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1 Introduction

1.1 Introduction to DG method

The Discontinuous Galerkin (DG) method has attracted much attention in the recent years.

It was originally developed in [55] for the steady-state neutron transport equation

σu+∇ · (au) = f,

where σ is a real constant, a(x) is piecewise constant. DG methods approximate the solution

to partial differential equations in finite dimensional spaces spanned by piecewise polynomial

base functions. Approximation polynomial spaces are defined without continuity crossing

inter-element interfaces, which is different from the way used in traditional conforming and

nonconforming finite element methods.

DG methods have been applied to a variety of problems. We refer to [64, 65, 66, 67, 68,

69, 70, 71], for hyperbolic− [72, 75, 76] for parabolic− and [77, 80, 81, 82, 83, 84, 85, 87, 88]

for elliptic−partial differential equations. For a fairly thorough compilation of the history of

these methods and their applications see [89].

DG methods have several attractive features. They are high order accurate, highly par-

allelizable (owing to the discontinuous nature of the approximation), very well suited to

handling complicated geometries, and in most cases they enjoy an easier treatment, as com-

pared to the conforming finite element methods, of the boundary conditions. Another key

advantage of these methods is their compatibility with the adaptivity strategies. This is

mainly due to the lack of continuity requirement among different elements which renders

the coding of these methods considerably easier for irregular meshes with hanging nodes
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as compared to the continuous version of the finite element methods. Moreover, the degree

of approximation can easily be changed from one element to another. Therefore, the DG

methods are very well suited for hp-adaptivity.

1.2 Introduction to Naghdi Arches

For a generally curved thin elastic arch, the Naghdi type arch model determines the trans-

verse deflection w, the normal fiber rotation θ, and the membrane displacement u, all being

single variable functions of the arc-length parameter x of the middle curve, by minimizing

the functional

1

2

ˆ 1

0

[(θ′ + κ[u′ − κw])2 + d−2(u′ − κw)2 + d−2(θ + w′ + κu)2]dx

+

ˆ 1

0

(pu+ qw)dx

(1.1)

in a subspace determined by suitable boundary conditions of [H1(0, 1)]3. Here H1(0, 1) is

the L2-based first order Sobolev space. For the simplicity of our notation we have assumed

that the model is non-dimensionalized in a way that all the material properties including the

Young’s modulus, shear modulus, moment of inertia, and the length of the arch are scaled

to be equal to one. All the results in this paper can be easily generalized to the case in which

they are non-constant functions. The small parameter d > 0 represents the dimensionless

thickness of the arch. The function κ is x-dependent, and κ(x) is the curvature of the middle

curve of the arch at the point of coordinate x. The three terms in the first integral respectively

represents bending, membrane, and shear effect. When κ is constantly valued, the arch is

circular. A straight beam could be viewed as a special arch with κ ≡ 0, in which case (1.1)

decouples to the Timoshenko beam bending model, governing θ and w, and a membrane
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model governing u. The functions p and q are the tangential and transverse resultant loads,

respectively. Similarly, a displacement vector of a point of the middle curve is decomposed

to its tangent component u and normal component w. In Figure 1 we display some of the

characteristics of a typical arch. The parametrization is indicated by the mapping that maps

2 F. CELIKER, L. FAN, S. ZHANG, AND Z. ZHANG

typical arch. The parametrization is indicated by the mapping that maps P ∈ [0, 1]

HOW TO INCLUDE THE FIGURE IN LATEX

February 17, 2010

You need to use the figure environment and the input command to include the pstex t

file. The pstex file and pstex t file must in the same directory. It is unfortunate that you

can not do pdflatex to produce pdf directly. You can produce ps file, and then convert it to

pdf.

1
x

0

q

p

2d

P

P ′

Figure 1. Cross section of a two-end clamped arch and arc length parame-

terization of its middle curve

You could cide the figure by Figure 1. Note that the label is in the caption.

The parameterization is indicated by the mapping that maps P ∈ [0, 1] to P ′ on the middle

curve. The x coordinate of P is equal to the arc length of the portion of the middle curve

from its left end to P ′. A resultant force vector is decomposed to its tangent component p

and normal component q. Similarly, a displacement vector of a point of the middle curve is

decomposed to its tangent component u and normal component w.

Notes by Sheng Zhang.
1

Figure 1. Cross section of an arch clamped at both ends, and arc
length parametrization of its middle curve.

to P ′ on the middle curve. The x coordinate of P is equal to the arc length of the
portion of the middle curve from its left end to P ′.

For a parameter-dependent model like this, there is the well-known locking issue
that indicates the difficulty of accurate computation of the model for small param-
eter. This problem has been extensively analyzed in the literature, see [9, 10, 31].
Examples of this kind include circular arches [33, 34, 35], the simpler Timoshenko
beam bending model [1, 13, 14, 15, 18, 26], and the Reissner–Mindlin plate bending
model [3, 4, 5, 6, 7, 8, 11, 19, 21, 22, 23, 25, 27, 28, 29, 36, 37] that does not have
the membrane term. This model has as many terms as the Naghdi shell model.
In this paper, we present a DG method for the arch model. It is a extension of
the methods for the Timoshenko beam analyzed in [13] and [18]. This is an effort
towards the eventual resolution of more challenging shell problems.

Although (1.1) can be used as a starting point to devise DG methods, for the
class of the methods we will consider in this paper, it is more convenient to rewrite
it in an equivalent strong form. This does not mean, however, that the variational
form (1.1) has lost its significance. Indeed, our proof of existence and uniqueness of
the DG approximation as well as its error analysis rely on energy arguments inspired
by the fact that the DG solution is an approximation to a minimizer of the quadratic
functional (1.1). By introducing the scaled membrane stress N = d−2(u′ − �w),
the scaled transverse shear stress T = d−2(� + w′ + �u), and the bending moment
M = �′ + �(u′ − �w), the Naghdi arch model can be written as a system of first

Figure 1: Cross section of an arch clamped at both ends, and arc length parametrization of

its middle curve.

P ∈ [0, 1] to P ′ on the middle curve. The x coordinate of P is equal to the arc length of the

portion of the middle curve from its left end to P ′.

For a parameter-dependent model like this, there is the well-known locking issue that

indicates the difficulty of accurate computation of the model for small parameter. This

problem has been extensively analyzed in the literature, see [11, 12, 35]. Examples of this

kind include circular arches [37, 38, 39], the simpler Timoshenko beam bending model [1,

15, 16, 17, 20, 30], and the Reissner–Mindlin plate bending model [3, 4, 6, 8, 9, 10, 13, 21,

25, 26, 27, 29, 31, 32, 33, 40, 41] that does not have the membrane term. This model has as

many terms as the Naghdi shell model. In this thesis, we present a DG method for the arch

model. It is a extension of the methods for the Timoshenko beam analyzed in [15] and [20].
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This is an effort towards the eventual resolution of more challenging shell problems.

Although (1.1) can be used as a starting point to devise DG methods, for the class

of the methods we will consider in this thesis, it is more convenient to rewrite it in an

equivalent strong form. This does not mean, however, that the variational form (1.1) has lost

its significance. Indeed, our proof of existence and uniqueness of the DG approximation as

well as its error analysis rely on energy arguments inspired by the fact that the DG solution is

an approximation to a minimizer of the quadratic functional (1.1). By introducing the scaled

membrane stress N = d−2(u′−κw), the scaled transverse shear stress T = d−2(θ+w′+κu),

and the bending moment M = θ′ + κ(u′ − κw), the Naghdi arch model can be written as a

system of first order ordinary differential equations:

w′ + θ + κu = d2T, (1.2a)

u′ − κw = d2N, (1.2b)

θ′ + κ(u′ − κw) = M, (1.2c)

M ′ = T, (1.2d)

N ′ + (κM)′ − κT = p, (1.2e)

T ′ + κ2M + κN = q, (1.2f)

defined on Ω := (0, 1). This is a starting point from which one could derive DG methods.

In this thesis, we shall derive the DG and HDG methods based on a simplified model that

has, as approximations to the elasticity theory, the same accuracy as the Naghdi model.

It is proved that if one simplifies the model (1.1) by removing the membrane related term

κ[u′−κw] from the bending moment M , the model solution will only be changed negligibly.

In particular, the solution θ, u, w will deviate in the H1 norm by O(d2), and so are the



5

M , N and T in the L2 norm. For a detailed explanation of this we refer to [36]. The model

thus simplified is often called the mini-model. Consequently, the term (κM)′ in (1.2e) and

the term κ2N in (1.2f) can also be neglected without significantly affecting the accuracy of

the model. For the sake of brevity and clarity of the presentation and to avoid unnecessary

technicalities, we will embrace these simplifications and henceforth work with the following

governing equations

w′ + θ + κu = d2T, (1.3a)

u′ − κw = d2N, (1.3b)

θ′ = M, (1.3c)

M ′ = T, (1.3d)

N ′ − κT = p, (1.3e)

T ′ + κN = q. (1.3f)

We note, however, that all of the results presented in this paper will remain valid if one

chooses to design analogous DG methods based on the original model given by (1.2). To

complete the model and ensure the existence and uniqueness of its solution we must im-

pose suitable boundary conditions; we take, for example, the following clamped boundary

conditions:

w(0) = w0, u(0) = u0, θ(0) = θ0,

w(1) = w1, u(1) = u1, θ(1) = θ1.

(1.4)

As will be evident from our analysis, the introduction of the variable curvature function

κ and the additional unknowns u and N render the analysis of the numerical methods more

challenging. For example, the well posedness of the DG methods requires special conditions
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which was not the case for their counterparts for the Timoshenko beam problem. Further-

more, although the error analysis technique is mainly based on the analysis carried out in

[20] and [15], the careful reader will notice that there are certain technicalities which do not

carry over in a straightforward fashion. Roughly speaking, the main difficulties are caused

by the variable nature of the curvature, and the coupling between the transversal (w and T )

and tangential (u and N) unknowns. These observations are in agreement with the practical

experience that shell structures exhibit more complicated behavior then those of plates.

Finally, we note that although classical continuous Galerkin methods have been developed

and analyzed for arch models, it has been shown that [39] in their primal form they suffer

from shear and membrane locking. Moreover, to the best of our knowledge, all of the existing

methods are limited to circular arches in which case the curvature κ is identical to a constant.

It has been shown that [39] the so-called reduced integration technique which is equivalent

to certain mixed methods resolves locking. However, the DG framework we introduce and

study in this paper offers a more systematic approach and hence is a promising candidate

for more challenging problems such as plates and shells. Various advantages of DG methods

over other existing methods have been discussed in [2].

The main motivation for considering this simple, one-dimensional model is that it consti-

tutes a stepping stone towards the more challenging goal of devising DG methods for shells.

The construction of numerical methods for shells is delicate because, as the thickness of the

shell decreases to zero, the numerical method can exhibit what is called in the engineering

literature as shear and membrane locking. Mathematically, this is reflected in the deterio-

ration of the convergence properties of the method as the thickness becomes small. Since

some numerical methods for the Naghdi arch model exhibit (shear) locking (as the thickness
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of the arch goes to zero), it is instructive to devise locking-free DG methods for this model

before considering shells.

Considerable amount of effort has been devoted to the understanding and resolution of

shear and membrane locking in structures. Considering the nature of the problem, it is under-

standable that such effort originated in engineering applications, and was first documented

in the engineering literature. The seminal publication in the area, coauthored by Zienkiewicz,

Taylor and Too [90], documents the difficulty related to shear effects and uses reduced inte-

gration technique to mitigate the problem. The physical understanding of the problem was

here critical to devise a remedy, and the resulting technique (reduced integration) is to this

day widely used in various commercial software. The term shear locking appears to be coined

by Hughes, Taylor and Kanoknukulchai [29] in the context of plate analysis

In parallel with developments related to shear locking, researchers struggled with similar

difficulties caused by membrane effects, manifesting themselves in curved structures, such as

arches and shells, for example Ashwell and Sabir [73], Lee and Pian [74], Parish [62]. A more

thorough explanation of those effects was provided by Belytschko and Stolarski [5], who also

introduced the term membrane locking. They subsequently showed that in some models of

curved structures there is a delicate interaction between shear and membrane effects, [23].

Over the last two decades or so, there has been a flurry of research activities dealing with

shear and membrane locking, and a large number of publications have appeared. Several

variations of the known approaches and a number of new ones were developed and described

in literature within that time. While related to this work, those approaches address the

problem of locking somewhat differently than what we describe here; the interested reader

is therefore referred to [78] for a review of many of them. For a locking-free finite element
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method for shells we refer to Arnold and Brezzi [7], and for a family of locking-free DG

methods for the Reissner-Mindlin plates we refer to Arnold, Brezzi and Marini [4].

While deeply rooted in physical attributes of the analyzed phenomena, locking is essen-

tially a mathematical problem and its challenge was undertaken by mathematicians early on.

Arnold [1] proved that shear-locking continuous finite element methods can become locking-

free if they are modified by the so-called reduced integration technique. In [30], Li analyzed

the p- and hp-versions of the continuous finite element method and proved error estimates

independent of the thickness of the beam. These versions of the method take advantage of

the extra degrees of freedom gained by increasing the polynomial degree of the approxima-

tion. In [37], [38], and [39], Zhang considers circular arch problems. Here shear-locking (and

also membrane locking) is again an issue when the arch is thin. Indeed, if the primal form

of the method is used where the only unknowns are the displacement and the rotation, both

p- and hp- versions exhibit locking. On the other hand, if the shear force is introduced as an

additional unknown, along with the membrane forces, and a mixed formulation is employed

then both versions can be made free from locking. Following an approach similar to that of

Arnold’s, Zhang [37, 38, 39] was able to prove error estimates independent of the thickness

of the arch.

In [42], the DG methods for the Naghdi arch were introduced and sufficient conditions

that ensure the existence and uniqueness of their approximate solutions were proved. More-

over, preliminary numerical experiments were obtained which indicated that, when polyno-

mials of degree p are used, that the optimal order of convergence of p + 1 is achieved for

the h-version; exponential convergence for the p-version of a DG method was also obtained

numerically. Later, in [42], the fact that all the numerical traces of the h-version of the DG
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method superconverge with order 2 p+1 was uncovered and a local post-processing resulting

in a uniformly accurate solution of order 2 p+ 1 was devised and numerically tested. These

results held uniformly with respect to the thickness of the arch. In this thesis, we put all the

above mentioned numerical results on a firm mathematical ground.
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2 Locking-free Optimal DG Method for Arches

2.1 The DG Methods for Naghdi Arches

In this section, we introduce the general form of the DG methods. We then provide conditions

under which the method is well defined.

2.1.1 The weak formulation for the continuous case

To display the weak formulation we use to define the DG methods, we need to introduce some

notation. We begin by partitioning the computational domain into intervals. Given the set

of nodes Eh := {xj}Nj=0, where 0 = x0 < x1 < · · · < xN−1 < xN = 1, we set Ij := (xj−1, xj),

hj := xj − xj−1 and h := max1≤j≤N. We also set Ωh := ∪Nj=1Ij. Then, we write

(f, g)Ωh :=
N∑
j=1

ˆ
Ij

fg and 〈R, [[f ]]〉Eh :=
N∑
j=0

R(xj)[[f ]](xj).

Here, R is any function defined on the set of nodes Eh and [[f ]] is the jump of the function f

across the nodes which is defined as follows.

[[f ]](xj) =



−f(0+) for j = 0,

f(x−j )− f(x+
j ) for 0 < j < N,

f(1−) for j = N.

Here, f(x±j ) := limε↓0 f(xj ± ε). These jumps are well defined for f in H1(Ωh).
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It is now easy to see that if we assume that (T,N,M, θ, u, w) ∈ [H1(Ω)]6, we have

− (w, v′1)Ωh + 〈w, [[v1]]〉Eh + (θ, v1)Ωh + (κu, v1)Ωh = d2(T, v1)Ωh , (2.1a)

− (u, v′2)Ωh + 〈u, [[v2]]〉Eh − (κw, v2)Ωh = d2(N, v2)Ωh , (2.1b)

− (θ, v′3)Ωh + 〈θ, [[v3]]〉Eh = (M, v3)Ωh , (2.1c)

− (M, v′4)Ωh + 〈M, [[v4]]〉Eh = (T, v4)Ωh , (2.1d)

− (N, v′5)Ωh + 〈N, [[v5]]〉Eh − (κT, v5)Ωh = (p, v5)Ωh , (2.1e)

− (T, v′6)Ωh + 〈T, [[v6]]〉Eh + (κN, v6)Ωh = (q, v6)Ωh , (2.1f)

for all vi ∈ H1(Ωh) for i = 1, . . . , 6. This is the weak formulation we will use to define the

DG methods.

2.1.2 The general DG methods

The approximate solution (Th, Nh, Mh, θh, uh, wh) given by the DG method is sought in the

finite dimensional space Π6
i=1V

ki
h where V k

h := {v : Ωh 7→ R : v|Ij ∈ Pk(Ij), j = 1, . . . ,N},

and Pk(K) is the set of all polynomials on K of degree not exceeding k. It is determined by

requiring that

− (wh, v
′
1)Ωh + 〈ŵh, [[v1]]〉Eh + (θh, v1)Ωh + (κuh, v1)Ωh = d2(Th, v1)Ωh (2.2a)

− (uh, v
′
2)Ωh + 〈ûh, [[v2]]〉Eh − (κwh, v2)Ωh = d2(Nh, v2)Ωh (2.2b)

− (θh, v
′
3)Ωh + 〈θ̂h, [[v3]]〉Eh = (Mh, v3)Ωh (2.2c)

− (Mh, v
′
4)Ωh + 〈M̂h, [[v4]]〉Eh = (Th, v4)Ωh (2.2d)

− (Nh, v
′
5)Ωh + 〈N̂h, [[v5]]〉Eh − (κTh, v5)Ωh = (p, v5)Ωh (2.2e)

− (Th, v
′
6)Ωh + 〈T̂h, [[v6]]〉Eh + (κNh, v6)Ωh = (q, v6)Ωh (2.2f)
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hold for all vi ∈ V ki
h for i = 1, . . . , 6.

To complete the definition of the method, we have to define the numerical traces

(T̂h, N̂h, M̂h, θ̂h, ûh, ŵh) at the nodes. We assume that the general form of these traces is

as follows. For an interior node xj ∈ E◦h := {x1, x2, . . . , xN−1}, we take

ŵh = {{wh }}+ C11[[wh]] + C12[[uh]] + C13[[θh]] + C14[[Mh]] + C15[[Nh]] + C16[[Th]],

ûh = {{ uh }}+ C21[[wh]] + C22[[uh]] + C23[[θh]] + C24[[Mh]] + C25[[Nh]] + C26[[Th]],

θ̂h = {{ θh }}+ C31[[wh]] + C32[[uh]] + C33[[θh]] + C34[[Mh]] + C35[[Nh]] + C36[[Th]],

M̂h = {{Mh}}+ C41[[wh]] + C42[[uh]] + C43[[θh]] + C44[[Mh]] + C45[[Nh]] + C46[[Th]],

N̂h = {{Nh}}+ C51[[wh]] + C52[[uh]] + C53[[θh]] + C54[[Mh]] + C55[[Nh]] + C56[[Th]],

T̂h = {{Th }}+ C61[[wh]] + C62[[uh]] + C63[[θh]] + C64[[Mh]] + C65[[Nh]] + C66[[Th]],

(2.3)

where {{f}}(xj) := 1
2
(f(x−j ) + f(x+

j )). At x = 0, we take

ŵh = w0,

ûh = u0,

θ̂h = θ0,

M̂h = M+
h +C41(w0 − w+

h ) + C42(u0 − u+
h ) + C43(θ0 − θ+

h ),

N̂h = N+
h +C51(w0 − w+

h ) + C52(u0 − u+
h ) + C53(θ0 − θ+

h ),

T̂h = T+
h +C61(w0 − w+

h ) + C62(u0 − u+
h ) + C63(θ0 − θ+

h ),

(2.4)
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and at x = 1,

ŵh = w1,

ûh = u1,

θ̂h = θ1,

M̂h = M−
h +C41(w−h − w1) + C42(u−h − u1) + C43(θ−h − θ1),

N̂h = N−h +C51(w−h − w1) + C52(u−h − u1) + C53(θ−h − θ1),

T̂h = T−h +C61(w−h − w1) + C62(u−h − u1) + C63(θ−h − θ1).

(2.5)

This completes the definition of the DG methods.

Note how the boundary conditions are incorporated into the method through the defi-

nition of the numerical traces at the border. Note also that the functions Cij defining the

numerical traces are not necessarily constant on Eh, and can have different values at different

nodes. In the following two subsections, we investigate the role of these functions. In partic-

ular, we show that out of these thirty six functions, fifteen can be (and in fact should be)

expressed in terms of the remaining twenty one and that only six of them have an impact

on the “energy” of the discretization.

2.1.3 The discrete energy identity

To see this, we consider a classical energy argument. It is not difficult to see that if we take

v1 = T, v2 = N, v3 = N, v4 = θ, v5 = u, v6 = w,

in the equations (2.1), integrate by parts, and add them, we obtain the energy identity

d2(T, T )Ωh + d2(N,N)Ωh + (M,M)Ωh = −(p, u)Ωh − (q, w)Ωh + bc,
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where

bc = w1T (1−)− w0T (0+)

+ u1N(1−)− u0N(0+)

+ θ1M(1−)− θ0M(0+).

Since this identity captures an essential feature of the problem under consideration, we would

like to obtain a similar energy identity for the DG method. Such an identity is obtained in

the following result.

Proposition 2.1 (Discrete energy identity). Assume that (Th, Nh,Mh, θh, uh, wh) is a solu-

tion of the DG method defined by the weak formulation (2.2) and the numerical traces given

by (2.3), (2.4), and (2.5). Assume that for all nodes e ∈ Eh we have

C66 = −C11, C56 = −C12, C46 = −C13, C36 = −C14, C26 = −C15,

C65 = −C21, C55 = −C22, C45 = −C23, C35 = −C24,

C64 = −C31, C54 = −C32, C44 = −C33,

C63 = −C41, C53 = −C42,

C62 = −C51.

(2.6)

Then, we have

Θinterior + Θjumps = Θloads + Θbc, (2.7)

where

Θinterior = d2(Th, Th)Ωh + d2(Nh, Nh)Ωh + (Mh,Mh)Ωh ,

and

Θloads = −(p, uh)Ωh − (q, wh)Ωh .
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Here, setting C16 = C25 = C34 = 0 at the boundary nodes, we have

Θjumps = −
∑
e∈Eh

(
C16[[Th]]

2 + C25[[Nh]]
2 + C34[[Mh]]

2

+ C43[[θh]]
2 + C52[[uh]]

2 + C61[[wh]]
2
)

(e),

and Θbc = Θbc,1 −Θbc,0, where

Θbc,1 = w1[Th(1
−) − C61(1)wh(1

−)− C51(1)uh(1
−)− C41(1)θh(1

−)]

+u1 [Nh(1
−) − C62(1)wh(1

−)− C52(1)uh(1
−)− C42(1)θh(1

−)]

+θ1 [Mh(1
−)− C63(1)wh(1

−)− C53(1)uh(1
−)− C43(1)θh(1

−)],

and

Θbc,0 = w0[Th(0
+) + C61(0)wh(0

+) + C51(0)uh(0
+) + C41(0)θh(0

+)]

+u0 [Nh(0
+) + C62(0)wh(0

+) + C52(0)uh(0
+) + C42(0)θh(0

+)]

+θ0 [Mh(0
+) + C63(0)wh(0

+) + C53(0)uh(0
+) + C43(0)θh(0

+)],

Proof. The proof of the above result follows by mimicking what was done for the continuous

case, that is, by taking

v1 = Th, v2 = Nh, v3 = Mh, v4 = θh, v5 = uh, v6 = wh,

in the definition of the DG method (2.2), integrating by parts, adding the resulting equations,

and carrying out some algebraic manipulations.

It is now clear that if we take

−C16, −C25, −C34, −C43, −C52, −C61 ≥ 0, (2.8)
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then each of the terms of Θjumps can be considered to be an energy associated with the discon-

tinuous nature of the discretization. Thus, the above condition ensures that the appearance

of the jumps in the DG approximation is accompanied by an increase of the total energy of

the system. Since this can also be thought of as being a stabilizing effect, they are called

the stabilization functions. None of the remaining functions appear in the expression for the

energy of the approximation, as we can see in the above result. On the other hand, if we

penalize the jumps “too much”, then the DG method might behave like a typical continuous

method and might lock: it would produce very bad approximations for small values of d. On

the contrary, if these penalization parameters are chosen appropriately, the DG method will

produce a very good approximation. We illustrate this phenomenon in Figure 2. Therein, we

take p(x) = q(x) ≡ 1, and κ(x) ≡ 1, for x ∈ Ω = (0, 1), together with homogeneous bound-

ary conditions w = u = θ = 0 on ∂Ω = {0, 1}. We also show approximations by two of the

DG methods just described. We compute the piecewise linear (k = 1) DG approximations

for an arch of thickness d = 10−3. To better illustrate our point we employ a very coarse

uniform mesh of size h = 0.1. Both methods take

C11(x) = C22(x) = C33(x) = −C44(x) = −C55(x) = −C66(x) = 1/2

at all interior nodes x ∈ E◦h, and all the remaining coefficients equal to zero, except for C43,

C52, and C61. The first DG method strongly penalizes the jumps of the displacements w and

u, and the rotation θ, since it takes

C43(x) = C52(x) = C61(x) = −106

at all nodes x ∈ Eh.
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Figure 2: The case d = 10−3 and h = 0.1. Exact (solid line) and DG approximations (solid

line segments and, for the numerical traces, +).

Left column: C43 = C52 = C61 = −106 at all the nodes. Right column: C43 = C52 = C61 = 0

at all the nodes except C43(1) = C52(1) = C61(1) = −100/h.
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We can see in Figure 2, left column, as expected, it locks. The second method, however,

does not penalize those jumps at all since it takes

C43(x) = C52(x) = C61(x) = 0

at all nodes except at x = 1 where it takes

C43(1) = C52(1) = C61(1) = −100/h

to weakly enforce the boundary conditions there. In Figure 2, right column, we can see that

the method produces an excellent approximation of the exact solution. In this paper, we

prove that the first method as well converges optimally if the penalization parameters are

chosen properly so that the jumps are not superpenalized. We also show that the convergence

is independent of the thickness of the arch.

2.1.4 Existence and uniqueness of the DG approximation

The DG method defined by the weak formulation (2.2) and the numerical traces given by

(4.2), (2.4), and (2.5) has a unique solution provided that the functions Cij, for 1 ≤ i, j ≤ 6,

and the polynomial degrees ki for 1 ≤ i ≤ 6, are suitably chosen. The following theorem

gives sufficient conditions for this to happen.

Theorem 2.2 (Existence and uniqueness of the DG approximation). Consider the DG

method defined by the weak formulation (2.2) and the numerical traces given by (4.2), (2.4),

and (2.5). Assume that the conditions (2.6) and (2.8) are satisfied. Furthermore, suppose

that

−C43, −C52, −C61 > 0 on Eh, (2.9)
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and that

k1, k2 ≥ max{k5, k6}, k3 ≥ k4 − 1. (2.10)

Then the method has a unique solution provided that

hj ≤
1

2‖κ− κj‖L∞(Ij)

(2.11)

on the elements Ij where κ is not identically equal to a constant. Here κj denotes the average

value of κ on Ij.

A proof of this theorem can be found in Appendix A.

2.2 Main Results

For the simplicity of the presentation, in the rest of the paper we restrict ourselves to a

particular class of DG methods in which the polynomial degrees ki are all equal to a given

k ≥ 0 for i = 1, 2, . . . , 6. The functions Cij are defined as follows

C16 = C25 = C34 = C43 = C52 = C61 = −c (2.12)

for all x in Eh, except

C16 = C25 = C34 = 0 on ∂Ω. (2.13)

Here, c > 0 is any constant which is independent of the mesh size h. We assume that

C2
ij ≤ c for all i, j = 1, . . . , 6, (2.14)

and that

(Cii(x)− 1/2)2 ≤ c for all i = 1, . . . , 6. (2.15)
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Such a choice can be obtained, for example, by setting

C16 = C25 = C34 = C43 = C52 = C61 = −1

for all x in Eh,

C16 = C25 = C34 = 0 on ∂Ω,

and setting all the remaining Cij’s to zero.

To state our main results we need to introduce some notation. We begin by setting

ϕ := (T,N,M, θ, u, w),

ϕh := (Th, Nh,Mh, θh, uh, wh),

ϕ̂h := (T̂h, N̂h, M̂h, θ̂h, ûh, ŵh),

u := (u1, u2, u3, u4, u5, u6),

v := (v1, v2, v3, v4, v5, v6),

where (T,N,M, θ, u, w) is the exact solution of (1.3) and (1.4), (Th, Nh, Mh, θh, uh, wh)

is the DG approximation defined by the weak formulation (2.2) and the numerical traces

(4.2)-(2.5) where the functions Cij are assumed to satisfy the conditions (3.1)-(3.4). The

functions ui and vi are in V k
h for some k ≥ 0. We define the error of approximation as

eϕ = ϕ− ϕh, êϕ = ϕ− ϕ̂h,

for any ϕ ∈ {T,N,M, θ, u, w}, and set

e = ϕ−ϕh, ê = ϕ− ϕ̂h.

