attributed to the dye  



106 
 

 

 a                                                                    b 

                                                                      

 

 

 

c                                                                        d 

3.1x10
-3

3.2x10
-3

3.3x10
-3

3.4x10
-3

4.6

4.7

4.8

4.9

 

 
ln

 (
D

)

1/T (K
-1
)

 

 

Figure B-1.1: Translational diffusion coefficient D (µm
2
/s) vs Temperature (K) for (a) 2.5 

nm radius AuNPs in PEG 5 kDa, (b) 10 nm radius AuNps in PEG 5 kDa (c) Rhodamine6G 

in water. The legend in graph a and b represent wt% of PEG in solvent. (d) Semi log plot of 

translational diffusion D vs 1/T (K
-1

) for AuNP 2.5 nm in water. Solid line is the Arrhenius 

fit to obtain activation energy. 

 

molecule being smaller in size than the AuNPs. The results obtained so far look 

interesting although a detailed analysis of this experimental data is yet to be done. 

290 295 300 305 310 315 320 325

1

10

100

 

 

 0%

 10%

 20%

 40%

D
 (


m
2
/s

)

T (k)

290 295 300 305 310 315 320 325

1

10

 0%

 10%

 20%

 40%

 

 

D
 (


m
2
/s

)

T (k)

295 300 305 310 315 320 325

280

290

300

310

320

330

 

 

D
 (


m
2
s
)

T (k)



107 
 

 

REFERENCES 

1. R. A. L. Jones, Oxford University Press (2002). 

2. I. W. Hamley, Wiley (2007). 

3. M. Rubinstein and R. H. Colby, Polymer Physics. (Oxford University Press, New 

York, 2003). 

4. S. Gupta, Q. L. Zhang, T. Emrick, A. C. Balazs and T. P. Russell, Nature Mater. 

5, 229-233 (2006). 

5. P. K. Jain, I. H. El-Sayed and M. A. El-Sayed, Nano Today 2 (1), 18-29 (2007). 

6. Y. Cu and W. M. Saltzman, Nat. Mater. 8, 11-13 (2009). 

7. M. J. Solomon and Q. Lu, Curr. Opin. Colloid Interface Sci. 6, 430-437 (2001). 

8. P.-G. de Gennes, Scaling Concepts in Polymer Physics. (Cornell University Press, 

Ithaca, NY, 1979). 

9. J. Liu, D. Cao and L. Zhang, J. Phys. Chem. C 112, 6653-6661 (2008). 

10. V. Ganesan, V. Pryamitsyn, M. Surve and B. Narayanan, J. Chem. Phys. 124, 

221102 (2006). 

11. L. H. Cai, S. Panyukov and M. Rubinstein, Macromolecules 44 (19), 7853-7863 

(2011). 

12. R. I. Cukier, Macromolecules 17, 252-255 (1984). 

13. M. Kruger and M. Rauscher, J. Chem. Phys. 131, 094902-094909 (2009). 

14. G. D. J. Phillies, G. S. Ullmann, K. Ullmann and T. H. Lin, J. Chem. Phys. 82, 

5242-5246 (1985). 

15. T. Odijk, Biophys. J. 79, 2314-2321 (2000). 



108 
 

 

16. T. H. Fan, J. K. G. Dhont and R. Tuinier, Phys Rev E 75 (1) (2007). 

17. R. Tuinier and T. H. Fan, Soft Matter 4 (2), 254-257 (2008). 

18. A. G. Ogston, Trans. Faraday Soc. 54, 1754-1757 (1958). 

19. A. G. Ogston, B. N. Preston, J. M. Snowden and J. D. Wells, Proc. R. Soc. 

London, A 333, 297-316 (1973). 

20. A. R. Altenberger and M. Tirrell, J. Chem. Phys. 80, 2208-2213 (1984). 

21. L. Johansson, C. Elvingson and J. E. Lofroth, Macromolecules 24, 6024-6029 

(1991). 

