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CHAPTER 1 

Introduction and Overview 

1.1 Neurochemistry 

1.1.1 Neurotransmission 

The brain is a complex and organized structure containing greater than 100 

billion neurons, with each neuron having its own unique structure and function. Neurons 

are complex, with no one neuron being the same and each one being asymmetric. 

Although all neurons are unique from one another, they all consist of the same three 

major components: cell body, axon, and dendrites. The cell body, also known as the 

soma, is the smallest part of the neuron in terms of area and contains the nucleus and 

other cytoplasmic organelles. The cell body is responsible for synthesizing and 

processing proteins. The axon of a neuron extends out from the cell body as a thin 

tubular outgrowth, and it is responsible for conducting electrical impulses to the 

terminals. Finally, the dendrites are multiple fine outgrowths (much smaller than the 

axon) off of the cell body, and serve as reception sites for other synaptic contacts from 

nearby neurons.    

The small gap (~5–10 nm) between neurons, known as the synaptic cleft, allows 

for chemical messengers (neurotransmitters) to diffuse across the synapse for chemical 

communication to occur between the neurons. Upon release from the presynaptic 

terminal, neurotransmitters diffuse across the synaptic cleft, bind to specific receptors 

on the pre- or postsynaptic terminal, and are either metabolized by enzymes, or are 

taken back up into presynaptic neuron by its specific transporter. For a molecule to be 

defined as a neurotransmitter it must meet four conditions, 1) synthesis of the molecule 
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in a neuron, 2) neuronal release that modulates and affects other nearby neurons, 3) 

exogenous application of the molecule mimics the action of the released molecule, and 

4) mechanism for the removal of the molecule from the action site. The molecules that 

meet these conditions are known as classical neurotransmitters, and examples of the 

most commonly studied are the monoamines dopamine (DA), norepinephrine (NE), and 

serotonin (5-HT), and the amino acids glutamate and gamma-aminobutyric acid 

(GABA). Recently, other molecules have been classified as ‘atypical’ neurotransmitters 

because they do not meet the conditions that define classical neurotransmitters. 

Chemical molecules defined as ‘atypical’ neurotransmitters include purines adenosine 

(Ado) and adenosine triphosphate (ATP), and gases nitric oxide and carbon monoxide.  

1.1.2 Dopamine  

DA is a member of the monoamine neurotransmitter family, which includes the 

molecules epinephrine, NE, 5-HT, and histamine. DA is one of the most studied 

neurotransmitters within the brain because of its role in memory, motor behavior, 

motivation, reward pathways, and learning as well as playing a key role in neurological 

diseases and disorders such as attention deficit hyperactivity disorder (ADHD), 

addiction, schizophrenia, Parkinson’s disease, and Huntington’s disease (1-5). In the 

brain, DA cell bodies are located in two specific regions, the substantia nigra (SN) and 

the ventral tegmental area (VTA), and their axons terminate to various anterior areas of 

the brain. The three dominant dopaminergic pathways are the nigrostriatal, mesolimbic, 

and mesocortical pathways. The nigrostriatal pathway projects DA from the cell bodies 

in the SN to the caudate-putamen (CPu). The mesolimbic pathway carries DA from the 

VTA to the nucleus accumbens (NAc). Lastly, the mesocortical pathway transports DA 
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from the VTA to the frontal cortex. The nigrostriatal pathway is the key pathway for 

learning and motor control, while the mesolimbic pathway is known for its involvement in 

reward, motivation, as well emotions such as pleasure and aggression (2, 6).  

DA is synthesized in the neuron from L-tyrosine in a two-step process (Figure 

1.1).  L-Tyrosine is hydroxylated by tyrosine hydroxylase (TH), the rate-limiting step, to 

form L-dihydroxyphenylalanine (L-DOPA), which is converted to DA by L-aromatic 

amino acid decarboxylase (AADC). After the formation of DA, it is packaged into 

storage vesicles by the vesicular monoamine transporter (VMAT), making DA readily 

available for rapid release in response to an action potential. Upon release into the 

synaptic cleft, DA has a variety of fates that include binding to DA pre- and postsynaptic 

receptors, being recycled via the DA transporter (DAT), or diffusing out of the synaptic 

cleft into the extracellular space. The DA transporter is a 12-transmembrane protein that 

brings DA back into the neuron through an energy dependent mechanism requiring co-

transport of two Na+ ions and one extracellular Cl- ion. The presence of the DAT on a 

neuron indicates that the neuron is a dopaminergic neuron. Once DA is in the cytosol, 

DA is repackaged by VMAT into vesicles where it is readily available for release (Figure 

1.2)  
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Figure 1.1 DA synthesis and metabolism. 
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Figure 1.2 The DA synapse. DA is synthesized in the presynaptic terminal where it is 
packaged into vesicles by VMAT. Upon an action potential DA is released from the 
vesicles into the extracellular space where it can be metabolized by MAO or COMT, be 
brought back into the presynaptic terminal by DAT, act upon DA pre- and postsynaptic 
DA receptors, or diffuse out of the synaptic terminal.   

Metabolism of DA is one method for decreasing extracellular DA, and the 

enzymes that are responsible for DA metabolism are monoamine oxidase (MAO) and 

catechol-o-methyltransferase (COMT). MAO degrades DA by cleaving the amine group 

and adding a carboxylic acid group in its place, while COMT methylates the hydroxyl 

group meta to the ethylamine group. When DA is metabolized in a stepwise fashion, 
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MAO degrades DA to 3, 4-dihydroxyphenylacetic acid (DOPAC), and then COMT acts 

upon DOPAC to form homovanillic acid (HVA) (Figure 1.1). Alternatively, COMT acts 

directly on DA to form 3-methoxytyramine (3-MT), which MAO can degrade to HVA 

(Figure 1.1). 

Upon DA release into the synaptic cleft, the primary role of DA is to send a 

chemical message from one neuron (presynaptic) to a receiving neuron (postsynaptic). 

To date, there are five known DA receptors that belong to a family of seven 

transmembrane G-protein coupled receptors (GPCRs). These DA receptors are 

separated into two groups: DA D1-like receptors and the D2-like receptors. The D1-like 

receptors include receptors D1 and D5 and are coupled to the stimulatory Gs protein that 

stimulates adenylyl cyclase, which activates signals to second messengers such as 

cyclic adenosine monophosphate (cAMP). The D2-like family includes D2, D3, and D4 

receptors that are coupled to the inhibitory Gi/o protein, inhibiting adenylyl cyclase. When 

DA receptors are located on a presynaptic DA neuron, they are referred to as 

autoreceptors. In essence, DA autoreceptors are constantly monitoring the extracellular 

environment and depending on the extracellular DA levels, activation of the 

autoreceptor can either induce or inhibit DA release. For instance, activation of DA D2-

like receptors has been known to decrease the release of DA from the presynaptic 

terminal by a feedback inhibition mechanism (7, 8). 

1.1.3 Adenosine 

Although classical neurotransmitters were defined strictly as acetylcholine, 

monoamines, and amino acids, improvements on detection technologies through 

instrumentation development has led to the discovery of numerous other biologically 
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relevant molecules and measured on a routine basis. Neurotransmitters that do not fall 

into the classical neurotransmitter group are referred to as atypical neurotransmitters. 

Members of the purine family have long been recognized as important biological 

molecules, particularly in the role of energy metabolism. Adenosine (Ado) has long been 

considered a neuromodulator and most recently has been described as an atypical 

neurotransmitter (2). Ado is a member of the purine family, which includes molecules 

such as adenosine monophosphate (AMP), adenosine diphosphate (ADP), and 

adenosine triphosphate (ATP). Molecules within the purinergic system are often 

characterized as intracellular signaling molecules or as the primary building blocks to 

RNA and DNA. As a result few techniques have been developed for sensitive 

quantification of these molecules, particularly in terms of their extracellular 

concentration (9). Despite the classification as predominantly intracellular molecules, 

there is increasing evidence that many of these purine molecules, such as Ado, are key 

extracellular signaling molecules (10-12). As an intracellular and extracellular signaling 

molecule, determining Ado’s extracellular concentration is critical to understanding how 

Ado behaves as an extracellular signaling molecule.  

A debate throughout the literature is exactly how Ado is released from the 

neuronal cells. One mechanism of extracellular Ado release into the synaptic cleft is by 

the fast conversion of ATP to Ado. Cytosolic ATP is packaged into vesicles by the 

vesicular nucleotide transporter (VNUT: Figure 1.3) in a similar fashion as classical 

neurotransmitters (e.g. DA) (13). Upon neuronal stimulation, ATP is released from the 

neuron into the synaptic cleft where ecto-nucleotidases degrade ATP to produce ADP, 

and henceforth degrade ADP to AMP. AMP is degraded by ecto-5’-nucleotidase to 
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generate Ado (Figure 1.4). Whether intra- or extracellularly, the breakdown of ATP to 

Ado is proposed to be completed in less than one second (2). Additionally, a small 

portion of Ado is also generated through the metabolism of S-adenosylhomocysteine 

(Figures 1.3 and 1.5) (14-17). Cytosolic Ado is then released into extracellular space by 

equilibrative nucleoside transporters (ENTs).  

 
Figure 1.3 The DA and Ado synapse. ATP in the presynaptic neuron is packaged into 
vesicles via the VNUT, and is released by an action potential into the synaptic cleft. 
Once ATP reaches the extracellular space, ecto-nucleotidases degrade ATP to Ado. 
Intracellular Ado is formed by two mechanisms, degradation of ATP to Ado, and by the 
degradation of S-adenosylhomocysteine. 
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Figure 1.4 Synthesis of Ado from ATP. ATP and ADP are degraded by ecto-
nucleotidases or by hydrolysis with water to form ADP or AMP, respectively. The 
conversion of Ado is achieved by AMP being degraded by ecto-5’nucleotidase. 
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Figure 1.5 Generation of Ado from S-adenosylhomocysteine. S-adenosylhomocysteine 
is hydrolyzed by S-adenosylhomocysteine hydrolase to form Ado and homocysteine.  
 
1.1.4 Dopamine and adenosine system interactions 

The DA and Ado systems appear to be similarly intertwined with respect to their 

receptors. DA has two families of receptors; D1-like and D2-like, while purine P1 

receptors (also known as Ado receptors) have at least four distinct subtypes: A1, A2A, 

A2B, and A3. Ado A1 (coupled to Gi) and A2A (coupled to Gs) receptors are ubiquitous 

throughout the brain. The largest densities of A2A receptors are concentrated in the 

dorsal striatum and NAc, which are highly innervated via the DA system. In the dorsal 

striatal complex, the D2 and A2A receptors have reciprocal interactions (2, 18). For 

example, A2A agonists appear to inhibit the D2 receptor and invoke behaviors similar to 

D2 antagonists (2). The ability of purine receptors to evoke DA-like behaviors has 

prompted the investigation of specific A2A antagonist as possible therapeutic treatment 

for Parkinson’s disease (2). Parkinson’s disease is characterized by a loss of more than 

80% of dopaminergic neurons. Dopaminergic therapies are used to treat Parkinson’s 

disease such as treatment DA precursor L-DOPA, which attempts to restore 

dopaminergic function. However, there are limitations to L-DOPA treatment such as 

dyskinesia, hallucinations, on-off effects, and treatment with L-DOPA becomes less 

efficacious the longer it is administered (19). As a result, researchers are trying to 
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discover alternative therapies such as modulating the dopaminergic system indirectly 

through other neurotransmitter systems. A2A antagonists reverse the motor effects 

associated with Parkinson’s disease, and appear to do so without dyskinesia, a 

predominant side effect from L-DOPA treatment (20). 

1.1.5 Brain-derived neurotrophic factor 

  The classical belief was that neurons communicate with one another by small 

molecules like neurotransmitters. However, within the last few decades it has been 

recognized there are numerous molecules that can influence neurons such as gases 

like carbon dioxide or nitric oxide or proteins such as neurotrophic factors. 

Neurotrophins are known for their trophic properties of supporting neuronal cell growth, 

differentiation, and survival. Brain-derived neurotrophic factor (BDNF), a 27 kDa protein, 

was first discovered in 1982, and belongs to the neurotrophic family, which includes the 

neurotrophins nerve growth factor (NGF), neurotrophin-3, neurotrophin-4 (NT-4), and 

glial-derived neurotrophic factor (GDNF) (21). Of these neurotrophic factors, BDNF is 

most abundant in the brain and appears to be essential in the early development of the 

brain (22, 23). BDNF mediates its signaling through its receptor tyrosine kinase B 

(TrkB), and the TrkB receptors are expressed in DA rich regions such as the striatum, 

SN, and VTA (24). To better understand BDNF’s role in the brain, BDNF knockout mice 

were developed, but mice that completely lack (BDNF-/-) cannot survive 21 days after 

birth, highlighting the importance of BDNF in species survival (22, 25). BDNF 

heterozygous (BDNF+/-) mice developed by Ernfors and colleagues have a 50 % 

reduction in both BDNF protein and mRNA levels, and have no phenotypic differences 

when compared to their wildtype littermates (25).  
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1.1.6 Brain-derived neurotrophic factor, the dopamine system, gender, and aging 

With ~13% of the American population over the age of 65, it is becoming 

increasingly important to understand the aging process and the diseases that are 

associated with having a higher incidence in the elderly population such as Parkinson’s 

and Alzheimer’s disease (2010 Census). Since Parkinson’s disease mainly affects the 

dopaminergic system, considerable attention has been given to DA. It is well known that 

other molecules or proteins may contribute to or play a role in the development and 

progression of Parkinson’s disease. Besides DA, one molecule that has garnered 

particular attention with respect to Parkinson’s disease is BDNF. Postmortem studies in 

Parkinson’s disease patients brain cultures show that BDNF mRNA expression is 

significantly reduced in DA neurons in the SN pars compacta (26). Other postmortem 

studies corroborate this reduction in mRNA expression as BDNF protein levels are 

decreased in the striatum of Parkinson’s disease patients compared to non-Parkinson’s 

patients (27). One of the main reasons for interest in BDNF expression and levels with 

Parkinson’s patients lies with its interactions with DA. Many studies have alluded to 

BDNFs importance in protecting the dopaminergic system since exogenously applied 

BDNF is protective prior to a neurotoxic insult. Thus, BDNF administration maintains the 

viability of DA neurons in the striatum (26, 28-30). For example, an in vivo infusion of 

BDNF increases DA release and enhances DA turnover (31, 32). While a reduction in 

endogenous BDNF correlates to a decrease in DA D3 receptor expression in DA rich 

brain regions such as the NAc and CPu (33). Furthermore, autoradiography from 

postmortem Parkinson’s disease tissue showed a reduction in DA D3 receptor 

expression (34). Taken together, there appears to be a complex relationship between 
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BDNF and DA, and a dysregulation in one or both systems may increase susceptibility 

to Parkinson’s disease.  

The risks of developing a particular neurological disease and/or disorder appear 

to be different in men and women. For example, men are ~1.5 times more likely to 

develop Parkinson’s disease compared to women (35). These susceptibility differences 

in developing a particular neurological condition with respect to gender have been 

linked to a dysregulation of DA and BDNF, as well as estrogen (36-38). Unfortunately, 

to date few animal studies have fully characterized the effect of low endogenous BDNF 

levels on the DA system with respect to gender hormones such as estrogen and 

testosterone. 

1.2 Neurochemical techniques 

1.2.1 Microdialysis 

Microdialysis is an in vivo sampling technique based on diffusion where 

extracellular neurotransmitters diffuse down their concentration gradient towards the 

microdialysis probe. Once the extracellular neurotransmitters are collected, the next 

step is to analyze them to determine their extracellular levels in a given brain region. 

There are numerous geometries of microdialysis probes, which are often chosen 

depending on the tissue that will be sampled. For neurochemical measurements, 

concentric probes are most commonly used since they are small in length (1–2 mm) 

and diameter (240–350 µm), allowing for them to be easily, and accurately placed into a 

specific brain region of interest for analysis (39, 40). The perfusate, which is a 

physiological buffer resembling the fluid in the extracellular space (artificial cerebral 

spinal fluid, aCSF) is perfused continuously through the inlet of the probe (Figure 1.6). 
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Dialysate samples are collected from the outlet line where the dialysate sample contains 

the neurotransmitters of interest. The microdialysis probe is made of a semi-permeable 

membrane that allows small molecules (< 6 kDa in our experiments) to flow down their 

concentration gradients and into the probe.   

 
Figure 1.6 Schematic of a concentric microdialysis probe with enlarged image of semi-
permeable membrane. 

 
There are numerous methodological experiments that can be performed with the 

microdialysis probe that ultimately depends on the type of data the researcher is 

interested in collecting. The most common method using a microdialysis probe is known 

as conventional microdialysis, where the experimenter examines the dialysate directly 

with no modification to the sampling technique (41). However, a limitation of the 

conventional method is that it underestimates the extracellular neurotransmitter levels. 

This is because the microdialysis probe is not recovering 100% of the analyte of interest 

from the brain, only a small percentage. Recovery from the microdialysis probe is 

influenced by multiple parameters such as perfusion flow rate, sample volume, and 
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temporal resolution capabilities. Recovery is defined as relative recovery or absolute 

recovery, where relative recovery is the concentration of the analyte in the dialysis 

sample divided by the concentration of the sample media, while absolute recovery 

pertains to the total analyte mass during the collection period (42). For example, 

recovery can be altered as a result of changes in flow rate, where the flow rate 

increases, the sample volume increases, while the time required to collect the sample is 

reduced. However, when increasing the flow rate, the relative recovery of the analyte is 

significantly reduced, which is a result of depleting the analyte of interest in the 

extracellular space near the dialysis probe, while the absolute recovery increases. Since 

the analyte in the extracellular space is being swept away at a greater rate, there is not 

adequate enough time to replenish the analyte of interest, and thus reducing the relative 

recovery. Yet, reducing the flow rate has its own limitations such as longer collection 

times making analysis slower and decreased temporal resolution. Therefore, a balance 

between flow rate and adequate sample volume for the analytical detection technique 

must be made while providing a reasonable amount of time to collect a physiologically 

relevant sample.  

 Retrodialysis is an alternative microdialysis method that uses the probe to 

deliver an analyte or drug to the brain region of interest. The method of zero-net flux is a 

retrodialysis method that delivers various known quantities of an analyte of interest (e.g. 

DA), thus enabling one to estimate ‘true’ basal levels. The zero-net flux method uses 

linear regression analysis with the measurements from amount of DA entering the probe 

(DAin) and the amount of DA leaving the probe (DAout), and the point where the flux of 

DA leaving and entering the probe is deemed the point at which there is zero-net 
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diffusion across the probe and mathematically this is observed when the line crosses 

the x-axis. The point at where no diffusion is occurring through the probe indicates the 

‘true’ concentration (or basal, where it has been corrected) at which the analyte is found 

in that specific region. Microdialysis itself is an analytical technique that separated 

molecules based on molecular weight, where molecules less than a particular cut-off 

weight can easily pass through the probe, while those with a larger molecular weight are 

excluded. However, microdialysis by itself does not quantitate the neurotransmitter 

levels in a sample. Therefore, the type of instrumental analysis is key for the proper 

separation, and detection of neurotransmitters from a dialysis sample. Analysis of 

dialysate samples begins with a separation component using high-performance liquid 

chromatography (HPLC) or capillary electrophoresis and then detected either by 

electrochemical detection, mass spectrometry (MS), or fluorescence detection (42). 

An advantage of microdialysis sampling is its ability to collect a diverse number 

of analytes from the brain, and when coupled to the appropriate analytical method can 

separate and detect specific neurotransmitters and achieve high sensitivity and 

selectivity. However, as with all methods, there are limitations with using microdialysis 

such as spatial and temporal resolution. Spatial resolution of the dialysis probe is 

dependent on the probe’s size. In this set of work, a probe with a length of 2 mm and a 

diameter of 240 µm was used. Since the brain is a heterogeneous structure with 

discrete anatomical brain regions, the size of the microdialysis probe limits which 

regions can be sampled. In order to achieve desirable spatial resolution in a mouse 

brain, the microdialysis probe must be small enough to sample a region of interest, 

which can be less than 0.5 mm3 (42). In the work throughout this dissertation, 
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commercially available probes are used, which limits miniaturizing the probe to examine 

specific sub-regions that may be too small to sample from with a commercially available 

probe. There would be numerous advantages if microdialysis probes could be further 

miniaturized. Currently, the Kennedy group is fabricating sampling probes with of the 

following dimensions: 70 μm wide by 85 μm thick by 11 mm long, which would decrease 

the amount of tissue damage, and may be suitable for other types of analysis such as 

dialysis samples from cells in a culture (43). The second parameter that can be improve 

is temporal resolution, which is the time it takes to collect the dialysate sample volume 

from the brain and can be adjusted by varying the flow rate of the perfusate. Fast flow 

rates can increase the amount of samples collected, but as state previously can deplete 

the surroundings of the analyte of interest. Slow flow rates increase sample collection 

time, so a delicate balance must be met. 

