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A Semiparametric Regression Model For Oligonucleotide Arrays 
 

                 Jianhua Hu                                       Guosheng Yin 
                          Department of Biostatistics           Department of Biostatistics 
                      University of North Carolina               M. D. Anderson Cancer Center 
 
 
 
A semiparametric model incorporating the spline smoothing technique is proposed to study oligonucleotide 
gene expression data. No specific parametric functional form is assumed for mismatch probe intensities, 
which allows much more flexibility in the fitted model. The new approach improves the model fitting, hence 
the estimation of expression indexes. The method is applied to a data set of 18 HuGeneFL arrays. 
  
Key words: Affymetrix, gene expression, microarray, semiparametric spline smoothing 
 
 

Introduction 
 
DNA microarray technologies have been 
increasingly used and began to play an important 
role in many areas of biomedical research. There are 
two most popular types, namely cDNA microarrays and 
oligonucleotide arrays. The common advantages of 
them are to monitor the expression levels of very 
large numbers of genes simultaneously and 
repeatedly in cell lines, human tissues and a wide 
range of organisms. Microarrays have the potential 
and power to advance our knowledge and 
understanding at a genomic scale. In particular, the 
high-density oligonucleotide array has been shown 
to be very promising. Not only does it have the 
capability of monitoring all yeast genes, mouse 
and human genes, but it also can identify 
important genes and classify disease types or 
states reliably, due to its special design feature. 

The distinctive feature of the 
oligonucleotide array technology is the effective 
utilization of the probe redundancy. Multiple 
oligonucleotides of different sequences are 
hybridized onto different regions of the same RNA 
that are complementary to the oligonucleotides. 
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North Carolina 27599-7420. Phone: 919-966-
7287. Email: jhu@bios.unc.edu. 
 

It offers us the possibility to test and 
examine the stability and reliability of gene 
expression measurements (outlier detection), 
improve the accuracy of RNA quantification, 
reduce cross-hybridization effects, and thus reduce 
the measurement noise and false-positive 
percentages. Usually, a probe set of around 20 
pairs of a particular length (25 nucleotides 
typically) represents a gene uniquely (Lockhart et 
al., 1996). 

The other source of redundancy is that 
mismatch (MM) probes are used, which are 
identical to their correspondent perfect match 
(PM) except for a single base mutated at the 
central position (13th position typically). The MM 
probes can provide some information on 
background and cross-hybridization signals, and 
provide the ability to discriminate between “real” 
signals and those due to non-specific or semi-
specific hybridization (Lipshutz et al., 1999). In 
other words, the design of oligonucleotide arrays 
with PM/MM probe sets can improve the 
differentiating ability over the cDNA arrays that 
use a single spot. It can help to distinguish whether 
a signal detected is really due to the hybridization 
onto the intended RNA region or it happens just 
by chance due to cross-hybridization or other 
measurement errors.  

Obtaining an accurate gene expression 
index is essential and fundamental for further 
research and analysis of oligonucleotide arrays, 
such as differentiating important genes, classifying 
genes to co-regulated or anti-coregulated groups 
and categorizing samples. Hence, it is very 
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important to develop some methodologies to 
estimate the gene expression indexes as accurately 
as possible.  

In recent years, various statistical methods 
have been proposed for analyzing oligonucleotide 
arrays. For example, the GeneChip software 
computes the “average difference” (AD) 
(http://www.genechip.org/index.affx). 
 Affymetrix's average log ratio is based on 
log(PM/MM) where the log transformation may be 
helpful in reducing the skewness and the variation.  
Li and Wong (2001) proposed a parametric 
regression model to calculate the model-based 
expression indexes (MBEI) based on the 
difference (PM-MM). It can improve the fittness 
of hybridization intensity extracted from PM and 
MM, and model the probe effects explicitly. Also, 
MBEIs are closer to the underlying true gene 
expression indexes than those provided by most of 
other software. The way of dealing with the 
relationship between PM and MM for almost all 
the above methods is to subtract MM from PM or 
log(MM) from log(PM) directly. The model based 
on (PM-MM) assumes a linear relationship 
between PM and MM and the regression 

coefficient of MM equals one. Although the old 
Affymetrix pre-5.0 algorithm claims that there is a 
linear relationship between most PM and MM 
probes, there are still a certain amount of probes 
with nonlinearity. Better fitting models to these 
genes are desired in order to avoid missing some 
important biological information. 