The error in the numerical traces of ϕh is defined as

‖êϕ‖L∞(Eh) := max
xj∈Eh

|êϕ(xj)|,
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and the global error in the numerical traces is set to be

‖ê‖L∞(Eh) := max
ϕ∈{T,N,M,θ,u,w}

‖êϕ‖L∞(Eh) .

We define

|u|2Ah := Θi(u) + Θj(u), (2.16)

where

Θi(u) = d2(u1, u1)Ωh + d2(u2, u2)Ωh + (u3, u3)Ωh ,

and

Θj(u) = −〈1, C16[[u1]]2 + C25[[u2]]2 + C34[[u3]]2 + C43[[u4]]2 + C52[[u5]]2 + C61[[u6]]2〉Eh .

Since we can rewrite the discrete energy identity (4.15) of Proposition 2.1 as

|ϕh|2Ah = Θloads(ϕh) + Θbc(ϕh),

we call this seminorm, the energy seminorm. The estimate of the approximation error in this

seminorm plays a fundamental role in our analysis.

Next, we define Green’s functions for the problem under consideration. For any superindex

? ∈ {T,N,M, θ, u, w}, and any point y ∈ (0, 1), we define (G?
T,y, G

?
N,y, G

?
M,y, G

?
θ,y, G

?
u,y, G

?
w,y)

as the solution of

− dG?
w,y/dx −G?

θ,y − κG?
u,y = d2G?

T,y,

− dG?
u,y/dx + κG?

w,y = d2G?
N,y,

− dG?
θ,y/dx = G?

M,y,

− dG?
M,y/dx = G?

T,y,

− dG?
N,y/dx + κG?

T,y = 0,

− dG?
T,y/dx − κG?

N,y = 0,

(2.17)
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in (0, y) ∪ (y, 1) that satisfies the boundary conditions

G?
w,y = G?

u,y = G?
θ,y = 0 on ∂Ω, (2.18)

and the jump conditions

[[G?
w,y]](y) = δ?T , [[G?

T,y]](y) = δ?w,

[[G?
u,y]](y) = δ?N , [[G?

N,y]](y) = δ?u,

[[G?
θ,y]](y) = δ?M , [[G?

M,y]](y) = δ?θ.

(2.19)

Here, δab = 1 if a = b and δab = 0 otherwise. For simplicity, we denote

G?
y := (G?

T,y, G
?
N,y, G

?
M,y, G

?
θ,y, G

?
u,y, G

?
w,y).

We also define, for z ∈ {0, 1},

G?
z = lim

y→z
G?
y.

We denote by ‖ · ‖s,D and |·|s,D the usual norm and seminorm, respectively, in the Sobolev

space Hs(D) where D is any subset of Ωh. We drop the subindex D whenever D = Ωh or

D = Ω. We set

|u|s,D := (|u1|2s,D + |u2|2s,D + |u3|2s,D + |u4|2s,D + |u5|2s,D + |u6|2s,D)1/2,

and

|G|s,D := max
xj∈Eh

max
?∈{T,N,M,θ,u,w}

|G?
xj
|s,D.

We are now ready to state and discuss our main results. In the rest of the paper, C

denotes a generic constant which is not necessarily the same in each appearance, and it is

independent of the meshsize h and the thickness parameter d even though we might not

explicitly state it.
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Theorem 2.3. Let k ≥ 0 be a polynomial degree and suppose that ϕ belongs to [Hk+1(Ωh)]
6.

Let ϕh be the DG solution defined by the weak formulation (2.2) with ki = k for all i =

1, . . . , 6, and the numerical traces (4.2)-(2.5) where the functions Cij satisfy the conditions

(3.1)-(3.4). Then, for small enough h, we have that

|e|Ah ≤ C hk+1/2|ϕ|k+1, (2.20)

and that

‖e‖0 ≤ C hk+1|ϕ|k+1, (2.21)

for some constant C independent of h and d.

Theorem 2.4. With the same hypotheses as those of Theorem 2.3 we have that

‖ê‖L∞(Eh) ≤ C h2k+1|G|k+1 |ϕ|k+1. (2.22)

Note that all of the estimates appearing in the above theorems show that, the DG method

under consideration is locking-free for any k ≥ 0, because the constants appearing on the

right-hand side of all the estimates are independent of the parameter d and because the

seminorms appearing on the right-hand side of the estimates can be bounded uniformly with

respect to d. See [20] for a detailed explanation of this in the context of Timoshenko beams.

A similar remark is valid for the seminorms of the Green’s functions, see [39].

Note also that the above results imply that the DG method converges with the optimal

order of k + 1 in the L2-norm for all variables, and with order k + 1/2 in the energy norm.

They also imply that all the numerical traces superconverge with order 2 k+ 1 at each node.

In Section 4.7, we verify that the error estimate in the energy seminorm is sharp. These

results extend what has been done by Celiker et al. in [15, 16, 17, 20] for DG methods for

Timoshenko beams.
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2.3 Proofs

2.3.1 Sketch of proofs

In this subsection, we give a brief outline of the main steps of our proofs. We proceed in

three steps. We begin with estimating the errors in the energy seminorm in terms of the

errors in the L2-norm.

Lemma 2.5. We have

|e|Ah ≤ Chk+1/2|ϕ|k+1 + Ch1/2 ‖e‖0

for some constant C independent of h and d.

Next we show that the error in the numerical traces can be estimated in terms of the

error in the L2-norm and the seminorms of the Green’s functions.

Lemma 2.6. Let xj be an arbitrary node in Eh. If h is sufficiently small, then we have for

any ϕ in {T,N,M, θ, u, w} that

‖ê‖L∞(Eh) ≤ Chk ‖e‖0 |G|k+1

for some constant C independent of h and d.

Finally, we obtain an auxiliary estimate of the error in the L2-norm.

Lemma 2.7. We have

‖e‖0 ≤ Chk+1|ϕ|k+1 + Ch1/2 ‖e‖0 + Chk|G|k+1 ‖e‖0

for some constant C independent of h and d.
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The final estimates in the L2-norm, namely (2.21), now follows if we assume that h is

small enough. Using (2.21) in Lemma 2.5 yields (2.20). Similarly, inserting it into Lemma

2.6 we get (3.5).

2.3.2 The error equations

To prove the lemmas in the previous subsection, we rely, as expected, on the error equations,

namely,

− (ew, v
′
1)Ωh + 〈êw, [[v1]]〉Eh + (eθ, v1)Ωh + (κeu, v1)Ωh = d2(eT , v1)Ωh , (2.23a)

− (eu, v
′
2)Ωh + 〈êu, [[v2]]〉Eh − (κew, v2)Ωh = d2(eN , v2)Ωh , (2.23b)

− (eθ, v
′
3)Ωh + 〈êθ, [[v3]]〉Eh = (eM , v3)Ωh , (2.23c)

− (eM , v
′
4)Ωh + 〈êM , [[v4]]〉Eh = (eT , v4)Ωh , (2.23d)

− (eN , v
′
5)Ωh + 〈êN , [[v5]]〉Eh − (κeT , v5)Ωh = 0, (2.23e)

− (eT , v
′
6)Ωh + 〈êT , [[v6]]〉Eh + (κeN , v6)Ωh = 0, (2.23f)

for any vi ∈ V k
h , i = 1, . . . , 6. They are easily obtained by noting that the exact solution ϕ

also satisfies the DG formulation (2.2).

We use the following notation

Pe := (PeT ,PeN ,PeM ,Peθ,Peu,Pew)

where P is the L2-orthogonal projection into V k
h . We also set

ξ := e− Pe = (ξT , ξN , ξM , ξθ, ξu, ξw) (2.24)

where

ξϕ := ϕ− Pϕ
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for ϕ ∈ {T,N,M, θ, u, w}.

2.3.3 Proof of Lemma 2.5

We begin with expressing the DG method in classical mixed formulation. Inserting the

definition of the numerical traces (4.2)-(2.5) into the weak formulation (2.2) and adding the

resulting equations we get after some simple algebraic manipulations

Ah(ϕh;v) = bh(v)

where, writing Ah for Ah(u;v), and similarly for A1, A2,i etc.

Ah(u;v) := A1(u;v) + A2,i(u;v) + A2,∂(u;v)

where

A1 :=− (u6, v
′
1)Ωh+(u3, v1)Ωh + (κu5, v1)Ωh − d2(u1, v1)Ωh

− (u5, v
′
2)Ωh − (κu6, v2)Ωh − d2(u2, v2)Ωh

− (u4, v
′
3)Ωh − (u3, v3)Ωh

− (u3, v
′
4)Ωh−(u1, v4)Ωh

− (u2, v
′
5)Ωh + (κu1, v5)Ωh

− (u1, v
′
6)Ωh − (κu2, v6)Ωh ,

A2,i :=
∑6

j=1
A

(j)
2,i , A2,∂ :=

∑6

j=1
A

(j)
2,∂

where, defining

Cj := Cj1[[u6]] + Cj2[[u5]] + Cj3[[u4]] + Cj4[[u3]] + Cj5[[u2]] + Cj6[[u1]]
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for j = 1, . . . , 6 we have

A
(1)
2,i = 〈{{u6}}+ C1, [[v1]]〉E◦h , A

(2)
2,i= 〈{{u5}}+ C2, [[v2]]〉E◦h ,

A
(3)
2,i = 〈{{u4}}+ C3, [[v3]]〉E◦h , A

(4)
2,i= 〈{{u3}}+ C4, [[v4]]〉E◦h ,

A
(5)
2,i = 〈{{u2}}+ C5, [[v5]]〉E◦h , A

(6)
2,i= 〈{{u1}}+ C6, [[v6]]〉E◦h ,

and

A
(1)
2,∂ = −(u3(0+)− C41(0)u6(0+)− C42(0)u5(0+)− C43(0)u4(0+))v4(0+),

A
(2)
2,∂ = −(u2(0+)− C51(0)u6(0+)− C52(0)u5(0+)− C53(0)u4(0+))v5(0+),

A
(3)
2,∂ = −(u1(0+)− C61(0)u6(0+)− C62(0)u5(0+)− C63(0)u4(0+))v6(0+),

A
(4)
2,∂ = (u3(1−) + C41(1)u6(1−) + C42(1)u5(1−) + C43(1)u4(1−))v4(1−),

A
(5)
2,∂ = (u2(1−) + C51(1)u6(1−) + C52(1)u5(1−) + C53(1)u4(1−))v5(1−),

A
(6)
2,∂ = (u1(1−) + C61(1)u6(1−) + C62(1)u5(1−) + C63(1)u4(1−))v6(1−).

Finally, bh := b1 + b2 where

b1 = (p, v5)Ωh + (q, v6)Ωh

and

b2 = w0[v1(0+) + C61(0)v6(0+) + C51(0)v5(0+) + C41(0)v4(0+)]

+ u0[v2(0+) + C62(0)v6(0+) + C52(0)v5(0+) + C42(0)v4(0+)]

+ θ0[v3(0+) + C63(0)v6(0+) + C53(0)v5(0+) + C43(0)v4(0+)]

− w1[v1(1−)− C61(1)v6(1−)− C51(1)v5(1−)− C41(1)v4(1−)]

− u1[v2(1−)− C62(1)v6(1−)− C52(1)v5(1−)− C42(1)v4(1−)]

− θ1[v3(1−)− C63(1)v6(1−)− C53(1)v5(1−)− C43(1)v4(1−)].
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With this notation we can write one of the main ingredients of our error analysis, namely

the Galerkin orthogonality property, as

Ah(e;v) = 0 for all v ∈ [V k
h ]6. (2.25)

This follows immediately by adding the error equations (2.23). The second property we are

going to use is

|v|2Ah = −Ah(v;v) for all v ∈ [V k
h ]6. (2.26)

Lemma 2.5 follows from the following auxiliary results.

Lemma 2.8. We have that |Pe|2Ah = J1 + J2,i + J2,∂ where

J1 = (κξu,PeT )Ωh − (κξw,PeN)Ωh − (κξT ,Peu)Ωh + (κξN ,Pew)Ωh ,

and

J2,i = A2,i(ξ;Pe), J2,∂ = A2,∂(ξ;Pe).

Lemma 2.9. The following estimates hold

|ξ|Ah ≤ C hk+1/2|ϕ|k+1, (2.27a)

|J1| ≤ C hk+1|ϕ|k+1 ‖e‖0 , (2.27b)

|J2,i|+ |J2,∂| ≤ C hk+1/2|ϕ|k+1|Pe|Ah , (2.27c)

for some constant C independent of h and d.

We prove these results in several steps.
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Step 1: Proof of the auxiliary Lemma 2.8. We have

|Pe|2Ah = −Ah(Pe;Pe) by (2.26),

= −Ah(e− ξ;Pe) by (2.24),

= Ah(ξ;Pe) by (2.25),

= J1 + J2,i + J2,∂,

by the orthogonality properties of the L2-projection operator P. This finishes the proof of

Lemma 2.8.

Note that for arches with piecewise constant κ on oh, the term J1 vanishes by the or-

thogonality properties of P.

Step 2: Estimate of |ξ|Ah . We will need the following lemma which contains the approxi-

mation properties of P which can be found, for example, in [22].

Lemma 2.10. Let Ij ⊂ Ωh be an arbitrary element, and suppose that φ ∈ H t+1(Ij) for some

non-negative real number t. Then

‖φ− Pφ‖0,Ij
≤ C|φ|σ+1,Ijh

σ+1
j ,

|(φ− Pφ)(x+
j−1)|+ |(φ− Pφ)(x−j )| ≤ C|φ|σ+1,Ijh

σ+1/2
j ,

for any 0 ≤ σ ≤ min(k, t), and for some constant C depending solely on t.

We have that

|ξ|2Ah = Θi(ξ) + Θj(ξ) (2.28)

where

Θi(ξ) = d2(ξT , ξT )Ωh + d2(ξN , ξN)Ωh + (ξM , ξM)Ωh ,
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and

Θj(ξ) = −〈1, C16[[ξT ]]2 + C25[[ξN ]]2 + C34[[ξM ]]2 + C43[[ξθ]]
2 + C52[[ξu]]

2 + C61[[ξw]]2〉Eh

= c〈1, [[ξT ]]2 + [[ξN ]]2 + [[ξM ]]2 + [[ξθ]]
2 + [[ξu]]

2 + [[ξw]]2〉Eh ,

by assumption (3.1).

Now, since d < 1 we have

Θi(ξ) ≤ ‖ξT‖2
0 + ‖ξN‖2

0 + ‖ξM‖2
0

≤ Ch2k+2(|T |2k+1 + |N |2k+1 + |M |2k+1)

≤ Ch2k+2|ϕ|2k+1

(2.29)

by the approximation properties of the previous lemma with σ = k.

Next we estimate Θj(ξ). By the approximation properties of P

c〈1, [[ξϕ]]2〉Eh ≤ C h2k+1|ϕ|2k+1

for all ϕ ∈ {T,N,M, θ, u, w}, where we have absorbed c in C since it is a constant of order

one. Hence, we get

Θj(ξ) ≤ C h2k+1|ϕ|2k+1. (2.30)

Inserting the estimates (2.29) and (2.30) into (2.28), and taking the square root of both sides

of the resulting estimate yields (2.27a).

Step 3: Estimate of J1. We only show how to estimate one of the terms appearing in J1,
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the remaining three terms can be estimated in a similar fashion. We proceed as follows

|(κξu,PeT )Ωh| ≤ max
x∈Ω
|κ(x)| ‖ξu‖0 ‖PeT‖0 by Cauchy-Schwarz inequality,

≤ Chk+1|ϕ|k+1 ‖PeT‖0 by Lemma 2.10,

≤ Chk+1|ϕ|k+1 ‖eT‖0 by the continuity of P,

≤ Chk+1|ϕ|k+1 ‖e‖0 .

This finishes the proof of (2.27b).

Step 4: Estimate of J2,i. To estimate J2,i we note that

〈{{ξw}}, [[PeT ]]〉E◦h ≤ 〈1/c, {{ξw}}
2〉1/2E◦h

〈c, [[PeT ]]2〉1/2E◦h

≤ Chk+1/2|w|k+1|Pe|Ah

≤ Chk+1/2|ϕ|k+1|Pe|Ah

where we have used the Cauchy-Schwarz inequality and the approximation properties of P.

We also have that

〈C11[[ξw]], [[PeT ]]〉E◦h ≤ 〈C
2
11/c, [[ξw]]2〉1/2E◦h

〈c, [[PeT ]]2〉1/2E◦h

≤ Chk+1/2|w|k+1|Pe|Ah

≤ Chk+1/2|ϕ|k+1|Pe|Ah
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where we have used the assumption (3.3). Similarly, we obtain

〈C12[[ξu]], [[PeT ]]〉E◦h ≤ Chk+1/2|ϕ|k+1|Pe|Ah ,

〈C13[[ξθ]], [[PeT ]]〉E◦h ≤ Chk+1/2|ϕ|k+1|Pe|Ah ,

〈C14[[ξM ]], [[PeT ]]〉E◦h ≤ Chk+1/2|ϕ|k+1|Pe|Ah ,

〈C15[[ξN ]], [[PeT ]]〉E◦h ≤ Chk+1/2|ϕ|k+1|Pe|Ah ,

〈C16[[ξT ]], [[PeT ]]〉E◦h ≤ Chk+1/2|ϕ|k+1|Pe|Ah .

Collecting these estimates we get that

|J (1)
2,i | = |A(1)

2,i (ξ;Pe)| ≤ Chk+1/2|ϕ|k+1|Pe|Ah .

Following the same steps, we can prove that

|J (`)
2,i | = |A(`)

2,i(ξ;Pe)| ≤ Chk+1/2|ϕ|k+1|Pe|Ah ,

for all ` = 2, . . . , 6. Since J2,i =
∑6

`=1 J
(`)
2,i we get

|J2,i| ≤ Chk+1/2|ϕ|k+1|Pe|Ah . (2.31)

Step 5: Estimate of J2,∂. The estimate J2,∂ follows similar lines as those of the estimate

of J2,i. Thus, by the approximation properties of P we have

|ξM(0+)Peθ(0
+)| = 1

c
|ξM(0+)||c Peθ(0+)|

≤ Chk+1/2|M |k+1|Pe|Ah ,

≤ Chk+1/2|ϕ|k+1|Pe|Ah ,

and

|C41(0)ξw(0+)Peθ(0
+)| = |C41(0)|

c
|ξw(0+)||c Peθ(0+)|

≤ Chk+1/2|ϕ|k+1|Pe|Ah .
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Similarly,

|C42(0)ξu(0
+)Peθ(0

+)| ≤ Chk+1/2|ϕ|k+1|Pe|Ah ,

|C43(0)ξθ(0
+)Peθ(0

+)| ≤ Chk+1/2|ϕ|k+1|Pe|Ah ,

and hence

|J (1)
2,∂ | = |A

(1)
2,∂(ξ;Pe)| ≤ Chk+1/2|ϕ|k+1|Pe|Ah .

Following the same steps, we can prove that

|J (`)
2,∂| = |A

(`)
2,∂(ξ;Pe)| ≤ Chk+1/2|ϕ|k+1|Pe|Ah ,

for all ` = 2, . . . , 6. Since J2,∂ =
∑6

`=1 J
(`)
2,∂ we get

|J2,∂| ≤ Chk+1/2|ϕ|k+1|Pe|Ah . (2.32)

The estimate (2.27c) follows from (2.31) and (2.32).

Step 6: Proof of Lemma 2.5. By inserting the estimates (2.27b) and (2.27c) into the

expression for |Pe|2Ah in Lemma 2.8 we get

|Pe|2Ah ≤ Chk+1/2|ϕ|k+1|Pe|Ah + Chk+1|ϕ|k+1 ‖e‖0 .

Applying the Young’s inequality to the first term on the right-hand side we get

Chk+1/2|ϕ|k+1|Pe|Ah ≤ Ch2k+1|ϕ|2k+1 +
1

2
|Pe|2Ah ,

and hence

|Pe|2Ah ≤ Ch2k+1|ϕ|2k+1 + Chk+1|ϕ|k+1 ‖e‖0 .

Applying the Young’s inequality once more gives

Chk+1|ϕ|k+1 ‖e‖0 ≤ Ch2k+1|ϕ|2k+1 +
h

2
‖e‖2

0 .
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Thus,

|Pe|2Ah ≤ Ch2k+1|ϕ|2k+1 + Ch ‖e‖2
0 ,

and hence

|Pe|Ah ≤ Chk+1/2|ϕ|k+1 + Ch1/2 ‖e‖0 .

Combining this estimate with (2.27a) and applying the triangle inequality finishes the proof

of Lemma 2.5

2.3.4 Proof of Lemma 2.6

To prove Lemma 2.6, we proceed in two steps.

Step 1: The error representation formulas. Our next result contains a representation

formula for the errors in the numerical traces in terms of certain integrals involving the

Green’s functions. To state it, we need to introduce a projection operator. For any φ ∈

H1(Ωh), the function Π+φ ∈ V k
h is defined on the element Ij by

(φ− Π+φ, v)Ij = 0 ∀v ∈ P k−1(Ij), if k > 0, (2.33a)

(Π+φ)(x+
j−1) = φ(x+

j−1). (2.33b)

Lemma 2.11 (Error representation formulas). Let xj ∈ Eh be an arbitrary node and let

Gϕ
w,xj

,Gϕ
u,xj

, Gϕ
θ,xj

, Gϕ
M,xj

, Gϕ
N,xj

, Gϕ
T,xj

, for ϕ ∈ {T,N,M, θ, u, w}, be the Green’s functions

defined by equations (4.12), (4.13) and (4.14). Then

êϕ(xj) = Γϕj,1 + Γϕj,2 + Γϕj,3,
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where

Γϕj,1 := (ew, (ΠG
ϕ
T,xj
−Gϕ

T,xj
)′)Ωh + (eu, (ΠG

ϕ
N,xj
−Gϕ

N,xj
)′)Ωh

+(eθ, (ΠG
ϕ
M,xj
−Gϕ

M,xj
)′)Ωh + (eM , (ΠG

ϕ
θ,xj
−Gϕ

θ,xj
)′)Ωh

+(eN , (ΠG
ϕ
u,xj
−Gϕ

u,xj
)′)Ωh + (eT , (ΠG

ϕ
w,xj
−Gϕ

w,xj
)′)Ωh ,

Γϕj,2 :=
N∑
i=1

êw(xi)[G
ϕ
T,xj
− Π+Gϕ

T,xj
](x−i ) +

N∑
i=1

êu(xi)[G
ϕ
N,xj
− Π+Gϕ

N,xj
](x−i )

+
N∑
i=1

êθ(xi)[G
ϕ
M,xj
− Π+Gϕ

M,xj
](x−i ) +

N∑
i=1

êM(xi)[G
ϕ
θ,xj
− Π+Gϕ

θ,xj
](x−i )

+
N∑
i=1

êN(xi)[G
ϕ
u,xj
− Π+Gϕ

u,xj
](x−i ) +

N∑
i=1

êT (xi)[G
ϕ
w,xj
− Π+Gϕ

w,xj
](x−i ),

and

Γϕj,3 := −(eθ + κeu − d2eT ,ΠG
ϕ
T,xj
−Gϕ

T,xj
)Ωh + (eM ,ΠG

ϕ
M,xj
−Gϕ

M,xj
)Ωh

+(κew + d2eN ,ΠG
ϕ
N,xj
−Gϕ

N,xj
)Ωh + (eT ,ΠG

ϕ
θ,xj
−Gϕ

θ,xj
)Ωh

+(κeT ,ΠG
ϕ
u,xj
−Gϕ

u,xj
)Ωh − (κeN ,ΠG

ϕ
w,xj
−Gϕ

w,xj
)Ωh .

To prove this lemma we need an auxiliary result which establishes a relation between the

errors in the numerical traces and the Green’s functions.

Lemma 2.12. With the same notation as in Lemma 2.11 set

Θϕ
j := 〈êw, [[Gϕ

T,xj
]]〉Eh + 〈êu, [[Gϕ

N,xj
]]〉Eh

+〈êθ, [[Gϕ
M,xj

]]〉Eh + 〈êM , [[Gϕ
θ,xj

]]〉Eh

+〈êN , [[Gϕ
u,xj

]]〉Eh + 〈êT , [[Gϕ
w,xj

]]〉Eh .

Then, we have

Θϕ
j = Λϕ

j,1 + Λϕ
j,2 + Λϕ

j,2,
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where

Λϕ
j,1 := (ew, (v1 −Gϕ

T,xj
)′)Ωh + (eu, (v2 −Gϕ

N,xj
)′)Ωh

+(eθ, (v3 −Gϕ
M,xj

)′)Ωh + (eM , (v4 −Gϕ
θ,xj

)′)Ωh

+(eN , (v5 −Gϕ
u,xj

)′)Ωh + (eT , (v6 −Gϕ
w,xj

)′)Ωh ,

Λϕ
j,2 := 〈êw, [[Gϕ

T,xj
− v1]]〉Eh + 〈êu, [[Gϕ

N,xj
− v2]]〉Eh

+〈êθ, [[Gϕ
M,xj
− v3]]〉Eh + 〈êM , [[Gϕ

θ,xj
− v4]]〉Eh

+〈êN , [[Gϕ
u,xj
− v5]]〉Eh + 〈êT , [[Gϕ

w,xj
− v6]]〉Eh ,

and

Λϕ
j,3 := −(eθ + κeu − d2eT , v1 −Gϕ

T,xj
)Ωh + (eM , v3 −Gϕ

M,xj
)Ωh

+(κew + d2eN , v2 −Gϕ
N,xj

)Ωh + (eT , v4 −Gϕ
θ,xj

)Ωh

+(κeT , v5 −Gϕ
u,xj

)Ωh − (κeN , v6 −Gϕ
w,xj

)Ωh

for all vi in V k
h for i = 1, . . . , 6.

Proof. Since we can write Θϕ
j = Υϕ

j + Λϕ
j,2 where

Υϕ
j := 〈êw, [[v1]]〉Eh + 〈êu, [[v2]]〉Eh

+〈êθ, [[v3]]〉Eh + 〈êM , [[v4]]〉Eh

+〈êN , [[v5]]〉Eh + 〈êT , [[v6]]〉Eh ,
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and

∆ϕ
j := 〈êw, [[Gϕ

T,xj
− v1]]〉Eh + 〈êu, [[Gϕ

N,xj
− v2]]〉Eh

+〈êθ, [[Gϕ
M,xj
− v3]]〉Eh + 〈êM , [[Gϕ

θ,xj
− v4]]〉Eh

+〈êN , [[Gϕ
u,xj
− v5]]〉Eh + 〈êT , [[Gϕ

w,xj
− v6]]〉Eh

we only have to prove that

Υϕ
j = Λϕ

j,1 + Λϕ
j,3. (2.34)

To achieve this, we proceed as follows. First, note that, by the definition of the Green’s

functions (4.12), we have

−(ew, (G
ϕ
T,xj

)′)Ωh − (κew, G
ϕ
N,xj

)Ωh = 0,

−(eu, (G
ϕ
N,xj

)′)Ωh + (κeu, G
ϕ
T,xj

)Ωh = 0,

−(eθ, (G
ϕ
M,xj

)′)Ωh = −(eθ, G
ϕ
T,xj

)Ωh ,

−(eM , (G
ϕ
θ,xj

)′)Ωh = (eM , G
ϕ
M,xj

)Ωh ,

−(eN , (G
ϕ
u,xj

)′)Ωh + (κeN , G
ϕ
w,xj

)Ωh = d2(eN , G
ϕ
N,xj

)Ωh ,

−(eT , (G
ϕ
w,xj

)′)Ωh − (κeT , G
ϕ
θ,xj

)Ωh = d2(eT , G
ϕ
N,xj

)Ωh + (eT , G
ϕ
θ,xj

)Ωh .

(2.35)

Adding all the error equations (2.23) we obtain

Υϕ
i = (ew, v

′
1)Ωh − (eθ, v1)Ωh − (κeu, v1)Ωh + d2(eT , v1)Ωh

+(eu, v
′
2)Ωh + (κew, v2)Ωh + d2(eN , v2)Ωh

+(eθ, v
′
3)Ωh + (eM , v3)Ωh

+(eM , v
′
4)Ωh + (eT , v4)Ωh

+(eN , v
′
5)Ωh + (κeT , v5)Ωh

+(eT , v
′
6)Ωh − (κeN , v6)Ωh .

(2.36)
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Collecting all the terms in (2.35) on the left-hand side, adding the resulting equations, and

then subtracting the result from (2.36), we reach at (2.34) by a simple regrouping of like

terms. This completes the proof.

We are now ready to prove Lemma 2.11.

Proof of Lemma 2.11. We begin by noting that, by the definition of the Green’s functions,

(4.13) and (4.14), we have

Θϕ
j = êϕ(xj).

On the other hand, setting

(v1, v2, v3, v4, v5, v6) = (Π+Gϕ
T,xj

,Π+Gϕ
N,xj

,Π+Gϕ
M,xj

,Π+Gϕ
θ,xj

,Π+Gϕ
u,xj

,Π+Gϕ
w,xj

)

in Lemma 2.12, we get

êϕ(xj) = Λϕ
j,1 + Φϕ

j,2 + Λϕ
j,3

where

Φϕ
j,2 := 〈êw, [[Gϕ

T,xj
− Π+Gϕ

T,xj
]]〉Eh+ 〈êu, [[Gϕ

N,xj
− Π+Gϕ

N,xj
]]〉Eh

+〈êθ, [[Gϕ
M,xj
− Π+Gϕ

M,xj
]]〉Eh+〈êM , [[Gϕ

θ,xj
− Π+Gϕ

θ,xj
]]〉Eh

+〈êN , [[Gϕ
u,xj
− Π+Gϕ

u,xj
]]〉Eh+ 〈êT , [[Gϕ

w,xj
− Π+Gϕ

w,xj
]]〉Eh .