Prior to the microdialysis experiment, mice undergo surgery to implant a guide 

cannula targeting the brain region of interest (e.g. CPu or NAc), and upon recovery (3–4 

hours later) from surgery a microdialysis probe is implanted and flow of aCSF 

commences through syringe pumps. An equilibration period of 12–16 hours occurs 

before any sampling takes place. Low flow rates of 0.5–2.0 µL/min are used for 

delivering the aCSF to the brain as well as sampling from the brain. Microdialysis allows 

samples to be collected from an intact system since the mice are allowed to freely move 

within their container (Figure 1.7). Samples are collected every 10–20 min, and are 

separated off-line by manual injection of the samples onto the HPLC coupled to 

electrochemical detection. 
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Figure 1.7 A representative setup for in vivo microdialysis sample collection. After 
microdialysis surgery, the mouse is placed in a small cage where he/she has free 
access to food and water. The syringe pump is continuously perfusing aCSF through 
the microdialysis inlet at a low flow rate (inlet lines are represented by green lines). The 
dialysate sample containing the neurotransmitters of interest is collected through the red 
lines into a microcentrifuge tube. The inlet and outlet lines are connected to a swivel 
that allows the mouse free movement in his/her cage. 
 
1.2.2 Electrochemical detection  

 The most common method used for distinguishing neurotransmitters from one 

another is using HPLC, while the detection method used is typically dependent of the 

class of neurotransmitter being analyzed. For example, monoamines are typically 

detected with electrochemical detection, while amino acids are detected with 

fluorescence or UV, purines with UV, and peptides with MS (44-47). In this dissertation, 

the focus lies on monoamine and purine molecules, both of which are known to be 

electrochemically active.  

 Electrochemical detection is based on a molecules ability to be oxidized or 

reduced. The electrode materials used for the oxidation/reduction of specific molecules 

can be gold, silver, platinum, carbon, or boron-doped diamond (BDD). When using 

these electrodes as the detection element with an HPLC, the design of these 
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electrochemical cells can be coulometric or amperometric. In a coulometric cell design, 

a porous type electrode (which is most commonly carbon) oxidizes 100% of the analyte 

since the analyte passes directly through the electrode. With an amperometric cell 

design, a disc type electrode is utilized, and only ~10% of the analyte is oxidized 

because the solution typically approaches the electrode surface at a 90° angle. For 

coulometric cells, the advantage and disadvantage lie in the fact that the electrode 

oxidizes 100% of the analyte, and for some samples, complete oxidation of the mobile 

phase or matrix passing through the electrochemical cell can create large background 

noise making it difficult to quantify the analyte. Since amperometric cells oxidize a small 

percentage of the mobile phase matrix, they are less likely to experience large 

background noise. Disadvantages with the amperometric cell design lie with the 

sensitivity of the detection of an analyte. Depending on the surface material of the 

electrode, it is possible that a sample containing a low concentration of the analyte of 

interest may not be detected because not enough of the sample matrix comes in 

contact with the electrode surface. To mediate this, cross-flow geometries of the cell 

design are taken into consideration, and a cross-flow design in which the sample 

passes perpendicular across the working electrode is the preferred choice in order to 

achieve a uniform potential across the electrode surface. 

An advantage of using electrochemical detection to detect neurotransmitters is 

that only a few families have electroactive compounds such as the monoamines, amino 

acids (through derivatization steps), and purines. Electrochemical detection provides the 

sensitivity and selectivity to measure neurotransmitters in relatively low concentrations 

ranging in the low pM to high nM. Typically for monoamine analysis, a carbon electrode 
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surface is used while for the detection of purine molecules, which generally have high 

oxidation potentials (> +1000 mV versus Ag/AgCl reference) a BDD electrode is utilized 

(48). Carbon electrodes are not used to detect purine molecules because they often 

cannot reach the high potentials to detect the purine molecules, when higher potentials 

are used they cause a large increase in the amount of background noise and eventually 

oxidize the carbon electrode surface (49). The BDD electrode is a relatively new 

electrode material, and is currently only commercially available as an amperometric cell 

design (50). Advantages of using the BDD electrode is its higher working potential 

range, decreased background noise, electrochemical stability due to diamond surface 

coordination, insensitivity to dissolved oxygen, and is less susceptible to electrode 

fouling (51, 52). 

For separation and detection of monoamines from microdialysis dialysates, 

samples were collected and manually injected onto the HPLC and detected using a 

coulometric porous carbon electrode or an amperometric BDD electrode versus a 

palladium reference. A specific potential was applied to the porous carbon working 

electrode relative to the reference electrode, and the resulting current is recorded at the 

working electrode. The oxidation current measured is proportional to the analyte 

concentration (Equation 1.1). This calculation is mediated by Faraday’s law, which Q is 

the number of Coulombs, N is the number of moles, n is the number of electrons, and F 

is Faradays constant (9.65 x 104 C/eq). 

Q = nFN    (1.1) 

Lastly, HPLC with electrochemical detection can also be used to measure tissue 

levels of monoamine and purine molecules in the brain. In tissue content analysis, 
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brains are dissected into specific anatomic regions and neurotransmitter tissue content 

levels are evaluated. The primary difference between microdialysis and tissue content is 

that tissue content measures predominantly intracellular neurotransmitter levels, which 

can be upwards to 100-fold times higher than extracellular levels. Taken together, both 

intra- and extracellular tissue content levels can be measured using HPLC coupled to 

electrochemical detection. 

1.2.3 Slice fast scan cyclic voltammetry 

Fast scan cyclic voltammetry (FSCV) is an electrochemical technique that can be 

used in vivo or in vitro to investigate changes in release and uptake of specific 

neurotransmitters in the brain (53). In in vitro FSCV (which from this point on will be 

referred to as slice FSCV), DA is released from a coronal brain slice by electrical 

stimulation. Stimulation is one of the experimental parameters in FSCV that differs from 

microdialysis, where no stimulation is required to measure extracellular DA levels. 

Although stimulation is required for slice FSCV, it must be made clear that basal DA 

levels are not being measured, instead, stimulated DA release. DA detection is 

achieved by applying a voltage to a carbon fiber microelectrode. Specifically, a triangle 

waveform is applied to the carbon fiber microelectrode with an initial potential of -400 

mV. The voltage is quickly ramped up linearly to +1200 mV, and then linearly decreased 

back down to -400 mV, versus a Ag/AgCl reference electrode at a scan rate of 400 V/s. 

It takes ~9.3 ms to complete the triangle waveform which is repeated every 100 ms. DA 

is oxidized to DA-o-quinone at a potential of ~ +600 mV (Figure 1.8), and DA-o-quinone 

is reduced to DA at ~ -200 mV during the reverse scan.  The oxidation and reduction of 
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DA and DA-o-quinone occurring at the electrode surface generates a current, which is 

converted to concentration after electrode calibration. 

 
Figure 1.8 Oxidation of DA to DA-o-quinone. 

FSCV is considered a complementary technique to microdialysis because it has 

excellent temporal resolution with the ability to measure DA release and uptake on a 

sub-second time scale. Moreover, the spatial resolution in FSCV is improved compared 

to microdialysis since the electrode is smaller with a diameter of 7 µm (versus a 240 µm 

diameter with a microdialysis probe) and a length of ~150–200 µm (versus a length of 

1–2 mm with a microdialysis probe). As a result of the carbon fiber microelectrodes 

small size, the electrode can be inserted into discrete brain regions of interest (e.g. 

ability to discriminate between the NAc core and shell) in the brain causing minimal 

tissue damage. Typically an electrode without a separation component can measure 

one to two analytes at a time (54, 55). Despite the limited number of analytes that can 

be detected at the electrode surface, voltammetry provides good chemical selectivity as 

the location of the oxidation and reduction peaks on a voltammogram are unique for 

each analyte, providing a ‘fingerprint’ to identify the neurotransmitter of interest. An 

exception to this ‘fingerprint’ is with respect to DA and NE since they have similar 

structures, their oxidation and reduction peaks are very similar. However, NE is not the 

predominant neurotransmitter in brain regions with high DA innervation. An issue with 

making measurements in slices or in vivo with carbon fiber electrodes, is that the 
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electrode surface is always changing as molecules are being adsorbed to the surface, 

which can lead to fouling and an overall decrease in the sensitivity of the electrode. To 

circumvent the fouling problems associated with carbon fiber electrodes, BDD 

microelectrodes are often employed since they are more resistant to fouling and this is 

particularly true with molecules like 5-HT (56-59). 

1.2.4 Locomotor activity 

Thus far, the methods discussed in detail have focused on measuring the 

chemistry of the brain. However, in neuroscience, behavioral monitoring such as 

locomotor activity can also provide clues about the chemistry happening in the brain. 

Locomotor activity monitoring is a behavioral method where an animal’s activities are 

measured in response to a pharmacological stimulation, toxicological insult, or genetic 

modification. Locomotor activity monitoring measures a multitude of behaviors and 

measurements such as ambulatory distance, stereotypy, and vertical counts. Locomotor 

activity places a mouse in a designated chamber or places the mouse’s home cage in 

the activity chamber. The activity chamber placed around the animals home cage or 

chamber has three sets of bars located outside the cage and are indicated as the x, y, 

and z plane (Figure 1.9), where the infrared (IR) beams transmit and receive signal. As 

the mouse moves in its home cage, the mouse breaks the IR beam connection from the 

transmitter to the receiver and a computer program records these beam breaks as the 

amount of movement made by the animal. Ambulatory distance measures the distance 

the animal moves in (cm), which is important since it indicates whether or not an animal 

is hyper- or hypo-locomotive. Animals that are hyperactive are often thought to have 

increased extracellular DA levels, while hypo-locomotive animals are believed to have 
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decreased extracellular DA levels (60). Hyperactivity may be a result of pharmacological 

stimulation (i.e. psychostimulants such as cocaine or METH) or a genetic alteration (e.g. 

DAT knockout mice). Stereotypic behavior measures repetitive movements an animal 

makes. Finally, vertical counts measure rearing events, which describe the rodent siting 

up on its hind legs. Rearing events are measured in the Z-plane, where the IR beams 

are set higher than the X- and Y-beams to properly measure when the animal rears.  

 
Figure 1.9 Diagram of a locomotor activity box. 
 
1.3 Research objectives 

1.3.1 Objective 1: Characterization of the dopamine system in female BDNF+/- mice1  

The risk of specific neurological diseases and disorders such as Parkinson’s 

disease and depression differ between men and women and sex steroid hormones may 

account for these differences. Additionally, there is increasing evidence that sex 

hormones may be responsible for the regulation of BDNF signaling since BDNF levels 

differ between the sexes (61-63). Besides diseases and disorders, sex differences have 

also been reported in drug abuse studies as well as the efficacy of therapeutic drugs.  

                                                            
1This objective includes collaborative work from Madiha Khalid, Ph.D. who performed slice voltammetry 
work to further understand release and uptake of the female BDNF+/- mice. These results complement the 
findings with microdialysis experiments, providing a better understanding of the changes that were seen 
between the genotypes. For more detailed roles, please see contribution section of this dissertation. 
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Previous studies done in the Mathews lab determined that male BDNF 

heterozygous (BDNF+/-) mice that were approximately three months of age are 

hyperdopaminergic in nature (44). The purpose of this study was to determine if young 

female BDNF+/- mice (~3 months of age) are also hyperdopaminergic like their male 

BDNF+/- counterparts or if this is exclusive to male mice only. 

1.3.2 Objective 2: Characterization of the dopamine system in aged BDNF+/- mice2  

The purpose of this study was to characterize the DA system in a heterozygous 

mouse model in which there was a lifelong reduction of endogenous BDNF protein and 

mRNA levels (25, 64). BDNF+/- mice have no gross abnormalities compared to their 

wildtype littermates, but BDNF+/- mice are heavier and slightly more aggressive as they 

age (65). Previous research in our laboratory has shown that male BDNF+/- mice at ~3 

months of age are hyperdopaminergic in nature (44). BDNF+/- mice have increased 

extracellular DA levels using microdialysis with a concomitant decrease in release and 

uptake of DA as measured by FSCV. 

Our hypothesis that this hyperdopaminergia seen in the young mice would 

persist throughout the animal’s life, and that these elevated extracellular DA levels lead 

to even greater striatal impairments as the animal aged. We hypothesized that these 

striatal impairments would cause older mice to be more susceptible to increases in 

reactive oxygen species, which is a product of DA metabolism, and ultimately lead to 

greater harm to the aging DA neuronal system (66, 67). In this study, both in vivo 

microdialysis and slice FSCV were used in combination to characterize the DA system 

in 18 month old BDNF+/- mice and their wildtype littermates. This study was the first to 

                                                            
2This objective includes collaborative work from Francis K. Maina, Ph.D. who performed slice voltammetry 
work to further understand release and uptake of the aged BDNF+/- mice. For more detailed role, please 
see contribution section of this dissertation. 
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use slice FSCV in conjunction with in vivo microdialysis to obtain a comprehensive view 

of aging striatal DA dynamics with respect to basal DA concentrations, DA metabolism, 

and transporter functionality in aged BDNF+/- mice. 

1.3.3 Objective 3: Method development for the simultaneous detection of purine and 

monoamine molecules using a boron-doped diamond electrode 

Ado and DA are important neurotransmitters in the brain and there is 

considerable evidence that they have reciprocal interactions through their receptors. 

Unfortunately, there is no reliable and robust electrochemical method available to detect 

baseline levels of Ado. Few papers have examined extracellular Ado levels in the brain 

because of the lack of reliable methods to quantify Ado. As a result only a few attempts 

have been made to measure extracellular or intracellular Ado levels in the rodent brain 

(9, 45, 54, 68-71). Those few reports that have measured Ado demonstrate the scant 

understanding of extracellular Ado levels in the rat striatum, since the reported 

extracellular Ado levels span a range from 50–240 nM (68, 70-72).  

To date, the detection of Ado using carbon based electrode cells (glassy or 

porous carbon) with HPLC has not been achieved. This is primarily due to the high 

oxidation potential of Ado (~ +1500 mV versus a Ag/AgCl reference electrode) and the 

surface instability of these carbon-based electrodes. At potentials greater than +1000 

mV, the surface of carbon begins to oxidize itself +1000 mV (49). Recently, BDD 

electrodes have become commercially available for electrochemical cells for HPLC 

analysis (50). BDD electrodes have numerous advantages over the carbon electrodes 

such as lower background potentials, wider potential ranges (up to +2000 mV), and 

reduced surface fouling (57, 73). These inherent advantages make the BDD electrode 
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ideally suited for the detection of Ado using electrochemistry in combination with HPLC. 

The goal of this study was to develop a method for the simultaneous detection of DA 

and Ado using HPLC with BDD electrochemical detection.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



28 
 

   

CHAPTER 2 

Materials and Methods 

(Portions of the text in this chapter were reprinted or adapted with permission from 

Birbeck, J. A., and Mathews, T. A. (2013) Simultaneous Detection of Monoamine and 

Purine Molecules Using High-Performance Liquid Chromatography with a Boron-Doped 

Diamond Electrode, Anal Chem. Copyright (2013) American Chemical Society, and 

submissions to The Neurobiology of Aging, and ACS Chemical Neuroscience.) 

 The objective of this chapter is to describe experimental details used throughout 

this dissertation. The experimental protocols were performed at Wayne State University 

and followed Wayne State Universities standards put forth by Occupational Safety and 

Health Administration (OSHA) and the Institutional Animal Care and Use Committee 

(IACUC).  

2.1 Chemicals 

 Chemicals used for mobile phase, buffers, standards, genotyping, and 

anesthesia were of HPLC grade or higher purity, or medical grade, and were purchased 

from Sigma Aldrich (St. Louis, MO), Fisher Scientific (Pittsburgh, PA), and EMD 

(Gibbstown, NJ). Primers and dNTP’s were obtained from Invitrogen (Carlsbad, CA). 

2.2 Animals 

   Both wildtype (C57BL/6J) and a heterozygous (BDNF+/-) mouse models were 

used in these studies. Complete knockout of the BDNF gene (BDNF-/-) is lethal (25) and 

therefore, BDNF-/- mice were not bred or used for this study. For breeding, female 

C57BL/6J and male BDNF+/- mice were obtained from Jackson Laboratories (Bar 
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Harbor, ME, USA). Offspring from the breeding pairs were raised as a colony in-house 

(Wayne State University, Detroit, MI) and were housed 3–4 per cage. Animals had 

access to food and water ad libitum during their 12-h light/dark cycle. Experiments 

conducted on mice between the ages of 3 to 18 months included locomotor activity and 

3–5 month old mice (young) or 18 month old mice (aged) for microdialysis and fast scan 

cyclic voltammetry (FSCV). All experiments and procedures were designed to minimize 

any pain and discomfort for the animals, and were in accordance with the National 

Institute of Health Animal guidelines and approved by the Wayne State University 

Institutional Animal Care and Use Committee. 

2.3 Genotyping 

The procedures for the breeding, weaning, and genotypic analysis were 

performed by Kelly E. Bosse, Ph.D. and Brooke Neman. Assistance with these 

procedures was provided by myself, Katie Logan, Parvejz Khan, Natasha Bohin, 

Andrezj Czaja, Christopher Rogalla, Michelle Colombo, and Stephanie Godden.  

Three weeks after birth, pups were ear punched for numerical identification, tails 

clipped (~3–5 mm), and separated from their parents based on sex into group-housed 

vivariums. Tail pieces were immediately placed in a -80 °C freezer until analysis. Each 

mouse’s genotype was identified using polymerase chain reaction (PCR) analysis from 

the tail DNA collected. Tails were chopped into small pieces and lysed in 500 μL of lysis 

buffer (100 mM Tris-base, 1.5 mM NaCl, 5 mM EDTA, 0.2% sodium dodecyl sulfate; pH 

to 8.5) and 0.1mg/mL proteinase K. Tubes with tail pieces and lysis buffer were placed 

into a 55 °C water bath for 15–24 h to achieve complete protein digestion. After 

digestion was completed, the tubes were placed into the centrifuge and spun for 16 min 



30 
 

   

at a speed of 20 000 rcf. The tubes were uncapped to release pressure and then placed 

back into the centrifuge for another 16 min. After centrifugation was completed, 200 μL 

of the supernatant was slowly withdrawn from the top layer of fluid and placed into 

newly labeled tubes with 500 μL isopropyl alcohol. The tubes were capped and mixed 

by shaking until a white globular precipitate appeared. Tubes were centrifuged again for 

another 16 min at 20,000 rcf to spin down the pellet of DNA. This pellet was retained 

and washed by adding 500 μL of a 75% ethanol solution and centrifuged again for 

another 5 min. The ethanol solution was withdrawn and 6 μL of nanopure water was 

added to the DNA pellet in the tube. The tubes were then placed in a desiccator with the 

caps open for 15 min. After ethanol evaporated off, 85 μL of tris-EDTA (TE) buffer was 

added to each vial of DNA and stored at 4 °C until further analysis was completed. To 

approximate how much DNA was present in the sample optical density was determined 

by using an ultraviolet spectrometer (UV-1800 Shimadzu, Columbia, MD) set at 260 nm. 

A mixture using 4 μL of TE storage buffer and 400 μL of nanopure water was placed 

into the cuvette for the blank reference. For the measurement of optical density of the 

DNA sample, a mixture of 4 μL of DNA sample was mixed with 400 μL water. This was 

repeated for all samples. 

For PCR analysis, each DNA sample was split into two PCR tubes. One tube 

was labeled for the wildtype primer (5’-CCAGCAGAAAGAGTAGAGGAG-3’) and the 

other with the BDNF mutant primer (5’-GGGAACTTCCTGACTAGGGG-3’) each along 

with a common primer (5’-ATGAAGAAGTAAACGTCCAC-3’). The master PCR 

solutions were prepared for wildtype and BDNF mutant primers. These master mixes 

contained the following: 1.28 mM MgCl2, 1.2 μL PCR buffer A (10 mM Tris-HCl, 1.5 mM 
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MgCl2, 50 mM KCl; pH 9.0), 0.096 mM of each deoxyribonucleotide triphosphates 

(dNTP’s: dATP, dCTP, dGTP, and dTTP), 1 μM of one of the primers (wildtype or BDNF 

mutant), and 1 μM NEO primer. Each sample tube then contained 22.8 μL of master 

mix, 2 μL of tail DNA sample, and 0.2 μL of taq polymerase. Before tubes were placed 

into the thermocycler, a drop of mineral oil was placed into each PCR tube. The cycling 

conditions that were used are as followed: 94 °C for 5 min (melting), 58 °C for 1 min 

(annealing), 72 °C for 2 min (extension), followed by 35 cycles at 95°C for 1 min, 58 °C 

for 1 min, and 72 °C for 2 min. PCR products were then analyzed immediately or stored 

in the 4 °C for further analysis. 

Analysis of the PCR product was imaged in a 2% agarose gel (6 μL per lane) in 

TBE buffer (89 mM Tris-base, 89 mM boric acid, 1mM EDTA, 1mM NaOH; pH 8.0). 

PCR products were separated between 125–135 V and visualized using ethidium 

bromide (60 μL added to 750 mL of TBE buffer). Wildtype mice were identified by a 

single band of genomic DNA in the first column (this column was always designated to 

identify the wildtype gene), while BDNF+/- mice were identified from one band of 

genomic DNA (active BDNF, 275 base pairs (bp)) in the first column and a second band 

of genomic DNA (inactive BDNF, 340 bp) in the ‘BDNF-mutation’ column (Figure 2.1). 