In practice, the paired PM and MM probe 
expression levels may not be linearly correlated 
for a specific probe set (Schadt et al., 2001). As 
shown in Figure 1, we randomly chose the probe 
set 17 of Gene 2111 and obtained the scatter plot 
of PM versus MM intensity levels with a 
smoothing spline curve fitted after normalization.  
It is clear that the relationship between PM and 
MM is not simply linear and some curvature 
pattern needs to be addressed. For the same gene, 
we also plotted log(PM) versus log(MM) with a 
smoothing spline fit. Although the log 
transformation helps clarify the pattern between 
them, there is still a curve trend. Therefore, there 
may be some excess non-linearity that cannot be 
captured by the parametric model simply based on 
(PM-MM). 
 

 

 
 
Figure 1: Smoothing spline fitting curves of PM versus MM and log(PM) versus log(MM) for probe set 17 of 
Gene 2111. 
 

Another notable feature is that it is not 
rare for MM to be bigger than PM expression 
intensities after some are removed as outliers. The 
old Affymetrix pre-5.0 algorithm sets the 
expression levels of probes to be positive only if 
PM-MM ≥  SDT or PM/MM ≥  SRT, where SDT 

is the statistical difference threshold and SRT is 
the statistical ratio threshold. By this brutal 
truncation, it throws away many probes such that 
some useful biological information might be lost. 
Current Affymetrix MAS 5.0 handles this situation 
by setting MM always lower than its paired PM, 
which is similar to the approach of truncation 
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(Irizarry et al., 2001). But in many situations, the 
phenomenon of intensities of MM larger than PM 
may be caused by some sensible biological 
variations. Thus researchers still want to keep the 
features in the data analysis. Moreover, the 
algorithm is not as flexible and adjustable as 
model-based approaches.  

Li-Wong's reduced model has been proved 
to be simple, feasible and popular with 
collaborating biologists and have several aspects 
of superior behavior. It can produce better 
estimation for the gene expression indexes, which 
is one of the most critical steps for further 
analysis. Since MM probes are used to eliminate 
the background and hybridization noise as much 
as possible, the one of most interest to researchers 
is still PM probes. Validity and goodness-of-fit of 
a model is essential to obtain accurate parameter 
estimates and statistical inferences. 

We propose a semiparametric regression 
model to study PM probes with adjustment for 
MM probes in this article . After normalizations 
and dropping outliers, we keep the original feature 
for each gene and seek to obtain a better model-
fitting by capturing the nonlinear relationship 
between PM and MM probes with a 
semiparametric approach based on Li-Wong's 
reduced model. We do not assume any parametric 
functional form of MM while the multiplicative 
relationship between the gene expression index (θ) 
and the increasing rate (the probe sensitivity 
index,φ) is still kept as in Li-Wong's reduced 
model. The approach involves three stages and 
relaxes the restriction of the regression coefficient 
of PM on MM being one, which is completely 
data-driven. We apply the proposed mothed to the 
analysis of HuGeneFL oligonucleotide arrays for 
Antibody Stain CEL data (http://thinker.med.ohio-
state.edu/projects/fbss/index.html). 
 
 

Methodology 
 

Let θi be the expression index for the gene in the 
ith sample which is the primary target of interest. 
The full model proposed by Li and Wong (2001)  
for each gene is given by 

 
PMij = νj + θi(αj + φ j) + εij 

                   MMij = νj + θiαj + εij,           (1)                    

where PMij and MMij are the PM and MM 
intensity values for the ith array and the jth probe 
pair for this gene, i=1, …, I; j=1, …, J. Note that 
νj is the reference response due to nonspecific 
hybridization, αj is the increasing rate of MM 
response, φj is the additional increasing rate of PM 
response, and εij represents a random error. There 
are many parameters in the full mode l, whereas a 
parsimonious statistical model may be preferred 
with the smaller sample size. A simpler reduced 
model (LWR) for the difference PM-MM is 
strongly supported by collaborating biologists. The 
model is given by 
 
          PMij - MMij = θi φj + εij                 (2)                        

 
It states that the PM and MM intensity differences 
have a multiplicative relation between θ and φ.  
 For the purpose of identifiability, a 
constraint is set as Σjφ j

2=J. The error terms are 
assumed to be independent and identically 
normally distributed, i.e. ε ij ∼ N(0, σ2). Depending 
on the value of φ j, the least square estimate for θi is 
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and the approximate standard error is given by, 
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An iterative least square algorithm is carried out 
for the estimation of the parameters. A software 
DNA-Chip Analyzer (dChip) has been developed 
to fit the parametric regression model that Li and 
Wong proposed (http://www.dchip.org/). 