Note, by (2.33b), that

(Gϕ
?,xj
− Π+Gϕ

?,xj
)(x+

i ) = 0 for i = 0, 1, . . . ,N − 1

for any ? ∈ {T,N,M, θ, u, w}. Hence, we have Φϕ
j,2 = Λϕ

j,2. This completes the proof.
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Step 2: Estimating the error in the numerical traces. Here, we apply the approxima-

tion properties of the projection operator Π+ to the error representation formulas of Lemma

2.11 to prove Lemma 2.6. For a proof of the following lemma see [34] and, for example, [14]

or [28].

Lemma 2.13. Let Ij ⊂ Ωh be an arbitrary element, and suppose that φ ∈ H t+1(Ij) for some

non-negative real number t. Then

∥∥φ− Π+φ
∥∥

0,Ij
≤ C|φ|σ+1,Ijh

σ+1
j ,∥∥(φ− Π+φ)′

∥∥
0,Ij

≤ C|φ|σ+1,Ijh
σ
j ,

|(φ− Π+φ)(x−j )| ≤ C|φ|σ+1,Ijh
σ+1/2
j ,

for any 0 ≤ σ ≤ min(k, t), and for some constant C depending solely on t.

Proof of Lemma 2.6. The estimate follows by estimating each one of the terms appearing on

the right-hand side of the expression for êϕ(xj) given in Lemma 2.11. We only show how to

estimate three typical terms (one term from each of Λϕ
j,1, Λϕ

j,2, and Λϕ
j,3) since the estimation

of the remaining terms are similar. By Cauchy-Schwarz inequality and the approximation

properties of Π+ given in Lemma 2.13 we have

|(ew, (Π+Gϕ
T,xj
−Gϕ

T,xj
)′)Ωh| ≤ ‖ew‖0

∥∥(Π+Gϕ
T,xj
−Gϕ

T,xj
)′
∥∥

0

≤ ‖e‖0 · C hk |Gϕ
T,xj
|k+1

≤ Chk ‖e‖0 |G|k+1.
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Moving the maximum of |êw(xi)| over i = 1, . . . ,N outside the summation we get

∣∣∣ N∑
i=1

êw(xi)[G
ϕ
T,xj
− Π+Gϕ

T,xj
](x−i )

∣∣∣ ≤ ‖êw‖L∞(Eh)

N∑
i=1

|(Gϕ
T,xj
− Π+Gϕ

T,xj
)(x−i )|

≤ ‖êw‖L∞(Eh) · Chk+1/2|Gϕ
T,xj
|k+1

≤ Chk+1/2 ‖ê‖L∞(Eh) |G|k+1.

Since d < 1, and κ is bounded

|(κew + d2eN ,Π
+Gϕ

N,xj
−Gϕ

N,xj
)Ωh| ≤

∥∥κew + d2eN
∥∥

0

∥∥Π+Gϕ
N,xj
−Gϕ

N,xj

∥∥
0

≤ (C ‖ew‖0 + ‖eN‖0)
∥∥Π+Gϕ

N,xj
−Gϕ

N,xj

∥∥
0

≤ C ‖e‖0 · C hk+1 |Gϕ
N,xj
|k+1

≤ Chk+1 ‖e‖0 |G|k+1.

Estimating the remaining terms similarly, and collecting the resulting estimates we obtain

|êϕ(xj)| ≤ Chk ‖e‖0 |G|k+1 + Chk+1/2 ‖ê‖L∞(Eh) |G|k+1.

Note that the right-hand side of this estimate does not depend on xj or ϕ. Hence, taking

the maximum of both sides over xj ∈ Eh and ϕ ∈ {T,N,M, θ, u, w} we get

‖ê‖L∞(Eh) ≤ Chk ‖e‖0 |G|k+1 + Chk+1/2 ‖ê‖L∞(Eh) |G|k+1.

Assuming that h is small enough so that

Chk+1/2|G|k+1 ≤ α < 1

we reach at the desired estimate.
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2.3.5 Proof of Lemma 2.7

To prove Lemma 2.7 we proceed in several steps.

Step 1: The representation formulas. The following lemma is an auxiliary result which

contains suitable expressions for (eϕ, ψ) for ϕ ∈ {T,N,M, θ, u, w} where ψ is an arbitrary

function in L2(Ωh). We use the notation ξ+
φ := φ−Π+φ where Π+ is the projection operator

defined by (2.33).

Lemma 2.14. Let ψ ∈ L2(Ωh) and let Ψ̃(x) :=
´ x

0
ψ(s)ds. Define Ψ as the function on Ωh

whose restriction to the element Ij = (xj−1, xj) ∈ Ωh is

Ψ|Ij(x) = Ψ̃(x)− Ψ̃(xj−1).

Then the following expressions hold

(ew, ψ)Ωh = −((ξ+
w )′, ξ+

Ψ)Ωh + (R− S)(w) + (eθ + κeu − d2eT ,Π
+Ψ)Ωh , (2.37a)

(eu, ψ)Ωh = −((ξ+
u )′, ξ+

Ψ)Ωh + (R− S)(u) − (κew + d2eN ,Π
+Ψ)Ωh , (2.37b)

(eθ, ψ)Ωh = −((ξ+
θ )′, ξ+

Ψ)Ωh + (R− S)(θ) − (eM ,Π
+Ψ)Ωh , (2.37c)

(eM , ψ)Ωh = −((ξ+
M)′, ξ+

Ψ)Ωh + (R− S)(M)− (eT ,Π
+Ψ)Ωh , (2.37d)

(eN , ψ)Ωh = −((ξ+
N)′, ξ+

Ψ)Ωh + (R− S)(N) − (κeT ,Π
+Ψ)Ωh , (2.37e)

(eT , ψ)Ωh = −((ξ+
T )′, ξ+

Ψ)Ωh + (R− S)(T ) + (κeN ,Π
+Ψ)Ωh , (2.37f)

where

R(ϕ) := 〈êϕ, [[Ψ]]〉Eh ,

and

S(ϕ) :=
N∑
j=1

[
êϕ(xj)− eϕ(x−j )

]
ξ+

Ψ(x−j ).
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Proof. We only prove (2.37a) since the proofs of the other identities are similar. We begin

by using the trivial identity

(ew, ψ)Ωh = (ew,Ψ
′)Ωh = (ew, (ξ

+
Ψ)′)Ωh + (ew, (Π

+Ψ)′)Ωh .

Next, we obtain an expression for (ew, (Π
+Ψ)′)Ωh . Taking v1 = Π+Ψ in the first error equation

(2.23a), we get

(ew, ψ)Ωh = (ew, (ξ
+
Ψ)′)Ωh + 〈êw, [[Π+Ψ]]〉Eh + (eθ + κeu − d2eT ,Π

+Ψ)Ωh

= −((ξ+
w )′, ξ+

Ψ)Ωh + (eθ + κeu − d2eT ,Π
+Ψ)Ωh + T(w)

where

T(w) := (ew, (ξ
+
Ψ)′)Ωh + 〈êw, [[Π+Ψ]]〉Eh + ((ξ+

w )′, ξ+
Ψ)Ωh .

It remains to show that T(w) = R(w) − S(w). Integrating by parts the first term of the

right-hand side, we get

T(w) = −(e′w, ξ
+
Ψ)Ωh + 〈1, [[ewξ+

Ψ ]]〉Eh + 〈êw, [[Π+Ψ]]〉Eh + ((ξ+
w )′, ξ+

Ψ)Ωh

= −((ew − ξ+
w )′, ξ+

Ψ)Ωh + 〈1, [[ewξ+
Ψ ]]〉Eh + 〈êw, [[Π+Ψ]]〉Eh .

By the definition of Π+, we have that

((ew − ξ+
w )′, ξ+

Ψ)Ωh = ((Π+ew)′, ξ+
Ψ)Ωh = 0.
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Thus

T(w) = 〈1, [[ewξ+
Ψ ]]〉Eh + 〈êw, [[Π+Ψ]]〉Eh

= 〈1, [[ewξ+
Ψ ]]〉Eh + 〈1, [[êw(Π+Ψ−Ψ)]]〉Eh + 〈1, [[êwΨ]]〉Eh

= 〈1, [[(ew − êw)ξ+
Ψ ]]〉Eh + R(w)

= −
N∑
j=1

[
êw(xj)− ew(x−j )

]
ξ+

Ψ(x−j ) + R(w) since ξ+
Ψ(x+

j−1) = 0

= R(w)− S(w).

This completes the proof of Lemma 2.14.

Step 2: Estimate of S(ϕ). In this step, we prove an auxiliary estimate of the term S(ϕ)

for ϕ ∈ {T,N,M, θ, u, w}.

Lemma 2.15. With the same notation as in Lemma 2.14 we have

|S(ϕ)| ≤ Ch1/2|e|Ah ‖ψ‖0 .

Proof. We only prove the estimate for ϕ = w since the proofs of the other estimates are

similar. By definition of the numerical traces (4.2) we have

êw(xj) = ({{ew}}+ C11[[ew]] + C12[[eu]] + C13[[eθ]] + C14[[eM ]] + C15[[eN ]] + C16[[eT ]])(xj)

for any interior node xj. Since ew(x−j ) = {{ew}}(xj) + [[ew]](xj)/2, we have for any interior

node that

êw(xj)− ew(x−j ) = ((C11 − 1/2)[[ew]] + C12[[eu]] + C13[[eθ]]

+C14[[eM ]] + C15[[eN ]] + C16[[eT ]])(xj).
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Therefore,

S(w) =
N−1∑
j=1

((C11 − 1/2)[[ew]] + C12[[eu]] + C13[[eθ]]

+ C14[[eM ]] + C15[[eN ]] + C16[[eT ]])(xj)ξ
+
Ψ(x−j )

− [[ew]](1) ξ+
Ψ(1−)

:= S1 + S2+S3 + S4 + S5 + S6 + S7,

where

S1 =
N−1∑
j=1

(C11 − 1/2)[[ew]](xj)ξ
+
Ψ(x−j ), S2 =

N−1∑
j=1

C12[[eu]](xj)ξ
+
Ψ(x−j ),

S3 =
N−1∑
j=1

C13[[eθ]](xj)ξ
+
Ψ(x−j ), S4 =

N−1∑
j=1

C14[[eM ]](xj)ξ
+
Ψ(x−j ),

S5 =
N−1∑
j=1

C15[[eN ]](xj)ξ
+
Ψ(x−j ), S6 =

N−1∑
j=1

C16[[eT ]](xj)ξ
+
Ψ(x−j ),

S7 = −[[ew]](1)ξ+
Ψ(1−).

Using assumption (3.4) and the approximation properties of Π+ given in Lemma 2.13, the

term S1 can be estimated as follows

|S1| ≤
( N−1∑
j=1

(C11 − 1/2)2[[ew]]2(xj)
)1/2( N−1∑

j=1

(ξ+
Ψ)2(x−j )

)1/2

≤
( N−1∑
j=1

c[[ew]]2(xj)
)1/2

Ch1/2|Ψ|1,Ωh

≤ Ch1/2|e|Ah ‖ψ‖0 .

In the last step we used the fact that C61 = −c and that Ψ′ = ψ.

Similarly, the assumptions C2
12, C2

13, C2
14, C2

15 ≤ c, and C16 = −c, yield

|Si| ≤ Ch1/2|e|Ah ‖ψ‖0
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for i = 2, . . . , 6.

The estimate of S7 is as follows

|S7| =
√
c |[[ew]](1)| · 1√

c
|ξ+

Ψ(1−)|

≤
(
c[[ew]]2(1)

)1/2
Ch1/2|Ψ|1

≤ Ch1/2|e|Ah ‖ψ‖0 .

This completes the proof.

Step 3: Estimate of R(ϕ).

Lemma 2.16. With the same notation as in Lemma 2.14 we have

|R(ϕ)| ≤ Chk+1/2 ‖e‖0 |G|k+1 ‖ψ‖0 .

Proof. Let xj ∈ E◦h be an interior node. By the definition of Ψ, on element Ij, Ψ(x) =

Ψ̃(x)− Ψ̃(xj−1), and on element Ij+1, Ψ(x) = Ψ̃(x)− Ψ̃(xj). Thus, Ψ(x−j ) = Ψ̃(xj)− Ψ̃(xj−1)

and Ψ(x+
j ) = Ψ̃(xj)− Ψ̃(xj) by the continuity of Ψ̃. Thus,

[[Ψ]](xj) = Ψ̃(xj)− Ψ̃(xj−1) = (1, ψ)Ij ≤
√
hj ‖ψ‖0,Ij

. (2.38)

For the boundary nodes,

[[Ψ]](x0) = −Ψ(x+
0 ) = −[Ψ̃(x0)− Ψ̃(x0)] = 0, (2.39)

and

[[Ψ]](xN) = Ψ(x−N) = Ψ̃(xN)− Ψ̃(xN−1)] = (1, ψ)IN ≤
√
hN ‖ψ‖0,IN

. (2.40)
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Now, by Lemma 2.6 and (2.38)-(2.40) we have

|R(ψ)| = |〈êϕ, [[Ψ]]〉Eh|

≤
( N∑
j=1

(êϕ(xj))
2
)1/2( N∑

j=1

[[Ψ]]2(xj)
)1/2

≤ Chk ‖e‖0 |G|k+1

( N∑
j=1

hj ‖ψ‖2
0,Ij

)1/2

≤ Chk+1/2 ‖e‖0 |G|k+1 ‖ψ‖0 .

This completes the proof

Step 4: Estimate of Π+Ψ.

Lemma 2.17. With the same notation as in Lemma 2.14 we have

∥∥Π+Ψ
∥∥

0
≤ Ch ‖ψ‖0 .

Proof. Since, Π+Ψ = Ψ − ξ+
Ψ , we only need an estimate of ‖Ψ‖0. On an arbitrary element

Ij ∈ Ωh we have, by the definition of Ψ, that

‖Ψ‖0,Ij
=
∥∥Ψ−Ψ(x+

j−1)
∥∥

0,Ij
since Ψ(x+

j−1) = 0,

=
∥∥Ψ− Π+

0 Ψ
∥∥

0,Ij

= Chj|Ψ|1,Ij .

Here, Π+
0 is the projection operator Π+ with k = 0, and in the last step we made use of the

approximation properties of Π+
0 given in Lemma 2.13. Thus, adding over all elements, we

get

‖Ψ‖0 ≤ Ch|Ψ|1 = Ch ‖Ψ′‖0 = Ch ‖ψ‖0 .

This completes the proof.



47

Step 5: Estimate of ‖eϕ‖0.

Lemma 2.18. We have, for any ϕ ∈ {T,N,M, θ, u, w}, that

‖eϕ‖2
0 ≤ Chk+1|ϕ|k+1 ‖e‖0 + C(h+ hk+1/2|G|k+1) ‖e‖2

0 .

Proof. We only show the details of how to estimate ‖ew‖0, the proofs for the remaining

variables follow similar lines. Taking ψ = ew in the representation formula (2.37a) we get

‖ew‖2
0 = −((ξ+

w )′, ξ+
Ψ)Ωh + (R− S)(w) + (eθ + κeu − d2eT ,Π

+Ψ)Ωh (2.41)

with the notation used in Lemma 2.14. By the approximation properties of Π+ we have

∥∥(ξ+
w )′
∥∥

0
≤ Chk|w|k+1 ≤ Chk|ϕ|k+1,

and ∥∥ξ+
Ψ

∥∥
0
≤ Ch|Ψ|1 = Ch ‖ew‖0 ≤ Ch ‖e‖0

since Ψ′ = ψ = ew. Thus, by Cauchy-Schwarz inequality,

|((ξ+
w )′, ξ+

Ψ)Ωh| ≤ Chk+1|ϕ|k+1 ‖e‖0 . (2.42)

By Lemma 2.15

|S(w)| ≤ Ch1/2|e|Ah ‖ew‖0 ≤ Ch1/2|e|Ah ‖e‖0 ,

and hence by Lemma 2.5 we have

|S(w)| ≤ Chk+1 ‖e‖0 |ϕ|k+1 + Ch ‖e‖2
0 . (2.43)

By Lemma 2.16

|R(w)| ≤ Chk+1/2 ‖e‖0 |G|k+1 ‖ew‖ ≤ Chk+1/2 ‖e‖2
0 |G|k+1. (2.44)
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By Lemma 2.17 and Cauchy-Schwarz inequality we have

|(eθ + κeu − d2eT ,Π
+Ψ)Ωh| ≤ (‖eθ‖0 + ‖κeu‖0 +

∥∥d2eT
∥∥

0
) · Ch ‖ew‖0

≤ Ch ‖e‖2
0 ,

(2.45)

where we have used the boundedness of κ, the fact that d < 1, and that ‖eϕ‖0 ≤ ‖e‖0 for

any ϕ ∈ {T, θ, u, w}.

Inserting the estimates (2.42)–(2.45) into (2.41) yields the desired estimate.

2.3.6 Proof of Theorem 2.3

Applying the estimate in Lemma 2.18 for all ϕ ∈ {T,N,M, θ, u, w}, and adding the resulting

estimates we get that

‖e‖2
0 ≤ Chk+1|ϕ|k+1 ‖e‖0 + C(h+ hk+1/2|G|k+1) ‖e‖2

0 .

Assuming h is small enough so that

C(h+ hk+1/2|G|k+1) ≤ α < 1

for some constant α, we see that

‖e‖2
0 ≤ Chk+1|ϕ|k+1 ‖e‖0 .

Canceling ‖e‖0 on both sides yields the estimate (2.21).

The error estimate in the energy seminorm, namely, (2.20) now follows from inserting

(2.21) into the estimate in Lemma 2.5.

This finishes the proof of Theorem 2.3.

2.3.7 Proof of Theorem 3.1

This is a simple implication of Lemma 2.6 and Theorem 2.3.
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2.4 Numerical Results

In this section, we display numerical results verifying our theoretical findings. We solve the

equations (2.2)–(2.5) with κ ≡ 1, together with boundary conditions w = u = θ = 0 at

∂Ω. Although, the theory has been carried out for variable curvature, we take a constant

κ so that we can compute the exact solution and produce history of convergence tables.

This choice corresponds to a circular arch of thickness d. To verify that the DG method is

locking-free, d is taken to be 10−1, 10−4, and finally decreased down to 10−8. Observe that,

since this parameter only appears as d2 in the model, from a computational perspective the

last choice is equivalent to the limiting case in which we consider an arch of thickness zero.

We take uniform loading in arc length, namely, p = q = 1 in Ω.

The DG method is defined by the weak formulation (2.2) whose numerical traces are

given by the formulas (4.2)–(2.5) which are obtained by setting

C16 = C25 = C34 = C43 = C52 = C61 = −1

for all x in Eh, except C16 = C25 = C34 = 0 on ∂Ω, and setting all the other coefficients to

zero.

We display our results in Tables 1 through 3. Therein k indicates the polynomial degree

we used to define the DG method, and “mesh = i” means we employed a uniform mesh

with 2i elements. We also display the numerical orders of convergence which are computed

as follows. Let e(i) denote the error where a mesh with 2i elements have been used to

obtain the DG solution. The approximate order of convergence, ri, at the level i is defined

as ri = log(e(i− 1)/e(i))/ log 2.

We see that the optimal rates of convergence in L2-norm and the k+1/2-order convergence
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Table 1: History of convergence in the energy seminorm.

d = 10−1 d = 10−4 d = 10−8

k mesh |e|Ah order |e|Ah order |e|Ah order

7 1.04E-01 0.39 8.63E-02 0.44 8.63E-02 0.44

0 8 7.78E-02 0.42 6.25E-02 0.47 6.25E-02 0.47

9 5.70E-02 0.45 4.47E-02 0.48 4.47E-02 0.48

6 2.58E-04 1.49 1.73E-04 1.49 1.73E-04 1.49

1 7 9.17E-05 1.50 6.12E-05 1.50 6.12E-05 1.50

8 3.25E-05 1.50 2.17E-05 1.50 2.17E-05 1.50

6 9.43E-07 2.47 7.24E-07 2.47 7.24E-07 2.47

2 7 1.68E-07 2.49 1.29E-07 2.49 1.29E-07 2.49

8 2.99E-08 2.49 2.29E-08 2.49 2.29E-08 2.49

5 6.64E-09 3.49 4.72E-09 3.49 4.72E-09 3.49

3 6 5.90E-10 3.49 4.18E-10 3.49 4.18E-10 3.49

7 5.22E-11 3.50 3.71E-11 3.50 3.71E-11 3.50
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Table 2: History of convergence in the L2-norm.

d = 10−1 d = 10−4 d = 10−8

k mesh ‖e‖0 order ‖e‖0 order ‖e‖0 order

8 2.32E-01 0.66 4.77E-02 0.88 4.77E-02 0.88

0 9 1.34E-01 0.79 2.49E-02 0.94 2.49E-02 0.94

10 7.27E-02 0.88 1.27E-02 0.97 1.27E-02 0.97

7 2.41E-06 2.09 1.58E-06 2.02 1.58E-06 2.02

1 8 5.92E-07 2.03 3.94E-07 2.01 3.94E-07 2.01

9 1.47E-07 2.01 9.81E-08 2.00 9.81E-08 2.00

6 5.31E-08 2.98 4.08E-08 2.98 4.08E-08 2.98

2 7 6.67E-09 2.99 5.13E-09 2.99 5.13E-09 2.99

8 8.37E-10 3.00 6.43E-10 2.99 6.44E-10 2.99

5 4.58E-10 4.01 3.25E-10 4.01 3.25E-10 4.01

3 6 2.85E-11 4.01 2.02E-11 4.01 2.02E-11 4.01

7 1.78E-12 4.00 1.26E-12 4.00 1.26E-12 4.00
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Table 3: History of convergence of the numerical traces.

d = 10−1 d = 10−4 d = 10−8

k mesh ‖ê‖L∞ order ‖ê‖L∞ order ‖ê‖L∞ order

8 2.32E-01 0.66 4.55E-02 0.88 4.55E-02 0.88

0 9 1.34E-01 0.79 2.38E-02 0.94 2.38E-02 0.94

10 7.25E-02 0.88 1.22E-02 0.97 1.22E-02 0.97

6 3.70E-06 3.02 3.83E-07 3.03 3.83E-07 3.03

1 7 4.60E-07 3.01 4.74E-08 3.02 4.74E-08 3.02

8 5.72E-08 3.01 5.89E-09 3.01 5.89E-09 3.01

6 5.35E-12 4.94 6.04E-12 4.96 6.04E-12 4.96

2 7 1.71E-13 4.97 1.91E-13 4.98 1.91E-13 4.98

8 5.40E-15 4.98 6.02E-15 4.99 6.02E-15 4.99

6 4.79E-18 7.06 4.98E-20 7.72 4.98E-20 7.72

3 7 3.66E-20 7.03 2.62E-22 7.57 2.62E-22 7.57

8 2.82E-22 7.02 1.55E-24 7.40 1.55E-24 7.40
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in the energy seminorm predicted by Theorem 2.3 ore indeed achieved. The results in Table

1 also shows that the estimate 2.20 is actually sharp. We also see from Table 3 that all

the numerical traces superconverge with order 2k + 1 at the nodes of the mesh, in perfect

agreement with Theorem 3.1.

As predicted by our error estimates in Section 4.5 the DG method is completely robust

with respect to the thickness of the arch, and the method is free from locking.

Next, we display an example where we compute the DG solution where the curvature

of the arch, κ = κ(x), is variable. Since computing the closed form of the exact solution

to (1.3) is impossible for the parabolic arch we will describe, we only display a plot of the

undeformed configuration of the arch, and its deformed configuration after the application

of the loads The undeformed arch is given by the formula y(x) = 1− x2 for x ∈ [−1, 1]. Its

arc length parametrization is then

s(x) =

ˆ x

−1

√
1 + 4t2 dt.

The curvature at x is κ(x) = −2/(1 + 4x2)3/2. Thus, the curvature at the arch length s is

κ(s) = − 2

(1 + 4x2)3/2
, s ∈ [0, L].

Here, L = s(1) is the total arc length of the arch. We consider an arch of thickness d = 0.1.

The tangential and transverse loads are taken, respectively, as

p(s) =
4x(s)

1 + 4x2(s)
, q(s) =

−10

1 + 4x2(s)
.

A simple computation shows that these correspond to a slight scaling of an arch loaded

uniformly in horizontal direction. We see from Figure 3 that the total displacement produced

by the DG approximation seems to be reasonable.
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Figure 3: A parabolic arch. Undeformed configuration (top curve) and the DG solution after

the application of the loads (bottom curve).

2.5 Concluding Remarks

We have devised a general family of DG methods for a Naghdi type arch model, and provided

conditions under which the DG approximation is well defined. We then restricted ourselves

to a particular subfamily of DG methods, and proved that the approximate solution con-

verges optimally for all the unknowns. We have also shown that these methods are free from

shear locking since the error estimates are independent of the thickness of the arch. A su-

perconvergence property of the numerical traces was also proved. All of these results can be

considered as extensions of those for DG methods for Timoshenko beams studied in [20] and

[15].

A rightful criticism for the methods studied in this paper is the proliferation of the number

of degrees of freedom involved in the DG formulation. Such a criticism can be removed by

considering the so-called hybridizable DG (HDG) methods which allows the elimination of

the internal degrees of freedom from the final linear system and obtaining an equivalent

formulation only in terms of the nodal degrees of freedom for only three of the unknowns.
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Celiker et al. carried out the details of such a simplification in the context of DG methods for

Timoshenko beams, see [19] and [18]. Therein they have devised and analyzed a wide class of

HDG methods for Timoshenko beams and they showed that they are optimally convergent

and are free from shear locking.
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3 Element-by-element post-processing

3.1 Introduction

In chapter 2, a family of locking-free discontinuous Galerkin (DG) methods for a Naghdi-

type arch model was introduced. They have proved that the approximation converges with

order k+ 1 when polynomials of degree k are used. In this section, we construct an element-

by-element post-processing that converges remarkably faster.

This post-processing is based on the fact that a superconvergence phenomenon takes

place at the nodes of the mesh. Indeed, the numerical traces of the DG method converge

to the nodal values of the exact solution with order 2k + 1 when polynomials of degree k

are used to compute the DG approximation, see [42]. The main goal of this paper is to

exploit this phenomenon to post-process the DG solution element-by-element and obtain a

better solution which superconverges to the exact solution with order 2k+ 1 in the L2-norm

throughout the domain rather than at merely some isolated points of the mesh.

A similar superconvergent post-processing result has been proved for DG methods for

convection-diffusion problems in [51]. Based on the superconvergence result proved therein,

Cockburn and Ichikawa [52] devised a post-processing for the approximation of linear func-

tionals which is superconvergent of order 4k + 1. In [16] Celiker and Cockburn designed a

post-processing for DG methods for Timoshenko beams which is superconvergent of order

2k+ 1 in the L∞-norm throughout the computational domain. This result was based on the

numerical observation that the numerical traces of the DG approximation for Timoshenko

beams are also superconvergent of order 2k + 1 at the nodes of the mesh. Shortly later, the

superconvergence of the numerical traces was put on a firm mathematical ground in [20].
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As we will describe below, the Timoshenko beam model can be viewed as a special case

of the Naghdi arch model where the beam is considered as an arch with zero curvature. The

post-processing we display in this paper is thus inspired by the one introduced in [16]. Despite

this close similarity, the coupling of some of the unknowns in the Naghdi arch model renders

both the post-processing and its error analysis more involved. This is especially the case for

the latter because it requires the analysis of a linear system of initial value problems whose

solution is approximated by using approximate data. This is the main reason why we prove

an L2-error estimate for the post-processed approximation unlike the L∞-error estimate for

the Timoshenko beam post-processing. Notwithstanding, it is possible to prove an L∞-error

estimate at the expense of requiring high order regularity, following, for example, [53, 54].

3.2 Post-processing

Next, we describe the post-processing

ϕ∗h := (T ∗h , N
∗
h ,M

∗
h , θ

∗
h, u

∗
h, w

∗
h)

of the approximate solution ϕh = (Th, Nh,Mh, θh, uh, wh) provided by the DG method. It is

based on the fact that the numerical traces superconverge at each of the nodes with order

2k + 1. To state this result we need to introduce some notation. We define the error of

approximation as

eϕ = ϕ− ϕh, êϕ = ϕ− ϕ̂h,

for any ϕ ∈ {T,N,M, θ, u, w}, and set

e = ϕ−ϕh, ê = ϕ− ϕ̂h.
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Here

ϕ := (T,N,M, θ, u, w)

denotes the exact solution of the governing equations (1.3). The error in the numerical traces

of ϕh is defined as

‖êϕ‖∞ := ‖êϕ‖`∞(Eh) := max
xj∈Eh

|êϕ(xj)|,

and the global error in the numerical traces is set to be

‖ê‖∞ := max
ϕ∈{T,N,M,θ,u,w}

‖êϕ‖∞ .

We denote by ‖ · ‖s,D and | · |s,D the usual norm and seminorm, respectively, in the Sobolev

space Hs(D) where D is any subset of Ωh. We drop the subindex D whenever D = Ωh or

D = Ω. We set, for u = (u1, u2, u3, u4, u5, u6),

|u|s,D := (|u1|2s,D + |u2|2s,D + |u3|2s,D + |u4|2s,D + |u5|2s,D + |u6|2s,D)1/2.