The inactive BDNF gene was generated by inserting a neomycin (NEO) resistant 

cassette into the active BDNF gene. Addition of the NEO cassette increases the 

molecular weight of the BDNF gene, therefore slowing its travel through the gel 

electrophoresis (Figure 2.1). 



32 
 

   

 
Figure 2.1 Gel electrophoresis image of genotypic identification for wildtype and 
BDNF+/- mice. The first two lanes represent genotypic identification for a wildtype 
mouse. The second two lanes identify a BDNF+/- genotype, and the final lane shows the 
DNA ladder. For wildtype identification, lane one shows a band at 275 bp, and the 
second lane is void of any bands. The third and fourth lanes identify the BDNF+/- 
genotype in which the third lane shows the band at 275 bp representing the active 
BDNF gene, and the fourth lane has a band present at 340 bp representing the inactive 
BDNF gene. Image courtesy of Stephanie Godden. 
 
2.4 In vivo microdialysis 

2.4.1 Surgery 

Both male and female mice were used for microdialysis experiments at 3–5 

months and 18 months of age. Stereotaxic surgery was performed as follows. Mice 

were anesthetized using isoflurane (induction 2–4%; maintenance 0.5–3%). Once the 

mice were fully anesthetized, their eyes were protected with sterile ophthalmic ointment. 

The top of the mouse’s head was shaved and sterilized using Betadine and alcohol 

three times. After confirming that the mouse was completely under surgical plane (which 
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is achieved by seeing no reaction from pinching the mouse’s toes), an incision to the 

scalp was made and cleaned using a 10% peroxide until bregma was clearly visible on 

the skull. Next, the mouse was placed onto the stereotaxic frame, allowing for a burr 

hole to be drilled and a CMA/7 guide cannula to be inserted targeting the caudate-

putamen (CPu). A second burr hole was drilled diagonally across from the cannula on 

the contra-lateral hemisphere for insertion of an anchoring screw. Coordinates were 

obtained from the mouse atlas to determine CPu placement, and further refined by 

experimental determination in mm from bregma: anterior: +1.0, lateral: -1.3, ventral: -2.5 

for 18 month mice, and anterior: +0.8, lateral: -1.3, ventral: -2.5 for mice 3–5 months of 

age (74). The cannula and screw were anchored, and exposed skull sealed using fast 

drying dental cement (Teets, Diamond Springs, CA). After surgery, mice were allowed 

to recover for 3 h before the microdialysis probe (2 mm membrane length, 0.24 mm 

membrane diameter, Cuprophane, 6 kDa cut-off) was inserted through the guide 

cannula. Artificial cerebral spinal fluid (aCSF; composition in mM: 145 NaCl, 3.5 KCl, 2 

Na2HPO4, 1.0 CaCl2, 1.2 MgCl2; pH 7.4) was perfused overnight at a flow rate of 0.40 

µL/min. Microdialysis experiments commenced the next day at 0700 h, where the first 

hour was to allow for equilibration as the flow rate was increased to 1.1 µL/min. 

Dialysate samples were collected at 20 min intervals from the freely moving mice. 

2.4.2 Microdialysis experiments 

The microdialysis technique of zero-net flux was used to determine the basal 

extracellular DA levels in the mice (44, 75, 76). Four baseline samples were collected 

with aCSF, then using a CMA/402 programmable gradient infusion pump, perfusate 

containing 5, 10, and 20 nM DA was delivered through the microdialysis probe for 90 
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min each. The DA-containing aCSF solutions contained 200 µM ascorbic acid and the 

samples were stored in the -80 °C freezer until use (77). Determination of the DA 

concentration entering the probe (DAin) was accomplished by in vitro calibration using 

DA-containing aCSF perfused through the dialysis system in absence of a mouse. DA-

containing aCSF was prepared freshly on each day of analysis. 

To determine pharmacological DA release with microdialysis, methamphetamine 

(METH) was used (Figure 2.2). Before all METH experiments, mice were weighed to 

administer the proper dose. Three baseline samples were collected, then mice were 

injected intraperitoneally (i.p.) with 1.0 mg/kg dose of METH and dialysate samples 

were collected every 20 min for 2 h after the METH injection. 

 
Figure 2.2 Chemical structure of methamphetamine (METH). 

DA vesicular release by depolarization of the neuron was induced by perfusing 

high potassium aCSF at 60mM (in mM: 60 KCl, 90.5 NaCl, 2.0 Na2HPO4, 1.2 MgCl2, 1.0 

CaCl2; pH 7.4) and 120 mM KCl aCSF (in mM: 120 KCl, 30.5 NaCl, 2.0 Na2HPO4, 1.2 

MgCl2, 1.0 CaCl2, pH 7.4) was used. In this method, three baseline samples were 

collected with regular aCSF, and following the third collected sample, high potassium 

aCSF (60 mM or 120 mM KCl) was perfused through the probe for 20 min. After the 20 

min perfusion of the high potassium aCSF was completed, the perfusion media was 

switched to an infusion only of regular aCSF went through the brain for the last five 

subsequent dialysis fractions that were collected. 
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2.5 Slice fast scan cyclic voltammetry 

All FSCV experiments were conducted by Francis K. Maina, Ph.D. (male and 

female mice 18 months of age), and Madiha Khalid, Ph.D. (female mice 3–5 months of 

age). 

Mice were anesthetized using CO2, sacrificed, and their brains rapidly removed. 

The brain was placed into pre-oxygenated (95% O2/5% CO2) cold high sucrose-aCSF 

buffer (composition in mM: 180 sucrose, 30 NaCl, 4.5 KCl, 1 MgCl2, 26 NaHCO3, 1.2 

NaH2PO4, and 10 D-glucose; pH 7.4) for 10 min. A Vibratome® was used to section 

each brain into 400-µm thick coronal slices containing the DA rich area of the CPu. 

Slices were then placed into oxygenated aCSF (composition in mM: 108 NaCl, 5 KCl, 2 

CaCl2, 8.2 MgCl2, 4 NaHCO3, 1 NaH2PO4, 11 D-glucose, 0.4 ascorbic acid; pH = 7.4) 

for 1 h before voltammetric analysis. After oxygenation, slices were then placed onto a 

custom-made submersion chamber that was kept at a temperature of 32 °C as 

oxygenated aCSF flowed over the brain slice at a rate of 1 mL/min. 

Carbon fiber microelectrodes approximately 50–200 µm in length were sealed in 

a glass capillary in-house for FSCV analysis of DA as previously described (7). The 

carbon fiber microelectrode was inserted in the CPu ~75 µm below the surface of the 

slice, and the stimulating electrode was placed directly on the slice approximately 100–

200 µm away from the carbon fiber microelectrode. The parameters for detecting DA at 

the electrode surface were completed using a triangle waveform where the electrode 

potential was initially held at -0.4 V versus an Ag/AgCl reference electrode, ramped up 

to +1.2 V, and then returned to -0.4 V at 400 V/s at a frequency of 10 Hz (7, 44, 53). DA 

release was evoked every 5 min by a one pulse monophasic stimulation (350 µA, 60 Hz 
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with 4 ms pulse width) from the stimulating electrode and stable baseline DA dynamics 

of release and uptake were measured for at least 30 min. All electrode and stimulation 

parameters were controlled by TH software.  

Electrodes were post-calibrated with 3 µM DA and the peak oxidation current 

was converted to concentration. The current versus time plots were fit by non-linear 

regression using LabVIEW National Instrument software as described by John and 

Jones (53). Using a Michaelis-Menton base kinetic model, peak amplitude of release 

([DA]p), uptake kinetics (maximum velocity, Vmax), and DA’s ‘apparent’ transporter 

affinity (Km) were determined by fitting DA concentration versus FSCV time traces (7). 

To evaluate DA’s affinity for DAT, slice FSCV was used with METH, a 

competitive inhibitor of the DAT. The competitive inhibition of DA reuptake is reflected 

by an increase in DA’s affinity for the DAT, also known as the apparent Km (53). 

Equation 2.1 below shows how apparent Km is calculated, where Km is the Michaelis-

Menton constant and Ki is the inhibition constant. The Ki values are calculated from the 

slope of the linear regression line of METH concentration versus apparent Km values 

(shown in equation 2.2). The chosen value of Km was 0.16 µM, as previously reported in 

literature (53, 78-80). 

   Apparent Km = Km x (1 + [i]/Ki)    
     (2.1) 

   Slope = ∆y/∆x = Km/Ki 
              

        (2.2) 

After stable DA release was recorded, superfusion of METH began with increasing 

concentrations (0.01–10 µM) delivered to the slice every 30 min. Increasing 

concentrations of METH were applied to the brain slice since it was previously shown 
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that cumulative concentrations of perfused drugs over a slice do not affect DA release 

and uptake parameters (53). 

2.6 Tissue Content 

The majority of DA inside the neuron is sequestered in vesicles to prevent 

oxidation or metabolism of the neurotransmitter so it will be readily available upon 

receiving an action potential. Intracellular DA levels are approximately 1000-fold higher 

in concentration compared to extracellular levels, which are measured by microdialysis. 

Briefly, mice were sacrificed by cervical dislocation and their brains were rapidly 

removed. The brain regions of the frontal cortex, striatum, nucleus accumbens (NAc), 

hippocampus, and midbrain were dissected out, rapidly frozen in liquid nitrogen, and 

stored at -80 °C until analysis. On the day of analysis, the tissue was removed from 

freezer and allowed to thaw on ice. After being thawed for approximately 20 min, a 250 

µL of 0.1 M HClO4 was added to each vial of tissue and was sonicated for 12 to 15 1-

second pulses at 50% duty, and microtip setting at ~4. Vials were then centrifuged for 

10 min at a rate of 12,000 rfc at 4°C. The supernatant was injected onto the HPLC at a 

volume of 20 µL. Standard solutions were run to verify peak placement as well to 

quantify concentrations of each analyte. Monoamine and purine tissue levels were 

represented as ng monoamine or purine per mg of protein. Protein values were 

measured using Pierce BCA protein assay kit (Pierce Biotechnology, Rockford, IL). 

2.7 HPLC and electrochemical detection 

2.7.1 Detection of neurotransmitters using a porous carbon working electrode 

Microdialysis or tissue content samples were separated and detected using a 

Shimadzu LC-20AD HPLC pump coupled with electrochemical detection, and were 
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separated using a reverse phase Phenomenex C18 (2)-HST column (100 mm x 3 mm, 

2.5 µm). The neurotransmitters DA and its metabolites, serotonin (5-HT) and its 

metabolite, and norepinephrine (NE) were detected using an ESA coulometric cell 

Model 5014B microdialysis cell (porous carbon working electrode set at potentials E1 = -

150 mV and E2 = +220 mV versus a palladium reference electrode), with a guard cell 

(ESA 5020) set at +350 mV placed before the injection loop. Dialysate samples were 

eluted isocratically using a mobile phase (composition in mM: 75 NaH2PO4 

monohydrate, 1.4–1.8 1-octanesulfonic acid, 0.125 EDTA, 10% acetonitrile, and 0.002% 

triethylamine; pH = 3.0 with phosphoric acid (85 wt %) with the flow rate of 0.400 

mL/min. The retention times for NE, 3, 4-dihydroxyphenylacetic acid (DOPAC), DA, 5-

hydroxyindoleacetic acid (5-HIAA), homovanillic acid (HVA), 3-methoxytyromine (3-MT), 

and 5-HT were ~3.6, 5.0, 6.5, 10.4, 12.5, 16.3, and 19.4 min, respectively. Analyte peak 

areas were determined against known standards by integration using LC Solutions 

Shimadzu Software.  

2.7.2 Detection of neurotransmitters using a boron-doped diamond working 

electrode 

Isocratic monoamine and purine separation were completed using a Shimadzu 

LC-20A HPLC coupled to an ESA Coulochem III detector. Detection was achieved 

using an ESA model 5041 analytical cell with a BDD disc electrode versus a palladium 

reference electrode. The column used was a Trinity™ P1, 100 x 3 mm and 3 μm particle 

size. Ammonium phosphate mobile phase was composed of the 45 mM ammonium 

phosphate, and 4% acetonitrile, pH = 3.00 using phosphoric acid (85 wt %). The mobile 

phase was subsequently purged with argon and sonicated. The flow rate was set at 
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0.65 mL/min. To determine the proper oxidation potential for the best analysis of DA 

and Ado simultaneously, a hydrodynamic voltammogram was constructed and then a 

potential was chosen that would sufficiently oxidize both of the analytes, which was set 

+840 mV. Approximate analysis time for both DA and Ado was less than 10 min. For 

NE, DA metabolites, 5-HT, and its metabolite, total analysis time was 30 min. Analyte 

peak areas for monoamine and purine molecules were determined against known 

standards and integrated using LC Solutions Shimadzu Software. The retention times 

for each molecule that was detected are as follows in min: AMP: 1.5, Ado: 3.1, NE: 4.1, 

DOPAC: 5.7, HVA: 6.7, DA: 8.7, 5-HIAA: 11.3, 3-MT: 13.6, and 5-HT: 28. 

2.8 Locomotor activity 

Mice were separated into singly housed cages 24 h prior to locomotor analysis. 

On the day of analysis, mice were transported from the animal facility to the testing 

facility, their food and water removed, and their home cage placed into the locomotor 

activity static chamber. Mice were allowed to habituate for 1 h to minimize the stress of 

transportation and the novel environment. Spontaneous locomotor activity was recorded 

using 3 sets of 16-beam infrared (IR) emitter-detector arrays (Med Associates, St. 

Albans, VT) (81). Interruptions of IR beams resulted in an analog signal being recorded 

by automated activity software (Open Field Activity Software [SOF-811], Med 

Associates, St. Albans, VT). The locomotor activity system quantified total beam breaks 

in both the vertical and horizontal planes, specifically encoding measures of distance 

traveled (cm; calculated from number of breaks of adjacent beams), ambulatory time 

(s), and number of rears. Baseline ambulatory distance was measured for a total of 2 h 

and binned into 10 min periods.  
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To determine locomotor stimulation following METH administration, baseline 

activity was determined for the first hour then mice were then injected i.p. with saline 

(1.0 mL) and locomotor activity was collected for a second hour. Mice were then 

injected with METH (1.0 mg/kg, i.p.) and locomotor activity was collected for an 

additional 2 h. Total analysis time was 4 h. 

2.9 Statistical analysis 

Neurochemical data analysis was performed using GraphPad Prism® software. 

Values were reported as mean ± standard error of mean (SEM) with the criterion for 

statistical significance set to P < 0.05. For zero-net flux analysis linear regression 

analysis, the x-axis represents the concentration of DA being perfused into the probe 

determined by in vitro analysis (DAin), and the y-axis represents the difference of DAout, 

which is defined as the concentration of DA in the dialysate sample from DAin (75). The 

point at which the regression line crosses the x-axis is known as DAext and indicates the 

basal extracellular concentration of DA. The slope of the regression line was used to 

determine the in vivo recovery of DA (Ed, dialysate extraction fraction) (82). Student’s t-

test was used to determine if a significant difference existed between the genotypes 

with respect to DAext, extracellular metabolite concentrations, metabolite/DA ratio, and 

tissue content. For analysis of high potassium and METH microdialysis studies, two-way 

analysis of variance (ANOVA) analysis was used.  

Release and uptake, as determined by FSCV, were analyzed using the 

Michaelis-Menten kinetic based model which determines changes in [DA]p, Vmax, and 

apparent Km (53, 79, 83). To determine differences in electrically stimulated DA uptake 

and release between genotypes a two-tailed Student’s t-test was used. 
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Locomotor activity, baseline and METH-induced, were analyzed (IBM SPSS® 

Statistics for Windows) using a 2 x 3 x 12 three-way, repeated measures analysis of 

variance (ANOVA) with genotype (wildtype or BDNF+/-) as the between-subjects factors, 

and month (12, 15, or 18) and the 12 time blocks as nested within-subjects factors.   
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CHAPTER 3 

Potentiated striatal dopamine release leads to female BDNF+/- mice 

hyperdopaminergia 

(Portions of the text in this chapter were adapted from the submission to ACS Chemical 

Neuroscience) 

3.1 Introduction 

  Risk of developing neurological diseases and disorders are different among men 

and women. An example of this is seen with regards to Parkinson’s disease, a disease 

characterized by dopamine (DA) neuron degeneration in the striatum, which men are 

~1.5 time more likely to develop the disease than women (35). In the case of depressive 

disorders, which include both the dopaminergic and serotonergic pathways, women are 

two times more prone to developing them than men (84). To better understand the 

gender differences in these neurological conditions, research has focused on the 

molecules implicated in these conditions, such as neurotransmitters DA and serotonin, 

as well as the neurotrophins that protect the neurons, such as brain-derived 

neurotrophic factor (BDNF) (37, 85, 86).  

To better understand the sex-differences in disease risk and progression, 

gonadal hormones such as estrogen and testosterone have been investigated in 

addition to other associated molecules such as DA and BDNF. In ovariectomized rats, a 

physiological dose of estrogen increased striatal extracellular DA concentrations and 

tyrosine hydroxylase activity (38). Furthermore, estrogen was shown to act upon and 

stimulate similar downstream second messengers, ERK1 and ERK2, in a similar 

manner as BDNF in cortical explant cultures (87). Additionally, female rats showed an 
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increase in depression vulnerability in comparison to males rats when their BDNF levels 

were at their lowest, which was shown to correlate to when estrogen levels are at their 

highest (36, 88, 89).  

Sex differences are also observed in neurological disorders, such as addiction, in 

which females and males respond differently to drugs of abuse. For example, women 

are more likely to start using illicit drugs sooner than men, and consume greater 

quantities of these drugs (90, 91), while men are more likely to die from an overdose 

versus women (92). Taken together, these observations in animal and clinical studies, 

have led researchers to hypothesize that females may be protected from the neurotoxic 

effects of drugs because of their naturally higher levels of estrogen (93-95). 

Numerous studies have elucidated the importance of BDNF in maintaining the 

function and survival of DA neurons in the striatum (26, 28-30). To better understand 

BDNF’s endogenous role throughout the brain and body, genetically modified 

heterozygous (BDNF+/-) mice developed by Ernfors and colleagues were used (25). 

With respect to DA neurochemistry, male BDNF+/- mice have increased extracellular and 

intracellular DA levels, (29, 44, 96), which were not associated with alterations in the DA 

transporter. The objective of this study was to determine if these striatal DA alterations 

are present in female BDNF+/- mice. Using the complementary techniques of in vivo 

microdialysis and slice fast scan cyclic voltammetry (FSCV), DA dynamics were 

investigated in female wildtype and BDNF+/- mice.  

3.2 Results and Discussion 

3.2.1 Elevated basal striatal DA levels in female BDNF+/- mice 

Female BDNF+/- mice, 3–5 months of age, were used to determine the effect of 

reduced BDNF protein and mRNA on the striatal dopaminergic system compared to 
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female wildtype littermates. Using the technique of microdialysis, the uncorrected 

extracellular DA levels (averages of 3–4 baseline samples per mouse) in the caudate 

putamen (CPu) of wildtype and BDNF+/- mice showed no difference between genotypes 

(Figure 1 inset; wildtype mice: 3.5 ± 0.5 nM, n = 7 and BDNF+/- mice: 3.8 ± 0.5 nM, n = 

10, P = 0.62). When extracellular DA levels were evaluated in-depth using the in vivo 

microdialysis method of zero-net flux, basal extracellular DA ([DA]ext) levels and 

extraction fraction (Ed) were determined for each genotype (Figure 3.1). An ~2-fold 

increase in [DA]ext was observed in the female BDNF+/- compared to their wildtype 

littermates (Figure 3.1, wildtype mice: 8.2 ± 1.6 nM, n = 7 and BDNF+/- mice: 15.0 ± 1.8 

nM, n = 10, P < 0.05). The basal DA levels in female BDNF+/- mice are similar to male 

BDNF+/- mice of the same age such that both sexes have an ~2-fold increase in striatal 

DA levels compared to their wildtype littermates (44). To determine if this difference in 

basal DA levels is due to alterations in the DA transporter (DAT), Ed (slope of the line) 

was calculated. Ed is a measure of DAT mediated uptake (82), and was not different 

between female BDNF+/- (0.30 ± 0.02, n = 10) and female wildtype (0.31 ± 0.04, n = 7, P 

= 0.47) mice (Figure 3.1, inset). This is in agreement with other’s that show striatal DAT 

density and activity is unchanged in BDNF+/- mice (29, 64). Although female BDNF+/- 

mice have elevated extracellular DA levels, our zero-net flux results suggest this is not a 

result of striatal DAT alterations.  
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Figure 3.1 Extracellular DA concentration as measured by zero-net flux. Inset shows 
uncorrected DA extracellular levels, [DA]ext, and the extraction fraction, Ed. Significance 
was seen between the wildtype (WT) and BDNF+/- mice with regards to [DA]ext (WT: 8.2 
± 1.6 nM and BDNF+/-: 15.0 ± 1.8 nM, *P < 0.05). No difference was observed in the 
uncorrected DA levels or Ed. N values are 7–10 mice per genotype. 