22. B. Amsden, Macromolecules 32, 874-879 (1999). 

23. F. Brochard Wyart and P. G. de Gennes, Eur. Phys. J. E 1, 93-97 (2000). 

24. G. D. J. Phillies, Macromolecules 20, 558-564 (1987). 

25. G. D. J. Phillies and D. Clomenil, Macromolecules 26 (1), 167-170 (1993). 

26. K. Kremer and G. S. Grest, J. Chem. Phys. 92, 5057 (1990). 

27. M. Kroger, W. Loose and S. Hess, J. Rheol. 37, 1057. 

28. D. Langevin and F. Rondelez, Polymer 19 (8), 875-882 (1978). 

29. J. Won, C. Onyenemezu, W. G. Miller and T. P. Lodge, Macromolecules 27 (25), 

7389-7396 (1994). 

30. X. Ye, P. Tong and L. J. Fetters, Macromolecules 31 (17), 5785-5793 (1998). 

31. A. Michelman-Ribeiro, F. Horkay, R. Nossal and H. Boukari, Biomacromolecules 

8 (5), 1595-1600 (2007). 



109 
 

 

32. R. Holyst, A. Bielejewska, J. Szymanski, A. Wilk, A. Patkowski, J. Gapinski, A. 

Zywocinski, T. Kalwarczyk, E. Kalwarczyk, M. Tabaka, N. Ziebacz and S. A. 

Wieczorek, Phys Chem Chem Phys 11 (40), 9025-9032 (2009). 

33. Y. Cheng, R. K. Prud'homme and J. L. Thomas, Macromolecules 35 (21), 8111-

8121 (2002). 

34. T. H. Lin and G. D. J. Phillies, J Phys Chem-Us 86 (20), 4073-4077 (1982). 

35. P. Tong, X. Ye, B. J. Ackerson and L. J. Fetters, Phys Rev Lett 79 (12), 2363-

2366 (1997). 

36. K. Vangala, F. Ameer, G. Salomon, V. Le, E. Lewis, L. Yu, D. Liu and D. Zhang, 

J. Phys. Chem. C 116 (5), 3645-3652 (2012). 

37. E. Casals and V. F. Puntes, Nanomedicine 7 (12), 1917-1930 (2012). 

38. C. Rocker, M. Potzl, F. Zhang, W. J. Parak and G. U. Nienhaus, Nature 

nanotechnology 4 (9), 577-580 (2009). 

39. X. M. He and D. C. Carter, Nature 358 (6383), 209-215 (1992). 

40. S. H. Brewer, W. R. Glomm, M. C. Johnson, M. K. Knag and S. Franzen, 

Langmuir 21, 9303-9307 (2005). 

41. S. Dominguez-Medina, S. McDonough, P. Swanglap, C. F. Landes and S. Link, 

Langmuir 28 (24), 9131-9139 (2012). 

42. D. H. Tsai, F. W. Delrio, A. M. Keene, K. M. Tyner, R. I. Maccuspie, T. J. Cho, 

M. R. Zachariah and V. A. Hackley, Langmuir (2011). 

43. R. Rigler and E. S. Elson, Springer (2001). 

44. D. E. Madge, E. L. Elson and W. W. Webb, Phys. Rev. Lett. 29, 705-708 (1972). 



110 
 

 

45. O. Krichevsky and G. Bonnet, Rep. Prog. Phys. 65, 251–297 (2002). 

46. H.-X. Zhou, G. Rivas and A. P. Minton, Annu. Rev. Biophysics. 37, 375-397 

(2008). 

47. K. M. Berland, P. T. C. So and E. Gratton, Biophys. J. 68, 694-701 (1995). 

48. P. Schwille and E. Haustein,  (2002). 

49. H. E. and S. P., Annu. Rev. Biophys. Biomol. Struct. 36, 151-169 (2007). 

50. G. J. Brakenhoff, M. Muller and R. I. Ghauharali, Journal of Microscopy. 183, 

140-144 (1996). 