In [42] the following wide family of DG methods has been analyzed. They are defined by

setting the functions Cij as follows.

C16 = C25 = C34 = C43 = C52 = C61 = −c (3.1)

for all x in Eh, except

C16 = C25 = C34 = 0 on ∂Ω. (3.2)

Here, c > 0 is any constant which is independent of the mesh size h. We assume that

C2
ij ≤ c for all i, j = 1, . . . , 6, (3.3)

and that

(Cii(x)− 1/2)2 ≤ c for all i = 1, . . . , 6. (3.4)
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Such a choice can be obtained, for example, by setting

C16 = C25 = C34 = C43 = C52 = C61 = −1

for all x in Eh, except

C16 = C25 = C34 = 0 on ∂Ω,

and setting all the remaining Cij’s to zero.

We are now ready to state the superconvergence result for the numerical traces.

Theorem 3.1. ([42]) Let k ≥ 0 be a polynomial degree and suppose that ϕ belongs to

[Hk+1(Ωh)]
6. Let ϕh be the DG solution defined by the weak formulation (2.2), and the

numerical traces (4.2)–(2.5) where the functions Cij are defined so as to satisfy (3.1)–(3.4).

Then,

‖ϕ− ϕ̂h‖∞ ≤ C h2k+1|ϕ|k+1 (3.5)

for some constant C independent of h and d.

Our post-processing is defined in an element-by-element fashion as follows. On the ele-

ment Ij = (xj−1, xj), 1 ≤ j ≤ N, we define the post-processed solution

ϕ∗h = (T ∗h , N
∗
h ,M

∗
h , θ

∗
h, u

∗
h, w

∗
h)

as the element of the space [P2k(Ij)]
6 in four simple steps as follows.

Step 1: Compute T ∗h and N∗h by solving

−(T ∗h , v
′
1)Ij + T ∗h (x−j )v1(x−j ) + (κN∗h , v1)Ij = (q, v1)Ij + T̂h(xj−1)v1(x+

j−1), (3.6a)

−(N∗h , v
′
2)Ij +N∗h(x−j )v2(x−j )− (κT ∗h , v2)Ij = (p, v2)Ij + N̂h(xj−1)v2(x+

j−1), (3.6b)
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for all v1 and v2 in P2k(Ij).

Step 2: Compute M∗
h by solving

−(M∗
h , v

′
3)Ij +M∗

h(x−j )v3(x−j ) = (T ∗h , v3)Ij + M̂h(xj−1)v3(x+
j−1), (3.7)

for all v3 in P2k(Ij).

Step 3: Compute θ∗h by solving

−(θ∗h, v
′
4)Ij + θ∗h(x

−
j )v4(x−j ) = (M∗

h , v4)Ij + θ̂h(xj−1)v4(x+
j−1), (3.8)

for all v4 in P2k(Ij).

Step 4: Compute u∗h and w∗h by solving

−(u∗h, v
′
5)Ij + u∗h(x

−
j )v5(x−j )− (κw∗h, v5)Ij

= d2(N∗h , v5)Ij + ûh(xj−1)v5(x+
j−1),

(3.9a)

−(w∗h, v
′
6)Ij + w∗h(x

−
j )v6(x−j ) + (κu∗h, v6)Ij

= d2(T ∗h , v6)Ij − (θ∗h, v6)Ij + ŵh(xj−1)v6(x+
j−1),

(3.9b)

for all v5 and v6 in P2k(Ij).

Next, we state a theorem about the existence and uniqueness of the post-processed solu-

tion.

Theorem 3.2. Consider the post-processing defined by (3.6)–(3.9) on an arbitrary element

Ij ∈ Ωh. These equations define a unique solution ϕ∗h = (T ∗h , N
∗
h ,M

∗
h , θ∗h, u

∗
h, w

∗
h) provided

that the condition (2.10) is satisfied whenever κ is not identically equal to a constant on Ij.

Remark. If κ is identically constant, i.e. the arch is locally circular or flat, on an element

Ij then the condition (2.10) is not necessary, and the post-processing automatically defines

a unique solution.
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It is not difficult to see that the equations (3.6)–(3.9) are the discretization by the classical

DG method [55, 56] of the following system of initial value problems

(T ∗)′ + κN∗ = q in Ij, T ∗(xj−1) = T̂h(xj−1), (3.10a)

(N∗)′ − κT ∗ = p in Ij, N∗(xj−1) = N̂h(xj−1), (3.10b)

(M∗)′ = T ∗ in Ij, M∗(xj−1) = M̂h(xj−1), (3.10c)

(θ∗)′ = M∗ in Ij, θ∗(xj−1) = θ̂h(xj−1), (3.10d)

(u∗)′ − κw∗ = d2N∗ in Ij, u∗(xj−1) = ûh(xj−1), (3.10e)

(w∗)′ + κu∗ = d2T ∗ − θ∗ in Ij, w∗(xj−1) = ŵh(xj−1). (3.10f)

Its step-by-step nature reveals that when defining the post-processing (3.6)–(3.9) we made

use of the fact that the system of equations (3.10) is partially decoupled in the following

sense. It is possible to solve for T ∗ and N∗ using only the equations (3.10a) and (3.10b).

Then we can insert T ∗ into (3.10c) and solve for M∗, and then insert M∗ into (3.10d) to

solve for θ∗. Finally, we may insert N∗ into (3.10e), and T ∗ and θ∗ into (3.10f), and solve for

u∗ and w∗.

Based on the above observation, we can rewrite (3.10) in a single framework as follows:

(ϕ∗`)
′ − A`ϕ∗` = f ∗` in Ij, ϕ∗`(xj−1) = ϕ̂`(xj−1) (3.11)

for ` = 1, 2, 3, 4. Here,

ϕ∗1 :=

 T ∗

N∗

 , ϕ∗2 := [M∗], ϕ∗3 := [ θ∗], ϕ∗4 :=

 u∗

w∗

 ,
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and similarly for ϕ̂∗` ,

A1 :=

 0 −κ

κ 0

 , A2 = [0], A3 = [0], A4 =

 0 κ

−κ 0

 ,
f ∗1 =

 q

p

 , f ∗2 := [T ∗], f ∗3 := [M∗], f ∗4 :=

 d2N∗

d2T ∗ − θ∗

 .
Consequently, we can reformulate the post-processing defined by the equations (3.6)–

(3.9) in the following unified framework. Find (ϕ∗1,h,ϕ
∗
2,h,ϕ

∗
3,h,ϕ

∗
4,h, ) ∈ [P2k(Ij)]

2×P2k(Ij)×

P2k(Ij)× [P2k(Ij)]
2 such that

−(ϕ∗`,h,v
′
`)Ij +ϕ∗`,h(x

−
j ) · v`(x−j )− (A`ϕ

∗
`,h,v`)Ij

= (f ∗` ,v`)Ij + ϕ̂`,h(xj−1) · v`(x+
j−1)

(3.12)

for all (v1,v2,v3,v4) ∈ [P2k(Ij)]
2 × P2k(Ij) × P2k(Ij) × [P2k(Ij)]

2. Here we have used the

obvious definitions of ϕ∗`,h and ϕ̂`,h, and A` and f ∗` are the same as above. We have also

employed the following notation. For two vector-valued functions ϕ and v in [L2(Ij)]
m

(ϕ,v)Ij :=

ˆ
Ij

ϕ · v =
m∑
i=1

ˆ
Ij

ϕivi,

and “ · ” denotes the usual dot product of two vectors in Rm.

Next, we state our main result.

Theorem 3.3. Under the hypotheses of Theorem 3.1, the error of the post-processed approx-

imation is such that

‖ϕ−ϕ∗h‖0,Ωh
≤ C h2k+1 (3.13)

for some constant C independent of h and d.
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Remark. This theorem extends earlier results by Celiker and Cockburn for DG methods

for convection-diffusion problems in [51], and for Timoshenko beams in [16]. The main dif-

ficulty here arises from considering an arbitrary geometry for the arch which results in the

appearance of the additional variables u and N in the governing equations. Moreover, the

transverse displacement u is coupled with the tangential displacement w, and the shear stress

T is coupled with the membrane stress N , as can be seen from (1.3a)–(1.3b) and (1.3e)–(1.3f),

respectively. Consequently, for the post-processing we have to solve a system of equations,

rather than a set of scalar equations, as is evident from (3.11). This renders the analysis of

the post-processing of DG methods for arches considerably more involved than that of the

DG methods for beams. Let us note that extending a result for beams to one for arches is

analogous to extending a result for plates to one for shells and hence poses several challenges.

Remark. Since the constant C appearing in the estimate (3.13) is independent of the thick-

ness parameter d, the post-processed solution is free from shear and membrane locking.

Remark. The estimate (3.13) shows that the post-processed approximation converges with

order 2k+ 1 throughout the computational domain. This should be contrasted with the fact

that before post-processing the approximation converges with the optimal order or k + 1.

Hence, for k ≥ 1, the order of convergence is almost doubled by the local post-processing.

Remark. The value of the increase in the convergence order mentioned in the above remark

becomes more evident if we calculate the computational cost of this post-processing. Since

it is performed in an element-by-element fashion the total cost is N times the cost on one

element. Therefore it is extremely inexpensive. More explicitly, Steps 1 and 4 require solving

linear systems of order 2(2k + 1), and Steps 2 and 3 can be performed by inverting a single
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linear system of order 2k + 1. It is thus easy to see that the computational cost of the post-

processing is negligible when compared to that of computing the original DG solution which,

in general, requires solving a linear system of order 6N(k + 1).

3.3 Proofs

In this section we give detailed proofs of our results in Section 3.2. We begin with the proof

of Theorem 3.2. It is based on the following lemma which was proved in [42]. We also provide

a proof here for the sake of completeness.

Lemma 3.4. Let r be a non-negative integer. Let f, g ∈ Pr([a, b]) be such that

f(a) = g(a) = 0. (3.14)

Suppose that

Pr(g
′ + αf) = 0 and Pr(f

′ − αg) = 0, (3.15)

where α is a function in L∞([a, b]) and Pr denotes the L2-orthogonal projection into Pr([a, b]).

Then f = g = 0 in [a, b] if

(a) α is identically equal to a constant, or

(b) α is not identically equal to a constant and

b− a ≤ 1

2 ‖α− α‖L∞([a,b])

(3.16)

where α denotes the average value of α over the interval [a, b].
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Proof. By (A.3), we have that

g′ + Pr(αf) = 0, (3.17a)

f ′ − Pr(αg) = 0, (3.17b)

pointwise on [a, b]. Multiplying (3.17a) by g and (3.17b) with f we get

1

2
(g2)′ + gPr(αf) = 0,

1

2
(f 2)′ − fPr(αg) = 0,

and hence

1

2
(g2 + f 2)′ = fPr(αg)− gPr(αf) = fPr((α− α)g)− gPr((α− α)f) (3.18)

since −fPr(αg)+gPr(αf) = 0 because α is a constant and f, g ∈ Pr([a, b]). Integrating both

sides of (3.18) from a to an arbitrary x in [a, b], and using (A.1), we obtain

1

2
(g2 + f 2)(x) = T1(x) + T2(x)

where

T1(x) =

ˆ x

a

f(s)Pr((α− α)g)(s) ds, T2(x) = −
ˆ x

a

g(s)Pr((α− α)f)(s) ds.

By Cauchy-Schwarz inequality

|T1(x)| ≤ ‖f‖L2([a,b]) ‖(α− α)g‖L2([a,b])

≤ ‖α− α‖L∞([a,b]) ‖f‖L2([a,b]) ‖g‖L2([a,b]) .

Similarly,

|T2(x)| ≤ ‖α− α‖L∞([a,b]) ‖f‖L2([a,b]) ‖g‖L2([a,b]) ,

and hence

1

2
(g2 + f 2)(x) ≤ 2 ‖α− α‖L∞([a,b]) ‖f‖L2([a,b]) ‖g‖L2([a,b]) .



66

Integrating both sides over x ∈ [a, b] implies

1

2
(‖f‖2

L2([a,b]) + ‖g‖2
L2([a,b])) ≤ 2(b− a) ‖α− α‖L∞([a,b]) ‖f‖L2([a,b]) ‖g‖L2([a,b])

≤ (b− a) ‖α− α‖L∞([a,b]) (‖f‖2
L2([a,b]) + ‖g‖2

L2([a,b]))

by Young’s inequality. Thus,

[
1

2
− (b− a) ‖α− α‖L∞([a,b])

]
(‖f‖2

L2([a,b]) + ‖g‖2
L2([a,b])) ≤ 0. (3.19)

Now, if α is identically constant on [a, b] then α = α and the result follows since in such a

case (A.7) implies ‖f‖2
L2([a,b]) + ‖g‖2

L2([a,b]) = 0. If α is not identically constant on [a, b] then

we reach the same conclusion by (A.4).

This completes the proof.

We are now ready to prove Theorem 3.2.

Proof. (Theorem 3.2) We only prove the existence and uniqueness of Step 1 of the post-

processing. Steps 2 and 3 are well defined since they are nothing but the classical DG method

applied to first order problems on a single element. Step 4 is almost identical to Step 1.

Due to the linearity of the problem it suffices to show that the only solution to (3.6) with

p = q = 0 in Ij,

and

T̂h(xj−1) = N̂h(xj−1) = 0,

is

T ∗h = N∗h = 0 in Ij.
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In this case, the equations (3.6) simplify to

−(T ∗h , v
′
1)Ij + T ∗h (x−j )v1(x−j ) + (κN∗h , v1)Ij = 0, (3.20a)

−(N∗h , v
′
2)Ij +N∗h(x−j )v2(x−j )− (κT ∗h , v2)Ij = 0, (3.20b)

Taking v1 = T ∗h in (3.20a) and v2 = N∗h in (3.20b), and adding the resulting equations we

get

−(T ∗h , (T
∗
h )′)Ij + (T ∗h (x−j ))2 − (N∗h , (N

∗
h)′)Ij + (N∗h(x−j ))2 = 0.

This implies,

1

2

[
(T ∗h )2(x+

j−1) + (T ∗h )2(x−j )
]

+
1

2

[
(N∗h)2(x+

j−1) + (N∗h)2(x−j )
]

= 0.

Hence,

T ∗h (x+
j−1) = T ∗h (x−j ) = N∗h(x+

j−1) = N∗h(x−j ) = 0. (3.21)

This further simplifies (3.20) to

−(T ∗h , v
′
1)Ij + (κN∗h , v1)Ij = 0,

−(N∗h , v
′
2)Ij − (κT ∗h , v2)Ij = 0,

Upon a simple integration by parts and invoking (3.21) we get that

((T ∗h )′ + κN∗h , v1)Ij = 0, and ((N∗h)′ − κT ∗h , v2)Ij = 0.

for all v1 and v2 in Pr([a, b]). In other words,

Pr((T
∗
h )′ + κN∗h , v1) = 0, and Pr((N

∗
h)′ − κT ∗h , v2) = 0.

The result now follows from Lemma A.
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Next, we prove Theorem 3.3. Recall that we were able to put our post-processing into

a single framework given by (3.12) as an approximation to the first-order system of ODEs

(3.11). This motivates the study of the following more general initial value problem

u′(x)− A(x)u(x) = f(x) for x ∈ K = (a, b),

u(a) = ua

(3.22)

where u : [a, b]→ Rm, for some integer m ≥ 1, is the unknown function, and f : [a, b]→ Rm

is a given function. We assume that A is a given m×m matrix such that there exists a unique

solution to (3.22). Observe that such a condition is satisfied for the cases we are interested

in this paper.

Let r ≥ 0 be a polynomial degree and suppose that we approximate u by the function

uh ∈ [Pr(K)]m defined by requiring that the equation

−(uh,v
′)K + uh(b

−) · v(b−)− (Auh,v)K = (f ∗,v)K + u∗a · v(a+) (3.23)

holds for all v ∈ [Pr(K)]m. Here, f ∗ is an approximation to f such that

‖f − f ∗‖0,K ≤ C hr+1
K , (3.24)

and u∗a is an approximation to ua such that

|ua − u∗a| ≤ C hr+1
K (3.25)

where hK = b − a. The magnitude of the vector v ∈ Rm is denoted by |v|, and we have

extended the definitions of Sobolev norms and seminorms to vector-valued functions in an

obvious fashion. We assume that the matrix A is such that the method (3.23) defines a unique

solution. We also suppose that all the components of the matrix A, and of the vector-valued

functions f and f ∗ are in Hr+1(K).
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It is not difficult to see that the proof of Theorem 3.3 follows from a successive application

of the following theorem which provides an optimal error estimate for the method defined

by (3.23).

Theorem 3.5. Suppose that we approximate the solution of the initial value problem (3.22)

by the method (3.23). Then, for sufficiently small hK, we have the error estimate

‖u− uh‖0,K ≤ Chr+1
K (3.26)

where C is a constant independent of hK.

Remark. More general DG methods were introduced and analyzed for the initial value

problem (3.22) by Delfour et al. in [57]. They have proved optimal error estimates as in

(3.26). The same problem has also been studied by Erikkson et al. in [53], and by Thomée

in [54]. They have proved optimal L∞ error estimates under more restrictive regularity

requirements. Moreover, their analysis is restricted to symmetric and positive definite A.

Remark. Observe that the method (3.23) differs from those studied in [57, 53, 54] in the

sense that we have to use approximate data f ∗ and u∗a since this is precisely what we need

for our purposes. Moreover, the analysis we provide in this paper is significantly different

from the ones that have appeared in the literature. More explicitly, we employ projection

operators tailored to the special structure of the method.

Next we describe these projection operators. For any ψ ∈ H1(K), the function π±ψ ∈

Pr(K) is defined on the interval K = [a, b] by

(ψ − π±ψ, v)K = 0 ∀v ∈ Pr−1(K), if r > 0, (3.27a)

(π−ψ)(b−) = ψ(b−), (π+ψ)(a+) = ψ(a+). (3.27b)
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The projection operators Π± acting on vector-valued functions ψ : K → Rm are defined by

(3.27) applied to each component function. Notwithstanding the fact that these projection

operators have been widely used for the analysis of DG methods applied to various problems,

[14, 16, 51, 58, 59, 60, 28, 61, 63] in our analysis we uncover a new superconvergence property

of the projection of the error which, to the best of our knowledge, has not appeared in the

literature for the analysis of DG methods for the initial value problem (3.22).

The approximation properties of Π±, namely, that there exists a constant C independent

of ψ such that ∥∥ψ −Π±ψ
∥∥

0,K
≤ Chs+1

k |ψ|s+1,K (3.28)

for any s ∈ [0, r], can be found in the references cited above. Theorem 3.5 follows from the

above approximation property, the triangle inequality

‖u− uh‖0,K ≤
∥∥u−Π−u

∥∥
0,K

+
∥∥Π−u− uh∥∥0,K

,

and the following superconvergence result for Π−eu.

Theorem 3.6. Suppose that hK is sufficiently small. Then, we have that

∥∥Π−eu∥∥0,K
≤ C h

r+3/2
K (3.29)

where C is a constant which is independent of hK. Moreover, if

|ua − u∗a| ≤ Ch
r+3/2
K , or ua = u∗a, (3.30)

then ∥∥Π−eu∥∥0,K
≤ C hr+2

K . (3.31)
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The proof of this theorem will be based on a duality argument. We thus begin with

introducing the dual problem for any given η : K = [a, b]→ Rm in L2(K):

ψ′ + ATψ = η in K, (3.32a)

ψ(b) = 0. (3.32b)

We have the following regularity for the solution of this problem.

Lemma 3.7. Let ψ be the solution of (4.10). Then

|ψ|1,K +
1

hK
‖ψ‖0,K ≤ C ‖η‖0,K , (3.33)

where the constant C is independent of the datum η.

Proof. By the basic theory of first order linear systems of differential equations we have, for

any σ ∈ [a, b], that

ψ(x) = Ψ(x)Ψ−1(σ)ψ(σ) + Ψ(x)

ˆ x

σ

Ψ−1(s)η(s) ds

where Ψ(·) is the fundamental matrix associated with −AT . Thus, due to the zero boundary

condition at x = b, (4.10b),

ψ(x) = Ψ(x)

ˆ x

b

Ψ−1(s)η(s) ds.

The boundedness of Ψ and Ψ′ imply

|ψ|1,K ≤ C|G|1,K and ‖ψ‖0,K ≤ C ‖G‖0,K

where G :=
´ x
b
η(s) ds. The first part of the regularity estimate (4.11) then follows from

the fact that |G|1,K = ‖G′‖0,K = ‖η‖0,K . To prove the second part, we get, by a simple
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application of Cauchy-Schwarz inequality that

‖ψ‖2
0,K ≤ C ‖G‖2

0,K = C

ˆ b

a

[ˆ x

b

η(s)ds

]2

dx

≤ C

ˆ b

a

∣∣∣ˆ x

b

ds
∣∣∣∣∣∣ˆ x

b

|η(s)|2ds
∣∣∣ dx

≤ C hK ‖η‖2
0,K

ˆ b

a

dx

= C h2
K ‖η‖2

0,K .

Hence, ‖ψ‖0,K ≤ C hK ‖η‖0,K . This finishes the proof.

As expected, one of the main ingredients of our error analysis is an error equation.

Inserting the exact solution u of (3.22) into the DG formulation (3.23) we get

−(eu,v
′)K + eu(b−) · v(b−)− (Aeu,v)K = (f − f ∗,v)K + (ua − u∗a) · v(a+) (3.34)

for all v ∈ [Pr(K)]m. Note that the quantity on the right-hand side can be viewed as a

consistency error due to the fact that we are approximating the solution u of (3.22) by using

approximate data f ∗ and u∗a. If the data are exact, namely, f = f ∗ and u∗a = ua then we

recover a classical Galerkin orthogonality property.

The orthogonality property (3.27a) of the projection operator Π−, and some simple

algebraic manipulations yield an alternative form of (3.34) which is more amenable to our

analysis

−(Π−eu,v
′)K + (Π−eu)(b−) · v(b−)− (A ξ−u ,v)K − (AΠ−eu,v)K

= (f − f ∗,v)K + (ua − u∗a) · v(a+)

(3.35)

where we have introduced the notation

ξ±u := u−Π±u. (3.36)

Next, we state a technical lemma.
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Lemma 3.8. Consider the dual problem (4.10) and the method (3.23) approximating the

solution of (3.22). Then we have the following representation formula

(Π−eu, η)K =− (A ξ−u , ψ)K + (A ξ−u , ξ
+
ψ)K + (AΠ−eu, ξ

+
ψ)K

− (f − f ∗, Π+ψ)K − (ua − u∗a) · (Π+ψ)(a+).

(3.37)

We delay the proof of this lemma to the end of this section.

We are now ready to prove Theorem 4.4.

Proof. (Theorem 4.4) Setting η = Π−eu in (3.37) gives

∥∥Π−eu∥∥2

0,K
=

5∑
i=1

Ti (3.38)

where

T1 = −(Aξ−u , ψ)K ,

T2 = (A ξ−u , ξ
+
ψ)K ,

T3 = (AΠ−eu, ξ
+
ψ)K ,

T4 = −(f − f ∗, Π+ψ)K ,

T5 = −(ua − u∗a) · (Π+ψ)(a+).

An estimate of
∥∥Π−eu∥∥0,K

now follows by estimating Ti for i = 1, . . . , 5. By Cauchy-Schwarz

inequality we have

|T1| ≤
∥∥Aξ−u∥∥0,K

‖ψ‖0,K ≤ C
∥∥ξ−u∥∥0,K

‖ψ‖0,K

where we have used the regularity assumption on the matrix A, namely, that all component

of A are in Hr+1(K), and hence in L2(K). By the approximation properties, (3.28), of Π−,
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and the regularity of the dual problem, (4.11), we have that

|T1| ≤ C hr+1
K |u|r+1,K · ChK ‖η‖0,K

≤ C hr+2
K

∥∥Π−eu∥∥0,K

(3.39)

where we have absorbed |u|r+1,K in the constant C. Similarly,

|T2| ≤
∥∥Aξ−u∥∥0,K

∥∥ξ+
ψ

∥∥
0,K

≤ C hr+1
K |u|r+1,K · C hK |ψ|1,K

≤ C hr+2
K |u|r+1,K |ψ|1,K

≤ C hr+2
K

∥∥Π−eu∥∥0,K
,

(3.40)

and

|T3| ≤
∥∥AΠ−eu

∥∥
0,K

∥∥ξ+
ψ

∥∥
0,K

≤ C
∥∥Π−eu∥∥0,K

· C hK |ψ|1,K

≤ C hK
∥∥Π−eu∥∥0,K

|ψ|1,K

≤ C hK
∥∥Π−eu∥∥2

0,K
.

(3.41)

Note that by the continuity of the projection operator Π+ and the regularity, (4.11), of

the dual problem we have

∥∥Π+ψ
∥∥

0,K
≤ C ‖ψ‖0,K ≤ ChK ‖η‖0,K = ChK

∥∥Π−eu∥∥0,K
. (3.42)

An estimate on T4 now follows simply by the assumption (3.24). Indeed,

|T4| ≤ ‖f − f ∗‖0,K

∥∥Π+ψ
∥∥

0,K

≤ C hr+1
K · ChK

∥∥Π−eu∥∥0,K

≤ C hr+2
K

∥∥Π−eu∥∥0,K
.

(3.43)
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To estimate T5 we will use the inverse estimate

|(Π+ψ)(a+)| ≤
∥∥Π+ψ

∥∥
L∞(K)

≤ Ch
−1/2
K

∥∥Π+ψ
∥∥

0,K

which can be found, for example, in (p. 149 of) [34]. Now, using (3.42), we get

|(Π+ψ)(a+)| ≤ Ch
1/2
K

∥∥Π−eu∥∥0,K
. (3.44)

The estimate

|T5| ≤ C h
r+3/2
K

∥∥Π−eu∥∥0,K
. (3.45)

then follows from (3.44) and the assumption (3.25).

Inserting the estimates (3.39)–(3.41), (3.43), and (3.45) into (3.38) we obtain

∥∥Π−eu∥∥2

0,K
≤ Chr+2

K

∥∥Π−eu∥∥0,K
+ ChK

∥∥Π−eu∥∥2

0,K
+ Ch

r+3/2
K

∥∥Π−eu∥∥0,K

≤ Ch
r+3/2
K

∥∥Π−eu∥∥0,K
+ ChK

∥∥Π−eu∥∥2

0,K
.

If we assume that hK is small enough so that ChK < 1 then

∥∥Π−eu∥∥2

0,K
≤ Ch

r+3/2
K

∥∥Π−eu∥∥0,K

and the estimate (3.29) follows.

Observe that the loss of half a power of hK is caused only by the estimate of the term

T5. In particular, if (3.30) is satisfied then we recover the one-full-order-superconvergent

estimate (3.31). This finishes the proof.

It remains to prove Lemma 4.9.

Proof. (Lemma 4.9) By the definition, (4.10a), of ψ

(Π−eu, η)K = (Π−eu, ψ
′)K + (Π−eu, A

Tψ)K

= (Π−eu, ψ
′)K + (AΠ−eu, ψ)K

(3.46)
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Let us work on the first term on the right-hand side. By (3.36) we have

(Π−eu, ψ
′)K = (Π−eu, (ξ+

ψ)′)K + (Π−eu, (Π+ψ)′)K .

Integrating by parts on the first term on the right-hand side and using the definition, (3.27),

of Π+ we get

(Π−eu, ψ
′)K = (Π−eu)(b−) · ξ+

ψ(b−) − (Π−eu)(a+) · ξ+
ψ(a+)

− ((Π−eu)′, ξ+
ψ)K + (Π−eu, (Π+ψ)′)K

= (Π−eu)(b−) · ξ+
ψ(b−) + (Π−eu, (Π+ψ)′)K .

(3.47)

Taking v = Π+ψ in (3.35) we get

(Π−eu, (Π+ψ)′)K = (Π−eu)(b−) · (Π+ψ)(b−)

− (Aξ−u , Π+ψ)K − (AΠ−eu, Π+ψ)K

− (f − f ∗, Π+ψ)K − (ua − u∗a) · (Π+ψ)(a+).

Inserting this into (3.47) we get

(Π−eu, ψ
′)K =− (Aξ−u , Π+ψ)K − (AΠ−eu, Π+ψ)K

− (f − f ∗, Π+ψ)K − (ua − u∗a) · (Π+ψ)(a+)

where we have used the fact that

(Π−eu)(b−) · ξ+
ψ(b−) + (Π−eu)(b−) · (Π+ψ)(b−)

= (Π−eu)(b−) ·ψ(b−) by (3.36)

= 0 by (4.10b).
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Inserting the last identity into (3.46) we obtain

(Π−eu, η)K =− (Aξ−u , Π+ψ)K − (AΠ−eu, Π+ψ)K + (AΠ−eu, ψ)K

− (f − f ∗, Π+ψ)K − (ua − u∗a) · (Π+ψ)(a+)

=− (Aξ−u , Π+ψ)K + (AΠ−eu, ξ
+
ψ)K

− (f − f ∗, Π+ψ)K − (ua − u∗a) · (Π+ψ)(a+).

The identity (3.37) now follows since

(Aξ−u , Π+ψ)K = (Aξ−u , ψ)K − (Aξ−u , ξ
+
ψ)K

by (3.36).