3.2.2 DA metabolites are not different across genotypes 

Inactivation of extracellular DA is regulated through the enzymatic breakdown of 

DA by the enzymes monoamine oxidase (MAO) to form 3,4-dihydroxypheylacetic acid 

(DOPAC) and catechol-o-methyl transferase (COMT) to form the metabolite 3-

methyoxytyramine (3-MT). The DA metabolite 3-MT is transient in the brain and is not 

found in sufficiently high concentrations for detection, and therefore only DOPAC and 

HVA were measured. For both DOPAC and HVA, 3–4 microdialysis samples were 

collected and analyzed. Both the female wildtype and BDNF+/- mice showed similarities 

in their extracellular metabolite concentrations of DOPAC (wildtype mice: 378 ± 69 nM, 
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n = 8, and BDNF+/- mice: 421 ± 110 nM, n = 7, P = 0.73, Figure 3.2) and HVA (wildtype 

mice: 610 ± 52 nM, n = 7, and BDNF+/- mice: 672 ± 120 nM, n = 5, P = 0.61, Figure 3.2). 

Metabolite levels are not different between the genotypes suggesting that the increase 

in extracellular DA is not caused by alterations in DA metabolism. Our DA metabolite 

data is consistent with what has been previously observed using male wildtype and 

BDNF+/- mice (44).  

 
Figure 3.2 Extracellular DA metabolite levels as measured by microdialysis. No 
difference is observed between the genotypes for metabolites DOPAC or HVA. Data 
represented as mean ± SEM, and n values are 5–9 mice per genotype. 

3.2.3 Slice FSCV: DA release is elevated in the female BDNF+/- mice 

All slice voltammetry experiments and analysis was conducted by Madiha Khalid, Ph.D. 

Presynaptic DA release ([DA]p) and DA reuptake (Vmax) were examined to 

determine if these parameters were altered in female BDNF+/- mice, which may 

contribute to the elevation of extracellular striatal DA levels. Using 400 µm thick brain 

slices that contain the CPu of the mouse, a bi-polar stimulating electrode was used to 

evoke electrically stimulated DA release, which was subsequently measured using a 

carbon-fiber microelectrode. The female BDNF+/- mice revealed increased DA release 
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per pulse ([DA]p = 1.4 ± 0.2 µM, n = 8) compared to their wildtype counterparts ([DA]p = 

0.70 ± 0.6 µM, n = 6, P < 0.05, Figure 3.3A), but there was no difference between the 

genotypes with respect to the rate of DA uptake (Vmax values wildtype: 3.2 ± 0.2 µM/s, n 

= 6, and BDNF+/-: 3.4 ± 0.3 µM/s, n = 8, P = 0.54; Figure 3.3B).  

The increase in stimulated DA release corroborates with our zero-net flux 

findings, where higher basal DA levels in the striatum of the female BDNF+/- mice were 

observed compared to the wildtype female mice. Interestingly, when the slice FSCV 

results from the sexes are compared, the evoked DA release from the female BDNF+/- 

mice is potentiated compared to male BDNF+/- mice (44). Unlike the female BDNF+/- 

mice, male BDNF+/- mice have a decrease in both DA release and uptake in comparison 

to their wildtype littermates (44). Thus low endogenous BDNF levels appear to have a 

greater impact on influencing stimulated DA release in the female BDNF+/- mice 

compared to their male counterparts.  

 
Figure 3.3 DA release and uptake in the CPu of female mice as measured by slice fast 
scan cyclic voltammetry. A) Average DA release per pulse [DA]p in µM, and B) average 
DA uptake rates, Vmax, in µM/s. Data represented as mean ± SEM.’s and n values are 
6–8 per genotype, **P < 0.01. 
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3.2.4 Microdialysis stimulated DA release is potentiated in female BDNF+/- mice 

To determine vesicular DA release, in vivo microdialysis was used to infuse a 

high concentration of potassium (K+) to induce stimulation at the striatal neuronal 

terminals. In these experiments, three baseline samples were collected after which high 

K+ (60 mM KCl) containing artificial cerebral spinal fluid (aCSF) was perfused through 

the microdialysis probe for one 20 minute sample, followed by aCSF for the remainder 

of the experiment (Figure 3.4). The 60 mM K+ aCSF elevated extracellular DA levels by 

at least 5-fold in both genotypes. There appears to be a trend towards higher DA levels 

in the female BDNF+/- mice versus their wildtype littermates, but striatal extracellular DA 

levels were not significant by a two-way ANOVA. Post-hoc analysis revealed a 

significant potentiation in DA levels in female BDNF+/- mice 20 min after high K+ 

perfusion versus wildtype mice (Bonferroni posttest, P < 0.01).  

 
Figure 3.4 High potassium (K+) stimulated DA release from the CPu. Three 20 minute 
baseline samples were collected after which one 20-min perfusion of 60 mM K+ aCSF 
was administered through the dialysis probe directly into the CPu. Data are mean ± 
SEM.’s show change in extracellular DA concentration upon K+ infusion. N values are 6 
mice per genotype, **P < 0.01 (Bonferroni posttest). 
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Overall, both in vivo microdialysis and slice FSCV demonstrate that stimulated 

DA release in the CPu of female BDNF+/- mice was potentiated compared to female 

wildtype mice. When comparing the BDNF+/- female mice to their male counterparts, a 

divergence in their response to high K+ stimulation with 60 mM KCl aCSF was 

observed, where there was a decrease or no effect on DA release in the male BDNF+/- 

mice compared to their wildtype littermates (44, 64). This potentiation in stimulated DA 

release in females could be supported by the presence of estrogen, since estrogen 

pretreatment on the striatum significantly enhances DA extracellular levels, while 

testosterone treatment has no effect (97-99). However, to clearly delineate the roles of 

these sex hormones on striatal DA release dynamics, it is imperative that future studies 

evaluate these interactions to assist our understanding of this estrogen and its complex 

effects on neurotransmitter systems. Overall, both microdialysis and slice FSCV data 

suggests that female BDNF+/- mice release more DA when the system is stimulated 

either via high K+ or electrical stimulation. If the striatal DA system is hyper-responsive 

then these results could possibly explain why the female BDNF+/- mice have elevated 

extracellular DA levels without a difference in DAT activity. 

3.2.5 Methamphetamine-stimulated DA release via microdialysis is potentiated in 

the female BDNF+/- mice 

Methamphetamine (METH), a substrate for the DAT, causes a conformational 

change to the DAT in which DA is primarily released from its transporter instead of 

being re-uptaken. Furthermore, METH disrupts the vesicular monoamine transporter 

(VMAT)-proton pump causing DA to be displaced from the vesicle. In clinical and animal 

models, high doses of METH or repeated doses in a single day of METH are neurotoxic 
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to the DA system by perturbing the central DA signaling (100-103). METH induced 

elevations in non-sequestered intracellular DA levels is thought to lead to an 

environment in where there is a greater probability of DA oxidation leading to the 

eventual formation of reactive oxygen species (ROS) in the cytosol, and ultimately 

nerve terminal damage (104, 105). However, low doses of METH, as used in this study, 

can be locomotor activating, and research has shown that increases in locomotor 

activity can be indicative of increases in extracellular DA levels (106). 

METH was used to investigate BDNF’s role with respect to gender upon 

pharmacological manipulation of the DAT. Female wildtype and BDNF+/- mice were 

injected with a low dose of METH (1 mg/kg, intraperitoneally (i.p.)) which is known to 

activate locomotor activity (107, 108). Microdialysis samples were collected in 20 minute 

fractions for 3 hours after injection (Figure 3.5). Two-way ANOVA analysis revealed a 

main effect of genotype (F1, 178 = 17.7, P < 0.001), treatment (F11, 178 = 20.7, P < 0.001), 

and a significant interaction effect (F11, 178 = 1.91, P < 0.05) demonstrating that METH 

induced genotype-dependent elevations in extracellular DA levels. The maximal METH-

induced response for both genotypes was 40 min after injection. A post-hoc test 

indicated that stimulated DA release was significantly potentiated at 100 and at 120 min 

(P < 0.01, and P < 0.05, respectively) in female BDNF+/- mice compared to their wildtype 

controls (Figure 3.5). 
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Figure 3.5 Methamphetamine (METH) stimulated striatal DA release. METH (1 mg/kg, 
i.p.) was administered at the end of the third baseline sample and DA levels were 
measured for the next 180 min. Data are represented as percent baseline of 
extracellular DA. N values are 7–10 per genotype. Two-way ANOVA indicates main 
effect of time and genotype, ***P < 0.001. *P < 0.05 and **P < 0.01, Bonferroni posttest. 

The balance between gonadal sex hormones, neurotransmitters and other 

neuromodulators like BDNF influence the susceptibility of sex differences in different 

neurological diseases/disorders. For example with drugs of abuse, often individuals 

experiment with drugs of abuse to self-medicate stress, anxiety, and depression (109). 

Women are more susceptible to experiencing depression and anxiety disorders, and a 

leading hypothesis is the BDNF plays a critical role in regulating mood (36, 110). These 

results disagree with previous work done by Dluzen, in which he suggested that the 

reduction in BDNF in the heterozygous mice might protect the heterozygous mice from 

the deleterious effects of METH because of reduced re-uptake of DA (93). However, 

this appears not the case with our finding since the female BDNF+/- mice do not have a 

reduction in DA uptake from the DAT when compared to their wildtype counterparts. 
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Therefore, our results suggest that BDNF is important for regulation of DA dynamics in 

the striatum, and there is a considerable difference on how low BDNF levels influence 

striatal DA dynamics depending on the sex. These results further suggest that 

neuromodulators like BDNF and sex hormones combined have a powerful impact on 

striatal DA dynamics, where female BDNF+/- mice appear to be altered only with respect 

to DA release while male BDNF+/- mice have both release and uptake altered. These 

sex differences may be of particular interest when it comes to the administration of 

pharmacological agents that are meant to relieve anxiety or depression. 

3.5 Conclusions 

The increase in extracellular DA as measured by the microdialysis method of 

zero-net flux suggests that female BDNF+/- mice are hyperdopaminergic like their male 

counterparts. This hyperdopaminergia is not a result of alterations in DAT functionality 

or DA metabolism, as they were consistent between the genotypes. However, there 

appears to be a difference in how the sexes reach a hyperdopaminergic state. Female 

BDNF+/- mice have potentiated DA release as measured in three-independent 

experiments: slice FSCV, high K+ microdialysis, and microdialysis following a low-dose 

of the psychostimulant METH. Overall, these DA release findings suggest that there is a 

complex relationship between BDNF, the sex hormones, and how they influence striatal 

DA release together. The potentiation in extracellular DA levels in female BDNF+/- mice 

appears to be due to an increase in DA release, while the elevated extracellular DA 

levels in male BDNF+/- mice is hypothesized to be a result of compensatory mechanism 

between their release and uptake. Estrogen may be responsible for these DA changes, 

since it has been hypothesized that estrogen acts directly on the DA terminals 
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increasing DA release by down-regulating DA D2 receptors (111). Taken together, when 

comparing these current findings with regards to differences in DA dynamics with 

female BDNF+/- mice with respect to their male counterparts (44), it appears that there is 

a more intricate relationship at work between BDNF and sex hormones. 

3.4 Materials and Methods 

3.4.1 Mice 

Female C57/Bl6J (wildtype) and BDNF+/- (heterozygote) mice between 3–5 

months of age were used in this study. Mice were bred in house from breeder pairs of 

female wildtype and male BDNF+/- mice obtained from Jackson Laboratories (Bar 

Harbor, ME, USA). Mice were weaned 21 days after birth, tail clipped, and ear punched 

for identification purposes. Genotyping was done by PCR reaction using DNA from the 

tail clippings in order to identify the wildtype mice from the heterozygotes as there are 

no phenotypic differences observed in these mice (44). Mice were group housed as 3–6 

animals per cage. All procedures and experiments were designed to minimize any pain 

and/or discomfort to the animals and were in accordance with the National Institute of 

Health Animal guidelines and approved by the Wayne State University Institutional 

Animal Care and Use Committee. 

3.4.2 Microdialysis: Surgery and Experimentation 

Female mice were used for all experiments and were not examined for their 

estrous cycle phase when microdialysis and voltammetry experiments were conducted. 

The estrous cycle was not taken into account for any experimental conditions because 

as Walker and Yu showed DA release and uptake is independent of estrous state and 

does not change in C57BL6/J mice (112-114). Mice were anesthetized using isoflurane 
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and a burr hole was drilled from coordinates relative to the bregma (anterior: +0.8, 

lateral: -1.3, ventral: -2.5) (44, 74). A CMA/7 guide cannula was inserted into the burr 

hole that was drilled into the skull targeting the CPu. The guide cannula was affixed to 

the skull using dental cement and the mice were allowed to recover for 3–4 hours after 

surgery before a microdialysis probe (2 mm membrane length, 0.24 mm membrane 

diameter, Cuprophane, 6 kDa cut-off) was inserted through the guide cannula. Next, 

aCSF (composition in mM: 145 NaCl, 3.5 KCl, 2 Na2HPO4, 1.0 CaCl2, 1.2 MgCl2; pH 

7.4) was perfused at a flow rate of 0.4 µL/min overnight. The next morning, flow rate 

was increased to 1.1 µL/min and equilibrated for one hour before experimentation 

began. Dialysate samples were collected in 20 min fractions for a total sample volume 

of 22 µL from the freely moving mice. 

To determine basal extracellular levels of DA, the method of zero-net flux was 

employed as previously described (44, 75, 76). Four 20 min baseline samples were 

collected, and aCSF perfusate containing 5, 10, and 20 nM DA was perfused into the 

striatum using a CMA/402 programmable gradient infusion pump. Collected dialysate 

samples were stored in a -80 °C freezer until analysis (77). 

 For the zero-net flux experiments, the plotted x-axis represents the DA 

concentration perfused into the probe, DAin (determined by in vitro analysis), and the y-

axis is plotted as the difference in concentration perfused in from the concentration of 

DA collected from the probe (DAout). The point at which this linear regression line 

crosses the x-axis is known at the DAext, which corresponds to the basal extracellular 

DA concentration DAin (75). The slope of the regression line, Ed, was used to determine 

the in vivo recovery of DA (82).  
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DA vesicular release by depolarization of the neuron, a method which requires 

perfusion of high K+ aCSF at 60 mM (in mM: 60 KCl, 90.5 NaCl, 2.0 Na2HPO4, 1.2 

MgCl2, 1.0 CaCl2; pH 7.4) was used. In this method, three baseline samples were 

collected with standard aCSF, and following the third collected sample, high K+ aCSF 

was perfused through the probe for 20 min. After the 20 min perfusion of the high K+ 

aCSF was completed, the pump was switched so that only standard aCSF was 

perfused for the last five subsequent dialysis fractions that were collected. 

Pharmacological release of extracellular DA was achieved by using METH. Mice 

were weighed before analysis in order to calculate proper doses for intraperitoneal (i.p) 

injection. Three baseline samples were collected before mice were injected with a 1 

mg/kg dose of METH, and samples were collected every 20 min for another 3 h after 

injection. 

3.4.3 Slice fast scan cyclic voltammetry 

All slice voltammetry experiments and analysis was conducted by Madiha Khalid, Ph.D. 

Slice fast scan cyclic voltammetry experiments are the same as previously 

described (44, 115). Briefly, female mice were asphyxiated using CO2 and immediately 

sacrificed, after which their brains were removed and placed into pre-oxygenated (95% 

O2/5% CO2) cold high sucrose aCSF buffer (in mM: 180 sucrose, 30 NaCl, 4.5 KCl, 1 

MgCl2, 26 NaHCO3, 1.2 NaH2PO4, and 10 D-glucose; pH 7.4) for 10 min. The brain was 

sectioned into 400 µm thick coronal slices, and the slices containing the CPu were 

placed into an oxygenating aCSF (in mM: 108 NaCl, 5 KCl, 2 CaCl2, 8.2 MgCl2, 4 

NaHCO3, 1 NaH2PO4, 11 D-glucose, 0.4 ascorbic acid; pH = 7.4) chamber at room 

temperature. After a 1 h equilibration period, the slices were placed onto a custom-
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made submersion chamber kept at a temperature of 32 °C and the oxygenated aCSF 

was perfused over the brain slices at 1 mL/min for the remainder of the experiment. 

Carbon fiber microelectrodes (50–200 µm in length) were made in-house for 

FSCV analysis of DA as previously described (115, 116). The microelectrode were 

placed in the CPu ~75 µm into the tissue of the slice. The stimulating electrode was 

placed ~100–200 µm away from the carbon microelectrode. A triangle waveform was 

used to detect DA from the surface of the electrode by applying a potential starting at -

0.4 V versus a Ag/AgCl reference electrode, ramping it up to +1.2 V, then bringing it 

back down to -0.4 V at a frequency of 10 Hz and scan rate of 400 V/s (44, 115, 116). 

Stimulation was applied every 5 min and subsequent DA release and uptake were 

recorded until three stable baseline readings were achieved. All of the electrode and 

stimulation parameters were controlled by TH software. Post-calibration of electrodes 

were completed after each experiment using a 3 µM DA solution so that peak oxidation 

could be converted to concentration. Current versus time plots were fitted by non-linear 

regression as described by John and Jones, using LabVIEW National Instrument 

software (53). DA release, [DA]p, and uptake, Vmax, were determined using Michaelis-

Menten based kinetics by fitting DA concentration versus time traces (7, 116). 

3.4.4 Statistical Analysis 

 All analysis for microdialysis experiments were performed using GraphPad 

Prism® software. Values are reported as mean ± standard error of the mean (SEM) with 

statistical significance set at P < 0.05. Student’s t-test was used to determine 

significance between genotypes with respect to uncorrected DA, DAext, and metabolites 
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while genotypic analysis for high K+ and METH were compared using two-way ANOVA 

analysis.  

 FSCV results of DA release and uptake were analyzed using Michaelis-Menten 

kinetic model, which measures the change in [DA]p and Vmax (53, 79, 83). Student’s t-

tests were used to determine change in electrically stimulated DA release and uptake 

rates between the genotypes. 
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CHAPTER 4 

Normalized striatal dopamine dynamics in aged BDNF deficient mice 

(Portions of the text in this chapter were adapted from the submission to The 

Neurobiology of Aging) 

4.1 Introduction 

Aging is a natural process that all living organisms experience. Though the rate 

of aging is different across species, changes in the biological processes during aging 

are similar. One of the main hallmarks of aging is the slowing of motor movements and 

coordination typically associated with striatal dopamine function (117). Over a lifetime, 

degradation of nigral-striatal neurons occurs at a rate up to ~35% and correlates with an 

~60% decrease in dopamine (DA) levels in humans (5, 118, 119). Specifically, aging 

causes substantial changes to the striatal DA system in these ways: 1) decreases in DA 

levels (5, 120), 2) decreases in D2 receptors and the DA transporter (DAT) (121, 122), 

3) decreases in tyrosine hydroxylase (TH) concentrations and neurons (123, 124), and 

4) increases in free radicals by monoamine oxidase (MAO) during DA metabolism (66, 

125). Severe striatal DA deficits contribute to specific neurological diseases or disorders 

associated with age such as Parkinson’s and Huntington’s disease (3, 119, 126). 

However, it is naïve to suggest that a single neurotransmitter or neuromodulator system 

is involved with these age-related neurological diseases. Recent evidence indicates 

there is also an associated decrease in levels of brain-derived neurotrophic factor 

(BDNF) along with DA deficits (3, 127, 128). 

BDNF is a neurotrophic factor responsible for neuronal maintenance, survival, 

and growth. BDNF is synthesized in the substantia nigra (SN) and the cortical pyramidal 
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neurons and is anterogradely transported to the medium spiny neurons (MSNs) (31, 

129, 130). Upon synaptic stimulation, BDNF binds to its receptor tyrosine kinase 

receptor B (TrkB) expressed on striatal MSNs (24). When BDNF is applied exogenously 

to mouse striatal slices or rat striatal neuronal cultures, BDNF increases DA release and 

survival of DA neurons, respectively (28, 44). During the normal aging process, protein 

levels of BDNF in the striatum have been shown to decrease in both rats and mice 

(131), as well as a concomitant decreases in TrkB and TH messenger ribonucleic acid 

(mRNA) levels in the striatum (64, 123). Furthermore, in animal models mimicking 

Parkinson’s disease, dopaminergic neuronal cultures treated with BDNF before the 

application of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) were protected 

from the neurotoxic effects of its metabolite 1-methyl-4-phenylpyridinium (MPP+) (28). 

Additionally, results from various studies to date suggest that there is a reciprocal 

relationship between DA and BDNF. 