51. P. T. C. So, T. French, W. M. Yu, K. M. Berland, C. Y. Dong and E. Gratton, 

Chemical Analysis Series 137, 351-374 (1996). 

52. I. Kohli and A. Mukhopadhyay, Macromolecules 45 (15), 6143-6149 (2012). 

53. W. B. Russel, D. A. Saville and W. R. Schowalter, Colloidal Dispersions. 

(Cambridge University Press, Cambridge, U. K., 1989). 

54. J. Liu, L. Zhang, D. Cao and W. Wang, Physical chemistry chemical physics : 

PCCP 11 (48), 11365-11384 (2009). 

55. L. Masaro and X. X. Zhu, Prog Polym Sci 24 (5), 731-775 (1999). 

56. R. Omari, A. Aneese, C. Grabowski and A. Mukhopadhyay, J. Phys. Chem. B 

113, 8448-8451 (2009). 

57. G. H. Koenderink, S. Sacanna, D. G. A. L. Aarts and A. P. Philipse, Phys. Rev. E 

69, 021804 (2004). 

58. G. S. Ullmann, K. Ullmann, R. M. Lindner and G. D. J. Phillies, J Phys Chem-Us 

89 (4), 692-700 (1985). 



111 
 

 

59. N. Ziebacz, S. A. Wieczorek, T. Kalwarczyk, M. Fiakowski and R. Holyst, Soft 

Matter 7 (16), 7181-7186 (2011). 

60. L.-H. Cai, S. Panyukov and M. Rubinstein, Macromolecules 44, 7853–7863 

(2011). 

61. S. A. Egorov, J Chem Phys 134 (8) (2011). 

62. C. N. Onyenemezu, D. Gold, M. Roman and W. G. Miller, Macromolecules 26 

(15), 3833-3837 (1993). 

63. C. Grabowski and A. Mukhopadhyay, Appl. Phys. Lett. 94, 021903 (2009). 

64. K. Devanand and J. C. Selser, Macromolecules 24, 5943-5947 (1991). 

65. A. Ochab-Marcinek and R. Holyst, Soft Matter 7 (16), 7366-7374 (2011). 

66. W. W. Graessley, Adv. Polym. Sci. 47, 67-117 (1982). 

67. V. Pryamitsyn and V. Ganesan, Phys Rev Lett 100 (12) (2008). 

68. I. Kohli, S. Alam, B. Patel and A. Mukhopadhyay, Appl. Phys. Lett. 102, 203705 

(2013). 

69. N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov and A. Ben-Yakar, 

Nano Letters 7 (4), 941-945 (2007). 

70. X. Shi, D. Li, J. Xie, S. Wang, Z. Wu and H. Chen, Chin. Sci. Bull. 57 (10), 1109-

1115 (2012). 

71. M. A. Dobrovolskaia, A. K. Patri, J. Zheng, J. D. Clogston, N. Ayub, P. 

Aggarwal, B. W. Neun, J. B. Hall and S. E. McNeil, Nanomedicine : nanotechnology, 

biology, and medicine 5 (2), 106-117 (2009). 



112 
 

 

72. P. Aggarwal, J. B. Hall, C. B. McLeland, M. A. Dobrovolskaia and S. E. McNeil, 

Advanced Drug Delivery Reviews 61 (6), 428-437 (2009). 

73. J. B. Hall, M. A. Dobrovolskaia, A. K. Patri and S. E. McNeil, Nanomedicine 2 

(6), 789-803 (2007). 

74. M. Lundqvist, J. Stigler, G. Elia, I. Lynch, T. Cedervall and K. A. Dawson, Proc 

Natl Acad Sci U S A 105 (38), 14265-14270 (2008). 

75. S. Chakraborty, P. Joshi, V. Shanker, Z. A. Ansari, S. P. Singh and P. 

Chakrabarti, Langmuir 27 (12), 7722-7731 (2011). 

76. C. A. Grabowski, B. Adhikary and A. Mukhopadhyay, Applied Physics Letters 94 

(2) (2009). 