3.4 Numerical Results

In this section, we display numerical results verifying our theoretical finding. We verify

numerically that the post-processing technique introduced in Section 3.2 results in a better

approximation which converges to the exact solution with order 2k+1 in the L2-norm inside

the elements, rather than merely at the nodes of the mesh. Finally, we show that this post-

processing does not deteriorate even when the parameter d is extremely small. The fact that

the original DG approximation converges with the optimal order k + 1 in the L2-norm and

with order 2k+1 at the nodes of the mesh have been proved and numerically verified in [42].

Thus we display only the history of convergence of the post-processed approximation.

In our experiments we consider two problems. In either problem we approximate the

solution of (1.3)-(1.4) subject to homogeneous boundary conditions, namely, we take

w0 = w1 = u0 = u1 = θ0 = θ1 = 0.
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In both examples we take κ ≡ 1 which corresponds to a circular arch. Although the theory

has been carried out for arches with arbitrary geometry and κ can be any L∞(Ωh) function

which satisfies the mild restriction (2.10), we have to consider a circular arch since we need to

compute the exact solution to the problem so that we can carry out a history of convergence

study. We first employ the DG method defined by (2.2) with the numerical traces given by

(4.2)-(2.5) which are obtained by setting

C16 = C25 = C34 = C43 = C52 = C61 = −1

for all x in Eh, except C16 = C25 = C34 = 0 on ∂Ω, and setting all the other coefficients to

zero. Observe that these coefficients satisfy the conditions provided by (3.1)-(3.4), and hence

the numerical traces of the DG solution are superconvergent of order 2k + 1 by Theorem

3.1. The post-processing is then computed in an element-by-element fashion as described

in Steps 1–4 of Section 3.2. The only difference between the two problems arise from the

loading of the arch. In the first example we take

p ≡ q ≡ 1 in Ω

which corresponds to an arch which is loaded uniformly in both the transverse and tangential

directions. In the second example, we take

p ≡ 0, q ≡ d−2 in Ω

which corresponds to a so-called membrane arch. It has no tangential loads and is loaded

very strongly in the transverse direction. The transverse load is taken inversely proportional

to the square of the thickness of the arch due to the fact that the membrane arch is well-

known to become extremely stiff as d converges to zero, and it becomes impossible to observe
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meaningful displacements unless such large transverse loads are applied. We have observed

this phenomenon in our numerical experiments as well.

We display our numerical results in Tables 6 and 7. Therein k indicates the polynomial

degree we used to define the DG method, and “mesh = i” means we employed a uniform

mesh with 2i elements. This also means that the post-processed approximation is a piecewise

polynomial of degree at most 2k on each element. We display the numerical orders of conver-

gence which are computed as follows. Let ‖e∗(i)‖0 denote the L2(Ωh)-norm of the error where

a uniform mesh with 2i elements has been employed to obtain the DG approximation and its

post-processing. For brevity, rather than displaying the error for each individual unknown,

we display the total error defined as

‖e∗‖0 :=
(
‖e∗w‖2

0 + ‖e∗u‖2
0 + ‖e∗θ‖2

0 + ‖e∗M‖2
0 + ‖e∗N‖2

0 + ‖e∗T‖2
0

)1/2
.

The order of convergence, ri, at the level i is then defined as

ri =
log
(
‖e∗(i−1)‖0
‖e∗(i)‖0

)
log 2

.

In light of Theorem 3.3, we expect this quantity to approach 2k+1 in the asymptotic regime.

Furthermore, in order to verify that the quality of the post-processed approximation does

not deteriorate as d becomes very small, we take d = 10−1 and then decrease it down to

d = 10−8.

In Tables 6 and 7 we display our numerical results for the first and the second examples,

respectively. In both cases we clearly see that the post-processed approximation converges

with order 2k+ 1 to the exact solution as predicted by Theorem 3.3. Moreover, these results

do not deteriorate as the parameter d becomes extremely small and the convergence of the

post-processed solution is robust with respect to d. This verifies the theoretically expected



80

Table 4: History of convergence of the post-processed DG approximation for the first problem.

d = 10−1 d = 10−4 d = 10−8

k mesh ‖e∗‖0 order ‖e∗‖0 order ‖e∗‖0 order

5 3.01E-05 3.04 3.27E-06 3.06 3.27E-06 3.06

1 6 3.71E-06 3.02 4.00E-07 3.03 4.00E-07 3.03

7 4.60E-07 3.01 4.95E-08 3.02 4.95E-08 3.02

8 5.73E-08 3.01 6.15E-09 3.01 6.15E-09 3.01

5 1.72E-10 4.92 1.96E-10 4.92 1.96E-10 4.92

2 6 5.57E-12 4.95 6.30E-12 4.96 6.30E-12 4.96

7 1.78E-13 4.97 2.00E-13 4.98 2.00E-13 4.98

8 5.62E-15 4.98 6.28E-15 4.99 6.28E-15 4.99

4 8.88E-14 7.19 2.43E-15 7.86 2.43E-15 7.86

3 5 6.41E-16 7.12 1.08E-17 7.81 1.08E-17 7.81

6 4.79E-18 7.06 5.20E-20 7.70 5.20E-20 7.70

7 3.66E-20 7.03 2.84E-22 7.52 2.84E-22 7.52
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Table 5: History of convergence of the post-processed DG approximation for the second

problem.

d = 10−1 d = 10−4 d = 10−8

k mesh ‖e∗‖0 order ‖e∗‖0 order ‖e∗‖0 order

5 3.00E-03 3.04 2.14E-01 3.04 2.14E-01 3.04

1 6 3.69E-04 3.02 2.64E-02 3.02 2.64E-02 3.02

7 4.58E-05 3.01 3.28E-03 3.01 3.28E-03 3.01

8 5.70E-06 3.01 4.08E-04 3.01 4.08E-04 3.01

5 1.14E-09 5.50 1.12E-07 4.51 1.12E-07 4.51

2 6 8.34E-11 3.78 6.84E-09 4.04 6.84E-09 4.04

7 3.39E-12 4.62 2.68E-10 4.67 2.68E-10 4.67

8 1.18E-13 4.84 9.25E-12 4.86 9.25E-12 4.86

5 6.41E-14 7.11 4.99E-12 7.11 4.99E-12 7.11

3 6 4.79E-16 7.06 3.74E-14 7.06 3.74E-14 7.06

7 3.66E-18 7.03 2.86E-16 7.03 2.86E-16 7.03

8 2.83E-20 7.02 2.21E-18 7.02 2.21E-18 7.02
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fact that the DG methods as well as their post-processing is free from shear and membrane

locking. This is remarkable especially for the membrane arch since the behavior of its solution

is extremely sensitive to the value of the thickness of the arch, especially for small values of

the parameter d.

3.5 Conclusion

We introduced and numerically tested a remarkably efficient and inexpensive post-processing

method for the DG solutions for the Naghdi arch problem. Although the DG approxima-

tion converges with order k + 1 when polynomials of degree k are used, the post-processed

approximation superconverges with order 2k + 1. The post-processing exploits the fact that

the numerical traces of the DG method converge with order 2k + 1. This result holds inde-

pendently of the thickness parameter d, which shows that the post-processing as well as the

DG methods are free from shear and membrane locking.
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4 Hybridizable DG Methods for Naghdi Arches

4.1 Introduction

In this section, we introduce a class of hybridizable discontinuous Galerkin (HDG) methods

for Naghdi arches.

Classical Galerkin methods have been analyzed for circular arches (κ identically equal to

a constant) in [37, 38, 39], It has been shown that the well-known remedy of using reduced

integration results in locking free continuous Galerkin methods. Recently, a family of DG

methods for Naghdi arches have been developed and analyzed in [42]. It has been shown

that a wide class of these methods converge with optimal order and that they are free from

locking. However, they suffer from the usual criticism that DG methods have too many

degrees of freedom compared to their conforming counterparts. Secondly, although it sheds

light into many aspects of the problem, the framework provided therein does not lend itself

very conveniently to developing numerical methods for solving shell problems. Through our

study of HDG methods for arches in this paper, we are addressing both issues. First and

foremost, it is well known that [43] HDG methods are efficiently implementable since the

internal degrees of freedom are eliminated and the only globally coupled unknowns are those

corresponding to element faces. Secondly, the framework we provide in the present work

is much simpler in the sense that the global linear system is obtained only through the

enforcement of the so-called transmission conditions.

On the other hand, the HDG methods were introduced in [43] in the framework of second-

order elliptic problems. The main feature of these methods is that their approximate solutions

can be expressed in an element-by-element fashion in terms of an approximate trace satisfying
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a global weak formulation. Since the associated matrix is symmetric and positive definite,

these methods can be efficiently implemented. In [44], the single-face HDG method (SFH)

for second order elliptic problems was introduced. It was proved that by using polynomials

of degree k ≥ 0 for both the potential as well as the flux, the order of convergence in L2 of

both unknowns is k + 1. Later it was shown [45] that many other DG methods, including a

wide class of HDG methods, have these optimal convergence properties as well.

The methods that we develop in the present paper are extensions of those developed and

analyzed in [19, 46]. This is a necessary intermediate step towards the challenging goal of

designing efficient HDG methods for shells. Since the Naghdi arch model that we study here

can be obtained from the two dimensional Naghdi shell model by dimensional reduction,

that the structure of the methods that we describe here provides us with a framework that

we can use for developing HDG methods for shells.

Finally, let us note that the extension of HDG methods for Timoshenko beams to those for

the Naghdi arch model is not merely a matter of dealing with more variables. The fundamen-

tal difference herein is the fact that some of the unknowns involved, namely, the membrane

stress N and the shear force T are coupled as well as the transverse and tangential displace-

ments w and u. This coupling introduces additional technical difficulties to the analysis of

the methods. The manner in which we overcome these difficulties provides us with a list of

recipes to overcome those that we will most likely encounter when stepping up from HDG

methods for plates to HDG methods for shells. Although the transition from beams to arches

was not a trivial task, it is encouraging to see that the structure laid out in [19, 46] lends

itself to a generalization to this problem.
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4.2 The HDG methods

Let us describe the HDG methods under consideration. We begin by introducing our notation.

To each partition of the domain Ω, we set

Ωh := {Ij = (xj−1, xj) : 0 = x0 < x1 < · · · < xR−1 < xR = 1}.

We associate the set of nodes, Eh := {x0, x1, . . . , xR}, and the set of interior nodes E◦h :=

Eh\∂Ω; we also set ∂Ωh := {∂K : K ∈ Ωh}. For each element K ∈ Ωh, let hK denote the

length of K, and set h := maxK∈Ωh{hK}. Finally, for any given polynomial degree k ≥ 0 and

an element K ∈ Ωh, we define Pk(K) as the set of polynomials of degree less than or equal

to k on K. The space of piecewise polynomials of degree k on Ω is defined accordingly as

V k
h := {v : Ωh 7→ R : v|K ∈ Pk(K) for all K ∈ Ωh} and V k

h := [V k
h ]6.

We also set

L2
0(Eh) := {m ∈ L2(Eh) : m = 0 on ∂Ω} and L2

0(Eh) := [L2
0(Eh)]

3.

The HDG methods seek an approximation

(Th, Nh,Mh, θh, uh, wh, M̂h, ûh, ŵh)

to the exact solution

(T,N,M, θ, u, w,M |Eh , u|Eh , w|Eh),



86

in the finite dimensional space V k
h ×L2(Eh). It is determined by requiring that

− (wh, v
′
1) + 〈ŵh, v1 n〉+ (θh, v1) + (κuh, v1) = d2(Th, v1), (4.1a)

− (uh, v
′
2) + 〈ûh, v2 n〉 − (κwh, v2) = d2(Nh, v2), (4.1b)

− (θh, v
′
3) + 〈θ̂h, v3 n〉 = (Mh, v3), (4.1c)

− (Mh, v
′
4) + 〈M̂h, v4 n〉 = (Th, v4), (4.1d)

− (Nh, v
′
5) + 〈N̂h, v5 n〉 − (κTh, v5) = (p, v5), (4.1e)

− (Th, v
′
6) + 〈T̂h, v6 n〉 + (κNh, v6) = (q, v6), (4.1f)

〈θ̂h,mn〉 = 〈θN ,mn〉∂Ω, (4.1g)

〈N̂h, un〉 = 0, (4.1h)

〈T̂h,w n〉 = 0, (4.1i)

hold for all

(v1, v2, v3, v4, v5, v6,m, u,w) ∈ V k
h × L2(Eh)× L2

0(Eh)× L2
0(Eh).

Here, the outward unit normal vectors are n(x∓) := ±1 for x ∈ Eh. The “volume” inner

product is defined as

(z, v) :=
∑
K∈Ωh

(z, v)K where (z, v)K :=

ˆ
K

z(x)v(x) dx,

and the boundary inner product is defined as

〈z, v n〉 :=
∑
K∈Ωh

〈z, v n〉∂K where 〈z, v〉∂K := z(x−j )v(x−j ) + z(x+
j−1)v(x+

j−1),

when K = (xj−1, xj), and z(x±) := limε↓0 z(x± ε) for x ∈ Eh.
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Note that the boundary condition on θ is imposed by equation (4.1g). The boundary

conditions on w and u, respectively, are imposed as follows:

ŵh = wD on ∂Ω, (4.2a)

ûh = uD on ∂Ω. (4.2b)

To complete the definition of the HDG method, we need to express the numerical traces T̂h,

N̂h, and θ̂h in terms of the unknowns:
θ̂h

N̂h

T̂h

 =


θh

Nh

Th

− S


Mh − M̂h

uh − ûh
wh − ŵh

n (4.2c)

where

S :=


αθ τ1 τ2

−τ1 αN τ3

−τ2 −τ3 αT


is the so-called stabilization function which is defined on ∂Ωh. Its components have to be

chosen suitably to guarantee the existence and uniqueness of the approximate solution. Their

choice also affects the accuracy of the method.

4.3 Existence and uniqueness of the HDG solution

In this section we provide sufficient conditions under which the HDG method introduced in

the previous section defines a unique solution. As is usual for DG methods, the existence and

uniqueness of the approximation depends strongly on the definition of the numerical traces

(4.2). We state our existence and uniqueness result in the following theorem.
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Theorem 4.1. Consider the HDG method defined by the weak formulation (4.1), and the

formulas (4.2) for the numerical traces. Let κj denote the average value of κ on Ij. Suppose

that

hj ≤
1

2‖κ− κj‖L∞(Ij)

(4.3)

on the elements Ij where κ is not identically equal to a constant. Suppose that the stabilization

functions

αT , αN > 0, and αθ ≥ 0, on ∂Ωh. (4.4)

Then, for k ≥ 1, the method has a unique solution. For k = 0, the method defines a unique

solution provided (in addition to the condition (4.4)) that

αθ > 0 on at least one point of ∂Ωh. (4.5)

We see from (4.4) that αT and αN play a more important role than αθ. Although we

required the strict positivity of αT and αN at both ends of each element of Ωh, the positivity

of αθ only at one end point of only one element is sufficient for the existence and uniqueness.

Furthermore, this condition is needed only when k = 0.

There are no positivity requirements on τ1, τ2, or τ3. However, a (skew) symmetry con-

dition is implicitly imbedded into the stabilization function S.

Although the assumption (4.3) is a restriction on the mesh Ωh, it can be viewed as a very

mild restriction on the geometry of the arch. It basically states that, within each element,

the curvature of the arch is approximately equal to that of a circle. Clearly, this is a very

reasonable assumption for all practical purposes.

We prove Theorem 4.1 in Sec. 4.6.
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4.4 Characterization of the approximate solution

In this section, we show that the only globally coupled unknowns of the HDG method

defined by the weak formulation (4.1), and the formulas (4.2) for the numerical traces are

the approximations at the nodes to the transverse and tangential displacement, and bending

moment given by the numerical traces ŵh, ûh, and M̂h, respectively. We also show that

the remaining components of the approximate solution can be expressed solely in terms of

element-by-element-defined operators acting on ŵh, ûh, and M̂h. To do this, we follow the

framework provided in [43] and [19].

We begin by introducing the above-mentioned locally defined operators which we call the

local solvers associated with the method.

The first local solver is defined on the element K ∈ Ωh as the mapping

ω ∈ L2(∂K) 7→ (Tω,Nω,Mω,Θω,Uω,Wω) ∈ Pk(K)

where

− (Wω, v′1)K + 〈ω, v1n〉∂K + (Θω, v1)K + (κUω, v1)K = d2(Tω, v1)K ,

− (Uω, v′2)K − (κWω, v2)K = d2(Nω, v2)K ,

− (Θω, v′3)K + 〈Θ̂ω, v3n〉∂K = (Mω, v3)K ,

− (Mω, v′4)K = (Tω, v4)K ,

− (Nω, v′5)K + 〈N̂ω, v5n〉∂K − (κTω, v5)K = 0,

− (Tω, v′6)K + 〈T̂ω, v6n〉∂K + (κNω, v6)K = 0,
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for all vi ∈ Pk(K) for i = 1, . . . , 6. Here,
Θ̂p

N̂p

T̂p

 =


Θp

Np

Tp

− S


Mp

Up

Wp

n
The second local solver is defined on the element K ∈ Ωh as the mapping

u ∈ L2(∂K) 7→ (Tu,Uu,Mu,Θu,Uu,Wu) ∈ Pk(K)

where

− (Wu, v′1)K + (Θu, v1)K + (κUu, v1)K = d2(Tu, v1)K ,

− (Uu, v′2)K + 〈u, v2n〉∂K − (κWu, v2)K = d2(Nu, v2)K ,

− (Θu, v′3)K + 〈Θ̂u, v3n〉∂K = (Mu, v3)K ,

− (Mu, v′4)K = (Tu, v4)K ,

− (Nu, v′5)K + 〈N̂u, v5n〉∂K − (κTu, v5)K = 0,

− (Tu, v′6)K + 〈T̂u, v6n〉∂K + (κNu, v6)K = 0,

for all vi ∈ Pk(K) for i = 1, . . . , 6. Here,
Θ̂u

N̂u

T̂u

 =


Θu

Nu

Tu

− S


Mu

Uu − u

Wu

n
The third local solver is defined on the element K ∈ Ωh as the mapping

µ ∈ L2(∂K) 7→ (Tµ,Nµ,Mµ,Θµ,Uµ,Wµ) ∈ Pk(K)
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where

− (Wµ, v′1)K + (Θµ, v1)K + (κUµ, v1)K = d2(Tµ, v1)K ,

− (Uµ, v′2)K − (κWµ, v2)K = d2(Nµ, v2)K ,

− (Θµ, v′3)K + 〈Θ̂µ, v3n〉∂K = (Mµ, v3)K ,

− (Mµ, v′4)K + 〈µ, v4n〉∂K = (Tµ, v4)K ,

− (Nµ, v′5)K + 〈N̂µ, v5n〉∂K − (κTµ, v5)K = 0,

− (Tµ, v′6)K + 〈T̂µ, v6n〉∂K + (κNµ, v6)K = 0,

for all vi ∈ Pk(K) for i = 1, . . . , 6. Here,
Θ̂µ

N̂µ

T̂µ

 =


Θµ

Nµ

Tµ

− S


Mµ− µ

Uµ

Wµ

n
The fourth local solver is defined on the element K ∈ Ωh as the mapping

p ∈ L2(K) 7→ (Tp,Np,Mp,Θp,Up,Wp) ∈ Pk(K)

where

− (Wp, v′1)K + (Θp, v1)K + (κUp, v1)K = d2(Tp, v1)K ,

− (Up, v′2)K − (κWp, v2)K = d2(Np, v2)K ,

− (Θp, v′3)K + 〈Θ̂p, v3n〉∂K = (Mp, v3)K ,

− (Mp, v′4)K = (Tp, v4)K ,

− (Np, v′5)K + 〈N̂p, v5n〉∂K − (κTp, v5)K = (p, v5)K ,

− (Tp, v′6)K + 〈T̂p, v6n〉∂K + (κNp, v6)K = 0,
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for all vi ∈ Pk(K) for i = 1, . . . , 6. Here,
Θ̂p

N̂p

T̂p

 =


Θp

Np

Tp

− S


Mp

Up

Wp

n
Finally, the fifth local solver is defined on the element K ∈ Ωh as the mapping

q ∈ L2(K) 7→ (Tq,Nq,Mq,Θq,Uq,Wq) ∈ Pk(K)

where

− (Wq, v′1)K + (Θq, v1)K + (κUq, v1)K = d2(Tq, v1)K ,

− (Uq, v′2)K − (κWq, v2)K = d2(Nq, v2)K ,

− (Θq, v′3)K + 〈Θ̂q, v3n〉∂K = (Mq, v3)K ,

− (Mq, v′4)K = (Tq, v4)K ,

− (Nq, v′5)K + 〈N̂q, v5n〉∂K − (κTq, v5)K = 0,

− (Tq, v′6)K + 〈T̂q, v6n〉∂K + (κNq, v6)K = (q, v6)K ,

for all vi ∈ Pk(K) for i = 1, . . . , 6. Here,
Θ̂q

N̂q

T̂q

 =


Θq

Nq

Tq

− S


Mq

Uq

Wq

n.
The function wD, as well as any other function defined only on ∂Ω is extended to Eh by

zero. We also set

ωh :=


ŵh on ∂Ωh\∂Ω

0 on ∂Ω,

uh :=


ûh on ∂Ωh\∂Ω

0 on ∂Ω,
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so that we have that ŵh = ωh + wD and that ûh = uh + uD where ωh, uh ∈ L2
0(Eh). Also, to

simplify the notation we write µh := M̂h on ∂Ωh. We can now state a characterization of the

approximate solution in terms of the local solvers.

Theorem 4.2. Suppose that the conditions of Theorem 4.1 are satisfied. Then the approxi-

mate solution (Th, Nh, Mh, θh, uh, wh, µh, uh, ωh) ∈ V k
h × L2(Eh)× L2

0(Eh)× L2
0(Eh) given

by the HDG method can be expressed in terms of the local solvers as

Th = Tωh + TwD + Tuh+ TuD + Tµh + Tp + Tq,

Nh = Nωh + NwD + Nuh+ NuD + Nµh + Np + Nq,

Mh = Mωh + MwD + Muh+MuD + Mµh + Mp + Mq,

θh = Θωh + ΘwD + Θuh+ ΘuD + Θµh + Θp + Θq,

uh = Uωh + UwD + Uuh+ UuD + Uµh + Up + Uq,

wh = Wωh + WwD + Wuh+WuD + Wµh + Wp+ Wq,

where (µh, uh, ωh) ∈ L2(Eh)× L2
0(Eh)× L2

0(Eh) satisfies

ah(µh, uh, ωh;m, u,w) = `h(m, u,w)

for all (m, u,w) ∈ L2(Eh) × L2
0(Eh) × L2

0(Eh). Here, ah and `h are suitably defined bilinear

and linear forms, respectively.

Explicit expressions for ah and `h as well as the proof of the above Theorem can be found

in Appendix B. Let us remark, however, that they are obtained by a suitable rewriting of

the conservativity conditions (4.1g)-(4.1i), see [43, 19].

Note that the total number of globally coupled unknowns in the equation in Theorem

4.2 is 3R−1 where R is the number of elements in Ωh. In particular, it is independent of the
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polynomial degree k. This should be contrasted with the total number of globally coupled

unknowns for classical DG methods [42] for the same problem, namely, 6R(k+ 1). Thus, the

HDG method has significantly less number of unknowns than its DG counterpart. This is

what we mean when we say that HDG methods are efficiently implementable.

4.5 Main Results

In this section, we present our main results. Detailed proofs of these results will be provided

in Sec. 4.6. This section is organized as follows. We begin with defining a new projection

operator tailored to the structure of the numerical traces of the HDG method. Subsequently,

we state a theorem displaying the approximation properties of this new projection. We then

present a superconvergence estimate on the projection of the error which can be considered

as the main result of the paper since the remaining results in this section, namely, a priori

error estimate for the L2-norm of the error and a superconvergence result at the nodes of

the mesh are direct consequences of it. We end this section by stating the above-mentioned

a priori estimate and the nodal superconvergence result.

4.5.1 The projection

We begin with introducing the main tool of our error analysis, namely, a new projection

operator

Π = (ΠT ,ΠN ,ΠM ,Πθ,Πu,Πw) : H1(Ωh)→ V k
h,

associated with the HDG methods. Here, H1(Ωh) := [H1(Ωh)]
6. This projection operator

is a generalization of the one introduced in [47] for the error analysis of HDG methods for

second order elliptic problems and the one introduced in [46] for that of the HDG methods
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for fourth order problems. It is defined as follows. Given a function z = (z1, . . . , z6) ∈H1(Ωh)

and an arbitrary subinterval K ∈ Ωh, the restriction of Π : H1(Ωh)→ V k
h, to K is defined

as the element of Pk(K) that satisfies

(ΠT z1 − z1, v1)K = (ΠNz2 − z2, v2)K = (ΠMz3 − z3, v3)K = 0, (4.7a)

(Πθz4 − z4, v4)K = (Πuz5 − z5, v5)K = (Πwz6 − z6, v6)K = 0, (4.7b)

for all (v1, . . . , v6) ∈ Pk−1(K), and
z4

z2

z1

 =


Πθz4

ΠNz2

ΠT z1

− S


Πθz3 − z3

ΠNz5 − z5

ΠT z6 − z6

n on ∂K. (4.7c)

Note that when k = 0, the projection is defined solely by (4.7c). Note also that the last set

of equations reflects the form of the equations (4.2) defining the numerical traces θ̂h, N̂h,

and T̂h. As we are going to see in the next subsection, this is what allows us to obtain a very

simple set of equations for the projection of the errors.

Finally, let us point out that the projection is well defined under mild conditions on

the stabilization function S. To see this, note that the total number of unknowns involved

in the linear system that is needed to be solved for computing Πz is 6(k + 1) since each

component of the projection has k + 1 degrees of freedom. On the other hand, the total

number of linearly independent equations provided by the definition of the projection is also

6(k+1). The existence and uniqueness of the projection then follows from the approximation

properties of the projection; see below.
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4.5.2 The equations for the projection of the errors

As was pointed out in the Introduction, the projection should be devised in such a way that

the equations of the projection of the errors be as simple as possible. Let us show that this

is indeed the case.

Let us begin with introducing some notation. We set

z = (T,N,M, θ, u, w), zh = (Th, Nh,Mh, θh, uh, wh),

and similarly for ẑh. The errors are defined as

ez := z − zh, ẑh := z − ẑh,

for any z ∈ {T,N,M, θ, u, w} and we set e := z− zh on Ωh, and ê := z− ẑh on Eh. We also

define v := (v1, v2, v3, v4, v5, v6).

Since the exact solution z of the governing equations (1.3) satisfies the formulation of the
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HDG approximation, (4.1), we immediately see that the equations for the errors are

− (ew, v
′
1) + 〈êw, v1n〉+ (eθ, v1) + (κ eu, v1) = d2(eT , v1),

− (eu, v
′
2) + 〈êu, v2n〉 − (κ ew, v2) = d2(eN , v2),

− (eθ, v
′
3) + 〈êθ, v3n〉 = (eM , v3),

− (eM , v
′
4) + 〈êM , v4n〉 = (eT , v4),

− (eN , v
′
5) + 〈êN , v5n〉 − (κ eT , v5) = 0,

− (eT , v
′
6) + 〈êT , v6n〉 + (κ eN , v6) = 0,

〈êθ,mn〉 = 0,

〈êN , un〉 = 0,

〈êT ,w n〉 = 0,

hold for all

(v,m, u,w) ∈ V k
h × L2(Eh)× L2

0(Eh)× L2
0(Eh).

Hence, defining

δ := (δT , δN , δM , δθ, δu, δw) where δz := z − Πzz
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we obtain

− (Πwew, v
′
1) + 〈êw, v1n〉+ (Πθeθ + δθ, v1) + (κ(Πueu + δu), v1) (4.8a)

− d2(ΠT eT + δT , v1) = 0,

− (Πueu, v
′
2) + 〈êu, v2n〉 − (κ(Πwew + δw), v2) (4.8b)

− d2(ΠNeN + δN , v2) = 0,

− (Πθeθ, v
′
3) + 〈êθ, v3n〉 − (ΠMeM + δM , v3) = 0, (4.8c)

− (ΠMeM , v
′
4) + 〈êM , v4n〉 − (ΠT eT + δT , v4) = 0, (4.8d)

− (ΠNeN , v
′
5) + 〈êN , v5n〉 − (κ(ΠT eT + δT ), v5) = 0, (4.8e)

− (ΠT eT , v
′
6) + 〈êT , v6n〉 + (κ(ΠNeN + δN), v6) = 0, (4.8f)

〈êθ,mn〉 = 0, (4.8g)

〈êN , un〉 = 0, (4.8h)

〈êT ,w n〉 = 0, (4.8i)

for all

(v,m, u,w) ∈ V k
h × L2(Eh)× L2

0(Eh)× L2
0(Eh).

Note that we have used the orthogonality property of the projection (4.7) in each of the first

terms of the first six equations.

To complete the error equations, we have to add the boundary conditions

êw = êu = 0 on ∂Ω, (4.9a)
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as well as the equations relating the errors inside the elements to the errors of the numerical

traces, namely, 
êθ

êN

êT

 =


Πθeθ

ΠNeN

ΠT eT

− S


ΠMeM − êM
Πueu − êu
Πwew − êw

n on ∂Ωh. (4.9b)

These equations hold as a direct consequence of the parallelism between the definition of the

numerical traces of the HDG method, (4.2c), and the definition of the projection, (4.7c).