With the relationship between DA and BDNF becoming ever more apparent, the 

purpose of this study was to characterize the DA system in a heterozygous mouse 

model in which there was a lifelong reduction of endogenous BDNF protein and mRNA 

levels (25, 64). BDNF+/- mice have no gross abnormalities compared to their wildtype 

littermates, but are heavier and slightly more aggressive as they age (65). Previous 

research in our laboratory has shown that BDNF+/- mice at ~3 months of age are 

hyperdopaminergic by nature (44). Our hypothesis was that this hyperdopaminergia 

would persist throughout the animal’s life, and that these elevated extracellular DA 

levels would lead to even greater striatal impairments.  These striatal impairments are 

thought to be caused by older mice being more susceptible to increases in reactive 
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oxygen species (ROS), a product of DA metabolism and harmful to an aging neuronal 

system (66, 67). In this study, both in vivo microdialysis and slice fast scan cyclic 

voltammetry (FSCV) were used in combination to characterize the DA system in 18 

month old BDNF+/- mice and their wildtype littermates. This study was the first to use 

slice FSCV in conjunction with in vivo microdialysis to obtain a comprehensive view of 

aging striatal DA dynamics with respect to basal DA concentrations, DA metabolism, 

and transporter functionality in aged BDNF+/- mice. 

4.2 Methods 

4.2.1 Animals 

A heterozygous (BDNF+/-) mouse model was used in this present study because 

a complete knockout of BDNF (BDNF-/-) in mice is lethal (25). Female C57BL/6J and 

male BDNF+/- mice were obtained from Jackson Laboratories (Bar Harbor, ME, USA). 

Offspring from these mice were raised as a colony in-house (Wayne State University, 

Detroit, MI) and were housed 3–4 per cage. Animals had access to food and water ad 

libitum during their 12-h light/dark cycle. Each mouse’s genotype was identified using 

PCR analysis of tail DNA and performed as previously described (132). Experiments 

conducted on mice between the ages of 12 to 18 months included locomotor activity 

and microdialysis at 18 months, and voltammetry on 3–5 month old mice (young) or 18 

month old mice (aged). All experiments and procedures were designed to minimize any 

pain and discomfort for the animals, and were in accordance with the National Institute 

of Health Animal guidelines and approved by the Wayne State University Institutional 

Animal Care and Use Committee. 
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4.2.2 Microdialysis 

  Both aged male and female mice were used for microdialysis experiments. 

Stereotaxic surgery was performed as previously described (44) except that mice at 18 

months were anesthetized using isoflurane (induction 2-4%; maintenance 0.5-3%). A 

burr whole was drilled and a CMA/7 guide cannula was inserted targeting the caudate-

putamen (CPu). Coordinates were obtained from the mouse atlas and experimental 

determination (in mm from Bregma: Anterior: +1.0, Lateral: -1.3, Ventral: -2.5) (74). After 

surgery, mice were allowed to recover for 3 h before the microdialysis probe (2 mm 

membrane length, 0.24 mm membrane diameter, Cuprophane, 6 kDa cut-off) was 

inserted through the guide cannula. Artificial cerebral spinal fluid (aCSF; composition in 

mM: 145 NaCl, 3.5 KCl, 2 Na2HPO4, 1.0 CaCl2, 1.2 MgCl2; pH 7.4) was perfused 

overnight at a flow rate of 0.40 µL/min. Microdialysis experiments were started the next 

day at 0800 h and at least 1 h before the flow rate was increased to 1.1 µL/min to allow 

for equilibration. Dialysate samples were collected at 20 min intervals from the freely 

moving mice. 

  The microdialysis technique of zero-net flux was used to determine the basal 

extracellular DA levels in the 18 month old mice as previously described (44, 75, 76). 

Four baselines samples were collected with aCSF, then using a CMA/402 

programmable gradient infusion pump, perfusate containing 5, 10, and 20 nM DA was 

delivered through the microdialysis probe for 90 min each. The DA-containing aCSF 

solutions contained 200 µM ascorbic acid and the samples were stored at -80 °C until 

use (77). Determination of the DA concentration entering the probe (DAin) was 

accomplished by in vitro calibration using DA-containing aCSF perfused through the 
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dialysis system in absence of a mouse. DA-containing aCSF was prepared freshly on 

each day of analysis. To determine pharmacological DA release using microdialysis, 

methamphetamine (METH) was used. Before all METH experiments, mice were 

weighed to achieve proper dosing.  At least three baseline samples were collected, then 

mice were injected intraperitoneally (i.p.) with 1.0 mg/kg dose of METH and dialysate 

samples were collected for 2 h after the METH injection. 

  Samples were separated and detected using a Shimadzu LC-20AD HPLC pump 

coupled with electrochemical detection, and were separated using a reverse phase 

Phenomenex C18 (2)-HST column (100 mm x 3 mm, 2.5 µm). DA was detected using an 

ESA coulometric cell Model 5014B microdialysis cell (potential E1 = -150 mV and E2 = 

+220 mV versus a palladium reference electrode), with a guard cell (ESA 5020), set at 

+350 mV, placed before the injection loop. Dialysate samples were eluted isocratically 

using a mobile phase (composition in mM: 75 NaH2PO4 monohydrate, 1.4–1.8 1-

octanesulfonic acid, 0.125 EDTA, 10% acetonitrile, and 0.002% triethylamine; pH = 3.0, 

adjusted with 85% phosphoric acid) with the flow rate of 0.400 mL/min. The retention 

times for 3, 4-dihydroxyphenylacetic acid (DOPAC), DA, and homovanillic acid (HVA) 

were ~5, 6.5, and 12.5 min, respectively. Analyte peak areas were determined against 

known standards by integration using LC Solutions Shimadzu Software. After dialysis 

experiments were completed, mice were sacrificed, and brains were sectioned for 

histological confirmation of probe placement. 

4.2.3 Slice voltammetry 

Slice voltammetry experiments and analysis was conducted by Francis K. Maina, Ph.D. 
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Slice voltammetry experiments were similar to those described in Bosse et al., 

(44).  Briefly, mice were anesthetized with CO2 and their brains were rapidly removed, 

and were placed into pre-oxygenated (95% O2/5% CO2) cold high sucrose-aCSF buffer 

(composition in mM: 180 sucrose, 30 NaCl, 4.5 KCl, 1 MgCl2, 26 NaHCO3, 1.2 

NaH2PO4, and 10 D-glucose; pH 7.4) for 10 min. A Vibratome® was used to section 

each brain into 400 µm thick coronal slices containing DA rich areas of the CPu and 

nucleus accumbens (NAc). Slices were then placed into oxygenated aCSF (composition 

in mM: 108 NaCl, 5 KCl, 2 CaCl2, 8.2 MgCl2, 4 NaHCO3, 1 NaH2PO4, 11 D-glucose, 0.4 

ascorbic acid; pH = 7.4) for 1 h before being placed onto a custom-made submersion 

chamber for voltammetric analysis. The submersion chamber was kept at a temperature 

of 32 °C as oxygenated aCSF flowed at a rate of 1 mL/min. 

Carbon fiber microelectrodes approximately 50–200 µm in length were sealed in 

a glass capillary in-house for FSCV analysis of DA as previously described (7). The 

carbon fiber microelectrode was placed in the CPu ~75 µm below the surface of the 

slice in the CPu, and the stimulating electrode was placed directly on the slice 

approximately 100 - 200 µm away from the carbon fiber microelectrode. The parameters 

for detecting DA at the electrode surface were completed using a triangle waveform 

where the electrode potential was initially held at –0.4 V versus an Ag/AgCl reference 

electrode, ramped up to +1.2 V, and then returned to –0.4 V at 400 V/s at a frequency of 

10 Hz (7, 44, 53). DA release was evoked every 5 min by a one pulse monophasic 

stimulation (350 µA, 60 Hz with 4 ms pulse width) from the stimulating electrode. All 

electrode and stimulation parameters were controlled by TH software. Stable baseline 

DA dynamics (release and re-uptake) were measured for at least 30 min.  
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 After stable DA release was recorded, superfusion of METH began with 

increasing concentrations (0.01–10 µM) delivered to the slice every 30 min. To evaluate 

DA’s affinity for DAT, slice FSCV was used with METH. METH, a competitive inhibitor 

for the DAT, decreases the amount of DA taken back up into the neuron. The 

competitive inhibition of DA reuptake is reflected as an increase in the apparent Km 

(DA’s affinity for the DAT) (53). Equation 4.1 below shows how apparent Km is 

calculated, where Km is the Michaelis-Menton constant and Ki is the inhibition constant. 

The Ki values are calculated from the slope of the linear regression of METH 

concentration versus apparent Km values (shown in equation 4.2). The value of Km 

chosen was 0.16 µM, as previously reported in literature (53, 78-80). 

Apparent Km = Km x (1 + [i]/Ki)    
     (4.1) 

Slope = ∆y/∆x = Km/Ki
                      (4.2) 

Increasing concentrations of METH were applied to the brain slice since it was 

previously shown that cumulative concentrations of perfused drugs over a slice do not 

affect DA release and uptake parameters (53). 

Electrodes were post-calibrated with 3 µM DA and the peak oxidation current 

was converted to concentration. The current versus time plots were fit by non-linear 

regression using LabVIEW National Instrument software as described by John and 

Jones (53). Using a Michaelis-Menton base kinetic model (7) peak amplitude of release 

([DA]p), DA uptake kinetics (maximum velocity, Vmax), and DA’s ‘apparent’ affinity for the 

transporter (Km) were determined by fitting DA concentration versus FSCV time traces. 
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4.2.4 Locomotor activity 

Mice were separated into singly housed cages 24 h prior to locomotor analysis. 

On the day of analysis, mice were transported from the animal facility to the testing 

facility, their food and water removed, and their home cage was placed into the 

locomotor activity static chamber. Mice were allowed to habituate for 1 h to minimize the 

stress of transportation and the novel environment. Spontaneous locomotor activity was 

recorded using 3 sets of 16-beam infrared (IR) emitter-detector arrays (Med Associates, 

St. Albans, VT) (81). Interruptions of IR beams resulted in an analog signal being 

recorded by automated activity software (Open Field Activity Software [SOF-811], Med 

Associates, St. Albans, VT). This system quantified total beam breaks in both the 

vertical and horizontal planes, specifically encoding measures of distance traveled (cm; 

calculated from number of breaks of adjacent beams), ambulatory time (s), and number 

of rears. Baseline ambulatory distance was measured for a total of 2 h and binned into 

10 min periods. To determine locomotor stimulation following METH administration, 

baseline activity was determined for the first hour then mice were then injected with 

saline (1.0 mL) i.p. and locomotor activity was collected for a second hour. Mice were 

then injected with METH (1.0 mg/kg) and locomotor activity was collected for an 

additional 2 h. 

4.2.5 Statistical analysis 

Neurochemical data analysis was performed using GraphPad Prism® software. 

Values were reported as mean ± standard error of mean (SEM) with the criterion for 

statistical significance set to P < 0.05.  
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For zero-net flux analysis linear regression analysis, the x-axis represents the 

concentration of DA being perfused into the probe determined by in vitro analysis (DAin), 

and the y-axis represents the difference of DAout, which is defined as the concentration 

of DA in the dialysate sample from DAin (75). The point at which the regression line 

crosses the x-axis is known as DAext and indicates the basal extracellular concentration 

of DA. The slope of the regression line was used to determine the in vivo recovery of 

DA (Ed, dialysate extraction fraction) (82). Student’s t-tests were used to determine if a 

significant difference existed between the genotypes with respect to DAext, extracellular 

metabolite concentrations, and metabolite/DA ratio.  

Release and uptake, as determined by FSCV, were analyzed using the 

Michaelis-Menten kinetic based model which determines changes in [DA]p, Vmax, and 

apparent Km (53, 79, 83). To determine differences in electrically stimulated DA uptake 

and release between genotypes, two-tailed Student t-tests were used. 

Locomotor activity, baseline and METH-induced, were analyzed (IBM SPSS® 

Statistics for Windows) using a 2 x 3 x 12 three-way, repeated measures analysis of 

variance (ANOVA) with Genotype (WT or BDNF+/-) as the between-subjects factors, and 

month (12, 15, or 18) and the 12 time blocks as nested within-subjects factors.   

4.3 Results 

Slice voltammetry experiments and analysis was conducted by Francis K. Maina, Ph.D. 

One of the main phenotypic differences reported between wildtype and BDNF+/- 

mice is that BDNF+/- mice are often heavier than their wildtype counterparts, though the 

point at which the divergence in weight starts is controversial (64, 65, 123). In the 

present study, mice were weighed monthly starting at 3 months of age through 18 
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months to determine when the BDNF+/- mice showed the typical weight gain compared 

to the age matched wildtype mice. BDNF+/- mice were significantly heavier than their 

wildtype counterparts as demonstrated by the main effect of genotype (Figure 4.1, F1, 277 

= 87.78, P < 0.001). As shown in Figure 4.1, a two-way ANOVA indicates no difference 

with respect to the main effect of time (P = 0.19) or an interaction (P = 0.95). To 

determine if weight was a factor in total locomotor activity, wildtype and BDNF+/- mice 

weights were analyzed and compared to distance traveled. No difference was observed 

between heavier mice (40–50 g) and the lean mice (22–30 g) in the amount of distance 

traveled in cm during a 2 h period, regardless of the genotype (data not shown).  

 
Figure 4.1 Monthly weight in grams of wildtype (WT) and BDNF+/- mice from 3 to 18 
months of age. BDNF+/- mice were significantly heavier compared to their wildtype 
littermates. Inset shows monthly weights from 12–18 months of age. Each point 
represents the mean ± SEM for each genotype (n = 21–24/genotype). Two-way ANOVA 
showed main effect of genotype (***P < 0.001).  
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Locomotor activity can be an indirect way to measure increases in extracellular 

DA levels. Locomotor activity testing was conducted at 12, 15, and 18 months of age for 

both wildtype and BDNF+/- mice to determine if basal activity was different. If differences 

in locomotor activity were observed it could possibly be indicative of dopaminergic 

alterations. Using a three-way repeated measures ANOVA analysis, no significance was 

observed for genotype (P = 0.96) or interaction (Figure 4.2; P = 0.37), though a 

significant main effect of time was observed (F11, 374 = 3.81, P < 0.001), and shown in 

Figure 4.2A–C. Total ambulatory distance for each genotype at 12, 15, and 18 months 

decreased as the session progressed. No other significant interactions were observed. 

 
Figure 4.2 Homecage locomotor activity for wildtype (WT) and BDNF+/- mice as they 
age from 12 to 18 months. A) Ambulatory distance (in cm) for 12 month old mice. B) 
Ambulatory distance (in cm) for 15 month old mice. C) Ambulatory distance (in cm) for 
18 month old mice. D) Cumulative distance traveled during the 2 h at 12, 15, and 18 
months of age. 
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Figure 4.3 DA zero-net flux in the CPu of wildtype and BDNF+/- mice. Linear regression 
analysis of DA levels from wildtype (WT) and BDNF+/- mice. Apparent extracellular DA 
levels (DAext) are represented by the x-intercept. Inset shows mean ± SEM of the 
uncorrected DA concentration (extraction fraction; Ed), apparent [DAext], and slope for 
both WT and BDNF+/- mice (n = 11–12/group). 

Microdialysis experiments were used to determine the influence of a lifelong 

reduction of BDNF has on the DA system. The uncorrected extracellular DA levels were 

averaged from three to four baseline fractions, and no difference was observed between 

the wildtype (2.2 ± 0.3 nM) and BDNF+/- (2.5 ± 0.5 nM) mice (Figure 4.3 inset; P = 0.86). 

Using the in vivo microdialysis method of zero-net flux (75), corrected extracellular DA 

levels (DAext), and the slope of the regression line (extraction fraction, Ed) for both 

wildtype and BDNF+/- mice were evaluated in the CPu. DAext determined from the linear 

regression line of the zero-net flux experiment (Figure 4.3, x-intercept), for both wildtype 

and BDNF+/- mice, showed extracellular DA levels at 5.5 ± 0.8 nM and 7.6 ± 1.5 nM, 

respectively (Figure 4.3 inset; P = 0.21). At 18 months of age, both genotypes had 

corrected extracellular DA (DAext) concentrations in the CPu consistent with literature 
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(44, 133, 134). The Ed did not differ between the wildtype (0.47 ± 0.65) and BDNF+/- 

(0.33 ± 0.58) mice (Figure 4.3 inset; P = 0.15). 

DA’s metabolites, DOPAC and HVA, were also evaluated using in vivo 

microdialysis in both genotypes (Figure 4.4A). Aged BDNF+/- mice had significantly 

higher DOPAC (710 ± 140 nM, n = 10) and HVA levels (710 ± 110 nM, n = 9) compared 

to their aged wildtype littermates (DOPAC 400 ± 145 nM, n = 14, and HVA 470 ± 53 nM, 

n = 15; P < 0.05). Extracellular DA turnover ratios were determined by dividing the 

extracellular metabolite concentration by the corresponding uncorrected DA 

concentrations (Figure 4.4B). Aged BDNF+/- mice had 3-fold increase in their 

[metabolite]/[DA] ratio for both the [DOPAC]/[DA] and [HVA]/[DA] (600 ± 160, n = 10; 

and 630 ± 150, n = 10, respectively) compared to their aged wildtype counterparts 

([DOPAC]/[DA] 190 ± 33, n = 14; and [HVA]/[DA] 230 ± 34, n = 14; P < 0.01). 

 
Figure 4.4 Extracellular levels of the DA metabolites DOPAC and HVA and their 
turnover ratios. A) Extracellular concentration of DOPAC and HVA levels measured by 
microdialysis from the CPu. B) Extracellular [DOPAC]/[DA] and [HVA]/[DA] ratios. Data 
are mean ± SEM (n = 10–14). *P < 0.05 as compared to wildtype (WT) mice (Student’s 
t-test). B) **P < 0.01 as compared to WT mice (Student’s t-test). 

  Slice FSCV examined electrically evoked DA release and DA uptake by a single 

pulse in the CPu of both aged wildtype and BDNF+/- mice. Figure 4.5A shows 
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representative concentration versus time plot for both genotypes with their 

corresponding cyclic voltammogram (Figure 4.5A inset). Electrically-evoked DA release 

([DA]p) did not differ between genotypes at 18 months of age (wildtype mice: [DA]p = 1.8 

±  0.1 µM, n = 19; BDNF+/- mice: [DA]p = 2.1 ±  0.2 µM, n = 11; Figure 4.5B). Similarly 

DA uptake, Vmax, was not different between genotypes at this age (Figure 4.5C, wildtype 

mice: Vmax = 4.1 ± 0.3 µM/s, n = 18; BDNF+/- mice: Vmax = 4.0 ± 0.2 µM/s, n = 12). 

 

Figure 4.5 Slice FSCV of presynaptic striatal DA dynamics. A) Representative current 
versus time electrically-evoked DA release and uptake in the CPu from wildtype (WT) 
and BDNF+/- mice with corresponding cyclic voltammogram indicating DA detection. B) 
Average electrically evoked DA release ([DA]p) from the CPu of aged mice. C) Average 
striatal DA uptake rates (Vmax). D) The average ratio of phasic-to-tonic for young adult 
(3-5 months) and aged (18 month) mice in the CPu. Data is represented as mean ± 
SEM (n = 11–17, **P < 0.01). 

  As the adult BDNF+/- mice age, electrically evoked striatal DA release changes 

with respect to time. Where young BDNF+/- mice had decreased electrically evoked 
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striatal DA release, the aged BDNF+/- mice electrically evoked DA release did not 

change with respect to their wildtype littermates (44). As a result of this difference in 

evoked DA release in the BDNF+/- mice as they age, tonic and phasic DA transmission 

in both young adult (4 months) and aged (18 months) wildtype and BDNF+/- mice were 

observed by varying the stimulation pulses (p) from 1p (tonic) to a 5p (phasic) train. 

Two-way ANOVA revealed a main effect of age in BDNF+/- mice with respect to phasic-

to-tonic (5p/1p) DA signaling (Figure 4.5D, F1, 49 = 10.23, P < 0.01). There was no main 

effect of genotype or genotype X age interaction (F1, 49 = 0.22, P = 0.64 and F1, 49 = 2.36, 

P = 0.13, respectively). 