However, Li-Wong's reduced model 
(LWR) is analogous to the usual regression model 
for the difference between the pre-treatment 
(baseline) and post-treatment effects in clinical 
trials. In some sense, it forces the regression 
parameter of MM to be one which is a very 
stringent restriction and may affect the goodness-
of-fit of the model tremendously. Moreover, there 
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is strong evidence of a non-linear relationship 
between PM and MM intensities (see Figure 1). 
Therefore, we propose a semiparametric approach 
to model the expression intensity data for each 
gene. Inspired by the additive partially linear 
models (Heckman, 1986; Hastie & Tibshirani, 
1990), we model MM based on a nonparametric 
spline smoothing technique (LWS), namely, 

 
           PMij = g(MMij)+ θi φ j + εij          (5) 
 
where g(.) is an unknown smooth function and is 
estimated with the cubic spline smoothing method. 
In many instances, rather than modeling every 
covariate nonparametrically or parametrically, a 
semiparametric partially linear regression model is 
more desirable. The model specification for the 
oligonucleotide array data is particularly appealing 
since the gene expression index θ is the major 
interest, while the effects of MM are nuisance. 
 We can draw statistical inferences and 
estimate θ by making minimal assumptions about 
the effects of MM with a fully nonparametric 
function. LWR does not have the same 
computational issue (too many parameters for 
sample sizes of practical use) as Li-Wong's full 
model that involves too many parameters. 
Basically, we relax the relationship between PM 
and MM to get a better fitted model and expect to 
have a more accurate estimate of the expression 
indexes. Hence, it is practically applicable to 
oligonucleotide gene expression data analysis. 

Our estimating procedure involving three 
stages of iterative algorithms is described as 
follows: 

 
Stage 1: Take LWR estimates as the initial 

values of θi
(0) and φ j

(0). Note that LWR itself 
iteratively fits the sets of θi and φj while treating 
one of the two sets as known and fixed. We 
calculate the initial values using the dChip 
software. 

 
Stage 2: Use the cubic spline smoothing 

technique to fit a nonparametric model with  
PMij-θi

(0)φ j
(0) as the response and MMij as the 

predictor, and thereby get the predicted values of 
ĝ (MMij). 
 

Stage 3: Calculate the updated PM values 
PMij

new = PMij
old - ĝ (MMij), then regress the new 

estimates of PM on θ 's and φ  's, namely, PM ij
new 

= θi φ  j+εij 
. The new estimates of θ 's and φ 's have 

been obtained. Go back to Stage 2, and continue 
till the prescribed convergence criteria are met. 

 
 Spline smoothing methods consisting of 
piecewise cubic polynomials are popular because 
they provide great flexibility for fitting the data 
and model non-linearities without specifying a 
functional form, with fewer parameters than 
higher-degree splines. To reduce the undesirable 
instability in the tails, one may restrict the function 
to be linear before the first knot and after the last 
knot. Fitting a cubic spline model which 
minimizes the residual sum of squares while 
 

( ){ } ( ){ }2 2

1

n

i i
i

y g x g x dx
=

′′− + λ∑ ∫    (6) 

 
adjusting the smoothness of the resulting spline 
can be achieved by minimizing the penalized 
residual sum of squares 
 The smoothing parameter λ controls the 
trade -off between bias and variance and may be 
estimated by the cross-validation procedure. 
Excellent reviews of nonparametric regression and 
spline smoothing are available in the literature 
(Silverman, 1985; Eubank 1999). 
 