The simplicity of the error equations (4.8) and (4.9) for Πe we have been referring to

resides in the fact that they differ from the HDG approximation only by a volume integral

of the approximation error δ.

4.5.3 Approximation properties of the projection Π

In this subsection we state a theorem displaying the approximation properties of the projec-

tion Π. First, we need to introduce some notation. Let K = (xL, xR) be an element of Ωh.

For any function z on K, we define z− := z(xL), z+ := z(xR). We denote the usual norm and

seminorm on a Sobolev space Hs(D) by ‖ · ‖s,D and | · |s,D, respectively. We drop the first

subindex if s = 0, and the second one if D = Ω or D = Ωh. We also define the seminorm of

a vector-valued function ϕ = (φ1, φ2, φ3, φ4, φ5, φ6) as

|ϕ|s,D := (|φ1|2s,D + · · ·+ |φ6|2s,D)
1
2 .

Its norm is defined similarly.

Theorem 4.3. We have for any s in [1, k + 1] that

‖δ‖ ≤ C CS h
s |z|s
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Here, C is a constant independent of the discretization parameters and z, and CS is given by

CS := ‖P‖∞ +
∥∥P S+

∥∥
∞ +

∥∥P S−
∥∥
∞ +

∥∥S+P
∥∥
∞ +

∥∥S−P∥∥∞ +
∥∥S+P S−

∥∥
∞

where P := (S+ + S−)−1 and ‖·‖∞ denotes the subordinate matrix norm induced by the

supremum norm on the Euclidean space.

A detailed proof of this result is given in Section 4.6. Let us note that we stated the

above result for the exact solution z merely for notational convenience. In fact, the result

remains valid if we replace z with any (φ1, . . . , φ6) ∈Hs+1(Ωh).

Note that CS and hence the approximation properties of Π depend on the choice of S and

hence that of the functions αθ, αN , αT , τ1, τ2, and τ3. It is easy to see that setting all of these

functions to quantities of O(1) we get that CS = O(1) and hence the projection converges

optimally. Setting one or more of the stabilization functions to quantities of O(1/h) may

possibly degrade the order of convergence due to the terms S+ and S−. On the other hand,

if we set some of these functions to O(h) the order of convergence may decrease again due

to the presence of the inverse term P in CS. It is possible to further play with the choice

of S and find combinations such that CS = O(1) but we will not pursue this here since we

already have a very simple choice for which the projection converges optimally. Finally, we

would like to point out that this simple choice of O(1) stabilization functions is typical of

HDG methods [47, 48, 49]
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4.5.4 Superconvergence of the projection of the errors

Here, we present an estimate of the projection of the errors. It is stated in terms of the

solution of the so-called dual problem we define next. For any given

η := (ηT , ηN , ηM , ηθ, ηu, ηw) ∈ L2(Ω),

the function

ψ := (ψT , ψN , ψM , ψθ, ψu, ψw) ∈H1(Ω)

is the solution of the associated dual-problem

ψ′w − ψθ + κψu = d2ψT + ηT in Ω (4.10a)

ψ′u − κψw = d2ψN + ηN in Ω (4.10b)

ψ′θ = ψM − ηM in Ω (4.10c)

ψ′M = −ψT + ηθ in Ω (4.10d)

ψ′N − κψT = − ηu in Ω (4.10e)

ψ′T + κψN = − ηw in Ω (4.10f)

ψw = ψu = ψθ = 0 on ∂Ω. (4.10g)

We assume that the solution of this problem satisfies the following elliptic regularity result:

‖ψ‖1 ≤ Creg ‖η‖ , (4.11)

where the constant Creg is independent of the datum η and the thickness d. A proof of this

regularity estimate can be given using classical techniques of the theory of linear systems of

differential equations. For details, we refer to the Appendix of [46] and Lemma 4.6 of [50].
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We are now ready to state a theorem which can be regarded as the main result of this

paper.

Theorem 4.4. For k ≥ 1, we have that, if h sufficiently small,

‖Πe‖ ≤ C Cregh ‖δ‖ .

For k = 0, we have

‖Πe‖ ≤ C Creg ‖δ‖ .

Here C is a constant independent of the data of the problem and of the discretization param-

eters.

4.5.5 A priori error estimates

Next we present an estimate for the error in HDG approximation as an immediate conse-

quence of the last result.

Theorem 4.5. Suppose that the exact solution ϕ of (1.3) belongs to Hk+1(Ωh). Then, for

k ≥ 1 and h sufficiently small, we have

‖e‖ ≤ (1 + C Cregh) ‖δ‖ .

For k = 0, we have

‖e‖ ≤ (1 + C Creg) ‖δ‖ .

Here C is a constant independent of the data of the problem and of the discretization param-

eters.

Note that the error estimate appearing in the above theorem shows that, if the matrix-

valued function S is chosen is such a way that CS is uniformly bounded, the HDG method
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is optimally convergent, that is, ‖e‖ = O(hk+1) for smooth solutions and it is free from

shear and membrane locking. The method is locking-free because the constant CS does not

depend on the parameter d and because the seminorms appearing on the right-hand side of

the estimate can be bounded uniformly with respect to d by using the techniques employed

in [20].

4.5.6 Superconvergence at the nodes

Our next result states that the numerical traces of the HDG solution superconverge. To state

this result we need to introduce the Green’s functions associated with the problem under

consideration. For any superindex ? ∈ {T,N,M, θ, u, w}, and any point y ∈ (0, 1), we define

G?
y := (G?

T,y, G
?
N,y, G

?
M,y, G

?
θ,y, G

?
u,y, G

?
w,y)

as the solution of

dG?
w,y/dx −G?

θ,y + κG?
u,y = d2G?

T,y,

dG?
u,y/dx − κG?

w,y = d2G?
N,y,

dG?
θ,y/dx = G?

M,y,

dG?
M,y/dx = −G?

T,y,

dG?
N,y/dx − κG?

T,y = 0,

dG?
T,y/dx + κG?

N,y = 0,

(4.12)

in (0, y) ∪ (y, 1) that satisfies the boundary conditions

G?
w,y = G?

u,y = G?
θ,y = 0 on ∂Ω, (4.13)
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and the jump conditions

[[G?
w,y]](y) = −δ?T , [[G?

u,y]](y) = −δ?N , [[G?
θ,y]](y) = δ?M ,

[[G?
M,y]](y) = −δ?θ, [[G?

N,y]](y) = δ?u, [[G?
T,y]](y) = δ?w.

(4.14)

Here, δab = 1 if a = b and δab = 0 otherwise. The jump operator, [[ · ]], is defined by

[[ϕ]](x) := ϕ(x−)− ϕ(x+) for x ∈ Eh.

We also define, for t ∈ {0, 1}, G?
t = limy→tG

?
y.

When there is no confusion, we will drop the superindex and the second subindex of the

Green’s function and write, for instance, Gθ instead of G?
θ,y. Finally, we define

δzi := (δGzT,xi
, δGzN,xi

, δGzM,xi
, δGzθ,xi

, δGzu,xi , δG
z
w,xi

)

where

δGzφ,xi
= Gz

φ,xi
− ΠφG

z
φ,xi

for z, φ ∈ {T,N,M, θ, u, w}, and xi ∈ Eh.

We are now ready to present our superconvergence result of the numerical traces.

Theorem 4.6. Under the same assumptions as in Theorem 4.5, we have

|(z − ẑh)(xi)| ≤ Ck−1h
k|z|k+1 ‖δzi ‖+ C ‖e‖ ‖δzi ‖

for z ∈ {T,N,M, θ, u, w}, and xi ∈ Eh. Here Ck−1 is a constant that depends solely on the

polynomial degree k.

Note that, for any given k ≥ 0, if κ is a smooth function in Ωh, the exact solution z

belongs to Hk+1(Ωh); see [36]. This regularity result is also valid for the Green’s functions
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since in this case we take p = q = 0. Hence, we can assume that Gz
xi

belongs to Hk+1(Ωh).

As a consequence, ‖δzi ‖ = O(hk+1) and the above result states that, if the constant CS is

uniformly bounded, all the numerical traces superconverge with order 2k + 1 at each node.

A similar result was proved for the DG methods for Timoshenko beams studied in [20] and

for Naghdi arches in [42] and HDG methods for Timoshenko beams in [19, 46].

An immediate application of the superconvergence result of Theorem 4.6 is an element-

by-element postprocessing of the approximate solution provided by the HDG method. All the

six components of the postprocessed solution converge to the exact solution with order 2k+1,

not only at the nodes, but also uniformly at the interior of Ωh. For details, see [50] where

we carried this out in the context of classical DG methods for Naghdi arches but exactly

the same postprocessing technique also works for HDG method since the postprocessing

described therein is independent of how the numerical traces have been computed.

4.6 Proofs

In this section, we provide detailed proofs of the theoretical results we have stated in Secs.

4.3 and 4.5. We proceed in the order in which the results have appeared in the paper. Each

subsection is devoted to the proof of one specific result.

4.6.1 Existence and uniqueness result: Proof of Theorem 4.1

In this subsection we give a proof of the existence and uniqueness theorem stated in Section

4.3. Throughout this subsection we assume that the hypothesis of Theorem 4.1, namely, (4.4)

(for k ≥ 1) and (4.5) (for k = 0), are satisfied. The proof of Theorem 4.1 is based on the

following technical lemmas.
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Lemma 4.7. Let (Th, Nh,Mh, θh, uh, wh, M̂h, ûh, ŵh) be the HDG solution defined by the

weak formulation (4.1), and the formulas (4.2) for the numerical traces. Then we have the

following identity

Θint + Θtr = Θld + Θbc, (4.15)

where

Θint = d2(Th, Th) + d2(Nh, Nh) + (Mh,Mh),

Θtr = 〈αT , (wh − ŵh)2〉+ 〈αN , (uh − ûh)2〉+ 〈αθ, (Mh − M̂h)
2〉,

Θld = −(q, wh) − (p, uh),

Θbc = 〈wD, T̂hn〉∂Ω + 〈uD, N̂hn〉∂Ω + 〈θN , M̂hn〉∂Ω.

Proof. Taking v1 = Th, v2 = Nh, and v3 = Mh in (4.1), and adding the resulting equations,

we obtain

Θint =− (wh, T
′
h) + 〈ŵh, Thn〉 + (θh, Th) + (κuh, Th)

− (uh, N
′
h) + 〈ûh, Nhn〉 − (κwh, Nh)

− (θh,M
′
h) + 〈θ̂h,Mhn〉.

(4.16)

Integrating by parts on the term (wh, T
′
h) and using (4.1f) with v6 = wh implies

−(wh, T
′
h) = 〈T̂h − Th, whn〉+ (κNh, wh)− (q, wh). (4.17a)

Similarly, using (4.1e) with v5 = uh implies

−(uh, N
′
h) = 〈N̂h −Nh, uhn〉 − (κTh, uh)− (p, uh), (4.17b)

whereas (4.1d) with v4 = θh implies

−(θh,M
′
h) = −〈θh,Mhn〉+ 〈M̂h, θhn〉 − (Th, θh). (4.17c)
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Using (4.17) in (4.16) and carrying out some cancelations, we get that

Θint = Θld + 〈T̂h − Th, whn〉 + 〈ŵh, Thn〉

+ 〈N̂h −Nh, uhn〉+ 〈ûh, Nhn〉

+ 〈θ̂h − θh,Mhn〉 + 〈M̂h, θhn〉.

(4.18)

Adding and subtracting the term 〈ŵh, T̂hn〉, we see that

〈T̂h − Th, whn〉+ 〈ŵh, Thn〉 = 〈T̂h − Th, (wh − ŵh)n〉+ 〈ŵh, T̂hn〉, (4.19a)

and similarly that

〈N̂h −Nh, uhn〉+ 〈ûh, Nhn〉 = 〈N̂h −Nh, (uh − ûh)n〉+ 〈ûh, N̂hn〉, (4.19b)

〈θ̂h − θh,Mhn〉+ 〈M̂h,Mhn〉 = 〈θ̂h − θh, (Mh − M̂h)n〉+ 〈θ̂h, M̂hn〉. (4.19c)

Using (4.19) in (4.18), we have

Θint = Θld + 〈T̂h − Th, (wh − ŵh)n〉+ 〈ŵh, T̂hn〉

+ 〈N̂h −Nh, (uh − ûh)n〉+ 〈ûh, N̂hn〉

+ 〈θ̂h − θh, (Mh − M̂h)n〉+ 〈θ̂h, M̂hn〉.

(4.20)

By the definition of the numerical traces, (4.2), we have that

〈T̂h − Th, (wh − ŵh)n〉+ 〈N̂h −Nh, (uh − ûh)n〉

+ 〈θ̂h − θh, (Mh − M̂h)n〉 = −Θtr.

Hence, (4.20) can be written as

Θint + Θtr = Θld + 〈ŵh, T̂hn〉+ 〈ûh, N̂hn〉+ 〈θ̂h, M̂hn〉.

The result follows once we note that

〈ŵh, T̂hn〉+ 〈ûh, N̂hn〉+ 〈θ̂h, M̂hn〉 = Θbc
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by (4.1g)-(4.1i), (4.2a), and (4.2b).

Before proving Theorem 4.1 we state and prove an auxiliary lemma in which we collect

some intermediate results.

Lemma 4.8. Consider the HDG method defined by (4.1), with the formulas (4.2) for the

numerical traces. Suppose that the data of the problem is given by

p = q = 0 in Ω, wD = uD = θN = 0 on ∂Ω, (4.21)

then

Th = Nh = Mh = 0 in Ωh, (4.22a)

ŵh − wh = ûh − uh = 0 on ∂Ωh, (4.22b)

αθM̂h = 0 on ∂Ωh, (4.22c)

θ̂h = 0 on ∂Ωh, (4.22d)

T̂h, N̂h, and M̂h are constants on ∂Ωh. (4.22e)

Proof. Inserting (4.21) into (4.15) we get that Θint + Θtr = 0. Since Θint ≥ 0, and Θtr ≥ 0

by (4.4), we immediately obtain (4.22a) and (4.22b). We also see that αθ(M̂h −Mh) = 0 on

∂Ωh which implies (4.22c) since Mh = 0.

By (4.22a), the equation (4.1d) simplifies to 〈M̂h, v4n〉 for every v4 ∈ V k
h . Taking v4 = χK ,

the characteristic function of the interval K ∈ Ωh, and varying K over all elements in Ωh, we

see that M̂h is a constant on ∂Ωh. Similarly, the simplified forms of (4.1e) and (4.1f) (since

Th = Nh = 0), we deduce that T̂h and N̂h are also constants on ∂Ωh. Thus, (4.22e) is proved.

To prove (4.22d), we note that (4.1c) reads (θh, v
′
3) + 〈θ̂h, v3n〉 = 0 for all v3 ∈ V k

h since

Mh = 0. Once again, setting v3 = χK and varying K over all elements in Ωh, we see that θ̂h
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is constant on ∂Ωh. Since θ̂h = θN = 0 by (4.1g), we readily get (4.22d). This completes the

proof.

We are now ready to prove Theorem 4.1.

Proof. (Theorem 4.1) Due to the linearity of the problem, it is enough to show that the only

solution to (4.1) with data given by (4.21) is

Th = Nh = Mh = θh = uh = wh = 0 in Ωh (4.23)

and

M̂h = ûh = ŵh = 0 on Eh. (4.24)

In Lemma A, we have proved that Th = Nh = Mh = 0 in Ωh. Hence it remains to prove

(4.24) and that θh = uh = wh = 0 in Ωh.

We begin with proving that θh = 0. By (4.22a), (4.22b), (4.22c), and the definition of the

numerical traces, (4.2c), we have that θ̂h = θh on ∂Ωh. Thus, (4.1c) can be written as

−(θh, v
′
3) + 〈θh, v3n〉 = 0

which, upon integration by parts, takes the form

(θ′h, v3) = 0 for all v3 ∈ V k
h .

This implies that θ′h = 0 on each element K ∈ Ωh and hence is a constant on each element.

Since, θ̂h = θh, and θ̂h = 0 on ∂Ωh by (4.22d), we get that θh = 0 on ∂Ωh. Since θh is a

constant on each element we get that θh = 0 on Ωh.
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Note that, we can now write (4.1a) and (4.1b) as

−(wh, v
′
1) + 〈ŵh, v1n〉+ (κuh, v1) = 0,

−(uh, v
′
2) + 〈ûh, v2n〉 − (κwh, v2) = 0,

for all v1, v2 ∈ V k
h . Integrating by parts on both of the first terms on the left-hand side and

noting that we have (4.22b) on ∂Ωh, we get that

(w′h, v1) + (κuh, v1) = 0,

(u′h, v2)− (κwh, v2) = 0.

Using the assumption (4.3), we can now prove that uh = wh = 0 in Ωh. For details, see

Appendix A in [42]. This completes the proof of (4.23). Consequently, by (4.22b), we get

that ûh = ŵh = 0 on ∂Ωh.

It remains to prove that M̂h = 0 on ∂Ωh. By (4.22e), M̂h is a constant on ∂Ωh, and by

(4.22a), the equation (4.1d) takes the form

〈M̂h, v4n〉 = 0 for all v4 ∈ V k
h .

Now, for k ≥ 1, let K = (a, b) be and arbitrary element and let v4 be the linear function

on K such that v4(a) = 0, v4(b) = 1, and v4 is zero on all other elements. Then the above

equation implies that M̂h(b
−) = 0. Thus, since M̂h is a constant on ∂Ωh, we see that M̂h = 0

on ∂Ωh. For k = 0, however, we can not use the linear test function v4 above. On the other

hand, the assumption (4.5) together with (4.22d) implies that M̂h = 0 on at least one node

of the mesh. But since M̂h is a constant, it must be zero on all of ∂Ωh. This completes the

proof of (4.24) and that of the theorem.
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4.6.2 Approximation properties of the projection: Proof of Theorem 4.3

In this subsection, we provide a detailed proof of Theorem 4.3. We only give the proof for

k ≥ 1. The proof for k = 0 is similar and easier.

Fix an interval K = (xL, xR) ∈ Ωh and set

dz := zk − Πzz, d := (dT , dN , dM , dθ, du, dw),

gz := z − zk g := (gT , gN , gM , gθ, gu, gw),

where zk denotes the L2−projection of z into Pk(K). Since δ = g + d, we only need to

estimate d. To do that, we proceed as follows. From the definition of the projection (4.7)

and the definition of the L2−projection into Pk(K), we have

(dT , v1)K = (dN , v2)K = (dM , v3)K = 0,

(dθ, v4)K = (du, v5)K = (dw, v6)K = 0,

(4.25)

for all (v1, . . . , v6) ∈ Pk−1(K), and
dθ

dN

dT

n− S


dM

du

dw

 =


gθ

gN

gT

n− S


gM

gu

gw

 on ∂K. (4.26)

By equations (4.25), we see that we can write dz = Cz Lk where Lk denotes the scaled

Legendre polynomial of degree k. Hence, evaluating (4.26) at the left end of the interval K

and noting that Lk(xL) = (−1)k and n(xL) = −1 we get
Cθ

CN

CT


+ S+


CM

Cu

Cw


= (−1)k


gθ

gN

gT



+

+ (−1)kS+


gM

gu

gw



+

.
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Similarly, evaluating (4.26) at the right end of the interval K and noting that Lk(xR) = 1

and n(xR) = 1 we get 
Cθ

CN

CT


− S−


CM

Cu

Cw


=


gθ

gN

gT



−

− S−


gM

gu

gw



−

.

Consequently, we can write (4.26) in the following block-matrix form

 I S+

I −S−






Cθ

CN

CT



CM

Cu

Cw





=



(−1)k


gθ

gN

gT



+

+ (−1)k S+


gM

gu

gw



+


gθ

gN

gT



−

− S−


gM

gu

gw



−


where I denotes the 3 × 3 identity matrix. It is now evident that the system has a unique

solution if and only if the matrix (S− + S+) is non-singular. Assuming that this is the case

we obtain, by elementary block-row elimination and back-substitution and some algebraic

manipulation, that
CM

Cu

Cw


= −P


gθ

gN

gT



+

− PS+


gM

gu

gw



+

+ (−1)kP


gθ

gN

gT



−

+ (−1)kPS−


gM

gu

gw



−
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and 
Cθ

CN

CT


= (−1)kS−P


gθ

gN

gT



+

+ (−1)kS−PS+


gM

gu

gw



+

+ S+P


gθ

gN

gT



−

− S+P


gM

gu

gw



−

.

Thus, we conclude that

‖d‖K = ‖Lk‖K (|CT |+ |CN |+ |CM |+ |Cθ|+ |Cu|+ |Cw|)

≤ CS ‖Lk‖K ‖g‖∂K

≤ CSh
1/2 ‖g‖∂K

≤ CCS ‖g‖K

≤ CCS h
s|z|s,K ,

for all 1 ≤ s ≤ k + 1, by the trace inequality and the approximation properties of the

L2-projection.

By triangle inequality, we have

‖δ‖K ≤ ‖d‖K + ‖g‖K ,

and the estimate of Theorem 4.3 readily follows by adding over all elements K ∈ Ωh. This

completes the proof.

4.6.3 Estimates of the projection of the error: Proof of Theorem 4.4.

This subsection is devoted to the proof of Theorem 4.4. We proceed in two steps in the first

of which, we use a key identity obtained by duality to prove Theorem 4.4. In the second

step, we prove the identity.
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Step 1: The duality identity and the proof of Theorem 4.4 Our proof will is based

on the following auxiliary result.

Lemma 4.9. For any (ηT , ηN , ηM , ηθ, ηu, ηw) ∈ L2(Ωh), set

Ez := (Πzez, ηz) and E = ET + EN + EM + Eθ + Eu + Ew.

Then

E = (Πθeθ, δψT ) + (ΠMeM , δψM ) − (ΠT eT , δψθ)

− (δθ,ΠTψT ) − (δM ,ΠMψM) + (δT ,Πθψθ)

− d2(ΠNeN , δψN )− d2(ΠT eT , δψT ) + d2(δN ,ΠNψN) + d2(δT ,ΠTψT )

− (Πwew, κδψN ) + (Πueu, κδψT ) − (ΠNeN , κδψw) + (ΠT eT , κδψu)

+ (κδw,ΠNψN) − (κδu,ΠTψT ) + (κδN ,Πwψw) − (κδT ,Πuψu).

Here, on each K ∈ Ωh, we take St as the stabilization function for defining the projection

Πψ.

We delay the proof of this identity to the end of this subsection. We are now ready to

prove Theorem 4.4.

Proof. (Theorem 4.4) We first consider the case k ≥ 1. Setting

η = (ηT , ηN , ηM , ηθ, ηu, ηw) = (ΠT eT ,ΠNeN ,ΠMeM ,Πθeθ,Πueu,Πwew) = Πe
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in the identity of Lemma 4.9 gives

‖Πe‖2 = (Πθeθ, δψT ) + (ΠMeM , δψM ) − (ΠT eT , δψθ)

− (δθ,ΠTψT ) − (δM ,ΠMψM) + (δT ,Πθψθ)

− d2(ΠNeN , δψN )− d2(ΠT eT , δψT ) + d2(δN ,ΠNψN) + d2(δT ,ΠTψT )

− (Πwew, κδψN ) + (Πueu, κδψT ) − (ΠNeN , κδψw) + (ΠT eT , κδψu)

+ (κδw,ΠNψN) − (κδu,ΠTψT ) + (κδN ,Πwψw) − (κδT ,Πuψu).

Using the fact that Πzψz = ψz − δψz , we get

‖Πe‖2 = T1 + T2 + · · ·+ T9

where

T1 = (δT , ψθ) − (δT , δψθ) − (ΠT eT , δψθ),

T2 = d2(δT , ψT ) − d2(δT , δψT ) − d2(ΠT eT , δψT ),

T3 = d2(δN , ψN)− d2(δN , δψN )− d2(ΠNeN , δψN ),

(4.27)

T4 = −(δM , ψM) + (δM , δψM ) + (ΠMeM , δψM ),

T5 = −(δθ, ψT ) + (δθ, δψT ) + (Πθeθ, δψT ),

T6 = −(δT , κψu) + (δT , κδψu) + (ΠT eT , κδψu),

(4.28)

T7 = (δN , κψw) − (δN , κδψw)− (ΠNeN , κδψw),

T8 = −(δu, κψT ) + (δu, κδψT ) + (Πueu, κδψT ),

T9 = (δw, κψN) − (δw, κδψN ) − (Πwew, κδψN ),

(4.29)
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By the orthogonality property of the projection, (4.7), we can rewrite these equations as

T1 = (δT , ψθ − (ψθ)k−1) − (δT , δψθ) − (ΠT eT , δψθ),

T2 = d2(δT , ψT − (ψT )k−1) − d2(δT , δψT ) − d2(ΠT eT , δψT ),

T3 = d2(δN , ψN − (ψN)k−1)− d2(δN , δψN )− d2(ΠNeN , δψN ),

(4.30)

T4 = −(δM , ψM − (ψM)k−1) + (δM , δψM ) + (ΠMeM , δψM ),

T5 = −(δθ, ψT − (ψT )k−1) + (δθ, δψT ) + (Πθeθ, δψT ),

T6 = −(δT , κψu − (κψu)k−1) + (δT , κδψu) + (ΠT eT , κδψu),

(4.31)

T7 = (δN , κψw − (κψw)k−1) − (δN , κδψw)− (ΠNeN , κδψw),

T8 = −(δu, κψT − (κψT )k−1) + (δu, κδψT ) + (Πueu, κδψT ),

T9 = (δw, κψN − (κψN)k−1) − (δw, κδψN ) − (Πwew, κδψN ).

(4.32)

An estimate on ‖Πe‖ now follows by estimating Ti for i = 1, . . . , 9. We only show the details

of how to estimate T6, since the remaining terms can be estimated in a similar fashion.

Applying the Cauchy-Schwarz inequality to each term in T6, we get

|T6| ≤ ‖δT‖ ‖κψu − (κψu)k−1‖+ (‖δT‖+ ‖ΠT eT‖) ‖κδψu‖ .

By the approximation properties of the L2-projection, we get that

|T6| ≤ Ch ‖δT‖ ‖κψu‖1 + ‖κ‖∞ (‖δT‖+ ‖ΠT eT‖) ‖δψu‖

≤ Ch ‖δT‖ ‖κ‖1 ‖ψu‖1 + ‖κ‖∞ (‖δT‖+ ‖ΠT eT‖) ‖δψu‖ .

By the assumption that κ is very smooth, and by Theorem 4.3, we get that

|T6| ≤ Ch ‖δT‖ ‖ψu‖1 + Ch(‖δT‖+ ‖ΠT eT‖)|ψ|1

≤ Ch ‖δ‖ ‖ψ‖1 + Ch(‖δ‖+ ‖Πe‖) ‖ψ‖1 .
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By the elliptic regularity estimate (4.11), we have

‖ψ‖1 ≤ Creg ‖Πe‖

and hence

|T6| ≤ CCregh ‖δ‖ ‖Πe‖+ CCregh ‖δ‖ ‖Πe‖2 .

Estimating the remaining terms similarly we obtain

‖Πe‖2 ≤ |T1|+ |T2|+ · · ·+ |T9|

≤ CCregh ‖δ‖ ‖Πe‖+ CCregh ‖δ‖ ‖Πe‖2 .

If we assume that h is small enough so that CCregh < 1 then

‖Πe‖2 ≤ C Cregh ‖δ‖ ‖Πe‖ ,

and the first estimate of Theorem (4.4) follows.

Next we consider the case k = 0. In this case (4.27)-(4.29) are still valid, but we do

not have (4.30)-(4.32) since the L2-projection into polynomials of degree k − 1 is no longer

defined. Nevertheless, we can still estimate Ti for i = 1, . . . , 9 in their form given by (4.27)-

(4.29). We provide the details for only T2. Applying Cauchy-Schwarz inequality to each term

in T2 we get

|T2| ≤ d2 ‖δT‖ ‖ψT‖+ d2(‖δT‖+ ‖ΠT eT‖) ‖δψT ‖

≤ ‖δT‖ ‖ψT‖+ (‖δT‖+ ‖ΠT eT‖) ‖δψT ‖

since 0 < d < 1. By Theorem 4.3 we have that

|T2| ≤ ‖δT‖ ‖ψT‖+ (‖δT‖+ ‖ΠT eT‖)Ch ‖ψ‖1

≤ ‖δ‖ ‖ψ‖+ (‖δ‖+ ‖Πe‖)Ch ‖ψ‖1 ,
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and, by the elliptic regularity estimate (4.11) we have

|T2| ≤ CCreg ‖δ‖ ‖Πe‖+ CCregh ‖Πe‖2 .

Since the remaining terms can be estimated in a similar fashion, we obtain

‖Πe‖2 ≤ CCreg ‖δ‖ ‖Πe‖+ CCregh ‖Πe‖2 .

The second estimate of Theorem (4.4) now follows if we assume that CCregh < 1. This

completes the proof.

Step 2: Proof of the duality identity of Lemma 4.9. To prove Lemma 4.9, we begin

by obtaining a couple of auxiliary identities. The first is the following.

Lemma 4.10. Let v = (v1, . . . , v6) ∈ H1(Ωh) and we take St as the stabilization function

of the projection Πv. Then

− 〈êT − eT , δv6n〉 − 〈êN − eN , δv5n〉+ 〈êM − eM , δv4n〉

− 〈êθ − eθ, δv3n〉 + 〈êu − eu, δv2n〉 + 〈êw − ew, δv1n〉 = 0.