Similar to evoked DA release, DAT functionality increases in the aged BDNF+/- 

mice to the DAT uptake rates observed in the aged wildtype mice. Therefore, another 

experiment using microdialysis was done to better understand DAT dynamics in aged 

mice using METH. METH was used to probe the transporter functionality with 

microdialysis, FSCV, and locomotor activity. METH is known to disrupt the vesicular 

monoamine transporters ability to sequester DA in vesicles resulting in a greater efflux 

of DA into the extracellular space (135). In our microdialysis experiment, 60 min of 

baseline samples were collected, at which time the mouse was administered 1.0 mg/kg, 

i.p. injection of METH (Figure 4.6A), and samples were collected for an additional 120 

min. Extracellular DA levels are reported as a percent of DA baseline. METH induced a 

maximal response 40 min after an injection in both genotypes (wildtype: 561% and 

BDNF+/-: 724%). Using a two-way repeated measure ANOVA main effect time (F8, 208 = 

30.47, P < 0.001) was observed but not genotype (F1, 208 = 1.52, P = 0.23).  
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Locomotor activity was assessed in the aged mice after an acute injection of 

METH (Figure 4.6B). Using two-way ANOVA, there was a significant main effect of time 

(F29, 1106 = 2.0, P < 0.01), but no difference was observed between genotypes or an 

interaction (F1, 1106 = 0.35, P = 0.55, and F29, 1106 = 0.51, P = 0.99, respectively). At the 

190 min time point, a sharp increase in locomotor activity is seen for both genotypes 

which continued for 30 min before descending back towards baseline locomotor activity 

levels. The effect of a single METH concentration was measured for 30 min. Figure 

4.6C shows non-linear fitting (Figure 4.6D is the linear portion of 4.6C) of a dose-

dependent increase in apparent Km with increasing METH concentrations. This increase 

in apparent Km represents a decrease in affinity of DA for its transporter. Both aged 

genotypes had a dose dependent increase in the apparent Km values. Two-way ANOVA 

for the analysis of non-linear fitting showed a significant main effect of METH treatment 

(F6, 316 = 96.50, P < 0.001), but no significant difference in apparent Km was observed 

between the aged mice at either genotype (P = 0.89). There was no interaction between 

genotype X treatment (P = 0.99), thus, the potency of METH is the same across the 

aged genotypes. To quantify Ki, DA uptake inhibition, values for METH, the slopes of 

the lines from Figure 4.6D were calculated, and slopes are similar for both genotypes 

(wildtype mice: 0.026 ± 0.002, n = 14, and BDNF+/- mice: 0.021 ± 0.002, n = 12). 
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Figure 4.6 Influence of methamphetamine (METH) on striatal DA dynamics and 
locomotor behavior. A) Microdialysis measurement of METH induced dopamine release, 
reported as percent baseline. B) Ambulatory distance traveled of wildtype (WT) and 
BDNF+/- mice. Baseline was collected for the first 2 h then saline was injected (arrow) 
and the ambulatory distance was measured. At the 180 min mark, an i.p. injection of 
METH (1 mg/kg) was administered and ambulatory distance was measured. (n = 17–
25/per group). C) Non-linear fitting of dose-dependent increase in apparent Km values 
with increasing METH concentrations using FSCV. D) Linear regression plots of the 
apparent Km values using FSCV with increasing concentrations of METH. 

4.4 Discussion 

A lifelong reduction in BDNF results in a striatal dopaminergic system which 

changes with respect to age. Instead of the aged BDNF+/- mice having a 

hyperdopaminergic striatal system as seen in the young BDNF+/- mice, the aged 

BDNF+/- mice dopaminergic system appears to ‘normalizes’ to a level comparable to the 

young adult and aged wildtype mice with respect to extracellular DA levels, DA release, 
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and DAT uptake rates. Extracellular DA levels in the aged BDNF+/- mice are attenuated 

from 12.0 nM in young, to 7.6 nM in aged BDNF+/- mice (see Table 4.1) (44). 

Interestingly, extracellular DA levels in aged BDNF+/- mice decrease to levels similar to 

the aged wildtype mice. Our steady state striatal DA concentrations are in agreement 

with our basal uncorrected DA levels (see Figure 4.3 inset) where no differences 

between the genotypes were observed. However, a previous microdialysis study in 

aged BDNF+/- mice reported a decrease in uncorrected extracellular DA levels 

compared to their wildtype counterparts in both young adult (3 months) and middle aged 

mice (12 months) (64). Strain and age differences, as well as method parameters like 

microdialysis probe size (1 vs. 2 mm probe) and slight medial-lateral variation in probe 

placement in the CPu may account for these divergences in extracellular DA levels 

between our aged results and those reported by Boger (64). No changes in extracellular 

DA levels further suggest that there is no significant degeneration of striatal DA neurons 

in these aged animals (136, 137). Supporting the hypothesis of the absence of neuronal 

degeneration, is cell morphology of nigral-striatal DA neurons and MSNs in the dorsal 

striatum were no different in aged BDNF+/- mice (18 to 24 months old) (23, 123, 138). 

. Young WT
#
 Young BDNF

+/- #
 Aged WT Aged BDNF

+/-
 

DA
ext 

(nM) 5.0 + 0.2 12.0 + 0.4
ƗƗƗ
 5.5 + 0.8 7.6 + 1.5* 

DOPAC (nM) 410 + 70 330 + 90 400 + 145 710 + 140* 

HVA (nM) 465 + 65 560 + 120 467 + 53 710 + 110 

Release ([DA]
p
) (µM) 1.8 + 0.1 1.2 + 0.1

ƗƗƗ
 1.8 + 0.1 2.1 + 0.2*** 

Uptake (V
max

) (µM/s) 4.1 + 0.1 2.7 + 0.1
ƗƗƗ
 4.1 + 0.3 4.0 + 0.2*** 

Table 4.1 Young mice (3–5 months) verses aged mice (18 months). Student-t test 
showed significance between young wildtype (WT) and BDNF+/- (ƗƗƗP < 0.001), and 
between young BDNF+/- and aged BDNF+/- (*P < 0.05, ***P< 0.0001). #Data from (44). 
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Although no alterations were observed in extracellular DA levels between aged 

wildtype and BDNF+/- mice, there was an increase in DA metabolism as measured by 

microdialysis. An increase in both extracellular DOPAC and HVA levels in the aged 

BDNF+/- mice could contribute to the reduced extracellular DA levels in the aged 

BDNF+/- mice to that of the aged wildtype mice. Monoamine metabolic abnormalities 

have been observed in BDNF-deficient mice with respect to the serotonin system (65). 

Similarly, young (Table 4.1, (44)) and aged neurochemical measurements parallel the 

dysregulation of serotonin in aged BDNF+/- mice by Lyons (65). Together, the 

dysregulation of the aging DA and serotonin systems in BDNF+/- mice strongly supports 

the hypothesis that normal BDNF levels are required for proper monoamine functioning. 

Young adult BDNF+/- mice showed no metabolism or synthesis differences (44). Thus, it 

appears as the BDNF+/- mice age, activity or function of metabolic enzymes such as 

MAO is enhanced, and age-related changes in MAO isoforms are not uncommon. For 

example, levels of the MAO isoforms diverge as C57BL/6J mice age, where MAO-A 

levels were steady as the animals aged to 25 months, while MAO-B levels gradually 

increased (129). Furthermore, a MAO-B transgenic mouse with 2.5 times the 

expression of MAO-B shows a 60% reduction in striatal DA levels measured by tissue 

content at 2–6 months of age, with a concomitant 50% reduction in dopaminergic 

substantia nigra (SN) neurons by 14 months of age (67) suggesting a pivotal role for 

MAO in regulating the DA system during the aging process. Elevated MAO-B levels 

could be detrimental to the surrounding systems because increased DA metabolism 

could lead to an elevated production of ROS. In the aged BDNF+/- and wildtype mice, 

there are no differences in striatal DA levels are observed, which contradicts previous 
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literature findings with respect to elevated MAO-B expression (67, 129). To further 

support the hypothesis that MAO is upregulated or has increased functionality in aged 

BDNF+/- mice, the extracellular turnover ratio between [DOPAC]/[DA] and [HVA]/[DA] 

are significantly elevated in BDNF+/- mice compared to their age matched wildtype mice. 

The increase in the [DOPAC]/[DA] ratio in aged BDNF+/- mice suggests an elevation in 

MAO activity or function throughout the lifespan of the BDNF+/- mice. To better 

understand these monoaminergic changes in aging mice, future studies should focus on 

the expression and activity of the MAO isoforms in the striatum of aged BDNF+/- mice to 

fully assess these alterations in metabolism. Increases in MAO activity may provide 

crucial evidence affirming the metabolic alterations observed in the aged BDNF+/- mice. 

Extracellular DA levels are not strictly regulated by metabolism. The dominant 

mechanism for regulating extracellular DA is uptake via the DAT. As the BDNF+/- mice 

aged from 3 to 18 months, DA uptake rates increased in the aged BDNF+/- mice to rates 

similar to their aged matched wildtype mice. Thus, young adult BDNF+/- mice have a 

slower DAT function that is likely to cause their elevated striatal extracellular DA levels 

(44). As the BDNF+/- mice age, DAT function appears to increase approximately to the 

uptake rate of the aged wildtype mice. Presumably, this faster rate of DA clearance 

leads to decreasing extracellular DA levels in aged BDNF+/- mice. Autoradiography 

studies support this hypothesis since DAT expression is not different between the 

genotypes (64). Together, these findings support the proposition that DAT function 

increases with age in the BDNF+/- mice. 

When a 100 ng/mL infusion of BDNF was applied to young adult BDNF+/- mouse 

striatal slices, it increased stimulated DA release by 20%, while BDNF infusion resulted 
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in no difference in stimulated DA levels in the wildtype mice (44). Taken together, these 

results from the young mice suggest that BDNF’s primary role is to regulate DA release. 

Based upon the findings by Bosse et al., and our current findings that suggest DA 

dynamics in BDNF+/- mice normalize with age, the next step was to evaluate the role of 

endogenous BDNF on tonic and phasic DA release between young and aged mice (44). 

The frequency of DA release in the dorsal and ventral striatum can be regulated either 

endogenously or exogenously by other factors (139). Young adult BDNF+/- mice showed 

a 40% reduction in evoked DA release during a 1 pulse (1 p) stimulation in the CPu and 

correlated with a stronger facilitation of DA release during a 5 p ‘phasic-like’ stimulation. 

Furthermore, young and aged wildtype mice had a relatively greater evoked DA release 

by a 1 p stimulation in the CPu when compared to the younger BDNF+/- mice, and upon 

a phasic-like stimulation the relative DA response was similar between young and aged 

wildtype mice. Interestingly, the aged BDNF+/- mice parallel their wildtype counterparts 

with restored 1 p release in which no difference was observed in the aged BDNF+/- mice 

phasic-like release. The tonic and phasic results in the CPu of young wildtype and 

BDNF+/- mice parallels the tonic versus phasic results between the dorsal and ventral 

striatum (139) further suggesting that endogenous BDNF levels are a strong contributor 

to the regulation of DA release in the CPu, particularly in young animals. Measurements 

of BDNF protein levels in BDNF+/- mice by others show significantly lower levels at three 

distinct time points versus their wildtype littermates (64). Although Boger et al. reported 

no difference on striatal BDNF levels due to age, there appears to be a trend toward 

decreased BDNF levels with age across the two genotypes (64). In both genotypes, the 

difference in BDNF levels in 21 month old mice are less than at 3 months of age, further 
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suggesting that BDNF dynamics are more similar between the two genotypes at 

advanced ages versus a younger age (64). Our striatal DA results are in agreement with 

the notion that there is a greater difference in striatal BDNF levels when mice are 

young. As the mice age, the difference in BDNF levels is minimized resulting in the two 

aged genotypes appearing more similar with respect to their DA dynamics. 

With these significant alterations in the aging striatal DA system of BDNF+/- mice, 

we further evaluated the effect of an acute dose of METH. Numerous studies have 

examined the effect of psychostimulants, specifically amphetamine related compounds 

in BDNF+/- mice. Administration of psychostimulants to BDNF+/- mice blunts their 

monoamine response compared to their wildtype littermates (30, 65, 140). For instance, 

Saylor and McGinty observed no difference in the TH synthesis after an acute injection 

of amphetamine in 3 month old BDNF+/- mice, suggesting an abnormality in DA release 

and not DA synthesis (140). An acute injection of amphetamine elevated mRNA 

expression of TrkB, BDNF, and TH in the CPu of wildtype mice, but no differences in 

these expression levels were observed in the BDNF+/- mice, suggesting that 

amphetamine is responsible for changes in gene expression of not only TH, but also 

BDNF and its receptor TrkB (140). Furthermore, Dluzen and colleagues proposed that 

young BDNF+/- mice are protected from the neurotoxic effects of amphetamines due to 

this reduced DA uptake and release (96). Many of these amphetamine studies have 

been done in younger mice, and to better understand psychostimulant effects on a DA 

system with a lifelong reduction of BDNF, an acute injection of METH was administered 

to the aged BDNF+/- mice. Similar to the results throughout this paper, METH-induced 

DA release via in vivo microdialysis and locomotor activity was not different between the 
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two genotypes. No alterations in DA dynamics of aged BDNF+/- mice may be a result of 

the DAT having an increase in functionality in comparison to the young BDNF+/- mice. 

When probing the functionality of the DAT with METH, the Km values were not 

significantly different between the aged genotypes, suggesting the potency of METH’s 

effects on DAT is similar across genotypes. These results contradict our predicted 

hypothesis, that METH-induced stimulation would potentiate the release of extracellular 

DA in aged BDNF+/- mice, which was based on the initial belief that BDNF+/- mice have a 

slower rate of DAT uptake or decrease in function versus aged wildtype mice. The 

alterations that were observed in DAT function suggests that the BDNF+/- mice are not 

protected from METH’s effects as proposed by Dluzen (93). Our results would suggest 

that the aged BDNF+/- mice are equally susceptible to METH-induced DA release, via 

the reversal of DAT, to being no longer different from their aged wildtype mice (93).  

One caveat in using knockout animals, even animals with only a 50% reduction 

of BDNF, is that the gene mutation has been present since conception and numerous 

neuroadaptations are possible. Thus, it is possible that other neurotrophic systems have 

taken on a more prominent role, leading to these age-dependent DA alterations 

occurring in the BDNF+/- mice. One possible candidate is neurotrophin 4 (NT-4), which 

also binds and acts on the TrkB receptor. For example, Hill et al., demonstrated that 

striatal TrkB levels in 3 month old BDNF+/- mice are not different from wildtype mice, 

while striatal NT-4 levels are increased in BDNF+/- mice compared to their wildtype 

littermates (61). These results suggest that the NT-4 system may be upregulated and 

compensating for the decrease in BDNF levels. To further validate this hypothesis, 

experiments using double knockout mice lacking both BDNF and NT-4 showed that 
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these mice had a 25% decrease in TH cells in a visceral sensory population of the 

nodose–petrosal ganglion complex compared to only BDNF+/- mice (141). If NT-4 

increases with respect to age, then future experiments need to evaluate at what age 

NT-4 begins to take on a more compensatory role in the striatum of BDNF+/- mice. 

Overall, our results on the striatal dopaminergic system in the aged BDNF+/- mice 

demonstrate that this system dynamically adjusts to lifelong reductions in BDNF. In 

particular, aged BDNF+/- mice are not more susceptible to the aging process and the 

detrimental effects associated with aging. Instead, it appears that the DA system adjusts 

accordingly as these mice age. Aged BDNF+/- mice show a decrease in extracellular DA 

levels, and potentiated DA release, and uptake compared to their younger counterparts 

(44). This normalization of the dopaminergic system in BDNF+/- mice appears to be 

persistent as the mice age, and is also apparent with respect to locomotor activity, in 

which no difference is observed between the BDNF+/- mice and their wildtype 

counterparts between 12 to 18 months of age. The results from the aged BDNF+/- mice 

highlight the dynamic role that BDNF plays throughout the life of an organism; 

specifically, with respect to the striatal DA system. However, the ability of the DA 

system to normalize with respect to age begs for a deeper understanding of the 

mechanism that causes these changes in BDNF+/- mice. Ultimately, these results will 

assist our understanding on how life-long reductions of BDNF influence striatal DA 

dynamics and may provide further insight on how lower BDNF levels increases ones 

susceptibility to the detrimental diseases of the brain that can occur during aging 

process. 
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CHAPTER 5 

Simultaneous Detection of Monoamine and Purine Molecules using 

High-Performance Liquid Chromatography with a Boron-Doped 

Diamond Electrode 

(Portions from the text in this chapter were reprinted or adapted with permission 

from Birbeck, J. A., and Mathews, T. A. (2013) Simultaneous Detection of Monoamine 

and Purine Molecules Using High-Performance Liquid Chromatography with a Boron-

Doped Diamond Electrode, Anal Chem.  Copyright (2013) American Chemical Society.) 

5.1 Introduction 

The detection of neurotransmitters in an in vivo or in vitro environment typically 

employs a separation operation such as high performance liquid chromatography 

(HPLC) or capillary electrophoresis with corresponding detection methods such as 

electrochemical (monoamines), UV absorbance (amino acids), fluorescence (amino 

acids), or mass spectrometry (peptides) (44-47). A notable bioanalytical challenge is the 

simultaneous detection of multiple neurotransmitter families together using a single 

analytical tool. Mass spectrometry has successfully been used to simultaneously detect 

monoamines, purines, and amino acids through a derivatization step with benzyl 

chloride (142). Although mass spectrometry is frequently the method of choice for 

detecting multiple analytes across various families, limitations of using this technique in 

neurochemistry include the cost and expertise needed to analyze the samples. Instead, 

most neuroscientists use HPLC with electrochemical, UV, and fluorescence detection, 

to separate, detect, and quantify neurotransmitters. Electrochemical detection has been 

used to identify monoamines and amino acids, although typically not simultaneously 
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(143, 144). Often, electrochemical detection, in conjunction with HPLC, utilizes a glassy 

carbon amperometric cell or a porous carbon coulometric cell and is limited to the 

detection of molecules which are electrochemically active, such as the monoamines 

dopamine (DA), serotonin (5-HT), and their metabolites (44, 45, 76). Amino acids such 

as glutamate, glutamine, and γ-aminobutyric acid (GABA) also are detected 

electrochemically, but are derivatized, for example, using o-phthalaldehyde (OPA) or 

naphthalene-2,3-dicarboxaldehyde (NDA) (143, 145-147). However, derivatization using 

OPA has disadvantages such as instability, chromatographic contamination, and 

incompatibility with biological matrixes such as dialysate and tissue content samples 

(145, 148, 149). 

Within the last few decades, alternative carbon-based electrode materials have 

been discovered and developed, with one of particular interest being the boron-doped 

diamond (BDD) electrode. BDD electrodes began as home-built microelectrodes (51, 

56, 150). The original laboratories pioneered the development and biochemical 

application of the BDD electrode in many areas throughout neuroscience and also in 

gastrointestinal tract and cancerous tumor (59, 150-153). In comparison with the carbon 

electrode, the BDD electrode has a higher potential working range, decreased 

background noise, electrochemical stability due to diamond surface coordination, 

insensitivity to dissolved oxygen, and less susceptibility to electrode fouling (51, 52). 

These advantages, along with the advent of a new commercially available BDD disk 

electrode for use with HPLC, make the BDD electrode an attractive detection method 

for molecules with higher oxidation potentials and those that are easily oxidizable.  
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The objective of this work was to develop a method based on the commercially 

available BDD electrode for the simultaneous detection of adenosine (Ado) and DA. 

Little is known about the in vivo function of Ado, but there is considerable data linking 

DA and Ado through their respective receptors, the DA D2 receptors and the Ado A2A 

receptors (2, 154, 155). Furthermore, DA and Ado were chosen because of their 

intertwining relationship in the brain and in diseases and disorders like Parkinson’s 

disease and schizophrenia (2, 11, 156, 157). Multiple detection methods are available 

for the analyzing DA and Ado such as HPLC coupled with electrochemical and UV 

detection, capillary LC with electrochemical detection, mass spectrometry, or fast scan 

cyclic voltammetry (9, 45, 54, 55, 158). However, drawbacks of some of these methods 

are long analysis time from a two-component system, poor detection limits, and the 

ability to measure only one or two of the analytes at a time (45, 54). To date, the 

detection of Ado using carbon-based electrode cells (glassy or porous) with HPLC has 

not been achieved. This limitation relates to the fact that oxidation of Ado at a bulk 

electrode is not feasible because of the high potential required to oxidize Ado 

(approximately +1500 mV); potentials greater than +1000 mV cause surface oxidation, 

instability, and high background noise with carbon-based electrodes (49). The 

developed HPLC-BDD method described in this article shows the separation and 

detection of nine molecules including DA and Ado and other members of the 

monoamines and purine families in 28 min. The advent of developing a method that 

determines multiple classes of neurotransmitters in a single run is valuable because 

smaller sample size can be utilized, analysis costs will be lower, and fewer animals will 

be sacrificed.  
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5.2 Materials and Methods 

5.2.1 Chemicals 

Chemicals used for mobile phase, buffers, and standards were of HPLC grade or 

higher purity and were purchased from Sigma-Aldrich (St. Louis, MO), Fisher Scientific 

(Pittsburgh, PA), and EMD (Gibbstown, NJ). For DA, standards were made up in 1 mM 

stock solutions by adding 0.1 M HClO4, 10% methanol, and 10 μg/mL ascorbic acid, and 

stored at -80 °C until analysis. 3,4-Dihydroxyphenylacetic acid (DOPAC), homovanillic 

acid (HVA), 3-methoxytyramine (3-MT), norepinephrine (NE), 5-HT, and 5-

hydroxyindoleacetic acid (5-HIAA) were made up in 0.1 M HClO4 and stored in at -4 °C 

until analysis. Ado and adenosine monophosphate (AMP) were made up in 0.1 M 

HClO4 and at -80 °C stored until further use. 

5.2.2 Analytical parameters 

Isocratic monoamine and purine separation were completed using a Shimadzu 

LC-20A HPLC instrument coupled to a Thermo Scientific ESA Coulochem III detector. 