Results 
 

Description of Experiment and Data set 
The data set is from an experiment 

conducted by the Division of Human Cancer 
Genetics at the Ohio State University (Lemon et 
al., 2002). There are 18 HuGeneFL arrays, each of 
which was loaded with 11 ug/200uL labeled 
cRNA. As shown by the graph in the Appendix, 
the process is described as the following. Human 
fibroblast cells were grown in media supplemented 
with 20% FBS for 5 passages (27 flasks) 
according to the distributor's recommendations. 
After 48 hours of placing cultures in serum-
reduced media (0.1% FBS), 9 flasks (Stimulated) 
were returned to a 20% serum condition for 24 
more hours and were then placed in RNA-Stat60. 
Cells from the other flasks (Starved) were placed 
in RNA-Stat60 directly after being placed in 
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serum-reduced media for 48 hours. Finally total 
RNA was extracted and purified according to a 
certain criterion. Based on the above steps, a set of 
stimulated and starved samples is produced. 
Another RNA sample was produced as a balanced 
mixture of simulated and starved samples, which 
is called the 50:50 sample.  

For each condition (serum stimulated, 
serum starved and a 50:50 mixture of serum 
stimulated and starved), two aliquots of RNA were 
drawn and processed separately on three 
consequent days. Meanwhile, spiked-in genes 
were added in the following way: Lys and Phe 
RNAs at 0.08 ng/8µg total RNA were added to 
Stimulated RNA samples. The Starved samples 
received the same amount of Dap and Thr and all 
the four spiked-in genes at 0.04 ng/8µg were 
assigned to the 50:50 samples. Another set of 
control genes were added as well, which were 
BioB, BioC, BioD and Cre with final 
concentrations of 1.5, 5, 25 and 100 pM, 
respectively. For each group (Stimulated, Starved 
and 50:50), six replicated HuGeneFL arrays were 
produced. Eighteen arrays were produced in total.  
The technical variability was minimized through 
using a single fluidics station and a same lot for 
the 18 arrays. Multiple experiments or arrays for 
each gene allows researchers to evaluate the 
potentially different variability of genes.   

There are 7129 probe sets in each array. 
Among them, a total of 149 genes are represented 
twice or more although they might not be in the 
same probe set. Most of the probe sets have 20 
probe pairs. However, there are 330 probe sets 
with probe pairs less or more than 20. To compare 
Li-Wong's reduced model with our new proposal, 
the 330 probe sets were left out without losing any 
practical meaning. 

The experimental design has very 
appealing features that the relationship among the 
arrays are known in advance and control genes are 
spiked in. Hence, it is suitable to use the data set to 
make comparisons among different estimation 
approaches. 
 
Normalization, Variance and Goodness-of-fit 

Because scanned images may have 
different overall brightness, it is important to 

normalize arrays such that they have comparable 
brightness before any analysis on expression 
levels. A traditional Average Difference (AD) 
method analyzes one array at a time, thus 
normalization among the different arrays can be 
done after calculating the quantities of interest. 
Because the model-based expression index 
analysis involves different arrays simultaneously, 
the comparable brightness of the arrays needs to 
be assured. As a very important issue, 
normalization has been extensively discussed and 
studied in the literature, and it is still an active 
research area.  

We use the normalization method based 
on an “invariant set” (Li & Wong, 2001; Schadt et 
al., 2002). Normalization is based on probe values 
of non-differentially expressed genes that are 
identified through an iterative procedure (called 
the “invariant set”). Keeping the array which has 
the median overall brightness (the baseline array) 
as the invariant one, all the other arrays are 
normalized to it. The two arrays are drawn on the 
y-axis and x-axis, respectively. A straight line 
through the origin or a curve (i.e. smoothing 
spline) is fitted to the scattered points, which 
shows the normalization relationship between the 
two arrays. 

If the variance of the model based 
expression index is overestimated, it may be 
possible not to differentiate some important genes 
that are supposed to express significantly, 
especially for genes with low expression levels. 
Hence, the model which yields smaller variances 
of the estimated expression indexes is desired. On 
average, LWS reduces the standard error of θ by 
22% with respect to LWR. It indicates that LWS 
gives the more stable estimated expression index 
in terms of the 20 probe pairs than LWR. Figure 2 
shows the histogram plots of standard errors of all 
the expression index estimates from both LWR 
and LWS. Obviously there are shifting differences 
between the distributions of S.E.'s from the two 
models (LWR and LWS). Most of the S.E.'s from 
LWS are within the range of (0, 500) while those 
from LWR even exceed beyond 1000. 
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Figure 2: Histograms for standard errors of the estimated gene expression indexes. 
 