Proof. Let Θ be the left-hand side of the identity we want to prove, that is,

Θ := −〈


êθ − eθ
êN − eN
êT − eT

 ,

δv3

δv5

δv6

n〉+ 〈


êM − eM
êu − eu
êw − ew

 ,

δv4

δv2

δv1

n〉
with the obvious extension of the definition of 〈·, ·〉 for vector-valued functions. Noting that

êz − ez = zh − ẑh,

and that, by the definition of the numerical traces, (4.2c), we have
êθ − eθ
êN − eN
êT − eT

 =


θh − θ̂h
Nh − N̂h

Th − T̂h

 = S


Mh − M̂h

uh − ûh
wh − ŵh

n,
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we get

Θ = −〈S


Mh − M̂h

uh − ûh
wh − ŵh

 ,

δv3

δv5

δv6

〉+ 〈


Mh − M̂h

uh − ûh
wh − ŵh

 , St

δv3

δv5

δv6

〉 = 0

because 
δv4

δv2

δv1

 = St


δv3

δv5

δv6

n
by (4.7c). This completes the proof.

Lemma 4.11. Let ui, vi ∈ H1(Ωh) for i = 1, . . . , 6, with the stabilization functions S and

St, respectively. Then

〈δu6 , δv1n〉+ 〈δu5 , δv2n〉 − 〈δu4 , δv3n〉

+〈δu3 , δv4n〉 − 〈δu2 , δv5n〉 − 〈δu1 , δv6n〉 = 0.

Proof. Let Θ be the left-hand side of the identity we want to prove, that is,

Θ := −〈


δu4

δu2

δu1

 ,

δv3

δv5

δv6

n〉+ 〈


δu6

δu5

δu3

 ,

δv1

δv2

δv4

n〉.
Since, by (4.7c), we have that

δu4

δu2

δu1

 = S


δu3

δu5

δu6

n and


δv1

δv2

δv4

 = St


δv6

δv5

δv3

n,
we readily obtain that

Θ = −〈S


δu3

δu5

δu6

n,

δv3

δv5

δv6

n〉+ 〈


δu6

δu5

δu3

 , St

δv6

δv5

δv3

〉 = 0.
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This completes the proof.

We are now ready to prove Lemma 4.9.

Proof. (Lemma 4.9) By the definition of E and the equations defining the dual solution

(4.10), we have

E = (ΠT eT , ψ
′
w) − (ΠT eT , ψθ) + (ΠT eT , κψu) − d2(ΠT eT , ψT )

+ (ΠNeN , ψ
′
u) − (ΠNeN , κψw)− d2(ΠNeN , ψN)

− (ΠMeM , ψ
′
θ) + (ΠMeM , ψM) + (Πθeθ, ψ

′
M) + (Πθeθ, ψT )

− (Πueu, ψ
′
N) + (Πueu, κψT ) − (Πwew, ψ

′
T ) − (Πwew, κψN).

Since, for any pair, (ez, ψv), we have

(Πzez, ψ
′
v) = (Πzez, (Πvψv)

′) + (Πzez, δ
′
ψv)

= (Πzez, (Πvψv)
′) + 〈Πzez, δψvn〉 − ((Πzez)

′, δψv)

= (Πzez, (Πvψv)
′) + 〈Πzez, δψvn〉,

by the orthogonality properties (4.7a)-(4.7b) of the projection. Hence

E = (ΠT eT , (Πwψw)′) − (ΠT eT , ψθ) + (ΠT eT , κψu) − d2(ΠT eT , ψT )

+ (ΠNeN , (Πuψu)
′) − (ΠNeN , κψw) − d2(ΠNeN , ψN)

− (ΠMeM , (Πθψθ)
′) + (ΠMeM , ψM) + (Πθeθ, (ΠMψM)′) + (Πθeθ, ψT )

− (Πueu, (ΠNψN)′) + (Πueu, κψT ) − (Πwew, (ΠTψT )′) − (Πwew, κψN)

+ 〈ΠT eT , δψwn〉 + 〈ΠNeN , δψun〉 − 〈ΠMeM , δψθn〉

+ 〈Πθeθ, δψMn〉 − 〈Πueu, δψNn〉 − 〈Πwew, δψTn〉.
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Taking

(v1, v2, v3, v4, v5, v6) = (−ΠTψT ,−ΠNψN ,ΠMψM ,−Πθψθ,Πuψu,Πwψw)

in the error equations (4.8) and carrying out some very simple algebraic manipulations, we

obtain

E = H + (Πθeθ, δψT ) + (ΠMeM , δψM ) − (ΠT eT , δψθ)

− (δθ,ΠTψT ) − (δM ,ΠMψM) + (δT ,Πθψθ)

− d2(ΠNeN , δψN )− d2(ΠT eT , δψT ) + d2(δN ,ΠNψN) + d2(δT ,ΠTψT )

− (Πwew, κδψN ) + (Πueu, κδψT ) − (ΠNeN , κδψw) + (ΠT eT , κδψu)

+ (κδw,ΠNψN) − (κδu,ΠTψT ) + (κδN ,Πwψw) − (κδT ,Πuψu)

where

H = 〈êT ,Πwψwn〉 + 〈ΠT eT , δψwn〉 + 〈êN ,Πuψun〉 + 〈ΠNeN , δψun〉

− 〈êM ,Πθψθn〉 − 〈ΠMeM , δψθn〉+ 〈êθ,ΠMψMn〉+ 〈Πθeθ, δψMn〉

− 〈êu,ΠNψNn〉 − 〈Πueu, δψNn〉 − 〈êw,ΠTψTn〉 − 〈Πwew, δψTn〉.

It remains to show that H = 0.

Since ψM , ψu, and ψw are single-valued on Eh, and ψu = ψw = 0 on ∂Ω, we can take

m = ψM , u = ψu, and w = ψw in the error equations (4.8g)-(4.8i), respectively to get

〈êθ, ψMn〉 = 〈êN , ψun〉 = 〈êT , ψwn〉 = 0.

Moreover, since êM , êu, and êw are single valued on Eh, and êu = 0, êw = 0, and ψθ = 0 on

∂Ω, we have

〈êM , ψθn〉 = 〈êu, ψNn〉 = 〈êw, ψTn〉 = 0.
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This implies that

H = 〈êT , (Πwψw − ψw)n〉 + 〈ΠT eT , δψwn〉

+ 〈êN , (Πuψu − ψu)n〉 + 〈ΠNeN , δψun〉

− 〈êM , (Πθψθ − ψθ)n〉 − 〈ΠMeM , δψθn〉

+ 〈êθ, (ΠMψM − ψM)n〉+ 〈Πθeθ, δψMn〉

− 〈êu, (ΠNψN − ψN)n〉 − 〈Πueu, δψNn〉

− 〈êw, (ΠTψT − ψT )n〉 − 〈Πwew, δψTn〉

= H1 +H2

where

H1 =− 〈êT − eT , δψwn〉 − 〈êN − eN , δψun〉+ 〈êM − eM , δψθn〉

− 〈êθ − eθ, δψMn〉 + 〈êu − eu, δψNn〉 + 〈êw − ew, δψTn〉,

and

H2 =− 〈δT , δψwn〉 − 〈δN , δψun〉+ 〈δM , δψθn〉

− 〈δθ, δψMn〉+ 〈δu, δψNn〉 + 〈δw, δψTn〉.

But H1 = 0 by Lemma 4.10 with (v1, . . . , v6) = (ψT , ψN , ψM , ψθ, ψu, ψw), and H2 = 0 by

Lemma 4.11 with (u1, . . . , u6) = (T,N,M, θ, u, w) and (v1, . . . , v6) = (ψT , ψN , ψM , ψθ, ψu, ψw).

This completes the proof.

4.6.4 Nodal superconvergence: Proof of Theorem 4.6

To prove this theorem we proceed in two steps. In the first, we obtain representation formulas

for the errors in the numerical traces. In the second, we use approximation results to estimate
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them. We prove the result only for k ≥ 1; the proof for the case k = 0 is not difficult.

To simplify notation, we fix an arbitrary node xi ∈ Eh, and an arbitrary unknown

z ∈ {T,N,M, θ, u, w} and drop the superindex and the second subindex from the Green’s

functions defined by (4.12), (4.13), and (4.14), more explicitly, we will write

(GT , GN , GM , Gθ, Gu, Gw)

instead of

(Gz
T,xi

, Gz
N,xi

, Gz
M,xi

, Gz
θ,xi
, Gz

u,xi
, Gz

w,xi
).

Step 1: Representation of the errors The following lemma provides a representation

formula for the errors in the numerical traces.

Lemma 4.12. We have that êz(xi) = Γ1 + Γ2 where

Γ1 = (w′ − (w′)k−1, δGT ) + (u′ − (u′)k−1, δGN ) − (θ′ − (θ′)k−1, δGM )

+ (M ′ − (M ′)k−1, δGθ)− (N ′ − (N ′)k−1, δGu)− (T ′ − (T ′)k−1, δGw)

and

Γ2 = (eθ + κeu − d2eT , δGT )− (κew + d2eN , δGN ) + (eM , δGM )

− (eT , δGθ) + (κeT , δGu) − (κeN , δGw).

To prove this lemma we need an auxiliary result which establishes a relation between the

errors in the numerical traces and the Green’s functions.

Lemma 4.13. Set

Θ := 〈êw, GT n〉 + 〈êu, GN n〉 − 〈êθ, GM n〉

+ 〈êM , Gθ n〉 − 〈êN , Gu n〉 − 〈êT , Gw n〉
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Then, we have Θ = Θ1 + Θ2 + Θ3 where

Θ1 = 〈êw − ew, (GT − v1)n〉 + 〈êu − eu, (GN − v2)n〉 − 〈êθ − eθ, (GM − v3)n〉

+ 〈êM − eM , (Gθ − v4)n〉 − 〈êN − eN , (Gu − v5)n〉 − 〈êT − eT , (Gw − v6)n〉,

Θ2 = (e′w, GT − v1) + (e′u, GN − v2) − (e′θ, GM − v3)

+ (e′M , Gθ − v4)− (e′N , Gu − v5)− (e′T , Gw − v6),

and

Θ3 = (eθ + κeu − d2eT , GT − v1)− (κew + d2eN , GN − v2)

+ (eM , GM − v3)− (eT , Gθ − v4) + (κeT , Gu − v5)− (κeN , Gw − v6)

for all (v1, . . . , v6) ∈ V k
h.

Proof. Adding and subtracting the term

〈êw, v1n〉+ 〈êu, v2n〉 − 〈êθ, v3n〉+ 〈êM , v4n〉 − 〈êN , v5n〉 − 〈êT , v6n〉

to the original expression for Θ, we see that

Θ = 〈êw, (GT − v1)n〉 + 〈êu, (GN − v2)n〉 − 〈êθ, (GM − v3)n〉

+ 〈êM , (Gθ − v4)n〉 − 〈êN , (Gu − v5)n〉 − 〈êT , (Gw − v6)n〉

+ 〈êw, v1n〉 + 〈êu, v2n〉 − 〈êθ, v3n〉

+ 〈êM , v4n〉 − 〈êN , v5n〉 − 〈êT , v6n〉.



125

Rewriting the last six terms above by using the error equations (4.8a)-(4.8f), we obtain

Θ = 〈êw, (GT − v1)n〉+ 〈êu, (GN − v2)n〉 − 〈êθ, (GM − v3)n〉

+ 〈êM , (Gθ − v4)n〉 − 〈êN , (Gu − v5)n〉 − 〈êT , (Gw − v6)n〉

+ (ew, v
′
1) + (eu, v

′
2)− (eθ, v

′
3) + (eM , v

′
4)− (eN , v

′
5)− (eT , v

′
6)

− (eθ + κeu − d2eT , v1) + (κew + d2eN , v2)

− (eM , v3) + (eT , v4)− (κeT , v5) + (κeN , v6).

Note that, by the definition of the Green’s functions, we have

(ew, G
′
T ) = −(ew, κGN), (eu, G

′
N) = (eu, κGT ),

(eθ, G
′
M) = −(eθ, GT ), (eM , G

′
θ) = (eM , GM),

(eN , G
′
u) = (eN , d

2GN − κGw), (eT , G
′
w) = (eT , d

2GT +Gθ − κGu).

Inserting these equations into the last expression for Θ, and rearranging terms, we obtain

Θ = Θ3 + 〈êw, (GT − v1)n〉 + 〈êu, (GN − v2)n〉 − 〈êθ, (GM − v3)n〉

+ 〈êM , (Gθ − v4)n〉 − 〈êN , (Gu − v5)n〉 − 〈êT , (Gw − v6)n〉

− (ew, (GT − v1)′) − (eu, (GN − v2)′) + (eθ, (GM − v3)′)

− (eM , (Gθ − v4)′) + (eN , (Gu − v5)′) + (eT , (Gw − v6)′).

It remains to show that

Θ1 + Θ2 = 〈êw, (GT − v1)n〉 + 〈êu, (GN − v2)n〉 − 〈êθ, (GM − v3)n〉

+ 〈êM , (Gθ − v4)n〉 − 〈êN , (Gu − v5)n〉 − 〈êT , (Gw − v6)n〉

− (ew, (GT − v1)′) − (eu, (GN − v2)′) + (eθ, (GM − v3)′)

− (eM , (Gθ − v4)′) + (eN , (Gu − v5)′) + (eT , (Gw − v6)′).
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This follows by integrating by parts on each of the last six terms. This completes the proof.

We are now ready to prove our representation result.

Proof. (Lemma 4.12) We begin by noting that, by the definition of the Green’s functions,

(4.13) and (4.14), we have

Θ = êz(xi).

On the other hand, setting v = ΠG in Lemma (4.13), we obtain

êz(xi) = Θ1 + Θ2 + Θ3 (4.33)

with

Θ1 = 〈êw − ew, δGTn〉 + 〈êu − eu, δGNn〉 − 〈êθ − eθ, δGMn〉

+ 〈êM − eM , δGθn〉 − 〈êN − eN , δGun〉 − 〈êT − eT , δGwn〉,

Θ2 = (e′w, δGT ) + (e′u, δGN ) − (e′θ, δGM )

+ (e′M , δGθ)− (e′N , δGu)− (e′T , δGw),

and

Θ3 = (eθ + κeu − d2eT , δGT )− (κew + d2eN , δGN )

+ (eM , δGM )− (eT , δGθ) + (κeT , δGu)− (κeN , δGw).

Clearly,

Θ3 = Γ2. (4.34)
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By Lemma 4.10 with v = G we have that

Θ1 = 0. (4.35)

By the orthogonality property, (4.7a) and (4.7b), of the projection we have

Θ2 = (e′w − (e′w)k−1, δGT ) + (e′u − (e′u)k−1, δGN ) − (e′θ − (e′θ)k−1, δGM )

+ (e′M − (e′M)k−1, δGθ)− (e′N − (e′N)k−1, δGu)− (e′T − (e′T )k−1, δGw).

Since

e′z − (e′z)k−1 = (z′ − z′h)− (z′ − z′h)k−1

= z′ − (z′)k−1 + (z′h)k−1 − z′h

= z′ − (z′)k−1,

we see that

Θ2 = Γ1. (4.36)

The result now follows from (4.33), (4.34), (4.35), and (4.36).

Step 2: Proof of Theorem 4.6. We are now ready to prove Theorem 4.6.

By Lemma 4.12 we have that

|êz(xi)| ≤ |Γ1|+ |Γ2|. (4.37)

The result then follows if we estimate each one of the terms appearing in Γ1 and Γ2. We will

estimate one term from each expression since the remaining terms can be estimated similarly.

From Γ1, we estimate the term (w′ − (w′)k−1, δGT ). By the approximation properties of the
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L2-projection we get

(w′ − (w′)k−1, δGT ) ≤ ‖w′ − (w′)k−1‖ ‖δGT ‖

≤ Ck−1 h
k|w′|k ‖δGT ‖

≤ Ck−1 h
k|z|k+1 ‖δzi ‖ .

Estimating the remaining terms appearing in Γ1 in a similar fashion we obtain

|Γ1| ≤ Ck−1 h
k|z|k+1 ‖δzi ‖ .

Finally, we show how to estimate the term (eθ + κeu − d2eT , δGT ) in Γ2 since estimating the

remaining terms is similar. Thus,

(eθ + κeu − d2eT , δGT ) ≤ (‖eθ‖+ ‖κ‖∞ ‖eu‖+ d2 ‖eT‖) ‖δGT ‖

≤ C ‖e‖ ‖δzi ‖

since κ is bounded and 0 < d < 1. This implies that

|Γ2| ≤ C ‖e‖ ‖δzi ‖ .

Inserting the estimates of |Γ1| and |Γ2| into (4.37) completes the proof of Theorem 4.6.

4.7 Numerical results

In this section, we display numerical results to verify our theoretical findings. We solve the

equations (1.3) and (1.4) in Ω = (0, 1) with κ = 1, together with the boundary conditions

wD = uD = θN = 0 on ∂Ω. We take uniform loading in arc length, namely, p = q = 1 in

Ω. Although, the theory has been carried out for variable curvature, we take a constant κ
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so that we can compute the exact solution and produce history of convergence tables. This

choice corresponds to a circular arch of thickness d.

The HDG method is defined by (4.1) whose numerical traces are given by (4.2) in which

we take the stabilization function S to be constant on ∂Ωh.

We display our numerical results in Table 6 and Table 7. In Table 6, we present a history

of convergence study for the stabilization function which is defined by setting

αθ = αN = αT = τ1 = τ2 = τ3 = 1 on ∂Ωh.

In Table 7, we present analogous results with a different choice of the stabilization function,

namely, we take

αθ = αN = αT = 1, τ1 = τ2 = τ3 = 0 on ∂Ωh.

In both tables, “mesh = i” means we employed a uniform mesh with 2i elements to obtain

the results of that particular row of the table. In Table 7, for the k = 0 column, “mesh = i”

means we employed a uniform mesh with 2i+4 elements. We displayed results for k = 0 in this

manner because it takes more refinements to reach the asymptotic regime, at least for this

choice of the numerical traces. For polynomials degree k = 0, 1, 2, 3 we display the L2-norm

of the projection of the error, ‖Πe‖, the L2-norm of the error, ‖e‖, and the error in the

numerical traces, ‖ê‖∞, defined by

‖ ê ‖∞ := max
z∈{T,N,M,θ,u,w}

(
max
x∈Eh
|(z − ẑh)(x)|

)
.

We also display numerical orders of convergence which are computed as follows. Let e(i) de-

note the error where a mesh with 2i elements has been employed to obtain the HDG solution.

As usual, the order of convergence, ri, at level i is defined as ri := log
(
e(i− 1)/e(i)

)
/log 2.
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Observe that the results displayed in both tables validate the superconvergence of order

k+2 for k ≥ 1, and optimal convergence for k = 0, of the projection of the error predicted by

Theorem 4.4. We also see that the L2-norm of the error converges optimally as was predicted

by Theorem 4.5. The superconvergence of the numerical traces of order 2k + 1 of Theorem

4.6 is also verified.

In these examples we took the thickness parameter d = 10−2 but let us note that in the

numerical experiments which we do not report here we observed similar results and exactly

the same convergence orders when we took d = 10−8. This verifies that the method is robust

with respect to d and is free from locking as was predicted by our theoretical results in Sec.

4.5.

In Table 8, we compare the running time between DG and HDG methods for the same

problem and we use 512 elements. We can see that the running time of HDG is much less

than DG method.

4.8 Concluding remarks

We have shown that optimal HDG methods can be devised for Naghdi arches which are

free from shear- and membrane-locking. We achieved this by a careful study of the relation

between the definition of the numerical traces and the corresponding convergence properties

of the methods. Key to our analysis was a new projection operator which is tailored to fit the

structure of the numerical traces of the HDG method. We have shown that HDG solution

superconverges to the projection of the exact solution for all the unknowns. This immediately

results in optimal error estimates for all the unknowns. In this sense, the error analysis is
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Table 6: αθ = αN = αT = τ1 = τ2 = τ3 = 1.

mesh k = 0 k = 1 k = 2 k = 3

‖Πe‖ order ‖Πe‖ order ‖Πe‖ order ‖Πe‖ order

3 2.38E-01 0.39 2.58E-03 2.87 5.07E-07 4.05 9.50E-10 5.18

4 1.56E-01 0.61 3.35E-04 2.94 3.14E-08 4.01 2.96E-11 5.01

5 9.06E-02 0.78 4.27E-05 2.97 1.96E-09 4.00 9.26E-13 5.00

6 4.88E-02 0.89 5.38E-06 2.99 1.23E-10 4.00 2.90E-14 5.00

‖e‖ order ‖e‖ order ‖e‖ order ‖e‖ order

3 2.45E-01 0.44 1.12E-03 2.26 1.34E-05 3.08 5.04E-08 3.98

4 1.59E-01 0.63 2.15E-04 2.38 1.68E-06 3.00 3.17E-09 3.99

5 9.19E-02 0.79 4.62E-05 2.22 2.11E-07 2.99 1.98E-10 4.00

6 4.94E-02 0.90 1.09E-05 2.08 2.64E-08 3.00 1.24E-11 4.00

‖ê‖∞ order ‖ê‖∞ order ‖ê‖∞ order ‖ê‖∞ order

3 2.38E-01 0.46 9.00E-04 2.38 1.56E-06 4.94 1.37E-10 7.01

4 1.53E-01 0.64 1.33E-04 2.76 4.95E-08 4.97 1.07E-12 7.01

5 8.80E-02 0.80 1.79E-05 2.89 1.56E-09 4.99 8.33E-15 7.00

6 4.72E-02 0.90 2.31E-06 2.95 4.90E-11 4.99 6.50E-17 7.00
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Table 7: αθ = αN = αT = 1, τ1 = τ2 = τ3 = 0.

mesh k = 0 k = 1 k = 2 k = 3

‖Πe‖ order ‖Πe‖ order ‖Πe‖ order ‖Πe‖ order

3 2.33E-01 0.66 3.70E-03 2.94 3.16E-07 4.19 1.19E-09 4.99

4 1.34E-01 0.79 4.66E-04 2.99 1.90E-08 4.06 3.72E-11 5.00

5 7.27E-02 0.88 5.83E-05 3.00 1.17E-09 4.02 1.16E-12 5.00

6 3.79E-02 0.94 7.30E-06 3.00 7.31E-11 4.00 3.64E-14 5.00

‖e‖ order ‖e‖ order ‖e‖ order ‖e‖ order

3 2.33E-01 0.66 3.70E-03 2.94 3.16E-07 4.19 1.19E-09 4.99

4 1.34E-01 0.79 4.66E-04 2.99 1.90E-08 4.06 3.72E-11 5.00

5 7.27E-02 0.88 5.83E-05 3.00 1.17E-09 4.02 1.16E-12 5.00

6 3.80E-02 0.95 7.30E-06 3.00 7.31E-11 4.00 3.64E-14 5.00

‖ê‖∞ order ‖ê‖∞ order ‖ê‖∞ order ‖ê‖∞ order

3 2.32E-01 0.66 3.69E-03 2.94 1.00E-07 4.95 1.22E-11 6.90

4 1.34E-01 0.79 4.65E-04 2.99 3.17E-09 4.98 9.83E-14 6.95

5 7.26E-02 0.88 5.83E-05 3.00 9.96E-11 4.99 7.81E-16 6.98

6 3.79E-02 0.94 7.29E-06 3.00 3.12E-12 5.00 6.15E-18 6.99
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Table 8: Running Time between DG and HDG Methods

Polynomial Degree k = 1 k = 2 k = 3

DG method 17.08s 54.81s 102.73s

HDG method 3.83s 7.75s 14.98s

simplified only to the study of the approximation properties of the projection operator.

This provides a powerful framework for devising locking-free HDG methods for more

challenging problems arising in solid mechanics, such as the Naghdi shell model whose re-

striction from the 2-D model to 1-D results in the arch model we have considered here. This

constitutes the subject of ongoing work.
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5 Naghdi Type Shell Model

5.1 Notation

Let Ω̃ ⊂ R3 be the middle surface of a shell of thickness 2ε. It is the image of a domain

Ω ⊂ R2 through a mapping Φ. In the following, we use an under-tilde to indicate the

components of a 2-vector. Greek sub and super scripts take their values in {1, 2}. Summation

rules with respect to repeated sub and super scripts will also be used. The coordinates

x∼ = (x1, x2) ∈ Ω then furnish the curvilinear coordinates on Ω̃. We assume that at any

point on the surface, along the coordinate lines, the two tangential vectors aα = ∂Φ/∂xα

are linearly independent. The unit vector a3 = (a1 × a2)/|a1 × a2| is normal to Ω̃. The

triple ai furnishes the covariant basis on Ω̃. The contravariant basis ai is defined by the

relations aα ·aβ = δαβ and a3 = a3, in which δαβ is the Kronecker delta. The metric tensor has

the covariant components aαβ = aα · aβ. The determinant of this metric tensor is denoted

by a. The contravariant components are given by aαβ = aα · aβ. The curvature tensor is

defined by bαβ = a3 · ∂βaα. The mixed components are bαβ = aαγbγβ. The Christoffel symbols

are defined by Γγαβ = aγ · ∂βaα, which are symmetric with respect to the subscripts. The

MODELS OF SHELLS

Naghdi and Koiter’s models

Let Ω̃ ⊂ R3 be the middle surface of a shell of thickness 2 ϵ. It is the image of a domain

Ω ⊂ R2 through a mapping ϕ. In the following, we use an under-tilde to indicate the

components of a 2-vector. Greek sub and super scripts take their values in {1, 2}. Summation

rules with respect to repeated sub and super scripts will also be used. The coordinates

x∼ = (x1, x2) ∈ Ω then furnish the curvilinear coordinates on Ω̃. We assume that at any

point on the surface, along the coordinate lines, the two tangential vectors aα = ∂ϕ/∂xα are

linearly independent. The unit vector a3 = (a1 × a2)/|a1 × a2| is normal to Ω̃. The triple

ai furnishes the covariant basis on Ω̃. The contravariant basis ai is defined by the relations

τ

τ̃

n = nαaα

ϕ

Ω

Ω̃

Figure 1. A triangularization of the shell middle surface

aα · aβ = δα
β and a3 = a3, in which δα

β is the Kronecker delta. It is obvious that aα are

also tangent to the surface. The metric tensor has the covariant components aαβ = aα · aβ.

The determinant of this metric tensor is denoted by a. The contravariant components are

given by aαβ = aα · aβ. The curvature tensor is defined by bαβ = a3 · ∂βaα. The mixed

components are bα
β = aαγbγβ. The Christoffel symbols are defined by Γγ

αβ = aγ · ∂βaα, which

are symmetric with respect to the subscripts. The covariant derivative of a vector or tensor

Notes by Sheng Zhang, April 2011.
1

Figure 4: A triangularization of the shell surface.
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covariant derivative of a vector or tensor is a higher order tensor. For example,

σαβ|γ = ∂γσ
αβ + Γαγλσ

λβ + Γβγτσ
ατ , τ γα|β = ∂βτ

γ
α + Γγλβτ

λ
α − Γταβτ

γ
τ ,

uα|β = ∂βuα − Γγαβuγ, uα|β = ∂βu
α + Γαγβu

γ.

Product rules for differentiations, like (σαλuλ)|β = σαλ|βuλ + σαλuλ|β, are valid.

5.2 The Naghdi Type Shell

The Naghdi type shell model [86] determines the middle surface tangential displacement

vector uαa
α, the transverse deflection vector wa3, and the normal fiber rotation vector

θαa
α. A neater way to write the model is a 2D variational problem defined on a subspace H,

determined by boundary conditions, of the multiple Sobolev space H∼
1(Ω)×H∼

1(Ω)×H1(Ω).

Here H∼
1(Ω) = [H1(Ω)]2. We let the tangential force density be pαaα and transverse force

density be p3a3. The model reads: Find (θ∼, u∼, w) ∈ H, such that

1

3

ˆ
Ω

aαβλγρλγ(θ∼, u∼, w)ραβ(φ∼, v∼, z)
√
adx∼+ ε−2

ˆ
Ω

aαβλγγλγ(u∼, w)γαβ(y∼, z)
√
adx∼

+ε−2µ

ˆ
Ω

aαβτβ(θ∼, u∼, w)τα(φ∼, y∼, z)
√
adx∼ =

ˆ
Ω

(pαyα + p3z)
√
adx∼

(5.1)

for ∀(φ∼, y∼, z) ∈ H. in which the fourth order two-dimensional contravariant tensor aαβδγ is

the elastic tensor of the shell, defined by

aαβδγ = µ(aαδaβγ + aβδaαγ) + λ∗aαβaδγ, with λ∗ =
2µλ

2µ+ λ
.

Here, λ and µ are the Lamé constants of the elastic material. This fourth order tensor is

often given as 2µaαδaβγ +λ∗aαβaδγ. But such a form loses certain symmetry. It is noted that

when acting on a symmetric strain tensor the effect of this form is the same as that of the

more formal one.
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The compliance tensor of the shell defines the inverse operator of the elastic tensor, given

by

aαβδγ =
1

2µ

[
1

2
(aαγaβδ + aβγaαδ)−

λ

2µ+ 3λ
aαβaγδ

]
We have

σαβ = aαβδγγδγ ⇐⇒ γαβ = aαβδγσ
δγ, if both σ and γ are symmetric.