The electrochemical cell used for detection was a Thermo Scientific ESA model 5041 

analytical cell with a BDD disk electrode (Figure 5.1A). The column used was a Thermo 

Scientific Acclaim Trinity P1 column (100 x 3 mm, 3 μm particle size). Mobile phase was 

composed of 45 mM (NH4)3PO4, 1.1 mM Na4P2O7, 4% acetonitrile, and was adjusted to 

pH 3.00 using phosphoric acid (85 wt %). The mobile phase was subsequently purged 

with argon and then sonicated. The flow rate was set at 0.65 mL/min. The potential for 

simultaneous detection of DA and Ado was determined by a hydrodynamic 

voltammogram, and the optimal potential to detect both analytes was +840 mV versus a 

palladium reference electrode. The approximate analysis time for both DA and Ado was 
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less than 10 min. For a more comprehensive analysis of monoamines such as DOPAC, 

HVA, 3-MT, NE, 5-HT, and 5-HIAA, and the purine AMP, the total analysis time was 28 

min. Analyte peak areas for monoamine and purine molecules were determined against 

known standards and integrated using LC Solutions Shimadzu Software. 

For isocratic carbon-based electrochemical cell analysis, a Thermo Scientific 

ESA coulometric cell model 5014B microdialysis cell with potentials for the working 

electrodes 1 and 2 (E1 and E2) set at -150 and +220 mV, respectively, versus a 

palladium reference electrode. The mobile phase used for separation of monoamines at 

the carbon electrode consisted of (in mM concentrations) 75 NaH2PO4 monohydrate, 

1.4–1.8 1-octanesulfonic acid, 0.125 ethylenediaminetetraacetic acid (EDTA), 10% 

acetonitrile, 0.002% triethylamine; adjusted to pH 3.00 with phosphoric acid (85 wt %). 

The mobile phase was then purged with argon before being placed onto the system, 

and the flow rate was set to 0.35 mL/min. The column used for analysis was a 

Phenominex Luna 2.5 μm C18 (2)-HST (100 x 3 mm, 2.5 μm particle size). The analyte 

peak areas for monoamines were analyzed against known standards and integrated 

using LC Solution Shimadzu Software. 

5.2.3 Tissue content 

The animals used in the tissue-content experiments were female C57BL6/J mice 

that were bred in-house. Breeder mice were obtained from Jackson Laboratories (Bar 

Harbor, ME). Mice were sacrificed by cervical dislocation, and their brains were rapidly 

removed. The brain regions of the frontal cortex and striatum were dissected out, rapidly 

frozen in liquid nitrogen, and stored at -80 °C until analysis. On the day of analysis, 

tissue was removed from the freezer and allowed to thaw on ice for approximately 30 
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min. A volume of 250 µL of 0.1 M HClO4 was added to each vial of tissue and the tissue 

was homogenized. Vials were centrifuged for 10 min at a rate of 12000 rpm at 4 °C. A 

20 µL volume of supernatant was injected onto the HPLC instrument. Tissue 

concentrations of monoamines and purines were determined using a linear regression 

analysis from peak areas that were integrated and quantified against a set of standards 

using LC Solutions Shimadzu Software. Monoamine and purine tissue levels are 

represented as nanograms monoamine or purine per milligram of protein. Protein 

values were measured using Pierce bicinchoninic acid (BCA) protein assay kit. All 

experiments and procedures were in accordance with the National Institute of Health 

Animal guidelines, were approved by Wayne State University Institutional Animal Care 

and Use Committee, and were designed to minimize discomfort in the animals. 

5.3 Results and Discussion 

5.3.1 Electrode Characterization  

 Figure 5.1B shows a scanning electron microscopy (SEM) image of the relatively 

uniform surface of a BDD disk electrode (length along the straight edge: 1.20 cm, radius 

of arch = 1.50 cm) used for experimentation herein, which was manufactured and is 

disturbed by Thermo Scientific ESA (50). The design of the Thermo Scientific ESA 5041 

analytical cell is versatile in that it accommodates the BDD electrode as well as other 

various electrode materials such as glassy carbon, platinum, silver, and gold. 

Furthermore, no pretreatment of the BDD electrode is required after it has been placed 

into the 5041 Analytical Cell.  
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Figure 5.1 A) Schematic amperometric cell design for the commercially available boron-
doped diamond electrode manufactured by Thermo Scientific ESA Inc.™ B) SEM image 
of the bare electrode surface taken at 15,000 x 2.0 V. 

5.3.2 Mobile Phase Parameters 

 Initial experiments focused on determining the proper mobile-phase configuration 

for the simultaneous detection of DA and Ado using the BDD electrode. Numerous 

mobile phases were examined with the BDD electrode, including the sodium phosphate 

mobile phase that is described for use with the porous carbon electrode in Materials and 

Methods and a sodium acetate mobile phase. However, there were limitations with 

these mobile phases, including that the sodium phosphate mobile phase was able to 

detect only DA and not Ado and generated too many unknown peaks and the presence 

of EDTA in the mobile phase at potentials greater than +500 mV lead to an increase in 

the background noise. Even though the sodium acetate mobile phase was able to 

detect both DA and Ado, after three days of analysis, the mobile phase was completely 

unusable because of increasing background noise due to the oxidation of the acetate. 

Methanol was also evaluated in place of acetonitrile, but it also increased the 

background noise in a manner similar to that of EDTA with the BDD electrode. 

Therefore, acetonitrile was used. The final mobile phase that was developed consisted 

of ammonium phosphate, sodium pyrophosphate, and acetonitrile, and lead to reliable 
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separation and detection of DA and Ado. After further refinement of the current mobile 

phase, NE, DOPAC, HVA, 3-MT, 5-HT, 5-HIAA, and AMP were clearly separated. 

5.3.3 Hydrodynamic Voltammogram 

A hydrodynamic voltammogram was constructed for DA and Ado to determine 

the optimal working potential sufficient for the simultaneous detection of both of these 

molecules using the BDD electrode. The initial potential for the hydrodynamic 

voltammogram was set to 0 mV, and the potential was subsequently increased by +20 

and +100 mV until a final potential of +1200 mV was obtained. The responses of DA  

and Ado were measured in triplicates using a 300 nM standard, and the averages are 

plotted as the percentages of the normalized response in Figure 5.2. The optimum 

oxidation potential for detecting DA and Ado at the BDD electrode were found to be 

+740 mV and +1200 mV, respectively. The DA oxidation potential reported here is 

slightly negative compared to previous reports using BDD electrode (150, 159). This 

shift in DA oxidation is due to the fact that the reference electrode is palladium and not 

the standard Ag/AgCl reference electrode, where the palladium electrode detection is 

~300 mV lower than the Ag/AgCl reference electrode. When this potential difference is 

taken into account, the equivalent applied potential at a BDD electrode using a Ag/AgCl 

reference electrode would be approximately +1040 mV, which is in agreement with 

literature for DA detection (150, 159). The large oxidation potential difference observed 

between DA and Ado at the BDD electrode is similar to results obtained using a carbon-

fiber microelectrode with a Ag/AgCl reference, where the peak oxidation separation was 

~900 mV (55). For the BDD electrode method, a working potential of +840 mV was 

chosen because it provided optimal detection for both DA and Ado (Figure 5.2, dashed 
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line). Although +840 mV is not strictly the average of the two potentials, this oxidation 

potential was specifically chosen because it is more sensitive for DA than for Ado. This 

criterion was set because extra- and intracellular DA levels in the brain are reported to 

be between 6- and 100-fold lower in concentration compared to Ado (44, 142, 144, 160, 

161). Therefore, it is imperative that the sensitivity for DA be greater than that for Ado.  

 
Figure 5.2 Hydrodynamic voltammogram to determine the optimal potential for the 
oxidation of adenosine (○) and dopamine (■). Dashed line from the x-axis represents 
the optimal potential selected for measuring adenosine and dopamine.  
 
5.3.4 Linearity  

To determine whether these analytes respond in a concentration-dependent 

manner, linear calibration curves were created for both DA and Ado at different gains. 

DA and Ado stock standards were diluted in water, injected onto the HPLC instrument, 

and plotted as the area under the curve versus concentration. After the plots had been 

constructed, linear regression analysis was used to determine the slope of the line 

(sensitivity: Table 5.1), y-axis intercept, and correlation values (R2) for each analyte. At 

a potential of +840 mV and gain of 5 nA (representing the lowest detection window), the 

linear concentration ranges for DA and Ado were 1–100 nM and 1–400 nM, respectively 
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(Figure 5.3). Both analytes had linear correlation values of at least 0.998. The sensitivity 

for DA was 8.4 x 104, which was approximately twice the sensitivity of Ado (2.9 x 104) 

(Table 5.1). We hypothesize that the difference in sensitivity is a result of the oxidation 

potential chosen of +840 mV for this method, for which the hydrodynamic 

voltammogram (Figure 5.2) shows a 100% response of DA oxidation, whereas only 

~20% of Ado is oxidized at this potential. Again, the method was intentionally biased to 

favor DA oxidation, because extracellular striatal DA levels (extracellular: 5–10 nM) are 

significantly lower compared to Ado levels (extracellular: 40–210 nM) (14, 133, 134). 

The total linear range detected for DA and Ado were 0.001–5 μM and 0.001–200 μM, 

respectively (data not shown). The lowest detectable concentration observed for both 

DA and Ado was at 1 nM, with a reporting limit of 0.5 nM. These lower limits are well 

within the range of concentration monoamines and purines in biological systems. 

 
Figure 5.3 Linear calibration curve for the oxidation of adenosine (○) and dopamine (■) 
at a potential of +840 mV. Linear range for dopamine was 1–100 nM, and for 
adenosine, 1–400 nM. 
 

Comparisons between porous carbon and the BDD electrode can only be made 

with respect to DA, as Ado is not detectable at the carbon surface. At a potential of 
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+220 mV and gain of 2 nA, the linear concentration range for DA was from 0.5 to 15 nM. 

DA calibration curves at the porous carbon routinely had linear correlation values of at 

least 0.998. The average sensitivity for DA was 7.0 x 105, which was approximately 10 

times higher than the sensitivity of DA at the BDD electrode. However, it must be noted 

that our method for DA detection at the porous carbon electrode was optimized for 

routine microdialysis measurements, which includes a 2.5-μm particle-size column 

versus 3-μm particle-size column used with the BDD electrode. The lowest detectable 

concentration for DA at the porous carbon electrode is 0.5 nM (data not shown). Thus, 

the lowest detectable concentrations for DA were approximately the same for these two 

electrode surfaces. Taken together, these results indicate that the BDD electrode can 

compete very favorably to the porous carbon electrode with respect to DA, but the 

advantage of the BDD electrode is its ability to detect purine molecules such as Ado. 

We anticipate that, with future experimental refinements such as using a column with 

smaller particles, the BDD electrode will be able to achieve the sensitivity and lowest 

detectable concentration of DA that is seen with the porous carbon electrode as well as 

improve upon these parameters with Ado.   

5.3.5 Limit of Detection and Quantification 

The limits of detection and quantification were determined using averages of 10 

nM standards of DA and Ado fit to the calibration curve from Figure 5.3. Using 

equations 

Limit of Detection =  
ଷ.ଷఙ

௠
                    (5.1) 

Limit of Quantification = 
ଵ଴ఙ

௠
              (5.2) 
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where σ is the standard deviation and m is the mean (Table 5.1), the limit of detection 

and quantification were determined for both DA and Ado. The limit of detection for DA 

and Ado, calculated using eq 5.1, were determined to be 0.021 nM, and 1.2 nM, 

respectively. The limits of quantification (eq 5.2) were determined to be 0.063 nM and 

3.7 nM for DA and Ado, respectively.  

5.3.6 Precision and Accuracy 

 To determine the accuracy and precision of the method, standard concentrations 

of DA and Ado were assessed using the average relative percentage deviation (DEV, 

%) and the relative standard deviation (RSD, %), which were calculated as  

DEV (%) = 
௠

௡௢௠௜௡௔௟	௖௢௡௖௘௡௧௥௔௧௜௢௡
        (5.3) 

RSD (%) = 
ఙ

௠
                                        (5.4) 

where m is the average calculated concentration and σ is the standard deviation.  

 The accuracy of the method was determined by measuring 10 nM standard of 

DA and Ado in replicates and calculating their means and standard deviations. The 

calculated accuracy of the method for DA and Ado (eq 3) demonstrated that the 

standard values were within acceptable range for both analytes: 99% and 101%, 

respectively. Furthermore, the precision of the method was quantitated (eq 4) with both 

analytes being less than 10%, specifically, with DA at 7% and Ado at 3% (Table 5.1). 

Table 5.1 Figures of merit for the simultaneous detection of dopamine and adenosine 
using HPLC with BDD electrode. 
 Dopamine Adenosine 
Limit of Detection (nM) 0.021 1.2 
Limit of Quantification (nM) 0.063 3.7 
RSD (%) 7 3 
DEV (%) 99 101 
Sensitivity 8.4 x 104 2.9 x 104 
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5.3.7 Analysis of monoamine and purine neurotransmitters 

Once the electrochemical parameters for DA and Ado were validated, the 

detection of other monoamines and purines was assessed. All monoamine and purine 

standards were analyzed at +840 mV, gain of 20 nA, and standard concentrations of 

300 nM were evaluated except for 5-HIAA, which was measured at 100 nM (Figure 

5.4A). AMP cannot be observed in this representative chromatogram (Figure 5.4A) 

because concentrations >300 nM are required for its detection at +840 mV. This HPLC 

electrochemical method provides ample separation between analytes from both the 

monoamine and purine families with an analysis run time of ~28 min (Figure 5.4A), 

whereas a run time of less than 8.5 min was needed for DA and Ado. Taken together, 

our results demonstrate the feasibility of using the BDD electrode not only to detect 

easily oxidized species such as monoamines but also purine molecules, to provide a 

more comprehensive analysis of neurotransmitters and even neurotransmission. 

The validity of the method was determined using brain tissue samples from the 

striatum and frontal cortex of female C57BL6/J mice, as both regions are known to 

contain DA and Ado. Tissue-content analysis of monoamine and purine molecules was 

performed using the same mobile phase as the standard chromatogram with the BDD 

electrode. Eight molecules (six monoamines and two purines) were detected 

simultaneously in approximately 28 min (Figure 5.4B). The DA metabolite HVA was 

separated clearly in the standard chromatogram, but was not visibly defined in the 

tissue-content sample chromatogram because of an overlap by an unknown peak. 

Therefore, HVA levels could not be accurately determined (Figure 5.4B).  
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Figure 5.4 A) Representative 300 nM standard chromatogram of adenosine (Ado), 3,4-
dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), dopamine (DA), 3-
methoxytyrosine (3-MT), serotonin (5-HT), and 100 nM 5-hydroxyindoleacetic acid (5-
HIAA) at an applied potential of +840 mV. B) Representative striatal tissue content 
chromatogram with the appropriate neurotransmitters labeled. 

 
To fully assess this method’s ability to accurately and quantitatively measure 

monoamines and purines in biological samples, a side-by-side comparison was made 

with the standard method used to detect monoamines using a porous carbon 

electrochemical cell (model 5014B, Thermo Scientific ESA). Although the this cell is not 

the same cross-flow cell design as used for the BDD electrode, comparison between 

these two different cell types were made since the majority of tissue-content analysis in 

the literature uses a porous carbon electrode (45, 162, 163). Tissue-content samples 
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from the frontal cortex and striatum of mice were both run on two separate HPLC’s, one 

with a porous carbon electrode and the other with the BDD electrode. The porous 

carbon electrode detected all seven monoamine molecules, but was unable to detect 

the purine molecules Ado and AMP, whereas the BDD electrode was able to detect all 

six monoamines and two purines (Table 5.2). Furthermore, the BDD method accurately 

detected six monoamines in the striatum and frontal cortex. Within the striatum, only 5-

HIAA levels were significantly different compared to those from the carbon electrode 

(Student’s t-test, 5-HIAA detected at BDD at 35 ± 8 ng/mg protein and by carbon at 94 ± 

20 ng/mg protein, P < 0.05). In the frontal cortex, 3-MT levels were significantly different 

between the two electrode surfaces, where the BDD electrode measured a higher 

concentration compared to the porous carbon electrode (Student’s t-test, 3-MT detected 

by BDD at 16 ± 1 ng/mg protein and by carbon at 5.3 ± 0.3 ng/mg protein, P < 0.001). 

One possible reason for these discrepancies in concentrations lies in the fact that the 

BDD method was optimized for the simultaneous detection of DA and Ado and not for 

the other monoamine or purine molecules, each of which has its own optimal oxidation 

potential. To improve on the discrepancy in concentrations, the mobile-phase 

configuration and working potential chosen for the BDD electrode should both be taken 

into consideration. Although the primary focus was on separation and detection of DA 

and Ado, we were still able to accurately quantify the monoamine and purine molecules 

using the BDD electrode with good correlation with the porous carbon.  
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Table 5.2 Comparison of BDD electrode and carbon electrode for the detection of 
monoamine and purine molecules. 

Monoamines 
and  Purines 

Striatum 
BDD 

Striatum 
Carbon 

Frontal Cortex 
BDD 

Frontal 
Cortex 
Carbon 

DA (ng/mg) 1190 ± 100 1310 ± 120 38 ± 10 22 ± 4  

Ado (ng/mg) 1.40 x105 ± 1.7 x104  ND 1.28 x 105 ± 5.8 x 104  ND 

DOPAC (ng/mg) 210 ± 20 230 ± 50 35 ± 10 22 ± 5  

3-MT (ng/mg) 63 ± 5 82 ± 10 16 ± 1 5.3 ± 0.3*** 

5-HIAA (ng/mg) 35 ± 8* 94 ± 20 31 ± 4  70 ± 20 

5-HT (ng/mg) 160 ± 40 110 ± 20 60 ± 8 82 ± 20 

NE (ng/mg) 130 ± 20 91 ± 20 115 ± 30 100 ± 8  

AMP (ng/mg) 1.19 x 106 ± 2.3 x 105 ND 1.57 x 106 ± 2.9 x 105 ND 

Monoamine and purine tissue content levels measured as ng/mg protein. 
ND = not detected. P values: *P < 0.05, ***P < 0.001, n values are 3–8 per set. 

 
To further expand on our results with tissue-content, other studies were 

examined with respect to tissue-content concentration. One caveat when comparing 

tissue contents is the wide range of concentrations reported in the literature (Table 5.3), 

emphasizing that tissue content measures relative differences and not absolute 

neurotransmitter concentrations. There are numerous reasons for these discrepancies 

in tissue-content neurotransmitter levels such as dissection techniques (free hand 

versus punch), use of anesthesia prior to sacrifice, and time required to dissect the 

tissue, as well as conditions used to store the tissue, buffer solutions used, and the type 

of analysis for the tissue itself (164). In this study, tissue was normalized by using the 

BCA protein method, while others have used wet weight, or a different protein assay 

such as Lowry (45, 69, 86, 96, 160, 162, 165-169). Thus, despite these methodological 
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differences for normalizing tissue, our tissue content neurotransmitter levels are well 

within this wide range of values reported in the literature (Table 5.3).  

Although our reported neurotransmitter levels are well within the documented 

range, they do tend to be on the higher side. We believe this is a result of using female 

C57BL6/J mice, because this was a proof-of-concept study and female mice were used 

instead of male mice. Interestingly, the majority of tissue-content experiments 

performed often examined only male mice or rats for their neurotransmitter levels. 

Although few studies have examined female intracellular neurotransmitter levels, one 

study showed that female mice have approximately twice as much striatal intracellular 

DA as males with respect to tissue content (168). When the sex of the animal is taken 

into consideration as well as differences in methodological conditions, these differences 

could account for why our intracellular neurotransmitter values are on the higher end 

compared to other values from the literature. With all these parameters considered, our 

HPLC-BDD electrode method can measure monoamine and purine neurotransmitters 

quickly and accurately.  

 

 

 

 

 

 

 

 



99 
 

   

Table 5.3 Comparison of tissue content from the literature. 