Figure 3 presents the plot of residues of the fitted model versus predicted values for Gene 1007 
(chosen randomly) from the two models, respectively. The horizontal line is the reference with the residue 
being zero. It is clear that the scatter plot from LWS gives a more random and symmetric pattern around the 
reference line, while LWR has more points further deviated away from the zero-line. 
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Figure 3: Residuals versus predicted values for gene 1007. 
 

The better the model fits, the higher correlation of the predicted and observed PM values is supposed 
to be. Thus, correlations for all the probe sets are calculated for LWR and LWS. The histograms of the 
correlations obtained from the two models are shown in Figure 4, respectively. Note that most of the 
correlations obtained from LWS concentrate within 0.92 to 1, while the correlations from LWR even go 
below 0.90. 
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Figure 4: Histograms for correlations between observed and predicted PM intensities. 
 

During the three consecutive days of the 
experiment, six replicated arrays for each group 
(Stimulated, 50:50, Starved) were produced. The 
manufacturing process and analytical methods, 
including normalization, assure the biological 
variation among the six independent arrays as low 
as possible. The variation of the gene expression 
indexes across the six replicated arrays may serve 
as a good statistic for comparing the two different 
regression models. A better model should be able 
to produce a smaller variation of the gene 
expression indexes among the six duplicates. In 
Table 1, the simple descriptive statistics of the 
sample variances of the expression indexes among 

the six arrays in each condition (Stimulated, 50:50, 
Starved) are given to compare LWR with LWS. 
The result shows that the relationship generally 
holds that Var(θ̂ LWS) < Var(θ̂ LWR). In the 
Stimulated and 50:50 conditions, LWS yields 
much smaller variation among the six replicated 
arrays than LWR, while LWR and LWS perform 
roughly the same at the Starved condition. In other 
words, LWS gives more stable results such that 
the expression indexes from the six arrays in each 
condition (Stimulated, 50:50 and Starved) have a 
smaller variation than LWR. 
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Table 1: Descriptive statistics of sample variances among six arrays at each condition. 
 

 Stimulated  50:50  Starved  
 LWR LWS LWR LWS LWR LWS 
Minimum 143.620 37.663 39.357 77.091 29.797 8.655 
Maximum 3.029e7 3.653e7 1.210e8 8.310e7 6.217e7 4.129e7 
Median 89881.3 76892.1 138872.6 118526.1 98829.2 88985.3 
Mean 384779.9 369334.5 414866.1 395693.4 327800.8 329822.8 

 
Assessing Gene Expression Measurements 

In the experiment, the genes Lys and Phe 
were not spiked in starved samples, while Dap and 
Thr were not in stimulated sample. Therefore, 12 
probe sets and 18 samples of the four spiked-in 
genes are known to be expressed or not in 
advance. Totally 144 probe sets should be 
expressed and 72 should be unexpressed. We 
obtained the number of expressed and unexpressed 
genes using the criterion of θ̂ /S.E.(θ̂ ) > 6.0. The 
two methods (LWR and LWS) can detect the same 
number of expressed probe sets (132) and 
unexpressed probe sets (66). However, regarding 
the median standard error of the control probe sets, 
LWS gives a much smaller variation (S.E. of 
177.2) of the estimated expression indexes than 
LWR (S.E. of 307.9). Hence, LWS is more 
reliable and stable for the estimation of the gene 
expression indexes. 

Focusing on the four spiked-in genes, each 
gene known to be unexpressed should have a rank 
as low as possible among all the control genes. 
One probe set of Thr in a Stimulated condition that 
should be unexpressed has a unexpectedly high 
expression level. It is considered as an outlier and 
left out from our analysis. After averaging the 
expression indexes of each spiked-in probe set 
over their own six replicated arrays and 
calculating their ranks, the results are shown in 
Table 2. The ranks of the 11 unexpressed probe 
sets are listed with respect to the two models. The 
comparison between LWR and LWS based on the 
ranks is summarized with descriptive statistics as 
follows: LWS has the smaller median rank (6) and 
the smaller sum of ranks (68) with the smaller 
variance (13) while LWR has the median rank (8) 
and the sum of ranks (82) with the variance (17), 
respectively. 

 
Table 2: Ranks of unexpressed genes among the control genes. 
 