77. R. A. Farrer, F. L. Butterfield, V. W. Chen and J. T. Fourkas, Nano Letters 5 (6), 

1139-1142 (2005). 

78. G. J. Brownsey, T. R. Noel, R. Parker and S. G. Ring, Biophysical journal 85 (6), 

3943-3950 (2003). 

79. G. D. J. Phillies, Macromolecules 20, 558-564 (1987). 

80. R. Holyst, A. Bielejewska, J. Szymanski, A. Wilk, A. Patkowski, J. Gapinski, A. 

Zywocinski, T. Kalwarczyk, E. Kalwarczyk, M. Tabaka, N. Ziebacz and S. A. 

Wieczorek, Physical Chemistry Chemical Physics 11 (40), 9025-9032 (2009). 

81. E. Casals, T. Pfaller, A. Duschl, G. J. Oostingh and V. Puntes, ACS nano 4 (7), 

3623-3632 (2010). 

82. S. H. Brewer, W. R. Glomm, M. C. Johnson, M. K. Knag and S. Franzen, 

Langmuir 21 (20), 9303-9307 (2005). 



113 
 

 

83. K. Luby-Phelps, Int. Rev. Cytol. 192, 189-221 (2000). 

84. N. Kozer , Y. Y. Kuttner, G. Haran and G. Schreiber, Biophys. J. 92, 2139-2149 

(2007). 

85. R. Macnab, Science 290, 2086-2087 (2000). 

86. H. Berry, Biophys. J. 83, 1891-1901 (2002). 

87. F. Crick, Nature 225, 420-422 (1970). 

88. K. Sasahara, P. McPhie and A. P. Minton, J. Mol. Biol. 326, 1227-1237 (2003). 

89. S. P. Zustiak, R. Nossal and D. L. Sackett, Biophysical journal 101 (1), 255-264 

(2011). 

90. I. Pastor, E. Vilaseca, S. Madurga, J. L. Garces, M. Cascante and F. Mas, The 

journal of physical chemistry. B 115 (5), 1115-1121 (2011). 

91. D. S. Banks and C. Fradin, Biophysical journal 89 (5), 2960-2971 (2005). 

92. A. B. Goins, H. Sanabria and M. N. Waxham, Biophysical journal 95 (11), 5362-

5373 (2008). 

93. M. Weiss, M. Elsner, F. Kartberg and T. Nilsson, Biophysical journal 87 (5), 

3518-3524 (2004). 

94. J. Smit, J. A. P. P. van Dijk, M. G. Mennen and M. Daoud, Macromolecules 25, 

3585-3590 (1992). 

95. E. Nordmeier, J. Phys. Chem. 97, 5770-5785 (1993). 

96. E. Antoniou and M. Tsianou, Journal of Applied Polymer Science 125 (3), 1681-

1692 (2012). 

97. M. D. Ediger, Annu. Rev. Phys. Chem. 51, 99-128 (2000). 



114 
 

 

98. T. G. Fox and S. LOSHAEK, Journal of polymer science 15 (80), 371-390 

(1955). 

99. D. Z. Icoz, C. I. Moraru and J. L. Kokini, Carbohyd. Polym. 2, 120-129 (2005). 

100. E. R. Weeks and D. A. Weitz, Phys. Rev. Lett. 89, 095704 (2002). 

101. F. Santamaria, S. Wils, E. De Schutter and G. J. Augustine, The European journal 

of neuroscience 34 (4), 561-568 (2011). 

102. F. Amblard, A. C. Maggs, B. Yurke, A. N. Pargellis and S. Leibler, Phys. Rev. 

Lett. 77, 4470-4473 (1996). 

103. A. Perro, S. Reculusa, S. Ravaine, E. Bourgeat-Lami and E. Duguet, J. of Mat. 

chem. 15, 3745 (2005). 