If, say, γ12 6= γ21, the left one could hold in which σ must be symmetric, while the right

one must be broken. Note that aαβ|γ = aαβ|γ = 0. If the shell material has constant Lamé

coefficients, we have aαβγδ|τ = aαβγδ|τ = 0.

For (θ∼, u∼, w) ∈ H,

γαβ(u∼, w) =
1

2
(uα|β + uβ|α)− bαβw,

ραβ(θ∼, u∼, w) =
1

2
(θα|β + θβ|α)− 1

2
(bλαuλ|β + bγβuγ|α) + cαβw,

τβ(θ∼, u∼, w) = bλβuλ + θβ + ∂βw

(5.2)

are the membrane strain, bending strain and transverse shear strain engendered by the

tangential displacement u∼, transverse displacement w, and normal fiber rotation θ∼.

The Koiter model does not allow transverse shear. It can be derived by eliminating the

variable θ∼ with the vanishing shear condition τβ(θ∼, u∼, w) = bλβuλ + θβ + ∂βw = 0. The model

determines (u∼, w) in a subspace, still denoted by H, of H∼
1(Ω)×H2(Ω), such that

1

3

ˆ
Ω

aαβλγρλγ(u∼, w)ραβ(y∼, z)
√
adx∼+ ε−2

ˆ
Ω

aαβλγγλγ(u∼, w)γαβ(y∼, z)
√
adx∼

=

ˆ
Ω

(pαyα + p3z)
√
adx∼ ∀ (y∼, z) ∈ H, (5.3)

in which the elasticity tensor and the membrane (change of metric tensor) tensor are the

same as that in the Naghdi model. The bending (change of curvature) tensor is changed to
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ραβ(u∼, w) = ∂2
αβw − Γγαβ∂γw + bγα|βuγ + bγαuγ|β + bγβuγ|α − cαβw. (5.4)

Both (5.1) and (5.3) are well posed in their suitable spaces. Their solutions could be very

elusive when ε→ 0.

5.3 Green’s theorem on surfaces

One may need to repeatedly use integration by parts. It seems advantageous to operate the

calculation on the shell middle surface Ω̃, rather than on the two-dimensional domain Ω.

For this purpose, we need Green’s theorem, or divergence theorem, on the surface Ω̃. This

theorem is a special case of the Stokes theorem regarding vector fields defined on a surface.

Let τ ⊂ Ω be an area element, which is mapped to τ̃ ⊂ Ω̃ by Φ. Let n = nαa
α be the unit

outward normal in the surface Ω̃ to the boundary of τ̃ , denoted by ∂τ̃ = Φ(∂τ), then for

u∼ ∈ H∼ (div, τ), one has

ˆ
τ̃

uα|αdS =

ˆ
τ

uα|α
√
adx∼ =

ˆ
τ

(
√
auα),αdx∼ =

ˆ
∂τ

√
auαn∂τα ds =

ˆ
∂τ̃

uαnαds. (5.5)

In the equation, the left-most integral is taken with respect to the area measurement on

S, while the right most integral is with respect to the arc length. The equalty of the third

integral with the fourth integral is the classical divergence theorem on 2D Euclidean space.

We often simply write the Green’s theorem on surface as

ˆ
τ̃

uα|α =

ˆ
∂τ̃

uαnα.

This Green’s theorem on surface can be proved by using the divergence theorem in the

3D space. Let τ̃ ε be a thin shell of thickness 2ε and mid-surface τ̃ . We extend the 2D vector



138

field u∼ from τ̃ to a 3D vector field on the shell such that uα(x∼, x3) = uα(x∼) and u3 = 0. Then

the 3D divergence theorem says that

ˆ
τ̃ε
ui‖i =

ˆ
∂τ̃ε±

uin±i +

ˆ
∂τ̃ε

uini.

Here the last integral is taken on the shell lateral face where n3 = 0. The first integral in

the right hand side is on the upper and lower faces, and it is zero since nα = 0 there. The

divergence in the left hand side is ui‖i = uα,α + Γ∗γβγu
β, which is uα|α when restricted on τ̃ .

The Green’s theorem follows when we take the limit ε→ 0.

This Green’s theorem can also be proved by using the Stokes theorem on a surface, which

says that for a vector field v on a surface τ̃ one has

ˆ
τ̃

(curlv) · n =

ˆ
∂τ̃

v · s.

Here n = a3 is the upward unit normal vector to the surface and s is the counterclockwise

unit tangent vector to its boundary curve. Note that curlv = εijkvj‖igk. Thus (curlv) · n =

εαβvβ|α. From the Stokes theorem, we get

ˆ
τ̃

εαβvβ|α =

ˆ
∂τ̃

vαs
α.

This equation itself maybe called rotation theorem on surface. It is as important as the

Green’s (divergence) theorem. We then use the facts that εαβ|γ = 0 and sα = εβαnβ to get

ˆ
τ̃

[εαβvβ]|α =

ˆ
∂τ̃

vαε
βαnβ.

The Green’s theorem on surface then follows by taking uα = εαβvβ. It is noted that the

Stokes theorem can actually be proved by using the divergence theorem, or more accurately

rotation theorem, on flat plane. A short cut of this observation and the second approach is
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the third method to prove the Green’s theorem on surface: dividing the surface into small

elements, replacing each element by a flat planar segment, and using the Green’s theorem

on 2D flat plane, and doing the standard calculus process of refining approximations.

5.4 Naghdi model as a system of first order PDE’s

For a clamped shell, the Naghdi model [86] determines (θ∼, u∼, w) ∈ H = H1
0∼ ×H

1
0∼ ×H

1
0 such

that

1

3

ˆ
Ω̃

aαβλγρλγ(θ∼, u∼, w)ραβ(φ∼, v∼, z)

+ ε−2

ˆ
Ω̃

aαβλγγλγ(u∼, w)γαβ(y∼, z) + ε−2µ

ˆ
Ω̃

aαβτβ(θ∼, u∼, w)τα(φ∼, y∼, z)

=

ˆ
Ω̃

(pαyα + p3z) ∀ (φ∼, y∼, z) ∈ H.

There are many ways to write this variational equation in the strong partial differential

equation form. One can also introduce the first derivatives as new variables and write the

PDE’s as of first order. It seems that for the Naghdi model a more natural way is introducing

the scaled membrane stress tensor M, scaled shear stress vector S, and the bending tensor

B by

Mαβ = ε−2aαβλγγλγ(u∼, w), Sα = ε−2µaαβτβ(θ∼, u∼, w), Bαβ = aαβλγρλγ(θ∼, u∼, w).

The Naghdi model (5.1) can be then written as the following system of differential equa-
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tions.

−1

3
[Bαβ]|β + Sα = 0,

1

3
[Bλγbαλ ]|γ −Mαβ|β + bαλS

λ = pα,

cαβ
1

3
Bαβ − bαβMαβ − Sα|α = p3,

γαβ(u∼, w)− ε2aαβλγMλγ = 0,

µτα(θ∼, u∼, w)− ε2aαβSβ = 0,

ρλγ(θ∼, u∼, w)− aαβλγBαβ = 0.

(5.6)

This is a system of 13 equations for 13 two-variable functions.

5.5 Weak form of the first order PDE system

Let τ ⊂ Ω be an element, and τ̃ = Φ(τ) ⊂ Ω̃ be the mapped curvilinear surface element. We

multiply the equations in (5.6) by test functions and integrate the product on τ̃ . We pair

the notations as

θ ⇐⇒ φ, u ⇐⇒ v, w ⇐⇒ z, B ⇐⇒ C, M ⇐⇒ N, S ⇐⇒ T.

We multiply the equations, respectively, by φα, vα, z, Nαβ, Tα, and Cλγ. The first equation

becomes

−1

3

ˆ
τ̃

[Bαβ]|βφα +

ˆ
τ̃

Sαφα = 0.

By the Green’s theorem on surfaces, this can be written as

1

3

ˆ
τ̃

Bαβ φα|β + φβ|α
2

+

ˆ
τ̃

Sαφα −
1

3

ˆ
∂τ̃

Bαβφαnβ = 0. (5.7)
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We time the second equation of (5.6) by vα and integrate and apply Green’s theorem. The

second one can be written as

− 1

3

ˆ
τ̃

Bαβ 1

2
(bλαuλ|β + bγβuγ|α) +

ˆ
τ̃

Mαβ vα|β + vβ|α
2

+

ˆ
τ̃

Sαbλαvλ

+
1

3

ˆ
∂τ̃

Bαβbγαvγnβ −
ˆ
∂τ̃

Mαβvαnβ =

ˆ
τ̃

pαvα. (5.8)

By timing z to the third equation, integrate, and integrate by parts, the third equation

becomes

1

3

ˆ
τ̃

Bαβcαβz −
ˆ
τ̃

Mαβbαβz +

ˆ
τ̃

Sα∂αz −
ˆ
∂τ̃

Sαnαz =

ˆ
τ̃

p3z. (5.9)

Summing up these equations, invoking the definition (5.2), we have

1

3

ˆ
τ̃

Bαβραβ(φ∼, v∼, z) +

ˆ
τ̃

Mαβγαβ(v∼, z) +

ˆ
τ̃

Sατα(φ∼, v∼, z)

− 1

3

ˆ
∂τ̃

Bαβφαnβ +
1

3

ˆ
∂τ̃

Bαβbγαvγnβ −
ˆ
∂τ̃

Mαβvαnβ −
ˆ
∂τ̃

Sαnαz

=

ˆ
τ̃

pαvα +

ˆ
τ̃

p3z. (5.10)

The last three equations in (5.6) can be written as

1

3

ˆ
τ̃

Cαβραβ(θ∼, u∼, w) +

ˆ
τ̃

Nαβγαβ(u∼, w) + µ

ˆ
τ̃

Tατα(θ∼, u∼, w)

− 1

3

ˆ
τ̃

aαβλγC
αβBλγ − ε2

ˆ
τ̃

aαβλγN
αβMλγ − ε2

ˆ
τ̃

aαβT
βSα = 0. (5.11)

When one do this for each element on the shell, and add up, one would need to resolve

the border terms represented by

∑
τ∈Th

[
−1

3

ˆ
∂τ̃

Bαβφαnβ +
1

3

ˆ
∂τ̃

Bαβbγαvγnβ −
ˆ
∂τ̃

Mαβvαnβ −
ˆ
∂τ̃

Sαnαz

]
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On an interior border ẽ ∈ E0
h, using the fact that n+

β + n−β = 0, the first term can be written

as ˆ
ẽ

[Bαβφαnβ]+ + [Bαβφαnβ]− =

ˆ
ẽ

[[Bαβ]]nβ{{φα}}+

ˆ
ẽ

{{Bαβ}}[[φα]]nβ .

The jump and average are defined as

[[Bαβ]]nβ = [Bαβnβ]+ + [Bαβnβ]−, {{φα}} =
[φα]+ + [φα]−

2
, [[φα]]nβ = [φαnβ]+ + [φαnβ]−.
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APPENDIX A: PROOF OF THEOREM 2.2

In this appendix we prove Theorem 4.1 which guarantees the existence and uniqueness of

the DG approximation. We will use the following lemma.

Lemma A. Let k, `, s, and t be non-negative integers. Let f ∈ Pk([a, b]) and g ∈ P`([a, b])

be such that

f(a) = g(a) = 0. (A.1)

Suppose that

s, t ≥ max{k, `}, (A.2)

and that

Ps(g
′ + αf) = 0,

Pt(f
′ − αg) = 0,

(A.3)

where α is a function in L∞([a, b]) and P? denotes the L2-orthogonal projection into P?([a, b]).

Then f = g = 0 in [a, b] if

(a) α is identically equal to a constant, or

(b) α is not identically equal to a constant and

b− a ≤ 1

2 ‖α− α‖L∞([a,b])

(A.4)

where α denotes the average value of α over the interval [a, b].

Proof. Suppose that s ≥ t, then by (A.3), Pt(g
′ + αf) = 0 and Pt(f

′ − αg) = 0. Since

t ≥ max{k, `} we see that

g′ + Pt(αf) = 0, (A.5a)

f ′ − Pt(αg) = 0, (A.5b)
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pointwise on [a, b]. Multiplying (A.5a) by g and (A.5b) by f we get

1

2
(g2)′ + gPt(αf) = 0,

1

2
(f 2)′ − fPt(αg) = 0,

and hence

1

2
(g2 + f 2)′ = fPt(αg)− gPt(αf) = fPt((α− α)g)− gPt((α− α)f) (A.6)

since −fPt(αg)+gPt(αf) = 0 by (A.2). Integrating both sides of (A.6) from a to an arbitrary

x in [a, b], and using (A.1), we obtain

1

2
(g2 + f 2)(x) = T1(x) + T2(x)

where

T1(x) =

ˆ x

a

f(s)Pt((α− α)g)(s) ds, T2(x) = −
ˆ x

a

g(s)Pt((α− α)f)(s) ds.

By Cauchy-Schwarz inequality

|T1(x)| ≤ ‖f‖L2([a,b]) ‖(α− α)g‖L2([a,b])

≤ ‖α− α‖L∞([a,b]) ‖f‖L2([a,b]) ‖g‖L2([a,b]) .

Similarly,

|T2(x)| ≤ ‖α− α‖L∞([a,b]) ‖f‖L2([a,b]) ‖g‖L2([a,b]) ,

and hence

1

2
(g2 + f 2)(x) ≤ 2 ‖α− α‖L∞([a,b]) ‖f‖L2([a,b]) ‖g‖L2([a,b]) .

Integrating both sides over x ∈ [a, b] implies

1

2
(‖f‖2

L2([a,b]) + ‖g‖2
L2([a,b])) ≤ 2(b− a) ‖α− α‖L∞([a,b]) ‖f‖L2([a,b]) ‖g‖L2([a,b])

≤ (b− a) ‖α− α‖L∞([a,b]) (‖f‖2
L2([a,b]) + ‖g‖2

L2([a,b]))
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by Young’s inequality. Thus,

[
1

2
− (b− a) ‖α− α‖L∞([a,b])

]
(‖f‖2

L2([a,b]) + ‖g‖2
L2([a,b])) ≤ 0. (A.7)

Now, if α is identically constant on [a, b] then α = α and the result follows since in such a

case (A.7) implies ‖f‖2
L2([a,b]) + ‖g‖2

L2([a,b]) = 0. If α is not identically constant on [a, b] then

we reach the same conclusion by (A.4).

The same conclusion can be reached if s ≤ t by following a similar argument. This

completes the proof.

We are now ready to prove Theorem 2.2.

Theorem 2.2. Due to the linearity of the problem it suffices to show that the only solution

to (2.2) with

p = q = 0 on Ω,

and

w0 = w1 = u0 = u1 = θ0 = θ1 = 0,

is

wh = uh = θh = Mh = Nh = Th = 0 on Ωh.

In this case, (4.15) takes the form Θinterior + Θjumps = 0, where

Θinterior = d2(Th, Th)Ωh + d2(Nh, Nh)Ωh + (Mh,Mh)Ωh ,

and

Θjumps = −
∑
e∈Eh

(
C16[[Th]]

2 + C25[[Nh]]
2 + C34[[Mh]]

2

+ C43[[θh]]
2 + C52[[uh]]

2 + C61[[wh]]
2
)

(e).
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By assumption (2.8), this implies Th = Nh = Mh = 0 on Ωh. We also have that [[θh]] =

[[uh]] = [[wh]] = 0 on Eh, and hence θh, uh, and wh are continuous functions over Ω. Conse-

quently, by (4.2), (2.4), and (2.5), θ̂h = θh, ûh = uh, ŵh = wh, on Eh. Equation (2.2c) can

then be written as−(θh, v
′
3)Ωh+〈θh, v3〉Eh = 0. Upon integration by parts we get (θ′h, v3)Ωh = 0

for all v3 ∈ V k3
h . Since θh ∈ V k4

h and k3 ≥ k4− 1 by assumption (2.10), we see that θh ≡ 0 on

Ωh.

The remaining DG equations can now be written as

− (wh, v
′
1)Ωh + 〈wh, [[v1]]〉Eh + (κuh, v1)Ωh = 0,

− (uh, v
′
2)Ωh + 〈uh, [[v2]]〉Eh − (κwh, v2)Ωh = 0,

for all (v1, v2) ∈ V k1
h × V k2

h . Upon integrating by parts these equations become (w′h +

κuh, v1)Ωh = 0, (u′h − κwh, v2)Ωh = 0, and hence Pk1(w
′
h + κuh) = 0, and Pk2(u

′
h − κwh) = 0

in Ωh. If we apply Lemma A with

g = wh, f = uh, α = κ, k = k5, ` = k6, s = k1, t = k2, a = x0, b = x1,

we see that wh = uh = 0 on I1 by (2.10) and (2.11), since wh(0) = w0 = 0 and uh(0) = u0 = 0.

In particular, we get that wh(x1) = uh(x1) = 0, and hence we can apply Lemma A once

more with a = x1, b = x2 and deduce that wh = uh = 0 on I2. Similarly, we can prove that

wh = uh = 0 on Ωh. This completes the proof.
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APPENDIX B:

PROOF OF CHARACTERIZATION THEOREM

The conservativity conditions for the HDG methods for Naghdi arches are

〈θ̂h,mn〉 = 〈θN ,mn〉∂Ω, (B.1a)

〈N̂h, un〉 = 0, (B.1b)

〈T̂h,w n〉 = 0, (B.1c)

hold for all

(m, u,w) ∈ L2(Eh)× L2
0(Eh)× L2

0(Eh).

The lagrange multiplies are approximations at the nodes to w, u, and M , which are

denote by wh, uh, and µh.

There are five local solvers, we label their equations as (w), (u), (µ), (p), (q), each of

which contains six subequations and three more equations designing their numerical traces.

Since Th = Tωh + TwD + Tuh + TuD + Tµh + Tp + Tq and similarly for Nh and θh, to
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prove a characterization result we need to work out expressions for

〈Θ̂w,mn〉 (B.2a)

〈Θ̂wD ,mn〉 (B.2b)

〈Θ̂u,mn〉 (B.2c)

〈Θ̂uD ,mn〉 (B.2d)

〈Θ̂µ,mn〉 (B.2e)

〈Θ̂p,mn〉 (B.2f)

〈Θ̂q,mn〉 (B.2g)

〈N̂w, un〉 (B.3a)

〈N̂wD , un〉 (B.3b)

〈N̂u, un〉 (B.3c)

〈N̂uD , un〉 (B.3d)

〈N̂µ, un〉 (B.3e)

〈N̂p, un〉 (B.3f)

〈N̂q, un〉 (B.3g)
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〈T̂w,w n〉 (B.4a)

〈T̂wD ,w n〉 (B.4b)

〈T̂u,w n〉 (B.4c)

〈T̂uD ,w n〉 (B.4d)

〈T̂µ,w n〉 (B.4e)

〈T̂p,w n〉 (B.4f)

〈T̂q,w n〉 (B.4g)

Proof of (B.2a), we begin by writing 〈Θ̂w,mn〉 = 〈Θ̂w − Θw,mn〉 + 〈Θw,mn〉 taking

u = m and v4 = Θw in the local solver (µ) =⇒

〈Θw,mn〉 = (Mm, (Θw)′) + (Tm,Θw)

IBP =⇒

(Mm, (Θw)′) = 〈1,Mm(Θw)n〉 − ((Mm)′,Θw)

Using the local solver (w) with v1 = Tm =⇒

(Θw,Tm) = (Ww, (Tm)′)− 〈w, (Tm)n〉 − (κUω,Tm) + d2(Tw,Tm)

Then combine these three together=⇒

〈Θw,mn〉 = 〈1,Mm(Θw)n〉− ((Mm)′,Θw)+(Ww, (Tm)′)−〈w, (Tm)n〉− (κUω,Tm +d2(Tw,Tm)

IBP =⇒

(Ww, (Tm)′) = 〈1,Ww(Tm)n〉 − (Tm, (Ww)′)
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taking v3 = Mm in the local solver (w) =⇒

−(Θw, (Mm)′) = −〈1, Θ̂w(Mm)n〉+ (Mw,Mm)

Then we have =⇒
〈Θw,mn〉 =〈1,Mm(Θw)n〉 −〈w, (Tm)n〉

−〈1,Mm(Θ̂m)n〉 +(Mw,Mm)

+〈1,Ww(Tm)n〉 −(Tm, (Ww)′)

−(κUω,Tm) +d2(Tw,Tm)

which can be written as

〈Θw,mn〉 =d2(Tw,Tm) +(Mw,Mm)

−〈Θ̂w −Θw, (Mm)n〉 −〈w, (Tm)n〉

+〈1,Ww(Tm)n〉

−(κUω,Tm) −(Tm, (Ww)′)

taking µ = m and v6 = Ww in the local solver (µ) =⇒

−(Tm, (Ww)′) = −〈T̂m, (Ww)n〉 − (κNm,Ww)

Then we have =⇒

〈Θw,mn〉 =d2(Tw,Tm) +(Mw,Mm)

−〈Θ̂w −Θw, (Mm)n〉 −〈w, (Tm)n〉

−〈T̂m − Tm, (Ww)n〉

−(κUω,Tm) −(κNm,Ww)
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taking µ = m and v5 = Uw in the local solver (µ) =⇒

−(κTm,Uw) = (Nm, (Uw)′) +〈N̂m,Uwn〉

= 〈Nm, (Uwn〉 −(Uw, (Nm)′)− 〈N̂m,Uwn〉

= −〈N̂m −Nm,Uwn〉 −(Uw, (Nm)′)

taking v2 = Nm in the local solver (w) =⇒

−(Uw, (Nm)′) = d2(Nw,Nm) + (κWw,Nm)

Thus =⇒
〈Θw,mn〉 =d2(Tw,Tm) +d2(Nw,Nm) + (Mw,Mm)

−〈w,Tmn〉 +〈Θ̂w −Θw, (m−Mm)n〉

−〈N̂m −Nm,Uwn〉

−〈T̂m − Tm,Wwn〉

Then we have =⇒

〈Θw,mn〉 =d2(Tw,Tm) +d2(Nw,Nm) + (Mw,Mm)

−〈w,Tmn〉 −〈Θ̂w −Θw,Mmn〉

−〈N̂m −Nm,Uwn〉

−〈T̂m − Tm,Wwn〉

To prove an identity for 〈ΘwD ,mn〉 we need to further work on the energy terms.

taking µ = m and v1 = Tw in the local solver (µ) =⇒

d2(Tw,Tm) = −(Wm, (Tw)′) + (Θm,Tw) + (κUm,Tw)

IBP =⇒

−(Wm, (Tw)′) = −〈1, (Wm)(Tw)n〉+ (Tw, (Wm)′)
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taking v4 = Θm in the local solver (w) =⇒

(Θm,Tw) = −(Mw, (Θm)′)

Then =⇒

d2(Tw,Tm) = −〈1, (Wm)(Tw)n〉+ (Tw, (Wm)′)− (Mw, (Θm)′) + (κUm,Tw)

IBP =⇒

−(Mw, (Θm)′) = −〈1, (Mw)(Θm)n〉+ (Θm, (Mw)′)

taking µ = m and v3 = Mw in the local solver (µ) =⇒

−(Θm, (Mw)′) = −〈1, (Θ̂m)(Mw)n〉 − (Mm,Mw)

Then =⇒

−(Mw, (Θm)′) = −〈1, (Mw)(Θm)n〉+ 〈1, (Θ̂m)(Mw)n〉 − (Mm,Mw)

Thus we have =⇒

d2(Tw,Tm) + (Mm,Mw) =− 〈1, (Wm)(Tw)n〉 +(Tw, (Wm)′)

+ 〈Θ̂m −Θm, (Mw)n〉 +(κUm,Tw)

using the local solver (w) with v6 = Wm =⇒

(Tw, (Wm)′) = 〈1, (T̂w)(Wm)n〉+ (κNw,Wm)

Then we have

d2(Tw,Tm) + (Mm,Mw) =〈T̂w − Tw, (Wm)n〉 +(κNw,Wm)

+ 〈Θ̂m −Θm, (Mw)n〉 +(κUm,Tw)
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using the local solver (µ) with µ = m and v2 = Nw =⇒

(κWm,Nw) = −(Um, (Nw)′)− d2(Nm,Nw)

IBP =⇒

−(Um, (Nw)′) = −〈1, (Um)(Nw)n〉+ (Nw, (Um)′)

using the local solver (w) with v5 = Um =⇒

(Nw, (Um)′) = 〈1, (N̂w)(Um)n〉 − (κTw,Um)

Then we have =⇒

−(Um, (Nw)′) = 〈N̂w −Nw, (Um)n〉 − (κTw,Um)

Thus =⇒

(κUm,Nw) = 〈N̂w −Nw, (Um)n〉 − (κTw,Um)− d2(Nw,Nm)

and hence,

(κNw,Wm) + (κUm,Tw) = 〈N̂w −Nw, (Um)n〉 − d2(Nw,Nm)

Then =⇒
d2(Tw,Tm) + d2(Nw,Nm) + (Mm,Mw) =〈Θ̂m −Θm, (Mw)n〉

+〈N̂w −Nw, (Um)n〉

+〈T̂w − Tw, (Wm)n〉
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Thus =⇒
〈Θ̂w,mn〉 = −〈w,Tmn〉+ 〈Θ̂m −Θm, (Mw)n〉

+ 〈N̂w −Nw, (Um)n〉

+ 〈T̂w − Tw, (Wm)n〉

+ 〈Θ̂w −Θw, (m−Mm)n〉

− 〈N̂m −Nm, (Uw)n〉

− 〈T̂m − Tm, (Ww)n〉

We do the same procedure to (B.2c) and get

〈Θ̂u,mn〉 =d2(Tu,Tm) +d2(Nu,Nm) + (Mu,Mm)

−〈u,Nmn〉 +〈Θ̂u −Θu, (m−Mm)n〉

−〈N̂m −Nm,Uun〉

−〈T̂m − Tm,Wun〉

Similarly, from (B.2d) we get

d2(Tm,Tu) + d2(Nm,Nu) + (Mm,Mu) =〈Θ̂m −Θm, (Mu)n〉

+〈N̂u −Nu, (Um)n〉

+〈T̂u − Tu, (Wm)n〉
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and then we get

〈Θ̂u,mn〉 = −〈u,Nmn〉+ 〈Θ̂m −Θm, (Mu)n〉

+ 〈N̂u −Nu, (Um)n〉

+ 〈T̂u − Tu, (Wm)n〉

+ 〈Θ̂u −Θu, (m−Mm)n〉

− 〈N̂m −Nm, (Uu)n〉

− 〈T̂m − Tm, (Wu)n〉

Similarly, we can evaluate this identity to obtain an expression for (B.2e) and we get

〈Θ̂µ,mn〉 = −〈µ,Θmn〉+ 〈Θ̂m −Θm, (Mµ)n〉

+ 〈N̂µ −Nµ, (Um)n〉

+ 〈T̂µ − Tµ, (Wm)n〉

+ 〈Θ̂µ −Θµ, (m−Mm)n〉

− 〈N̂m −Nm, (Uu)n〉

− 〈T̂m − Tm, (Wu)n〉

From (B.2f) we get

〈Θ̂p,mn〉 = −(p,Um) + 〈Θ̂m −Θm, (Mp)n〉

+ 〈N̂p −Np, (Um)n〉

+ 〈T̂p − Tp, (Wm)n〉

+ 〈Θ̂p −Θp, (m−Mm)n〉

− 〈N̂m −Nm, (Up)n〉

− 〈T̂m − Tm, (Wp)n〉
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Similarly, From (B.2g) we get

〈Θ̂q,mn〉 = −(q,Wm) + 〈Θ̂m −Θm, (Mq)n〉

+ 〈N̂q −Nq, (Um)n〉

+ 〈T̂q − Tq, (Wm)n〉

+ 〈Θ̂q −Θq, (m−Mm)n〉

− 〈N̂m −Nm, (Uq)n〉

− 〈T̂m − Tm, (Wq)n〉

We can get similar results for (B.3a) – (B.3g) and (B.4a) – (B.4g).
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We introduce and analyze discontinuous Galerkin methods for a Naghdi type arch model.

We prove that, when the numerical traces are properly chosen, the methods display optimal

convergence uniformly with respect to the thickness of the arch. These methods are thus free

from membrane and shear locking. We also prove that, when polynomials of degree k are

used, all the numerical traces superconverge with a rate of order h2k+1.

Based on the superconvergent phenomenon and we show how to post-process them in

an element-by-element fashion to obtain a far better approximation. Indeed, we prove that,

if polynomials of degree k are used, the post-processed approximation converges with order

2k + 1 in the L2-norm throughout the domain. This has to be contrasted with the fact that

before post-processing, the approximation converges with order k + 1 only. Moreover, we

show that this superconvergence property does not deteriorate as the thickness of the arch

becomes extremely small.

Since the DG methods suffer from too many degree of freedoms we introduce and analyze

a class of hybridizable discontinuous Galerkin (HDG) methods for Naghdi arches. The main
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feature of these methods is that they can be implemented in an efficient way through a

hybridization procedure which reduces the globally coupled unknowns to approximations to

the transverse and tangential displacement and bending moment at the element boundaries.

The error analysis of the methods is based on the use of a projection especially designed to fit

the structure of the numerical traces of the method. This property allows to prove in a very

concise manner that the projection of the errors is bounded in terms of the distance between

the exact solution and its projection. The study of the influence of the stabilization function

on the approximation is then reduced to the study of how they affect the approximation

properties of the projection in a single element. Consequently, we prove that HDG methods

have the same result as DG methods.

At the end of the thesis, we talk a little bit of shell problems.
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