 Dap1 Dap2 Dap3 Lys1 Lys2 Lys3 Phe1 Phe2 Phe3 Thr1 Thr2 
LWR 2 1 6 13 12 11 10 9 7 8 3 
LWS 2 3 10 9 6 1 8 13 4 7 5 

 
Moreover, we examined the ranks of the 

11 probe sets of unexpressed control genes among 
all the genes in our study. Because we put no 
RNAs for these 11 probe sets, their measured 
expression levels should be close to zero and their 
ranks among all the genes should be among the 
lowest. As shown in Table 3, the ranks of the 11 
probe sets detected from LWS are much lower 

than those from LWR. In summary, LWS has the 
median rank (19) and the sum of ranks (312) with 
the variance (979) while LWR has the median 
rank (99) and the sum of ranks (2482) with the 
variance (79754), respectively. Based on the ranks 
of expression levels of the unexpressed control 
genes, LWS gives much better results than LWR. 
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Table 3: Ranks of unexpressed genes among all the genes in the study. 
 

 Dap1 Dap2 Dap3 Lys1 Lys2 Lys3 Phe1 Phe2 Phe3 Thr1 Thr2 
LWR 14 6 33 821 616 472 213 152 36 99 20 
LWS 15 16 28 22 19 14 21 122 17 20 18 

 
Among the spiked-in genes, Dap and Thr in 50:50 
samples obtained 0.04 ng/8µg total RNA, 0 in 
stimulated and 0.08 for starved samples, while Lys 
and Phe in 50:50 samples obtained 0.04, 0.8 in 
stimulated and 0 for starved samples. Better gene 
expression index estimates should have the ability 
of differentiating between samples in which the 
underlying true gene expression levels vary. 
Hence, a sensible criterion is to assess an 
estimated expression index according to its 
correlation with the underlying true expression. 
 Intuitively, the true expression index 
should be proportional to the mRNA 
concentration. Thus higher correlation between the 
estimated expression indexes and mRNA 
concentrations is expected if the indexes are closer 
to the true expression levels. The correlation from 
LWR is 0.608 and from LWS is 0.609 where LWS 
is slightly higher than LWR. Similar results are 
obtained from the study of the correlations among 
the hybridization genes (BioB, BioC, BioD, Cre) 
and quantities of mRNA (2.5, 5, 25, 100). 

   To this end, we have made comparisons between 
the two regression models from several different 
perspective. LWR is a parametric regression 
model while LWS is a semiparametric model that 
is more robust in terms of model mis-specification. 
 Meanwhile, we notice that LWS gives 
slightly lower estimation of the expression indexes 
than LWR does generally. To compare LWR and 
LWS by combining the mean and variance of the 
expression indexes, we order all the measures and 
divide them into 50 quantile groups, then compute 
the median coefficient of variation (C.V.) for each 
group. Based on this criterion, LWS gives the 
average of all the median C.V.'s (0.088), which is 
smaller than that from LWR (0.094). Figure 5 
shows a global and clear picture of the 
comparison. The median C.V. for each of the 50 
groups from LWS is plotted against those from 
LWR. The straight line is the reference line with 
unit slope through the origin. It can be seen that 
most points in the square are above the reference 
line which indicates that the C.V.'s from LWS are 
smaller than those from LWR in general.

 

 
Figure 5: Comparison of coefficients of variation (C. V.) between LWR and LWS. 
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Conclusion 
 

Recently, much effort has been devoted to 
obtaining good estimates of the gene expression 
indexes, where Li-Wong's reduced model is 
widely used in applications. In this paper, we have 
proposed a semiparametric model based on Li-
Wong's reduced model. The cubic spline 
smoothing technique allows a flexible functional 
form for MM expression intensities.  Hence, it 
offers a better model-fitting procedure and 
captures the important gene expression patterns 
that might be missed by Li-Wong's reduced model.  

From several aspects of comparison, our 
proposed model outperforms Li-Wong's reduced 
model. Practically and statistically, our new model 
is meaningful and easy to implement as well. The 
reason that we compare the proposed model with 
Li-Wong's reduced model is that the latter is very 
popular in practice and proved to perform better 
than the average expression index, the log-
transformed average expression and others.  

It is of interest to compare the proposed 
model with the new Affymetrix MAS 5.0 
algorithm and other approaches. The variation of 
expression indexes changes positively with the 
intensity, which suggests a certain correlation or a 
linear trend between them. From the biological 
point of view, the genes are not independent, 
especially those that co-regulate. However, so far 
almost all model-based methods assume the 
variation has an independent structure. Therefore, 
a new methodology to incorporate the correlation 
structures needs to be developed. 