104. A. Walther and A. H. E. Muller, Soft Matter 4, 663 (2008). 

105. R. Regmi, V. Gumber, v. Subba Rao, I. Kohli, C. Black, C. Sudakar, P. 

Vaishnava, V. Naik, R. Naik, A. Mukhopadhyay and G. Lawes, J. nanopart. Res. 13, 

6869 (2011). 

106. Q. A. Pankhurst, J. Connolly, S. K. Jones and J. Dobson, J. Phys. D: Appl. Phys. 

36, R167 (2003). 

107. P. Tartaj, M. D. P. Morales, S. Veintemillas-Verdaguer, T. Gonzalez-Carreno and 

C. J. Serna, J. Phys. D: Appl. Phys. 36, R182 (2003). 

108. C. Wilhelm, C. Bilotey, J. Roger, J. N. Pons, J.-C. Bacri and F. Gazeau, 

Biomaterials 24, 1001 (2003). 

109. C. C. Berry, S. Wells, S. Charles, G. Aitichison and C. A.S.G., Biomaterials 25, 

5405 (2004). 



115 
 

 

110. A. Villanueva, M. Canete, A. G. Roca, M. Calero, S. Veintemillas-Vergaguer, C. 

J. Serna, M. P. Morales and R. Miranda, Nanotechnology 20, 115103 (2009). 

111. Y. Anzai, K. E. Blackwell, S. L. Hirschowitz, J. W. Rogers, Y. Sato, W. T. Yuh , 

V. M. Runge, M. R. Morris, S. J. McLachlan and R. B. Lufkin, Radiaology 192, 709 

(1994). 

112. A. Moore, E. Marecos, A. Bogdanov and R. Weissleder, Radiology 214, 568 

(2000). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



116 
 

 

ABSTRACT 
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Soft matter systems of colloidal particles, polymers, amphiphiles and liquid 

crystals are ubiquitous in our everyday life. Food, plastics, soap and even human body is 

comprised of soft materials. Research conducted to understand the behavior of these soft 

matter systems at molecular level is essential for many interdisciplinary fields of study as 

well as important for many technological applications. 

We used gold nanoparticles (Au NPs) to investigate the length-scale dependent 

dynamics in semidilute poly(ethylene glycol) (PEG)-water, bovine serum albumin 

(BSA)-phosphate buffer, dextran and particulate solutions. In case of PEG-water 

solutions, fluctuation correlation spectroscopy was used to measure the diffusion 

coefficients (D) of the NPs as a function of their radius, Ro (2.5-10 nm), PEG volume 

fraction,  (0-0.37) and molecular weight, Mw (5 kg/mol and 35 kg/mol). Our results 
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indicate that the radius of gyration, Rg of the polymer chain is the crossover length scale 

for the NPs experiencing nanoviscosity or macroviscosity.  

In BSA-phosphate buffer solutions, we observed a monolayer formation at the NP 

surface with a thickness of 3.8 nm. The thickness of the adsorbed layer was independent 

of NP size. Best fit was obtained by the anticooperative binding model with the Hill 

coefficient of n = 0.63. Dissociation constant (KD) increased with particle size indicating 

stronger interaction of BSA with smaller sized NPs. 

We also contrasted the diffusion of gold nanoparticles (AuNPs) in crowded 

solutions of randomly branched polymer (dextran) and rigid, spherical particles (silica) to 

understand the roles played by the probe size and structure of the crowding agent in 

determining the probe diffusion. AuNPs of two different sizes (2.5 nm & 10 nm), dextran 

of molecular weight 70 kDa and silica particles of radius 10 nm were used. Our results 

indicated that the AuNP diffusion can be described using the bulk viscosity of the matrix 

and hydrodynamically dextran behaved similar to soft colloid. In all situations, we 

observed normal diffusion except for 2.5 nm sized AuNP particles in dextran solution at 

higher volume fraction. This was caused by transient trapping of particles within the 

random branches. The results showed the importance of macromolecular architecture in 

determining the transport properties in intracellular matrix and in cells with spiny 

dendrites. 
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