Brain 
Region 

Sex, Strain, 
Species 

DA Ado Method of 
Quantification 

Method of 
Detection 

Cerebral 
cortex 
(158) 

Male Wistar 
rats 

N/A 265.6 ± 2.0 
pmol/mg 

wet tissue 

Wet tissue 
weight 

HPLC-UV 
photodiode-

array 

Frontal 
Cortex 
(163) 

Albino mice N/A 3075 ± 251  
mmol/kg 
protein 

Lowry protein HPLC-UV 

Frontal 
Cortex 
(164) 

Male 
C57BL/6J 

mice 

~ 0.7 μg/g 
wet tissue 

N/A Wet tissue 
weight 

HPLC-
electrochemical 

Prefrontal 
Cortex 
(165) 

Male 
C57Bl/6N 

mice 

~ 4 nM N/A No correction 
for tissue 
dissected 

HPLC-
electrochemical 

Striatum 
(158) 

Male Wistar 
rats 

N/A 618.93 ± 2.0 
pmol/mg 

wet tissue 

Wet tissue 
weight 

HPLC-UV 
photodiode-

array 

Striatum 
(47) 

Male Wistar 
rats 

8.09 ± 2.1 
μg/g wet 

tissue 

171.28 ± 
57.78 

μg/g ww 

Wet tissue 
weight 

HPLC-UV and 
electrochemical 

Striatum 
(88) 

Male 
C57BL/6J 

mice 

11,286.92 ± 
478.42 pg/mg 

ww 

N/A Wet weight HPLC-
electrochemical 

Striatum 
(164) 

Male 
C57BL/6J 

mice 

~ 14 μg/g 
wet tissue 

N/A Wet tissue 
weight 

HPLC-
electrochemical 

Striatum 
(160) 

129 x 
C57B/6 

~ 550 ng/mg 
protein 

N/A BCA protein HPLC-
electrochemical 

Striatum 
(166) 

LRRK2 
mice 

246 ± 9 
ng/mg protein

N/A BCA protein HPLC 

Corpus 
Striatum 

(96) 

Balb/c 129 
strain 

20437 ± 1395 
pg/mg wet 

tissue 

N/A Wet tissue 
weight 

HPLC-
electrochemical 

Corpus 
Striatum 

(93) 

Male CD-1 
mice 

~ 6000 pg/mg 
wet tissue 

N/A Wet tissue 
weight 

HPLC-
electrochemical 

Corpus 
Striatum 

(93) 

Female CD-
1 mice 

~ 15000 
pg/mg wet 

tissue 

N/A Wet tissue 
weight 

HPLC-
electrochemical 
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5.4 Conclusion 

 The advent of a commercially available BDD electrode has opened doors for 

researchers to detect biological molecules with oxidation potentials greater than +1000 

mV. In this work, we reported the first BDD electrode method to simultaneously detect 

DA and Ado using HPLC with electrochemical detection. This BDD electrode method 

measures DA and Ado in a single chromatogram in less than 8.5 min with excellent 

accuracy and precision. Furthermore, the BDD method developed here can easily 

separate and detect six other monoamines and two purine molecules with a run time of 

~28 min. When this BDD method was compared to a similar method using a porous 

carbon electrode, there was no difference between the quantified concentrations of 

monoamine molecules from tissue-content samples. An advantage of the BDD working 

electrode is that it can detect both Ado and AMP, which is not possible using the porous 

carbon working electrode. This BDD method is effective for in vitro studies, and further 

work is being done to develop it into a more sensitive method for in vivo microdialysis 

samples. Taken together, our results demonstrate that the BDD electrode method is 

easy to implement, detects analytes from the monoamine and purine family in a single 

chromatogram, and accurately represents the tissue-content levels when compared to 

the more traditional carbon electrode.   
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CHAPTER 6 

Conclusions and Future Directions 

 Brain-derived neurotrophic factor (BDNF) is an important neurotrophin in the 

brain, and many studies have alluded to its importance for maintaining the structural 

function and survival of dopamine (DA) neurons in the striatum (26, 28-30). Additionally, 

irregularities within the DA system as well as BDNF expression have been identified in 

neurological diseases and disorders such as Parkinson’s disease, Huntington’s disease, 

schizophrenia, attention deficit hyperactivity disorder (ADHD), addiction, and depression 

(1, 2, 27, 35, 110, 170-172). Furthermore, studies have indicated that there is an 

increased risk for males developing neurological disorders such as Parkinson’s disease 

as well as an earlier onset of the disease in comparison to woman (35, 173). To better 

understand how lifelong low endogenous BDNF effects striatal DA dynamics, two of the 

studies throughout this dissertation examined BDNF modulation of the striatal DA 

system in both young (~3 months of age) female BDNF+/- mice and aged (~18 months 

of age) BDNF+/- mice, Chapter 3 and Chapter 4, respectively. The overarching findings 

from this dissertation demonstrate that a lifelong reduction in BDNF causes sex- and 

age-dependent alterations in striatal DA dynamics in the striatum.  

 Therapeutic treatment for many of neurological diseases/disorders typically 

focuses on the altered neurotransmitter system implicated in a given disease. For 

example, Parkinson’s disease corresponds to a dysregulation of nigrostriatal DA, and 

most treatment options focus on treating deficiencies in nigrostriatal DA for symptomatic 

relief. L-3,4-Dihydroxyphenylalanine (L-DOPA), which is a precursor to DA synthesis, 

enzymatic inhibitors that prevent the breakdown of DA such monoamine oxidase (MAO) 
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inhibitors, and catechol-o-methyltransferase (COMT) inhibitors are used to treat motor 

dysfunction associated with Parkinson’s disease (19). Although these treatments 

decrease the adverse motor effects associated with Parkinson’s disease, they are also 

associated with numerous side effects such as dyskinesia, hallucinations, and 

eventually stop working completely. Thus, there is interest in finding new treatments 

options. The adenosine (Ado) receptor A2A has received considerable attention because 

A2A antagonists alleviate motor symptoms of Parkinson’s disease without causing the 

side effects of the current treatment (20). Ado A2A receptors are highly expressed in DA 

rich brain regions and have also been shown to co-localize with the DA D2 receptors 

(174, 175). However, the in vivo function of Ado is not fully understood, which is in part 

because there are few robust and sensitive analytical techniques to determine 

extracellular Ado concentrations in the brain. Therefore, the third study in this 

dissertation (Chapter 5) was to develop a method for the simultaneous detection of DA 

and Ado. To date, this is the first method developed which utilizes high-performance 

liquid chromatography (HPLC) with electrochemistry (a boron-doped diamond (BDD) 

electrode) to detect DA and Ado, along with key members from their respective 

neurotransmitter families. 

6.1 Characterization of striatal dopamine dynamics in female BDNF+/- mice 

 Previous work conducted in the Mathews’ laboratory characterized the striatal DA 

system in male BDNF+/- mice and their wildtype counterparts at 3–5 months of age, and 

determined that the BDNF+/- mice were hyperdopaminergic in nature due to decreases 

in their DA release and uptake (44). Our objective in this study was to determine if 

female BDNF+/- mice are hyperdopaminergic as well or if BDNF modulates the DA 
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system differently with respect to the female BDNF+/- mice. The goal was to determine if 

the female BDNF+/- mice are hyperdopaminergic, and if so, what is the mechanism that 

causes the hyperdopaminergia state, and is it the same as the male BDNF+/- mice? 

Female BDNF+/- mice exhibited increased striatal extracellular DA levels in 

comparison to their wildtype counterparts as measured by in vivo microdialysis 

experiment of zero-net flux. This increase in extracellular DA levels was associated with 

an increase in DA release as confirmed by three different experiments: electrically 

stimulated DA release by fast scan cyclic voltammetry (FSCV), vesicular mediated 

release by high potassium (K+) infusion with microdialysis, and pharmacological 

mediated DA release with an injection of methamphetamine (METH). This 

hyperdopaminergic state in the female BDNF+/- mice was not mediated by DA 

metabolism, since no differences were observed between the genotypes, or via DA 

uptake as measured by FSCV. We propose that the mechanism that causes the female 

BDNF+/- mice to be hyperdopaminergic results from an overall potentiation in DA 

release. Interestingly, young male BDNF+/- mice of the same age are 

hyperdopaminergic but it is believed to be a result of a compensatory mechanism, as 

young male BDNF+/- mice have both decreased DA uptake and release compared to 

their wildtype controls (44). In male BDNF+/- mice, the DA striatal alterations have been 

suggested as a result of a functional change in DAT, which decreases the rate of DA 

uptake, leading to the elevation in extracellular DA levels.  

Women are more likely to be afflicted by depression, stress, and anxiety 

compared to men (36), and BDNF appears to be a central molecule in all of these 

disorders. Therefore, the research conducted here was done to understand if female 
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BDNF+/- mice exhibit different striatal DA dynamics compared to their male counterparts 

that may make them more susceptible to depression, stress, and anxiety. Although mice 

were not controlled for their estrous cycle, it does appear there is a significant difference 

between male and female BDNF+/- mice regulating striatal DA, in particular DA release. 

To better understand these complex interactions that may be a result of the differences 

between the male and female BDNF+/- mice, estrogen application should be 

investigated with respect to BDNF and DA. Previous work in our lab has examined the 

effect of BDNF infusions on brain slices, where exogenous application of BDNF 

increases stimulated DA release in the male BDNF+/- mice (44). Similarly future 

experiments could evaluate independently the effect of estrogen and BDNF, alone and 

in combination, which will provide valuable insight to how these neuromodulators 

regulate striatal DA, specifically the mechanisms behind the increase in release in 

females. Numerous studies have shown that both BDNF and estrogen modulate DA 

release (44, 168, 176). However, it is imperative to understand their interactions in the 

female BDNF+/- mice. 

6.2 Characterization of a lifelong reduction of brain-derived neurotrophic factor 

effects on the dopaminergic system in aged BDNF+/- mice 

Parkinson’s disease is a debilitating disease, which manifest as a loss in motor 

coordination corresponding to a loss of ~80% substantia nigra dopaminergic neurons. 

Postmortem studies of Parkinson’s disease patient’s brains not only have decreases in 

DA levels, but also in BDNF protein levels in the substantia nigra (SN) (5, 27). The goal 

of this study was to determine if a lifelong reduction in BDNF levels negatively impacts 

the striatal DA system. A previous study done in our lab using young (~3 month old) 



105 
 

   

male BDNF+/- mice determined that they were hyperdopaminergic in nature (44). We 

hypothesized that this hyperdopaminergia could be harmful as the animal progresses in 

age because elevated extracellular DA levels in the striatum could lead to increases in 

reactive oxygen species (ROS), leading to dopaminergic toxicity over the lifespan. A 

combination of increased extracellular and intracellular DA levels produces ROS which 

are hypothesized to induce irreversible damage to DA neurons (66, 125).  

The results from our study indicate that aged (18 month old) BDNF+/- mice striatal 

dopaminergic system appears to adjust to a lifelong reduction in BDNF. The 

hyperdopaminergia that was observed in young BDNF+/- mice (Chapter 3 and (44)) is no 

longer evident in the aged BDNF+/- mice. Extracellular DA levels in these aged 

heterozygous mice are normalized to that of the wildtype mice, which is opposite of 

what we hypothesized. In vivo microdialysis evaluation of basal extracellular DA levels 

was determined to be not different among the aged BDNF+/- and wildtype mice. When 

observing the basal DA levels between the young and aged BDNF+/- mice, aged 

BDNF+/- mice basal DA levels have decreased to the levels shown in the young and 

aged wildtype counterparts. Upon further analysis, this “normalization” of basal DA 

levels in the aged BDNF+/- mice could be result of either (1) increased DA metabolism, 

and/or (2) increased release and uptake of DA when compared to young BDNF+/- mice 

(44). The results from this thesis showed that aged BDNF+/- mice have significantly 

increased DA metabolism, which was demonstrated by an increase in basal levels of 

3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in comparison to 

their aged wildtype mice. Stimulated DA release and uptake of DA were not different 

between the aged genotypes, while these parameters were different in the young 
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BDNF+/- mice. Young BDNF+/- mice had reduced DA release and DA uptake function 

(44). Pharmacological stimulation of DA release using METH in the aged mice also 

indicated that release was not different between genotypes. Although this study proved 

our original hypothesis wrong that increases in extracellular DA in the young BDNF+/- 

mice would be detrimental overtime (44). In fact, it appears that the DA system in the 

BDNF+/- mice compensated for the increase in extracellular DA levels overtime, by 

regulating striatal release and uptake as well as increasing DA metabolism.  

In the future, more research should focus on fully understanding why the DA 

system in the aged BDNF+/- mice eventually normalizes itself. BDNF protein levels in 

aged BDNF+/- mice do not change over the lifespan of the animal (64). Therefore one 

may speculate that other neurotrophic factors may be responsible and possibly 

compensate for a system partially devoid of BDNF. A prime neurotrophic factor 

candidate that may be responsible for possible compensatory actions may be 

neurotrophin 4 (NT-4). To determine if this NT-4 hypothesis is correct further evaluation 

of NT-4 levels and activity need to be determined in the aged BDNF+/- mice. Although 

there are numerous neurotrophic factors that could be altered in BDNF+/- mice, NT-4 

was chosen because it belongs to the same family of neurotrophic factors as BDNF and 

it binds to the same receptor as BDNF, tyrosine kinase B (TrkB). In young BDNF+/- 

mice, striatal NT-4 protein tissue levels are elevated in comparison to their wildtype 

littermates, but striatal TrkB levels are unchanged (61), which suggests NT-4 levels are 

altered and may be compensating for a 50% reduction of BDNF. 

One of the most pressing issues to better understand is to determine the 

mechanism behind the increase in DA metabolism of the aged BDNF+/- mice. Young 
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BDNF+/- mice do not show an increase in metabolism, so over time DA metabolism 

increases in BDNF+/- mice. Two enzymes that are responsible for the metabolism of DA 

are MAO and COMT. From the microdialysis results that we garnered, it appears that 

MAO activity or function is enhanced in the aged BDNF+/- mice since DOPAC levels are 

increased, and therefore, future work should evaluate their function and expression 

6.3 Simultaneous detection of dopamine and adenosine using HPLC with 

electrochemical detection using a boron-doped diamond electrode  

 The objective of this work was to develop a method which could detect DA and 

Ado simultaneously using HPLC with a BDD electrode. Typically, monoamine molecules 

are detected using electrochemical detection because they are easily oxidized. Purine 

molecules such as Ado are also electrochemically active, but oxidize at potentials 

greater than +1000 mV at a carbon surface with respect to a Ag/AgCl reference 

electrode. However, potentials greater than +1000 mV are often not possible with 

carbon electrodes because of the structural damage to the carbon surface (49). To 

circumvent this problem, a newly commercially available BDD electrode has been 

developed to be used with HPLC instrumentation. The BDD electrode is advantageous 

because it has a large potential working range (up to +2000 mV), lower background 

noise, and is less susceptible to electrode fouling (51, 73). In this project, the BDD 

electrode was utilized in conjunction with an HPLC instrument to develop a method for 

the simultaneous detection of DA and Ado. This BDD method was able to accurately 

separate and detect six monoamine and two purine molecules in about 28 min with 

good separation. When a proof-of-concept study evaluated and compared the 

neurotransmitter levels from tissue-content samples from the striatum and frontal cortex 
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of mice with a porous carbon electrode or BDD electrode coupled to an HPLC 

instrument, the BDD electrode method detected and quantify monoamine levels that 

corresponded to the levels detected with the carbon electrode. However, the advantage 

of the BDD electrode was its ability to also detect Ado and adenosine monophosphate 

(AMP), which were not detected at the carbon electrode.  

 The in vivo function of Ado is not well understood, and that is mainly because of 

a lack of reliable methods to routinely detect low levels of Ado. Current methods show 

extracellular levels of Ado to be between 40–240 nM in the striatum, a range that is far 

too large (14, 68, 160, 161). Furthermore, there is increasing evidence of DA and Ado 

interacting in the striatum. To truly understand these interactions with respect to DA and 

Ado levels, future work with will take this method and refine and apply it to detect 

extracellular DA and Ado levels, which are about a 100-fold less than tissue content 

samples. If this BDD method proves successful at measuring baseline DA and Ado 

levels via microdialysis, it will provide a much more user-friendly method to measure 

extracellular Ado levels. Currently, our BDD method is good enough for the detection of 

Ado in vivo, but not for DA. We believe to achieve DA detection, the column must be 

similar to the one that we currently use for routine dialysis experiments; one with a 

smaller particle size or a shorter column length, since decreasing these parameters will 

increase peak height and sensitivity. The length of the column dictates the flow of 

analyte and sample capacity while the size of the particles in the column control column 

efficiency and increase peak height due to its direct correlation to mass transfer of the 

analyte through the column. By decreasing the particle size or the column length may 

lead to further modifications/refinements of the mobile phase. However, we believe 
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these adjustments will not require a complete revamp of the current mobile phase and 

that in vivo detection of Ado and DA at a BDD electrode surface is just around the 

corner. 
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The goal of the first study was to determine if a reduction in brain-derived 

neurotrophic factor (BDNF) levels in female mice lead to a dysregulation in their 

dopaminergic system. Through a series of in vivo microdialysis and slice voltammetry 

experiments, we have discerned that female BDNF+/- mice are hyperdopaminergic 

similar to their male BDNF+/- counterparts. The in vivo microdialysis method zero-net flux 

highlighted that female BDNF+/- mice had increased extracellular dopamine (DA) levels, 

while stimulated regional release by high potassium potentiated DA release from 

vesicular mediated depolarization. Using the complementary technique of fast scan 

cyclic voltammetry, electrical stimulation evoked greater release in the female BDNF+/- 

mice, while uptake was not different from female wildtype mice. When the 

psychostimulant methamphetamine was administered, female BDNF+/- mice had 

potentiated DA release compared to their wildtype counterparts. Taken together, the DA 
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release impairments in female mice appears to result in a hyperdopaminergic 

phenotype with no concomitant alterations in DA uptake. 

The aim of the second study was to characterize how lifelong reductions in BDNF 

affect the striatal dopaminergic system in aged BDNF+/- mice. As BDNF+/- mice aged 

from 3 to 18 months, their striatal dopamine dynamics, as measured by microdialysis 

and slice voltammetry, ‘normalized’ with respect to time. Aged BDNF+/- mice (18 

months) had elevated levels of striatal DA metabolites and decreased phasic versus 

tonic release of DA with time. DA levels in BDNF+/- mice were age-dependent such that 

low BDNF levels in early adulthood, as previously reported, led to a hyperdopaminergic 

state while DA dynamics in the aged BDNF+/- mice  ‘normalized’ with no overt 

alterations in either behavior or neurochemistry.  

In the third study we developed a method using a commercially available BDD 

working electrode for detecting neurotransmitters from two different families with large 

oxidation potential differences, DA and adenosine (Ado). Hydrodynamic 

voltammograms were constructed for DA and Ado, and the optimal potential for 

detection of DA and Ado was determined to be +740 mV and +1200 mV versus a 

palladium reference electrode, respectively. A working potential of +840 mV was chosen 

and the detection range achieved with the BDD electrode for DA and Ado was from low 

nanomolar to high millimolar levels. To determine the practical function of the BDD 

electrode, tissue content was analyzed for seven monoamines and two purine 

molecules, which were resolved in a single run in less than 28 min. Our results 

demonstrate that the BDD electrode is sensitive and robust enough to detect 

monoamine and purine molecules from frontal cortex and striatal mouse samples.  



137 
 

   

AUTOBIOGRAPHICAL STATEMENT 
Education 

2008-2013 
Wayne State University (Detroit, Michigan) 
Doctor of Philosophy (Ph.D), Chemistry (Analytical) 
Dissertation:  Investigation of dopamine dynamics in BDNF+/- mice using in vivo 
microdialysis and electrochemical analysis of purines and monoamines using a boron-
doped diamond electrode 
 
2003-2008 
Lake Superior State University (Sault Sainte Marie, Michigan) 
Bachelor of Science (B.S.) Chemistry 
Bachelor of Science (B.S.) Forensic Chemistry 

 
Publications 

Birbeck, JA, and Mathews, TA. Simultaneous detection of monoamine and purine 
neurotransmitters with a boron-doped diamond electrode using high performance liquid 
chromatography. Accepted to Analytical Chemistry May 2013.  

Bosse, KE, Birbeck, JA, Newman, BE, Mathews, TA. “Analysis of Neurotransmitters 
and their Metabolites by Liquid Chromatography” Handbook on Liquid Chromatography.  

Bosse, KE, Maina, FK, Birbeck, JA, France, MM, Roberts, JJ, Colombo, ML, Mathews, 
TA. Aberrant striatal dopamine transmitter dynamics in brain-derived neurotrophic 
factor-deficient mice, (2012) Journal of Neurochemistry 120(3): 385-395. 

Keller, BJ, Back, RC, Westrick, J, Werner, M, Evans, B, Moerke, A, Zimmerman, G, 
Wright, DD, Grenfell, E, Courneya, J. Sediment quality at select sites in the St. Marys 
River Area of Concern, (2011)  Journal of Great Lakes Research 37: 12-20. 

 
Awards 

 Herbert K. Livingston Award for Excellence in Teaching (2013) 
 Presentation award Detroit Electrochemistry Society (2012) 
 Esther and Stanley Kirschner General Chemistry Teaching Award (2012) 
 Summer Dissertation Fellowship (2012) 
 Graduate School Professional Travel Award (2012) 
 Graduate Assistant Teaching Honor Citation (2009-2010) 
 Outstanding Forensic Chemist Award (2008) 
 Outstanding Undergraduate Poster Award - Wayne State University (2007) 
 Society of Toxicology Undergraduate Toxicology Education Award (Travel; 2006)  
 Alpha Chi Honors Society (2005) 
 Board of Trustees Academic Excellence Scholarship (2003-2007) 
 Michigan Merit Award (2003-2005) 
 Michigan Competitive Scholarship (2003-2007) 
 Valedictorian Scholarship (2003-2007) 


	Wayne State University
	1-1-2013
	Investigation Of Dopamine Dynamics In Bdnf+/- Mice Using In Vivo Microdialysis And Electrochemical Analysis Of Purine And Monoamine Molecules Using A Boron-Doped Diamond Electrode
	Johnna A. Birbeck
	Recommended Citation


	title page
	Table of Contents revised
	Thesis Final