For the comparison of measurements, we 
have extensively utilized the control genes which 
provided important and helpful information to our 
study. Control genes can also be used for 
normalization (Lemon et al., 2002). Hence if 
possible, we suggest that more control genes, 
especially those with more replicates should be 
used under reasonable biological consideration.  

As to the model goodness-of-fit, there is 
no standard criteria available to justify and 
compare models with regard to the gene 
expression data where further research is needed. 
In the proposed model, the cubic spline smoothing 
is used, while the kernel smoothing (Speckman, 
1988) and other nonparametric techniques may be 
applied to fit MM intensities as well. The 
proposed method can be improved in an adaptive 

way as follows. We first test the goodness of fit of 
LWR based on the likelihood ratios. If there is no 
enough evidence to reject LWR, we would accept 
the estimates (θ̂  and φ̂ ) from LWR, otherwise we 
would proceed to LWS (spline). 
 

References 
 

Eubank, R. L. (1999). Nonparametric 
regression and spline smoothing. (2nd Ed). New 
York: Marcel Dekker. 

Heckman, N. E. (1986). Spline smoothing 
in a partly linear model. Journal of the Royal 
Statistical Society, B 48, 244-248. 

Hastie, T. J. & Tibshirani, R. J. (1990). 
Generalized additive models. London: Chapman 
and Hall. 

Irizarry, R. A., Hobbs, B., Collin , F., 
Beazer-Barclay, Y. D., Antonellis K. J., Scherf, U. 
& Speed, T. P. (2002). Exploration, normalization, 
and summaries of high density oligonucleotide 
array probe level data. (Accepted for publication 
in Biostatistics). 

Lipshutz R., Fodor S., Gingeras T., & 
Lockhart D. (1999). High density synthetic     
oligonucleotide arrays. Nature Genetics, 21, 20-
24. 

Lemon W. J., Palatini J., Krahe R., & 
Wright F. A. (2002). Theoretical and experimental 
comparisons of gene expression indexes for 
oligonucleotide arrays. Bioinformatics, 18, 1470-
1476.  

Li, C., & Wong W. H. (2001). Model-
based analysis of oligonucleotide arrays: 
Expression index computation and outlier 
detection. Proceedings of the National Academy 
of Science, USA, 98, 31-36.  

Li, C., & Wong W. H. (2001). Model-
based analysis of oligonucleotide arrays: model 
validation, design issues and standard error 
application. Genome Biology , 2, 1-11. 

Lockhart, D. J., Dong, H. L., Byrne, M. 
C., Follettie, M. T., Gallo, M. V., Chee, M. S., 
Mittmann, M., Wang, C., Kobayashi, M., & 
Horton, H. (1996). Expression monitoring by 
hybridization to high-density oligonucleotide 
arrays. Nature Biotechnology, 14, 1675-1680. 

 
 



267       SEMIPARAMETRIC REGRESSION MODEL FOR OLIGONUCLEOTIDE ARRAYS 

Schadt E., Li C., Ellis B., & Wong W. H. 
(2002). Feature extraction and normalization 
algorithms for high-density oligonucleotide gene 
expression array data. Journal of Cellular 
Biochemistry, 84, S37, 120-125. 

Schadt E., Li C., Su C. &, Wong W. H. 
(2001). Analyzing high-density oligonucleotide 
gene expression array data. Journal of Cellular 
Biochemistry, 80, 192-202.  

Silverman, B. W. (1985). Some aspects of 
the spline smoothing approach to non-parametric 
regression curve fitting. Journal of the Royal 
Statistical Society, B 47, 1-52. 

Speckman, P. (1988). Kernel smoothing in 
partial linear models. Journal of the Royal 
Statistical Society, B 50, 413-436. 
 

 

Human Fibroblasts cells with 20% FBS

Placed in 0.1% FBS for 48h 

Return to 20% FBS Harvest total RNA 

After 24h, harvest total RNA
RNA extraction RNA extraction

Stimulated sample Starved sample50:50 sample

     Add Lys, Phe
BioB,BioC,BioD,Cre

Add Lys,Phe,Dap,Thr
BioB,BioC,BioD,Cre

       Add Dap, Thr
BioB, BioC,BioD,Cre

HuGeneFL

Appendix: Experiment design float chart
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